HOMOL klapaucjusz correction
[unres.git] / source / wham / src / energy_p_new.F
1       subroutine etotal(energia,fact)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4       include 'DIMENSIONS.ZSCOPT'
5       include 'DIMENSIONS.FREE'
6
7 #ifndef ISNAN
8       external proc_proc
9 #endif
10 #ifdef WINPGI
11 cMS$ATTRIBUTES C ::  proc_proc
12 #endif
13
14       include 'COMMON.IOUNITS'
15       double precision energia(0:max_ene),energia1(0:max_ene+1)
16 #ifdef MPL
17       include 'COMMON.INFO'
18       external d_vadd
19       integer ready
20 #endif
21       include 'COMMON.FFIELD'
22       include 'COMMON.DERIV'
23       include 'COMMON.INTERACT'
24       include 'COMMON.SBRIDGE'
25       include 'COMMON.CHAIN'
26       include 'COMMON.CONTROL'
27       double precision fact(6)
28 cd      write(iout, '(a,i2)')'Calling etotal ipot=',ipot
29 cd    print *,'nnt=',nnt,' nct=',nct
30 C
31 C Compute the side-chain and electrostatic interaction energy
32 C
33       goto (101,102,103,104,105) ipot
34 C Lennard-Jones potential.
35   101 call elj(evdw,evdw_t)
36 cd    print '(a)','Exit ELJ'
37       goto 106
38 C Lennard-Jones-Kihara potential (shifted).
39   102 call eljk(evdw,evdw_t)
40       goto 106
41 C Berne-Pechukas potential (dilated LJ, angular dependence).
42   103 call ebp(evdw,evdw_t)
43       goto 106
44 C Gay-Berne potential (shifted LJ, angular dependence).
45   104 call egb(evdw,evdw_t)
46       goto 106
47 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
48   105 call egbv(evdw,evdw_t)
49 C
50 C Calculate electrostatic (H-bonding) energy of the main chain.
51 C
52   106 call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
53 C
54 C Calculate excluded-volume interaction energy between peptide groups
55 C and side chains.
56 C
57       call escp(evdw2,evdw2_14)
58 c
59 c Calculate the bond-stretching energy
60 c
61       call ebond(estr)
62 c      write (iout,*) "estr",estr
63
64 C Calculate the disulfide-bridge and other energy and the contributions
65 C from other distance constraints.
66 cd    print *,'Calling EHPB'
67       call edis(ehpb)
68 cd    print *,'EHPB exitted succesfully.'
69 C
70 C Calculate the virtual-bond-angle energy.
71 C
72       call ebend(ebe)
73 cd    print *,'Bend energy finished.'
74 C
75 C Calculate the SC local energy.
76 C
77       call esc(escloc)
78 cd    print *,'SCLOC energy finished.'
79 C
80 C Calculate the virtual-bond torsional energy.
81 C
82 cd    print *,'nterm=',nterm
83       call etor(etors,edihcnstr,fact(1))
84 C
85 C 6/23/01 Calculate double-torsional energy
86 C
87       call etor_d(etors_d,fact(2))
88 C
89 C 21/5/07 Calculate local sicdechain correlation energy
90 C
91       call eback_sc_corr(esccor)
92
93 C 12/1/95 Multi-body terms
94 C
95       n_corr=0
96       n_corr1=0
97       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
98      &    .or. wturn6.gt.0.0d0) then
99 c         print *,"calling multibody_eello"
100          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
101 c         write (*,*) 'n_corr=',n_corr,' n_corr1=',n_corr1
102 c         print *,ecorr,ecorr5,ecorr6,eturn6
103       endif
104       if (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) then
105          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
106       endif
107
108
109 c      write(iout,*) "TEST_ENE1 constr_homology=",constr_homology
110       if (constr_homology.ge.1) then
111         call e_modeller(ehomology_constr)
112       else
113         ehomology_constr=0.0d0
114       endif
115
116 c      write(iout,*) "TEST_ENE1 ehomology_constr=",ehomology_constr
117
118 C     BARTEK for dfa test!
119       if (wdfa_dist.gt.0) call edfad(edfadis)
120 c      write(iout,*)'edfad is finished!', wdfa_dist,edfadis
121       if (wdfa_tor.gt.0) call edfat(edfator)
122 c      write(iout,*)'edfat is finished!', wdfa_tor,edfator
123       if (wdfa_nei.gt.0) call edfan(edfanei)
124 c      write(iout,*)'edfan is finished!', wdfa_nei,edfanei
125       if (wdfa_beta.gt.0) call edfab(edfabet)
126 c      write(iout,*)'edfab is finished!', wdfa_beta,edfabet
127
128 c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
129 #ifdef SPLITELE
130       etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2+welec*fact(1)*ees
131      & +wvdwpp*evdw1
132      & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
133      & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
134      & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
135      & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
136      & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
137      & +wbond*estr+wsccor*fact(1)*esccor!+ehomology_constr
138      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
139      & +wdfa_beta*edfabet
140 #else
141       etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2
142      & +welec*fact(1)*(ees+evdw1)
143      & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
144      & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
145      & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
146      & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
147      & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
148      & +wbond*estr+wsccor*fact(1)*esccor!+ehomology_constr
149      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
150      & +wdfa_beta*edfabet
151 #endif
152       energia(0)=etot
153       energia(1)=evdw
154 #ifdef SCP14
155       energia(2)=evdw2-evdw2_14
156       energia(17)=evdw2_14
157 #else
158       energia(2)=evdw2
159       energia(17)=0.0d0
160 #endif
161 #ifdef SPLITELE
162       energia(3)=ees
163       energia(16)=evdw1
164 #else
165       energia(3)=ees+evdw1
166       energia(16)=0.0d0
167 #endif
168       energia(4)=ecorr
169       energia(5)=ecorr5
170       energia(6)=ecorr6
171       energia(7)=eel_loc
172       energia(8)=eello_turn3
173       energia(9)=eello_turn4
174       energia(10)=eturn6
175       energia(11)=ebe
176       energia(12)=escloc
177       energia(13)=etors
178       energia(14)=etors_d
179       energia(15)=ehpb
180       energia(18)=estr
181       energia(19)=esccor
182       energia(20)=edihcnstr
183       energia(21)=evdw_t
184       energia(22)=ehomology_constr
185       energia(23)=edfadis
186       energia(24)=edfator
187       energia(25)=edfanei
188       energia(26)=edfabet
189 c      if (dyn_ss) call dyn_set_nss
190 c detecting NaNQ
191 #ifdef ISNAN
192 #ifdef AIX
193       if (isnan(etot).ne.0) energia(0)=1.0d+99
194 #else
195       if (isnan(etot)) energia(0)=1.0d+99
196 #endif
197 #else
198       i=0
199 #ifdef WINPGI
200       idumm=proc_proc(etot,i)
201 #else
202       call proc_proc(etot,i)
203 #endif
204       if(i.eq.1)energia(0)=1.0d+99
205 #endif
206 #ifdef MPL
207 c     endif
208 #endif
209       if (calc_grad) then
210 C
211 C Sum up the components of the Cartesian gradient.
212 C
213 #ifdef SPLITELE
214       do i=1,nct
215         do j=1,3
216           gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
217      &                welec*fact(1)*gelc(j,i)+wvdwpp*gvdwpp(j,i)+
218      &                wbond*gradb(j,i)+
219      &                wstrain*ghpbc(j,i)+
220      &                wcorr*fact(3)*gradcorr(j,i)+
221      &                wel_loc*fact(2)*gel_loc(j,i)+
222      &                wturn3*fact(2)*gcorr3_turn(j,i)+
223      &                wturn4*fact(3)*gcorr4_turn(j,i)+
224      &                wcorr5*fact(4)*gradcorr5(j,i)+
225      &                wcorr6*fact(5)*gradcorr6(j,i)+
226      &                wturn6*fact(5)*gcorr6_turn(j,i)+
227      &                wsccor*fact(2)*gsccorc(j,i)+
228      &                wdfa_dist*gdfad(j,i)+
229      &                wdfa_tor*gdfat(j,i)+
230      &                wdfa_nei*gdfan(j,i)+
231      &                wdfa_beta*gdfab(j,i)
232           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
233      &                  wbond*gradbx(j,i)+
234      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
235      &                  wsccor*fact(2)*gsccorx(j,i)
236         enddo
237 #else
238       do i=1,nct
239         do j=1,3
240           gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
241      &                welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+
242      &                wbond*gradb(j,i)+
243      &                wcorr*fact(3)*gradcorr(j,i)+
244      &                wel_loc*fact(2)*gel_loc(j,i)+
245      &                wturn3*fact(2)*gcorr3_turn(j,i)+
246      &                wturn4*fact(3)*gcorr4_turn(j,i)+
247      &                wcorr5*fact(4)*gradcorr5(j,i)+
248      &                wcorr6*fact(5)*gradcorr6(j,i)+
249      &                wturn6*fact(5)*gcorr6_turn(j,i)+
250      &                wsccor*fact(2)*gsccorc(j,i)+
251      &                wdfa_dist*gdfad(j,i)+
252      &                wdfa_tor*gdfat(j,i)+
253      &                wdfa_nei*gdfan(j,i)+
254      &                wdfa_beta*gdfab(j,i)
255           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
256      &                  wbond*gradbx(j,i)+
257      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
258      &                  wsccor*fact(1)*gsccorx(j,i)
259         enddo
260 #endif
261       enddo
262
263
264       do i=1,nres-3
265         gloc(i,icg)=gloc(i,icg)+wcorr*fact(3)*gcorr_loc(i)
266      &   +wcorr5*fact(4)*g_corr5_loc(i)
267      &   +wcorr6*fact(5)*g_corr6_loc(i)
268      &   +wturn4*fact(3)*gel_loc_turn4(i)
269      &   +wturn3*fact(2)*gel_loc_turn3(i)
270      &   +wturn6*fact(5)*gel_loc_turn6(i)
271      &   +wel_loc*fact(2)*gel_loc_loc(i)
272      &   +wsccor*fact(1)*gsccor_loc(i)
273       enddo
274       endif
275       return
276       end
277 C------------------------------------------------------------------------
278       subroutine enerprint(energia,fact)
279       implicit real*8 (a-h,o-z)
280       include 'DIMENSIONS'
281       include 'DIMENSIONS.ZSCOPT'
282       include 'COMMON.IOUNITS'
283       include 'COMMON.FFIELD'
284       include 'COMMON.SBRIDGE'
285       double precision energia(0:max_ene),fact(6)
286       etot=energia(0)
287       evdw=energia(1)+fact(6)*energia(21)
288 #ifdef SCP14
289       evdw2=energia(2)+energia(17)
290 #else
291       evdw2=energia(2)
292 #endif
293       ees=energia(3)
294 #ifdef SPLITELE
295       evdw1=energia(16)
296 #endif
297       ecorr=energia(4)
298       ecorr5=energia(5)
299       ecorr6=energia(6)
300       eel_loc=energia(7)
301       eello_turn3=energia(8)
302       eello_turn4=energia(9)
303       eello_turn6=energia(10)
304       ebe=energia(11)
305       escloc=energia(12)
306       etors=energia(13)
307       etors_d=energia(14)
308       ehpb=energia(15)
309       esccor=energia(19)
310       edihcnstr=energia(20)
311       estr=energia(18)
312       ehomology_constr=energia(22)
313       edfadis=energia(23)
314       edfator=energia(24)
315       edfanei=energia(25)
316       edfabet=energia(26)
317 #ifdef SPLITELE
318       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1,
319      &  wvdwpp,
320      &  estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1),
321      &  etors_d,wtor_d*fact(2),ehpb,wstrain,
322      &  ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5),
323      &  eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2),
324      &  eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5),
325      &  esccor,wsccor*fact(1),edihcnstr,ehomology_constr,ebr*nss,
326      &  edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,edfabet,
327      &  wdfa_beta,etot
328    10 format (/'Virtual-chain energies:'//
329      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
330      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
331      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p elec)'/
332      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
333      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
334      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
335      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
336      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
337      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
338      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
339      & ' (SS bridges & dist. cnstr.)'/
340      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
341      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
342      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
343      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
344      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
345      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
346      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
347      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
348      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
349      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
350      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ 
351      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/
352      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/
353      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/
354      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/
355      & 'ETOT=  ',1pE16.6,' (total)')
356 #else
357       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),estr,wbond,
358      &  ebe,wang,escloc,wscloc,etors,wtor*fact(1),etors_d,wtor_d*fact2,
359      &  ehpb,wstrain,ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),
360      &  ecorr6,wcorr6*fact(5),eel_loc,wel_loc*fact(2),
361      &  eello_turn3,wturn3*fact(2),eello_turn4,wturn4*fact(3),
362      &  eello_turn6,wturn6*fact(5),esccor*fact(1),wsccor,
363      &  edihcnstr,ehomology_constr,ebr*nss,
364      &  edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,edfabet,
365      &  wdfa_beta,etot
366    10 format (/'Virtual-chain energies:'//
367      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
368      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
369      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
370      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
371      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
372      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
373      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
374      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
375      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
376      & ' (SS bridges & dist. cnstr.)'/
377      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
378      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
379      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
380      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
381      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
382      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
383      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
384      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
385      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
386      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
387      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ 
388      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/
389      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/
390      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/
391      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/
392      & 'ETOT=  ',1pE16.6,' (total)')
393 #endif
394       return
395       end
396 C-----------------------------------------------------------------------
397       subroutine elj(evdw,evdw_t)
398 C
399 C This subroutine calculates the interaction energy of nonbonded side chains
400 C assuming the LJ potential of interaction.
401 C
402       implicit real*8 (a-h,o-z)
403       include 'DIMENSIONS'
404       include 'DIMENSIONS.ZSCOPT'
405       include "DIMENSIONS.COMPAR"
406       parameter (accur=1.0d-10)
407       include 'COMMON.GEO'
408       include 'COMMON.VAR'
409       include 'COMMON.LOCAL'
410       include 'COMMON.CHAIN'
411       include 'COMMON.DERIV'
412       include 'COMMON.INTERACT'
413       include 'COMMON.TORSION'
414       include 'COMMON.ENEPS'
415       include 'COMMON.SBRIDGE'
416       include 'COMMON.NAMES'
417       include 'COMMON.IOUNITS'
418       include 'COMMON.CONTACTS'
419       dimension gg(3)
420       integer icant
421       external icant
422 cd    print *,'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
423       do i=1,210
424         do j=1,2
425           eneps_temp(j,i)=0.0d0
426         enddo
427       enddo
428       evdw=0.0D0
429       evdw_t=0.0d0
430       do i=iatsc_s,iatsc_e
431         itypi=itype(i)
432         itypi1=itype(i+1)
433         xi=c(1,nres+i)
434         yi=c(2,nres+i)
435         zi=c(3,nres+i)
436 C Change 12/1/95
437         num_conti=0
438 C
439 C Calculate SC interaction energy.
440 C
441         do iint=1,nint_gr(i)
442 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
443 cd   &                  'iend=',iend(i,iint)
444           do j=istart(i,iint),iend(i,iint)
445             itypj=itype(j)
446             xj=c(1,nres+j)-xi
447             yj=c(2,nres+j)-yi
448             zj=c(3,nres+j)-zi
449 C Change 12/1/95 to calculate four-body interactions
450             rij=xj*xj+yj*yj+zj*zj
451             rrij=1.0D0/rij
452 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
453             eps0ij=eps(itypi,itypj)
454             fac=rrij**expon2
455             e1=fac*fac*aa(itypi,itypj)
456             e2=fac*bb(itypi,itypj)
457             evdwij=e1+e2
458             ij=icant(itypi,itypj)
459             eneps_temp(1,ij)=eneps_temp(1,ij)+e1/dabs(eps0ij)
460             eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps0ij
461 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
462 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
463 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
464 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
465 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
466 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
467             if (bb(itypi,itypj).gt.0.0d0) then
468               evdw=evdw+evdwij
469             else
470               evdw_t=evdw_t+evdwij
471             endif
472             if (calc_grad) then
473
474 C Calculate the components of the gradient in DC and X
475 C
476             fac=-rrij*(e1+evdwij)
477             gg(1)=xj*fac
478             gg(2)=yj*fac
479             gg(3)=zj*fac
480             do k=1,3
481               gvdwx(k,i)=gvdwx(k,i)-gg(k)
482               gvdwx(k,j)=gvdwx(k,j)+gg(k)
483             enddo
484             do k=i,j-1
485               do l=1,3
486                 gvdwc(l,k)=gvdwc(l,k)+gg(l)
487               enddo
488             enddo
489             endif
490 C
491 C 12/1/95, revised on 5/20/97
492 C
493 C Calculate the contact function. The ith column of the array JCONT will 
494 C contain the numbers of atoms that make contacts with the atom I (of numbers
495 C greater than I). The arrays FACONT and GACONT will contain the values of
496 C the contact function and its derivative.
497 C
498 C Uncomment next line, if the correlation interactions include EVDW explicitly.
499 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
500 C Uncomment next line, if the correlation interactions are contact function only
501             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
502               rij=dsqrt(rij)
503               sigij=sigma(itypi,itypj)
504               r0ij=rs0(itypi,itypj)
505 C
506 C Check whether the SC's are not too far to make a contact.
507 C
508               rcut=1.5d0*r0ij
509               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
510 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
511 C
512               if (fcont.gt.0.0D0) then
513 C If the SC-SC distance if close to sigma, apply spline.
514 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
515 cAdam &             fcont1,fprimcont1)
516 cAdam           fcont1=1.0d0-fcont1
517 cAdam           if (fcont1.gt.0.0d0) then
518 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
519 cAdam             fcont=fcont*fcont1
520 cAdam           endif
521 C Uncomment following 4 lines to have the geometric average of the epsilon0's
522 cga             eps0ij=1.0d0/dsqrt(eps0ij)
523 cga             do k=1,3
524 cga               gg(k)=gg(k)*eps0ij
525 cga             enddo
526 cga             eps0ij=-evdwij*eps0ij
527 C Uncomment for AL's type of SC correlation interactions.
528 cadam           eps0ij=-evdwij
529                 num_conti=num_conti+1
530                 jcont(num_conti,i)=j
531                 facont(num_conti,i)=fcont*eps0ij
532                 fprimcont=eps0ij*fprimcont/rij
533                 fcont=expon*fcont
534 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
535 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
536 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
537 C Uncomment following 3 lines for Skolnick's type of SC correlation.
538                 gacont(1,num_conti,i)=-fprimcont*xj
539                 gacont(2,num_conti,i)=-fprimcont*yj
540                 gacont(3,num_conti,i)=-fprimcont*zj
541 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
542 cd              write (iout,'(2i3,3f10.5)') 
543 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
544               endif
545             endif
546           enddo      ! j
547         enddo        ! iint
548 C Change 12/1/95
549         num_cont(i)=num_conti
550       enddo          ! i
551       if (calc_grad) then
552       do i=1,nct
553         do j=1,3
554           gvdwc(j,i)=expon*gvdwc(j,i)
555           gvdwx(j,i)=expon*gvdwx(j,i)
556         enddo
557       enddo
558       endif
559 C******************************************************************************
560 C
561 C                              N O T E !!!
562 C
563 C To save time, the factor of EXPON has been extracted from ALL components
564 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
565 C use!
566 C
567 C******************************************************************************
568       return
569       end
570 C-----------------------------------------------------------------------------
571       subroutine eljk(evdw,evdw_t)
572 C
573 C This subroutine calculates the interaction energy of nonbonded side chains
574 C assuming the LJK potential of interaction.
575 C
576       implicit real*8 (a-h,o-z)
577       include 'DIMENSIONS'
578       include 'DIMENSIONS.ZSCOPT'
579       include "DIMENSIONS.COMPAR"
580       include 'COMMON.GEO'
581       include 'COMMON.VAR'
582       include 'COMMON.LOCAL'
583       include 'COMMON.CHAIN'
584       include 'COMMON.DERIV'
585       include 'COMMON.INTERACT'
586       include 'COMMON.ENEPS'
587       include 'COMMON.IOUNITS'
588       include 'COMMON.NAMES'
589       dimension gg(3)
590       logical scheck
591       integer icant
592       external icant
593 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
594       do i=1,210
595         do j=1,2
596           eneps_temp(j,i)=0.0d0
597         enddo
598       enddo
599       evdw=0.0D0
600       evdw_t=0.0d0
601       do i=iatsc_s,iatsc_e
602         itypi=itype(i)
603         itypi1=itype(i+1)
604         xi=c(1,nres+i)
605         yi=c(2,nres+i)
606         zi=c(3,nres+i)
607 C
608 C Calculate SC interaction energy.
609 C
610         do iint=1,nint_gr(i)
611           do j=istart(i,iint),iend(i,iint)
612             itypj=itype(j)
613             xj=c(1,nres+j)-xi
614             yj=c(2,nres+j)-yi
615             zj=c(3,nres+j)-zi
616             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
617             fac_augm=rrij**expon
618             e_augm=augm(itypi,itypj)*fac_augm
619             r_inv_ij=dsqrt(rrij)
620             rij=1.0D0/r_inv_ij 
621             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
622             fac=r_shift_inv**expon
623             e1=fac*fac*aa(itypi,itypj)
624             e2=fac*bb(itypi,itypj)
625             evdwij=e_augm+e1+e2
626             ij=icant(itypi,itypj)
627             eneps_temp(1,ij)=eneps_temp(1,ij)+(e1+a_augm)
628      &        /dabs(eps(itypi,itypj))
629             eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps(itypi,itypj)
630 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
631 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
632 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
633 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
634 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
635 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
636 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
637             if (bb(itypi,itypj).gt.0.0d0) then
638               evdw=evdw+evdwij
639             else 
640               evdw_t=evdw_t+evdwij
641             endif
642             if (calc_grad) then
643
644 C Calculate the components of the gradient in DC and X
645 C
646             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
647             gg(1)=xj*fac
648             gg(2)=yj*fac
649             gg(3)=zj*fac
650             do k=1,3
651               gvdwx(k,i)=gvdwx(k,i)-gg(k)
652               gvdwx(k,j)=gvdwx(k,j)+gg(k)
653             enddo
654             do k=i,j-1
655               do l=1,3
656                 gvdwc(l,k)=gvdwc(l,k)+gg(l)
657               enddo
658             enddo
659             endif
660           enddo      ! j
661         enddo        ! iint
662       enddo          ! i
663       if (calc_grad) then
664       do i=1,nct
665         do j=1,3
666           gvdwc(j,i)=expon*gvdwc(j,i)
667           gvdwx(j,i)=expon*gvdwx(j,i)
668         enddo
669       enddo
670       endif
671       return
672       end
673 C-----------------------------------------------------------------------------
674       subroutine ebp(evdw,evdw_t)
675 C
676 C This subroutine calculates the interaction energy of nonbonded side chains
677 C assuming the Berne-Pechukas potential of interaction.
678 C
679       implicit real*8 (a-h,o-z)
680       include 'DIMENSIONS'
681       include 'DIMENSIONS.ZSCOPT'
682       include "DIMENSIONS.COMPAR"
683       include 'COMMON.GEO'
684       include 'COMMON.VAR'
685       include 'COMMON.LOCAL'
686       include 'COMMON.CHAIN'
687       include 'COMMON.DERIV'
688       include 'COMMON.NAMES'
689       include 'COMMON.INTERACT'
690       include 'COMMON.ENEPS'
691       include 'COMMON.IOUNITS'
692       include 'COMMON.CALC'
693       common /srutu/ icall
694 c     double precision rrsave(maxdim)
695       logical lprn
696       integer icant
697       external icant
698       do i=1,210
699         do j=1,2
700           eneps_temp(j,i)=0.0d0
701         enddo
702       enddo
703       evdw=0.0D0
704       evdw_t=0.0d0
705 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
706 c     if (icall.eq.0) then
707 c       lprn=.true.
708 c     else
709         lprn=.false.
710 c     endif
711       ind=0
712       do i=iatsc_s,iatsc_e
713         itypi=itype(i)
714         itypi1=itype(i+1)
715         xi=c(1,nres+i)
716         yi=c(2,nres+i)
717         zi=c(3,nres+i)
718         dxi=dc_norm(1,nres+i)
719         dyi=dc_norm(2,nres+i)
720         dzi=dc_norm(3,nres+i)
721         dsci_inv=vbld_inv(i+nres)
722 C
723 C Calculate SC interaction energy.
724 C
725         do iint=1,nint_gr(i)
726           do j=istart(i,iint),iend(i,iint)
727             ind=ind+1
728             itypj=itype(j)
729             dscj_inv=vbld_inv(j+nres)
730             chi1=chi(itypi,itypj)
731             chi2=chi(itypj,itypi)
732             chi12=chi1*chi2
733             chip1=chip(itypi)
734             chip2=chip(itypj)
735             chip12=chip1*chip2
736             alf1=alp(itypi)
737             alf2=alp(itypj)
738             alf12=0.5D0*(alf1+alf2)
739 C For diagnostics only!!!
740 c           chi1=0.0D0
741 c           chi2=0.0D0
742 c           chi12=0.0D0
743 c           chip1=0.0D0
744 c           chip2=0.0D0
745 c           chip12=0.0D0
746 c           alf1=0.0D0
747 c           alf2=0.0D0
748 c           alf12=0.0D0
749             xj=c(1,nres+j)-xi
750             yj=c(2,nres+j)-yi
751             zj=c(3,nres+j)-zi
752             dxj=dc_norm(1,nres+j)
753             dyj=dc_norm(2,nres+j)
754             dzj=dc_norm(3,nres+j)
755             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
756 cd          if (icall.eq.0) then
757 cd            rrsave(ind)=rrij
758 cd          else
759 cd            rrij=rrsave(ind)
760 cd          endif
761             rij=dsqrt(rrij)
762 C Calculate the angle-dependent terms of energy & contributions to derivatives.
763             call sc_angular
764 C Calculate whole angle-dependent part of epsilon and contributions
765 C to its derivatives
766             fac=(rrij*sigsq)**expon2
767             e1=fac*fac*aa(itypi,itypj)
768             e2=fac*bb(itypi,itypj)
769             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
770             eps2der=evdwij*eps3rt
771             eps3der=evdwij*eps2rt
772             evdwij=evdwij*eps2rt*eps3rt
773             ij=icant(itypi,itypj)
774             aux=eps1*eps2rt**2*eps3rt**2
775             eneps_temp(1,ij)=eneps_temp(1,ij)+e1*aux
776      &        /dabs(eps(itypi,itypj))
777             eneps_temp(2,ij)=eneps_temp(2,ij)+e2*aux/eps(itypi,itypj)
778             if (bb(itypi,itypj).gt.0.0d0) then
779               evdw=evdw+evdwij
780             else
781               evdw_t=evdw_t+evdwij
782             endif
783             if (calc_grad) then
784             if (lprn) then
785             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
786             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
787 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
788 cd     &        restyp(itypi),i,restyp(itypj),j,
789 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
790 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
791 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
792 cd     &        evdwij
793             endif
794 C Calculate gradient components.
795             e1=e1*eps1*eps2rt**2*eps3rt**2
796             fac=-expon*(e1+evdwij)
797             sigder=fac/sigsq
798             fac=rrij*fac
799 C Calculate radial part of the gradient
800             gg(1)=xj*fac
801             gg(2)=yj*fac
802             gg(3)=zj*fac
803 C Calculate the angular part of the gradient and sum add the contributions
804 C to the appropriate components of the Cartesian gradient.
805             call sc_grad
806             endif
807           enddo      ! j
808         enddo        ! iint
809       enddo          ! i
810 c     stop
811       return
812       end
813 C-----------------------------------------------------------------------------
814       subroutine egb(evdw,evdw_t)
815 C
816 C This subroutine calculates the interaction energy of nonbonded side chains
817 C assuming the Gay-Berne potential of interaction.
818 C
819       implicit real*8 (a-h,o-z)
820       include 'DIMENSIONS'
821       include 'DIMENSIONS.ZSCOPT'
822       include "DIMENSIONS.COMPAR"
823       include 'COMMON.GEO'
824       include 'COMMON.VAR'
825       include 'COMMON.LOCAL'
826       include 'COMMON.CHAIN'
827       include 'COMMON.DERIV'
828       include 'COMMON.NAMES'
829       include 'COMMON.INTERACT'
830       include 'COMMON.ENEPS'
831       include 'COMMON.IOUNITS'
832       include 'COMMON.CALC'
833       include 'COMMON.SBRIDGE'
834       logical lprn
835       common /srutu/icall
836       integer icant
837       external icant
838       do i=1,210
839         do j=1,2
840           eneps_temp(j,i)=0.0d0
841         enddo
842       enddo
843 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
844       evdw=0.0D0
845       evdw_t=0.0d0
846       lprn=.false.
847 c      if (icall.gt.0) lprn=.true.
848       ind=0
849       do i=iatsc_s,iatsc_e
850         itypi=itype(i)
851         itypi1=itype(i+1)
852         xi=c(1,nres+i)
853         yi=c(2,nres+i)
854         zi=c(3,nres+i)
855         dxi=dc_norm(1,nres+i)
856         dyi=dc_norm(2,nres+i)
857         dzi=dc_norm(3,nres+i)
858         dsci_inv=vbld_inv(i+nres)
859 C
860 C Calculate SC interaction energy.
861 C
862         do iint=1,nint_gr(i)
863           do j=istart(i,iint),iend(i,iint)
864 C in case of diagnostics    write (iout,*) "TU SZUKAJ",i,j,dyn_ss_mask(i),dyn_ss_mask(j)
865 C /06/28/2013 Adasko: In case of dyn_ss - dynamic disulfide bond
866 C formation no electrostatic interactions should be calculated. If it
867 C would be allowed NaN would appear
868             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
869 C /06/28/2013 Adasko: dyn_ss_mask is logical statement wheather this Cys
870 C residue can or cannot form disulfide bond. There is still bug allowing
871 C Cys...Cys...Cys bond formation
872               call dyn_ssbond_ene(i,j,evdwij)
873 C /06/28/2013 Adasko: dyn_ssbond_ene is dynamic SS bond foration energy
874 C function in ssMD.F
875               evdw=evdw+evdwij
876 c              if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)')
877 c     &                        'evdw',i,j,evdwij,' ss'
878             ELSE
879             ind=ind+1
880             itypj=itype(j)
881             dscj_inv=vbld_inv(j+nres)
882             sig0ij=sigma(itypi,itypj)
883             chi1=chi(itypi,itypj)
884             chi2=chi(itypj,itypi)
885             chi12=chi1*chi2
886             chip1=chip(itypi)
887             chip2=chip(itypj)
888             chip12=chip1*chip2
889             alf1=alp(itypi)
890             alf2=alp(itypj)
891             alf12=0.5D0*(alf1+alf2)
892 C For diagnostics only!!!
893 c           chi1=0.0D0
894 c           chi2=0.0D0
895 c           chi12=0.0D0
896 c           chip1=0.0D0
897 c           chip2=0.0D0
898 c           chip12=0.0D0
899 c           alf1=0.0D0
900 c           alf2=0.0D0
901 c           alf12=0.0D0
902             xj=c(1,nres+j)-xi
903             yj=c(2,nres+j)-yi
904             zj=c(3,nres+j)-zi
905             dxj=dc_norm(1,nres+j)
906             dyj=dc_norm(2,nres+j)
907             dzj=dc_norm(3,nres+j)
908 c            write (iout,*) i,j,xj,yj,zj
909             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
910             rij=dsqrt(rrij)
911 C Calculate angle-dependent terms of energy and contributions to their
912 C derivatives.
913             call sc_angular
914             sigsq=1.0D0/sigsq
915             sig=sig0ij*dsqrt(sigsq)
916             rij_shift=1.0D0/rij-sig+sig0ij
917 C I hate to put IF's in the loops, but here don't have another choice!!!!
918             if (rij_shift.le.0.0D0) then
919               evdw=1.0D20
920               return
921             endif
922             sigder=-sig*sigsq
923 c---------------------------------------------------------------
924             rij_shift=1.0D0/rij_shift 
925             fac=rij_shift**expon
926             e1=fac*fac*aa(itypi,itypj)
927             e2=fac*bb(itypi,itypj)
928             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
929             eps2der=evdwij*eps3rt
930             eps3der=evdwij*eps2rt
931             evdwij=evdwij*eps2rt*eps3rt
932             if (bb(itypi,itypj).gt.0) then
933               evdw=evdw+evdwij
934             else
935               evdw_t=evdw_t+evdwij
936             endif
937             ij=icant(itypi,itypj)
938             aux=eps1*eps2rt**2*eps3rt**2
939             eneps_temp(1,ij)=eneps_temp(1,ij)+aux*e1
940      &        /dabs(eps(itypi,itypj))
941             eneps_temp(2,ij)=eneps_temp(2,ij)+aux*e2/eps(itypi,itypj)
942 c            write (iout,*) "i",i," j",j," itypi",itypi," itypj",itypj,
943 c     &         " ij",ij," eneps",aux*e1/dabs(eps(itypi,itypj)),
944 c     &         aux*e2/eps(itypi,itypj)
945 c       write (iout,'(a6,2i5,0pf7.3)') 'evdw',i,j,evdwij
946             if (lprn) then
947             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
948             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
949             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
950      &        restyp(itypi),i,restyp(itypj),j,
951      &        epsi,sigm,chi1,chi2,chip1,chip2,
952      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
953      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
954      &        evdwij
955             endif
956             if (calc_grad) then
957 C Calculate gradient components.
958             e1=e1*eps1*eps2rt**2*eps3rt**2
959             fac=-expon*(e1+evdwij)*rij_shift
960             sigder=fac*sigder
961             fac=rij*fac
962 C Calculate the radial part of the gradient
963             gg(1)=xj*fac
964             gg(2)=yj*fac
965             gg(3)=zj*fac
966 C Calculate angular part of the gradient.
967             call sc_grad
968             endif
969             ENDIF    ! dyn_ss
970           enddo      ! j
971         enddo        ! iint
972       enddo          ! i
973       return
974       end
975 C-----------------------------------------------------------------------------
976       subroutine egbv(evdw,evdw_t)
977 C
978 C This subroutine calculates the interaction energy of nonbonded side chains
979 C assuming the Gay-Berne-Vorobjev potential of interaction.
980 C
981       implicit real*8 (a-h,o-z)
982       include 'DIMENSIONS'
983       include 'DIMENSIONS.ZSCOPT'
984       include "DIMENSIONS.COMPAR"
985       include 'COMMON.GEO'
986       include 'COMMON.VAR'
987       include 'COMMON.LOCAL'
988       include 'COMMON.CHAIN'
989       include 'COMMON.DERIV'
990       include 'COMMON.NAMES'
991       include 'COMMON.INTERACT'
992       include 'COMMON.ENEPS'
993       include 'COMMON.IOUNITS'
994       include 'COMMON.CALC'
995       common /srutu/ icall
996       logical lprn
997       integer icant
998       external icant
999       do i=1,210
1000         do j=1,2
1001           eneps_temp(j,i)=0.0d0
1002         enddo
1003       enddo
1004       evdw=0.0D0
1005       evdw_t=0.0d0
1006 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1007       evdw=0.0D0
1008       lprn=.false.
1009 c      if (icall.gt.0) lprn=.true.
1010       ind=0
1011       do i=iatsc_s,iatsc_e
1012         itypi=itype(i)
1013         itypi1=itype(i+1)
1014         xi=c(1,nres+i)
1015         yi=c(2,nres+i)
1016         zi=c(3,nres+i)
1017         dxi=dc_norm(1,nres+i)
1018         dyi=dc_norm(2,nres+i)
1019         dzi=dc_norm(3,nres+i)
1020         dsci_inv=vbld_inv(i+nres)
1021 C
1022 C Calculate SC interaction energy.
1023 C
1024         do iint=1,nint_gr(i)
1025           do j=istart(i,iint),iend(i,iint)
1026             ind=ind+1
1027             itypj=itype(j)
1028             dscj_inv=vbld_inv(j+nres)
1029             sig0ij=sigma(itypi,itypj)
1030             r0ij=r0(itypi,itypj)
1031             chi1=chi(itypi,itypj)
1032             chi2=chi(itypj,itypi)
1033             chi12=chi1*chi2
1034             chip1=chip(itypi)
1035             chip2=chip(itypj)
1036             chip12=chip1*chip2
1037             alf1=alp(itypi)
1038             alf2=alp(itypj)
1039             alf12=0.5D0*(alf1+alf2)
1040 C For diagnostics only!!!
1041 c           chi1=0.0D0
1042 c           chi2=0.0D0
1043 c           chi12=0.0D0
1044 c           chip1=0.0D0
1045 c           chip2=0.0D0
1046 c           chip12=0.0D0
1047 c           alf1=0.0D0
1048 c           alf2=0.0D0
1049 c           alf12=0.0D0
1050             xj=c(1,nres+j)-xi
1051             yj=c(2,nres+j)-yi
1052             zj=c(3,nres+j)-zi
1053             dxj=dc_norm(1,nres+j)
1054             dyj=dc_norm(2,nres+j)
1055             dzj=dc_norm(3,nres+j)
1056             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1057             rij=dsqrt(rrij)
1058 C Calculate angle-dependent terms of energy and contributions to their
1059 C derivatives.
1060             call sc_angular
1061             sigsq=1.0D0/sigsq
1062             sig=sig0ij*dsqrt(sigsq)
1063             rij_shift=1.0D0/rij-sig+r0ij
1064 C I hate to put IF's in the loops, but here don't have another choice!!!!
1065             if (rij_shift.le.0.0D0) then
1066               evdw=1.0D20
1067               return
1068             endif
1069             sigder=-sig*sigsq
1070 c---------------------------------------------------------------
1071             rij_shift=1.0D0/rij_shift 
1072             fac=rij_shift**expon
1073             e1=fac*fac*aa(itypi,itypj)
1074             e2=fac*bb(itypi,itypj)
1075             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1076             eps2der=evdwij*eps3rt
1077             eps3der=evdwij*eps2rt
1078             fac_augm=rrij**expon
1079             e_augm=augm(itypi,itypj)*fac_augm
1080             evdwij=evdwij*eps2rt*eps3rt
1081             if (bb(itypi,itypj).gt.0.0d0) then
1082               evdw=evdw+evdwij+e_augm
1083             else
1084               evdw_t=evdw_t+evdwij+e_augm
1085             endif
1086             ij=icant(itypi,itypj)
1087             aux=eps1*eps2rt**2*eps3rt**2
1088             eneps_temp(1,ij)=eneps_temp(1,ij)+aux*(e1+e_augm)
1089      &        /dabs(eps(itypi,itypj))
1090             eneps_temp(2,ij)=eneps_temp(2,ij)+aux*e2/eps(itypi,itypj)
1091 c            eneps_temp(ij)=eneps_temp(ij)
1092 c     &         +(evdwij+e_augm)/eps(itypi,itypj)
1093 c            if (lprn) then
1094 c            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1095 c            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1096 c            write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1097 c     &        restyp(itypi),i,restyp(itypj),j,
1098 c     &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1099 c     &        chi1,chi2,chip1,chip2,
1100 c     &        eps1,eps2rt**2,eps3rt**2,
1101 c     &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1102 c     &        evdwij+e_augm
1103 c            endif
1104             if (calc_grad) then
1105 C Calculate gradient components.
1106             e1=e1*eps1*eps2rt**2*eps3rt**2
1107             fac=-expon*(e1+evdwij)*rij_shift
1108             sigder=fac*sigder
1109             fac=rij*fac-2*expon*rrij*e_augm
1110 C Calculate the radial part of the gradient
1111             gg(1)=xj*fac
1112             gg(2)=yj*fac
1113             gg(3)=zj*fac
1114 C Calculate angular part of the gradient.
1115             call sc_grad
1116             endif
1117           enddo      ! j
1118         enddo        ! iint
1119       enddo          ! i
1120       return
1121       end
1122 C-----------------------------------------------------------------------------
1123       subroutine sc_angular
1124 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1125 C om12. Called by ebp, egb, and egbv.
1126       implicit none
1127       include 'COMMON.CALC'
1128       erij(1)=xj*rij
1129       erij(2)=yj*rij
1130       erij(3)=zj*rij
1131       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1132       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1133       om12=dxi*dxj+dyi*dyj+dzi*dzj
1134       chiom12=chi12*om12
1135 C Calculate eps1(om12) and its derivative in om12
1136       faceps1=1.0D0-om12*chiom12
1137       faceps1_inv=1.0D0/faceps1
1138       eps1=dsqrt(faceps1_inv)
1139 C Following variable is eps1*deps1/dom12
1140       eps1_om12=faceps1_inv*chiom12
1141 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1142 C and om12.
1143       om1om2=om1*om2
1144       chiom1=chi1*om1
1145       chiom2=chi2*om2
1146       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1147       sigsq=1.0D0-facsig*faceps1_inv
1148       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1149       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1150       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1151 C Calculate eps2 and its derivatives in om1, om2, and om12.
1152       chipom1=chip1*om1
1153       chipom2=chip2*om2
1154       chipom12=chip12*om12
1155       facp=1.0D0-om12*chipom12
1156       facp_inv=1.0D0/facp
1157       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1158 C Following variable is the square root of eps2
1159       eps2rt=1.0D0-facp1*facp_inv
1160 C Following three variables are the derivatives of the square root of eps
1161 C in om1, om2, and om12.
1162       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1163       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1164       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1165 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1166       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1167 C Calculate whole angle-dependent part of epsilon and contributions
1168 C to its derivatives
1169       return
1170       end
1171 C----------------------------------------------------------------------------
1172       subroutine sc_grad
1173       implicit real*8 (a-h,o-z)
1174       include 'DIMENSIONS'
1175       include 'DIMENSIONS.ZSCOPT'
1176       include 'COMMON.CHAIN'
1177       include 'COMMON.DERIV'
1178       include 'COMMON.CALC'
1179       double precision dcosom1(3),dcosom2(3)
1180       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1181       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1182       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1183      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1184       do k=1,3
1185         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1186         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1187       enddo
1188       do k=1,3
1189         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1190       enddo 
1191       do k=1,3
1192         gvdwx(k,i)=gvdwx(k,i)-gg(k)
1193      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1194      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1195         gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1197      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1198       enddo
1199
1200 C Calculate the components of the gradient in DC and X
1201 C
1202       do k=i,j-1
1203         do l=1,3
1204           gvdwc(l,k)=gvdwc(l,k)+gg(l)
1205         enddo
1206       enddo
1207       return
1208       end
1209 c------------------------------------------------------------------------------
1210       subroutine vec_and_deriv
1211       implicit real*8 (a-h,o-z)
1212       include 'DIMENSIONS'
1213       include 'DIMENSIONS.ZSCOPT'
1214       include 'COMMON.IOUNITS'
1215       include 'COMMON.GEO'
1216       include 'COMMON.VAR'
1217       include 'COMMON.LOCAL'
1218       include 'COMMON.CHAIN'
1219       include 'COMMON.VECTORS'
1220       include 'COMMON.DERIV'
1221       include 'COMMON.INTERACT'
1222       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
1223 C Compute the local reference systems. For reference system (i), the
1224 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
1225 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
1226       do i=1,nres-1
1227 c          if (i.eq.nres-1 .or. itel(i+1).eq.0) then
1228           if (i.eq.nres-1) then
1229 C Case of the last full residue
1230 C Compute the Z-axis
1231             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
1232             costh=dcos(pi-theta(nres))
1233             fac=1.0d0/dsqrt(1.0d0-costh*costh)
1234             do k=1,3
1235               uz(k,i)=fac*uz(k,i)
1236             enddo
1237             if (calc_grad) then
1238 C Compute the derivatives of uz
1239             uzder(1,1,1)= 0.0d0
1240             uzder(2,1,1)=-dc_norm(3,i-1)
1241             uzder(3,1,1)= dc_norm(2,i-1) 
1242             uzder(1,2,1)= dc_norm(3,i-1)
1243             uzder(2,2,1)= 0.0d0
1244             uzder(3,2,1)=-dc_norm(1,i-1)
1245             uzder(1,3,1)=-dc_norm(2,i-1)
1246             uzder(2,3,1)= dc_norm(1,i-1)
1247             uzder(3,3,1)= 0.0d0
1248             uzder(1,1,2)= 0.0d0
1249             uzder(2,1,2)= dc_norm(3,i)
1250             uzder(3,1,2)=-dc_norm(2,i) 
1251             uzder(1,2,2)=-dc_norm(3,i)
1252             uzder(2,2,2)= 0.0d0
1253             uzder(3,2,2)= dc_norm(1,i)
1254             uzder(1,3,2)= dc_norm(2,i)
1255             uzder(2,3,2)=-dc_norm(1,i)
1256             uzder(3,3,2)= 0.0d0
1257             endif
1258 C Compute the Y-axis
1259             facy=fac
1260             do k=1,3
1261               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
1262             enddo
1263             if (calc_grad) then
1264 C Compute the derivatives of uy
1265             do j=1,3
1266               do k=1,3
1267                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
1268      &                        -dc_norm(k,i)*dc_norm(j,i-1)
1269                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1270               enddo
1271               uyder(j,j,1)=uyder(j,j,1)-costh
1272               uyder(j,j,2)=1.0d0+uyder(j,j,2)
1273             enddo
1274             do j=1,2
1275               do k=1,3
1276                 do l=1,3
1277                   uygrad(l,k,j,i)=uyder(l,k,j)
1278                   uzgrad(l,k,j,i)=uzder(l,k,j)
1279                 enddo
1280               enddo
1281             enddo 
1282             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1283             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1284             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1285             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1286             endif
1287           else
1288 C Other residues
1289 C Compute the Z-axis
1290             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
1291             costh=dcos(pi-theta(i+2))
1292             fac=1.0d0/dsqrt(1.0d0-costh*costh)
1293             do k=1,3
1294               uz(k,i)=fac*uz(k,i)
1295             enddo
1296             if (calc_grad) then
1297 C Compute the derivatives of uz
1298             uzder(1,1,1)= 0.0d0
1299             uzder(2,1,1)=-dc_norm(3,i+1)
1300             uzder(3,1,1)= dc_norm(2,i+1) 
1301             uzder(1,2,1)= dc_norm(3,i+1)
1302             uzder(2,2,1)= 0.0d0
1303             uzder(3,2,1)=-dc_norm(1,i+1)
1304             uzder(1,3,1)=-dc_norm(2,i+1)
1305             uzder(2,3,1)= dc_norm(1,i+1)
1306             uzder(3,3,1)= 0.0d0
1307             uzder(1,1,2)= 0.0d0
1308             uzder(2,1,2)= dc_norm(3,i)
1309             uzder(3,1,2)=-dc_norm(2,i) 
1310             uzder(1,2,2)=-dc_norm(3,i)
1311             uzder(2,2,2)= 0.0d0
1312             uzder(3,2,2)= dc_norm(1,i)
1313             uzder(1,3,2)= dc_norm(2,i)
1314             uzder(2,3,2)=-dc_norm(1,i)
1315             uzder(3,3,2)= 0.0d0
1316             endif
1317 C Compute the Y-axis
1318             facy=fac
1319             do k=1,3
1320               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1321             enddo
1322             if (calc_grad) then
1323 C Compute the derivatives of uy
1324             do j=1,3
1325               do k=1,3
1326                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
1327      &                        -dc_norm(k,i)*dc_norm(j,i+1)
1328                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1329               enddo
1330               uyder(j,j,1)=uyder(j,j,1)-costh
1331               uyder(j,j,2)=1.0d0+uyder(j,j,2)
1332             enddo
1333             do j=1,2
1334               do k=1,3
1335                 do l=1,3
1336                   uygrad(l,k,j,i)=uyder(l,k,j)
1337                   uzgrad(l,k,j,i)=uzder(l,k,j)
1338                 enddo
1339               enddo
1340             enddo 
1341             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1342             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1343             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1344             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1345           endif
1346           endif
1347       enddo
1348       if (calc_grad) then
1349       do i=1,nres-1
1350         vbld_inv_temp(1)=vbld_inv(i+1)
1351         if (i.lt.nres-1) then
1352           vbld_inv_temp(2)=vbld_inv(i+2)
1353         else
1354           vbld_inv_temp(2)=vbld_inv(i)
1355         endif
1356         do j=1,2
1357           do k=1,3
1358             do l=1,3
1359               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
1360               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
1361             enddo
1362           enddo
1363         enddo
1364       enddo
1365       endif
1366       return
1367       end
1368 C-----------------------------------------------------------------------------
1369       subroutine vec_and_deriv_test
1370       implicit real*8 (a-h,o-z)
1371       include 'DIMENSIONS'
1372       include 'DIMENSIONS.ZSCOPT'
1373       include 'COMMON.IOUNITS'
1374       include 'COMMON.GEO'
1375       include 'COMMON.VAR'
1376       include 'COMMON.LOCAL'
1377       include 'COMMON.CHAIN'
1378       include 'COMMON.VECTORS'
1379       dimension uyder(3,3,2),uzder(3,3,2)
1380 C Compute the local reference systems. For reference system (i), the
1381 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
1382 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
1383       do i=1,nres-1
1384           if (i.eq.nres-1) then
1385 C Case of the last full residue
1386 C Compute the Z-axis
1387             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
1388             costh=dcos(pi-theta(nres))
1389             fac=1.0d0/dsqrt(1.0d0-costh*costh)
1390 c            write (iout,*) 'fac',fac,
1391 c     &        1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1392             fac=1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1393             do k=1,3
1394               uz(k,i)=fac*uz(k,i)
1395             enddo
1396 C Compute the derivatives of uz
1397             uzder(1,1,1)= 0.0d0
1398             uzder(2,1,1)=-dc_norm(3,i-1)
1399             uzder(3,1,1)= dc_norm(2,i-1) 
1400             uzder(1,2,1)= dc_norm(3,i-1)
1401             uzder(2,2,1)= 0.0d0
1402             uzder(3,2,1)=-dc_norm(1,i-1)
1403             uzder(1,3,1)=-dc_norm(2,i-1)
1404             uzder(2,3,1)= dc_norm(1,i-1)
1405             uzder(3,3,1)= 0.0d0
1406             uzder(1,1,2)= 0.0d0
1407             uzder(2,1,2)= dc_norm(3,i)
1408             uzder(3,1,2)=-dc_norm(2,i) 
1409             uzder(1,2,2)=-dc_norm(3,i)
1410             uzder(2,2,2)= 0.0d0
1411             uzder(3,2,2)= dc_norm(1,i)
1412             uzder(1,3,2)= dc_norm(2,i)
1413             uzder(2,3,2)=-dc_norm(1,i)
1414             uzder(3,3,2)= 0.0d0
1415 C Compute the Y-axis
1416             do k=1,3
1417               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
1418             enddo
1419             facy=fac
1420             facy=1.0d0/dsqrt(scalar(dc_norm(1,i),dc_norm(1,i))*
1421      &       (scalar(dc_norm(1,i-1),dc_norm(1,i-1))**2-
1422      &        scalar(dc_norm(1,i),dc_norm(1,i-1))**2))
1423             do k=1,3
1424 c              uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1425               uy(k,i)=
1426 c     &        facy*(
1427      &        dc_norm(k,i-1)*scalar(dc_norm(1,i),dc_norm(1,i))
1428      &        -scalar(dc_norm(1,i),dc_norm(1,i-1))*dc_norm(k,i)
1429 c     &        )
1430             enddo
1431 c            write (iout,*) 'facy',facy,
1432 c     &       1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1433             facy=1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1434             do k=1,3
1435               uy(k,i)=facy*uy(k,i)
1436             enddo
1437 C Compute the derivatives of uy
1438             do j=1,3
1439               do k=1,3
1440                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
1441      &                        -dc_norm(k,i)*dc_norm(j,i-1)
1442                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1443               enddo
1444 c              uyder(j,j,1)=uyder(j,j,1)-costh
1445 c              uyder(j,j,2)=1.0d0+uyder(j,j,2)
1446               uyder(j,j,1)=uyder(j,j,1)
1447      &          -scalar(dc_norm(1,i),dc_norm(1,i-1))
1448               uyder(j,j,2)=scalar(dc_norm(1,i),dc_norm(1,i))
1449      &          +uyder(j,j,2)
1450             enddo
1451             do j=1,2
1452               do k=1,3
1453                 do l=1,3
1454                   uygrad(l,k,j,i)=uyder(l,k,j)
1455                   uzgrad(l,k,j,i)=uzder(l,k,j)
1456                 enddo
1457               enddo
1458             enddo 
1459             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1460             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1461             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1462             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1463           else
1464 C Other residues
1465 C Compute the Z-axis
1466             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
1467             costh=dcos(pi-theta(i+2))
1468             fac=1.0d0/dsqrt(1.0d0-costh*costh)
1469             fac=1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1470             do k=1,3
1471               uz(k,i)=fac*uz(k,i)
1472             enddo
1473 C Compute the derivatives of uz
1474             uzder(1,1,1)= 0.0d0
1475             uzder(2,1,1)=-dc_norm(3,i+1)
1476             uzder(3,1,1)= dc_norm(2,i+1) 
1477             uzder(1,2,1)= dc_norm(3,i+1)
1478             uzder(2,2,1)= 0.0d0
1479             uzder(3,2,1)=-dc_norm(1,i+1)
1480             uzder(1,3,1)=-dc_norm(2,i+1)
1481             uzder(2,3,1)= dc_norm(1,i+1)
1482             uzder(3,3,1)= 0.0d0
1483             uzder(1,1,2)= 0.0d0
1484             uzder(2,1,2)= dc_norm(3,i)
1485             uzder(3,1,2)=-dc_norm(2,i) 
1486             uzder(1,2,2)=-dc_norm(3,i)
1487             uzder(2,2,2)= 0.0d0
1488             uzder(3,2,2)= dc_norm(1,i)
1489             uzder(1,3,2)= dc_norm(2,i)
1490             uzder(2,3,2)=-dc_norm(1,i)
1491             uzder(3,3,2)= 0.0d0
1492 C Compute the Y-axis
1493             facy=fac
1494             facy=1.0d0/dsqrt(scalar(dc_norm(1,i),dc_norm(1,i))*
1495      &       (scalar(dc_norm(1,i+1),dc_norm(1,i+1))**2-
1496      &        scalar(dc_norm(1,i),dc_norm(1,i+1))**2))
1497             do k=1,3
1498 c              uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1499               uy(k,i)=
1500 c     &        facy*(
1501      &        dc_norm(k,i+1)*scalar(dc_norm(1,i),dc_norm(1,i))
1502      &        -scalar(dc_norm(1,i),dc_norm(1,i+1))*dc_norm(k,i)
1503 c     &        )
1504             enddo
1505 c            write (iout,*) 'facy',facy,
1506 c     &       1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1507             facy=1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1508             do k=1,3
1509               uy(k,i)=facy*uy(k,i)
1510             enddo
1511 C Compute the derivatives of uy
1512             do j=1,3
1513               do k=1,3
1514                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
1515      &                        -dc_norm(k,i)*dc_norm(j,i+1)
1516                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1517               enddo
1518 c              uyder(j,j,1)=uyder(j,j,1)-costh
1519 c              uyder(j,j,2)=1.0d0+uyder(j,j,2)
1520               uyder(j,j,1)=uyder(j,j,1)
1521      &          -scalar(dc_norm(1,i),dc_norm(1,i+1))
1522               uyder(j,j,2)=scalar(dc_norm(1,i),dc_norm(1,i))
1523      &          +uyder(j,j,2)
1524             enddo
1525             do j=1,2
1526               do k=1,3
1527                 do l=1,3
1528                   uygrad(l,k,j,i)=uyder(l,k,j)
1529                   uzgrad(l,k,j,i)=uzder(l,k,j)
1530                 enddo
1531               enddo
1532             enddo 
1533             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1534             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1535             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1536             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1537           endif
1538       enddo
1539       do i=1,nres-1
1540         do j=1,2
1541           do k=1,3
1542             do l=1,3
1543               uygrad(l,k,j,i)=vblinv*uygrad(l,k,j,i)
1544               uzgrad(l,k,j,i)=vblinv*uzgrad(l,k,j,i)
1545             enddo
1546           enddo
1547         enddo
1548       enddo
1549       return
1550       end
1551 C-----------------------------------------------------------------------------
1552       subroutine check_vecgrad
1553       implicit real*8 (a-h,o-z)
1554       include 'DIMENSIONS'
1555       include 'DIMENSIONS.ZSCOPT'
1556       include 'COMMON.IOUNITS'
1557       include 'COMMON.GEO'
1558       include 'COMMON.VAR'
1559       include 'COMMON.LOCAL'
1560       include 'COMMON.CHAIN'
1561       include 'COMMON.VECTORS'
1562       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
1563       dimension uyt(3,maxres),uzt(3,maxres)
1564       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
1565       double precision delta /1.0d-7/
1566       call vec_and_deriv
1567 cd      do i=1,nres
1568 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
1569 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
1570 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
1571 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
1572 cd     &     (dc_norm(if90,i),if90=1,3)
1573 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
1574 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
1575 cd          write(iout,'(a)')
1576 cd      enddo
1577       do i=1,nres
1578         do j=1,2
1579           do k=1,3
1580             do l=1,3
1581               uygradt(l,k,j,i)=uygrad(l,k,j,i)
1582               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
1583             enddo
1584           enddo
1585         enddo
1586       enddo
1587       call vec_and_deriv
1588       do i=1,nres
1589         do j=1,3
1590           uyt(j,i)=uy(j,i)
1591           uzt(j,i)=uz(j,i)
1592         enddo
1593       enddo
1594       do i=1,nres
1595 cd        write (iout,*) 'i=',i
1596         do k=1,3
1597           erij(k)=dc_norm(k,i)
1598         enddo
1599         do j=1,3
1600           do k=1,3
1601             dc_norm(k,i)=erij(k)
1602           enddo
1603           dc_norm(j,i)=dc_norm(j,i)+delta
1604 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
1605 c          do k=1,3
1606 c            dc_norm(k,i)=dc_norm(k,i)/fac
1607 c          enddo
1608 c          write (iout,*) (dc_norm(k,i),k=1,3)
1609 c          write (iout,*) (erij(k),k=1,3)
1610           call vec_and_deriv
1611           do k=1,3
1612             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
1613             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
1614             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
1615             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
1616           enddo 
1617 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
1618 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
1619 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
1620         enddo
1621         do k=1,3
1622           dc_norm(k,i)=erij(k)
1623         enddo
1624 cd        do k=1,3
1625 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
1626 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
1627 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
1628 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
1629 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
1630 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
1631 cd          write (iout,'(a)')
1632 cd        enddo
1633       enddo
1634       return
1635       end
1636 C--------------------------------------------------------------------------
1637       subroutine set_matrices
1638       implicit real*8 (a-h,o-z)
1639       include 'DIMENSIONS'
1640       include 'DIMENSIONS.ZSCOPT'
1641       include 'COMMON.IOUNITS'
1642       include 'COMMON.GEO'
1643       include 'COMMON.VAR'
1644       include 'COMMON.LOCAL'
1645       include 'COMMON.CHAIN'
1646       include 'COMMON.DERIV'
1647       include 'COMMON.INTERACT'
1648       include 'COMMON.CONTACTS'
1649       include 'COMMON.TORSION'
1650       include 'COMMON.VECTORS'
1651       include 'COMMON.FFIELD'
1652       double precision auxvec(2),auxmat(2,2)
1653 C
1654 C Compute the virtual-bond-torsional-angle dependent quantities needed
1655 C to calculate the el-loc multibody terms of various order.
1656 C
1657       do i=3,nres+1
1658         if (i .lt. nres+1) then
1659           sin1=dsin(phi(i))
1660           cos1=dcos(phi(i))
1661           sintab(i-2)=sin1
1662           costab(i-2)=cos1
1663           obrot(1,i-2)=cos1
1664           obrot(2,i-2)=sin1
1665           sin2=dsin(2*phi(i))
1666           cos2=dcos(2*phi(i))
1667           sintab2(i-2)=sin2
1668           costab2(i-2)=cos2
1669           obrot2(1,i-2)=cos2
1670           obrot2(2,i-2)=sin2
1671           Ug(1,1,i-2)=-cos1
1672           Ug(1,2,i-2)=-sin1
1673           Ug(2,1,i-2)=-sin1
1674           Ug(2,2,i-2)= cos1
1675           Ug2(1,1,i-2)=-cos2
1676           Ug2(1,2,i-2)=-sin2
1677           Ug2(2,1,i-2)=-sin2
1678           Ug2(2,2,i-2)= cos2
1679         else
1680           costab(i-2)=1.0d0
1681           sintab(i-2)=0.0d0
1682           obrot(1,i-2)=1.0d0
1683           obrot(2,i-2)=0.0d0
1684           obrot2(1,i-2)=0.0d0
1685           obrot2(2,i-2)=0.0d0
1686           Ug(1,1,i-2)=1.0d0
1687           Ug(1,2,i-2)=0.0d0
1688           Ug(2,1,i-2)=0.0d0
1689           Ug(2,2,i-2)=1.0d0
1690           Ug2(1,1,i-2)=0.0d0
1691           Ug2(1,2,i-2)=0.0d0
1692           Ug2(2,1,i-2)=0.0d0
1693           Ug2(2,2,i-2)=0.0d0
1694         endif
1695         if (i .gt. 3 .and. i .lt. nres+1) then
1696           obrot_der(1,i-2)=-sin1
1697           obrot_der(2,i-2)= cos1
1698           Ugder(1,1,i-2)= sin1
1699           Ugder(1,2,i-2)=-cos1
1700           Ugder(2,1,i-2)=-cos1
1701           Ugder(2,2,i-2)=-sin1
1702           dwacos2=cos2+cos2
1703           dwasin2=sin2+sin2
1704           obrot2_der(1,i-2)=-dwasin2
1705           obrot2_der(2,i-2)= dwacos2
1706           Ug2der(1,1,i-2)= dwasin2
1707           Ug2der(1,2,i-2)=-dwacos2
1708           Ug2der(2,1,i-2)=-dwacos2
1709           Ug2der(2,2,i-2)=-dwasin2
1710         else
1711           obrot_der(1,i-2)=0.0d0
1712           obrot_der(2,i-2)=0.0d0
1713           Ugder(1,1,i-2)=0.0d0
1714           Ugder(1,2,i-2)=0.0d0
1715           Ugder(2,1,i-2)=0.0d0
1716           Ugder(2,2,i-2)=0.0d0
1717           obrot2_der(1,i-2)=0.0d0
1718           obrot2_der(2,i-2)=0.0d0
1719           Ug2der(1,1,i-2)=0.0d0
1720           Ug2der(1,2,i-2)=0.0d0
1721           Ug2der(2,1,i-2)=0.0d0
1722           Ug2der(2,2,i-2)=0.0d0
1723         endif
1724         if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
1725           iti = itortyp(itype(i-2))
1726         else
1727           iti=ntortyp+1
1728         endif
1729         if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
1730           iti1 = itortyp(itype(i-1))
1731         else
1732           iti1=ntortyp+1
1733         endif
1734 cd        write (iout,*) '*******i',i,' iti1',iti
1735 cd        write (iout,*) 'b1',b1(:,iti)
1736 cd        write (iout,*) 'b2',b2(:,iti)
1737 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
1738         if (i .gt. iatel_s+2) then
1739           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
1740           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
1741           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
1742           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
1743           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
1744           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
1745           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
1746         else
1747           do k=1,2
1748             Ub2(k,i-2)=0.0d0
1749             Ctobr(k,i-2)=0.0d0 
1750             Dtobr2(k,i-2)=0.0d0
1751             do l=1,2
1752               EUg(l,k,i-2)=0.0d0
1753               CUg(l,k,i-2)=0.0d0
1754               DUg(l,k,i-2)=0.0d0
1755               DtUg2(l,k,i-2)=0.0d0
1756             enddo
1757           enddo
1758         endif
1759         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
1760         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
1761         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
1762         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
1763         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
1764         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
1765         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
1766         do k=1,2
1767           muder(k,i-2)=Ub2der(k,i-2)
1768         enddo
1769         if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
1770           iti1 = itortyp(itype(i-1))
1771         else
1772           iti1=ntortyp+1
1773         endif
1774         do k=1,2
1775           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
1776         enddo
1777 C Vectors and matrices dependent on a single virtual-bond dihedral.
1778         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
1779         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
1780         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
1781         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
1782         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
1783         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
1784         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
1785         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
1786         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
1787 cd        write (iout,*) 'i',i,' mu ',(mu(k,i-2),k=1,2),
1788 cd     &  ' mu1',(b1(k,i-2),k=1,2),' mu2',(Ub2(k,i-2),k=1,2)
1789       enddo
1790 C Matrices dependent on two consecutive virtual-bond dihedrals.
1791 C The order of matrices is from left to right.
1792       do i=2,nres-1
1793         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
1794         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
1795         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
1796         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
1797         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
1798         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
1799         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
1800         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
1801       enddo
1802 cd      do i=1,nres
1803 cd        iti = itortyp(itype(i))
1804 cd        write (iout,*) i
1805 cd        do j=1,2
1806 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
1807 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
1808 cd        enddo
1809 cd      enddo
1810       return
1811       end
1812 C--------------------------------------------------------------------------
1813       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
1814 C
1815 C This subroutine calculates the average interaction energy and its gradient
1816 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
1817 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
1818 C The potential depends both on the distance of peptide-group centers and on 
1819 C the orientation of the CA-CA virtual bonds.
1820
1821       implicit real*8 (a-h,o-z)
1822       include 'DIMENSIONS'
1823       include 'DIMENSIONS.ZSCOPT'
1824       include 'DIMENSIONS.FREE'
1825       include 'COMMON.CONTROL'
1826       include 'COMMON.IOUNITS'
1827       include 'COMMON.GEO'
1828       include 'COMMON.VAR'
1829       include 'COMMON.LOCAL'
1830       include 'COMMON.CHAIN'
1831       include 'COMMON.DERIV'
1832       include 'COMMON.INTERACT'
1833       include 'COMMON.CONTACTS'
1834       include 'COMMON.TORSION'
1835       include 'COMMON.VECTORS'
1836       include 'COMMON.FFIELD'
1837       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
1838      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
1839       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
1840      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
1841       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1
1842 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
1843       double precision scal_el /0.5d0/
1844 C 12/13/98 
1845 C 13-go grudnia roku pamietnego... 
1846       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
1847      &                   0.0d0,1.0d0,0.0d0,
1848      &                   0.0d0,0.0d0,1.0d0/
1849 cd      write(iout,*) 'In EELEC'
1850 cd      do i=1,nloctyp
1851 cd        write(iout,*) 'Type',i
1852 cd        write(iout,*) 'B1',B1(:,i)
1853 cd        write(iout,*) 'B2',B2(:,i)
1854 cd        write(iout,*) 'CC',CC(:,:,i)
1855 cd        write(iout,*) 'DD',DD(:,:,i)
1856 cd        write(iout,*) 'EE',EE(:,:,i)
1857 cd      enddo
1858 cd      call check_vecgrad
1859 cd      stop
1860       if (icheckgrad.eq.1) then
1861         do i=1,nres-1
1862           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
1863           do k=1,3
1864             dc_norm(k,i)=dc(k,i)*fac
1865           enddo
1866 c          write (iout,*) 'i',i,' fac',fac
1867         enddo
1868       endif
1869       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
1870      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
1871      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
1872 cd      if (wel_loc.gt.0.0d0) then
1873         if (icheckgrad.eq.1) then
1874         call vec_and_deriv_test
1875         else
1876         call vec_and_deriv
1877         endif
1878         call set_matrices
1879       endif
1880 cd      do i=1,nres-1
1881 cd        write (iout,*) 'i=',i
1882 cd        do k=1,3
1883 cd          write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
1884 cd        enddo
1885 cd        do k=1,3
1886 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
1887 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
1888 cd        enddo
1889 cd      enddo
1890       num_conti_hb=0
1891       ees=0.0D0
1892       evdw1=0.0D0
1893       eel_loc=0.0d0 
1894       eello_turn3=0.0d0
1895       eello_turn4=0.0d0
1896       ind=0
1897       do i=1,nres
1898         num_cont_hb(i)=0
1899       enddo
1900 cd      print '(a)','Enter EELEC'
1901 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
1902       do i=1,nres
1903         gel_loc_loc(i)=0.0d0
1904         gcorr_loc(i)=0.0d0
1905       enddo
1906       do i=iatel_s,iatel_e
1907         if (itel(i).eq.0) goto 1215
1908         dxi=dc(1,i)
1909         dyi=dc(2,i)
1910         dzi=dc(3,i)
1911         dx_normi=dc_norm(1,i)
1912         dy_normi=dc_norm(2,i)
1913         dz_normi=dc_norm(3,i)
1914         xmedi=c(1,i)+0.5d0*dxi
1915         ymedi=c(2,i)+0.5d0*dyi
1916         zmedi=c(3,i)+0.5d0*dzi
1917         num_conti=0
1918 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
1919         do j=ielstart(i),ielend(i)
1920           if (itel(j).eq.0) goto 1216
1921           ind=ind+1
1922           iteli=itel(i)
1923           itelj=itel(j)
1924           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
1925           aaa=app(iteli,itelj)
1926           bbb=bpp(iteli,itelj)
1927 C Diagnostics only!!!
1928 c         aaa=0.0D0
1929 c         bbb=0.0D0
1930 c         ael6i=0.0D0
1931 c         ael3i=0.0D0
1932 C End diagnostics
1933           ael6i=ael6(iteli,itelj)
1934           ael3i=ael3(iteli,itelj) 
1935           dxj=dc(1,j)
1936           dyj=dc(2,j)
1937           dzj=dc(3,j)
1938           dx_normj=dc_norm(1,j)
1939           dy_normj=dc_norm(2,j)
1940           dz_normj=dc_norm(3,j)
1941           xj=c(1,j)+0.5D0*dxj-xmedi
1942           yj=c(2,j)+0.5D0*dyj-ymedi
1943           zj=c(3,j)+0.5D0*dzj-zmedi
1944           rij=xj*xj+yj*yj+zj*zj
1945           rrmij=1.0D0/rij
1946           rij=dsqrt(rij)
1947           rmij=1.0D0/rij
1948           r3ij=rrmij*rmij
1949           r6ij=r3ij*r3ij  
1950           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
1951           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
1952           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
1953           fac=cosa-3.0D0*cosb*cosg
1954           ev1=aaa*r6ij*r6ij
1955 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
1956           if (j.eq.i+2) ev1=scal_el*ev1
1957           ev2=bbb*r6ij
1958           fac3=ael6i*r6ij
1959           fac4=ael3i*r3ij
1960           evdwij=ev1+ev2
1961           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
1962           el2=fac4*fac       
1963           eesij=el1+el2
1964 c          write (iout,*) "i",i,iteli," j",j,itelj," eesij",eesij
1965 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
1966           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
1967           ees=ees+eesij
1968           evdw1=evdw1+evdwij
1969 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
1970 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
1971 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
1972 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
1973 C
1974 C Calculate contributions to the Cartesian gradient.
1975 C
1976 #ifdef SPLITELE
1977           facvdw=-6*rrmij*(ev1+evdwij) 
1978           facel=-3*rrmij*(el1+eesij)
1979           fac1=fac
1980           erij(1)=xj*rmij
1981           erij(2)=yj*rmij
1982           erij(3)=zj*rmij
1983           if (calc_grad) then
1984 *
1985 * Radial derivatives. First process both termini of the fragment (i,j)
1986
1987           ggg(1)=facel*xj
1988           ggg(2)=facel*yj
1989           ggg(3)=facel*zj
1990           do k=1,3
1991             ghalf=0.5D0*ggg(k)
1992             gelc(k,i)=gelc(k,i)+ghalf
1993             gelc(k,j)=gelc(k,j)+ghalf
1994           enddo
1995 *
1996 * Loop over residues i+1 thru j-1.
1997 *
1998           do k=i+1,j-1
1999             do l=1,3
2000               gelc(l,k)=gelc(l,k)+ggg(l)
2001             enddo
2002           enddo
2003           ggg(1)=facvdw*xj
2004           ggg(2)=facvdw*yj
2005           ggg(3)=facvdw*zj
2006           do k=1,3
2007             ghalf=0.5D0*ggg(k)
2008             gvdwpp(k,i)=gvdwpp(k,i)+ghalf
2009             gvdwpp(k,j)=gvdwpp(k,j)+ghalf
2010           enddo
2011 *
2012 * Loop over residues i+1 thru j-1.
2013 *
2014           do k=i+1,j-1
2015             do l=1,3
2016               gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
2017             enddo
2018           enddo
2019 #else
2020           facvdw=ev1+evdwij 
2021           facel=el1+eesij  
2022           fac1=fac
2023           fac=-3*rrmij*(facvdw+facvdw+facel)
2024           erij(1)=xj*rmij
2025           erij(2)=yj*rmij
2026           erij(3)=zj*rmij
2027           if (calc_grad) then
2028 *
2029 * Radial derivatives. First process both termini of the fragment (i,j)
2030
2031           ggg(1)=fac*xj
2032           ggg(2)=fac*yj
2033           ggg(3)=fac*zj
2034           do k=1,3
2035             ghalf=0.5D0*ggg(k)
2036             gelc(k,i)=gelc(k,i)+ghalf
2037             gelc(k,j)=gelc(k,j)+ghalf
2038           enddo
2039 *
2040 * Loop over residues i+1 thru j-1.
2041 *
2042           do k=i+1,j-1
2043             do l=1,3
2044               gelc(l,k)=gelc(l,k)+ggg(l)
2045             enddo
2046           enddo
2047 #endif
2048 *
2049 * Angular part
2050 *          
2051           ecosa=2.0D0*fac3*fac1+fac4
2052           fac4=-3.0D0*fac4
2053           fac3=-6.0D0*fac3
2054           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
2055           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
2056           do k=1,3
2057             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
2058             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
2059           enddo
2060 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
2061 cd   &          (dcosg(k),k=1,3)
2062           do k=1,3
2063             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
2064           enddo
2065           do k=1,3
2066             ghalf=0.5D0*ggg(k)
2067             gelc(k,i)=gelc(k,i)+ghalf
2068      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
2069      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2070             gelc(k,j)=gelc(k,j)+ghalf
2071      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
2072      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2073           enddo
2074           do k=i+1,j-1
2075             do l=1,3
2076               gelc(l,k)=gelc(l,k)+ggg(l)
2077             enddo
2078           enddo
2079           endif
2080
2081           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
2082      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
2083      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
2084 C
2085 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
2086 C   energy of a peptide unit is assumed in the form of a second-order 
2087 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
2088 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
2089 C   are computed for EVERY pair of non-contiguous peptide groups.
2090 C
2091           if (j.lt.nres-1) then
2092             j1=j+1
2093             j2=j-1
2094           else
2095             j1=j-1
2096             j2=j-2
2097           endif
2098           kkk=0
2099           do k=1,2
2100             do l=1,2
2101               kkk=kkk+1
2102               muij(kkk)=mu(k,i)*mu(l,j)
2103             enddo
2104           enddo  
2105 cd         write (iout,*) 'EELEC: i',i,' j',j
2106 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
2107 cd          write(iout,*) 'muij',muij
2108           ury=scalar(uy(1,i),erij)
2109           urz=scalar(uz(1,i),erij)
2110           vry=scalar(uy(1,j),erij)
2111           vrz=scalar(uz(1,j),erij)
2112           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
2113           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
2114           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
2115           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
2116 C For diagnostics only
2117 cd          a22=1.0d0
2118 cd          a23=1.0d0
2119 cd          a32=1.0d0
2120 cd          a33=1.0d0
2121           fac=dsqrt(-ael6i)*r3ij
2122 cd          write (2,*) 'fac=',fac
2123 C For diagnostics only
2124 cd          fac=1.0d0
2125           a22=a22*fac
2126           a23=a23*fac
2127           a32=a32*fac
2128           a33=a33*fac
2129 cd          write (iout,'(4i5,4f10.5)')
2130 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
2131 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
2132 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') (uy(k,i),k=1,3),
2133 cd     &      (uz(k,i),k=1,3),(uy(k,j),k=1,3),(uz(k,j),k=1,3)
2134 cd          write (iout,'(4f10.5)') 
2135 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
2136 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
2137 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
2138 cd           write (iout,'(2i3,9f10.5/)') i,j,
2139 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
2140           if (calc_grad) then
2141 C Derivatives of the elements of A in virtual-bond vectors
2142           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
2143 cd          do k=1,3
2144 cd            do l=1,3
2145 cd              erder(k,l)=0.0d0
2146 cd            enddo
2147 cd          enddo
2148           do k=1,3
2149             uryg(k,1)=scalar(erder(1,k),uy(1,i))
2150             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
2151             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
2152             urzg(k,1)=scalar(erder(1,k),uz(1,i))
2153             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
2154             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
2155             vryg(k,1)=scalar(erder(1,k),uy(1,j))
2156             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
2157             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
2158             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
2159             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
2160             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
2161           enddo
2162 cd          do k=1,3
2163 cd            do l=1,3
2164 cd              uryg(k,l)=0.0d0
2165 cd              urzg(k,l)=0.0d0
2166 cd              vryg(k,l)=0.0d0
2167 cd              vrzg(k,l)=0.0d0
2168 cd            enddo
2169 cd          enddo
2170 C Compute radial contributions to the gradient
2171           facr=-3.0d0*rrmij
2172           a22der=a22*facr
2173           a23der=a23*facr
2174           a32der=a32*facr
2175           a33der=a33*facr
2176 cd          a22der=0.0d0
2177 cd          a23der=0.0d0
2178 cd          a32der=0.0d0
2179 cd          a33der=0.0d0
2180           agg(1,1)=a22der*xj
2181           agg(2,1)=a22der*yj
2182           agg(3,1)=a22der*zj
2183           agg(1,2)=a23der*xj
2184           agg(2,2)=a23der*yj
2185           agg(3,2)=a23der*zj
2186           agg(1,3)=a32der*xj
2187           agg(2,3)=a32der*yj
2188           agg(3,3)=a32der*zj
2189           agg(1,4)=a33der*xj
2190           agg(2,4)=a33der*yj
2191           agg(3,4)=a33der*zj
2192 C Add the contributions coming from er
2193           fac3=-3.0d0*fac
2194           do k=1,3
2195             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
2196             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
2197             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
2198             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
2199           enddo
2200           do k=1,3
2201 C Derivatives in DC(i) 
2202             ghalf1=0.5d0*agg(k,1)
2203             ghalf2=0.5d0*agg(k,2)
2204             ghalf3=0.5d0*agg(k,3)
2205             ghalf4=0.5d0*agg(k,4)
2206             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
2207      &      -3.0d0*uryg(k,2)*vry)+ghalf1
2208             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
2209      &      -3.0d0*uryg(k,2)*vrz)+ghalf2
2210             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
2211      &      -3.0d0*urzg(k,2)*vry)+ghalf3
2212             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
2213      &      -3.0d0*urzg(k,2)*vrz)+ghalf4
2214 C Derivatives in DC(i+1)
2215             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
2216      &      -3.0d0*uryg(k,3)*vry)+agg(k,1)
2217             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
2218      &      -3.0d0*uryg(k,3)*vrz)+agg(k,2)
2219             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
2220      &      -3.0d0*urzg(k,3)*vry)+agg(k,3)
2221             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
2222      &      -3.0d0*urzg(k,3)*vrz)+agg(k,4)
2223 C Derivatives in DC(j)
2224             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
2225      &      -3.0d0*vryg(k,2)*ury)+ghalf1
2226             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
2227      &      -3.0d0*vrzg(k,2)*ury)+ghalf2
2228             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
2229      &      -3.0d0*vryg(k,2)*urz)+ghalf3
2230             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
2231      &      -3.0d0*vrzg(k,2)*urz)+ghalf4
2232 C Derivatives in DC(j+1) or DC(nres-1)
2233             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
2234      &      -3.0d0*vryg(k,3)*ury)
2235             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
2236      &      -3.0d0*vrzg(k,3)*ury)
2237             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
2238      &      -3.0d0*vryg(k,3)*urz)
2239             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
2240      &      -3.0d0*vrzg(k,3)*urz)
2241 cd            aggi(k,1)=ghalf1
2242 cd            aggi(k,2)=ghalf2
2243 cd            aggi(k,3)=ghalf3
2244 cd            aggi(k,4)=ghalf4
2245 C Derivatives in DC(i+1)
2246 cd            aggi1(k,1)=agg(k,1)
2247 cd            aggi1(k,2)=agg(k,2)
2248 cd            aggi1(k,3)=agg(k,3)
2249 cd            aggi1(k,4)=agg(k,4)
2250 C Derivatives in DC(j)
2251 cd            aggj(k,1)=ghalf1
2252 cd            aggj(k,2)=ghalf2
2253 cd            aggj(k,3)=ghalf3
2254 cd            aggj(k,4)=ghalf4
2255 C Derivatives in DC(j+1)
2256 cd            aggj1(k,1)=0.0d0
2257 cd            aggj1(k,2)=0.0d0
2258 cd            aggj1(k,3)=0.0d0
2259 cd            aggj1(k,4)=0.0d0
2260             if (j.eq.nres-1 .and. i.lt.j-2) then
2261               do l=1,4
2262                 aggj1(k,l)=aggj1(k,l)+agg(k,l)
2263 cd                aggj1(k,l)=agg(k,l)
2264               enddo
2265             endif
2266           enddo
2267           endif
2268 c          goto 11111
2269 C Check the loc-el terms by numerical integration
2270           acipa(1,1)=a22
2271           acipa(1,2)=a23
2272           acipa(2,1)=a32
2273           acipa(2,2)=a33
2274           a22=-a22
2275           a23=-a23
2276           do l=1,2
2277             do k=1,3
2278               agg(k,l)=-agg(k,l)
2279               aggi(k,l)=-aggi(k,l)
2280               aggi1(k,l)=-aggi1(k,l)
2281               aggj(k,l)=-aggj(k,l)
2282               aggj1(k,l)=-aggj1(k,l)
2283             enddo
2284           enddo
2285           if (j.lt.nres-1) then
2286             a22=-a22
2287             a32=-a32
2288             do l=1,3,2
2289               do k=1,3
2290                 agg(k,l)=-agg(k,l)
2291                 aggi(k,l)=-aggi(k,l)
2292                 aggi1(k,l)=-aggi1(k,l)
2293                 aggj(k,l)=-aggj(k,l)
2294                 aggj1(k,l)=-aggj1(k,l)
2295               enddo
2296             enddo
2297           else
2298             a22=-a22
2299             a23=-a23
2300             a32=-a32
2301             a33=-a33
2302             do l=1,4
2303               do k=1,3
2304                 agg(k,l)=-agg(k,l)
2305                 aggi(k,l)=-aggi(k,l)
2306                 aggi1(k,l)=-aggi1(k,l)
2307                 aggj(k,l)=-aggj(k,l)
2308                 aggj1(k,l)=-aggj1(k,l)
2309               enddo
2310             enddo 
2311           endif    
2312           ENDIF ! WCORR
2313 11111     continue
2314           IF (wel_loc.gt.0.0d0) THEN
2315 C Contribution to the local-electrostatic energy coming from the i-j pair
2316           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
2317      &     +a33*muij(4)
2318 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
2319 cd          write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
2320           eel_loc=eel_loc+eel_loc_ij
2321 C Partial derivatives in virtual-bond dihedral angles gamma
2322           if (calc_grad) then
2323           if (i.gt.1)
2324      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
2325      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
2326      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
2327           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
2328      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
2329      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
2330 cd          call checkint3(i,j,mu1,mu2,a22,a23,a32,a33,acipa,eel_loc_ij)
2331 cd          write(iout,*) 'agg  ',agg
2332 cd          write(iout,*) 'aggi ',aggi
2333 cd          write(iout,*) 'aggi1',aggi1
2334 cd          write(iout,*) 'aggj ',aggj
2335 cd          write(iout,*) 'aggj1',aggj1
2336
2337 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
2338           do l=1,3
2339             ggg(l)=agg(l,1)*muij(1)+
2340      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
2341           enddo
2342           do k=i+2,j2
2343             do l=1,3
2344               gel_loc(l,k)=gel_loc(l,k)+ggg(l)
2345             enddo
2346           enddo
2347 C Remaining derivatives of eello
2348           do l=1,3
2349             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
2350      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
2351             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
2352      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
2353             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
2354      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
2355             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
2356      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
2357           enddo
2358           endif
2359           ENDIF
2360           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
2361 C Contributions from turns
2362             a_temp(1,1)=a22
2363             a_temp(1,2)=a23
2364             a_temp(2,1)=a32
2365             a_temp(2,2)=a33
2366             call eturn34(i,j,eello_turn3,eello_turn4)
2367           endif
2368 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
2369           if (j.gt.i+1 .and. num_conti.le.maxconts) then
2370 C
2371 C Calculate the contact function. The ith column of the array JCONT will 
2372 C contain the numbers of atoms that make contacts with the atom I (of numbers
2373 C greater than I). The arrays FACONT and GACONT will contain the values of
2374 C the contact function and its derivative.
2375 c           r0ij=1.02D0*rpp(iteli,itelj)
2376 c           r0ij=1.11D0*rpp(iteli,itelj)
2377             r0ij=2.20D0*rpp(iteli,itelj)
2378 c           r0ij=1.55D0*rpp(iteli,itelj)
2379             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
2380             if (fcont.gt.0.0D0) then
2381               num_conti=num_conti+1
2382               if (num_conti.gt.maxconts) then
2383                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
2384      &                         ' will skip next contacts for this conf.'
2385               else
2386                 jcont_hb(num_conti,i)=j
2387                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
2388      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
2389 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
2390 C  terms.
2391                 d_cont(num_conti,i)=rij
2392 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
2393 C     --- Electrostatic-interaction matrix --- 
2394                 a_chuj(1,1,num_conti,i)=a22
2395                 a_chuj(1,2,num_conti,i)=a23
2396                 a_chuj(2,1,num_conti,i)=a32
2397                 a_chuj(2,2,num_conti,i)=a33
2398 C     --- Gradient of rij
2399                 do kkk=1,3
2400                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
2401                 enddo
2402 c             if (i.eq.1) then
2403 c                a_chuj(1,1,num_conti,i)=-0.61d0
2404 c                a_chuj(1,2,num_conti,i)= 0.4d0
2405 c                a_chuj(2,1,num_conti,i)= 0.65d0
2406 c                a_chuj(2,2,num_conti,i)= 0.50d0
2407 c             else if (i.eq.2) then
2408 c                a_chuj(1,1,num_conti,i)= 0.0d0
2409 c                a_chuj(1,2,num_conti,i)= 0.0d0
2410 c                a_chuj(2,1,num_conti,i)= 0.0d0
2411 c                a_chuj(2,2,num_conti,i)= 0.0d0
2412 c             endif
2413 C     --- and its gradients
2414 cd                write (iout,*) 'i',i,' j',j
2415 cd                do kkk=1,3
2416 cd                write (iout,*) 'iii 1 kkk',kkk
2417 cd                write (iout,*) agg(kkk,:)
2418 cd                enddo
2419 cd                do kkk=1,3
2420 cd                write (iout,*) 'iii 2 kkk',kkk
2421 cd                write (iout,*) aggi(kkk,:)
2422 cd                enddo
2423 cd                do kkk=1,3
2424 cd                write (iout,*) 'iii 3 kkk',kkk
2425 cd                write (iout,*) aggi1(kkk,:)
2426 cd                enddo
2427 cd                do kkk=1,3
2428 cd                write (iout,*) 'iii 4 kkk',kkk
2429 cd                write (iout,*) aggj(kkk,:)
2430 cd                enddo
2431 cd                do kkk=1,3
2432 cd                write (iout,*) 'iii 5 kkk',kkk
2433 cd                write (iout,*) aggj1(kkk,:)
2434 cd                enddo
2435                 kkll=0
2436                 do k=1,2
2437                   do l=1,2
2438                     kkll=kkll+1
2439                     do m=1,3
2440                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
2441                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
2442                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
2443                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
2444                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
2445 c                      do mm=1,5
2446 c                      a_chuj_der(k,l,m,mm,num_conti,i)=0.0d0
2447 c                      enddo
2448                     enddo
2449                   enddo
2450                 enddo
2451                 ENDIF
2452                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
2453 C Calculate contact energies
2454                 cosa4=4.0D0*cosa
2455                 wij=cosa-3.0D0*cosb*cosg
2456                 cosbg1=cosb+cosg
2457                 cosbg2=cosb-cosg
2458 c               fac3=dsqrt(-ael6i)/r0ij**3     
2459                 fac3=dsqrt(-ael6i)*r3ij
2460                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
2461                 ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
2462 c               ees0mij=0.0D0
2463                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
2464                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
2465 C Diagnostics. Comment out or remove after debugging!
2466 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
2467 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
2468 c               ees0m(num_conti,i)=0.0D0
2469 C End diagnostics.
2470 c                write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
2471 c     & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
2472                 facont_hb(num_conti,i)=fcont
2473                 if (calc_grad) then
2474 C Angular derivatives of the contact function
2475                 ees0pij1=fac3/ees0pij 
2476                 ees0mij1=fac3/ees0mij
2477                 fac3p=-3.0D0*fac3*rrmij
2478                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
2479                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
2480 c               ees0mij1=0.0D0
2481                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
2482                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
2483                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
2484                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
2485                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
2486                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
2487                 ecosap=ecosa1+ecosa2
2488                 ecosbp=ecosb1+ecosb2
2489                 ecosgp=ecosg1+ecosg2
2490                 ecosam=ecosa1-ecosa2
2491                 ecosbm=ecosb1-ecosb2
2492                 ecosgm=ecosg1-ecosg2
2493 C Diagnostics
2494 c               ecosap=ecosa1
2495 c               ecosbp=ecosb1
2496 c               ecosgp=ecosg1
2497 c               ecosam=0.0D0
2498 c               ecosbm=0.0D0
2499 c               ecosgm=0.0D0
2500 C End diagnostics
2501                 fprimcont=fprimcont/rij
2502 cd              facont_hb(num_conti,i)=1.0D0
2503 C Following line is for diagnostics.
2504 cd              fprimcont=0.0D0
2505                 do k=1,3
2506                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
2507                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
2508                 enddo
2509                 do k=1,3
2510                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
2511                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
2512                 enddo
2513                 gggp(1)=gggp(1)+ees0pijp*xj
2514                 gggp(2)=gggp(2)+ees0pijp*yj
2515                 gggp(3)=gggp(3)+ees0pijp*zj
2516                 gggm(1)=gggm(1)+ees0mijp*xj
2517                 gggm(2)=gggm(2)+ees0mijp*yj
2518                 gggm(3)=gggm(3)+ees0mijp*zj
2519 C Derivatives due to the contact function
2520                 gacont_hbr(1,num_conti,i)=fprimcont*xj
2521                 gacont_hbr(2,num_conti,i)=fprimcont*yj
2522                 gacont_hbr(3,num_conti,i)=fprimcont*zj
2523                 do k=1,3
2524                   ghalfp=0.5D0*gggp(k)
2525                   ghalfm=0.5D0*gggm(k)
2526                   gacontp_hb1(k,num_conti,i)=ghalfp
2527      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
2528      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2529                   gacontp_hb2(k,num_conti,i)=ghalfp
2530      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
2531      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2532                   gacontp_hb3(k,num_conti,i)=gggp(k)
2533                   gacontm_hb1(k,num_conti,i)=ghalfm
2534      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
2535      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2536                   gacontm_hb2(k,num_conti,i)=ghalfm
2537      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
2538      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2539                   gacontm_hb3(k,num_conti,i)=gggm(k)
2540                 enddo
2541                 endif
2542 C Diagnostics. Comment out or remove after debugging!
2543 cdiag           do k=1,3
2544 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
2545 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
2546 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
2547 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
2548 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
2549 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
2550 cdiag           enddo
2551               ENDIF ! wcorr
2552               endif  ! num_conti.le.maxconts
2553             endif  ! fcont.gt.0
2554           endif    ! j.gt.i+1
2555  1216     continue
2556         enddo ! j
2557         num_cont_hb(i)=num_conti
2558  1215   continue
2559       enddo   ! i
2560 cd      do i=1,nres
2561 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
2562 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
2563 cd      enddo
2564 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
2565 ccc      eel_loc=eel_loc+eello_turn3
2566       return
2567       end
2568 C-----------------------------------------------------------------------------
2569       subroutine eturn34(i,j,eello_turn3,eello_turn4)
2570 C Third- and fourth-order contributions from turns
2571       implicit real*8 (a-h,o-z)
2572       include 'DIMENSIONS'
2573       include 'DIMENSIONS.ZSCOPT'
2574       include 'COMMON.IOUNITS'
2575       include 'COMMON.GEO'
2576       include 'COMMON.VAR'
2577       include 'COMMON.LOCAL'
2578       include 'COMMON.CHAIN'
2579       include 'COMMON.DERIV'
2580       include 'COMMON.INTERACT'
2581       include 'COMMON.CONTACTS'
2582       include 'COMMON.TORSION'
2583       include 'COMMON.VECTORS'
2584       include 'COMMON.FFIELD'
2585       dimension ggg(3)
2586       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
2587      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
2588      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
2589       double precision agg(3,4),aggi(3,4),aggi1(3,4),
2590      &    aggj(3,4),aggj1(3,4),a_temp(2,2)
2591       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1,j2
2592       if (j.eq.i+2) then
2593 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2594 C
2595 C               Third-order contributions
2596 C        
2597 C                 (i+2)o----(i+3)
2598 C                      | |
2599 C                      | |
2600 C                 (i+1)o----i
2601 C
2602 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
2603 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
2604         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
2605         call transpose2(auxmat(1,1),auxmat1(1,1))
2606         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2607         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
2608 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
2609 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
2610 cd     &    ' eello_turn3_num',4*eello_turn3_num
2611         if (calc_grad) then
2612 C Derivatives in gamma(i)
2613         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
2614         call transpose2(auxmat2(1,1),pizda(1,1))
2615         call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
2616         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
2617 C Derivatives in gamma(i+1)
2618         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
2619         call transpose2(auxmat2(1,1),pizda(1,1))
2620         call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
2621         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
2622      &    +0.5d0*(pizda(1,1)+pizda(2,2))
2623 C Cartesian derivatives
2624         do l=1,3
2625           a_temp(1,1)=aggi(l,1)
2626           a_temp(1,2)=aggi(l,2)
2627           a_temp(2,1)=aggi(l,3)
2628           a_temp(2,2)=aggi(l,4)
2629           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2630           gcorr3_turn(l,i)=gcorr3_turn(l,i)
2631      &      +0.5d0*(pizda(1,1)+pizda(2,2))
2632           a_temp(1,1)=aggi1(l,1)
2633           a_temp(1,2)=aggi1(l,2)
2634           a_temp(2,1)=aggi1(l,3)
2635           a_temp(2,2)=aggi1(l,4)
2636           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2637           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
2638      &      +0.5d0*(pizda(1,1)+pizda(2,2))
2639           a_temp(1,1)=aggj(l,1)
2640           a_temp(1,2)=aggj(l,2)
2641           a_temp(2,1)=aggj(l,3)
2642           a_temp(2,2)=aggj(l,4)
2643           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2644           gcorr3_turn(l,j)=gcorr3_turn(l,j)
2645      &      +0.5d0*(pizda(1,1)+pizda(2,2))
2646           a_temp(1,1)=aggj1(l,1)
2647           a_temp(1,2)=aggj1(l,2)
2648           a_temp(2,1)=aggj1(l,3)
2649           a_temp(2,2)=aggj1(l,4)
2650           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2651           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
2652      &      +0.5d0*(pizda(1,1)+pizda(2,2))
2653         enddo
2654         endif
2655       else if (j.eq.i+3) then
2656 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2657 C
2658 C               Fourth-order contributions
2659 C        
2660 C                 (i+3)o----(i+4)
2661 C                     /  |
2662 C               (i+2)o   |
2663 C                     \  |
2664 C                 (i+1)o----i
2665 C
2666 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
2667 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
2668         iti1=itortyp(itype(i+1))
2669         iti2=itortyp(itype(i+2))
2670         iti3=itortyp(itype(i+3))
2671         call transpose2(EUg(1,1,i+1),e1t(1,1))
2672         call transpose2(Eug(1,1,i+2),e2t(1,1))
2673         call transpose2(Eug(1,1,i+3),e3t(1,1))
2674         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2675         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2676         s1=scalar2(b1(1,iti2),auxvec(1))
2677         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2678         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2679         s2=scalar2(b1(1,iti1),auxvec(1))
2680         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2681         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2682         s3=0.5d0*(pizda(1,1)+pizda(2,2))
2683         eello_turn4=eello_turn4-(s1+s2+s3)
2684 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
2685 cd     &    ' eello_turn4_num',8*eello_turn4_num
2686 C Derivatives in gamma(i)
2687         if (calc_grad) then
2688         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
2689         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
2690         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
2691         s1=scalar2(b1(1,iti2),auxvec(1))
2692         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
2693         s3=0.5d0*(pizda(1,1)+pizda(2,2))
2694         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
2695 C Derivatives in gamma(i+1)
2696         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
2697         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
2698         s2=scalar2(b1(1,iti1),auxvec(1))
2699         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
2700         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
2701         s3=0.5d0*(pizda(1,1)+pizda(2,2))
2702         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
2703 C Derivatives in gamma(i+2)
2704         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
2705         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
2706         s1=scalar2(b1(1,iti2),auxvec(1))
2707         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
2708         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
2709         s2=scalar2(b1(1,iti1),auxvec(1))
2710         call matmat2(auxmat(1,1),e2t(1,1),auxmat(1,1))
2711         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
2712         s3=0.5d0*(pizda(1,1)+pizda(2,2))
2713         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
2714 C Cartesian derivatives
2715 C Derivatives of this turn contributions in DC(i+2)
2716         if (j.lt.nres-1) then
2717           do l=1,3
2718             a_temp(1,1)=agg(l,1)
2719             a_temp(1,2)=agg(l,2)
2720             a_temp(2,1)=agg(l,3)
2721             a_temp(2,2)=agg(l,4)
2722             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2723             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2724             s1=scalar2(b1(1,iti2),auxvec(1))
2725             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2726             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2727             s2=scalar2(b1(1,iti1),auxvec(1))
2728             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2729             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2730             s3=0.5d0*(pizda(1,1)+pizda(2,2))
2731             ggg(l)=-(s1+s2+s3)
2732             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
2733           enddo
2734         endif
2735 C Remaining derivatives of this turn contribution
2736         do l=1,3
2737           a_temp(1,1)=aggi(l,1)
2738           a_temp(1,2)=aggi(l,2)
2739           a_temp(2,1)=aggi(l,3)
2740           a_temp(2,2)=aggi(l,4)
2741           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2742           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2743           s1=scalar2(b1(1,iti2),auxvec(1))
2744           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2745           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2746           s2=scalar2(b1(1,iti1),auxvec(1))
2747           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2748           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2749           s3=0.5d0*(pizda(1,1)+pizda(2,2))
2750           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
2751           a_temp(1,1)=aggi1(l,1)
2752           a_temp(1,2)=aggi1(l,2)
2753           a_temp(2,1)=aggi1(l,3)
2754           a_temp(2,2)=aggi1(l,4)
2755           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2756           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2757           s1=scalar2(b1(1,iti2),auxvec(1))
2758           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2759           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2760           s2=scalar2(b1(1,iti1),auxvec(1))
2761           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2762           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2763           s3=0.5d0*(pizda(1,1)+pizda(2,2))
2764           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
2765           a_temp(1,1)=aggj(l,1)
2766           a_temp(1,2)=aggj(l,2)
2767           a_temp(2,1)=aggj(l,3)
2768           a_temp(2,2)=aggj(l,4)
2769           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2770           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2771           s1=scalar2(b1(1,iti2),auxvec(1))
2772           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2773           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2774           s2=scalar2(b1(1,iti1),auxvec(1))
2775           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2776           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2777           s3=0.5d0*(pizda(1,1)+pizda(2,2))
2778           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
2779           a_temp(1,1)=aggj1(l,1)
2780           a_temp(1,2)=aggj1(l,2)
2781           a_temp(2,1)=aggj1(l,3)
2782           a_temp(2,2)=aggj1(l,4)
2783           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2784           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2785           s1=scalar2(b1(1,iti2),auxvec(1))
2786           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2787           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2788           s2=scalar2(b1(1,iti1),auxvec(1))
2789           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2790           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2791           s3=0.5d0*(pizda(1,1)+pizda(2,2))
2792           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
2793         enddo
2794         endif
2795       endif          
2796       return
2797       end
2798 C-----------------------------------------------------------------------------
2799       subroutine vecpr(u,v,w)
2800       implicit real*8(a-h,o-z)
2801       dimension u(3),v(3),w(3)
2802       w(1)=u(2)*v(3)-u(3)*v(2)
2803       w(2)=-u(1)*v(3)+u(3)*v(1)
2804       w(3)=u(1)*v(2)-u(2)*v(1)
2805       return
2806       end
2807 C-----------------------------------------------------------------------------
2808       subroutine unormderiv(u,ugrad,unorm,ungrad)
2809 C This subroutine computes the derivatives of a normalized vector u, given
2810 C the derivatives computed without normalization conditions, ugrad. Returns
2811 C ungrad.
2812       implicit none
2813       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
2814       double precision vec(3)
2815       double precision scalar
2816       integer i,j
2817 c      write (2,*) 'ugrad',ugrad
2818 c      write (2,*) 'u',u
2819       do i=1,3
2820         vec(i)=scalar(ugrad(1,i),u(1))
2821       enddo
2822 c      write (2,*) 'vec',vec
2823       do i=1,3
2824         do j=1,3
2825           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
2826         enddo
2827       enddo
2828 c      write (2,*) 'ungrad',ungrad
2829       return
2830       end
2831 C-----------------------------------------------------------------------------
2832       subroutine escp(evdw2,evdw2_14)
2833 C
2834 C This subroutine calculates the excluded-volume interaction energy between
2835 C peptide-group centers and side chains and its gradient in virtual-bond and
2836 C side-chain vectors.
2837 C
2838       implicit real*8 (a-h,o-z)
2839       include 'DIMENSIONS'
2840       include 'DIMENSIONS.ZSCOPT'
2841       include 'COMMON.GEO'
2842       include 'COMMON.VAR'
2843       include 'COMMON.LOCAL'
2844       include 'COMMON.CHAIN'
2845       include 'COMMON.DERIV'
2846       include 'COMMON.INTERACT'
2847       include 'COMMON.FFIELD'
2848       include 'COMMON.IOUNITS'
2849       dimension ggg(3)
2850       evdw2=0.0D0
2851       evdw2_14=0.0d0
2852 cd    print '(a)','Enter ESCP'
2853 c      write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e,
2854 c     &  ' scal14',scal14
2855       do i=iatscp_s,iatscp_e
2856         iteli=itel(i)
2857 c        write (iout,*) "i",i," iteli",iteli," nscp_gr",nscp_gr(i),
2858 c     &   " iscp",(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
2859         if (iteli.eq.0) goto 1225
2860         xi=0.5D0*(c(1,i)+c(1,i+1))
2861         yi=0.5D0*(c(2,i)+c(2,i+1))
2862         zi=0.5D0*(c(3,i)+c(3,i+1))
2863
2864         do iint=1,nscp_gr(i)
2865
2866         do j=iscpstart(i,iint),iscpend(i,iint)
2867           itypj=itype(j)
2868 C Uncomment following three lines for SC-p interactions
2869 c         xj=c(1,nres+j)-xi
2870 c         yj=c(2,nres+j)-yi
2871 c         zj=c(3,nres+j)-zi
2872 C Uncomment following three lines for Ca-p interactions
2873           xj=c(1,j)-xi
2874           yj=c(2,j)-yi
2875           zj=c(3,j)-zi
2876           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
2877           fac=rrij**expon2
2878           e1=fac*fac*aad(itypj,iteli)
2879           e2=fac*bad(itypj,iteli)
2880           if (iabs(j-i) .le. 2) then
2881             e1=scal14*e1
2882             e2=scal14*e2
2883             evdw2_14=evdw2_14+e1+e2
2884           endif
2885           evdwij=e1+e2
2886 c          write (iout,*) i,j,evdwij
2887           evdw2=evdw2+evdwij
2888           if (calc_grad) then
2889 C
2890 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
2891 C
2892           fac=-(evdwij+e1)*rrij
2893           ggg(1)=xj*fac
2894           ggg(2)=yj*fac
2895           ggg(3)=zj*fac
2896           if (j.lt.i) then
2897 cd          write (iout,*) 'j<i'
2898 C Uncomment following three lines for SC-p interactions
2899 c           do k=1,3
2900 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
2901 c           enddo
2902           else
2903 cd          write (iout,*) 'j>i'
2904             do k=1,3
2905               ggg(k)=-ggg(k)
2906 C Uncomment following line for SC-p interactions
2907 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
2908             enddo
2909           endif
2910           do k=1,3
2911             gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
2912           enddo
2913           kstart=min0(i+1,j)
2914           kend=max0(i-1,j-1)
2915 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
2916 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
2917           do k=kstart,kend
2918             do l=1,3
2919               gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
2920             enddo
2921           enddo
2922           endif
2923         enddo
2924         enddo ! iint
2925  1225   continue
2926       enddo ! i
2927       do i=1,nct
2928         do j=1,3
2929           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
2930           gradx_scp(j,i)=expon*gradx_scp(j,i)
2931         enddo
2932       enddo
2933 C******************************************************************************
2934 C
2935 C                              N O T E !!!
2936 C
2937 C To save time the factor EXPON has been extracted from ALL components
2938 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
2939 C use!
2940 C
2941 C******************************************************************************
2942       return
2943       end
2944 C--------------------------------------------------------------------------
2945       subroutine edis(ehpb)
2946
2947 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
2948 C
2949       implicit real*8 (a-h,o-z)
2950       include 'DIMENSIONS'
2951       include 'DIMENSIONS.FREE'
2952       include 'COMMON.SBRIDGE'
2953       include 'COMMON.CHAIN'
2954       include 'COMMON.DERIV'
2955       include 'COMMON.VAR'
2956       include 'COMMON.INTERACT'
2957       include 'COMMON.IOUNITS'
2958       include 'COMMON.CONTROL'
2959       dimension ggg(3)
2960       ehpb=0.0D0
2961 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
2962 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
2963       if (link_end.eq.0) return
2964       do i=link_start,link_end
2965 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
2966 C CA-CA distance used in regularization of structure.
2967         ii=ihpb(i)
2968         jj=jhpb(i)
2969 C iii and jjj point to the residues for which the distance is assigned.
2970         if (ii.gt.nres) then
2971           iii=ii-nres
2972           jjj=jj-nres 
2973         else
2974           iii=ii
2975           jjj=jj
2976         endif
2977 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
2978 c     &    dhpb(i),dhpb1(i),forcon(i)
2979 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
2980 C    distance and angle dependent SS bond potential.
2981         if (.not.dyn_ss .and. i.le.nss) then
2982 C 15/02/13 CC dynamic SSbond - additional check
2983         if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
2984           call ssbond_ene(iii,jjj,eij)
2985           ehpb=ehpb+2*eij
2986          endif
2987 cd          write (iout,*) "eij",eij
2988         else if (ii.gt.nres .and. jj.gt.nres) then
2989 c Restraints from contact prediction
2990           dd=dist(ii,jj)
2991          if (constr_dist.eq.11) then
2992             ehpb=ehpb+fordepth(i)**4.0d0
2993      &          *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i))
2994             fac=fordepth(i)**4.0d0
2995      &          *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd
2996          else
2997           if (dhpb1(i).gt.0.0d0) then
2998             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2999             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
3000 c            write (iout,*) "beta nmr",
3001 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
3002           else
3003             dd=dist(ii,jj)
3004             rdis=dd-dhpb(i)
3005 C Get the force constant corresponding to this distance.
3006             waga=forcon(i)
3007 C Calculate the contribution to energy.
3008             ehpb=ehpb+waga*rdis*rdis
3009 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
3010 C
3011 C Evaluate gradient.
3012 C
3013             fac=waga*rdis/dd
3014           endif !end dhpb1(i).gt.0
3015          endif !end const_dist=11
3016           do j=1,3
3017             ggg(j)=fac*(c(j,jj)-c(j,ii))
3018           enddo
3019           do j=1,3
3020             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
3021             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
3022           enddo
3023           do k=1,3
3024             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
3025             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
3026           enddo
3027         else
3028 C Calculate the distance between the two points and its difference from the
3029 C target distance.
3030           dd=dist(ii,jj)
3031 C          write(iout,*) "after",dd
3032           if (constr_dist.eq.11) then
3033             ehpb=ehpb+fordepth(i)**4.0d0
3034      &          *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i))
3035             fac=fordepth(i)**4.0d0
3036      &          *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd
3037 C            ehpb=ehpb+fordepth(i)**4*rlornmr1(dd,dhpb(i),dhpb1(i))
3038 C            fac=fordepth(i)**4*rlornmr1prim(dd,dhpb(i),dhpb1(i))/dd
3039 C            print *,ehpb,"tu?"
3040 C            write(iout,*) ehpb,"btu?",
3041 C     & dd,dhpb(i),dhpb1(i),fordepth(i),forcon(i)
3042 C          write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj,
3043 C     &    ehpb,fordepth(i),dd
3044            else   
3045           if (dhpb1(i).gt.0.0d0) then
3046             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
3047             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
3048 c            write (iout,*) "alph nmr",
3049 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
3050           else
3051             rdis=dd-dhpb(i)
3052 C Get the force constant corresponding to this distance.
3053             waga=forcon(i)
3054 C Calculate the contribution to energy.
3055             ehpb=ehpb+waga*rdis*rdis
3056 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
3057 C
3058 C Evaluate gradient.
3059 C
3060             fac=waga*rdis/dd
3061           endif
3062           endif
3063 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
3064 cd   &   ' waga=',waga,' fac=',fac
3065             do j=1,3
3066               ggg(j)=fac*(c(j,jj)-c(j,ii))
3067             enddo
3068 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
3069 C If this is a SC-SC distance, we need to calculate the contributions to the
3070 C Cartesian gradient in the SC vectors (ghpbx).
3071           if (iii.lt.ii) then
3072           do j=1,3
3073             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
3074             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
3075           enddo
3076           endif
3077           do k=1,3
3078             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
3079             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
3080           enddo
3081         endif
3082       enddo
3083       if (constr_dist.ne.11) ehpb=0.5D0*ehpb
3084       return
3085       end
3086 C--------------------------------------------------------------------------
3087       subroutine ssbond_ene(i,j,eij)
3088
3089 C Calculate the distance and angle dependent SS-bond potential energy
3090 C using a free-energy function derived based on RHF/6-31G** ab initio
3091 C calculations of diethyl disulfide.
3092 C
3093 C A. Liwo and U. Kozlowska, 11/24/03
3094 C
3095       implicit real*8 (a-h,o-z)
3096       include 'DIMENSIONS'
3097       include 'DIMENSIONS.ZSCOPT'
3098       include 'COMMON.SBRIDGE'
3099       include 'COMMON.CHAIN'
3100       include 'COMMON.DERIV'
3101       include 'COMMON.LOCAL'
3102       include 'COMMON.INTERACT'
3103       include 'COMMON.VAR'
3104       include 'COMMON.IOUNITS'
3105       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
3106       itypi=itype(i)
3107       xi=c(1,nres+i)
3108       yi=c(2,nres+i)
3109       zi=c(3,nres+i)
3110       dxi=dc_norm(1,nres+i)
3111       dyi=dc_norm(2,nres+i)
3112       dzi=dc_norm(3,nres+i)
3113       dsci_inv=dsc_inv(itypi)
3114       itypj=itype(j)
3115       dscj_inv=dsc_inv(itypj)
3116       xj=c(1,nres+j)-xi
3117       yj=c(2,nres+j)-yi
3118       zj=c(3,nres+j)-zi
3119       dxj=dc_norm(1,nres+j)
3120       dyj=dc_norm(2,nres+j)
3121       dzj=dc_norm(3,nres+j)
3122       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
3123       rij=dsqrt(rrij)
3124       erij(1)=xj*rij
3125       erij(2)=yj*rij
3126       erij(3)=zj*rij
3127       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
3128       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
3129       om12=dxi*dxj+dyi*dyj+dzi*dzj
3130       do k=1,3
3131         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
3132         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
3133       enddo
3134       rij=1.0d0/rij
3135       deltad=rij-d0cm
3136       deltat1=1.0d0-om1
3137       deltat2=1.0d0+om2
3138       deltat12=om2-om1+2.0d0
3139       cosphi=om12-om1*om2
3140       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
3141      &  +akct*deltad*deltat12+ebr
3142 c     &  +akct*deltad*deltat12
3143      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
3144       write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
3145      &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
3146      &  " deltat12",deltat12," eij",eij,"ebr",ebr
3147       ed=2*akcm*deltad+akct*deltat12
3148       pom1=akct*deltad
3149       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
3150       eom1=-2*akth*deltat1-pom1-om2*pom2
3151       eom2= 2*akth*deltat2+pom1-om1*pom2
3152       eom12=pom2
3153       do k=1,3
3154         gg(k)=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
3155       enddo
3156       do k=1,3
3157         ghpbx(k,i)=ghpbx(k,i)-gg(k)
3158      &            +(eom12*dc_norm(k,nres+j)+eom1*erij(k))*dsci_inv
3159         ghpbx(k,j)=ghpbx(k,j)+gg(k)
3160      &            +(eom12*dc_norm(k,nres+i)+eom2*erij(k))*dscj_inv
3161       enddo
3162 C
3163 C Calculate the components of the gradient in DC and X
3164 C
3165       do k=i,j-1
3166         do l=1,3
3167           ghpbc(l,k)=ghpbc(l,k)+gg(l)
3168         enddo
3169       enddo
3170       return
3171       end
3172 C--------------------------------------------------------------------------
3173 c MODELLER restraint function
3174       subroutine e_modeller(ehomology_constr)
3175       implicit real*8 (a-h,o-z)
3176       include 'DIMENSIONS'
3177       include 'DIMENSIONS.ZSCOPT'
3178       include 'DIMENSIONS.FREE'
3179       integer nnn, i, j, k, ki, irec, l
3180       integer katy, odleglosci, test7
3181       real*8 odleg, odleg2, odleg3, kat, kat2, kat3, gdih(max_template)
3182       real*8 distance(max_template),distancek(max_template),
3183      &    min_odl,godl(max_template),dih_diff(max_template)
3184
3185 c
3186 c     FP - 30/10/2014 Temporary specifications for homology restraints
3187 c
3188       double precision utheta_i,gutheta_i,sum_gtheta,sum_sgtheta,
3189      &                 sgtheta
3190       double precision, dimension (maxres) :: guscdiff,usc_diff
3191       double precision, dimension (max_template) ::
3192      &           gtheta,dscdiff,uscdiffk,guscdiff2,guscdiff3,
3193      &           theta_diff
3194
3195       include 'COMMON.SBRIDGE'
3196       include 'COMMON.CHAIN'
3197       include 'COMMON.GEO'
3198       include 'COMMON.DERIV'
3199       include 'COMMON.LOCAL'
3200       include 'COMMON.INTERACT'
3201       include 'COMMON.VAR'
3202       include 'COMMON.IOUNITS'
3203       include 'COMMON.CONTROL'
3204       include 'COMMON.HOMRESTR'
3205 c
3206       include 'COMMON.SETUP'
3207       include 'COMMON.NAMES'
3208
3209       do i=1,max_template
3210         distancek(i)=9999999.9
3211       enddo
3212
3213       odleg=0.0d0
3214
3215 c Pseudo-energy and gradient from homology restraints (MODELLER-like
3216 c function)
3217 C AL 5/2/14 - Introduce list of restraints
3218 c     write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d
3219 #ifdef DEBUG
3220       write(iout,*) "------- dist restrs start -------"
3221 #endif
3222       do ii = link_start_homo,link_end_homo
3223          i = ires_homo(ii)
3224          j = jres_homo(ii)
3225          dij=dist(i,j)
3226 c        write (iout,*) "dij(",i,j,") =",dij
3227          nexl=0
3228          do k=1,constr_homology
3229            if(.not.l_homo(k,ii)) then
3230               nexl=nexl+1
3231               cycle
3232            endif
3233            distance(k)=odl(k,ii)-dij
3234 c          write (iout,*) "distance(",k,") =",distance(k)
3235 c
3236 c          For Gaussian-type Urestr
3237 c
3238            distancek(k)=0.5d0*distance(k)**2*sigma_odl(k,ii) ! waga_dist rmvd from Gaussian argument
3239 c          write (iout,*) "sigma_odl(",k,ii,") =",sigma_odl(k,ii)
3240 c          write (iout,*) "distancek(",k,") =",distancek(k)
3241 c          distancek(k)=0.5d0*waga_dist*distance(k)**2*sigma_odl(k,ii)
3242 c
3243 c          For Lorentzian-type Urestr
3244 c
3245            if (waga_dist.lt.0.0d0) then
3246               sigma_odlir(k,ii)=dsqrt(1/sigma_odl(k,ii))
3247               distancek(k)=distance(k)**2/(sigma_odlir(k,ii)*
3248      &                     (distance(k)**2+sigma_odlir(k,ii)**2))
3249            endif
3250          enddo
3251          
3252 c         min_odl=minval(distancek)
3253          do kk=1,constr_homology
3254           if(l_homo(kk,ii)) then 
3255             min_odl=distancek(kk)
3256             exit
3257           endif
3258          enddo
3259          do kk=1,constr_homology
3260           if(l_homo(kk,ii) .and. distancek(kk).lt.min_odl) 
3261      &              min_odl=distancek(kk)
3262          enddo
3263 c        write (iout,* )"min_odl",min_odl
3264 #ifdef DEBUG
3265          write (iout,*) "ij dij",i,j,dij
3266          write (iout,*) "distance",(distance(k),k=1,constr_homology)
3267          write (iout,*) "distancek",(distancek(k),k=1,constr_homology)
3268          write (iout,* )"min_odl",min_odl
3269 #endif
3270 #ifdef OLDRESTR
3271          odleg2=0.0d0
3272 #else
3273          if (waga_dist.ge.0.0d0) then
3274            odleg2=nexl
3275          else
3276            odleg2=0.0d0
3277          endif
3278 #endif
3279          do k=1,constr_homology
3280 c Nie wiem po co to liczycie jeszcze raz!
3281 c            odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/ 
3282 c     &              (2*(sigma_odl(i,j,k))**2))
3283            if(.not.l_homo(k,ii)) cycle
3284            if (waga_dist.ge.0.0d0) then
3285 c
3286 c          For Gaussian-type Urestr
3287 c
3288             godl(k)=dexp(-distancek(k)+min_odl)
3289             odleg2=odleg2+godl(k)
3290 c
3291 c          For Lorentzian-type Urestr
3292 c
3293            else
3294             odleg2=odleg2+distancek(k)
3295            endif
3296
3297 ccc       write(iout,779) i,j,k, "odleg2=",odleg2, "odleg3=", odleg3,
3298 ccc     & "dEXP(odleg3)=", dEXP(odleg3),"distance(i,j,k)^2=",
3299 ccc     & distance(i,j,k)**2, "dist(i+1,j+1)=", dist(i+1,j+1),
3300 ccc     & "sigma_odl(i,j,k)=", sigma_odl(i,j,k)
3301
3302          enddo
3303 c        write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
3304 c        write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
3305 #ifdef DEBUG
3306          write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
3307          write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
3308 #endif
3309            if (waga_dist.ge.0.0d0) then
3310 c
3311 c          For Gaussian-type Urestr
3312 c
3313               odleg=odleg-dLOG(odleg2/constr_homology)+min_odl
3314 c
3315 c          For Lorentzian-type Urestr
3316 c
3317            else
3318               odleg=odleg+odleg2/constr_homology
3319            endif
3320 c
3321 #ifdef GRAD
3322 c        write (iout,*) "odleg",odleg ! sum of -ln-s
3323 c Gradient
3324 c
3325 c          For Gaussian-type Urestr
3326 c
3327          if (waga_dist.ge.0.0d0) sum_godl=odleg2
3328          sum_sgodl=0.0d0
3329          do k=1,constr_homology
3330 c            godl=dexp(((-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
3331 c     &           *waga_dist)+min_odl
3332 c          sgodl=-godl(k)*distance(k)*sigma_odl(k,ii)*waga_dist
3333 c
3334          if(.not.l_homo(k,ii)) cycle
3335          if (waga_dist.ge.0.0d0) then
3336 c          For Gaussian-type Urestr
3337 c
3338            sgodl=-godl(k)*distance(k)*sigma_odl(k,ii) ! waga_dist rmvd
3339 c
3340 c          For Lorentzian-type Urestr
3341 c
3342          else
3343            sgodl=-2*sigma_odlir(k,ii)*(distance(k)/(distance(k)**2+
3344      &           sigma_odlir(k,ii)**2)**2)
3345          endif
3346            sum_sgodl=sum_sgodl+sgodl
3347
3348 c            sgodl2=sgodl2+sgodl
3349 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE1"
3350 c      write(iout,*) "constr_homology=",constr_homology
3351 c      write(iout,*) i, j, k, "TEST K"
3352          enddo
3353          if (waga_dist.ge.0.0d0) then
3354 c
3355 c          For Gaussian-type Urestr
3356 c
3357             grad_odl3=waga_homology(iset)*waga_dist
3358      &                *sum_sgodl/(sum_godl*dij)
3359 c
3360 c          For Lorentzian-type Urestr
3361 c
3362          else
3363 c Original grad expr modified by analogy w Gaussian-type Urestr grad
3364 c           grad_odl3=-waga_homology(iset)*waga_dist*sum_sgodl
3365             grad_odl3=-waga_homology(iset)*waga_dist*
3366      &                sum_sgodl/(constr_homology*dij)
3367          endif
3368 c
3369 c        grad_odl3=sum_sgodl/(sum_godl*dij)
3370
3371
3372 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE2"
3373 c      write(iout,*) (distance(i,j,k)**2), (2*(sigma_odl(i,j,k))**2),
3374 c     &              (-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
3375
3376 ccc      write(iout,*) godl, sgodl, grad_odl3
3377
3378 c          grad_odl=grad_odl+grad_odl3
3379
3380          do jik=1,3
3381             ggodl=grad_odl3*(c(jik,i)-c(jik,j))
3382 ccc      write(iout,*) c(jik,i+1), c(jik,j+1), (c(jik,i+1)-c(jik,j+1))
3383 ccc      write(iout,746) "GRAD_ODL_1", i, j, jik, ggodl, 
3384 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
3385             ghpbc(jik,i)=ghpbc(jik,i)+ggodl
3386             ghpbc(jik,j)=ghpbc(jik,j)-ggodl
3387 ccc      write(iout,746) "GRAD_ODL_2", i, j, jik, ggodl,
3388 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
3389 c         if (i.eq.25.and.j.eq.27) then
3390 c         write(iout,*) "jik",jik,"i",i,"j",j
3391 c         write(iout,*) "sum_sgodl",sum_sgodl,"sgodl",sgodl
3392 c         write(iout,*) "grad_odl3",grad_odl3
3393 c         write(iout,*) "c(",jik,i,")",c(jik,i),"c(",jik,j,")",c(jik,j)
3394 c         write(iout,*) "ggodl",ggodl
3395 c         write(iout,*) "ghpbc(",jik,i,")",
3396 c     &                 ghpbc(jik,i),"ghpbc(",jik,j,")",
3397 c     &                 ghpbc(jik,j)   
3398 c         endif
3399          enddo
3400 #endif
3401 ccc       write(iout,778)"TEST: odleg2=", odleg2, "DLOG(odleg2)=", 
3402 ccc     & dLOG(odleg2),"-odleg=", -odleg
3403
3404       enddo ! ii-loop for dist
3405 #ifdef DEBUG
3406       write(iout,*) "------- dist restrs end -------"
3407 c     if (waga_angle.eq.1.0d0 .or. waga_theta.eq.1.0d0 .or. 
3408 c    &     waga_d.eq.1.0d0) call sum_gradient
3409 #endif
3410 c Pseudo-energy and gradient from dihedral-angle restraints from
3411 c homology templates
3412 c      write (iout,*) "End of distance loop"
3413 c      call flush(iout)
3414       kat=0.0d0
3415 c      write (iout,*) idihconstr_start_homo,idihconstr_end_homo
3416 #ifdef DEBUG
3417       write(iout,*) "------- dih restrs start -------"
3418       do i=idihconstr_start_homo,idihconstr_end_homo
3419         write (iout,*) "gloc_init(",i,icg,")",gloc(i,icg)
3420       enddo
3421 #endif
3422       do i=idihconstr_start_homo,idihconstr_end_homo
3423         kat2=0.0d0
3424 c        betai=beta(i,i+1,i+2,i+3)
3425         betai = phi(i)
3426 c       write (iout,*) "betai =",betai
3427         do k=1,constr_homology
3428           dih_diff(k)=pinorm(dih(k,i)-betai)
3429 c         write (iout,*) "dih_diff(",k,") =",dih_diff(k)
3430 c          if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)=
3431 c     &                                   -(6.28318-dih_diff(i,k))
3432 c          if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)=
3433 c     &                                   6.28318+dih_diff(i,k)
3434 #ifdef OLD_DIHED
3435           kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument
3436 #else
3437           kat3=(dcos(dih_diff(k))-1)*sigma_dih(k,i)
3438 #endif
3439 c         kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i)
3440           gdih(k)=dexp(kat3)
3441           kat2=kat2+gdih(k)
3442 c          write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3)
3443 c          write(*,*)""
3444         enddo
3445 c       write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps
3446 c       write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps
3447 #ifdef DEBUG
3448         write (iout,*) "i",i," betai",betai," kat2",kat2
3449         write (iout,*) "gdih",(gdih(k),k=1,constr_homology)
3450 #endif
3451         if (kat2.le.1.0d-14) cycle
3452         kat=kat-dLOG(kat2/constr_homology)
3453 c       write (iout,*) "kat",kat ! sum of -ln-s
3454
3455 ccc       write(iout,778)"TEST: kat2=", kat2, "DLOG(kat2)=",
3456 ccc     & dLOG(kat2), "-kat=", -kat
3457
3458 #ifdef GRAD
3459 c ----------------------------------------------------------------------
3460 c Gradient
3461 c ----------------------------------------------------------------------
3462
3463         sum_gdih=kat2
3464         sum_sgdih=0.0d0
3465         do k=1,constr_homology
3466 #ifdef OLD_DIHED
3467           sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)  ! waga_angle rmvd
3468 #else
3469           sgdih=-gdih(k)*dsin(dih_diff(k))*sigma_dih(k,i)
3470 #endif
3471 c         sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle
3472           sum_sgdih=sum_sgdih+sgdih
3473         enddo
3474 c       grad_dih3=sum_sgdih/sum_gdih
3475         grad_dih3=waga_homology(iset)*waga_angle*sum_sgdih/sum_gdih
3476
3477 c      write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3
3478 ccc      write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3,
3479 ccc     & gloc(nphi+i-3,icg)
3480         gloc(i,icg)=gloc(i,icg)+grad_dih3
3481 c        if (i.eq.25) then
3482 c        write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg)
3483 c        endif
3484 ccc      write(iout,747) "GRAD_KAT_2", i, nphi, icg, grad_dih3,
3485 ccc     & gloc(nphi+i-3,icg)
3486 #endif
3487       enddo ! i-loop for dih
3488 #ifdef DEBUG
3489       write(iout,*) "------- dih restrs end -------"
3490 #endif
3491
3492 c Pseudo-energy and gradient for theta angle restraints from
3493 c homology templates
3494 c FP 01/15 - inserted from econstr_local_test.F, loop structure
3495 c adapted
3496
3497 c
3498 c     For constr_homology reference structures (FP)
3499 c     
3500 c     Uconst_back_tot=0.0d0
3501       Eval=0.0d0
3502       Erot=0.0d0
3503 c     Econstr_back legacy
3504 #ifdef GRAD
3505       do i=1,nres
3506 c     do i=ithet_start,ithet_end
3507        dutheta(i)=0.0d0
3508 c     enddo
3509 c     do i=loc_start,loc_end
3510         do j=1,3
3511           duscdiff(j,i)=0.0d0
3512           duscdiffx(j,i)=0.0d0
3513         enddo
3514       enddo
3515 #endif
3516 c
3517 c     do iref=1,nref
3518 c     write (iout,*) "ithet_start =",ithet_start,"ithet_end =",ithet_end
3519 c     write (iout,*) "waga_theta",waga_theta
3520       if (waga_theta.gt.0.0d0) then
3521 #ifdef DEBUG
3522       write (iout,*) "usampl",usampl
3523       write(iout,*) "------- theta restrs start -------"
3524 c     do i=ithet_start,ithet_end
3525 c       write (iout,*) "gloc_init(",nphi+i,icg,")",gloc(nphi+i,icg)
3526 c     enddo
3527 #endif
3528 c     write (iout,*) "maxres",maxres,"nres",nres
3529
3530       do i=ithet_start,ithet_end
3531 c
3532 c     do i=1,nfrag_back
3533 c       ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset)
3534 c
3535 c Deviation of theta angles wrt constr_homology ref structures
3536 c
3537         utheta_i=0.0d0 ! argument of Gaussian for single k
3538         gutheta_i=0.0d0 ! Sum of Gaussians over constr_homology ref structures
3539 c       do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) ! original loop
3540 c       over residues in a fragment
3541 c       write (iout,*) "theta(",i,")=",theta(i)
3542         do k=1,constr_homology
3543 c
3544 c         dtheta_i=theta(j)-thetaref(j,iref)
3545 c         dtheta_i=thetaref(k,i)-theta(i) ! original form without indexing
3546           theta_diff(k)=thetatpl(k,i)-theta(i)
3547 c
3548           utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument
3549 c         utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta?
3550           gtheta(k)=dexp(utheta_i) ! + min_utheta_i?
3551           gutheta_i=gutheta_i+dexp(utheta_i)   ! Sum of Gaussians (pk)
3552 c         Gradient for single Gaussian restraint in subr Econstr_back
3553 c         dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1)
3554 c
3555         enddo
3556 c       write (iout,*) "gtheta",(gtheta(k),k=1,constr_homology) ! exps
3557 c       write (iout,*) "i",i," gutheta_i",gutheta_i ! sum of exps
3558
3559 c
3560 #ifdef GRAD
3561 c         Gradient for multiple Gaussian restraint
3562         sum_gtheta=gutheta_i
3563         sum_sgtheta=0.0d0
3564         do k=1,constr_homology
3565 c        New generalized expr for multiple Gaussian from Econstr_back
3566          sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i) ! waga_theta rmvd
3567 c
3568 c        sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i)*waga_theta ! right functional form?
3569           sum_sgtheta=sum_sgtheta+sgtheta ! cum variable
3570         enddo
3571 c
3572 c       Final value of gradient using same var as in Econstr_back
3573         dutheta(i-2)=sum_sgtheta/sum_gtheta*waga_theta
3574      &               *waga_homology(iset)
3575 c       dutheta(i)=sum_sgtheta/sum_gtheta
3576 c
3577 c       Uconst_back=Uconst_back+waga_theta*utheta(i) ! waga_theta added as weight
3578 #endif
3579         Eval=Eval-dLOG(gutheta_i/constr_homology)
3580 c       write (iout,*) "utheta(",i,")=",utheta(i) ! -ln of sum of exps
3581 c       write (iout,*) "Uconst_back",Uconst_back ! sum of -ln-s
3582 c       Uconst_back=Uconst_back+utheta(i)
3583       enddo ! (i-loop for theta)
3584 #ifdef DEBUG
3585       write(iout,*) "------- theta restrs end -------"
3586 #endif
3587       endif
3588 c
3589 c Deviation of local SC geometry
3590 c
3591 c Separation of two i-loops (instructed by AL - 11/3/2014)
3592 c
3593 c     write (iout,*) "loc_start =",loc_start,"loc_end =",loc_end
3594 c     write (iout,*) "waga_d",waga_d
3595
3596 #ifdef DEBUG
3597       write(iout,*) "------- SC restrs start -------"
3598       write (iout,*) "Initial duscdiff,duscdiffx"
3599       do i=loc_start,loc_end
3600         write (iout,*) i,(duscdiff(jik,i),jik=1,3),
3601      &                 (duscdiffx(jik,i),jik=1,3)
3602       enddo
3603 #endif
3604       do i=loc_start,loc_end
3605         usc_diff_i=0.0d0 ! argument of Gaussian for single k
3606         guscdiff(i)=0.0d0 ! Sum of Gaussians over constr_homology ref structures
3607 c       do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 ! Econstr_back legacy
3608 c       write(iout,*) "xxtab, yytab, zztab"
3609 c       write(iout,'(i5,3f8.2)') i,xxtab(i),yytab(i),zztab(i)
3610         do k=1,constr_homology
3611 c
3612           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
3613 c                                    Original sign inverted for calc of gradients (s. Econstr_back)
3614           dyy=-yytpl(k,i)+yytab(i) ! ibid y
3615           dzz=-zztpl(k,i)+zztab(i) ! ibid z
3616 c         write(iout,*) "dxx, dyy, dzz"
3617 c         write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
3618 c
3619           usc_diff_i=-0.5d0*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i)  ! waga_d rmvd from Gaussian argument
3620 c         usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d?
3621 c         uscdiffk(k)=usc_diff(i)
3622           guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff
3623           guscdiff(i)=guscdiff(i)+dexp(usc_diff_i)   !Sum of Gaussians (pk)
3624 c          write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j),
3625 c     &      xxref(j),yyref(j),zzref(j)
3626         enddo
3627 c
3628 c       Gradient 
3629 c
3630 c       Generalized expression for multiple Gaussian acc to that for a single 
3631 c       Gaussian in Econstr_back as instructed by AL (FP - 03/11/2014)
3632 c
3633 c       Original implementation
3634 c       sum_guscdiff=guscdiff(i)
3635 c
3636 c       sum_sguscdiff=0.0d0
3637 c       do k=1,constr_homology
3638 c          sguscdiff=-guscdiff2(k)*dscdiff(k)*sigma_d(k,i)*waga_d !waga_d? 
3639 c          sguscdiff=-guscdiff3(k)*dscdiff(k)*sigma_d(k,i)*waga_d ! w min_uscdiff
3640 c          sum_sguscdiff=sum_sguscdiff+sguscdiff
3641 c       enddo
3642 c
3643 c       Implementation of new expressions for gradient (Jan. 2015)
3644 c
3645 c       grad_uscdiff=sum_sguscdiff/(sum_guscdiff*dtab) !?
3646 #ifdef GRAD
3647         do k=1,constr_homology 
3648 c
3649 c       New calculation of dxx, dyy, and dzz corrected by AL (07/11), was missing and wrong
3650 c       before. Now the drivatives should be correct
3651 c
3652           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
3653 c                                  Original sign inverted for calc of gradients (s. Econstr_back)
3654           dyy=-yytpl(k,i)+yytab(i) ! ibid y
3655           dzz=-zztpl(k,i)+zztab(i) ! ibid z
3656 c
3657 c         New implementation
3658 c
3659           sum_guscdiff=guscdiff2(k)*!(dsqrt(dxx*dxx+dyy*dyy+dzz*dzz))* -> wrong!
3660      &                 sigma_d(k,i) ! for the grad wrt r' 
3661 c         sum_sguscdiff=sum_sguscdiff+sum_guscdiff
3662 c
3663 c
3664 c        New implementation
3665          sum_guscdiff = waga_homology(iset)*waga_d*sum_guscdiff
3666          do jik=1,3
3667             duscdiff(jik,i-1)=duscdiff(jik,i-1)+
3668      &      sum_guscdiff*(dXX_C1tab(jik,i)*dxx+
3669      &      dYY_C1tab(jik,i)*dyy+dZZ_C1tab(jik,i)*dzz)/guscdiff(i)
3670             duscdiff(jik,i)=duscdiff(jik,i)+
3671      &      sum_guscdiff*(dXX_Ctab(jik,i)*dxx+
3672      &      dYY_Ctab(jik,i)*dyy+dZZ_Ctab(jik,i)*dzz)/guscdiff(i)
3673             duscdiffx(jik,i)=duscdiffx(jik,i)+
3674      &      sum_guscdiff*(dXX_XYZtab(jik,i)*dxx+
3675      &      dYY_XYZtab(jik,i)*dyy+dZZ_XYZtab(jik,i)*dzz)/guscdiff(i)
3676 c
3677 #ifdef DEBUG
3678              write(iout,*) "jik",jik,"i",i
3679              write(iout,*) "dxx, dyy, dzz"
3680              write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
3681              write(iout,*) "guscdiff2(",k,")",guscdiff2(k)
3682 c            write(iout,*) "sum_sguscdiff",sum_sguscdiff
3683 cc           write(iout,*) "dXX_Ctab(",jik,i,")",dXX_Ctab(jik,i)
3684 c            write(iout,*) "dYY_Ctab(",jik,i,")",dYY_Ctab(jik,i)
3685 c            write(iout,*) "dZZ_Ctab(",jik,i,")",dZZ_Ctab(jik,i)
3686 c            write(iout,*) "dXX_C1tab(",jik,i,")",dXX_C1tab(jik,i)
3687 c            write(iout,*) "dYY_C1tab(",jik,i,")",dYY_C1tab(jik,i)
3688 c            write(iout,*) "dZZ_C1tab(",jik,i,")",dZZ_C1tab(jik,i)
3689 c            write(iout,*) "dXX_XYZtab(",jik,i,")",dXX_XYZtab(jik,i)
3690 c            write(iout,*) "dYY_XYZtab(",jik,i,")",dYY_XYZtab(jik,i)
3691 c            write(iout,*) "dZZ_XYZtab(",jik,i,")",dZZ_XYZtab(jik,i)
3692 c            write(iout,*) "duscdiff(",jik,i-1,")",duscdiff(jik,i-1)
3693 c            write(iout,*) "duscdiff(",jik,i,")",duscdiff(jik,i)
3694 c            write(iout,*) "duscdiffx(",jik,i,")",duscdiffx(jik,i)
3695 c            endif
3696 #endif
3697          enddo
3698         enddo
3699 #endif
3700 c
3701 c       uscdiff(i)=-dLOG(guscdiff(i)/(ii-1))      ! Weighting by (ii-1) required?
3702 c        usc_diff(i)=-dLOG(guscdiff(i)/constr_homology) ! + min_uscdiff ?
3703 c
3704 c        write (iout,*) i," uscdiff",uscdiff(i)
3705 c
3706 c Put together deviations from local geometry
3707
3708 c       Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+
3709 c      &            wfrag_back(3,i,iset)*uscdiff(i)
3710         Erot=Erot-dLOG(guscdiff(i)/constr_homology)
3711 c       write (iout,*) "usc_diff(",i,")=",usc_diff(i) ! -ln of sum of exps
3712 c       write (iout,*) "Uconst_back",Uconst_back ! cum sum of -ln-s
3713 c       Uconst_back=Uconst_back+usc_diff(i)
3714 c
3715 c     Gradient of multiple Gaussian restraint (FP - 04/11/2014 - right?)
3716 c
3717 c     New implment: multiplied by sum_sguscdiff
3718 c
3719
3720       enddo ! (i-loop for dscdiff)
3721
3722 c      endif
3723
3724 #ifdef DEBUG
3725       write(iout,*) "------- SC restrs end -------"
3726         write (iout,*) "------ After SC loop in e_modeller ------"
3727         do i=loc_start,loc_end
3728          write (iout,*) "i",i," gradc",(gradc(j,i,icg),j=1,3)
3729          write (iout,*) "i",i," gradx",(gradx(j,i,icg),j=1,3)
3730         enddo
3731       if (waga_theta.eq.1.0d0) then
3732       write (iout,*) "in e_modeller after SC restr end: dutheta"
3733       do i=ithet_start,ithet_end
3734         write (iout,*) i,dutheta(i)
3735       enddo
3736       endif
3737       if (waga_d.eq.1.0d0) then
3738       write (iout,*) "e_modeller after SC loop: duscdiff/x"
3739       do i=1,nres
3740         write (iout,*) i,(duscdiff(j,i),j=1,3)
3741         write (iout,*) i,(duscdiffx(j,i),j=1,3)
3742       enddo
3743       endif
3744 #endif
3745
3746 c Total energy from homology restraints
3747 #ifdef DEBUG
3748       write (iout,*) "odleg",odleg," kat",kat
3749       write (iout,*) "odleg",odleg," kat",kat
3750       write (iout,*) "Eval",Eval," Erot",Erot
3751       write (iout,*) "waga_homology(",iset,")",waga_homology(iset)
3752       write (iout,*) "waga_dist ",waga_dist,"waga_angle ",waga_angle
3753       write (iout,*) "waga_theta ",waga_theta,"waga_d ",waga_d
3754 #endif
3755 c
3756 c Addition of energy of theta angle and SC local geom over constr_homologs ref strs
3757 c
3758 c     ehomology_constr=odleg+kat
3759 c
3760 c     For Lorentzian-type Urestr
3761 c
3762
3763       if (waga_dist.ge.0.0d0) then
3764 c
3765 c          For Gaussian-type Urestr
3766 c
3767 c        ehomology_constr=(waga_dist*odleg+waga_angle*kat+
3768 c     &              waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
3769         ehomology_constr=waga_dist*odleg+waga_angle*kat+
3770      &              waga_theta*Eval+waga_d*Erot
3771 c     write (iout,*) "ehomology_constr=",ehomology_constr
3772       else
3773 c
3774 c          For Lorentzian-type Urestr
3775 c  
3776 c        ehomology_constr=(-waga_dist*odleg+waga_angle*kat+
3777 c     &              waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
3778         ehomology_constr=-waga_dist*odleg+waga_angle*kat+
3779      &              waga_theta*Eval+waga_d*Erot
3780 c     write (iout,*) "ehomology_constr=",ehomology_constr
3781       endif
3782 #ifdef DEBUG
3783       write (iout,*) "odleg",waga_dist,odleg," kat",waga_angle,kat,
3784      & "Eval",waga_theta,eval,
3785      &   "Erot",waga_d,Erot
3786       write (iout,*) "ehomology_constr",ehomology_constr
3787 #endif
3788       return
3789
3790   748 format(a8,f12.3,a6,f12.3,a7,f12.3)
3791   747 format(a12,i4,i4,i4,f8.3,f8.3)
3792   746 format(a12,i4,i4,i4,f8.3,f8.3,f8.3)
3793   778 format(a7,1X,f10.3,1X,a4,1X,f10.3,1X,a5,1X,f10.3)
3794   779 format(i3,1X,i3,1X,i2,1X,a7,1X,f7.3,1X,a7,1X,f7.3,1X,a13,1X,
3795      &       f7.3,1X,a17,1X,f9.3,1X,a10,1X,f8.3,1X,a10,1X,f8.3)
3796       end
3797 c-----------------------------------------------------------------------
3798       subroutine ebond(estr)
3799 c
3800 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
3801 c
3802       implicit real*8 (a-h,o-z)
3803       include 'DIMENSIONS'
3804       include 'DIMENSIONS.ZSCOPT'
3805       include 'DIMENSIONS.FREE'
3806       include 'COMMON.LOCAL'
3807       include 'COMMON.GEO'
3808       include 'COMMON.INTERACT'
3809       include 'COMMON.DERIV'
3810       include 'COMMON.VAR'
3811       include 'COMMON.CHAIN'
3812       include 'COMMON.IOUNITS'
3813       include 'COMMON.NAMES'
3814       include 'COMMON.FFIELD'
3815       include 'COMMON.CONTROL'
3816       double precision u(3),ud(3)
3817       logical :: lprn=.false.
3818       estr=0.0d0
3819       do i=nnt+1,nct
3820         diff = vbld(i)-vbldp0
3821 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
3822         estr=estr+diff*diff
3823         do j=1,3
3824           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
3825         enddo
3826       enddo
3827       estr=0.5d0*AKP*estr
3828 c
3829 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
3830 c
3831       do i=nnt,nct
3832         iti=itype(i)
3833         if (iti.ne.10) then
3834           nbi=nbondterm(iti)
3835           if (nbi.eq.1) then
3836             diff=vbld(i+nres)-vbldsc0(1,iti)
3837             if (lprn)
3838      &      write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
3839      &      AKSC(1,iti),AKSC(1,iti)*diff*diff
3840             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
3841             do j=1,3
3842               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
3843             enddo
3844           else
3845             do j=1,nbi
3846               diff=vbld(i+nres)-vbldsc0(j,iti)
3847               ud(j)=aksc(j,iti)*diff
3848               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
3849             enddo
3850             uprod=u(1)
3851             do j=2,nbi
3852               uprod=uprod*u(j)
3853             enddo
3854             usum=0.0d0
3855             usumsqder=0.0d0
3856             do j=1,nbi
3857               uprod1=1.0d0
3858               uprod2=1.0d0
3859               do k=1,nbi
3860                 if (k.ne.j) then
3861                   uprod1=uprod1*u(k)
3862                   uprod2=uprod2*u(k)*u(k)
3863                 endif
3864               enddo
3865               usum=usum+uprod1
3866               usumsqder=usumsqder+ud(j)*uprod2
3867             enddo
3868             if (lprn)
3869      &      write (iout,*) i,iti,vbld(i+nres),(vbldsc0(j,iti),
3870      &      AKSC(j,iti),abond0(j,iti),u(j),j=1,nbi)
3871             estr=estr+uprod/usum
3872             do j=1,3
3873              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
3874             enddo
3875           endif
3876         endif
3877       enddo
3878       return
3879       end
3880 #ifdef CRYST_THETA
3881 C--------------------------------------------------------------------------
3882       subroutine ebend(etheta)
3883 C
3884 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
3885 C angles gamma and its derivatives in consecutive thetas and gammas.
3886 C
3887       implicit real*8 (a-h,o-z)
3888       include 'DIMENSIONS'
3889       include 'DIMENSIONS.ZSCOPT'
3890       include 'COMMON.LOCAL'
3891       include 'COMMON.GEO'
3892       include 'COMMON.INTERACT'
3893       include 'COMMON.DERIV'
3894       include 'COMMON.VAR'
3895       include 'COMMON.CHAIN'
3896       include 'COMMON.IOUNITS'
3897       include 'COMMON.NAMES'
3898       include 'COMMON.FFIELD'
3899       common /calcthet/ term1,term2,termm,diffak,ratak,
3900      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3901      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3902       double precision y(2),z(2)
3903       delta=0.02d0*pi
3904       time11=dexp(-2*time)
3905       time12=1.0d0
3906       etheta=0.0D0
3907 c      write (iout,*) "nres",nres
3908 c     write (*,'(a,i2)') 'EBEND ICG=',icg
3909 c      write (iout,*) ithet_start,ithet_end
3910       do i=ithet_start,ithet_end
3911 C Zero the energy function and its derivative at 0 or pi.
3912         call splinthet(theta(i),0.5d0*delta,ss,ssd)
3913         it=itype(i-1)
3914 c        if (i.gt.ithet_start .and. 
3915 c     &     (itel(i-1).eq.0 .or. itel(i-2).eq.0)) goto 1215
3916 c        if (i.gt.3 .and. (i.le.4 .or. itel(i-3).ne.0)) then
3917 c          phii=phi(i)
3918 c          y(1)=dcos(phii)
3919 c          y(2)=dsin(phii)
3920 c        else 
3921 c          y(1)=0.0D0
3922 c          y(2)=0.0D0
3923 c        endif
3924 c        if (i.lt.nres .and. itel(i).ne.0) then
3925 c          phii1=phi(i+1)
3926 c          z(1)=dcos(phii1)
3927 c          z(2)=dsin(phii1)
3928 c        else
3929 c          z(1)=0.0D0
3930 c          z(2)=0.0D0
3931 c        endif  
3932         if (i.gt.3) then
3933 #ifdef OSF
3934           phii=phi(i)
3935           icrc=0
3936           call proc_proc(phii,icrc)
3937           if (icrc.eq.1) phii=150.0
3938 #else
3939           phii=phi(i)
3940 #endif
3941           y(1)=dcos(phii)
3942           y(2)=dsin(phii)
3943         else
3944           y(1)=0.0D0
3945           y(2)=0.0D0
3946         endif
3947         if (i.lt.nres) then
3948 #ifdef OSF
3949           phii1=phi(i+1)
3950           icrc=0
3951           call proc_proc(phii1,icrc)
3952           if (icrc.eq.1) phii1=150.0
3953           phii1=pinorm(phii1)
3954           z(1)=cos(phii1)
3955 #else
3956           phii1=phi(i+1)
3957           z(1)=dcos(phii1)
3958 #endif
3959           z(2)=dsin(phii1)
3960         else
3961           z(1)=0.0D0
3962           z(2)=0.0D0
3963         endif
3964 C Calculate the "mean" value of theta from the part of the distribution
3965 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
3966 C In following comments this theta will be referred to as t_c.
3967         thet_pred_mean=0.0d0
3968         do k=1,2
3969           athetk=athet(k,it)
3970           bthetk=bthet(k,it)
3971           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
3972         enddo
3973 c        write (iout,*) "thet_pred_mean",thet_pred_mean
3974         dthett=thet_pred_mean*ssd
3975         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
3976 c        write (iout,*) "thet_pred_mean",thet_pred_mean
3977 C Derivatives of the "mean" values in gamma1 and gamma2.
3978         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
3979         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
3980         if (theta(i).gt.pi-delta) then
3981           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
3982      &         E_tc0)
3983           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
3984           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
3985           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
3986      &        E_theta)
3987           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
3988      &        E_tc)
3989         else if (theta(i).lt.delta) then
3990           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
3991           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
3992           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
3993      &        E_theta)
3994           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
3995           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
3996      &        E_tc)
3997         else
3998           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
3999      &        E_theta,E_tc)
4000         endif
4001         etheta=etheta+ethetai
4002 c        write (iout,'(2i3,3f8.3,f10.5)') i,it,rad2deg*theta(i),
4003 c     &    rad2deg*phii,rad2deg*phii1,ethetai
4004         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4005         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4006         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4007  1215   continue
4008       enddo
4009 C Ufff.... We've done all this!!! 
4010       return
4011       end
4012 C---------------------------------------------------------------------------
4013       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4014      &     E_tc)
4015       implicit real*8 (a-h,o-z)
4016       include 'DIMENSIONS'
4017       include 'COMMON.LOCAL'
4018       include 'COMMON.IOUNITS'
4019       common /calcthet/ term1,term2,termm,diffak,ratak,
4020      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4021      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4022 C Calculate the contributions to both Gaussian lobes.
4023 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4024 C The "polynomial part" of the "standard deviation" of this part of 
4025 C the distribution.
4026         sig=polthet(3,it)
4027         do j=2,0,-1
4028           sig=sig*thet_pred_mean+polthet(j,it)
4029         enddo
4030 C Derivative of the "interior part" of the "standard deviation of the" 
4031 C gamma-dependent Gaussian lobe in t_c.
4032         sigtc=3*polthet(3,it)
4033         do j=2,1,-1
4034           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4035         enddo
4036         sigtc=sig*sigtc
4037 C Set the parameters of both Gaussian lobes of the distribution.
4038 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4039         fac=sig*sig+sigc0(it)
4040         sigcsq=fac+fac
4041         sigc=1.0D0/sigcsq
4042 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4043         sigsqtc=-4.0D0*sigcsq*sigtc
4044 c       print *,i,sig,sigtc,sigsqtc
4045 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4046         sigtc=-sigtc/(fac*fac)
4047 C Following variable is sigma(t_c)**(-2)
4048         sigcsq=sigcsq*sigcsq
4049         sig0i=sig0(it)
4050         sig0inv=1.0D0/sig0i**2
4051         delthec=thetai-thet_pred_mean
4052         delthe0=thetai-theta0i
4053         term1=-0.5D0*sigcsq*delthec*delthec
4054         term2=-0.5D0*sig0inv*delthe0*delthe0
4055 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4056 C NaNs in taking the logarithm. We extract the largest exponent which is added
4057 C to the energy (this being the log of the distribution) at the end of energy
4058 C term evaluation for this virtual-bond angle.
4059         if (term1.gt.term2) then
4060           termm=term1
4061           term2=dexp(term2-termm)
4062           term1=1.0d0
4063         else
4064           termm=term2
4065           term1=dexp(term1-termm)
4066           term2=1.0d0
4067         endif
4068 C The ratio between the gamma-independent and gamma-dependent lobes of
4069 C the distribution is a Gaussian function of thet_pred_mean too.
4070         diffak=gthet(2,it)-thet_pred_mean
4071         ratak=diffak/gthet(3,it)**2
4072         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4073 C Let's differentiate it in thet_pred_mean NOW.
4074         aktc=ak*ratak
4075 C Now put together the distribution terms to make complete distribution.
4076         termexp=term1+ak*term2
4077         termpre=sigc+ak*sig0i
4078 C Contribution of the bending energy from this theta is just the -log of
4079 C the sum of the contributions from the two lobes and the pre-exponential
4080 C factor. Simple enough, isn't it?
4081         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4082 C NOW the derivatives!!!
4083 C 6/6/97 Take into account the deformation.
4084         E_theta=(delthec*sigcsq*term1
4085      &       +ak*delthe0*sig0inv*term2)/termexp
4086         E_tc=((sigtc+aktc*sig0i)/termpre
4087      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4088      &       aktc*term2)/termexp)
4089       return
4090       end
4091 c-----------------------------------------------------------------------------
4092       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4093       implicit real*8 (a-h,o-z)
4094       include 'DIMENSIONS'
4095       include 'COMMON.LOCAL'
4096       include 'COMMON.IOUNITS'
4097       common /calcthet/ term1,term2,termm,diffak,ratak,
4098      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4099      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4100       delthec=thetai-thet_pred_mean
4101       delthe0=thetai-theta0i
4102 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4103       t3 = thetai-thet_pred_mean
4104       t6 = t3**2
4105       t9 = term1
4106       t12 = t3*sigcsq
4107       t14 = t12+t6*sigsqtc
4108       t16 = 1.0d0
4109       t21 = thetai-theta0i
4110       t23 = t21**2
4111       t26 = term2
4112       t27 = t21*t26
4113       t32 = termexp
4114       t40 = t32**2
4115       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4116      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4117      & *(-t12*t9-ak*sig0inv*t27)
4118       return
4119       end
4120 #else
4121 C--------------------------------------------------------------------------
4122       subroutine ebend(etheta)
4123 C
4124 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4125 C angles gamma and its derivatives in consecutive thetas and gammas.
4126 C ab initio-derived potentials from 
4127 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4128 C
4129       implicit real*8 (a-h,o-z)
4130       include 'DIMENSIONS'
4131       include 'DIMENSIONS.ZSCOPT'
4132       include 'DIMENSIONS.FREE'
4133       include 'COMMON.LOCAL'
4134       include 'COMMON.GEO'
4135       include 'COMMON.INTERACT'
4136       include 'COMMON.DERIV'
4137       include 'COMMON.VAR'
4138       include 'COMMON.CHAIN'
4139       include 'COMMON.IOUNITS'
4140       include 'COMMON.NAMES'
4141       include 'COMMON.FFIELD'
4142       include 'COMMON.CONTROL'
4143       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4144      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4145      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4146      & sinph1ph2(maxdouble,maxdouble)
4147       logical lprn /.false./, lprn1 /.false./
4148       etheta=0.0D0
4149 c      write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1)
4150       do i=ithet_start,ithet_end
4151         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4152      &    (itype(i).eq.ntyp1)) cycle
4153         dethetai=0.0d0
4154         dephii=0.0d0
4155         dephii1=0.0d0
4156         theti2=0.5d0*theta(i)
4157         ityp2=ithetyp(itype(i-1))
4158         do k=1,nntheterm
4159           coskt(k)=dcos(k*theti2)
4160           sinkt(k)=dsin(k*theti2)
4161         enddo
4162         if (i.gt.3 .and. itype(max0(i-3,1)).ne.ntyp1) then
4163 #ifdef OSF
4164           phii=phi(i)
4165           if (phii.ne.phii) phii=150.0
4166 #else
4167           phii=phi(i)
4168 #endif
4169           ityp1=ithetyp(itype(i-2))
4170           do k=1,nsingle
4171             cosph1(k)=dcos(k*phii)
4172             sinph1(k)=dsin(k*phii)
4173           enddo
4174         else
4175           phii=0.0d0
4176           ityp1=ithetyp(itype(i-2))
4177           do k=1,nsingle
4178             cosph1(k)=0.0d0
4179             sinph1(k)=0.0d0
4180           enddo 
4181         endif
4182         if (i.lt.nres .and. itype(i+1).ne.ntyp1) then
4183 #ifdef OSF
4184           phii1=phi(i+1)
4185           if (phii1.ne.phii1) phii1=150.0
4186           phii1=pinorm(phii1)
4187 #else
4188           phii1=phi(i+1)
4189 #endif
4190           ityp3=ithetyp(itype(i))
4191           do k=1,nsingle
4192             cosph2(k)=dcos(k*phii1)
4193             sinph2(k)=dsin(k*phii1)
4194           enddo
4195         else
4196           phii1=0.0d0
4197 c          ityp3=nthetyp+1
4198           ityp3=ithetyp(itype(i))
4199           do k=1,nsingle
4200             cosph2(k)=0.0d0
4201             sinph2(k)=0.0d0
4202           enddo
4203         endif  
4204 c        write (iout,*) "i",i," ityp1",itype(i-2),ityp1,
4205 c     &   " ityp2",itype(i-1),ityp2," ityp3",itype(i),ityp3
4206 c        call flush(iout)
4207         ethetai=aa0thet(ityp1,ityp2,ityp3)
4208         do k=1,ndouble
4209           do l=1,k-1
4210             ccl=cosph1(l)*cosph2(k-l)
4211             ssl=sinph1(l)*sinph2(k-l)
4212             scl=sinph1(l)*cosph2(k-l)
4213             csl=cosph1(l)*sinph2(k-l)
4214             cosph1ph2(l,k)=ccl-ssl
4215             cosph1ph2(k,l)=ccl+ssl
4216             sinph1ph2(l,k)=scl+csl
4217             sinph1ph2(k,l)=scl-csl
4218           enddo
4219         enddo
4220         if (lprn) then
4221         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4222      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4223         write (iout,*) "coskt and sinkt"
4224         do k=1,nntheterm
4225           write (iout,*) k,coskt(k),sinkt(k)
4226         enddo
4227         endif
4228         do k=1,ntheterm
4229           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4230           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4231      &      *coskt(k)
4232           if (lprn)
4233      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4234      &     " ethetai",ethetai
4235         enddo
4236         if (lprn) then
4237         write (iout,*) "cosph and sinph"
4238         do k=1,nsingle
4239           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4240         enddo
4241         write (iout,*) "cosph1ph2 and sinph2ph2"
4242         do k=2,ndouble
4243           do l=1,k-1
4244             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4245      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4246           enddo
4247         enddo
4248         write(iout,*) "ethetai",ethetai
4249         endif
4250         do m=1,ntheterm2
4251           do k=1,nsingle
4252             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4253      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4254      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4255      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4256             ethetai=ethetai+sinkt(m)*aux
4257             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4258             dephii=dephii+k*sinkt(m)*(
4259      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4260      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4261             dephii1=dephii1+k*sinkt(m)*(
4262      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4263      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4264             if (lprn)
4265      &      write (iout,*) "m",m," k",k," bbthet",
4266      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4267      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4268      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4269      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4270           enddo
4271         enddo
4272         if (lprn)
4273      &  write(iout,*) "ethetai",ethetai
4274         do m=1,ntheterm3
4275           do k=2,ndouble
4276             do l=1,k-1
4277               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4278      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4279      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4280      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4281               ethetai=ethetai+sinkt(m)*aux
4282               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4283               dephii=dephii+l*sinkt(m)*(
4284      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4285      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4286      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4287      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4288               dephii1=dephii1+(k-l)*sinkt(m)*(
4289      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4290      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4291      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4292      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4293               if (lprn) then
4294               write (iout,*) "m",m," k",k," l",l," ffthet",
4295      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4296      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4297      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4298      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4299               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4300      &            cosph1ph2(k,l)*sinkt(m),
4301      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4302               endif
4303             enddo
4304           enddo
4305         enddo
4306 10      continue
4307 c        lprn1=.true.
4308         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
4309      &  'ebe',i,theta(i)*rad2deg,phii*rad2deg,
4310      &   phii1*rad2deg,ethetai
4311 c        lprn1=.false.
4312         etheta=etheta+ethetai
4313         
4314         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4315         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4316         gloc(nphi+i-2,icg)=wang*dethetai
4317       enddo
4318       return
4319       end
4320 #endif
4321 #ifdef CRYST_SC
4322 c-----------------------------------------------------------------------------
4323       subroutine esc(escloc)
4324 C Calculate the local energy of a side chain and its derivatives in the
4325 C corresponding virtual-bond valence angles THETA and the spherical angles 
4326 C ALPHA and OMEGA.
4327       implicit real*8 (a-h,o-z)
4328       include 'DIMENSIONS'
4329       include 'DIMENSIONS.ZSCOPT'
4330       include 'COMMON.GEO'
4331       include 'COMMON.LOCAL'
4332       include 'COMMON.VAR'
4333       include 'COMMON.INTERACT'
4334       include 'COMMON.DERIV'
4335       include 'COMMON.CHAIN'
4336       include 'COMMON.IOUNITS'
4337       include 'COMMON.NAMES'
4338       include 'COMMON.FFIELD'
4339       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4340      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4341       common /sccalc/ time11,time12,time112,theti,it,nlobit
4342       delta=0.02d0*pi
4343       escloc=0.0D0
4344 c     write (iout,'(a)') 'ESC'
4345       do i=loc_start,loc_end
4346         it=itype(i)
4347         if (it.eq.10) goto 1
4348         nlobit=nlob(it)
4349 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4350 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4351         theti=theta(i+1)-pipol
4352         x(1)=dtan(theti)
4353         x(2)=alph(i)
4354         x(3)=omeg(i)
4355 c        write (iout,*) "i",i," x",x(1),x(2),x(3)
4356
4357         if (x(2).gt.pi-delta) then
4358           xtemp(1)=x(1)
4359           xtemp(2)=pi-delta
4360           xtemp(3)=x(3)
4361           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4362           xtemp(2)=pi
4363           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4364           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4365      &        escloci,dersc(2))
4366           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4367      &        ddersc0(1),dersc(1))
4368           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4369      &        ddersc0(3),dersc(3))
4370           xtemp(2)=pi-delta
4371           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4372           xtemp(2)=pi
4373           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4374           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4375      &            dersc0(2),esclocbi,dersc02)
4376           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4377      &            dersc12,dersc01)
4378           call splinthet(x(2),0.5d0*delta,ss,ssd)
4379           dersc0(1)=dersc01
4380           dersc0(2)=dersc02
4381           dersc0(3)=0.0d0
4382           do k=1,3
4383             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4384           enddo
4385           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4386 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4387 c    &             esclocbi,ss,ssd
4388           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4389 c         escloci=esclocbi
4390 c         write (iout,*) escloci
4391         else if (x(2).lt.delta) then
4392           xtemp(1)=x(1)
4393           xtemp(2)=delta
4394           xtemp(3)=x(3)
4395           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4396           xtemp(2)=0.0d0
4397           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4398           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
4399      &        escloci,dersc(2))
4400           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4401      &        ddersc0(1),dersc(1))
4402           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
4403      &        ddersc0(3),dersc(3))
4404           xtemp(2)=delta
4405           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4406           xtemp(2)=0.0d0
4407           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4408           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
4409      &            dersc0(2),esclocbi,dersc02)
4410           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4411      &            dersc12,dersc01)
4412           dersc0(1)=dersc01
4413           dersc0(2)=dersc02
4414           dersc0(3)=0.0d0
4415           call splinthet(x(2),0.5d0*delta,ss,ssd)
4416           do k=1,3
4417             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4418           enddo
4419           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4420 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4421 c    &             esclocbi,ss,ssd
4422           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4423 c         write (iout,*) escloci
4424         else
4425           call enesc(x,escloci,dersc,ddummy,.false.)
4426         endif
4427
4428         escloc=escloc+escloci
4429 c        write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
4430
4431         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
4432      &   wscloc*dersc(1)
4433         gloc(ialph(i,1),icg)=wscloc*dersc(2)
4434         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
4435     1   continue
4436       enddo
4437       return
4438       end
4439 C---------------------------------------------------------------------------
4440       subroutine enesc(x,escloci,dersc,ddersc,mixed)
4441       implicit real*8 (a-h,o-z)
4442       include 'DIMENSIONS'
4443       include 'COMMON.GEO'
4444       include 'COMMON.LOCAL'
4445       include 'COMMON.IOUNITS'
4446       common /sccalc/ time11,time12,time112,theti,it,nlobit
4447       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
4448       double precision contr(maxlob,-1:1)
4449       logical mixed
4450 c       write (iout,*) 'it=',it,' nlobit=',nlobit
4451         escloc_i=0.0D0
4452         do j=1,3
4453           dersc(j)=0.0D0
4454           if (mixed) ddersc(j)=0.0d0
4455         enddo
4456         x3=x(3)
4457
4458 C Because of periodicity of the dependence of the SC energy in omega we have
4459 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
4460 C To avoid underflows, first compute & store the exponents.
4461
4462         do iii=-1,1
4463
4464           x(3)=x3+iii*dwapi
4465  
4466           do j=1,nlobit
4467             do k=1,3
4468               z(k)=x(k)-censc(k,j,it)
4469             enddo
4470             do k=1,3
4471               Axk=0.0D0
4472               do l=1,3
4473                 Axk=Axk+gaussc(l,k,j,it)*z(l)
4474               enddo
4475               Ax(k,j,iii)=Axk
4476             enddo 
4477             expfac=0.0D0 
4478             do k=1,3
4479               expfac=expfac+Ax(k,j,iii)*z(k)
4480             enddo
4481             contr(j,iii)=expfac
4482           enddo ! j
4483
4484         enddo ! iii
4485
4486         x(3)=x3
4487 C As in the case of ebend, we want to avoid underflows in exponentiation and
4488 C subsequent NaNs and INFs in energy calculation.
4489 C Find the largest exponent
4490         emin=contr(1,-1)
4491         do iii=-1,1
4492           do j=1,nlobit
4493             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
4494           enddo 
4495         enddo
4496         emin=0.5D0*emin
4497 cd      print *,'it=',it,' emin=',emin
4498
4499 C Compute the contribution to SC energy and derivatives
4500         do iii=-1,1
4501
4502           do j=1,nlobit
4503             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
4504 cd          print *,'j=',j,' expfac=',expfac
4505             escloc_i=escloc_i+expfac
4506             do k=1,3
4507               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
4508             enddo
4509             if (mixed) then
4510               do k=1,3,2
4511                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
4512      &            +gaussc(k,2,j,it))*expfac
4513               enddo
4514             endif
4515           enddo
4516
4517         enddo ! iii
4518
4519         dersc(1)=dersc(1)/cos(theti)**2
4520         ddersc(1)=ddersc(1)/cos(theti)**2
4521         ddersc(3)=ddersc(3)
4522
4523         escloci=-(dlog(escloc_i)-emin)
4524         do j=1,3
4525           dersc(j)=dersc(j)/escloc_i
4526         enddo
4527         if (mixed) then
4528           do j=1,3,2
4529             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
4530           enddo
4531         endif
4532       return
4533       end
4534 C------------------------------------------------------------------------------
4535       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
4536       implicit real*8 (a-h,o-z)
4537       include 'DIMENSIONS'
4538       include 'COMMON.GEO'
4539       include 'COMMON.LOCAL'
4540       include 'COMMON.IOUNITS'
4541       common /sccalc/ time11,time12,time112,theti,it,nlobit
4542       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
4543       double precision contr(maxlob)
4544       logical mixed
4545
4546       escloc_i=0.0D0
4547
4548       do j=1,3
4549         dersc(j)=0.0D0
4550       enddo
4551
4552       do j=1,nlobit
4553         do k=1,2
4554           z(k)=x(k)-censc(k,j,it)
4555         enddo
4556         z(3)=dwapi
4557         do k=1,3
4558           Axk=0.0D0
4559           do l=1,3
4560             Axk=Axk+gaussc(l,k,j,it)*z(l)
4561           enddo
4562           Ax(k,j)=Axk
4563         enddo 
4564         expfac=0.0D0 
4565         do k=1,3
4566           expfac=expfac+Ax(k,j)*z(k)
4567         enddo
4568         contr(j)=expfac
4569       enddo ! j
4570
4571 C As in the case of ebend, we want to avoid underflows in exponentiation and
4572 C subsequent NaNs and INFs in energy calculation.
4573 C Find the largest exponent
4574       emin=contr(1)
4575       do j=1,nlobit
4576         if (emin.gt.contr(j)) emin=contr(j)
4577       enddo 
4578       emin=0.5D0*emin
4579  
4580 C Compute the contribution to SC energy and derivatives
4581
4582       dersc12=0.0d0
4583       do j=1,nlobit
4584         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
4585         escloc_i=escloc_i+expfac
4586         do k=1,2
4587           dersc(k)=dersc(k)+Ax(k,j)*expfac
4588         enddo
4589         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
4590      &            +gaussc(1,2,j,it))*expfac
4591         dersc(3)=0.0d0
4592       enddo
4593
4594       dersc(1)=dersc(1)/cos(theti)**2
4595       dersc12=dersc12/cos(theti)**2
4596       escloci=-(dlog(escloc_i)-emin)
4597       do j=1,2
4598         dersc(j)=dersc(j)/escloc_i
4599       enddo
4600       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
4601       return
4602       end
4603 #else
4604 c----------------------------------------------------------------------------------
4605       subroutine esc(escloc)
4606 C Calculate the local energy of a side chain and its derivatives in the
4607 C corresponding virtual-bond valence angles THETA and the spherical angles 
4608 C ALPHA and OMEGA derived from AM1 all-atom calculations.
4609 C added by Urszula Kozlowska. 07/11/2007
4610 C
4611       implicit real*8 (a-h,o-z)
4612       include 'DIMENSIONS'
4613       include 'DIMENSIONS.ZSCOPT'
4614       include 'DIMENSIONS.FREE'
4615       include 'COMMON.GEO'
4616       include 'COMMON.LOCAL'
4617       include 'COMMON.VAR'
4618       include 'COMMON.SCROT'
4619       include 'COMMON.INTERACT'
4620       include 'COMMON.DERIV'
4621       include 'COMMON.CHAIN'
4622       include 'COMMON.IOUNITS'
4623       include 'COMMON.NAMES'
4624       include 'COMMON.FFIELD'
4625       include 'COMMON.CONTROL'
4626       include 'COMMON.VECTORS'
4627       double precision x_prime(3),y_prime(3),z_prime(3)
4628      &    , sumene,dsc_i,dp2_i,x(65),
4629      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
4630      &    de_dxx,de_dyy,de_dzz,de_dt
4631       double precision s1_t,s1_6_t,s2_t,s2_6_t
4632       double precision 
4633      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
4634      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
4635      & dt_dCi(3),dt_dCi1(3)
4636       common /sccalc/ time11,time12,time112,theti,it,nlobit
4637       delta=0.02d0*pi
4638       escloc=0.0D0
4639       do i=loc_start,loc_end
4640         costtab(i+1) =dcos(theta(i+1))
4641         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
4642         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
4643         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
4644         cosfac2=0.5d0/(1.0d0+costtab(i+1))
4645         cosfac=dsqrt(cosfac2)
4646         sinfac2=0.5d0/(1.0d0-costtab(i+1))
4647         sinfac=dsqrt(sinfac2)
4648         it=itype(i)
4649         if (it.eq.10) goto 1
4650 c
4651 C  Compute the axes of tghe local cartesian coordinates system; store in
4652 c   x_prime, y_prime and z_prime 
4653 c
4654         do j=1,3
4655           x_prime(j) = 0.00
4656           y_prime(j) = 0.00
4657           z_prime(j) = 0.00
4658         enddo
4659 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
4660 C     &   dc_norm(3,i+nres)
4661         do j = 1,3
4662           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
4663           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
4664         enddo
4665         do j = 1,3
4666           z_prime(j) = -uz(j,i-1)
4667         enddo     
4668 c       write (2,*) "i",i
4669 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
4670 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
4671 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
4672 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
4673 c      & " xy",scalar(x_prime(1),y_prime(1)),
4674 c      & " xz",scalar(x_prime(1),z_prime(1)),
4675 c      & " yy",scalar(y_prime(1),y_prime(1)),
4676 c      & " yz",scalar(y_prime(1),z_prime(1)),
4677 c      & " zz",scalar(z_prime(1),z_prime(1))
4678 c
4679 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
4680 C to local coordinate system. Store in xx, yy, zz.
4681 c
4682         xx=0.0d0
4683         yy=0.0d0
4684         zz=0.0d0
4685         do j = 1,3
4686           xx = xx + x_prime(j)*dc_norm(j,i+nres)
4687           yy = yy + y_prime(j)*dc_norm(j,i+nres)
4688           zz = zz + z_prime(j)*dc_norm(j,i+nres)
4689         enddo
4690
4691         xxtab(i)=xx
4692         yytab(i)=yy
4693         zztab(i)=zz
4694 C
4695 C Compute the energy of the ith side cbain
4696 C
4697 c        write (2,*) "xx",xx," yy",yy," zz",zz
4698         it=itype(i)
4699         do j = 1,65
4700           x(j) = sc_parmin(j,it) 
4701         enddo
4702 #ifdef CHECK_COORD
4703 Cc diagnostics - remove later
4704         xx1 = dcos(alph(2))
4705         yy1 = dsin(alph(2))*dcos(omeg(2))
4706         zz1 = -dsin(alph(2))*dsin(omeg(2))
4707         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
4708      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
4709      &    xx1,yy1,zz1
4710 C,"  --- ", xx_w,yy_w,zz_w
4711 c end diagnostics
4712 #endif
4713         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
4714      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
4715      &   + x(10)*yy*zz
4716         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
4717      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
4718      & + x(20)*yy*zz
4719         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
4720      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
4721      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
4722      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
4723      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
4724      &  +x(40)*xx*yy*zz
4725         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
4726      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
4727      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
4728      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
4729      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
4730      &  +x(60)*xx*yy*zz
4731         dsc_i   = 0.743d0+x(61)
4732         dp2_i   = 1.9d0+x(62)
4733         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
4734      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
4735         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
4736      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
4737         s1=(1+x(63))/(0.1d0 + dscp1)
4738         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
4739         s2=(1+x(65))/(0.1d0 + dscp2)
4740         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
4741         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
4742      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
4743 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
4744 c     &   sumene4,
4745 c     &   dscp1,dscp2,sumene
4746 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4747         escloc = escloc + sumene
4748 c        write (2,*) "escloc",escloc
4749         if (.not. calc_grad) goto 1
4750
4751 #ifdef DEBUG2
4752 C
4753 C This section to check the numerical derivatives of the energy of ith side
4754 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
4755 C #define DEBUG in the code to turn it on.
4756 C
4757         write (2,*) "sumene               =",sumene
4758         aincr=1.0d-7
4759         xxsave=xx
4760         xx=xx+aincr
4761         write (2,*) xx,yy,zz
4762         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4763         de_dxx_num=(sumenep-sumene)/aincr
4764         xx=xxsave
4765         write (2,*) "xx+ sumene from enesc=",sumenep
4766         yysave=yy
4767         yy=yy+aincr
4768         write (2,*) xx,yy,zz
4769         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4770         de_dyy_num=(sumenep-sumene)/aincr
4771         yy=yysave
4772         write (2,*) "yy+ sumene from enesc=",sumenep
4773         zzsave=zz
4774         zz=zz+aincr
4775         write (2,*) xx,yy,zz
4776         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4777         de_dzz_num=(sumenep-sumene)/aincr
4778         zz=zzsave
4779         write (2,*) "zz+ sumene from enesc=",sumenep
4780         costsave=cost2tab(i+1)
4781         sintsave=sint2tab(i+1)
4782         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
4783         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
4784         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4785         de_dt_num=(sumenep-sumene)/aincr
4786         write (2,*) " t+ sumene from enesc=",sumenep
4787         cost2tab(i+1)=costsave
4788         sint2tab(i+1)=sintsave
4789 C End of diagnostics section.
4790 #endif
4791 C        
4792 C Compute the gradient of esc
4793 C
4794         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
4795         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
4796         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
4797         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
4798         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
4799         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
4800         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
4801         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
4802         pom1=(sumene3*sint2tab(i+1)+sumene1)
4803      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
4804         pom2=(sumene4*cost2tab(i+1)+sumene2)
4805      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
4806         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
4807         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
4808      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
4809      &  +x(40)*yy*zz
4810         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
4811         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
4812      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
4813      &  +x(60)*yy*zz
4814         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
4815      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
4816      &        +(pom1+pom2)*pom_dx
4817 #ifdef DEBUG
4818         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
4819 #endif
4820 C
4821         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
4822         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
4823      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
4824      &  +x(40)*xx*zz
4825         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
4826         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
4827      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
4828      &  +x(59)*zz**2 +x(60)*xx*zz
4829         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
4830      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
4831      &        +(pom1-pom2)*pom_dy
4832 #ifdef DEBUG
4833         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
4834 #endif
4835 C
4836         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
4837      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
4838      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
4839      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
4840      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
4841      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
4842      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
4843      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
4844 #ifdef DEBUG
4845         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
4846 #endif
4847 C
4848         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
4849      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
4850      &  +pom1*pom_dt1+pom2*pom_dt2
4851 #ifdef DEBUG
4852         write(2,*), "de_dt = ", de_dt,de_dt_num
4853 #endif
4854
4855 C
4856        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
4857        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
4858        cosfac2xx=cosfac2*xx
4859        sinfac2yy=sinfac2*yy
4860        do k = 1,3
4861          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
4862      &      vbld_inv(i+1)
4863          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
4864      &      vbld_inv(i)
4865          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
4866          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
4867 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
4868 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
4869 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
4870 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
4871          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
4872          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
4873          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
4874          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
4875          dZZ_Ci1(k)=0.0d0
4876          dZZ_Ci(k)=0.0d0
4877          do j=1,3
4878            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
4879            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
4880          enddo
4881           
4882          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
4883          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
4884          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
4885 c
4886          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
4887          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
4888        enddo
4889
4890        do k=1,3
4891          dXX_Ctab(k,i)=dXX_Ci(k)
4892          dXX_C1tab(k,i)=dXX_Ci1(k)
4893          dYY_Ctab(k,i)=dYY_Ci(k)
4894          dYY_C1tab(k,i)=dYY_Ci1(k)
4895          dZZ_Ctab(k,i)=dZZ_Ci(k)
4896          dZZ_C1tab(k,i)=dZZ_Ci1(k)
4897          dXX_XYZtab(k,i)=dXX_XYZ(k)
4898          dYY_XYZtab(k,i)=dYY_XYZ(k)
4899          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
4900        enddo
4901
4902        do k = 1,3
4903 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
4904 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
4905 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
4906 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
4907 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
4908 c     &    dt_dci(k)
4909 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
4910 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
4911          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
4912      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
4913          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
4914      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
4915          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
4916      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
4917        enddo
4918 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
4919 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
4920
4921 C to check gradient call subroutine check_grad
4922
4923     1 continue
4924       enddo
4925       return
4926       end
4927 #endif
4928 c------------------------------------------------------------------------------
4929       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
4930 C
4931 C This procedure calculates two-body contact function g(rij) and its derivative:
4932 C
4933 C           eps0ij                                     !       x < -1
4934 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
4935 C            0                                         !       x > 1
4936 C
4937 C where x=(rij-r0ij)/delta
4938 C
4939 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
4940 C
4941       implicit none
4942       double precision rij,r0ij,eps0ij,fcont,fprimcont
4943       double precision x,x2,x4,delta
4944 c     delta=0.02D0*r0ij
4945 c      delta=0.2D0*r0ij
4946       x=(rij-r0ij)/delta
4947       if (x.lt.-1.0D0) then
4948         fcont=eps0ij
4949         fprimcont=0.0D0
4950       else if (x.le.1.0D0) then  
4951         x2=x*x
4952         x4=x2*x2
4953         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
4954         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
4955       else
4956         fcont=0.0D0
4957         fprimcont=0.0D0
4958       endif
4959       return
4960       end
4961 c------------------------------------------------------------------------------
4962       subroutine splinthet(theti,delta,ss,ssder)
4963       implicit real*8 (a-h,o-z)
4964       include 'DIMENSIONS'
4965       include 'DIMENSIONS.ZSCOPT'
4966       include 'COMMON.VAR'
4967       include 'COMMON.GEO'
4968       thetup=pi-delta
4969       thetlow=delta
4970       if (theti.gt.pipol) then
4971         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
4972       else
4973         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
4974         ssder=-ssder
4975       endif
4976       return
4977       end
4978 c------------------------------------------------------------------------------
4979       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
4980       implicit none
4981       double precision x,x0,delta,f0,f1,fprim0,f,fprim
4982       double precision ksi,ksi2,ksi3,a1,a2,a3
4983       a1=fprim0*delta/(f1-f0)
4984       a2=3.0d0-2.0d0*a1
4985       a3=a1-2.0d0
4986       ksi=(x-x0)/delta
4987       ksi2=ksi*ksi
4988       ksi3=ksi2*ksi  
4989       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
4990       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
4991       return
4992       end
4993 c------------------------------------------------------------------------------
4994       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
4995       implicit none
4996       double precision x,x0,delta,f0x,f1x,fprim0x,fx
4997       double precision ksi,ksi2,ksi3,a1,a2,a3
4998       ksi=(x-x0)/delta  
4999       ksi2=ksi*ksi
5000       ksi3=ksi2*ksi
5001       a1=fprim0x*delta
5002       a2=3*(f1x-f0x)-2*fprim0x*delta
5003       a3=fprim0x*delta-2*(f1x-f0x)
5004       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5005       return
5006       end
5007 C-----------------------------------------------------------------------------
5008 #ifdef CRYST_TOR
5009 C-----------------------------------------------------------------------------
5010       subroutine etor(etors,edihcnstr,fact)
5011       implicit real*8 (a-h,o-z)
5012       include 'DIMENSIONS'
5013       include 'DIMENSIONS.ZSCOPT'
5014       include 'COMMON.VAR'
5015       include 'COMMON.GEO'
5016       include 'COMMON.LOCAL'
5017       include 'COMMON.TORSION'
5018       include 'COMMON.INTERACT'
5019       include 'COMMON.DERIV'
5020       include 'COMMON.CHAIN'
5021       include 'COMMON.NAMES'
5022       include 'COMMON.IOUNITS'
5023       include 'COMMON.FFIELD'
5024       include 'COMMON.TORCNSTR'
5025       logical lprn
5026 C Set lprn=.true. for debugging
5027       lprn=.false.
5028 c      lprn=.true.
5029       etors=0.0D0
5030       do i=iphi_start,iphi_end
5031         itori=itortyp(itype(i-2))
5032         itori1=itortyp(itype(i-1))
5033         phii=phi(i)
5034         gloci=0.0D0
5035 C Proline-Proline pair is a special case...
5036         if (itori.eq.3 .and. itori1.eq.3) then
5037           if (phii.gt.-dwapi3) then
5038             cosphi=dcos(3*phii)
5039             fac=1.0D0/(1.0D0-cosphi)
5040             etorsi=v1(1,3,3)*fac
5041             etorsi=etorsi+etorsi
5042             etors=etors+etorsi-v1(1,3,3)
5043             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5044           endif
5045           do j=1,3
5046             v1ij=v1(j+1,itori,itori1)
5047             v2ij=v2(j+1,itori,itori1)
5048             cosphi=dcos(j*phii)
5049             sinphi=dsin(j*phii)
5050             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5051             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5052           enddo
5053         else 
5054           do j=1,nterm_old
5055             v1ij=v1(j,itori,itori1)
5056             v2ij=v2(j,itori,itori1)
5057             cosphi=dcos(j*phii)
5058             sinphi=dsin(j*phii)
5059             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5060             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5061           enddo
5062         endif
5063         if (lprn)
5064      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5065      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5066      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5067         gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
5068 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5069       enddo
5070 ! 6/20/98 - dihedral angle constraints
5071       edihcnstr=0.0d0
5072       do i=1,ndih_constr
5073         itori=idih_constr(i)
5074         phii=phi(itori)
5075         difi=phii-phi0(i)
5076         if (difi.gt.drange(i)) then
5077           difi=difi-drange(i)
5078           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5079           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5080         else if (difi.lt.-drange(i)) then
5081           difi=difi+drange(i)
5082           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5083           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5084         endif
5085 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5086 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5087       enddo
5088 !      write (iout,*) 'edihcnstr',edihcnstr
5089       return
5090       end
5091 c------------------------------------------------------------------------------
5092 #else
5093       subroutine etor(etors,edihcnstr,fact)
5094       implicit real*8 (a-h,o-z)
5095       include 'DIMENSIONS'
5096       include 'DIMENSIONS.ZSCOPT'
5097       include 'COMMON.VAR'
5098       include 'COMMON.GEO'
5099       include 'COMMON.LOCAL'
5100       include 'COMMON.TORSION'
5101       include 'COMMON.INTERACT'
5102       include 'COMMON.DERIV'
5103       include 'COMMON.CHAIN'
5104       include 'COMMON.NAMES'
5105       include 'COMMON.IOUNITS'
5106       include 'COMMON.FFIELD'
5107       include 'COMMON.TORCNSTR'
5108       logical lprn
5109 C Set lprn=.true. for debugging
5110       lprn=.false.
5111 c      lprn=.true.
5112       etors=0.0D0
5113       do i=iphi_start,iphi_end
5114         if (itel(i-2).eq.0 .or. itel(i-1).eq.0) goto 1215
5115         itori=itortyp(itype(i-2))
5116         itori1=itortyp(itype(i-1))
5117         phii=phi(i)
5118         gloci=0.0D0
5119 C Regular cosine and sine terms
5120         do j=1,nterm(itori,itori1)
5121           v1ij=v1(j,itori,itori1)
5122           v2ij=v2(j,itori,itori1)
5123           cosphi=dcos(j*phii)
5124           sinphi=dsin(j*phii)
5125           etors=etors+v1ij*cosphi+v2ij*sinphi
5126           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5127         enddo
5128 C Lorentz terms
5129 C                         v1
5130 C  E = SUM ----------------------------------- - v1
5131 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5132 C
5133         cosphi=dcos(0.5d0*phii)
5134         sinphi=dsin(0.5d0*phii)
5135         do j=1,nlor(itori,itori1)
5136           vl1ij=vlor1(j,itori,itori1)
5137           vl2ij=vlor2(j,itori,itori1)
5138           vl3ij=vlor3(j,itori,itori1)
5139           pom=vl2ij*cosphi+vl3ij*sinphi
5140           pom1=1.0d0/(pom*pom+1.0d0)
5141           etors=etors+vl1ij*pom1
5142           pom=-pom*pom1*pom1
5143           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5144         enddo
5145 C Subtract the constant term
5146         etors=etors-v0(itori,itori1)
5147         if (lprn)
5148      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5149      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5150      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5151         gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
5152 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5153  1215   continue
5154       enddo
5155 ! 6/20/98 - dihedral angle constraints
5156       edihcnstr=0.0d0
5157       do i=1,ndih_constr
5158         itori=idih_constr(i)
5159         phii=phi(itori)
5160         difi=pinorm(phii-phi0(i))
5161         edihi=0.0d0
5162         if (difi.gt.drange(i)) then
5163           difi=difi-drange(i)
5164           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5165           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5166           edihi=0.25d0*ftors*difi**4
5167         else if (difi.lt.-drange(i)) then
5168           difi=difi+drange(i)
5169           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5170           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5171           edihi=0.25d0*ftors*difi**4
5172         else
5173           difi=0.0d0
5174         endif
5175 c        write (iout,'(2i5,4f10.5,e15.5)') i,itori,phii,phi0(i),difi,
5176 c     &    drange(i),edihi
5177 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5178 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5179       enddo
5180 !      write (iout,*) 'edihcnstr',edihcnstr
5181       return
5182       end
5183 c----------------------------------------------------------------------------
5184       subroutine etor_d(etors_d,fact2)
5185 C 6/23/01 Compute double torsional energy
5186       implicit real*8 (a-h,o-z)
5187       include 'DIMENSIONS'
5188       include 'DIMENSIONS.ZSCOPT'
5189       include 'COMMON.VAR'
5190       include 'COMMON.GEO'
5191       include 'COMMON.LOCAL'
5192       include 'COMMON.TORSION'
5193       include 'COMMON.INTERACT'
5194       include 'COMMON.DERIV'
5195       include 'COMMON.CHAIN'
5196       include 'COMMON.NAMES'
5197       include 'COMMON.IOUNITS'
5198       include 'COMMON.FFIELD'
5199       include 'COMMON.TORCNSTR'
5200       logical lprn
5201 C Set lprn=.true. for debugging
5202       lprn=.false.
5203 c     lprn=.true.
5204       etors_d=0.0D0
5205       do i=iphi_start,iphi_end-1
5206         if (itel(i-2).eq.0 .or. itel(i-1).eq.0 .or. itel(i).eq.0) 
5207      &     goto 1215
5208         itori=itortyp(itype(i-2))
5209         itori1=itortyp(itype(i-1))
5210         itori2=itortyp(itype(i))
5211         phii=phi(i)
5212         phii1=phi(i+1)
5213         gloci1=0.0D0
5214         gloci2=0.0D0
5215 C Regular cosine and sine terms
5216         do j=1,ntermd_1(itori,itori1,itori2)
5217           v1cij=v1c(1,j,itori,itori1,itori2)
5218           v1sij=v1s(1,j,itori,itori1,itori2)
5219           v2cij=v1c(2,j,itori,itori1,itori2)
5220           v2sij=v1s(2,j,itori,itori1,itori2)
5221           cosphi1=dcos(j*phii)
5222           sinphi1=dsin(j*phii)
5223           cosphi2=dcos(j*phii1)
5224           sinphi2=dsin(j*phii1)
5225           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5226      &     v2cij*cosphi2+v2sij*sinphi2
5227           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5228           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5229         enddo
5230         do k=2,ntermd_2(itori,itori1,itori2)
5231           do l=1,k-1
5232             v1cdij = v2c(k,l,itori,itori1,itori2)
5233             v2cdij = v2c(l,k,itori,itori1,itori2)
5234             v1sdij = v2s(k,l,itori,itori1,itori2)
5235             v2sdij = v2s(l,k,itori,itori1,itori2)
5236             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5237             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5238             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5239             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5240             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5241      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5242             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5243      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5244             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5245      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5246           enddo
5247         enddo
5248         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*fact2*gloci1
5249         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*fact2*gloci2
5250  1215   continue
5251       enddo
5252       return
5253       end
5254 #endif
5255 c------------------------------------------------------------------------------
5256       subroutine eback_sc_corr(esccor)
5257 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5258 c        conformational states; temporarily implemented as differences
5259 c        between UNRES torsional potentials (dependent on three types of
5260 c        residues) and the torsional potentials dependent on all 20 types
5261 c        of residues computed from AM1 energy surfaces of terminally-blocked
5262 c        amino-acid residues.
5263       implicit real*8 (a-h,o-z)
5264       include 'DIMENSIONS'
5265       include 'DIMENSIONS.ZSCOPT'
5266       include 'DIMENSIONS.FREE'
5267       include 'COMMON.VAR'
5268       include 'COMMON.GEO'
5269       include 'COMMON.LOCAL'
5270       include 'COMMON.TORSION'
5271       include 'COMMON.SCCOR'
5272       include 'COMMON.INTERACT'
5273       include 'COMMON.DERIV'
5274       include 'COMMON.CHAIN'
5275       include 'COMMON.NAMES'
5276       include 'COMMON.IOUNITS'
5277       include 'COMMON.FFIELD'
5278       include 'COMMON.CONTROL'
5279       logical lprn
5280 C Set lprn=.true. for debugging
5281       lprn=.false.
5282 c      lprn=.true.
5283 c      write (iout,*) "EBACK_SC_COR",itau_start,itau_end,nterm_sccor
5284       esccor=0.0D0
5285       do i=itau_start,itau_end
5286         esccor_ii=0.0D0
5287         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5288         isccori=isccortyp(itype(i-2))
5289         isccori1=isccortyp(itype(i-1))
5290         phii=phi(i)
5291 cccc  Added 9 May 2012
5292 cc Tauangle is torsional engle depending on the value of first digit 
5293 c(see comment below)
5294 cc Omicron is flat angle depending on the value of first digit 
5295 c(see comment below)
5296
5297
5298         do intertyp=1,3 !intertyp
5299 cc Added 09 May 2012 (Adasko)
5300 cc  Intertyp means interaction type of backbone mainchain correlation: 
5301 c   1 = SC...Ca...Ca...Ca
5302 c   2 = Ca...Ca...Ca...SC
5303 c   3 = SC...Ca...Ca...SCi
5304         gloci=0.0D0
5305         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5306      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
5307      &      (itype(i-1).eq.21)))
5308      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5309      &     .or.(itype(i-2).eq.21)))
5310      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5311      &      (itype(i-1).eq.21)))) cycle
5312         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
5313         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
5314      & cycle
5315         do j=1,nterm_sccor(isccori,isccori1)
5316           v1ij=v1sccor(j,intertyp,isccori,isccori1)
5317           v2ij=v2sccor(j,intertyp,isccori,isccori1)
5318           cosphi=dcos(j*tauangle(intertyp,i))
5319           sinphi=dsin(j*tauangle(intertyp,i))
5320           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5321 #ifdef DEBUG
5322           esccor_ii=esccor_ii+v1ij*cosphi+v2ij*sinphi
5323 #endif
5324           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5325         enddo
5326         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
5327 c       write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
5328 c     &gloc_sc(intertyp,i-3,icg)
5329         if (lprn)
5330      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5331      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5332      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
5333      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
5334         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
5335        enddo !intertyp
5336 #ifdef DEBUG
5337        write (iout,*) "i",i,(tauangle(j,i),j=1,3),esccor_ii
5338 #endif
5339       enddo
5340 c        do i=1,nres
5341 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
5342 c        enddo
5343       return
5344       end
5345 c------------------------------------------------------------------------------
5346       subroutine multibody(ecorr)
5347 C This subroutine calculates multi-body contributions to energy following
5348 C the idea of Skolnick et al. If side chains I and J make a contact and
5349 C at the same time side chains I+1 and J+1 make a contact, an extra 
5350 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
5351       implicit real*8 (a-h,o-z)
5352       include 'DIMENSIONS'
5353       include 'COMMON.IOUNITS'
5354       include 'COMMON.DERIV'
5355       include 'COMMON.INTERACT'
5356       include 'COMMON.CONTACTS'
5357       double precision gx(3),gx1(3)
5358       logical lprn
5359
5360 C Set lprn=.true. for debugging
5361       lprn=.false.
5362
5363       if (lprn) then
5364         write (iout,'(a)') 'Contact function values:'
5365         do i=nnt,nct-2
5366           write (iout,'(i2,20(1x,i2,f10.5))') 
5367      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
5368         enddo
5369       endif
5370       ecorr=0.0D0
5371       do i=nnt,nct
5372         do j=1,3
5373           gradcorr(j,i)=0.0D0
5374           gradxorr(j,i)=0.0D0
5375         enddo
5376       enddo
5377       do i=nnt,nct-2
5378
5379         DO ISHIFT = 3,4
5380
5381         i1=i+ishift
5382         num_conti=num_cont(i)
5383         num_conti1=num_cont(i1)
5384         do jj=1,num_conti
5385           j=jcont(jj,i)
5386           do kk=1,num_conti1
5387             j1=jcont(kk,i1)
5388             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
5389 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5390 cd   &                   ' ishift=',ishift
5391 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
5392 C The system gains extra energy.
5393               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
5394             endif   ! j1==j+-ishift
5395           enddo     ! kk  
5396         enddo       ! jj
5397
5398         ENDDO ! ISHIFT
5399
5400       enddo         ! i
5401       return
5402       end
5403 c------------------------------------------------------------------------------
5404       double precision function esccorr(i,j,k,l,jj,kk)
5405       implicit real*8 (a-h,o-z)
5406       include 'DIMENSIONS'
5407       include 'COMMON.IOUNITS'
5408       include 'COMMON.DERIV'
5409       include 'COMMON.INTERACT'
5410       include 'COMMON.CONTACTS'
5411       double precision gx(3),gx1(3)
5412       logical lprn
5413       lprn=.false.
5414       eij=facont(jj,i)
5415       ekl=facont(kk,k)
5416 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
5417 C Calculate the multi-body contribution to energy.
5418 C Calculate multi-body contributions to the gradient.
5419 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
5420 cd   & k,l,(gacont(m,kk,k),m=1,3)
5421       do m=1,3
5422         gx(m) =ekl*gacont(m,jj,i)
5423         gx1(m)=eij*gacont(m,kk,k)
5424         gradxorr(m,i)=gradxorr(m,i)-gx(m)
5425         gradxorr(m,j)=gradxorr(m,j)+gx(m)
5426         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
5427         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
5428       enddo
5429       do m=i,j-1
5430         do ll=1,3
5431           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
5432         enddo
5433       enddo
5434       do m=k,l-1
5435         do ll=1,3
5436           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
5437         enddo
5438       enddo 
5439       esccorr=-eij*ekl
5440       return
5441       end
5442 c------------------------------------------------------------------------------
5443 #ifdef MPL
5444       subroutine pack_buffer(dimen1,dimen2,atom,indx,buffer)
5445       implicit real*8 (a-h,o-z)
5446       include 'DIMENSIONS' 
5447       integer dimen1,dimen2,atom,indx
5448       double precision buffer(dimen1,dimen2)
5449       double precision zapas 
5450       common /contacts_hb/ zapas(3,20,maxres,7),
5451      &   facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres),
5452      &         num_cont_hb(maxres),jcont_hb(20,maxres)
5453       num_kont=num_cont_hb(atom)
5454       do i=1,num_kont
5455         do k=1,7
5456           do j=1,3
5457             buffer(i,indx+(k-1)*3+j)=zapas(j,i,atom,k)
5458           enddo ! j
5459         enddo ! k
5460         buffer(i,indx+22)=facont_hb(i,atom)
5461         buffer(i,indx+23)=ees0p(i,atom)
5462         buffer(i,indx+24)=ees0m(i,atom)
5463         buffer(i,indx+25)=dfloat(jcont_hb(i,atom))
5464       enddo ! i
5465       buffer(1,indx+26)=dfloat(num_kont)
5466       return
5467       end
5468 c------------------------------------------------------------------------------
5469       subroutine unpack_buffer(dimen1,dimen2,atom,indx,buffer)
5470       implicit real*8 (a-h,o-z)
5471       include 'DIMENSIONS' 
5472       integer dimen1,dimen2,atom,indx
5473       double precision buffer(dimen1,dimen2)
5474       double precision zapas 
5475       common /contacts_hb/ zapas(3,20,maxres,7),
5476      &         facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres),
5477      &         num_cont_hb(maxres),jcont_hb(20,maxres)
5478       num_kont=buffer(1,indx+26)
5479       num_kont_old=num_cont_hb(atom)
5480       num_cont_hb(atom)=num_kont+num_kont_old
5481       do i=1,num_kont
5482         ii=i+num_kont_old
5483         do k=1,7    
5484           do j=1,3
5485             zapas(j,ii,atom,k)=buffer(i,indx+(k-1)*3+j)
5486           enddo ! j 
5487         enddo ! k 
5488         facont_hb(ii,atom)=buffer(i,indx+22)
5489         ees0p(ii,atom)=buffer(i,indx+23)
5490         ees0m(ii,atom)=buffer(i,indx+24)
5491         jcont_hb(ii,atom)=buffer(i,indx+25)
5492       enddo ! i
5493       return
5494       end
5495 c------------------------------------------------------------------------------
5496 #endif
5497       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
5498 C This subroutine calculates multi-body contributions to hydrogen-bonding 
5499       implicit real*8 (a-h,o-z)
5500       include 'DIMENSIONS'
5501       include 'DIMENSIONS.ZSCOPT'
5502       include 'COMMON.IOUNITS'
5503 #ifdef MPL
5504       include 'COMMON.INFO'
5505 #endif
5506       include 'COMMON.FFIELD'
5507       include 'COMMON.DERIV'
5508       include 'COMMON.INTERACT'
5509       include 'COMMON.CONTACTS'
5510 #ifdef MPL
5511       parameter (max_cont=maxconts)
5512       parameter (max_dim=2*(8*3+2))
5513       parameter (msglen1=max_cont*max_dim*4)
5514       parameter (msglen2=2*msglen1)
5515       integer source,CorrelType,CorrelID,Error
5516       double precision buffer(max_cont,max_dim)
5517 #endif
5518       double precision gx(3),gx1(3)
5519       logical lprn,ldone
5520
5521 C Set lprn=.true. for debugging
5522       lprn=.false.
5523 #ifdef MPL
5524       n_corr=0
5525       n_corr1=0
5526       if (fgProcs.le.1) goto 30
5527       if (lprn) then
5528         write (iout,'(a)') 'Contact function values:'
5529         do i=nnt,nct-2
5530           write (iout,'(2i3,50(1x,i2,f5.2))') 
5531      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5532      &    j=1,num_cont_hb(i))
5533         enddo
5534       endif
5535 C Caution! Following code assumes that electrostatic interactions concerning
5536 C a given atom are split among at most two processors!
5537       CorrelType=477
5538       CorrelID=MyID+1
5539       ldone=.false.
5540       do i=1,max_cont
5541         do j=1,max_dim
5542           buffer(i,j)=0.0D0
5543         enddo
5544       enddo
5545       mm=mod(MyRank,2)
5546 cd    write (iout,*) 'MyRank',MyRank,' mm',mm
5547       if (mm) 20,20,10 
5548    10 continue
5549 cd    write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone
5550       if (MyRank.gt.0) then
5551 C Send correlation contributions to the preceding processor
5552         msglen=msglen1
5553         nn=num_cont_hb(iatel_s)
5554         call pack_buffer(max_cont,max_dim,iatel_s,0,buffer)
5555 cd      write (iout,*) 'The BUFFER array:'
5556 cd      do i=1,nn
5557 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26)
5558 cd      enddo
5559         if (ielstart(iatel_s).gt.iatel_s+ispp) then
5560           msglen=msglen2
5561             call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer)
5562 C Clear the contacts of the atom passed to the neighboring processor
5563         nn=num_cont_hb(iatel_s+1)
5564 cd      do i=1,nn
5565 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26)
5566 cd      enddo
5567             num_cont_hb(iatel_s)=0
5568         endif 
5569 cd      write (iout,*) 'Processor ',MyID,MyRank,
5570 cd   & ' is sending correlation contribution to processor',MyID-1,
5571 cd   & ' msglen=',msglen
5572 cd      write (*,*) 'Processor ',MyID,MyRank,
5573 cd   & ' is sending correlation contribution to processor',MyID-1,
5574 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5575         call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID)
5576 cd      write (iout,*) 'Processor ',MyID,
5577 cd   & ' has sent correlation contribution to processor',MyID-1,
5578 cd   & ' msglen=',msglen,' CorrelID=',CorrelID
5579 cd      write (*,*) 'Processor ',MyID,
5580 cd   & ' has sent correlation contribution to processor',MyID-1,
5581 cd   & ' msglen=',msglen,' CorrelID=',CorrelID
5582         msglen=msglen1
5583       endif ! (MyRank.gt.0)
5584       if (ldone) goto 30
5585       ldone=.true.
5586    20 continue
5587 cd    write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone
5588       if (MyRank.lt.fgProcs-1) then
5589 C Receive correlation contributions from the next processor
5590         msglen=msglen1
5591         if (ielend(iatel_e).lt.nct-1) msglen=msglen2
5592 cd      write (iout,*) 'Processor',MyID,
5593 cd   & ' is receiving correlation contribution from processor',MyID+1,
5594 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5595 cd      write (*,*) 'Processor',MyID,
5596 cd   & ' is receiving correlation contribution from processor',MyID+1,
5597 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5598         nbytes=-1
5599         do while (nbytes.le.0)
5600           call mp_probe(MyID+1,CorrelType,nbytes)
5601         enddo
5602 cd      print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes
5603         call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes)
5604 cd      write (iout,*) 'Processor',MyID,
5605 cd   & ' has received correlation contribution from processor',MyID+1,
5606 cd   & ' msglen=',msglen,' nbytes=',nbytes
5607 cd      write (iout,*) 'The received BUFFER array:'
5608 cd      do i=1,max_cont
5609 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52)
5610 cd      enddo
5611         if (msglen.eq.msglen1) then
5612           call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer)
5613         else if (msglen.eq.msglen2)  then
5614           call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer) 
5615           call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer) 
5616         else
5617           write (iout,*) 
5618      & 'ERROR!!!! message length changed while processing correlations.'
5619           write (*,*) 
5620      & 'ERROR!!!! message length changed while processing correlations.'
5621           call mp_stopall(Error)
5622         endif ! msglen.eq.msglen1
5623       endif ! MyRank.lt.fgProcs-1
5624       if (ldone) goto 30
5625       ldone=.true.
5626       goto 10
5627    30 continue
5628 #endif
5629       if (lprn) then
5630         write (iout,'(a)') 'Contact function values:'
5631         do i=nnt,nct-2
5632           write (iout,'(2i3,50(1x,i2,f5.2))') 
5633      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5634      &    j=1,num_cont_hb(i))
5635         enddo
5636       endif
5637       ecorr=0.0D0
5638 C Remove the loop below after debugging !!!
5639       do i=nnt,nct
5640         do j=1,3
5641           gradcorr(j,i)=0.0D0
5642           gradxorr(j,i)=0.0D0
5643         enddo
5644       enddo
5645 C Calculate the local-electrostatic correlation terms
5646       do i=iatel_s,iatel_e+1
5647         i1=i+1
5648         num_conti=num_cont_hb(i)
5649         num_conti1=num_cont_hb(i+1)
5650         do jj=1,num_conti
5651           j=jcont_hb(jj,i)
5652           do kk=1,num_conti1
5653             j1=jcont_hb(kk,i1)
5654 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5655 c     &         ' jj=',jj,' kk=',kk
5656             if (j1.eq.j+1 .or. j1.eq.j-1) then
5657 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
5658 C The system gains extra energy.
5659               ecorr=ecorr+ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
5660 #ifdef DEBUG
5661               write (iout,*) "ecorr",i,j,i+1,j1,
5662      &               ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
5663 #endif
5664               n_corr=n_corr+1
5665             else if (j1.eq.j) then
5666 C Contacts I-J and I-(J+1) occur simultaneously. 
5667 C The system loses extra energy.
5668 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
5669             endif
5670           enddo ! kk
5671           do kk=1,num_conti
5672             j1=jcont_hb(kk,i)
5673 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5674 c    &         ' jj=',jj,' kk=',kk
5675             if (j1.eq.j+1) then
5676 C Contacts I-J and (I+1)-J occur simultaneously. 
5677 C The system loses extra energy.
5678 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
5679             endif ! j1==j+1
5680           enddo ! kk
5681         enddo ! jj
5682       enddo ! i
5683       return
5684       end
5685 c------------------------------------------------------------------------------
5686       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
5687      &  n_corr1)
5688 C This subroutine calculates multi-body contributions to hydrogen-bonding 
5689       implicit real*8 (a-h,o-z)
5690       include 'DIMENSIONS'
5691       include 'DIMENSIONS.ZSCOPT'
5692       include 'COMMON.IOUNITS'
5693 #ifdef MPL
5694       include 'COMMON.INFO'
5695 #endif
5696       include 'COMMON.FFIELD'
5697       include 'COMMON.DERIV'
5698       include 'COMMON.INTERACT'
5699       include 'COMMON.CONTACTS'
5700 #ifdef MPL
5701       parameter (max_cont=maxconts)
5702       parameter (max_dim=2*(8*3+2))
5703       parameter (msglen1=max_cont*max_dim*4)
5704       parameter (msglen2=2*msglen1)
5705       integer source,CorrelType,CorrelID,Error
5706       double precision buffer(max_cont,max_dim)
5707 #endif
5708       double precision gx(3),gx1(3)
5709       logical lprn,ldone
5710
5711 C Set lprn=.true. for debugging
5712       lprn=.false.
5713       eturn6=0.0d0
5714 #ifdef MPL
5715       n_corr=0
5716       n_corr1=0
5717       if (fgProcs.le.1) goto 30
5718       if (lprn) then
5719         write (iout,'(a)') 'Contact function values:'
5720         do i=nnt,nct-2
5721           write (iout,'(2i3,50(1x,i2,f5.2))') 
5722      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5723      &    j=1,num_cont_hb(i))
5724         enddo
5725       endif
5726 C Caution! Following code assumes that electrostatic interactions concerning
5727 C a given atom are split among at most two processors!
5728       CorrelType=477
5729       CorrelID=MyID+1
5730       ldone=.false.
5731       do i=1,max_cont
5732         do j=1,max_dim
5733           buffer(i,j)=0.0D0
5734         enddo
5735       enddo
5736       mm=mod(MyRank,2)
5737 cd    write (iout,*) 'MyRank',MyRank,' mm',mm
5738       if (mm) 20,20,10 
5739    10 continue
5740 cd    write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone
5741       if (MyRank.gt.0) then
5742 C Send correlation contributions to the preceding processor
5743         msglen=msglen1
5744         nn=num_cont_hb(iatel_s)
5745         call pack_buffer(max_cont,max_dim,iatel_s,0,buffer)
5746 cd      write (iout,*) 'The BUFFER array:'
5747 cd      do i=1,nn
5748 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26)
5749 cd      enddo
5750         if (ielstart(iatel_s).gt.iatel_s+ispp) then
5751           msglen=msglen2
5752             call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer)
5753 C Clear the contacts of the atom passed to the neighboring processor
5754         nn=num_cont_hb(iatel_s+1)
5755 cd      do i=1,nn
5756 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26)
5757 cd      enddo
5758             num_cont_hb(iatel_s)=0
5759         endif 
5760 cd      write (iout,*) 'Processor ',MyID,MyRank,
5761 cd   & ' is sending correlation contribution to processor',MyID-1,
5762 cd   & ' msglen=',msglen
5763 cd      write (*,*) 'Processor ',MyID,MyRank,
5764 cd   & ' is sending correlation contribution to processor',MyID-1,
5765 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5766         call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID)
5767 cd      write (iout,*) 'Processor ',MyID,
5768 cd   & ' has sent correlation contribution to processor',MyID-1,
5769 cd   & ' msglen=',msglen,' CorrelID=',CorrelID
5770 cd      write (*,*) 'Processor ',MyID,
5771 cd   & ' has sent correlation contribution to processor',MyID-1,
5772 cd   & ' msglen=',msglen,' CorrelID=',CorrelID
5773         msglen=msglen1
5774       endif ! (MyRank.gt.0)
5775       if (ldone) goto 30
5776       ldone=.true.
5777    20 continue
5778 cd    write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone
5779       if (MyRank.lt.fgProcs-1) then
5780 C Receive correlation contributions from the next processor
5781         msglen=msglen1
5782         if (ielend(iatel_e).lt.nct-1) msglen=msglen2
5783 cd      write (iout,*) 'Processor',MyID,
5784 cd   & ' is receiving correlation contribution from processor',MyID+1,
5785 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5786 cd      write (*,*) 'Processor',MyID,
5787 cd   & ' is receiving correlation contribution from processor',MyID+1,
5788 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5789         nbytes=-1
5790         do while (nbytes.le.0)
5791           call mp_probe(MyID+1,CorrelType,nbytes)
5792         enddo
5793 cd      print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes
5794         call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes)
5795 cd      write (iout,*) 'Processor',MyID,
5796 cd   & ' has received correlation contribution from processor',MyID+1,
5797 cd   & ' msglen=',msglen,' nbytes=',nbytes
5798 cd      write (iout,*) 'The received BUFFER array:'
5799 cd      do i=1,max_cont
5800 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52)
5801 cd      enddo
5802         if (msglen.eq.msglen1) then
5803           call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer)
5804         else if (msglen.eq.msglen2)  then
5805           call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer) 
5806           call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer) 
5807         else
5808           write (iout,*) 
5809      & 'ERROR!!!! message length changed while processing correlations.'
5810           write (*,*) 
5811      & 'ERROR!!!! message length changed while processing correlations.'
5812           call mp_stopall(Error)
5813         endif ! msglen.eq.msglen1
5814       endif ! MyRank.lt.fgProcs-1
5815       if (ldone) goto 30
5816       ldone=.true.
5817       goto 10
5818    30 continue
5819 #endif
5820       if (lprn) then
5821         write (iout,'(a)') 'Contact function values:'
5822         do i=nnt,nct-2
5823           write (iout,'(2i3,50(1x,i2,f5.2))') 
5824      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5825      &    j=1,num_cont_hb(i))
5826         enddo
5827       endif
5828       ecorr=0.0D0
5829       ecorr5=0.0d0
5830       ecorr6=0.0d0
5831 C Remove the loop below after debugging !!!
5832       do i=nnt,nct
5833         do j=1,3
5834           gradcorr(j,i)=0.0D0
5835           gradxorr(j,i)=0.0D0
5836         enddo
5837       enddo
5838 C Calculate the dipole-dipole interaction energies
5839       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
5840       do i=iatel_s,iatel_e+1
5841         num_conti=num_cont_hb(i)
5842         do jj=1,num_conti
5843           j=jcont_hb(jj,i)
5844           call dipole(i,j,jj)
5845         enddo
5846       enddo
5847       endif
5848 C Calculate the local-electrostatic correlation terms
5849       do i=iatel_s,iatel_e+1
5850         i1=i+1
5851         num_conti=num_cont_hb(i)
5852         num_conti1=num_cont_hb(i+1)
5853         do jj=1,num_conti
5854           j=jcont_hb(jj,i)
5855           do kk=1,num_conti1
5856             j1=jcont_hb(kk,i1)
5857 c            write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5858 c     &         ' jj=',jj,' kk=',kk
5859             if (j1.eq.j+1 .or. j1.eq.j-1) then
5860 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
5861 C The system gains extra energy.
5862               n_corr=n_corr+1
5863               sqd1=dsqrt(d_cont(jj,i))
5864               sqd2=dsqrt(d_cont(kk,i1))
5865               sred_geom = sqd1*sqd2
5866               IF (sred_geom.lt.cutoff_corr) THEN
5867                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
5868      &            ekont,fprimcont)
5869 c               write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5870 c     &         ' jj=',jj,' kk=',kk
5871                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
5872                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
5873                 do l=1,3
5874                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
5875                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
5876                 enddo
5877                 n_corr1=n_corr1+1
5878 cd               write (iout,*) 'sred_geom=',sred_geom,
5879 cd     &          ' ekont=',ekont,' fprim=',fprimcont
5880                 call calc_eello(i,j,i+1,j1,jj,kk)
5881                 if (wcorr4.gt.0.0d0) 
5882      &            ecorr=ecorr+eello4(i,j,i+1,j1,jj,kk)
5883                 if (wcorr5.gt.0.0d0)
5884      &            ecorr5=ecorr5+eello5(i,j,i+1,j1,jj,kk)
5885 c                print *,"wcorr5",ecorr5
5886 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
5887 cd                write(2,*)'ijkl',i,j,i+1,j1 
5888                 if (wcorr6.gt.0.0d0 .and. (j.ne.i+4 .or. j1.ne.i+3
5889      &               .or. wturn6.eq.0.0d0))then
5890 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
5891                   ecorr6=ecorr6+eello6(i,j,i+1,j1,jj,kk)
5892 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
5893 cd     &            'ecorr6=',ecorr6
5894 cd                write (iout,'(4e15.5)') sred_geom,
5895 cd     &          dabs(eello4(i,j,i+1,j1,jj,kk)),
5896 cd     &          dabs(eello5(i,j,i+1,j1,jj,kk)),
5897 cd     &          dabs(eello6(i,j,i+1,j1,jj,kk))
5898                 else if (wturn6.gt.0.0d0
5899      &            .and. (j.eq.i+4 .and. j1.eq.i+3)) then
5900 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,j,i+1,j1
5901                   eturn6=eturn6+eello_turn6(i,jj,kk)
5902 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
5903                 endif
5904               ENDIF
5905 1111          continue
5906             else if (j1.eq.j) then
5907 C Contacts I-J and I-(J+1) occur simultaneously. 
5908 C The system loses extra energy.
5909 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
5910             endif
5911           enddo ! kk
5912           do kk=1,num_conti
5913             j1=jcont_hb(kk,i)
5914 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5915 c    &         ' jj=',jj,' kk=',kk
5916             if (j1.eq.j+1) then
5917 C Contacts I-J and (I+1)-J occur simultaneously. 
5918 C The system loses extra energy.
5919 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
5920             endif ! j1==j+1
5921           enddo ! kk
5922         enddo ! jj
5923       enddo ! i
5924       return
5925       end
5926 c------------------------------------------------------------------------------
5927       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
5928       implicit real*8 (a-h,o-z)
5929       include 'DIMENSIONS'
5930       include 'COMMON.IOUNITS'
5931       include 'COMMON.DERIV'
5932       include 'COMMON.INTERACT'
5933       include 'COMMON.CONTACTS'
5934       double precision gx(3),gx1(3)
5935       logical lprn
5936       lprn=.false.
5937       eij=facont_hb(jj,i)
5938       ekl=facont_hb(kk,k)
5939       ees0pij=ees0p(jj,i)
5940       ees0pkl=ees0p(kk,k)
5941       ees0mij=ees0m(jj,i)
5942       ees0mkl=ees0m(kk,k)
5943       ekont=eij*ekl
5944       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
5945 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
5946 C Following 4 lines for diagnostics.
5947 cd    ees0pkl=0.0D0
5948 cd    ees0pij=1.0D0
5949 cd    ees0mkl=0.0D0
5950 cd    ees0mij=1.0D0
5951 cd      write (iout,*)'Contacts have occurred for peptide groups',i,j,
5952 cd     &   ' and',k,l
5953 cd      write (iout,*)'Contacts have occurred for peptide groups',
5954 cd     &  i,j,' fcont:',eij,' eij',' eesij',ees0pij,ees0mij,' and ',k,l
5955 cd     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' ees=',ees
5956 C Calculate the multi-body contribution to energy.
5957       ecorr=ecorr+ekont*ees
5958       if (calc_grad) then
5959 C Calculate multi-body contributions to the gradient.
5960       do ll=1,3
5961         ghalf=0.5D0*ees*ekl*gacont_hbr(ll,jj,i)
5962         gradcorr(ll,i)=gradcorr(ll,i)+ghalf
5963      &  -ekont*(coeffp*ees0pkl*gacontp_hb1(ll,jj,i)+
5964      &  coeffm*ees0mkl*gacontm_hb1(ll,jj,i))
5965         gradcorr(ll,j)=gradcorr(ll,j)+ghalf
5966      &  -ekont*(coeffp*ees0pkl*gacontp_hb2(ll,jj,i)+
5967      &  coeffm*ees0mkl*gacontm_hb2(ll,jj,i))
5968         ghalf=0.5D0*ees*eij*gacont_hbr(ll,kk,k)
5969         gradcorr(ll,k)=gradcorr(ll,k)+ghalf
5970      &  -ekont*(coeffp*ees0pij*gacontp_hb1(ll,kk,k)+
5971      &  coeffm*ees0mij*gacontm_hb1(ll,kk,k))
5972         gradcorr(ll,l)=gradcorr(ll,l)+ghalf
5973      &  -ekont*(coeffp*ees0pij*gacontp_hb2(ll,kk,k)+
5974      &  coeffm*ees0mij*gacontm_hb2(ll,kk,k))
5975       enddo
5976       do m=i+1,j-1
5977         do ll=1,3
5978           gradcorr(ll,m)=gradcorr(ll,m)+
5979      &     ees*ekl*gacont_hbr(ll,jj,i)-
5980      &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
5981      &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
5982         enddo
5983       enddo
5984       do m=k+1,l-1
5985         do ll=1,3
5986           gradcorr(ll,m)=gradcorr(ll,m)+
5987      &     ees*eij*gacont_hbr(ll,kk,k)-
5988      &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
5989      &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
5990         enddo
5991       enddo 
5992       endif
5993       ehbcorr=ekont*ees
5994       return
5995       end
5996 C---------------------------------------------------------------------------
5997       subroutine dipole(i,j,jj)
5998       implicit real*8 (a-h,o-z)
5999       include 'DIMENSIONS'
6000       include 'DIMENSIONS.ZSCOPT'
6001       include 'COMMON.IOUNITS'
6002       include 'COMMON.CHAIN'
6003       include 'COMMON.FFIELD'
6004       include 'COMMON.DERIV'
6005       include 'COMMON.INTERACT'
6006       include 'COMMON.CONTACTS'
6007       include 'COMMON.TORSION'
6008       include 'COMMON.VAR'
6009       include 'COMMON.GEO'
6010       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
6011      &  auxmat(2,2)
6012       iti1 = itortyp(itype(i+1))
6013       if (j.lt.nres-1) then
6014         itj1 = itortyp(itype(j+1))
6015       else
6016         itj1=ntortyp+1
6017       endif
6018       do iii=1,2
6019         dipi(iii,1)=Ub2(iii,i)
6020         dipderi(iii)=Ub2der(iii,i)
6021         dipi(iii,2)=b1(iii,iti1)
6022         dipj(iii,1)=Ub2(iii,j)
6023         dipderj(iii)=Ub2der(iii,j)
6024         dipj(iii,2)=b1(iii,itj1)
6025       enddo
6026       kkk=0
6027       do iii=1,2
6028         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
6029         do jjj=1,2
6030           kkk=kkk+1
6031           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6032         enddo
6033       enddo
6034       if (.not.calc_grad) return
6035       do kkk=1,5
6036         do lll=1,3
6037           mmm=0
6038           do iii=1,2
6039             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
6040      &        auxvec(1))
6041             do jjj=1,2
6042               mmm=mmm+1
6043               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6044             enddo
6045           enddo
6046         enddo
6047       enddo
6048       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
6049       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
6050       do iii=1,2
6051         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
6052       enddo
6053       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
6054       do iii=1,2
6055         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
6056       enddo
6057       return
6058       end
6059 C---------------------------------------------------------------------------
6060       subroutine calc_eello(i,j,k,l,jj,kk)
6061
6062 C This subroutine computes matrices and vectors needed to calculate 
6063 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
6064 C
6065       implicit real*8 (a-h,o-z)
6066       include 'DIMENSIONS'
6067       include 'DIMENSIONS.ZSCOPT'
6068       include 'COMMON.IOUNITS'
6069       include 'COMMON.CHAIN'
6070       include 'COMMON.DERIV'
6071       include 'COMMON.INTERACT'
6072       include 'COMMON.CONTACTS'
6073       include 'COMMON.TORSION'
6074       include 'COMMON.VAR'
6075       include 'COMMON.GEO'
6076       include 'COMMON.FFIELD'
6077       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
6078      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
6079       logical lprn
6080       common /kutas/ lprn
6081 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
6082 cd     & ' jj=',jj,' kk=',kk
6083 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
6084       do iii=1,2
6085         do jjj=1,2
6086           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
6087           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
6088         enddo
6089       enddo
6090       call transpose2(aa1(1,1),aa1t(1,1))
6091       call transpose2(aa2(1,1),aa2t(1,1))
6092       do kkk=1,5
6093         do lll=1,3
6094           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
6095      &      aa1tder(1,1,lll,kkk))
6096           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
6097      &      aa2tder(1,1,lll,kkk))
6098         enddo
6099       enddo 
6100       if (l.eq.j+1) then
6101 C parallel orientation of the two CA-CA-CA frames.
6102         if (i.gt.1) then
6103           iti=itortyp(itype(i))
6104         else
6105           iti=ntortyp+1
6106         endif
6107         itk1=itortyp(itype(k+1))
6108         itj=itortyp(itype(j))
6109         if (l.lt.nres-1) then
6110           itl1=itortyp(itype(l+1))
6111         else
6112           itl1=ntortyp+1
6113         endif
6114 C A1 kernel(j+1) A2T
6115 cd        do iii=1,2
6116 cd          write (iout,'(3f10.5,5x,3f10.5)') 
6117 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
6118 cd        enddo
6119         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6120      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
6121      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
6122 C Following matrices are needed only for 6-th order cumulants
6123         IF (wcorr6.gt.0.0d0) THEN
6124         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6125      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
6126      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
6127         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6128      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
6129      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
6130      &   ADtEAderx(1,1,1,1,1,1))
6131         lprn=.false.
6132         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6133      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
6134      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
6135      &   ADtEA1derx(1,1,1,1,1,1))
6136         ENDIF
6137 C End 6-th order cumulants
6138 cd        lprn=.false.
6139 cd        if (lprn) then
6140 cd        write (2,*) 'In calc_eello6'
6141 cd        do iii=1,2
6142 cd          write (2,*) 'iii=',iii
6143 cd          do kkk=1,5
6144 cd            write (2,*) 'kkk=',kkk
6145 cd            do jjj=1,2
6146 cd              write (2,'(3(2f10.5),5x)') 
6147 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
6148 cd            enddo
6149 cd          enddo
6150 cd        enddo
6151 cd        endif
6152         call transpose2(EUgder(1,1,k),auxmat(1,1))
6153         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
6154         call transpose2(EUg(1,1,k),auxmat(1,1))
6155         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
6156         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
6157         do iii=1,2
6158           do kkk=1,5
6159             do lll=1,3
6160               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
6161      &          EAEAderx(1,1,lll,kkk,iii,1))
6162             enddo
6163           enddo
6164         enddo
6165 C A1T kernel(i+1) A2
6166         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
6167      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
6168      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
6169 C Following matrices are needed only for 6-th order cumulants
6170         IF (wcorr6.gt.0.0d0) THEN
6171         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
6172      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
6173      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
6174         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
6175      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
6176      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
6177      &   ADtEAderx(1,1,1,1,1,2))
6178         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
6179      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
6180      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
6181      &   ADtEA1derx(1,1,1,1,1,2))
6182         ENDIF
6183 C End 6-th order cumulants
6184         call transpose2(EUgder(1,1,l),auxmat(1,1))
6185         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
6186         call transpose2(EUg(1,1,l),auxmat(1,1))
6187         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
6188         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
6189         do iii=1,2
6190           do kkk=1,5
6191             do lll=1,3
6192               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6193      &          EAEAderx(1,1,lll,kkk,iii,2))
6194             enddo
6195           enddo
6196         enddo
6197 C AEAb1 and AEAb2
6198 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
6199 C They are needed only when the fifth- or the sixth-order cumulants are
6200 C indluded.
6201         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
6202         call transpose2(AEA(1,1,1),auxmat(1,1))
6203         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
6204         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
6205         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
6206         call transpose2(AEAderg(1,1,1),auxmat(1,1))
6207         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
6208         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
6209         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
6210         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
6211         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
6212         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
6213         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
6214         call transpose2(AEA(1,1,2),auxmat(1,1))
6215         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
6216         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
6217         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
6218         call transpose2(AEAderg(1,1,2),auxmat(1,1))
6219         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
6220         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
6221         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
6222         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
6223         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
6224         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
6225         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
6226 C Calculate the Cartesian derivatives of the vectors.
6227         do iii=1,2
6228           do kkk=1,5
6229             do lll=1,3
6230               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
6231               call matvec2(auxmat(1,1),b1(1,iti),
6232      &          AEAb1derx(1,lll,kkk,iii,1,1))
6233               call matvec2(auxmat(1,1),Ub2(1,i),
6234      &          AEAb2derx(1,lll,kkk,iii,1,1))
6235               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
6236      &          AEAb1derx(1,lll,kkk,iii,2,1))
6237               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
6238      &          AEAb2derx(1,lll,kkk,iii,2,1))
6239               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
6240               call matvec2(auxmat(1,1),b1(1,itj),
6241      &          AEAb1derx(1,lll,kkk,iii,1,2))
6242               call matvec2(auxmat(1,1),Ub2(1,j),
6243      &          AEAb2derx(1,lll,kkk,iii,1,2))
6244               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
6245      &          AEAb1derx(1,lll,kkk,iii,2,2))
6246               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
6247      &          AEAb2derx(1,lll,kkk,iii,2,2))
6248             enddo
6249           enddo
6250         enddo
6251         ENDIF
6252 C End vectors
6253       else
6254 C Antiparallel orientation of the two CA-CA-CA frames.
6255         if (i.gt.1) then
6256           iti=itortyp(itype(i))
6257         else
6258           iti=ntortyp+1
6259         endif
6260         itk1=itortyp(itype(k+1))
6261         itl=itortyp(itype(l))
6262         itj=itortyp(itype(j))
6263         if (j.lt.nres-1) then
6264           itj1=itortyp(itype(j+1))
6265         else 
6266           itj1=ntortyp+1
6267         endif
6268 C A2 kernel(j-1)T A1T
6269         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6270      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
6271      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
6272 C Following matrices are needed only for 6-th order cumulants
6273         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
6274      &     j.eq.i+4 .and. l.eq.i+3)) THEN
6275         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6276      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
6277      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
6278         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6279      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
6280      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
6281      &   ADtEAderx(1,1,1,1,1,1))
6282         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
6283      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
6284      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
6285      &   ADtEA1derx(1,1,1,1,1,1))
6286         ENDIF
6287 C End 6-th order cumulants
6288         call transpose2(EUgder(1,1,k),auxmat(1,1))
6289         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
6290         call transpose2(EUg(1,1,k),auxmat(1,1))
6291         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
6292         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
6293         do iii=1,2
6294           do kkk=1,5
6295             do lll=1,3
6296               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
6297      &          EAEAderx(1,1,lll,kkk,iii,1))
6298             enddo
6299           enddo
6300         enddo
6301 C A2T kernel(i+1)T A1
6302         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
6303      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
6304      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
6305 C Following matrices are needed only for 6-th order cumulants
6306         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
6307      &     j.eq.i+4 .and. l.eq.i+3)) THEN
6308         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
6309      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
6310      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
6311         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
6312      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
6313      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
6314      &   ADtEAderx(1,1,1,1,1,2))
6315         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
6316      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
6317      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
6318      &   ADtEA1derx(1,1,1,1,1,2))
6319         ENDIF
6320 C End 6-th order cumulants
6321         call transpose2(EUgder(1,1,j),auxmat(1,1))
6322         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
6323         call transpose2(EUg(1,1,j),auxmat(1,1))
6324         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
6325         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
6326         do iii=1,2
6327           do kkk=1,5
6328             do lll=1,3
6329               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6330      &          EAEAderx(1,1,lll,kkk,iii,2))
6331             enddo
6332           enddo
6333         enddo
6334 C AEAb1 and AEAb2
6335 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
6336 C They are needed only when the fifth- or the sixth-order cumulants are
6337 C indluded.
6338         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
6339      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
6340         call transpose2(AEA(1,1,1),auxmat(1,1))
6341         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
6342         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
6343         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
6344         call transpose2(AEAderg(1,1,1),auxmat(1,1))
6345         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
6346         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
6347         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
6348         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
6349         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
6350         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
6351         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
6352         call transpose2(AEA(1,1,2),auxmat(1,1))
6353         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
6354         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
6355         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
6356         call transpose2(AEAderg(1,1,2),auxmat(1,1))
6357         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
6358         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
6359         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
6360         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
6361         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
6362         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
6363         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
6364 C Calculate the Cartesian derivatives of the vectors.
6365         do iii=1,2
6366           do kkk=1,5
6367             do lll=1,3
6368               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
6369               call matvec2(auxmat(1,1),b1(1,iti),
6370      &          AEAb1derx(1,lll,kkk,iii,1,1))
6371               call matvec2(auxmat(1,1),Ub2(1,i),
6372      &          AEAb2derx(1,lll,kkk,iii,1,1))
6373               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
6374      &          AEAb1derx(1,lll,kkk,iii,2,1))
6375               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
6376      &          AEAb2derx(1,lll,kkk,iii,2,1))
6377               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
6378               call matvec2(auxmat(1,1),b1(1,itl),
6379      &          AEAb1derx(1,lll,kkk,iii,1,2))
6380               call matvec2(auxmat(1,1),Ub2(1,l),
6381      &          AEAb2derx(1,lll,kkk,iii,1,2))
6382               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
6383      &          AEAb1derx(1,lll,kkk,iii,2,2))
6384               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
6385      &          AEAb2derx(1,lll,kkk,iii,2,2))
6386             enddo
6387           enddo
6388         enddo
6389         ENDIF
6390 C End vectors
6391       endif
6392       return
6393       end
6394 C---------------------------------------------------------------------------
6395       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
6396      &  KK,KKderg,AKA,AKAderg,AKAderx)
6397       implicit none
6398       integer nderg
6399       logical transp
6400       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
6401      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
6402      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
6403       integer iii,kkk,lll
6404       integer jjj,mmm
6405       logical lprn
6406       common /kutas/ lprn
6407       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
6408       do iii=1,nderg 
6409         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
6410      &    AKAderg(1,1,iii))
6411       enddo
6412 cd      if (lprn) write (2,*) 'In kernel'
6413       do kkk=1,5
6414 cd        if (lprn) write (2,*) 'kkk=',kkk
6415         do lll=1,3
6416           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
6417      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
6418 cd          if (lprn) then
6419 cd            write (2,*) 'lll=',lll
6420 cd            write (2,*) 'iii=1'
6421 cd            do jjj=1,2
6422 cd              write (2,'(3(2f10.5),5x)') 
6423 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
6424 cd            enddo
6425 cd          endif
6426           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
6427      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
6428 cd          if (lprn) then
6429 cd            write (2,*) 'lll=',lll
6430 cd            write (2,*) 'iii=2'
6431 cd            do jjj=1,2
6432 cd              write (2,'(3(2f10.5),5x)') 
6433 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
6434 cd            enddo
6435 cd          endif
6436         enddo
6437       enddo
6438       return
6439       end
6440 C---------------------------------------------------------------------------
6441       double precision function eello4(i,j,k,l,jj,kk)
6442       implicit real*8 (a-h,o-z)
6443       include 'DIMENSIONS'
6444       include 'DIMENSIONS.ZSCOPT'
6445       include 'COMMON.IOUNITS'
6446       include 'COMMON.CHAIN'
6447       include 'COMMON.DERIV'
6448       include 'COMMON.INTERACT'
6449       include 'COMMON.CONTACTS'
6450       include 'COMMON.TORSION'
6451       include 'COMMON.VAR'
6452       include 'COMMON.GEO'
6453       double precision pizda(2,2),ggg1(3),ggg2(3)
6454 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
6455 cd        eello4=0.0d0
6456 cd        return
6457 cd      endif
6458 cd      print *,'eello4:',i,j,k,l,jj,kk
6459 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
6460 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
6461 cold      eij=facont_hb(jj,i)
6462 cold      ekl=facont_hb(kk,k)
6463 cold      ekont=eij*ekl
6464       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
6465       if (calc_grad) then
6466 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
6467       gcorr_loc(k-1)=gcorr_loc(k-1)
6468      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
6469       if (l.eq.j+1) then
6470         gcorr_loc(l-1)=gcorr_loc(l-1)
6471      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
6472       else
6473         gcorr_loc(j-1)=gcorr_loc(j-1)
6474      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
6475       endif
6476       do iii=1,2
6477         do kkk=1,5
6478           do lll=1,3
6479             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
6480      &                        -EAEAderx(2,2,lll,kkk,iii,1)
6481 cd            derx(lll,kkk,iii)=0.0d0
6482           enddo
6483         enddo
6484       enddo
6485 cd      gcorr_loc(l-1)=0.0d0
6486 cd      gcorr_loc(j-1)=0.0d0
6487 cd      gcorr_loc(k-1)=0.0d0
6488 cd      eel4=1.0d0
6489 cd      write (iout,*)'Contacts have occurred for peptide groups',
6490 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
6491 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
6492       if (j.lt.nres-1) then
6493         j1=j+1
6494         j2=j-1
6495       else
6496         j1=j-1
6497         j2=j-2
6498       endif
6499       if (l.lt.nres-1) then
6500         l1=l+1
6501         l2=l-1
6502       else
6503         l1=l-1
6504         l2=l-2
6505       endif
6506       do ll=1,3
6507 cold        ghalf=0.5d0*eel4*ekl*gacont_hbr(ll,jj,i)
6508         ggg1(ll)=eel4*g_contij(ll,1)
6509         ggg2(ll)=eel4*g_contij(ll,2)
6510         ghalf=0.5d0*ggg1(ll)
6511 cd        ghalf=0.0d0
6512         gradcorr(ll,i)=gradcorr(ll,i)+ghalf+ekont*derx(ll,2,1)
6513         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
6514         gradcorr(ll,j)=gradcorr(ll,j)+ghalf+ekont*derx(ll,4,1)
6515         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
6516 cold        ghalf=0.5d0*eel4*eij*gacont_hbr(ll,kk,k)
6517         ghalf=0.5d0*ggg2(ll)
6518 cd        ghalf=0.0d0
6519         gradcorr(ll,k)=gradcorr(ll,k)+ghalf+ekont*derx(ll,2,2)
6520         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
6521         gradcorr(ll,l)=gradcorr(ll,l)+ghalf+ekont*derx(ll,4,2)
6522         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
6523       enddo
6524 cd      goto 1112
6525       do m=i+1,j-1
6526         do ll=1,3
6527 cold          gradcorr(ll,m)=gradcorr(ll,m)+eel4*ekl*gacont_hbr(ll,jj,i)
6528           gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
6529         enddo
6530       enddo
6531       do m=k+1,l-1
6532         do ll=1,3
6533 cold          gradcorr(ll,m)=gradcorr(ll,m)+eel4*eij*gacont_hbr(ll,kk,k)
6534           gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
6535         enddo
6536       enddo
6537 1112  continue
6538       do m=i+2,j2
6539         do ll=1,3
6540           gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
6541         enddo
6542       enddo
6543       do m=k+2,l2
6544         do ll=1,3
6545           gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
6546         enddo
6547       enddo 
6548 cd      do iii=1,nres-3
6549 cd        write (2,*) iii,gcorr_loc(iii)
6550 cd      enddo
6551       endif
6552       eello4=ekont*eel4
6553 cd      write (2,*) 'ekont',ekont
6554 cd      write (iout,*) 'eello4',ekont*eel4
6555       return
6556       end
6557 C---------------------------------------------------------------------------
6558       double precision function eello5(i,j,k,l,jj,kk)
6559       implicit real*8 (a-h,o-z)
6560       include 'DIMENSIONS'
6561       include 'DIMENSIONS.ZSCOPT'
6562       include 'COMMON.IOUNITS'
6563       include 'COMMON.CHAIN'
6564       include 'COMMON.DERIV'
6565       include 'COMMON.INTERACT'
6566       include 'COMMON.CONTACTS'
6567       include 'COMMON.TORSION'
6568       include 'COMMON.VAR'
6569       include 'COMMON.GEO'
6570       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
6571       double precision ggg1(3),ggg2(3)
6572 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6573 C                                                                              C
6574 C                            Parallel chains                                   C
6575 C                                                                              C
6576 C          o             o                   o             o                   C
6577 C         /l\           / \             \   / \           / \   /              C
6578 C        /   \         /   \             \ /   \         /   \ /               C
6579 C       j| o |l1       | o |              o| o |         | o |o                C
6580 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
6581 C      \i/   \         /   \ /             /   \         /   \                 C
6582 C       o    k1             o                                                  C
6583 C         (I)          (II)                (III)          (IV)                 C
6584 C                                                                              C
6585 C      eello5_1        eello5_2            eello5_3       eello5_4             C
6586 C                                                                              C
6587 C                            Antiparallel chains                               C
6588 C                                                                              C
6589 C          o             o                   o             o                   C
6590 C         /j\           / \             \   / \           / \   /              C
6591 C        /   \         /   \             \ /   \         /   \ /               C
6592 C      j1| o |l        | o |              o| o |         | o |o                C
6593 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
6594 C      \i/   \         /   \ /             /   \         /   \                 C
6595 C       o     k1            o                                                  C
6596 C         (I)          (II)                (III)          (IV)                 C
6597 C                                                                              C
6598 C      eello5_1        eello5_2            eello5_3       eello5_4             C
6599 C                                                                              C
6600 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
6601 C                                                                              C
6602 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6603 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
6604 cd        eello5=0.0d0
6605 cd        return
6606 cd      endif
6607 cd      write (iout,*)
6608 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
6609 cd     &   ' and',k,l
6610       itk=itortyp(itype(k))
6611       itl=itortyp(itype(l))
6612       itj=itortyp(itype(j))
6613       eello5_1=0.0d0
6614       eello5_2=0.0d0
6615       eello5_3=0.0d0
6616       eello5_4=0.0d0
6617 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
6618 cd     &   eel5_3_num,eel5_4_num)
6619       do iii=1,2
6620         do kkk=1,5
6621           do lll=1,3
6622             derx(lll,kkk,iii)=0.0d0
6623           enddo
6624         enddo
6625       enddo
6626 cd      eij=facont_hb(jj,i)
6627 cd      ekl=facont_hb(kk,k)
6628 cd      ekont=eij*ekl
6629 cd      write (iout,*)'Contacts have occurred for peptide groups',
6630 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
6631 cd      goto 1111
6632 C Contribution from the graph I.
6633 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
6634 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
6635       call transpose2(EUg(1,1,k),auxmat(1,1))
6636       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
6637       vv(1)=pizda(1,1)-pizda(2,2)
6638       vv(2)=pizda(1,2)+pizda(2,1)
6639       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
6640      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
6641       if (calc_grad) then
6642 C Explicit gradient in virtual-dihedral angles.
6643       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
6644      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
6645      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
6646       call transpose2(EUgder(1,1,k),auxmat1(1,1))
6647       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
6648       vv(1)=pizda(1,1)-pizda(2,2)
6649       vv(2)=pizda(1,2)+pizda(2,1)
6650       g_corr5_loc(k-1)=g_corr5_loc(k-1)
6651      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
6652      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
6653       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
6654       vv(1)=pizda(1,1)-pizda(2,2)
6655       vv(2)=pizda(1,2)+pizda(2,1)
6656       if (l.eq.j+1) then
6657         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
6658      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
6659      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
6660       else
6661         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
6662      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
6663      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
6664       endif 
6665 C Cartesian gradient
6666       do iii=1,2
6667         do kkk=1,5
6668           do lll=1,3
6669             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
6670      &        pizda(1,1))
6671             vv(1)=pizda(1,1)-pizda(2,2)
6672             vv(2)=pizda(1,2)+pizda(2,1)
6673             derx(lll,kkk,iii)=derx(lll,kkk,iii)
6674      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
6675      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
6676           enddo
6677         enddo
6678       enddo
6679 c      goto 1112
6680       endif
6681 c1111  continue
6682 C Contribution from graph II 
6683       call transpose2(EE(1,1,itk),auxmat(1,1))
6684       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
6685       vv(1)=pizda(1,1)+pizda(2,2)
6686       vv(2)=pizda(2,1)-pizda(1,2)
6687       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
6688      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
6689       if (calc_grad) then
6690 C Explicit gradient in virtual-dihedral angles.
6691       g_corr5_loc(k-1)=g_corr5_loc(k-1)
6692      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
6693       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
6694       vv(1)=pizda(1,1)+pizda(2,2)
6695       vv(2)=pizda(2,1)-pizda(1,2)
6696       if (l.eq.j+1) then
6697         g_corr5_loc(l-1)=g_corr5_loc(l-1)
6698      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
6699      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
6700       else
6701         g_corr5_loc(j-1)=g_corr5_loc(j-1)
6702      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
6703      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
6704       endif
6705 C Cartesian gradient
6706       do iii=1,2
6707         do kkk=1,5
6708           do lll=1,3
6709             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
6710      &        pizda(1,1))
6711             vv(1)=pizda(1,1)+pizda(2,2)
6712             vv(2)=pizda(2,1)-pizda(1,2)
6713             derx(lll,kkk,iii)=derx(lll,kkk,iii)
6714      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
6715      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
6716           enddo
6717         enddo
6718       enddo
6719 cd      goto 1112
6720       endif
6721 cd1111  continue
6722       if (l.eq.j+1) then
6723 cd        goto 1110
6724 C Parallel orientation
6725 C Contribution from graph III
6726         call transpose2(EUg(1,1,l),auxmat(1,1))
6727         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
6728         vv(1)=pizda(1,1)-pizda(2,2)
6729         vv(2)=pizda(1,2)+pizda(2,1)
6730         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
6731      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
6732         if (calc_grad) then
6733 C Explicit gradient in virtual-dihedral angles.
6734         g_corr5_loc(j-1)=g_corr5_loc(j-1)
6735      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
6736      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
6737         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
6738         vv(1)=pizda(1,1)-pizda(2,2)
6739         vv(2)=pizda(1,2)+pizda(2,1)
6740         g_corr5_loc(k-1)=g_corr5_loc(k-1)
6741      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
6742      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
6743         call transpose2(EUgder(1,1,l),auxmat1(1,1))
6744         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
6745         vv(1)=pizda(1,1)-pizda(2,2)
6746         vv(2)=pizda(1,2)+pizda(2,1)
6747         g_corr5_loc(l-1)=g_corr5_loc(l-1)
6748      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
6749      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
6750 C Cartesian gradient
6751         do iii=1,2
6752           do kkk=1,5
6753             do lll=1,3
6754               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
6755      &          pizda(1,1))
6756               vv(1)=pizda(1,1)-pizda(2,2)
6757               vv(2)=pizda(1,2)+pizda(2,1)
6758               derx(lll,kkk,iii)=derx(lll,kkk,iii)
6759      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
6760      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
6761             enddo
6762           enddo
6763         enddo
6764 cd        goto 1112
6765         endif
6766 C Contribution from graph IV
6767 cd1110    continue
6768         call transpose2(EE(1,1,itl),auxmat(1,1))
6769         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
6770         vv(1)=pizda(1,1)+pizda(2,2)
6771         vv(2)=pizda(2,1)-pizda(1,2)
6772         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
6773      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
6774         if (calc_grad) then
6775 C Explicit gradient in virtual-dihedral angles.
6776         g_corr5_loc(l-1)=g_corr5_loc(l-1)
6777      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
6778         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
6779         vv(1)=pizda(1,1)+pizda(2,2)
6780         vv(2)=pizda(2,1)-pizda(1,2)
6781         g_corr5_loc(k-1)=g_corr5_loc(k-1)
6782      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
6783      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
6784 C Cartesian gradient
6785         do iii=1,2
6786           do kkk=1,5
6787             do lll=1,3
6788               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6789      &          pizda(1,1))
6790               vv(1)=pizda(1,1)+pizda(2,2)
6791               vv(2)=pizda(2,1)-pizda(1,2)
6792               derx(lll,kkk,iii)=derx(lll,kkk,iii)
6793      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
6794      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
6795             enddo
6796           enddo
6797         enddo
6798         endif
6799       else
6800 C Antiparallel orientation
6801 C Contribution from graph III
6802 c        goto 1110
6803         call transpose2(EUg(1,1,j),auxmat(1,1))
6804         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
6805         vv(1)=pizda(1,1)-pizda(2,2)
6806         vv(2)=pizda(1,2)+pizda(2,1)
6807         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
6808      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
6809         if (calc_grad) then
6810 C Explicit gradient in virtual-dihedral angles.
6811         g_corr5_loc(l-1)=g_corr5_loc(l-1)
6812      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
6813      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
6814         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
6815         vv(1)=pizda(1,1)-pizda(2,2)
6816         vv(2)=pizda(1,2)+pizda(2,1)
6817         g_corr5_loc(k-1)=g_corr5_loc(k-1)
6818      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
6819      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
6820         call transpose2(EUgder(1,1,j),auxmat1(1,1))
6821         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
6822         vv(1)=pizda(1,1)-pizda(2,2)
6823         vv(2)=pizda(1,2)+pizda(2,1)
6824         g_corr5_loc(j-1)=g_corr5_loc(j-1)
6825      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
6826      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
6827 C Cartesian gradient
6828         do iii=1,2
6829           do kkk=1,5
6830             do lll=1,3
6831               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
6832      &          pizda(1,1))
6833               vv(1)=pizda(1,1)-pizda(2,2)
6834               vv(2)=pizda(1,2)+pizda(2,1)
6835               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
6836      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
6837      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
6838             enddo
6839           enddo
6840         enddo
6841 cd        goto 1112
6842         endif
6843 C Contribution from graph IV
6844 1110    continue
6845         call transpose2(EE(1,1,itj),auxmat(1,1))
6846         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
6847         vv(1)=pizda(1,1)+pizda(2,2)
6848         vv(2)=pizda(2,1)-pizda(1,2)
6849         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
6850      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
6851         if (calc_grad) then
6852 C Explicit gradient in virtual-dihedral angles.
6853         g_corr5_loc(j-1)=g_corr5_loc(j-1)
6854      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
6855         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
6856         vv(1)=pizda(1,1)+pizda(2,2)
6857         vv(2)=pizda(2,1)-pizda(1,2)
6858         g_corr5_loc(k-1)=g_corr5_loc(k-1)
6859      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
6860      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
6861 C Cartesian gradient
6862         do iii=1,2
6863           do kkk=1,5
6864             do lll=1,3
6865               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6866      &          pizda(1,1))
6867               vv(1)=pizda(1,1)+pizda(2,2)
6868               vv(2)=pizda(2,1)-pizda(1,2)
6869               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
6870      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
6871      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
6872             enddo
6873           enddo
6874         enddo
6875       endif
6876       endif
6877 1112  continue
6878       eel5=eello5_1+eello5_2+eello5_3+eello5_4
6879 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
6880 cd        write (2,*) 'ijkl',i,j,k,l
6881 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
6882 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
6883 cd      endif
6884 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
6885 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
6886 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
6887 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
6888       if (calc_grad) then
6889       if (j.lt.nres-1) then
6890         j1=j+1
6891         j2=j-1
6892       else
6893         j1=j-1
6894         j2=j-2
6895       endif
6896       if (l.lt.nres-1) then
6897         l1=l+1
6898         l2=l-1
6899       else
6900         l1=l-1
6901         l2=l-2
6902       endif
6903 cd      eij=1.0d0
6904 cd      ekl=1.0d0
6905 cd      ekont=1.0d0
6906 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
6907       do ll=1,3
6908         ggg1(ll)=eel5*g_contij(ll,1)
6909         ggg2(ll)=eel5*g_contij(ll,2)
6910 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
6911         ghalf=0.5d0*ggg1(ll)
6912 cd        ghalf=0.0d0
6913         gradcorr5(ll,i)=gradcorr5(ll,i)+ghalf+ekont*derx(ll,2,1)
6914         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
6915         gradcorr5(ll,j)=gradcorr5(ll,j)+ghalf+ekont*derx(ll,4,1)
6916         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
6917 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
6918         ghalf=0.5d0*ggg2(ll)
6919 cd        ghalf=0.0d0
6920         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
6921         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
6922         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
6923         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
6924       enddo
6925 cd      goto 1112
6926       do m=i+1,j-1
6927         do ll=1,3
6928 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
6929           gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
6930         enddo
6931       enddo
6932       do m=k+1,l-1
6933         do ll=1,3
6934 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
6935           gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
6936         enddo
6937       enddo
6938 c1112  continue
6939       do m=i+2,j2
6940         do ll=1,3
6941           gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
6942         enddo
6943       enddo
6944       do m=k+2,l2
6945         do ll=1,3
6946           gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
6947         enddo
6948       enddo 
6949 cd      do iii=1,nres-3
6950 cd        write (2,*) iii,g_corr5_loc(iii)
6951 cd      enddo
6952       endif
6953       eello5=ekont*eel5
6954 cd      write (2,*) 'ekont',ekont
6955 cd      write (iout,*) 'eello5',ekont*eel5
6956       return
6957       end
6958 c--------------------------------------------------------------------------
6959       double precision function eello6(i,j,k,l,jj,kk)
6960       implicit real*8 (a-h,o-z)
6961       include 'DIMENSIONS'
6962       include 'DIMENSIONS.ZSCOPT'
6963       include 'COMMON.IOUNITS'
6964       include 'COMMON.CHAIN'
6965       include 'COMMON.DERIV'
6966       include 'COMMON.INTERACT'
6967       include 'COMMON.CONTACTS'
6968       include 'COMMON.TORSION'
6969       include 'COMMON.VAR'
6970       include 'COMMON.GEO'
6971       include 'COMMON.FFIELD'
6972       double precision ggg1(3),ggg2(3)
6973 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
6974 cd        eello6=0.0d0
6975 cd        return
6976 cd      endif
6977 cd      write (iout,*)
6978 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
6979 cd     &   ' and',k,l
6980       eello6_1=0.0d0
6981       eello6_2=0.0d0
6982       eello6_3=0.0d0
6983       eello6_4=0.0d0
6984       eello6_5=0.0d0
6985       eello6_6=0.0d0
6986 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
6987 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
6988       do iii=1,2
6989         do kkk=1,5
6990           do lll=1,3
6991             derx(lll,kkk,iii)=0.0d0
6992           enddo
6993         enddo
6994       enddo
6995 cd      eij=facont_hb(jj,i)
6996 cd      ekl=facont_hb(kk,k)
6997 cd      ekont=eij*ekl
6998 cd      eij=1.0d0
6999 cd      ekl=1.0d0
7000 cd      ekont=1.0d0
7001       if (l.eq.j+1) then
7002         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7003         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
7004         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
7005         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7006         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
7007         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
7008       else
7009         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7010         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
7011         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
7012         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7013         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
7014           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7015         else
7016           eello6_5=0.0d0
7017         endif
7018         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
7019       endif
7020 C If turn contributions are considered, they will be handled separately.
7021       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
7022 cd      write(iout,*) 'eello6_1',eello6_1,' eel6_1_num',16*eel6_1_num
7023 cd      write(iout,*) 'eello6_2',eello6_2,' eel6_2_num',16*eel6_2_num
7024 cd      write(iout,*) 'eello6_3',eello6_3,' eel6_3_num',16*eel6_3_num
7025 cd      write(iout,*) 'eello6_4',eello6_4,' eel6_4_num',16*eel6_4_num
7026 cd      write(iout,*) 'eello6_5',eello6_5,' eel6_5_num',16*eel6_5_num
7027 cd      write(iout,*) 'eello6_6',eello6_6,' eel6_6_num',16*eel6_6_num
7028 cd      goto 1112
7029       if (calc_grad) then
7030       if (j.lt.nres-1) then
7031         j1=j+1
7032         j2=j-1
7033       else
7034         j1=j-1
7035         j2=j-2
7036       endif
7037       if (l.lt.nres-1) then
7038         l1=l+1
7039         l2=l-1
7040       else
7041         l1=l-1
7042         l2=l-2
7043       endif
7044       do ll=1,3
7045         ggg1(ll)=eel6*g_contij(ll,1)
7046         ggg2(ll)=eel6*g_contij(ll,2)
7047 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
7048         ghalf=0.5d0*ggg1(ll)
7049 cd        ghalf=0.0d0
7050         gradcorr6(ll,i)=gradcorr6(ll,i)+ghalf+ekont*derx(ll,2,1)
7051         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
7052         gradcorr6(ll,j)=gradcorr6(ll,j)+ghalf+ekont*derx(ll,4,1)
7053         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
7054         ghalf=0.5d0*ggg2(ll)
7055 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
7056 cd        ghalf=0.0d0
7057         gradcorr6(ll,k)=gradcorr6(ll,k)+ghalf+ekont*derx(ll,2,2)
7058         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
7059         gradcorr6(ll,l)=gradcorr6(ll,l)+ghalf+ekont*derx(ll,4,2)
7060         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
7061       enddo
7062 cd      goto 1112
7063       do m=i+1,j-1
7064         do ll=1,3
7065 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
7066           gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
7067         enddo
7068       enddo
7069       do m=k+1,l-1
7070         do ll=1,3
7071 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
7072           gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
7073         enddo
7074       enddo
7075 1112  continue
7076       do m=i+2,j2
7077         do ll=1,3
7078           gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
7079         enddo
7080       enddo
7081       do m=k+2,l2
7082         do ll=1,3
7083           gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
7084         enddo
7085       enddo 
7086 cd      do iii=1,nres-3
7087 cd        write (2,*) iii,g_corr6_loc(iii)
7088 cd      enddo
7089       endif
7090       eello6=ekont*eel6
7091 cd      write (2,*) 'ekont',ekont
7092 cd      write (iout,*) 'eello6',ekont*eel6
7093       return
7094       end
7095 c--------------------------------------------------------------------------
7096       double precision function eello6_graph1(i,j,k,l,imat,swap)
7097       implicit real*8 (a-h,o-z)
7098       include 'DIMENSIONS'
7099       include 'DIMENSIONS.ZSCOPT'
7100       include 'COMMON.IOUNITS'
7101       include 'COMMON.CHAIN'
7102       include 'COMMON.DERIV'
7103       include 'COMMON.INTERACT'
7104       include 'COMMON.CONTACTS'
7105       include 'COMMON.TORSION'
7106       include 'COMMON.VAR'
7107       include 'COMMON.GEO'
7108       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
7109       logical swap
7110       logical lprn
7111       common /kutas/ lprn
7112 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7113 C                                                                              C
7114 C      Parallel       Antiparallel                                             C
7115 C                                                                              C
7116 C          o             o                                                     C
7117 C         /l\           /j\                                                    C 
7118 C        /   \         /   \                                                   C
7119 C       /| o |         | o |\                                                  C
7120 C     \ j|/k\|  /   \  |/k\|l /                                                C
7121 C      \ /   \ /     \ /   \ /                                                 C
7122 C       o     o       o     o                                                  C
7123 C       i             i                                                        C
7124 C                                                                              C
7125 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7126       itk=itortyp(itype(k))
7127       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
7128       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
7129       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
7130       call transpose2(EUgC(1,1,k),auxmat(1,1))
7131       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
7132       vv1(1)=pizda1(1,1)-pizda1(2,2)
7133       vv1(2)=pizda1(1,2)+pizda1(2,1)
7134       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
7135       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
7136       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
7137       s5=scalar2(vv(1),Dtobr2(1,i))
7138 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
7139       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
7140       if (.not. calc_grad) return
7141       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
7142      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
7143      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
7144      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
7145      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
7146      & +scalar2(vv(1),Dtobr2der(1,i)))
7147       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
7148       vv1(1)=pizda1(1,1)-pizda1(2,2)
7149       vv1(2)=pizda1(1,2)+pizda1(2,1)
7150       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
7151       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
7152       if (l.eq.j+1) then
7153         g_corr6_loc(l-1)=g_corr6_loc(l-1)
7154      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
7155      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
7156      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
7157      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
7158       else
7159         g_corr6_loc(j-1)=g_corr6_loc(j-1)
7160      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
7161      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
7162      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
7163      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
7164       endif
7165       call transpose2(EUgCder(1,1,k),auxmat(1,1))
7166       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
7167       vv1(1)=pizda1(1,1)-pizda1(2,2)
7168       vv1(2)=pizda1(1,2)+pizda1(2,1)
7169       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
7170      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
7171      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
7172      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
7173       do iii=1,2
7174         if (swap) then
7175           ind=3-iii
7176         else
7177           ind=iii
7178         endif
7179         do kkk=1,5
7180           do lll=1,3
7181             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
7182             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
7183             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
7184             call transpose2(EUgC(1,1,k),auxmat(1,1))
7185             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
7186      &        pizda1(1,1))
7187             vv1(1)=pizda1(1,1)-pizda1(2,2)
7188             vv1(2)=pizda1(1,2)+pizda1(2,1)
7189             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
7190             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
7191      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
7192             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
7193      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
7194             s5=scalar2(vv(1),Dtobr2(1,i))
7195             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
7196           enddo
7197         enddo
7198       enddo
7199       return
7200       end
7201 c----------------------------------------------------------------------------
7202       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
7203       implicit real*8 (a-h,o-z)
7204       include 'DIMENSIONS'
7205       include 'DIMENSIONS.ZSCOPT'
7206       include 'COMMON.IOUNITS'
7207       include 'COMMON.CHAIN'
7208       include 'COMMON.DERIV'
7209       include 'COMMON.INTERACT'
7210       include 'COMMON.CONTACTS'
7211       include 'COMMON.TORSION'
7212       include 'COMMON.VAR'
7213       include 'COMMON.GEO'
7214       logical swap
7215       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
7216      & auxvec1(2),auxvec2(2),auxmat1(2,2)
7217       logical lprn
7218       common /kutas/ lprn
7219 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7220 C                                                                              C 
7221 C      Parallel       Antiparallel                                             C
7222 C                                                                              C
7223 C          o             o                                                     C
7224 C     \   /l\           /j\   /                                                C
7225 C      \ /   \         /   \ /                                                 C
7226 C       o| o |         | o |o                                                  C
7227 C     \ j|/k\|      \  |/k\|l                                                  C
7228 C      \ /   \       \ /   \                                                   C
7229 C       o             o                                                        C
7230 C       i             i                                                        C
7231 C                                                                              C
7232 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7233 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
7234 C AL 7/4/01 s1 would occur in the sixth-order moment, 
7235 C           but not in a cluster cumulant
7236 #ifdef MOMENT
7237       s1=dip(1,jj,i)*dip(1,kk,k)
7238 #endif
7239       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
7240       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
7241       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
7242       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
7243       call transpose2(EUg(1,1,k),auxmat(1,1))
7244       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
7245       vv(1)=pizda(1,1)-pizda(2,2)
7246       vv(2)=pizda(1,2)+pizda(2,1)
7247       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7248 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
7249 #ifdef MOMENT
7250       eello6_graph2=-(s1+s2+s3+s4)
7251 #else
7252       eello6_graph2=-(s2+s3+s4)
7253 #endif
7254 c      eello6_graph2=-s3
7255       if (.not. calc_grad) return
7256 C Derivatives in gamma(i-1)
7257       if (i.gt.1) then
7258 #ifdef MOMENT
7259         s1=dipderg(1,jj,i)*dip(1,kk,k)
7260 #endif
7261         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
7262         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
7263         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
7264         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
7265 #ifdef MOMENT
7266         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
7267 #else
7268         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
7269 #endif
7270 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
7271       endif
7272 C Derivatives in gamma(k-1)
7273 #ifdef MOMENT
7274       s1=dip(1,jj,i)*dipderg(1,kk,k)
7275 #endif
7276       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
7277       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
7278       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
7279       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
7280       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7281       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
7282       vv(1)=pizda(1,1)-pizda(2,2)
7283       vv(2)=pizda(1,2)+pizda(2,1)
7284       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7285 #ifdef MOMENT
7286       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
7287 #else
7288       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
7289 #endif
7290 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
7291 C Derivatives in gamma(j-1) or gamma(l-1)
7292       if (j.gt.1) then
7293 #ifdef MOMENT
7294         s1=dipderg(3,jj,i)*dip(1,kk,k) 
7295 #endif
7296         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
7297         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
7298         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
7299         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
7300         vv(1)=pizda(1,1)-pizda(2,2)
7301         vv(2)=pizda(1,2)+pizda(2,1)
7302         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7303 #ifdef MOMENT
7304         if (swap) then
7305           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
7306         else
7307           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
7308         endif
7309 #endif
7310         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
7311 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
7312       endif
7313 C Derivatives in gamma(l-1) or gamma(j-1)
7314       if (l.gt.1) then 
7315 #ifdef MOMENT
7316         s1=dip(1,jj,i)*dipderg(3,kk,k)
7317 #endif
7318         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
7319         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
7320         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
7321         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
7322         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
7323         vv(1)=pizda(1,1)-pizda(2,2)
7324         vv(2)=pizda(1,2)+pizda(2,1)
7325         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7326 #ifdef MOMENT
7327         if (swap) then
7328           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
7329         else
7330           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
7331         endif
7332 #endif
7333         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
7334 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
7335       endif
7336 C Cartesian derivatives.
7337       if (lprn) then
7338         write (2,*) 'In eello6_graph2'
7339         do iii=1,2
7340           write (2,*) 'iii=',iii
7341           do kkk=1,5
7342             write (2,*) 'kkk=',kkk
7343             do jjj=1,2
7344               write (2,'(3(2f10.5),5x)') 
7345      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7346             enddo
7347           enddo
7348         enddo
7349       endif
7350       do iii=1,2
7351         do kkk=1,5
7352           do lll=1,3
7353 #ifdef MOMENT
7354             if (iii.eq.1) then
7355               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
7356             else
7357               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
7358             endif
7359 #endif
7360             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
7361      &        auxvec(1))
7362             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
7363             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
7364      &        auxvec(1))
7365             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
7366             call transpose2(EUg(1,1,k),auxmat(1,1))
7367             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
7368      &        pizda(1,1))
7369             vv(1)=pizda(1,1)-pizda(2,2)
7370             vv(2)=pizda(1,2)+pizda(2,1)
7371             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
7372 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
7373 #ifdef MOMENT
7374             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
7375 #else
7376             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
7377 #endif
7378             if (swap) then
7379               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
7380             else
7381               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7382             endif
7383           enddo
7384         enddo
7385       enddo
7386       return
7387       end
7388 c----------------------------------------------------------------------------
7389       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
7390       implicit real*8 (a-h,o-z)
7391       include 'DIMENSIONS'
7392       include 'DIMENSIONS.ZSCOPT'
7393       include 'COMMON.IOUNITS'
7394       include 'COMMON.CHAIN'
7395       include 'COMMON.DERIV'
7396       include 'COMMON.INTERACT'
7397       include 'COMMON.CONTACTS'
7398       include 'COMMON.TORSION'
7399       include 'COMMON.VAR'
7400       include 'COMMON.GEO'
7401       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
7402       logical swap
7403 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7404 C                                                                              C
7405 C      Parallel       Antiparallel                                             C
7406 C                                                                              C
7407 C          o             o                                                     C
7408 C         /l\   /   \   /j\                                                    C
7409 C        /   \ /     \ /   \                                                   C
7410 C       /| o |o       o| o |\                                                  C
7411 C       j|/k\|  /      |/k\|l /                                                C
7412 C        /   \ /       /   \ /                                                 C
7413 C       /     o       /     o                                                  C
7414 C       i             i                                                        C
7415 C                                                                              C
7416 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7417 C
7418 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
7419 C           energy moment and not to the cluster cumulant.
7420       iti=itortyp(itype(i))
7421       if (j.lt.nres-1) then
7422         itj1=itortyp(itype(j+1))
7423       else
7424         itj1=ntortyp+1
7425       endif
7426       itk=itortyp(itype(k))
7427       itk1=itortyp(itype(k+1))
7428       if (l.lt.nres-1) then
7429         itl1=itortyp(itype(l+1))
7430       else
7431         itl1=ntortyp+1
7432       endif
7433 #ifdef MOMENT
7434       s1=dip(4,jj,i)*dip(4,kk,k)
7435 #endif
7436       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
7437       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
7438       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
7439       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
7440       call transpose2(EE(1,1,itk),auxmat(1,1))
7441       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
7442       vv(1)=pizda(1,1)+pizda(2,2)
7443       vv(2)=pizda(2,1)-pizda(1,2)
7444       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
7445 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4
7446 #ifdef MOMENT
7447       eello6_graph3=-(s1+s2+s3+s4)
7448 #else
7449       eello6_graph3=-(s2+s3+s4)
7450 #endif
7451 c      eello6_graph3=-s4
7452       if (.not. calc_grad) return
7453 C Derivatives in gamma(k-1)
7454       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
7455       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
7456       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
7457       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
7458 C Derivatives in gamma(l-1)
7459       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
7460       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
7461       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
7462       vv(1)=pizda(1,1)+pizda(2,2)
7463       vv(2)=pizda(2,1)-pizda(1,2)
7464       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
7465       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
7466 C Cartesian derivatives.
7467       do iii=1,2
7468         do kkk=1,5
7469           do lll=1,3
7470 #ifdef MOMENT
7471             if (iii.eq.1) then
7472               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
7473             else
7474               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
7475             endif
7476 #endif
7477             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7478      &        auxvec(1))
7479             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
7480             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7481      &        auxvec(1))
7482             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
7483             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
7484      &        pizda(1,1))
7485             vv(1)=pizda(1,1)+pizda(2,2)
7486             vv(2)=pizda(2,1)-pizda(1,2)
7487             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
7488 #ifdef MOMENT
7489             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
7490 #else
7491             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
7492 #endif
7493             if (swap) then
7494               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
7495             else
7496               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7497             endif
7498 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
7499           enddo
7500         enddo
7501       enddo
7502       return
7503       end
7504 c----------------------------------------------------------------------------
7505       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
7506       implicit real*8 (a-h,o-z)
7507       include 'DIMENSIONS'
7508       include 'DIMENSIONS.ZSCOPT'
7509       include 'COMMON.IOUNITS'
7510       include 'COMMON.CHAIN'
7511       include 'COMMON.DERIV'
7512       include 'COMMON.INTERACT'
7513       include 'COMMON.CONTACTS'
7514       include 'COMMON.TORSION'
7515       include 'COMMON.VAR'
7516       include 'COMMON.GEO'
7517       include 'COMMON.FFIELD'
7518       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
7519      & auxvec1(2),auxmat1(2,2)
7520       logical swap
7521 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7522 C                                                                              C
7523 C      Parallel       Antiparallel                                             C
7524 C                                                                              C
7525 C          o             o                                                     C 
7526 C         /l\   /   \   /j\                                                    C
7527 C        /   \ /     \ /   \                                                   C
7528 C       /| o |o       o| o |\                                                  C
7529 C     \ j|/k\|      \  |/k\|l                                                  C
7530 C      \ /   \       \ /   \                                                   C
7531 C       o     \       o     \                                                  C
7532 C       i             i                                                        C
7533 C                                                                              C
7534 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7535 C
7536 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
7537 C           energy moment and not to the cluster cumulant.
7538 cd      write (2,*) 'eello_graph4: wturn6',wturn6
7539       iti=itortyp(itype(i))
7540       itj=itortyp(itype(j))
7541       if (j.lt.nres-1) then
7542         itj1=itortyp(itype(j+1))
7543       else
7544         itj1=ntortyp+1
7545       endif
7546       itk=itortyp(itype(k))
7547       if (k.lt.nres-1) then
7548         itk1=itortyp(itype(k+1))
7549       else
7550         itk1=ntortyp+1
7551       endif
7552       itl=itortyp(itype(l))
7553       if (l.lt.nres-1) then
7554         itl1=itortyp(itype(l+1))
7555       else
7556         itl1=ntortyp+1
7557       endif
7558 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
7559 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
7560 cd     & ' itl',itl,' itl1',itl1
7561 #ifdef MOMENT
7562       if (imat.eq.1) then
7563         s1=dip(3,jj,i)*dip(3,kk,k)
7564       else
7565         s1=dip(2,jj,j)*dip(2,kk,l)
7566       endif
7567 #endif
7568       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
7569       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
7570       if (j.eq.l+1) then
7571         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
7572         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
7573       else
7574         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
7575         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
7576       endif
7577       call transpose2(EUg(1,1,k),auxmat(1,1))
7578       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
7579       vv(1)=pizda(1,1)-pizda(2,2)
7580       vv(2)=pizda(2,1)+pizda(1,2)
7581       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7582 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
7583 #ifdef MOMENT
7584       eello6_graph4=-(s1+s2+s3+s4)
7585 #else
7586       eello6_graph4=-(s2+s3+s4)
7587 #endif
7588       if (.not. calc_grad) return
7589 C Derivatives in gamma(i-1)
7590       if (i.gt.1) then
7591 #ifdef MOMENT
7592         if (imat.eq.1) then
7593           s1=dipderg(2,jj,i)*dip(3,kk,k)
7594         else
7595           s1=dipderg(4,jj,j)*dip(2,kk,l)
7596         endif
7597 #endif
7598         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
7599         if (j.eq.l+1) then
7600           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
7601           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
7602         else
7603           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
7604           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
7605         endif
7606         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
7607         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
7608 cd          write (2,*) 'turn6 derivatives'
7609 #ifdef MOMENT
7610           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
7611 #else
7612           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
7613 #endif
7614         else
7615 #ifdef MOMENT
7616           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
7617 #else
7618           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
7619 #endif
7620         endif
7621       endif
7622 C Derivatives in gamma(k-1)
7623 #ifdef MOMENT
7624       if (imat.eq.1) then
7625         s1=dip(3,jj,i)*dipderg(2,kk,k)
7626       else
7627         s1=dip(2,jj,j)*dipderg(4,kk,l)
7628       endif
7629 #endif
7630       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
7631       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
7632       if (j.eq.l+1) then
7633         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
7634         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
7635       else
7636         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
7637         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
7638       endif
7639       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7640       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
7641       vv(1)=pizda(1,1)-pizda(2,2)
7642       vv(2)=pizda(2,1)+pizda(1,2)
7643       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7644       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
7645 #ifdef MOMENT
7646         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
7647 #else
7648         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
7649 #endif
7650       else
7651 #ifdef MOMENT
7652         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
7653 #else
7654         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
7655 #endif
7656       endif
7657 C Derivatives in gamma(j-1) or gamma(l-1)
7658       if (l.eq.j+1 .and. l.gt.1) then
7659         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
7660         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
7661         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
7662         vv(1)=pizda(1,1)-pizda(2,2)
7663         vv(2)=pizda(2,1)+pizda(1,2)
7664         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7665         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
7666       else if (j.gt.1) then
7667         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
7668         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
7669         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
7670         vv(1)=pizda(1,1)-pizda(2,2)
7671         vv(2)=pizda(2,1)+pizda(1,2)
7672         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7673         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
7674           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
7675         else
7676           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
7677         endif
7678       endif
7679 C Cartesian derivatives.
7680       do iii=1,2
7681         do kkk=1,5
7682           do lll=1,3
7683 #ifdef MOMENT
7684             if (iii.eq.1) then
7685               if (imat.eq.1) then
7686                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
7687               else
7688                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
7689               endif
7690             else
7691               if (imat.eq.1) then
7692                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
7693               else
7694                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
7695               endif
7696             endif
7697 #endif
7698             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
7699      &        auxvec(1))
7700             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
7701             if (j.eq.l+1) then
7702               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
7703      &          b1(1,itj1),auxvec(1))
7704               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
7705             else
7706               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
7707      &          b1(1,itl1),auxvec(1))
7708               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
7709             endif
7710             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
7711      &        pizda(1,1))
7712             vv(1)=pizda(1,1)-pizda(2,2)
7713             vv(2)=pizda(2,1)+pizda(1,2)
7714             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
7715             if (swap) then
7716               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
7717 #ifdef MOMENT
7718                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
7719      &             -(s1+s2+s4)
7720 #else
7721                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
7722      &             -(s2+s4)
7723 #endif
7724                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
7725               else
7726 #ifdef MOMENT
7727                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
7728 #else
7729                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
7730 #endif
7731                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7732               endif
7733             else
7734 #ifdef MOMENT
7735               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
7736 #else
7737               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
7738 #endif
7739               if (l.eq.j+1) then
7740                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7741               else 
7742                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
7743               endif
7744             endif 
7745           enddo
7746         enddo
7747       enddo
7748       return
7749       end
7750 c----------------------------------------------------------------------------
7751       double precision function eello_turn6(i,jj,kk)
7752       implicit real*8 (a-h,o-z)
7753       include 'DIMENSIONS'
7754       include 'DIMENSIONS.ZSCOPT'
7755       include 'COMMON.IOUNITS'
7756       include 'COMMON.CHAIN'
7757       include 'COMMON.DERIV'
7758       include 'COMMON.INTERACT'
7759       include 'COMMON.CONTACTS'
7760       include 'COMMON.TORSION'
7761       include 'COMMON.VAR'
7762       include 'COMMON.GEO'
7763       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
7764      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
7765      &  ggg1(3),ggg2(3)
7766       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
7767      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
7768 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
7769 C           the respective energy moment and not to the cluster cumulant.
7770       eello_turn6=0.0d0
7771       j=i+4
7772       k=i+1
7773       l=i+3
7774       iti=itortyp(itype(i))
7775       itk=itortyp(itype(k))
7776       itk1=itortyp(itype(k+1))
7777       itl=itortyp(itype(l))
7778       itj=itortyp(itype(j))
7779 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
7780 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
7781 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7782 cd        eello6=0.0d0
7783 cd        return
7784 cd      endif
7785 cd      write (iout,*)
7786 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7787 cd     &   ' and',k,l
7788 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
7789       do iii=1,2
7790         do kkk=1,5
7791           do lll=1,3
7792             derx_turn(lll,kkk,iii)=0.0d0
7793           enddo
7794         enddo
7795       enddo
7796 cd      eij=1.0d0
7797 cd      ekl=1.0d0
7798 cd      ekont=1.0d0
7799       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7800 cd      eello6_5=0.0d0
7801 cd      write (2,*) 'eello6_5',eello6_5
7802 #ifdef MOMENT
7803       call transpose2(AEA(1,1,1),auxmat(1,1))
7804       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
7805       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
7806       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
7807 #else
7808       s1 = 0.0d0
7809 #endif
7810       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
7811       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
7812       s2 = scalar2(b1(1,itk),vtemp1(1))
7813 #ifdef MOMENT
7814       call transpose2(AEA(1,1,2),atemp(1,1))
7815       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
7816       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
7817       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7818 #else
7819       s8=0.0d0
7820 #endif
7821       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
7822       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
7823       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
7824 #ifdef MOMENT
7825       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
7826       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
7827       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
7828       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
7829       ss13 = scalar2(b1(1,itk),vtemp4(1))
7830       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
7831 #else
7832       s13=0.0d0
7833 #endif
7834 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
7835 c      s1=0.0d0
7836 c      s2=0.0d0
7837 c      s8=0.0d0
7838 c      s12=0.0d0
7839 c      s13=0.0d0
7840       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
7841       if (calc_grad) then
7842 C Derivatives in gamma(i+2)
7843 #ifdef MOMENT
7844       call transpose2(AEA(1,1,1),auxmatd(1,1))
7845       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7846       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7847       call transpose2(AEAderg(1,1,2),atempd(1,1))
7848       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
7849       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7850 #else
7851       s8d=0.0d0
7852 #endif
7853       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
7854       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7855       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7856 c      s1d=0.0d0
7857 c      s2d=0.0d0
7858 c      s8d=0.0d0
7859 c      s12d=0.0d0
7860 c      s13d=0.0d0
7861       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
7862 C Derivatives in gamma(i+3)
7863 #ifdef MOMENT
7864       call transpose2(AEA(1,1,1),auxmatd(1,1))
7865       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7866       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
7867       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
7868 #else
7869       s1d=0.0d0
7870 #endif
7871       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
7872       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
7873       s2d = scalar2(b1(1,itk),vtemp1d(1))
7874 #ifdef MOMENT
7875       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
7876       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
7877 #endif
7878       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
7879 #ifdef MOMENT
7880       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
7881       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
7882       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
7883 #else
7884       s13d=0.0d0
7885 #endif
7886 c      s1d=0.0d0
7887 c      s2d=0.0d0
7888 c      s8d=0.0d0
7889 c      s12d=0.0d0
7890 c      s13d=0.0d0
7891 #ifdef MOMENT
7892       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
7893      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
7894 #else
7895       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
7896      &               -0.5d0*ekont*(s2d+s12d)
7897 #endif
7898 C Derivatives in gamma(i+4)
7899       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
7900       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7901       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7902 #ifdef MOMENT
7903       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
7904       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
7905       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
7906 #else
7907       s13d = 0.0d0
7908 #endif
7909 c      s1d=0.0d0
7910 c      s2d=0.0d0
7911 c      s8d=0.0d0
7912 C      s12d=0.0d0
7913 c      s13d=0.0d0
7914 #ifdef MOMENT
7915       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
7916 #else
7917       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
7918 #endif
7919 C Derivatives in gamma(i+5)
7920 #ifdef MOMENT
7921       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
7922       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7923       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7924 #else
7925       s1d = 0.0d0
7926 #endif
7927       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
7928       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
7929       s2d = scalar2(b1(1,itk),vtemp1d(1))
7930 #ifdef MOMENT
7931       call transpose2(AEA(1,1,2),atempd(1,1))
7932       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
7933       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7934 #else
7935       s8d = 0.0d0
7936 #endif
7937       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
7938       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7939 #ifdef MOMENT
7940       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
7941       ss13d = scalar2(b1(1,itk),vtemp4d(1))
7942       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
7943 #else
7944       s13d = 0.0d0
7945 #endif
7946 c      s1d=0.0d0
7947 c      s2d=0.0d0
7948 c      s8d=0.0d0
7949 c      s12d=0.0d0
7950 c      s13d=0.0d0
7951 #ifdef MOMENT
7952       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
7953      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
7954 #else
7955       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
7956      &               -0.5d0*ekont*(s2d+s12d)
7957 #endif
7958 C Cartesian derivatives
7959       do iii=1,2
7960         do kkk=1,5
7961           do lll=1,3
7962 #ifdef MOMENT
7963             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
7964             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7965             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7966 #else
7967             s1d = 0.0d0
7968 #endif
7969             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
7970             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
7971      &          vtemp1d(1))
7972             s2d = scalar2(b1(1,itk),vtemp1d(1))
7973 #ifdef MOMENT
7974             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
7975             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
7976             s8d = -(atempd(1,1)+atempd(2,2))*
7977      &           scalar2(cc(1,1,itl),vtemp2(1))
7978 #else
7979             s8d = 0.0d0
7980 #endif
7981             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
7982      &           auxmatd(1,1))
7983             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7984             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7985 c      s1d=0.0d0
7986 c      s2d=0.0d0
7987 c      s8d=0.0d0
7988 c      s12d=0.0d0
7989 c      s13d=0.0d0
7990 #ifdef MOMENT
7991             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
7992      &        - 0.5d0*(s1d+s2d)
7993 #else
7994             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
7995      &        - 0.5d0*s2d
7996 #endif
7997 #ifdef MOMENT
7998             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
7999      &        - 0.5d0*(s8d+s12d)
8000 #else
8001             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8002      &        - 0.5d0*s12d
8003 #endif
8004           enddo
8005         enddo
8006       enddo
8007 #ifdef MOMENT
8008       do kkk=1,5
8009         do lll=1,3
8010           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8011      &      achuj_tempd(1,1))
8012           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8013           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8014           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8015           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8016           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8017      &      vtemp4d(1)) 
8018           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8019           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8020           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8021         enddo
8022       enddo
8023 #endif
8024 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
8025 cd     &  16*eel_turn6_num
8026 cd      goto 1112
8027       if (j.lt.nres-1) then
8028         j1=j+1
8029         j2=j-1
8030       else
8031         j1=j-1
8032         j2=j-2
8033       endif
8034       if (l.lt.nres-1) then
8035         l1=l+1
8036         l2=l-1
8037       else
8038         l1=l-1
8039         l2=l-2
8040       endif
8041       do ll=1,3
8042         ggg1(ll)=eel_turn6*g_contij(ll,1)
8043         ggg2(ll)=eel_turn6*g_contij(ll,2)
8044         ghalf=0.5d0*ggg1(ll)
8045 cd        ghalf=0.0d0
8046         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)+ghalf
8047      &    +ekont*derx_turn(ll,2,1)
8048         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
8049         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)+ghalf
8050      &    +ekont*derx_turn(ll,4,1)
8051         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
8052         ghalf=0.5d0*ggg2(ll)
8053 cd        ghalf=0.0d0
8054         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)+ghalf
8055      &    +ekont*derx_turn(ll,2,2)
8056         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
8057         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)+ghalf
8058      &    +ekont*derx_turn(ll,4,2)
8059         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
8060       enddo
8061 cd      goto 1112
8062       do m=i+1,j-1
8063         do ll=1,3
8064           gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
8065         enddo
8066       enddo
8067       do m=k+1,l-1
8068         do ll=1,3
8069           gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
8070         enddo
8071       enddo
8072 1112  continue
8073       do m=i+2,j2
8074         do ll=1,3
8075           gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
8076         enddo
8077       enddo
8078       do m=k+2,l2
8079         do ll=1,3
8080           gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
8081         enddo
8082       enddo 
8083 cd      do iii=1,nres-3
8084 cd        write (2,*) iii,g_corr6_loc(iii)
8085 cd      enddo
8086       endif
8087       eello_turn6=ekont*eel_turn6
8088 cd      write (2,*) 'ekont',ekont
8089 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
8090       return
8091       end
8092 crc-------------------------------------------------
8093       SUBROUTINE MATVEC2(A1,V1,V2)
8094       implicit real*8 (a-h,o-z)
8095       include 'DIMENSIONS'
8096       DIMENSION A1(2,2),V1(2),V2(2)
8097 c      DO 1 I=1,2
8098 c        VI=0.0
8099 c        DO 3 K=1,2
8100 c    3     VI=VI+A1(I,K)*V1(K)
8101 c        Vaux(I)=VI
8102 c    1 CONTINUE
8103
8104       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
8105       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
8106
8107       v2(1)=vaux1
8108       v2(2)=vaux2
8109       END
8110 C---------------------------------------
8111       SUBROUTINE MATMAT2(A1,A2,A3)
8112       implicit real*8 (a-h,o-z)
8113       include 'DIMENSIONS'
8114       DIMENSION A1(2,2),A2(2,2),A3(2,2)
8115 c      DIMENSION AI3(2,2)
8116 c        DO  J=1,2
8117 c          A3IJ=0.0
8118 c          DO K=1,2
8119 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
8120 c          enddo
8121 c          A3(I,J)=A3IJ
8122 c       enddo
8123 c      enddo
8124
8125       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
8126       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
8127       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
8128       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
8129
8130       A3(1,1)=AI3_11
8131       A3(2,1)=AI3_21
8132       A3(1,2)=AI3_12
8133       A3(2,2)=AI3_22
8134       END
8135
8136 c-------------------------------------------------------------------------
8137       double precision function scalar2(u,v)
8138       implicit none
8139       double precision u(2),v(2)
8140       double precision sc
8141       integer i
8142       scalar2=u(1)*v(1)+u(2)*v(2)
8143       return
8144       end
8145
8146 C-----------------------------------------------------------------------------
8147
8148       subroutine transpose2(a,at)
8149       implicit none
8150       double precision a(2,2),at(2,2)
8151       at(1,1)=a(1,1)
8152       at(1,2)=a(2,1)
8153       at(2,1)=a(1,2)
8154       at(2,2)=a(2,2)
8155       return
8156       end
8157 c--------------------------------------------------------------------------
8158       subroutine transpose(n,a,at)
8159       implicit none
8160       integer n,i,j
8161       double precision a(n,n),at(n,n)
8162       do i=1,n
8163         do j=1,n
8164           at(j,i)=a(i,j)
8165         enddo
8166       enddo
8167       return
8168       end
8169 C---------------------------------------------------------------------------
8170       subroutine prodmat3(a1,a2,kk,transp,prod)
8171       implicit none
8172       integer i,j
8173       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
8174       logical transp
8175 crc      double precision auxmat(2,2),prod_(2,2)
8176
8177       if (transp) then
8178 crc        call transpose2(kk(1,1),auxmat(1,1))
8179 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
8180 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
8181         
8182            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
8183      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
8184            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
8185      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
8186            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
8187      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
8188            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
8189      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
8190
8191       else
8192 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
8193 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
8194
8195            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
8196      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
8197            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
8198      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
8199            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
8200      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
8201            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
8202      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
8203
8204       endif
8205 c      call transpose2(a2(1,1),a2t(1,1))
8206
8207 crc      print *,transp
8208 crc      print *,((prod_(i,j),i=1,2),j=1,2)
8209 crc      print *,((prod(i,j),i=1,2),j=1,2)
8210
8211       return
8212       end
8213 C-----------------------------------------------------------------------------
8214       double precision function scalar(u,v)
8215       implicit none
8216       double precision u(3),v(3)
8217       double precision sc
8218       integer i
8219       sc=0.0d0
8220       do i=1,3
8221         sc=sc+u(i)*v(i)
8222       enddo
8223       scalar=sc
8224       return
8225       end
8226