1st GLY in seq gives correct energy in unres and wham
[unres.git] / source / wham / src / energy_p_new.F
1       subroutine etotal(energia,fact)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4       include 'DIMENSIONS.ZSCOPT'
5
6 #ifndef ISNAN
7       external proc_proc
8 #endif
9 #ifdef WINPGI
10 cMS$ATTRIBUTES C ::  proc_proc
11 #endif
12
13       include 'COMMON.IOUNITS'
14       double precision energia(0:max_ene),energia1(0:max_ene+1)
15 #ifdef MPL
16       include 'COMMON.INFO'
17       external d_vadd
18       integer ready
19 #endif
20       include 'COMMON.FFIELD'
21       include 'COMMON.DERIV'
22       include 'COMMON.INTERACT'
23       include 'COMMON.SBRIDGE'
24       include 'COMMON.CHAIN'
25       double precision fact(6)
26 cd      write(iout, '(a,i2)')'Calling etotal ipot=',ipot
27 cd    print *,'nnt=',nnt,' nct=',nct
28 C
29 C Compute the side-chain and electrostatic interaction energy
30 C
31       goto (101,102,103,104,105) ipot
32 C Lennard-Jones potential.
33   101 call elj(evdw,evdw_t)
34 cd    print '(a)','Exit ELJ'
35       goto 106
36 C Lennard-Jones-Kihara potential (shifted).
37   102 call eljk(evdw,evdw_t)
38       goto 106
39 C Berne-Pechukas potential (dilated LJ, angular dependence).
40   103 call ebp(evdw,evdw_t)
41       goto 106
42 C Gay-Berne potential (shifted LJ, angular dependence).
43   104 call egb(evdw,evdw_t)
44       goto 106
45 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
46   105 call egbv(evdw,evdw_t)
47 C
48 C Calculate electrostatic (H-bonding) energy of the main chain.
49 C
50   106 call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
51 C
52 C Calculate excluded-volume interaction energy between peptide groups
53 C and side chains.
54 C
55       call escp(evdw2,evdw2_14)
56 c
57 c Calculate the bond-stretching energy
58 c
59       call ebond(estr)
60 c      write (iout,*) "estr",estr
61
62 C Calculate the disulfide-bridge and other energy and the contributions
63 C from other distance constraints.
64 cd    print *,'Calling EHPB'
65       call edis(ehpb)
66 cd    print *,'EHPB exitted succesfully.'
67 C
68 C Calculate the virtual-bond-angle energy.
69 C
70       call ebend(ebe)
71 cd    print *,'Bend energy finished.'
72 C
73 C Calculate the SC local energy.
74 C
75       call esc(escloc)
76 cd    print *,'SCLOC energy finished.'
77 C
78 C Calculate the virtual-bond torsional energy.
79 C
80 cd    print *,'nterm=',nterm
81       call etor(etors,edihcnstr,fact(1))
82 C
83 C 6/23/01 Calculate double-torsional energy
84 C
85       call etor_d(etors_d,fact(2))
86 C
87 C 21/5/07 Calculate local sicdechain correlation energy
88 C
89       call eback_sc_corr(esccor)
90
91 C 12/1/95 Multi-body terms
92 C
93       n_corr=0
94       n_corr1=0
95       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
96      &    .or. wturn6.gt.0.0d0) then
97 c         print *,"calling multibody_eello"
98          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
99 c         write (*,*) 'n_corr=',n_corr,' n_corr1=',n_corr1
100 c         print *,ecorr,ecorr5,ecorr6,eturn6
101       endif
102       if (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) then
103          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
104       endif
105 c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
106 #ifdef SPLITELE
107       etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2+welec*fact(1)*ees
108      & +wvdwpp*evdw1
109      & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
110      & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
111      & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
112      & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
113      & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
114      & +wbond*estr+wsccor*fact(1)*esccor
115 #else
116       etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2
117      & +welec*fact(1)*(ees+evdw1)
118      & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
119      & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
120      & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
121      & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
122      & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
123      & +wbond*estr+wsccor*fact(1)*esccor
124 #endif
125       energia(0)=etot
126       energia(1)=evdw
127 #ifdef SCP14
128       energia(2)=evdw2-evdw2_14
129       energia(17)=evdw2_14
130 #else
131       energia(2)=evdw2
132       energia(17)=0.0d0
133 #endif
134 #ifdef SPLITELE
135       energia(3)=ees
136       energia(16)=evdw1
137 #else
138       energia(3)=ees+evdw1
139       energia(16)=0.0d0
140 #endif
141       energia(4)=ecorr
142       energia(5)=ecorr5
143       energia(6)=ecorr6
144       energia(7)=eel_loc
145       energia(8)=eello_turn3
146       energia(9)=eello_turn4
147       energia(10)=eturn6
148       energia(11)=ebe
149       energia(12)=escloc
150       energia(13)=etors
151       energia(14)=etors_d
152       energia(15)=ehpb
153       energia(18)=estr
154       energia(19)=esccor
155       energia(20)=edihcnstr
156       energia(21)=evdw_t
157 c      if (dyn_ss) call dyn_set_nss
158 c detecting NaNQ
159 #ifdef ISNAN
160 #ifdef AIX
161       if (isnan(etot).ne.0) energia(0)=1.0d+99
162 #else
163       if (isnan(etot)) energia(0)=1.0d+99
164 #endif
165 #else
166       i=0
167 #ifdef WINPGI
168       idumm=proc_proc(etot,i)
169 #else
170       call proc_proc(etot,i)
171 #endif
172       if(i.eq.1)energia(0)=1.0d+99
173 #endif
174 #ifdef MPL
175 c     endif
176 #endif
177       if (calc_grad) then
178 C
179 C Sum up the components of the Cartesian gradient.
180 C
181 #ifdef SPLITELE
182       do i=1,nct
183         do j=1,3
184           gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
185      &                welec*fact(1)*gelc(j,i)+wvdwpp*gvdwpp(j,i)+
186      &                wbond*gradb(j,i)+
187      &                wstrain*ghpbc(j,i)+
188      &                wcorr*fact(3)*gradcorr(j,i)+
189      &                wel_loc*fact(2)*gel_loc(j,i)+
190      &                wturn3*fact(2)*gcorr3_turn(j,i)+
191      &                wturn4*fact(3)*gcorr4_turn(j,i)+
192      &                wcorr5*fact(4)*gradcorr5(j,i)+
193      &                wcorr6*fact(5)*gradcorr6(j,i)+
194      &                wturn6*fact(5)*gcorr6_turn(j,i)+
195      &                wsccor*fact(2)*gsccorc(j,i)
196           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
197      &                  wbond*gradbx(j,i)+
198      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
199      &                  wsccor*fact(2)*gsccorx(j,i)
200         enddo
201 #else
202       do i=1,nct
203         do j=1,3
204           gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
205      &                welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+
206      &                wbond*gradb(j,i)+
207      &                wcorr*fact(3)*gradcorr(j,i)+
208      &                wel_loc*fact(2)*gel_loc(j,i)+
209      &                wturn3*fact(2)*gcorr3_turn(j,i)+
210      &                wturn4*fact(3)*gcorr4_turn(j,i)+
211      &                wcorr5*fact(4)*gradcorr5(j,i)+
212      &                wcorr6*fact(5)*gradcorr6(j,i)+
213      &                wturn6*fact(5)*gcorr6_turn(j,i)+
214      &                wsccor*fact(2)*gsccorc(j,i)
215           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
216      &                  wbond*gradbx(j,i)+
217      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
218      &                  wsccor*fact(1)*gsccorx(j,i)
219         enddo
220 #endif
221       enddo
222
223
224       do i=1,nres-3
225         gloc(i,icg)=gloc(i,icg)+wcorr*fact(3)*gcorr_loc(i)
226      &   +wcorr5*fact(4)*g_corr5_loc(i)
227      &   +wcorr6*fact(5)*g_corr6_loc(i)
228      &   +wturn4*fact(3)*gel_loc_turn4(i)
229      &   +wturn3*fact(2)*gel_loc_turn3(i)
230      &   +wturn6*fact(5)*gel_loc_turn6(i)
231      &   +wel_loc*fact(2)*gel_loc_loc(i)
232      &   +wsccor*fact(1)*gsccor_loc(i)
233       enddo
234       endif
235       return
236       end
237 C------------------------------------------------------------------------
238       subroutine enerprint(energia,fact)
239       implicit real*8 (a-h,o-z)
240       include 'DIMENSIONS'
241       include 'DIMENSIONS.ZSCOPT'
242       include 'COMMON.IOUNITS'
243       include 'COMMON.FFIELD'
244       include 'COMMON.SBRIDGE'
245       double precision energia(0:max_ene),fact(6)
246       etot=energia(0)
247       evdw=energia(1)+fact(6)*energia(21)
248 #ifdef SCP14
249       evdw2=energia(2)+energia(17)
250 #else
251       evdw2=energia(2)
252 #endif
253       ees=energia(3)
254 #ifdef SPLITELE
255       evdw1=energia(16)
256 #endif
257       ecorr=energia(4)
258       ecorr5=energia(5)
259       ecorr6=energia(6)
260       eel_loc=energia(7)
261       eello_turn3=energia(8)
262       eello_turn4=energia(9)
263       eello_turn6=energia(10)
264       ebe=energia(11)
265       escloc=energia(12)
266       etors=energia(13)
267       etors_d=energia(14)
268       ehpb=energia(15)
269       esccor=energia(19)
270       edihcnstr=energia(20)
271       estr=energia(18)
272 #ifdef SPLITELE
273       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1,
274      &  wvdwpp,
275      &  estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1),
276      &  etors_d,wtor_d*fact(2),ehpb,wstrain,
277      &  ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5),
278      &  eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2),
279      &  eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5),
280      &  esccor,wsccor*fact(1),edihcnstr,ebr*nss,etot
281    10 format (/'Virtual-chain energies:'//
282      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
283      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
284      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p elec)'/
285      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
286      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
287      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
288      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
289      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
290      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
291      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
292      & ' (SS bridges & dist. cnstr.)'/
293      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
294      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
295      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
296      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
297      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
298      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
299      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
300      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
301      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
302      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ 
303      & 'ETOT=  ',1pE16.6,' (total)')
304 #else
305       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),estr,wbond,
306      &  ebe,wang,escloc,wscloc,etors,wtor*fact(1),etors_d,wtor_d*fact2,
307      &  ehpb,wstrain,ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),
308      &  ecorr6,wcorr6*fact(5),eel_loc,wel_loc*fact(2),
309      &  eello_turn3,wturn3*fact(2),eello_turn4,wturn4*fact(3),
310      &  eello_turn6,wturn6*fact(5),esccor*fact(1),wsccor,
311      &  edihcnstr,ebr*nss,etot
312    10 format (/'Virtual-chain energies:'//
313      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
314      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
315      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
316      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
317      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
318      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
319      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
320      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
321      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
322      & ' (SS bridges & dist. cnstr.)'/
323      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
324      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
325      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
326      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
327      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
328      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
329      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
330      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
331      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
332      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ 
333      & 'ETOT=  ',1pE16.6,' (total)')
334 #endif
335       return
336       end
337 C-----------------------------------------------------------------------
338       subroutine elj(evdw,evdw_t)
339 C
340 C This subroutine calculates the interaction energy of nonbonded side chains
341 C assuming the LJ potential of interaction.
342 C
343       implicit real*8 (a-h,o-z)
344       include 'DIMENSIONS'
345       include 'DIMENSIONS.ZSCOPT'
346       include "DIMENSIONS.COMPAR"
347       parameter (accur=1.0d-10)
348       include 'COMMON.GEO'
349       include 'COMMON.VAR'
350       include 'COMMON.LOCAL'
351       include 'COMMON.CHAIN'
352       include 'COMMON.DERIV'
353       include 'COMMON.INTERACT'
354       include 'COMMON.TORSION'
355       include 'COMMON.ENEPS'
356       include 'COMMON.SBRIDGE'
357       include 'COMMON.NAMES'
358       include 'COMMON.IOUNITS'
359       include 'COMMON.CONTACTS'
360       dimension gg(3)
361       integer icant
362       external icant
363 cd    print *,'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
364       do i=1,210
365         do j=1,2
366           eneps_temp(j,i)=0.0d0
367         enddo
368       enddo
369       evdw=0.0D0
370       evdw_t=0.0d0
371       do i=iatsc_s,iatsc_e
372         itypi=itype(i)
373         itypi1=itype(i+1)
374         xi=c(1,nres+i)
375         yi=c(2,nres+i)
376         zi=c(3,nres+i)
377 C Change 12/1/95
378         num_conti=0
379 C
380 C Calculate SC interaction energy.
381 C
382         do iint=1,nint_gr(i)
383 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
384 cd   &                  'iend=',iend(i,iint)
385           do j=istart(i,iint),iend(i,iint)
386             itypj=itype(j)
387             xj=c(1,nres+j)-xi
388             yj=c(2,nres+j)-yi
389             zj=c(3,nres+j)-zi
390 C Change 12/1/95 to calculate four-body interactions
391             rij=xj*xj+yj*yj+zj*zj
392             rrij=1.0D0/rij
393 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
394             eps0ij=eps(itypi,itypj)
395             fac=rrij**expon2
396             e1=fac*fac*aa(itypi,itypj)
397             e2=fac*bb(itypi,itypj)
398             evdwij=e1+e2
399             ij=icant(itypi,itypj)
400             eneps_temp(1,ij)=eneps_temp(1,ij)+e1/dabs(eps0ij)
401             eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps0ij
402 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
403 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
404 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
405 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
406 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
407 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
408             if (bb(itypi,itypj).gt.0.0d0) then
409               evdw=evdw+evdwij
410             else
411               evdw_t=evdw_t+evdwij
412             endif
413             if (calc_grad) then
414
415 C Calculate the components of the gradient in DC and X
416 C
417             fac=-rrij*(e1+evdwij)
418             gg(1)=xj*fac
419             gg(2)=yj*fac
420             gg(3)=zj*fac
421             do k=1,3
422               gvdwx(k,i)=gvdwx(k,i)-gg(k)
423               gvdwx(k,j)=gvdwx(k,j)+gg(k)
424             enddo
425             do k=i,j-1
426               do l=1,3
427                 gvdwc(l,k)=gvdwc(l,k)+gg(l)
428               enddo
429             enddo
430             endif
431 C
432 C 12/1/95, revised on 5/20/97
433 C
434 C Calculate the contact function. The ith column of the array JCONT will 
435 C contain the numbers of atoms that make contacts with the atom I (of numbers
436 C greater than I). The arrays FACONT and GACONT will contain the values of
437 C the contact function and its derivative.
438 C
439 C Uncomment next line, if the correlation interactions include EVDW explicitly.
440 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
441 C Uncomment next line, if the correlation interactions are contact function only
442             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
443               rij=dsqrt(rij)
444               sigij=sigma(itypi,itypj)
445               r0ij=rs0(itypi,itypj)
446 C
447 C Check whether the SC's are not too far to make a contact.
448 C
449               rcut=1.5d0*r0ij
450               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
451 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
452 C
453               if (fcont.gt.0.0D0) then
454 C If the SC-SC distance if close to sigma, apply spline.
455 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
456 cAdam &             fcont1,fprimcont1)
457 cAdam           fcont1=1.0d0-fcont1
458 cAdam           if (fcont1.gt.0.0d0) then
459 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
460 cAdam             fcont=fcont*fcont1
461 cAdam           endif
462 C Uncomment following 4 lines to have the geometric average of the epsilon0's
463 cga             eps0ij=1.0d0/dsqrt(eps0ij)
464 cga             do k=1,3
465 cga               gg(k)=gg(k)*eps0ij
466 cga             enddo
467 cga             eps0ij=-evdwij*eps0ij
468 C Uncomment for AL's type of SC correlation interactions.
469 cadam           eps0ij=-evdwij
470                 num_conti=num_conti+1
471                 jcont(num_conti,i)=j
472                 facont(num_conti,i)=fcont*eps0ij
473                 fprimcont=eps0ij*fprimcont/rij
474                 fcont=expon*fcont
475 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
476 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
477 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
478 C Uncomment following 3 lines for Skolnick's type of SC correlation.
479                 gacont(1,num_conti,i)=-fprimcont*xj
480                 gacont(2,num_conti,i)=-fprimcont*yj
481                 gacont(3,num_conti,i)=-fprimcont*zj
482 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
483 cd              write (iout,'(2i3,3f10.5)') 
484 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
485               endif
486             endif
487           enddo      ! j
488         enddo        ! iint
489 C Change 12/1/95
490         num_cont(i)=num_conti
491       enddo          ! i
492       if (calc_grad) then
493       do i=1,nct
494         do j=1,3
495           gvdwc(j,i)=expon*gvdwc(j,i)
496           gvdwx(j,i)=expon*gvdwx(j,i)
497         enddo
498       enddo
499       endif
500 C******************************************************************************
501 C
502 C                              N O T E !!!
503 C
504 C To save time, the factor of EXPON has been extracted from ALL components
505 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
506 C use!
507 C
508 C******************************************************************************
509       return
510       end
511 C-----------------------------------------------------------------------------
512       subroutine eljk(evdw,evdw_t)
513 C
514 C This subroutine calculates the interaction energy of nonbonded side chains
515 C assuming the LJK potential of interaction.
516 C
517       implicit real*8 (a-h,o-z)
518       include 'DIMENSIONS'
519       include 'DIMENSIONS.ZSCOPT'
520       include "DIMENSIONS.COMPAR"
521       include 'COMMON.GEO'
522       include 'COMMON.VAR'
523       include 'COMMON.LOCAL'
524       include 'COMMON.CHAIN'
525       include 'COMMON.DERIV'
526       include 'COMMON.INTERACT'
527       include 'COMMON.ENEPS'
528       include 'COMMON.IOUNITS'
529       include 'COMMON.NAMES'
530       dimension gg(3)
531       logical scheck
532       integer icant
533       external icant
534 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
535       do i=1,210
536         do j=1,2
537           eneps_temp(j,i)=0.0d0
538         enddo
539       enddo
540       evdw=0.0D0
541       evdw_t=0.0d0
542       do i=iatsc_s,iatsc_e
543         itypi=itype(i)
544         itypi1=itype(i+1)
545         xi=c(1,nres+i)
546         yi=c(2,nres+i)
547         zi=c(3,nres+i)
548 C
549 C Calculate SC interaction energy.
550 C
551         do iint=1,nint_gr(i)
552           do j=istart(i,iint),iend(i,iint)
553             itypj=itype(j)
554             xj=c(1,nres+j)-xi
555             yj=c(2,nres+j)-yi
556             zj=c(3,nres+j)-zi
557             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
558             fac_augm=rrij**expon
559             e_augm=augm(itypi,itypj)*fac_augm
560             r_inv_ij=dsqrt(rrij)
561             rij=1.0D0/r_inv_ij 
562             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
563             fac=r_shift_inv**expon
564             e1=fac*fac*aa(itypi,itypj)
565             e2=fac*bb(itypi,itypj)
566             evdwij=e_augm+e1+e2
567             ij=icant(itypi,itypj)
568             eneps_temp(1,ij)=eneps_temp(1,ij)+(e1+a_augm)
569      &        /dabs(eps(itypi,itypj))
570             eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps(itypi,itypj)
571 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
572 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
573 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
574 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
575 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
576 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
577 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
578             if (bb(itypi,itypj).gt.0.0d0) then
579               evdw=evdw+evdwij
580             else 
581               evdw_t=evdw_t+evdwij
582             endif
583             if (calc_grad) then
584
585 C Calculate the components of the gradient in DC and X
586 C
587             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
588             gg(1)=xj*fac
589             gg(2)=yj*fac
590             gg(3)=zj*fac
591             do k=1,3
592               gvdwx(k,i)=gvdwx(k,i)-gg(k)
593               gvdwx(k,j)=gvdwx(k,j)+gg(k)
594             enddo
595             do k=i,j-1
596               do l=1,3
597                 gvdwc(l,k)=gvdwc(l,k)+gg(l)
598               enddo
599             enddo
600             endif
601           enddo      ! j
602         enddo        ! iint
603       enddo          ! i
604       if (calc_grad) then
605       do i=1,nct
606         do j=1,3
607           gvdwc(j,i)=expon*gvdwc(j,i)
608           gvdwx(j,i)=expon*gvdwx(j,i)
609         enddo
610       enddo
611       endif
612       return
613       end
614 C-----------------------------------------------------------------------------
615       subroutine ebp(evdw,evdw_t)
616 C
617 C This subroutine calculates the interaction energy of nonbonded side chains
618 C assuming the Berne-Pechukas potential of interaction.
619 C
620       implicit real*8 (a-h,o-z)
621       include 'DIMENSIONS'
622       include 'DIMENSIONS.ZSCOPT'
623       include "DIMENSIONS.COMPAR"
624       include 'COMMON.GEO'
625       include 'COMMON.VAR'
626       include 'COMMON.LOCAL'
627       include 'COMMON.CHAIN'
628       include 'COMMON.DERIV'
629       include 'COMMON.NAMES'
630       include 'COMMON.INTERACT'
631       include 'COMMON.ENEPS'
632       include 'COMMON.IOUNITS'
633       include 'COMMON.CALC'
634       common /srutu/ icall
635 c     double precision rrsave(maxdim)
636       logical lprn
637       integer icant
638       external icant
639       do i=1,210
640         do j=1,2
641           eneps_temp(j,i)=0.0d0
642         enddo
643       enddo
644       evdw=0.0D0
645       evdw_t=0.0d0
646 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
647 c     if (icall.eq.0) then
648 c       lprn=.true.
649 c     else
650         lprn=.false.
651 c     endif
652       ind=0
653       do i=iatsc_s,iatsc_e
654         itypi=itype(i)
655         itypi1=itype(i+1)
656         xi=c(1,nres+i)
657         yi=c(2,nres+i)
658         zi=c(3,nres+i)
659         dxi=dc_norm(1,nres+i)
660         dyi=dc_norm(2,nres+i)
661         dzi=dc_norm(3,nres+i)
662         dsci_inv=vbld_inv(i+nres)
663 C
664 C Calculate SC interaction energy.
665 C
666         do iint=1,nint_gr(i)
667           do j=istart(i,iint),iend(i,iint)
668             ind=ind+1
669             itypj=itype(j)
670             dscj_inv=vbld_inv(j+nres)
671             chi1=chi(itypi,itypj)
672             chi2=chi(itypj,itypi)
673             chi12=chi1*chi2
674             chip1=chip(itypi)
675             chip2=chip(itypj)
676             chip12=chip1*chip2
677             alf1=alp(itypi)
678             alf2=alp(itypj)
679             alf12=0.5D0*(alf1+alf2)
680 C For diagnostics only!!!
681 c           chi1=0.0D0
682 c           chi2=0.0D0
683 c           chi12=0.0D0
684 c           chip1=0.0D0
685 c           chip2=0.0D0
686 c           chip12=0.0D0
687 c           alf1=0.0D0
688 c           alf2=0.0D0
689 c           alf12=0.0D0
690             xj=c(1,nres+j)-xi
691             yj=c(2,nres+j)-yi
692             zj=c(3,nres+j)-zi
693             dxj=dc_norm(1,nres+j)
694             dyj=dc_norm(2,nres+j)
695             dzj=dc_norm(3,nres+j)
696             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
697 cd          if (icall.eq.0) then
698 cd            rrsave(ind)=rrij
699 cd          else
700 cd            rrij=rrsave(ind)
701 cd          endif
702             rij=dsqrt(rrij)
703 C Calculate the angle-dependent terms of energy & contributions to derivatives.
704             call sc_angular
705 C Calculate whole angle-dependent part of epsilon and contributions
706 C to its derivatives
707             fac=(rrij*sigsq)**expon2
708             e1=fac*fac*aa(itypi,itypj)
709             e2=fac*bb(itypi,itypj)
710             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
711             eps2der=evdwij*eps3rt
712             eps3der=evdwij*eps2rt
713             evdwij=evdwij*eps2rt*eps3rt
714             ij=icant(itypi,itypj)
715             aux=eps1*eps2rt**2*eps3rt**2
716             eneps_temp(1,ij)=eneps_temp(1,ij)+e1*aux
717      &        /dabs(eps(itypi,itypj))
718             eneps_temp(2,ij)=eneps_temp(2,ij)+e2*aux/eps(itypi,itypj)
719             if (bb(itypi,itypj).gt.0.0d0) then
720               evdw=evdw+evdwij
721             else
722               evdw_t=evdw_t+evdwij
723             endif
724             if (calc_grad) then
725             if (lprn) then
726             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
727             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
728 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
729 cd     &        restyp(itypi),i,restyp(itypj),j,
730 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
731 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
732 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
733 cd     &        evdwij
734             endif
735 C Calculate gradient components.
736             e1=e1*eps1*eps2rt**2*eps3rt**2
737             fac=-expon*(e1+evdwij)
738             sigder=fac/sigsq
739             fac=rrij*fac
740 C Calculate radial part of the gradient
741             gg(1)=xj*fac
742             gg(2)=yj*fac
743             gg(3)=zj*fac
744 C Calculate the angular part of the gradient and sum add the contributions
745 C to the appropriate components of the Cartesian gradient.
746             call sc_grad
747             endif
748           enddo      ! j
749         enddo        ! iint
750       enddo          ! i
751 c     stop
752       return
753       end
754 C-----------------------------------------------------------------------------
755       subroutine egb(evdw,evdw_t)
756 C
757 C This subroutine calculates the interaction energy of nonbonded side chains
758 C assuming the Gay-Berne potential of interaction.
759 C
760       implicit real*8 (a-h,o-z)
761       include 'DIMENSIONS'
762       include 'DIMENSIONS.ZSCOPT'
763       include "DIMENSIONS.COMPAR"
764       include 'COMMON.GEO'
765       include 'COMMON.VAR'
766       include 'COMMON.LOCAL'
767       include 'COMMON.CHAIN'
768       include 'COMMON.DERIV'
769       include 'COMMON.NAMES'
770       include 'COMMON.INTERACT'
771       include 'COMMON.ENEPS'
772       include 'COMMON.IOUNITS'
773       include 'COMMON.CALC'
774       include 'COMMON.SBRIDGE'
775       logical lprn
776       common /srutu/icall
777       integer icant
778       external icant
779       do i=1,210
780         do j=1,2
781           eneps_temp(j,i)=0.0d0
782         enddo
783       enddo
784 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
785       evdw=0.0D0
786       evdw_t=0.0d0
787       lprn=.false.
788 c      if (icall.gt.0) lprn=.true.
789       ind=0
790       do i=iatsc_s,iatsc_e
791         itypi=itype(i)
792         itypi1=itype(i+1)
793         xi=c(1,nres+i)
794         yi=c(2,nres+i)
795         zi=c(3,nres+i)
796         dxi=dc_norm(1,nres+i)
797         dyi=dc_norm(2,nres+i)
798         dzi=dc_norm(3,nres+i)
799         dsci_inv=vbld_inv(i+nres)
800 C
801 C Calculate SC interaction energy.
802 C
803         do iint=1,nint_gr(i)
804           do j=istart(i,iint),iend(i,iint)
805 C in case of diagnostics    write (iout,*) "TU SZUKAJ",i,j,dyn_ss_mask(i),dyn_ss_mask(j)
806 C /06/28/2013 Adasko: In case of dyn_ss - dynamic disulfide bond
807 C formation no electrostatic interactions should be calculated. If it
808 C would be allowed NaN would appear
809             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
810 C /06/28/2013 Adasko: dyn_ss_mask is logical statement wheather this Cys
811 C residue can or cannot form disulfide bond. There is still bug allowing
812 C Cys...Cys...Cys bond formation
813               call dyn_ssbond_ene(i,j,evdwij)
814 C /06/28/2013 Adasko: dyn_ssbond_ene is dynamic SS bond foration energy
815 C function in ssMD.F
816               evdw=evdw+evdwij
817 c              if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)')
818 c     &                        'evdw',i,j,evdwij,' ss'
819             ELSE
820             ind=ind+1
821             itypj=itype(j)
822             dscj_inv=vbld_inv(j+nres)
823             sig0ij=sigma(itypi,itypj)
824             chi1=chi(itypi,itypj)
825             chi2=chi(itypj,itypi)
826             chi12=chi1*chi2
827             chip1=chip(itypi)
828             chip2=chip(itypj)
829             chip12=chip1*chip2
830             alf1=alp(itypi)
831             alf2=alp(itypj)
832             alf12=0.5D0*(alf1+alf2)
833 C For diagnostics only!!!
834 c           chi1=0.0D0
835 c           chi2=0.0D0
836 c           chi12=0.0D0
837 c           chip1=0.0D0
838 c           chip2=0.0D0
839 c           chip12=0.0D0
840 c           alf1=0.0D0
841 c           alf2=0.0D0
842 c           alf12=0.0D0
843             xj=c(1,nres+j)-xi
844             yj=c(2,nres+j)-yi
845             zj=c(3,nres+j)-zi
846             dxj=dc_norm(1,nres+j)
847             dyj=dc_norm(2,nres+j)
848             dzj=dc_norm(3,nres+j)
849 c            write (iout,*) i,j,xj,yj,zj
850             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
851             rij=dsqrt(rrij)
852 C Calculate angle-dependent terms of energy and contributions to their
853 C derivatives.
854             call sc_angular
855             sigsq=1.0D0/sigsq
856             sig=sig0ij*dsqrt(sigsq)
857             rij_shift=1.0D0/rij-sig+sig0ij
858 C I hate to put IF's in the loops, but here don't have another choice!!!!
859             if (rij_shift.le.0.0D0) then
860               evdw=1.0D20
861               return
862             endif
863             sigder=-sig*sigsq
864 c---------------------------------------------------------------
865             rij_shift=1.0D0/rij_shift 
866             fac=rij_shift**expon
867             e1=fac*fac*aa(itypi,itypj)
868             e2=fac*bb(itypi,itypj)
869             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
870             eps2der=evdwij*eps3rt
871             eps3der=evdwij*eps2rt
872             evdwij=evdwij*eps2rt*eps3rt
873             if (bb(itypi,itypj).gt.0) then
874               evdw=evdw+evdwij
875             else
876               evdw_t=evdw_t+evdwij
877             endif
878             ij=icant(itypi,itypj)
879             aux=eps1*eps2rt**2*eps3rt**2
880             eneps_temp(1,ij)=eneps_temp(1,ij)+aux*e1
881      &        /dabs(eps(itypi,itypj))
882             eneps_temp(2,ij)=eneps_temp(2,ij)+aux*e2/eps(itypi,itypj)
883 c            write (iout,*) "i",i," j",j," itypi",itypi," itypj",itypj,
884 c     &         " ij",ij," eneps",aux*e1/dabs(eps(itypi,itypj)),
885 c     &         aux*e2/eps(itypi,itypj)
886 c       write (iout,'(a6,2i5,0pf7.3)') 'evdw',i,j,evdwij
887             if (lprn) then
888             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
889             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
890             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
891      &        restyp(itypi),i,restyp(itypj),j,
892      &        epsi,sigm,chi1,chi2,chip1,chip2,
893      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
894      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
895      &        evdwij
896             endif
897             if (calc_grad) then
898 C Calculate gradient components.
899             e1=e1*eps1*eps2rt**2*eps3rt**2
900             fac=-expon*(e1+evdwij)*rij_shift
901             sigder=fac*sigder
902             fac=rij*fac
903 C Calculate the radial part of the gradient
904             gg(1)=xj*fac
905             gg(2)=yj*fac
906             gg(3)=zj*fac
907 C Calculate angular part of the gradient.
908             call sc_grad
909             endif
910             ENDIF    ! dyn_ss
911           enddo      ! j
912         enddo        ! iint
913       enddo          ! i
914       return
915       end
916 C-----------------------------------------------------------------------------
917       subroutine egbv(evdw,evdw_t)
918 C
919 C This subroutine calculates the interaction energy of nonbonded side chains
920 C assuming the Gay-Berne-Vorobjev potential of interaction.
921 C
922       implicit real*8 (a-h,o-z)
923       include 'DIMENSIONS'
924       include 'DIMENSIONS.ZSCOPT'
925       include "DIMENSIONS.COMPAR"
926       include 'COMMON.GEO'
927       include 'COMMON.VAR'
928       include 'COMMON.LOCAL'
929       include 'COMMON.CHAIN'
930       include 'COMMON.DERIV'
931       include 'COMMON.NAMES'
932       include 'COMMON.INTERACT'
933       include 'COMMON.ENEPS'
934       include 'COMMON.IOUNITS'
935       include 'COMMON.CALC'
936       common /srutu/ icall
937       logical lprn
938       integer icant
939       external icant
940       do i=1,210
941         do j=1,2
942           eneps_temp(j,i)=0.0d0
943         enddo
944       enddo
945       evdw=0.0D0
946       evdw_t=0.0d0
947 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
948       evdw=0.0D0
949       lprn=.false.
950 c      if (icall.gt.0) lprn=.true.
951       ind=0
952       do i=iatsc_s,iatsc_e
953         itypi=itype(i)
954         itypi1=itype(i+1)
955         xi=c(1,nres+i)
956         yi=c(2,nres+i)
957         zi=c(3,nres+i)
958         dxi=dc_norm(1,nres+i)
959         dyi=dc_norm(2,nres+i)
960         dzi=dc_norm(3,nres+i)
961         dsci_inv=vbld_inv(i+nres)
962 C
963 C Calculate SC interaction energy.
964 C
965         do iint=1,nint_gr(i)
966           do j=istart(i,iint),iend(i,iint)
967             ind=ind+1
968             itypj=itype(j)
969             dscj_inv=vbld_inv(j+nres)
970             sig0ij=sigma(itypi,itypj)
971             r0ij=r0(itypi,itypj)
972             chi1=chi(itypi,itypj)
973             chi2=chi(itypj,itypi)
974             chi12=chi1*chi2
975             chip1=chip(itypi)
976             chip2=chip(itypj)
977             chip12=chip1*chip2
978             alf1=alp(itypi)
979             alf2=alp(itypj)
980             alf12=0.5D0*(alf1+alf2)
981 C For diagnostics only!!!
982 c           chi1=0.0D0
983 c           chi2=0.0D0
984 c           chi12=0.0D0
985 c           chip1=0.0D0
986 c           chip2=0.0D0
987 c           chip12=0.0D0
988 c           alf1=0.0D0
989 c           alf2=0.0D0
990 c           alf12=0.0D0
991             xj=c(1,nres+j)-xi
992             yj=c(2,nres+j)-yi
993             zj=c(3,nres+j)-zi
994             dxj=dc_norm(1,nres+j)
995             dyj=dc_norm(2,nres+j)
996             dzj=dc_norm(3,nres+j)
997             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
998             rij=dsqrt(rrij)
999 C Calculate angle-dependent terms of energy and contributions to their
1000 C derivatives.
1001             call sc_angular
1002             sigsq=1.0D0/sigsq
1003             sig=sig0ij*dsqrt(sigsq)
1004             rij_shift=1.0D0/rij-sig+r0ij
1005 C I hate to put IF's in the loops, but here don't have another choice!!!!
1006             if (rij_shift.le.0.0D0) then
1007               evdw=1.0D20
1008               return
1009             endif
1010             sigder=-sig*sigsq
1011 c---------------------------------------------------------------
1012             rij_shift=1.0D0/rij_shift 
1013             fac=rij_shift**expon
1014             e1=fac*fac*aa(itypi,itypj)
1015             e2=fac*bb(itypi,itypj)
1016             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1017             eps2der=evdwij*eps3rt
1018             eps3der=evdwij*eps2rt
1019             fac_augm=rrij**expon
1020             e_augm=augm(itypi,itypj)*fac_augm
1021             evdwij=evdwij*eps2rt*eps3rt
1022             if (bb(itypi,itypj).gt.0.0d0) then
1023               evdw=evdw+evdwij+e_augm
1024             else
1025               evdw_t=evdw_t+evdwij+e_augm
1026             endif
1027             ij=icant(itypi,itypj)
1028             aux=eps1*eps2rt**2*eps3rt**2
1029             eneps_temp(1,ij)=eneps_temp(1,ij)+aux*(e1+e_augm)
1030      &        /dabs(eps(itypi,itypj))
1031             eneps_temp(2,ij)=eneps_temp(2,ij)+aux*e2/eps(itypi,itypj)
1032 c            eneps_temp(ij)=eneps_temp(ij)
1033 c     &         +(evdwij+e_augm)/eps(itypi,itypj)
1034 c            if (lprn) then
1035 c            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1036 c            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1037 c            write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1038 c     &        restyp(itypi),i,restyp(itypj),j,
1039 c     &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1040 c     &        chi1,chi2,chip1,chip2,
1041 c     &        eps1,eps2rt**2,eps3rt**2,
1042 c     &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1043 c     &        evdwij+e_augm
1044 c            endif
1045             if (calc_grad) then
1046 C Calculate gradient components.
1047             e1=e1*eps1*eps2rt**2*eps3rt**2
1048             fac=-expon*(e1+evdwij)*rij_shift
1049             sigder=fac*sigder
1050             fac=rij*fac-2*expon*rrij*e_augm
1051 C Calculate the radial part of the gradient
1052             gg(1)=xj*fac
1053             gg(2)=yj*fac
1054             gg(3)=zj*fac
1055 C Calculate angular part of the gradient.
1056             call sc_grad
1057             endif
1058           enddo      ! j
1059         enddo        ! iint
1060       enddo          ! i
1061       return
1062       end
1063 C-----------------------------------------------------------------------------
1064       subroutine sc_angular
1065 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1066 C om12. Called by ebp, egb, and egbv.
1067       implicit none
1068       include 'COMMON.CALC'
1069       erij(1)=xj*rij
1070       erij(2)=yj*rij
1071       erij(3)=zj*rij
1072       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1073       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1074       om12=dxi*dxj+dyi*dyj+dzi*dzj
1075       chiom12=chi12*om12
1076 C Calculate eps1(om12) and its derivative in om12
1077       faceps1=1.0D0-om12*chiom12
1078       faceps1_inv=1.0D0/faceps1
1079       eps1=dsqrt(faceps1_inv)
1080 C Following variable is eps1*deps1/dom12
1081       eps1_om12=faceps1_inv*chiom12
1082 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1083 C and om12.
1084       om1om2=om1*om2
1085       chiom1=chi1*om1
1086       chiom2=chi2*om2
1087       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1088       sigsq=1.0D0-facsig*faceps1_inv
1089       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1090       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1091       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1092 C Calculate eps2 and its derivatives in om1, om2, and om12.
1093       chipom1=chip1*om1
1094       chipom2=chip2*om2
1095       chipom12=chip12*om12
1096       facp=1.0D0-om12*chipom12
1097       facp_inv=1.0D0/facp
1098       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1099 C Following variable is the square root of eps2
1100       eps2rt=1.0D0-facp1*facp_inv
1101 C Following three variables are the derivatives of the square root of eps
1102 C in om1, om2, and om12.
1103       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1104       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1105       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1106 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1107       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1108 C Calculate whole angle-dependent part of epsilon and contributions
1109 C to its derivatives
1110       return
1111       end
1112 C----------------------------------------------------------------------------
1113       subroutine sc_grad
1114       implicit real*8 (a-h,o-z)
1115       include 'DIMENSIONS'
1116       include 'DIMENSIONS.ZSCOPT'
1117       include 'COMMON.CHAIN'
1118       include 'COMMON.DERIV'
1119       include 'COMMON.CALC'
1120       double precision dcosom1(3),dcosom2(3)
1121       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1122       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1123       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1124      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1125       do k=1,3
1126         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1127         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1128       enddo
1129       do k=1,3
1130         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1131       enddo 
1132       do k=1,3
1133         gvdwx(k,i)=gvdwx(k,i)-gg(k)
1134      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1135      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1136         gvdwx(k,j)=gvdwx(k,j)+gg(k)
1137      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1138      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1139       enddo
1140
1141 C Calculate the components of the gradient in DC and X
1142 C
1143       do k=i,j-1
1144         do l=1,3
1145           gvdwc(l,k)=gvdwc(l,k)+gg(l)
1146         enddo
1147       enddo
1148       return
1149       end
1150 c------------------------------------------------------------------------------
1151       subroutine vec_and_deriv
1152       implicit real*8 (a-h,o-z)
1153       include 'DIMENSIONS'
1154       include 'DIMENSIONS.ZSCOPT'
1155       include 'COMMON.IOUNITS'
1156       include 'COMMON.GEO'
1157       include 'COMMON.VAR'
1158       include 'COMMON.LOCAL'
1159       include 'COMMON.CHAIN'
1160       include 'COMMON.VECTORS'
1161       include 'COMMON.DERIV'
1162       include 'COMMON.INTERACT'
1163       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
1164 C Compute the local reference systems. For reference system (i), the
1165 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
1166 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
1167       do i=1,nres-1
1168 c          if (i.eq.nres-1 .or. itel(i+1).eq.0) then
1169           if (i.eq.nres-1) then
1170 C Case of the last full residue
1171 C Compute the Z-axis
1172             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
1173             costh=dcos(pi-theta(nres))
1174             fac=1.0d0/dsqrt(1.0d0-costh*costh)
1175             do k=1,3
1176               uz(k,i)=fac*uz(k,i)
1177             enddo
1178             if (calc_grad) then
1179 C Compute the derivatives of uz
1180             uzder(1,1,1)= 0.0d0
1181             uzder(2,1,1)=-dc_norm(3,i-1)
1182             uzder(3,1,1)= dc_norm(2,i-1) 
1183             uzder(1,2,1)= dc_norm(3,i-1)
1184             uzder(2,2,1)= 0.0d0
1185             uzder(3,2,1)=-dc_norm(1,i-1)
1186             uzder(1,3,1)=-dc_norm(2,i-1)
1187             uzder(2,3,1)= dc_norm(1,i-1)
1188             uzder(3,3,1)= 0.0d0
1189             uzder(1,1,2)= 0.0d0
1190             uzder(2,1,2)= dc_norm(3,i)
1191             uzder(3,1,2)=-dc_norm(2,i) 
1192             uzder(1,2,2)=-dc_norm(3,i)
1193             uzder(2,2,2)= 0.0d0
1194             uzder(3,2,2)= dc_norm(1,i)
1195             uzder(1,3,2)= dc_norm(2,i)
1196             uzder(2,3,2)=-dc_norm(1,i)
1197             uzder(3,3,2)= 0.0d0
1198             endif
1199 C Compute the Y-axis
1200             facy=fac
1201             do k=1,3
1202               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
1203             enddo
1204             if (calc_grad) then
1205 C Compute the derivatives of uy
1206             do j=1,3
1207               do k=1,3
1208                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
1209      &                        -dc_norm(k,i)*dc_norm(j,i-1)
1210                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1211               enddo
1212               uyder(j,j,1)=uyder(j,j,1)-costh
1213               uyder(j,j,2)=1.0d0+uyder(j,j,2)
1214             enddo
1215             do j=1,2
1216               do k=1,3
1217                 do l=1,3
1218                   uygrad(l,k,j,i)=uyder(l,k,j)
1219                   uzgrad(l,k,j,i)=uzder(l,k,j)
1220                 enddo
1221               enddo
1222             enddo 
1223             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1224             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1225             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1226             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1227             endif
1228           else
1229 C Other residues
1230 C Compute the Z-axis
1231             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
1232             costh=dcos(pi-theta(i+2))
1233             fac=1.0d0/dsqrt(1.0d0-costh*costh)
1234             do k=1,3
1235               uz(k,i)=fac*uz(k,i)
1236             enddo
1237             if (calc_grad) then
1238 C Compute the derivatives of uz
1239             uzder(1,1,1)= 0.0d0
1240             uzder(2,1,1)=-dc_norm(3,i+1)
1241             uzder(3,1,1)= dc_norm(2,i+1) 
1242             uzder(1,2,1)= dc_norm(3,i+1)
1243             uzder(2,2,1)= 0.0d0
1244             uzder(3,2,1)=-dc_norm(1,i+1)
1245             uzder(1,3,1)=-dc_norm(2,i+1)
1246             uzder(2,3,1)= dc_norm(1,i+1)
1247             uzder(3,3,1)= 0.0d0
1248             uzder(1,1,2)= 0.0d0
1249             uzder(2,1,2)= dc_norm(3,i)
1250             uzder(3,1,2)=-dc_norm(2,i) 
1251             uzder(1,2,2)=-dc_norm(3,i)
1252             uzder(2,2,2)= 0.0d0
1253             uzder(3,2,2)= dc_norm(1,i)
1254             uzder(1,3,2)= dc_norm(2,i)
1255             uzder(2,3,2)=-dc_norm(1,i)
1256             uzder(3,3,2)= 0.0d0
1257             endif
1258 C Compute the Y-axis
1259             facy=fac
1260             do k=1,3
1261               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1262             enddo
1263             if (calc_grad) then
1264 C Compute the derivatives of uy
1265             do j=1,3
1266               do k=1,3
1267                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
1268      &                        -dc_norm(k,i)*dc_norm(j,i+1)
1269                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1270               enddo
1271               uyder(j,j,1)=uyder(j,j,1)-costh
1272               uyder(j,j,2)=1.0d0+uyder(j,j,2)
1273             enddo
1274             do j=1,2
1275               do k=1,3
1276                 do l=1,3
1277                   uygrad(l,k,j,i)=uyder(l,k,j)
1278                   uzgrad(l,k,j,i)=uzder(l,k,j)
1279                 enddo
1280               enddo
1281             enddo 
1282             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1283             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1284             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1285             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1286           endif
1287           endif
1288       enddo
1289       if (calc_grad) then
1290       do i=1,nres-1
1291         vbld_inv_temp(1)=vbld_inv(i+1)
1292         if (i.lt.nres-1) then
1293           vbld_inv_temp(2)=vbld_inv(i+2)
1294         else
1295           vbld_inv_temp(2)=vbld_inv(i)
1296         endif
1297         do j=1,2
1298           do k=1,3
1299             do l=1,3
1300               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
1301               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
1302             enddo
1303           enddo
1304         enddo
1305       enddo
1306       endif
1307       return
1308       end
1309 C-----------------------------------------------------------------------------
1310       subroutine vec_and_deriv_test
1311       implicit real*8 (a-h,o-z)
1312       include 'DIMENSIONS'
1313       include 'DIMENSIONS.ZSCOPT'
1314       include 'COMMON.IOUNITS'
1315       include 'COMMON.GEO'
1316       include 'COMMON.VAR'
1317       include 'COMMON.LOCAL'
1318       include 'COMMON.CHAIN'
1319       include 'COMMON.VECTORS'
1320       dimension uyder(3,3,2),uzder(3,3,2)
1321 C Compute the local reference systems. For reference system (i), the
1322 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
1323 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
1324       do i=1,nres-1
1325           if (i.eq.nres-1) then
1326 C Case of the last full residue
1327 C Compute the Z-axis
1328             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
1329             costh=dcos(pi-theta(nres))
1330             fac=1.0d0/dsqrt(1.0d0-costh*costh)
1331 c            write (iout,*) 'fac',fac,
1332 c     &        1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1333             fac=1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1334             do k=1,3
1335               uz(k,i)=fac*uz(k,i)
1336             enddo
1337 C Compute the derivatives of uz
1338             uzder(1,1,1)= 0.0d0
1339             uzder(2,1,1)=-dc_norm(3,i-1)
1340             uzder(3,1,1)= dc_norm(2,i-1) 
1341             uzder(1,2,1)= dc_norm(3,i-1)
1342             uzder(2,2,1)= 0.0d0
1343             uzder(3,2,1)=-dc_norm(1,i-1)
1344             uzder(1,3,1)=-dc_norm(2,i-1)
1345             uzder(2,3,1)= dc_norm(1,i-1)
1346             uzder(3,3,1)= 0.0d0
1347             uzder(1,1,2)= 0.0d0
1348             uzder(2,1,2)= dc_norm(3,i)
1349             uzder(3,1,2)=-dc_norm(2,i) 
1350             uzder(1,2,2)=-dc_norm(3,i)
1351             uzder(2,2,2)= 0.0d0
1352             uzder(3,2,2)= dc_norm(1,i)
1353             uzder(1,3,2)= dc_norm(2,i)
1354             uzder(2,3,2)=-dc_norm(1,i)
1355             uzder(3,3,2)= 0.0d0
1356 C Compute the Y-axis
1357             do k=1,3
1358               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
1359             enddo
1360             facy=fac
1361             facy=1.0d0/dsqrt(scalar(dc_norm(1,i),dc_norm(1,i))*
1362      &       (scalar(dc_norm(1,i-1),dc_norm(1,i-1))**2-
1363      &        scalar(dc_norm(1,i),dc_norm(1,i-1))**2))
1364             do k=1,3
1365 c              uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1366               uy(k,i)=
1367 c     &        facy*(
1368      &        dc_norm(k,i-1)*scalar(dc_norm(1,i),dc_norm(1,i))
1369      &        -scalar(dc_norm(1,i),dc_norm(1,i-1))*dc_norm(k,i)
1370 c     &        )
1371             enddo
1372 c            write (iout,*) 'facy',facy,
1373 c     &       1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1374             facy=1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1375             do k=1,3
1376               uy(k,i)=facy*uy(k,i)
1377             enddo
1378 C Compute the derivatives of uy
1379             do j=1,3
1380               do k=1,3
1381                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
1382      &                        -dc_norm(k,i)*dc_norm(j,i-1)
1383                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1384               enddo
1385 c              uyder(j,j,1)=uyder(j,j,1)-costh
1386 c              uyder(j,j,2)=1.0d0+uyder(j,j,2)
1387               uyder(j,j,1)=uyder(j,j,1)
1388      &          -scalar(dc_norm(1,i),dc_norm(1,i-1))
1389               uyder(j,j,2)=scalar(dc_norm(1,i),dc_norm(1,i))
1390      &          +uyder(j,j,2)
1391             enddo
1392             do j=1,2
1393               do k=1,3
1394                 do l=1,3
1395                   uygrad(l,k,j,i)=uyder(l,k,j)
1396                   uzgrad(l,k,j,i)=uzder(l,k,j)
1397                 enddo
1398               enddo
1399             enddo 
1400             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1401             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1402             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1403             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1404           else
1405 C Other residues
1406 C Compute the Z-axis
1407             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
1408             costh=dcos(pi-theta(i+2))
1409             fac=1.0d0/dsqrt(1.0d0-costh*costh)
1410             fac=1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1411             do k=1,3
1412               uz(k,i)=fac*uz(k,i)
1413             enddo
1414 C Compute the derivatives of uz
1415             uzder(1,1,1)= 0.0d0
1416             uzder(2,1,1)=-dc_norm(3,i+1)
1417             uzder(3,1,1)= dc_norm(2,i+1) 
1418             uzder(1,2,1)= dc_norm(3,i+1)
1419             uzder(2,2,1)= 0.0d0
1420             uzder(3,2,1)=-dc_norm(1,i+1)
1421             uzder(1,3,1)=-dc_norm(2,i+1)
1422             uzder(2,3,1)= dc_norm(1,i+1)
1423             uzder(3,3,1)= 0.0d0
1424             uzder(1,1,2)= 0.0d0
1425             uzder(2,1,2)= dc_norm(3,i)
1426             uzder(3,1,2)=-dc_norm(2,i) 
1427             uzder(1,2,2)=-dc_norm(3,i)
1428             uzder(2,2,2)= 0.0d0
1429             uzder(3,2,2)= dc_norm(1,i)
1430             uzder(1,3,2)= dc_norm(2,i)
1431             uzder(2,3,2)=-dc_norm(1,i)
1432             uzder(3,3,2)= 0.0d0
1433 C Compute the Y-axis
1434             facy=fac
1435             facy=1.0d0/dsqrt(scalar(dc_norm(1,i),dc_norm(1,i))*
1436      &       (scalar(dc_norm(1,i+1),dc_norm(1,i+1))**2-
1437      &        scalar(dc_norm(1,i),dc_norm(1,i+1))**2))
1438             do k=1,3
1439 c              uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1440               uy(k,i)=
1441 c     &        facy*(
1442      &        dc_norm(k,i+1)*scalar(dc_norm(1,i),dc_norm(1,i))
1443      &        -scalar(dc_norm(1,i),dc_norm(1,i+1))*dc_norm(k,i)
1444 c     &        )
1445             enddo
1446 c            write (iout,*) 'facy',facy,
1447 c     &       1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1448             facy=1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1449             do k=1,3
1450               uy(k,i)=facy*uy(k,i)
1451             enddo
1452 C Compute the derivatives of uy
1453             do j=1,3
1454               do k=1,3
1455                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
1456      &                        -dc_norm(k,i)*dc_norm(j,i+1)
1457                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1458               enddo
1459 c              uyder(j,j,1)=uyder(j,j,1)-costh
1460 c              uyder(j,j,2)=1.0d0+uyder(j,j,2)
1461               uyder(j,j,1)=uyder(j,j,1)
1462      &          -scalar(dc_norm(1,i),dc_norm(1,i+1))
1463               uyder(j,j,2)=scalar(dc_norm(1,i),dc_norm(1,i))
1464      &          +uyder(j,j,2)
1465             enddo
1466             do j=1,2
1467               do k=1,3
1468                 do l=1,3
1469                   uygrad(l,k,j,i)=uyder(l,k,j)
1470                   uzgrad(l,k,j,i)=uzder(l,k,j)
1471                 enddo
1472               enddo
1473             enddo 
1474             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1475             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1476             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1477             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1478           endif
1479       enddo
1480       do i=1,nres-1
1481         do j=1,2
1482           do k=1,3
1483             do l=1,3
1484               uygrad(l,k,j,i)=vblinv*uygrad(l,k,j,i)
1485               uzgrad(l,k,j,i)=vblinv*uzgrad(l,k,j,i)
1486             enddo
1487           enddo
1488         enddo
1489       enddo
1490       return
1491       end
1492 C-----------------------------------------------------------------------------
1493       subroutine check_vecgrad
1494       implicit real*8 (a-h,o-z)
1495       include 'DIMENSIONS'
1496       include 'DIMENSIONS.ZSCOPT'
1497       include 'COMMON.IOUNITS'
1498       include 'COMMON.GEO'
1499       include 'COMMON.VAR'
1500       include 'COMMON.LOCAL'
1501       include 'COMMON.CHAIN'
1502       include 'COMMON.VECTORS'
1503       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
1504       dimension uyt(3,maxres),uzt(3,maxres)
1505       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
1506       double precision delta /1.0d-7/
1507       call vec_and_deriv
1508 cd      do i=1,nres
1509 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
1510 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
1511 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
1512 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
1513 cd     &     (dc_norm(if90,i),if90=1,3)
1514 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
1515 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
1516 cd          write(iout,'(a)')
1517 cd      enddo
1518       do i=1,nres
1519         do j=1,2
1520           do k=1,3
1521             do l=1,3
1522               uygradt(l,k,j,i)=uygrad(l,k,j,i)
1523               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
1524             enddo
1525           enddo
1526         enddo
1527       enddo
1528       call vec_and_deriv
1529       do i=1,nres
1530         do j=1,3
1531           uyt(j,i)=uy(j,i)
1532           uzt(j,i)=uz(j,i)
1533         enddo
1534       enddo
1535       do i=1,nres
1536 cd        write (iout,*) 'i=',i
1537         do k=1,3
1538           erij(k)=dc_norm(k,i)
1539         enddo
1540         do j=1,3
1541           do k=1,3
1542             dc_norm(k,i)=erij(k)
1543           enddo
1544           dc_norm(j,i)=dc_norm(j,i)+delta
1545 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
1546 c          do k=1,3
1547 c            dc_norm(k,i)=dc_norm(k,i)/fac
1548 c          enddo
1549 c          write (iout,*) (dc_norm(k,i),k=1,3)
1550 c          write (iout,*) (erij(k),k=1,3)
1551           call vec_and_deriv
1552           do k=1,3
1553             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
1554             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
1555             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
1556             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
1557           enddo 
1558 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
1559 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
1560 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
1561         enddo
1562         do k=1,3
1563           dc_norm(k,i)=erij(k)
1564         enddo
1565 cd        do k=1,3
1566 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
1567 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
1568 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
1569 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
1570 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
1571 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
1572 cd          write (iout,'(a)')
1573 cd        enddo
1574       enddo
1575       return
1576       end
1577 C--------------------------------------------------------------------------
1578       subroutine set_matrices
1579       implicit real*8 (a-h,o-z)
1580       include 'DIMENSIONS'
1581       include 'DIMENSIONS.ZSCOPT'
1582       include 'COMMON.IOUNITS'
1583       include 'COMMON.GEO'
1584       include 'COMMON.VAR'
1585       include 'COMMON.LOCAL'
1586       include 'COMMON.CHAIN'
1587       include 'COMMON.DERIV'
1588       include 'COMMON.INTERACT'
1589       include 'COMMON.CONTACTS'
1590       include 'COMMON.TORSION'
1591       include 'COMMON.VECTORS'
1592       include 'COMMON.FFIELD'
1593       double precision auxvec(2),auxmat(2,2)
1594 C
1595 C Compute the virtual-bond-torsional-angle dependent quantities needed
1596 C to calculate the el-loc multibody terms of various order.
1597 C
1598       do i=3,nres+1
1599         if (i .lt. nres+1) then
1600           sin1=dsin(phi(i))
1601           cos1=dcos(phi(i))
1602           sintab(i-2)=sin1
1603           costab(i-2)=cos1
1604           obrot(1,i-2)=cos1
1605           obrot(2,i-2)=sin1
1606           sin2=dsin(2*phi(i))
1607           cos2=dcos(2*phi(i))
1608           sintab2(i-2)=sin2
1609           costab2(i-2)=cos2
1610           obrot2(1,i-2)=cos2
1611           obrot2(2,i-2)=sin2
1612           Ug(1,1,i-2)=-cos1
1613           Ug(1,2,i-2)=-sin1
1614           Ug(2,1,i-2)=-sin1
1615           Ug(2,2,i-2)= cos1
1616           Ug2(1,1,i-2)=-cos2
1617           Ug2(1,2,i-2)=-sin2
1618           Ug2(2,1,i-2)=-sin2
1619           Ug2(2,2,i-2)= cos2
1620         else
1621           costab(i-2)=1.0d0
1622           sintab(i-2)=0.0d0
1623           obrot(1,i-2)=1.0d0
1624           obrot(2,i-2)=0.0d0
1625           obrot2(1,i-2)=0.0d0
1626           obrot2(2,i-2)=0.0d0
1627           Ug(1,1,i-2)=1.0d0
1628           Ug(1,2,i-2)=0.0d0
1629           Ug(2,1,i-2)=0.0d0
1630           Ug(2,2,i-2)=1.0d0
1631           Ug2(1,1,i-2)=0.0d0
1632           Ug2(1,2,i-2)=0.0d0
1633           Ug2(2,1,i-2)=0.0d0
1634           Ug2(2,2,i-2)=0.0d0
1635         endif
1636         if (i .gt. 3 .and. i .lt. nres+1) then
1637           obrot_der(1,i-2)=-sin1
1638           obrot_der(2,i-2)= cos1
1639           Ugder(1,1,i-2)= sin1
1640           Ugder(1,2,i-2)=-cos1
1641           Ugder(2,1,i-2)=-cos1
1642           Ugder(2,2,i-2)=-sin1
1643           dwacos2=cos2+cos2
1644           dwasin2=sin2+sin2
1645           obrot2_der(1,i-2)=-dwasin2
1646           obrot2_der(2,i-2)= dwacos2
1647           Ug2der(1,1,i-2)= dwasin2
1648           Ug2der(1,2,i-2)=-dwacos2
1649           Ug2der(2,1,i-2)=-dwacos2
1650           Ug2der(2,2,i-2)=-dwasin2
1651         else
1652           obrot_der(1,i-2)=0.0d0
1653           obrot_der(2,i-2)=0.0d0
1654           Ugder(1,1,i-2)=0.0d0
1655           Ugder(1,2,i-2)=0.0d0
1656           Ugder(2,1,i-2)=0.0d0
1657           Ugder(2,2,i-2)=0.0d0
1658           obrot2_der(1,i-2)=0.0d0
1659           obrot2_der(2,i-2)=0.0d0
1660           Ug2der(1,1,i-2)=0.0d0
1661           Ug2der(1,2,i-2)=0.0d0
1662           Ug2der(2,1,i-2)=0.0d0
1663           Ug2der(2,2,i-2)=0.0d0
1664         endif
1665         if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
1666           iti = itortyp(itype(i-2))
1667         else
1668           iti=ntortyp+1
1669         endif
1670         if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
1671           iti1 = itortyp(itype(i-1))
1672         else
1673           iti1=ntortyp+1
1674         endif
1675 cd        write (iout,*) '*******i',i,' iti1',iti
1676 cd        write (iout,*) 'b1',b1(:,iti)
1677 cd        write (iout,*) 'b2',b2(:,iti)
1678 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
1679         if (i .gt. iatel_s+2) then
1680           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
1681           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
1682           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
1683           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
1684           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
1685           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
1686           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
1687         else
1688           do k=1,2
1689             Ub2(k,i-2)=0.0d0
1690             Ctobr(k,i-2)=0.0d0 
1691             Dtobr2(k,i-2)=0.0d0
1692             do l=1,2
1693               EUg(l,k,i-2)=0.0d0
1694               CUg(l,k,i-2)=0.0d0
1695               DUg(l,k,i-2)=0.0d0
1696               DtUg2(l,k,i-2)=0.0d0
1697             enddo
1698           enddo
1699         endif
1700         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
1701         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
1702         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
1703         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
1704         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
1705         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
1706         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
1707         do k=1,2
1708           muder(k,i-2)=Ub2der(k,i-2)
1709         enddo
1710         if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
1711           iti1 = itortyp(itype(i-1))
1712         else
1713           iti1=ntortyp+1
1714         endif
1715         do k=1,2
1716           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
1717         enddo
1718 C Vectors and matrices dependent on a single virtual-bond dihedral.
1719         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
1720         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
1721         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
1722         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
1723         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
1724         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
1725         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
1726         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
1727         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
1728 cd        write (iout,*) 'i',i,' mu ',(mu(k,i-2),k=1,2),
1729 cd     &  ' mu1',(b1(k,i-2),k=1,2),' mu2',(Ub2(k,i-2),k=1,2)
1730       enddo
1731 C Matrices dependent on two consecutive virtual-bond dihedrals.
1732 C The order of matrices is from left to right.
1733       do i=2,nres-1
1734         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
1735         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
1736         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
1737         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
1738         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
1739         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
1740         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
1741         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
1742       enddo
1743 cd      do i=1,nres
1744 cd        iti = itortyp(itype(i))
1745 cd        write (iout,*) i
1746 cd        do j=1,2
1747 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
1748 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
1749 cd        enddo
1750 cd      enddo
1751       return
1752       end
1753 C--------------------------------------------------------------------------
1754       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
1755 C
1756 C This subroutine calculates the average interaction energy and its gradient
1757 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
1758 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
1759 C The potential depends both on the distance of peptide-group centers and on 
1760 C the orientation of the CA-CA virtual bonds.
1761
1762       implicit real*8 (a-h,o-z)
1763       include 'DIMENSIONS'
1764       include 'DIMENSIONS.ZSCOPT'
1765       include 'COMMON.CONTROL'
1766       include 'COMMON.IOUNITS'
1767       include 'COMMON.GEO'
1768       include 'COMMON.VAR'
1769       include 'COMMON.LOCAL'
1770       include 'COMMON.CHAIN'
1771       include 'COMMON.DERIV'
1772       include 'COMMON.INTERACT'
1773       include 'COMMON.CONTACTS'
1774       include 'COMMON.TORSION'
1775       include 'COMMON.VECTORS'
1776       include 'COMMON.FFIELD'
1777       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
1778      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
1779       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
1780      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
1781       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1
1782 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
1783       double precision scal_el /0.5d0/
1784 C 12/13/98 
1785 C 13-go grudnia roku pamietnego... 
1786       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
1787      &                   0.0d0,1.0d0,0.0d0,
1788      &                   0.0d0,0.0d0,1.0d0/
1789 cd      write(iout,*) 'In EELEC'
1790 cd      do i=1,nloctyp
1791 cd        write(iout,*) 'Type',i
1792 cd        write(iout,*) 'B1',B1(:,i)
1793 cd        write(iout,*) 'B2',B2(:,i)
1794 cd        write(iout,*) 'CC',CC(:,:,i)
1795 cd        write(iout,*) 'DD',DD(:,:,i)
1796 cd        write(iout,*) 'EE',EE(:,:,i)
1797 cd      enddo
1798 cd      call check_vecgrad
1799 cd      stop
1800       if (icheckgrad.eq.1) then
1801         do i=1,nres-1
1802           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
1803           do k=1,3
1804             dc_norm(k,i)=dc(k,i)*fac
1805           enddo
1806 c          write (iout,*) 'i',i,' fac',fac
1807         enddo
1808       endif
1809       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
1810      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
1811      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
1812 cd      if (wel_loc.gt.0.0d0) then
1813         if (icheckgrad.eq.1) then
1814         call vec_and_deriv_test
1815         else
1816         call vec_and_deriv
1817         endif
1818         call set_matrices
1819       endif
1820 cd      do i=1,nres-1
1821 cd        write (iout,*) 'i=',i
1822 cd        do k=1,3
1823 cd          write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
1824 cd        enddo
1825 cd        do k=1,3
1826 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
1827 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
1828 cd        enddo
1829 cd      enddo
1830       num_conti_hb=0
1831       ees=0.0D0
1832       evdw1=0.0D0
1833       eel_loc=0.0d0 
1834       eello_turn3=0.0d0
1835       eello_turn4=0.0d0
1836       ind=0
1837       do i=1,nres
1838         num_cont_hb(i)=0
1839       enddo
1840 cd      print '(a)','Enter EELEC'
1841 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
1842       do i=1,nres
1843         gel_loc_loc(i)=0.0d0
1844         gcorr_loc(i)=0.0d0
1845       enddo
1846       do i=iatel_s,iatel_e
1847         if (itel(i).eq.0) goto 1215
1848         dxi=dc(1,i)
1849         dyi=dc(2,i)
1850         dzi=dc(3,i)
1851         dx_normi=dc_norm(1,i)
1852         dy_normi=dc_norm(2,i)
1853         dz_normi=dc_norm(3,i)
1854         xmedi=c(1,i)+0.5d0*dxi
1855         ymedi=c(2,i)+0.5d0*dyi
1856         zmedi=c(3,i)+0.5d0*dzi
1857         num_conti=0
1858 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
1859         do j=ielstart(i),ielend(i)
1860           if (itel(j).eq.0) goto 1216
1861           ind=ind+1
1862           iteli=itel(i)
1863           itelj=itel(j)
1864           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
1865           aaa=app(iteli,itelj)
1866           bbb=bpp(iteli,itelj)
1867 C Diagnostics only!!!
1868 c         aaa=0.0D0
1869 c         bbb=0.0D0
1870 c         ael6i=0.0D0
1871 c         ael3i=0.0D0
1872 C End diagnostics
1873           ael6i=ael6(iteli,itelj)
1874           ael3i=ael3(iteli,itelj) 
1875           dxj=dc(1,j)
1876           dyj=dc(2,j)
1877           dzj=dc(3,j)
1878           dx_normj=dc_norm(1,j)
1879           dy_normj=dc_norm(2,j)
1880           dz_normj=dc_norm(3,j)
1881           xj=c(1,j)+0.5D0*dxj-xmedi
1882           yj=c(2,j)+0.5D0*dyj-ymedi
1883           zj=c(3,j)+0.5D0*dzj-zmedi
1884           rij=xj*xj+yj*yj+zj*zj
1885           rrmij=1.0D0/rij
1886           rij=dsqrt(rij)
1887           rmij=1.0D0/rij
1888           r3ij=rrmij*rmij
1889           r6ij=r3ij*r3ij  
1890           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
1891           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
1892           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
1893           fac=cosa-3.0D0*cosb*cosg
1894           ev1=aaa*r6ij*r6ij
1895 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
1896           if (j.eq.i+2) ev1=scal_el*ev1
1897           ev2=bbb*r6ij
1898           fac3=ael6i*r6ij
1899           fac4=ael3i*r3ij
1900           evdwij=ev1+ev2
1901           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
1902           el2=fac4*fac       
1903           eesij=el1+el2
1904 c          write (iout,*) "i",i,iteli," j",j,itelj," eesij",eesij
1905 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
1906           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
1907           ees=ees+eesij
1908           evdw1=evdw1+evdwij
1909 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
1910 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
1911 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
1912 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
1913 C
1914 C Calculate contributions to the Cartesian gradient.
1915 C
1916 #ifdef SPLITELE
1917           facvdw=-6*rrmij*(ev1+evdwij) 
1918           facel=-3*rrmij*(el1+eesij)
1919           fac1=fac
1920           erij(1)=xj*rmij
1921           erij(2)=yj*rmij
1922           erij(3)=zj*rmij
1923           if (calc_grad) then
1924 *
1925 * Radial derivatives. First process both termini of the fragment (i,j)
1926
1927           ggg(1)=facel*xj
1928           ggg(2)=facel*yj
1929           ggg(3)=facel*zj
1930           do k=1,3
1931             ghalf=0.5D0*ggg(k)
1932             gelc(k,i)=gelc(k,i)+ghalf
1933             gelc(k,j)=gelc(k,j)+ghalf
1934           enddo
1935 *
1936 * Loop over residues i+1 thru j-1.
1937 *
1938           do k=i+1,j-1
1939             do l=1,3
1940               gelc(l,k)=gelc(l,k)+ggg(l)
1941             enddo
1942           enddo
1943           ggg(1)=facvdw*xj
1944           ggg(2)=facvdw*yj
1945           ggg(3)=facvdw*zj
1946           do k=1,3
1947             ghalf=0.5D0*ggg(k)
1948             gvdwpp(k,i)=gvdwpp(k,i)+ghalf
1949             gvdwpp(k,j)=gvdwpp(k,j)+ghalf
1950           enddo
1951 *
1952 * Loop over residues i+1 thru j-1.
1953 *
1954           do k=i+1,j-1
1955             do l=1,3
1956               gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
1957             enddo
1958           enddo
1959 #else
1960           facvdw=ev1+evdwij 
1961           facel=el1+eesij  
1962           fac1=fac
1963           fac=-3*rrmij*(facvdw+facvdw+facel)
1964           erij(1)=xj*rmij
1965           erij(2)=yj*rmij
1966           erij(3)=zj*rmij
1967           if (calc_grad) then
1968 *
1969 * Radial derivatives. First process both termini of the fragment (i,j)
1970
1971           ggg(1)=fac*xj
1972           ggg(2)=fac*yj
1973           ggg(3)=fac*zj
1974           do k=1,3
1975             ghalf=0.5D0*ggg(k)
1976             gelc(k,i)=gelc(k,i)+ghalf
1977             gelc(k,j)=gelc(k,j)+ghalf
1978           enddo
1979 *
1980 * Loop over residues i+1 thru j-1.
1981 *
1982           do k=i+1,j-1
1983             do l=1,3
1984               gelc(l,k)=gelc(l,k)+ggg(l)
1985             enddo
1986           enddo
1987 #endif
1988 *
1989 * Angular part
1990 *          
1991           ecosa=2.0D0*fac3*fac1+fac4
1992           fac4=-3.0D0*fac4
1993           fac3=-6.0D0*fac3
1994           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
1995           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
1996           do k=1,3
1997             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
1998             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
1999           enddo
2000 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
2001 cd   &          (dcosg(k),k=1,3)
2002           do k=1,3
2003             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
2004           enddo
2005           do k=1,3
2006             ghalf=0.5D0*ggg(k)
2007             gelc(k,i)=gelc(k,i)+ghalf
2008      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
2009      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2010             gelc(k,j)=gelc(k,j)+ghalf
2011      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
2012      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2013           enddo
2014           do k=i+1,j-1
2015             do l=1,3
2016               gelc(l,k)=gelc(l,k)+ggg(l)
2017             enddo
2018           enddo
2019           endif
2020
2021           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
2022      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
2023      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
2024 C
2025 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
2026 C   energy of a peptide unit is assumed in the form of a second-order 
2027 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
2028 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
2029 C   are computed for EVERY pair of non-contiguous peptide groups.
2030 C
2031           if (j.lt.nres-1) then
2032             j1=j+1
2033             j2=j-1
2034           else
2035             j1=j-1
2036             j2=j-2
2037           endif
2038           kkk=0
2039           do k=1,2
2040             do l=1,2
2041               kkk=kkk+1
2042               muij(kkk)=mu(k,i)*mu(l,j)
2043             enddo
2044           enddo  
2045 cd         write (iout,*) 'EELEC: i',i,' j',j
2046 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
2047 cd          write(iout,*) 'muij',muij
2048           ury=scalar(uy(1,i),erij)
2049           urz=scalar(uz(1,i),erij)
2050           vry=scalar(uy(1,j),erij)
2051           vrz=scalar(uz(1,j),erij)
2052           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
2053           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
2054           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
2055           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
2056 C For diagnostics only
2057 cd          a22=1.0d0
2058 cd          a23=1.0d0
2059 cd          a32=1.0d0
2060 cd          a33=1.0d0
2061           fac=dsqrt(-ael6i)*r3ij
2062 cd          write (2,*) 'fac=',fac
2063 C For diagnostics only
2064 cd          fac=1.0d0
2065           a22=a22*fac
2066           a23=a23*fac
2067           a32=a32*fac
2068           a33=a33*fac
2069 cd          write (iout,'(4i5,4f10.5)')
2070 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
2071 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
2072 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') (uy(k,i),k=1,3),
2073 cd     &      (uz(k,i),k=1,3),(uy(k,j),k=1,3),(uz(k,j),k=1,3)
2074 cd          write (iout,'(4f10.5)') 
2075 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
2076 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
2077 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
2078 cd           write (iout,'(2i3,9f10.5/)') i,j,
2079 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
2080           if (calc_grad) then
2081 C Derivatives of the elements of A in virtual-bond vectors
2082           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
2083 cd          do k=1,3
2084 cd            do l=1,3
2085 cd              erder(k,l)=0.0d0
2086 cd            enddo
2087 cd          enddo
2088           do k=1,3
2089             uryg(k,1)=scalar(erder(1,k),uy(1,i))
2090             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
2091             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
2092             urzg(k,1)=scalar(erder(1,k),uz(1,i))
2093             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
2094             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
2095             vryg(k,1)=scalar(erder(1,k),uy(1,j))
2096             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
2097             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
2098             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
2099             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
2100             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
2101           enddo
2102 cd          do k=1,3
2103 cd            do l=1,3
2104 cd              uryg(k,l)=0.0d0
2105 cd              urzg(k,l)=0.0d0
2106 cd              vryg(k,l)=0.0d0
2107 cd              vrzg(k,l)=0.0d0
2108 cd            enddo
2109 cd          enddo
2110 C Compute radial contributions to the gradient
2111           facr=-3.0d0*rrmij
2112           a22der=a22*facr
2113           a23der=a23*facr
2114           a32der=a32*facr
2115           a33der=a33*facr
2116 cd          a22der=0.0d0
2117 cd          a23der=0.0d0
2118 cd          a32der=0.0d0
2119 cd          a33der=0.0d0
2120           agg(1,1)=a22der*xj
2121           agg(2,1)=a22der*yj
2122           agg(3,1)=a22der*zj
2123           agg(1,2)=a23der*xj
2124           agg(2,2)=a23der*yj
2125           agg(3,2)=a23der*zj
2126           agg(1,3)=a32der*xj
2127           agg(2,3)=a32der*yj
2128           agg(3,3)=a32der*zj
2129           agg(1,4)=a33der*xj
2130           agg(2,4)=a33der*yj
2131           agg(3,4)=a33der*zj
2132 C Add the contributions coming from er
2133           fac3=-3.0d0*fac
2134           do k=1,3
2135             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
2136             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
2137             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
2138             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
2139           enddo
2140           do k=1,3
2141 C Derivatives in DC(i) 
2142             ghalf1=0.5d0*agg(k,1)
2143             ghalf2=0.5d0*agg(k,2)
2144             ghalf3=0.5d0*agg(k,3)
2145             ghalf4=0.5d0*agg(k,4)
2146             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
2147      &      -3.0d0*uryg(k,2)*vry)+ghalf1
2148             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
2149      &      -3.0d0*uryg(k,2)*vrz)+ghalf2
2150             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
2151      &      -3.0d0*urzg(k,2)*vry)+ghalf3
2152             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
2153      &      -3.0d0*urzg(k,2)*vrz)+ghalf4
2154 C Derivatives in DC(i+1)
2155             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
2156      &      -3.0d0*uryg(k,3)*vry)+agg(k,1)
2157             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
2158      &      -3.0d0*uryg(k,3)*vrz)+agg(k,2)
2159             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
2160      &      -3.0d0*urzg(k,3)*vry)+agg(k,3)
2161             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
2162      &      -3.0d0*urzg(k,3)*vrz)+agg(k,4)
2163 C Derivatives in DC(j)
2164             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
2165      &      -3.0d0*vryg(k,2)*ury)+ghalf1
2166             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
2167      &      -3.0d0*vrzg(k,2)*ury)+ghalf2
2168             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
2169      &      -3.0d0*vryg(k,2)*urz)+ghalf3
2170             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
2171      &      -3.0d0*vrzg(k,2)*urz)+ghalf4
2172 C Derivatives in DC(j+1) or DC(nres-1)
2173             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
2174      &      -3.0d0*vryg(k,3)*ury)
2175             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
2176      &      -3.0d0*vrzg(k,3)*ury)
2177             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
2178      &      -3.0d0*vryg(k,3)*urz)
2179             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
2180      &      -3.0d0*vrzg(k,3)*urz)
2181 cd            aggi(k,1)=ghalf1
2182 cd            aggi(k,2)=ghalf2
2183 cd            aggi(k,3)=ghalf3
2184 cd            aggi(k,4)=ghalf4
2185 C Derivatives in DC(i+1)
2186 cd            aggi1(k,1)=agg(k,1)
2187 cd            aggi1(k,2)=agg(k,2)
2188 cd            aggi1(k,3)=agg(k,3)
2189 cd            aggi1(k,4)=agg(k,4)
2190 C Derivatives in DC(j)
2191 cd            aggj(k,1)=ghalf1
2192 cd            aggj(k,2)=ghalf2
2193 cd            aggj(k,3)=ghalf3
2194 cd            aggj(k,4)=ghalf4
2195 C Derivatives in DC(j+1)
2196 cd            aggj1(k,1)=0.0d0
2197 cd            aggj1(k,2)=0.0d0
2198 cd            aggj1(k,3)=0.0d0
2199 cd            aggj1(k,4)=0.0d0
2200             if (j.eq.nres-1 .and. i.lt.j-2) then
2201               do l=1,4
2202                 aggj1(k,l)=aggj1(k,l)+agg(k,l)
2203 cd                aggj1(k,l)=agg(k,l)
2204               enddo
2205             endif
2206           enddo
2207           endif
2208 c          goto 11111
2209 C Check the loc-el terms by numerical integration
2210           acipa(1,1)=a22
2211           acipa(1,2)=a23
2212           acipa(2,1)=a32
2213           acipa(2,2)=a33
2214           a22=-a22
2215           a23=-a23
2216           do l=1,2
2217             do k=1,3
2218               agg(k,l)=-agg(k,l)
2219               aggi(k,l)=-aggi(k,l)
2220               aggi1(k,l)=-aggi1(k,l)
2221               aggj(k,l)=-aggj(k,l)
2222               aggj1(k,l)=-aggj1(k,l)
2223             enddo
2224           enddo
2225           if (j.lt.nres-1) then
2226             a22=-a22
2227             a32=-a32
2228             do l=1,3,2
2229               do k=1,3
2230                 agg(k,l)=-agg(k,l)
2231                 aggi(k,l)=-aggi(k,l)
2232                 aggi1(k,l)=-aggi1(k,l)
2233                 aggj(k,l)=-aggj(k,l)
2234                 aggj1(k,l)=-aggj1(k,l)
2235               enddo
2236             enddo
2237           else
2238             a22=-a22
2239             a23=-a23
2240             a32=-a32
2241             a33=-a33
2242             do l=1,4
2243               do k=1,3
2244                 agg(k,l)=-agg(k,l)
2245                 aggi(k,l)=-aggi(k,l)
2246                 aggi1(k,l)=-aggi1(k,l)
2247                 aggj(k,l)=-aggj(k,l)
2248                 aggj1(k,l)=-aggj1(k,l)
2249               enddo
2250             enddo 
2251           endif    
2252           ENDIF ! WCORR
2253 11111     continue
2254           IF (wel_loc.gt.0.0d0) THEN
2255 C Contribution to the local-electrostatic energy coming from the i-j pair
2256           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
2257      &     +a33*muij(4)
2258 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
2259 cd          write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
2260           eel_loc=eel_loc+eel_loc_ij
2261 C Partial derivatives in virtual-bond dihedral angles gamma
2262           if (calc_grad) then
2263           if (i.gt.1)
2264      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
2265      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
2266      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
2267           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
2268      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
2269      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
2270 cd          call checkint3(i,j,mu1,mu2,a22,a23,a32,a33,acipa,eel_loc_ij)
2271 cd          write(iout,*) 'agg  ',agg
2272 cd          write(iout,*) 'aggi ',aggi
2273 cd          write(iout,*) 'aggi1',aggi1
2274 cd          write(iout,*) 'aggj ',aggj
2275 cd          write(iout,*) 'aggj1',aggj1
2276
2277 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
2278           do l=1,3
2279             ggg(l)=agg(l,1)*muij(1)+
2280      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
2281           enddo
2282           do k=i+2,j2
2283             do l=1,3
2284               gel_loc(l,k)=gel_loc(l,k)+ggg(l)
2285             enddo
2286           enddo
2287 C Remaining derivatives of eello
2288           do l=1,3
2289             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
2290      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
2291             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
2292      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
2293             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
2294      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
2295             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
2296      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
2297           enddo
2298           endif
2299           ENDIF
2300           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
2301 C Contributions from turns
2302             a_temp(1,1)=a22
2303             a_temp(1,2)=a23
2304             a_temp(2,1)=a32
2305             a_temp(2,2)=a33
2306             call eturn34(i,j,eello_turn3,eello_turn4)
2307           endif
2308 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
2309           if (j.gt.i+1 .and. num_conti.le.maxconts) then
2310 C
2311 C Calculate the contact function. The ith column of the array JCONT will 
2312 C contain the numbers of atoms that make contacts with the atom I (of numbers
2313 C greater than I). The arrays FACONT and GACONT will contain the values of
2314 C the contact function and its derivative.
2315 c           r0ij=1.02D0*rpp(iteli,itelj)
2316 c           r0ij=1.11D0*rpp(iteli,itelj)
2317             r0ij=2.20D0*rpp(iteli,itelj)
2318 c           r0ij=1.55D0*rpp(iteli,itelj)
2319             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
2320             if (fcont.gt.0.0D0) then
2321               num_conti=num_conti+1
2322               if (num_conti.gt.maxconts) then
2323                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
2324      &                         ' will skip next contacts for this conf.'
2325               else
2326                 jcont_hb(num_conti,i)=j
2327                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
2328      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
2329 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
2330 C  terms.
2331                 d_cont(num_conti,i)=rij
2332 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
2333 C     --- Electrostatic-interaction matrix --- 
2334                 a_chuj(1,1,num_conti,i)=a22
2335                 a_chuj(1,2,num_conti,i)=a23
2336                 a_chuj(2,1,num_conti,i)=a32
2337                 a_chuj(2,2,num_conti,i)=a33
2338 C     --- Gradient of rij
2339                 do kkk=1,3
2340                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
2341                 enddo
2342 c             if (i.eq.1) then
2343 c                a_chuj(1,1,num_conti,i)=-0.61d0
2344 c                a_chuj(1,2,num_conti,i)= 0.4d0
2345 c                a_chuj(2,1,num_conti,i)= 0.65d0
2346 c                a_chuj(2,2,num_conti,i)= 0.50d0
2347 c             else if (i.eq.2) then
2348 c                a_chuj(1,1,num_conti,i)= 0.0d0
2349 c                a_chuj(1,2,num_conti,i)= 0.0d0
2350 c                a_chuj(2,1,num_conti,i)= 0.0d0
2351 c                a_chuj(2,2,num_conti,i)= 0.0d0
2352 c             endif
2353 C     --- and its gradients
2354 cd                write (iout,*) 'i',i,' j',j
2355 cd                do kkk=1,3
2356 cd                write (iout,*) 'iii 1 kkk',kkk
2357 cd                write (iout,*) agg(kkk,:)
2358 cd                enddo
2359 cd                do kkk=1,3
2360 cd                write (iout,*) 'iii 2 kkk',kkk
2361 cd                write (iout,*) aggi(kkk,:)
2362 cd                enddo
2363 cd                do kkk=1,3
2364 cd                write (iout,*) 'iii 3 kkk',kkk
2365 cd                write (iout,*) aggi1(kkk,:)
2366 cd                enddo
2367 cd                do kkk=1,3
2368 cd                write (iout,*) 'iii 4 kkk',kkk
2369 cd                write (iout,*) aggj(kkk,:)
2370 cd                enddo
2371 cd                do kkk=1,3
2372 cd                write (iout,*) 'iii 5 kkk',kkk
2373 cd                write (iout,*) aggj1(kkk,:)
2374 cd                enddo
2375                 kkll=0
2376                 do k=1,2
2377                   do l=1,2
2378                     kkll=kkll+1
2379                     do m=1,3
2380                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
2381                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
2382                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
2383                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
2384                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
2385 c                      do mm=1,5
2386 c                      a_chuj_der(k,l,m,mm,num_conti,i)=0.0d0
2387 c                      enddo
2388                     enddo
2389                   enddo
2390                 enddo
2391                 ENDIF
2392                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
2393 C Calculate contact energies
2394                 cosa4=4.0D0*cosa
2395                 wij=cosa-3.0D0*cosb*cosg
2396                 cosbg1=cosb+cosg
2397                 cosbg2=cosb-cosg
2398 c               fac3=dsqrt(-ael6i)/r0ij**3     
2399                 fac3=dsqrt(-ael6i)*r3ij
2400                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
2401                 ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
2402 c               ees0mij=0.0D0
2403                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
2404                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
2405 C Diagnostics. Comment out or remove after debugging!
2406 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
2407 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
2408 c               ees0m(num_conti,i)=0.0D0
2409 C End diagnostics.
2410 c                write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
2411 c     & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
2412                 facont_hb(num_conti,i)=fcont
2413                 if (calc_grad) then
2414 C Angular derivatives of the contact function
2415                 ees0pij1=fac3/ees0pij 
2416                 ees0mij1=fac3/ees0mij
2417                 fac3p=-3.0D0*fac3*rrmij
2418                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
2419                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
2420 c               ees0mij1=0.0D0
2421                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
2422                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
2423                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
2424                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
2425                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
2426                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
2427                 ecosap=ecosa1+ecosa2
2428                 ecosbp=ecosb1+ecosb2
2429                 ecosgp=ecosg1+ecosg2
2430                 ecosam=ecosa1-ecosa2
2431                 ecosbm=ecosb1-ecosb2
2432                 ecosgm=ecosg1-ecosg2
2433 C Diagnostics
2434 c               ecosap=ecosa1
2435 c               ecosbp=ecosb1
2436 c               ecosgp=ecosg1
2437 c               ecosam=0.0D0
2438 c               ecosbm=0.0D0
2439 c               ecosgm=0.0D0
2440 C End diagnostics
2441                 fprimcont=fprimcont/rij
2442 cd              facont_hb(num_conti,i)=1.0D0
2443 C Following line is for diagnostics.
2444 cd              fprimcont=0.0D0
2445                 do k=1,3
2446                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
2447                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
2448                 enddo
2449                 do k=1,3
2450                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
2451                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
2452                 enddo
2453                 gggp(1)=gggp(1)+ees0pijp*xj
2454                 gggp(2)=gggp(2)+ees0pijp*yj
2455                 gggp(3)=gggp(3)+ees0pijp*zj
2456                 gggm(1)=gggm(1)+ees0mijp*xj
2457                 gggm(2)=gggm(2)+ees0mijp*yj
2458                 gggm(3)=gggm(3)+ees0mijp*zj
2459 C Derivatives due to the contact function
2460                 gacont_hbr(1,num_conti,i)=fprimcont*xj
2461                 gacont_hbr(2,num_conti,i)=fprimcont*yj
2462                 gacont_hbr(3,num_conti,i)=fprimcont*zj
2463                 do k=1,3
2464                   ghalfp=0.5D0*gggp(k)
2465                   ghalfm=0.5D0*gggm(k)
2466                   gacontp_hb1(k,num_conti,i)=ghalfp
2467      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
2468      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2469                   gacontp_hb2(k,num_conti,i)=ghalfp
2470      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
2471      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2472                   gacontp_hb3(k,num_conti,i)=gggp(k)
2473                   gacontm_hb1(k,num_conti,i)=ghalfm
2474      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
2475      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2476                   gacontm_hb2(k,num_conti,i)=ghalfm
2477      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
2478      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2479                   gacontm_hb3(k,num_conti,i)=gggm(k)
2480                 enddo
2481                 endif
2482 C Diagnostics. Comment out or remove after debugging!
2483 cdiag           do k=1,3
2484 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
2485 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
2486 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
2487 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
2488 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
2489 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
2490 cdiag           enddo
2491               ENDIF ! wcorr
2492               endif  ! num_conti.le.maxconts
2493             endif  ! fcont.gt.0
2494           endif    ! j.gt.i+1
2495  1216     continue
2496         enddo ! j
2497         num_cont_hb(i)=num_conti
2498  1215   continue
2499       enddo   ! i
2500 cd      do i=1,nres
2501 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
2502 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
2503 cd      enddo
2504 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
2505 ccc      eel_loc=eel_loc+eello_turn3
2506       return
2507       end
2508 C-----------------------------------------------------------------------------
2509       subroutine eturn34(i,j,eello_turn3,eello_turn4)
2510 C Third- and fourth-order contributions from turns
2511       implicit real*8 (a-h,o-z)
2512       include 'DIMENSIONS'
2513       include 'DIMENSIONS.ZSCOPT'
2514       include 'COMMON.IOUNITS'
2515       include 'COMMON.GEO'
2516       include 'COMMON.VAR'
2517       include 'COMMON.LOCAL'
2518       include 'COMMON.CHAIN'
2519       include 'COMMON.DERIV'
2520       include 'COMMON.INTERACT'
2521       include 'COMMON.CONTACTS'
2522       include 'COMMON.TORSION'
2523       include 'COMMON.VECTORS'
2524       include 'COMMON.FFIELD'
2525       dimension ggg(3)
2526       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
2527      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
2528      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
2529       double precision agg(3,4),aggi(3,4),aggi1(3,4),
2530      &    aggj(3,4),aggj1(3,4),a_temp(2,2)
2531       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1,j2
2532       if (j.eq.i+2) then
2533 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2534 C
2535 C               Third-order contributions
2536 C        
2537 C                 (i+2)o----(i+3)
2538 C                      | |
2539 C                      | |
2540 C                 (i+1)o----i
2541 C
2542 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
2543 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
2544         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
2545         call transpose2(auxmat(1,1),auxmat1(1,1))
2546         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2547         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
2548 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
2549 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
2550 cd     &    ' eello_turn3_num',4*eello_turn3_num
2551         if (calc_grad) then
2552 C Derivatives in gamma(i)
2553         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
2554         call transpose2(auxmat2(1,1),pizda(1,1))
2555         call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
2556         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
2557 C Derivatives in gamma(i+1)
2558         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
2559         call transpose2(auxmat2(1,1),pizda(1,1))
2560         call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
2561         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
2562      &    +0.5d0*(pizda(1,1)+pizda(2,2))
2563 C Cartesian derivatives
2564         do l=1,3
2565           a_temp(1,1)=aggi(l,1)
2566           a_temp(1,2)=aggi(l,2)
2567           a_temp(2,1)=aggi(l,3)
2568           a_temp(2,2)=aggi(l,4)
2569           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2570           gcorr3_turn(l,i)=gcorr3_turn(l,i)
2571      &      +0.5d0*(pizda(1,1)+pizda(2,2))
2572           a_temp(1,1)=aggi1(l,1)
2573           a_temp(1,2)=aggi1(l,2)
2574           a_temp(2,1)=aggi1(l,3)
2575           a_temp(2,2)=aggi1(l,4)
2576           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2577           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
2578      &      +0.5d0*(pizda(1,1)+pizda(2,2))
2579           a_temp(1,1)=aggj(l,1)
2580           a_temp(1,2)=aggj(l,2)
2581           a_temp(2,1)=aggj(l,3)
2582           a_temp(2,2)=aggj(l,4)
2583           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2584           gcorr3_turn(l,j)=gcorr3_turn(l,j)
2585      &      +0.5d0*(pizda(1,1)+pizda(2,2))
2586           a_temp(1,1)=aggj1(l,1)
2587           a_temp(1,2)=aggj1(l,2)
2588           a_temp(2,1)=aggj1(l,3)
2589           a_temp(2,2)=aggj1(l,4)
2590           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2591           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
2592      &      +0.5d0*(pizda(1,1)+pizda(2,2))
2593         enddo
2594         endif
2595       else if (j.eq.i+3) then
2596 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2597 C
2598 C               Fourth-order contributions
2599 C        
2600 C                 (i+3)o----(i+4)
2601 C                     /  |
2602 C               (i+2)o   |
2603 C                     \  |
2604 C                 (i+1)o----i
2605 C
2606 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
2607 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
2608         iti1=itortyp(itype(i+1))
2609         iti2=itortyp(itype(i+2))
2610         iti3=itortyp(itype(i+3))
2611         call transpose2(EUg(1,1,i+1),e1t(1,1))
2612         call transpose2(Eug(1,1,i+2),e2t(1,1))
2613         call transpose2(Eug(1,1,i+3),e3t(1,1))
2614         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2615         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2616         s1=scalar2(b1(1,iti2),auxvec(1))
2617         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2618         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2619         s2=scalar2(b1(1,iti1),auxvec(1))
2620         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2621         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2622         s3=0.5d0*(pizda(1,1)+pizda(2,2))
2623         eello_turn4=eello_turn4-(s1+s2+s3)
2624 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
2625 cd     &    ' eello_turn4_num',8*eello_turn4_num
2626 C Derivatives in gamma(i)
2627         if (calc_grad) then
2628         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
2629         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
2630         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
2631         s1=scalar2(b1(1,iti2),auxvec(1))
2632         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
2633         s3=0.5d0*(pizda(1,1)+pizda(2,2))
2634         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
2635 C Derivatives in gamma(i+1)
2636         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
2637         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
2638         s2=scalar2(b1(1,iti1),auxvec(1))
2639         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
2640         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
2641         s3=0.5d0*(pizda(1,1)+pizda(2,2))
2642         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
2643 C Derivatives in gamma(i+2)
2644         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
2645         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
2646         s1=scalar2(b1(1,iti2),auxvec(1))
2647         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
2648         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
2649         s2=scalar2(b1(1,iti1),auxvec(1))
2650         call matmat2(auxmat(1,1),e2t(1,1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
2652         s3=0.5d0*(pizda(1,1)+pizda(2,2))
2653         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
2654 C Cartesian derivatives
2655 C Derivatives of this turn contributions in DC(i+2)
2656         if (j.lt.nres-1) then
2657           do l=1,3
2658             a_temp(1,1)=agg(l,1)
2659             a_temp(1,2)=agg(l,2)
2660             a_temp(2,1)=agg(l,3)
2661             a_temp(2,2)=agg(l,4)
2662             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2663             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2664             s1=scalar2(b1(1,iti2),auxvec(1))
2665             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2666             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2667             s2=scalar2(b1(1,iti1),auxvec(1))
2668             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2669             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2670             s3=0.5d0*(pizda(1,1)+pizda(2,2))
2671             ggg(l)=-(s1+s2+s3)
2672             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
2673           enddo
2674         endif
2675 C Remaining derivatives of this turn contribution
2676         do l=1,3
2677           a_temp(1,1)=aggi(l,1)
2678           a_temp(1,2)=aggi(l,2)
2679           a_temp(2,1)=aggi(l,3)
2680           a_temp(2,2)=aggi(l,4)
2681           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2682           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2683           s1=scalar2(b1(1,iti2),auxvec(1))
2684           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2685           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2686           s2=scalar2(b1(1,iti1),auxvec(1))
2687           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2688           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2689           s3=0.5d0*(pizda(1,1)+pizda(2,2))
2690           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
2691           a_temp(1,1)=aggi1(l,1)
2692           a_temp(1,2)=aggi1(l,2)
2693           a_temp(2,1)=aggi1(l,3)
2694           a_temp(2,2)=aggi1(l,4)
2695           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2696           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2697           s1=scalar2(b1(1,iti2),auxvec(1))
2698           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2699           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2700           s2=scalar2(b1(1,iti1),auxvec(1))
2701           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2702           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2703           s3=0.5d0*(pizda(1,1)+pizda(2,2))
2704           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
2705           a_temp(1,1)=aggj(l,1)
2706           a_temp(1,2)=aggj(l,2)
2707           a_temp(2,1)=aggj(l,3)
2708           a_temp(2,2)=aggj(l,4)
2709           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2710           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2711           s1=scalar2(b1(1,iti2),auxvec(1))
2712           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2713           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2714           s2=scalar2(b1(1,iti1),auxvec(1))
2715           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2716           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2717           s3=0.5d0*(pizda(1,1)+pizda(2,2))
2718           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
2719           a_temp(1,1)=aggj1(l,1)
2720           a_temp(1,2)=aggj1(l,2)
2721           a_temp(2,1)=aggj1(l,3)
2722           a_temp(2,2)=aggj1(l,4)
2723           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2724           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2725           s1=scalar2(b1(1,iti2),auxvec(1))
2726           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2727           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
2728           s2=scalar2(b1(1,iti1),auxvec(1))
2729           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2730           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2731           s3=0.5d0*(pizda(1,1)+pizda(2,2))
2732           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
2733         enddo
2734         endif
2735       endif          
2736       return
2737       end
2738 C-----------------------------------------------------------------------------
2739       subroutine vecpr(u,v,w)
2740       implicit real*8(a-h,o-z)
2741       dimension u(3),v(3),w(3)
2742       w(1)=u(2)*v(3)-u(3)*v(2)
2743       w(2)=-u(1)*v(3)+u(3)*v(1)
2744       w(3)=u(1)*v(2)-u(2)*v(1)
2745       return
2746       end
2747 C-----------------------------------------------------------------------------
2748       subroutine unormderiv(u,ugrad,unorm,ungrad)
2749 C This subroutine computes the derivatives of a normalized vector u, given
2750 C the derivatives computed without normalization conditions, ugrad. Returns
2751 C ungrad.
2752       implicit none
2753       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
2754       double precision vec(3)
2755       double precision scalar
2756       integer i,j
2757 c      write (2,*) 'ugrad',ugrad
2758 c      write (2,*) 'u',u
2759       do i=1,3
2760         vec(i)=scalar(ugrad(1,i),u(1))
2761       enddo
2762 c      write (2,*) 'vec',vec
2763       do i=1,3
2764         do j=1,3
2765           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
2766         enddo
2767       enddo
2768 c      write (2,*) 'ungrad',ungrad
2769       return
2770       end
2771 C-----------------------------------------------------------------------------
2772       subroutine escp(evdw2,evdw2_14)
2773 C
2774 C This subroutine calculates the excluded-volume interaction energy between
2775 C peptide-group centers and side chains and its gradient in virtual-bond and
2776 C side-chain vectors.
2777 C
2778       implicit real*8 (a-h,o-z)
2779       include 'DIMENSIONS'
2780       include 'DIMENSIONS.ZSCOPT'
2781       include 'COMMON.GEO'
2782       include 'COMMON.VAR'
2783       include 'COMMON.LOCAL'
2784       include 'COMMON.CHAIN'
2785       include 'COMMON.DERIV'
2786       include 'COMMON.INTERACT'
2787       include 'COMMON.FFIELD'
2788       include 'COMMON.IOUNITS'
2789       dimension ggg(3)
2790       evdw2=0.0D0
2791       evdw2_14=0.0d0
2792 cd    print '(a)','Enter ESCP'
2793 c      write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e,
2794 c     &  ' scal14',scal14
2795       do i=iatscp_s,iatscp_e
2796         iteli=itel(i)
2797 c        write (iout,*) "i",i," iteli",iteli," nscp_gr",nscp_gr(i),
2798 c     &   " iscp",(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
2799         if (iteli.eq.0) goto 1225
2800         xi=0.5D0*(c(1,i)+c(1,i+1))
2801         yi=0.5D0*(c(2,i)+c(2,i+1))
2802         zi=0.5D0*(c(3,i)+c(3,i+1))
2803
2804         do iint=1,nscp_gr(i)
2805
2806         do j=iscpstart(i,iint),iscpend(i,iint)
2807           itypj=itype(j)
2808 C Uncomment following three lines for SC-p interactions
2809 c         xj=c(1,nres+j)-xi
2810 c         yj=c(2,nres+j)-yi
2811 c         zj=c(3,nres+j)-zi
2812 C Uncomment following three lines for Ca-p interactions
2813           xj=c(1,j)-xi
2814           yj=c(2,j)-yi
2815           zj=c(3,j)-zi
2816           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
2817           fac=rrij**expon2
2818           e1=fac*fac*aad(itypj,iteli)
2819           e2=fac*bad(itypj,iteli)
2820           if (iabs(j-i) .le. 2) then
2821             e1=scal14*e1
2822             e2=scal14*e2
2823             evdw2_14=evdw2_14+e1+e2
2824           endif
2825           evdwij=e1+e2
2826 c          write (iout,*) i,j,evdwij
2827           evdw2=evdw2+evdwij
2828           if (calc_grad) then
2829 C
2830 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
2831 C
2832           fac=-(evdwij+e1)*rrij
2833           ggg(1)=xj*fac
2834           ggg(2)=yj*fac
2835           ggg(3)=zj*fac
2836           if (j.lt.i) then
2837 cd          write (iout,*) 'j<i'
2838 C Uncomment following three lines for SC-p interactions
2839 c           do k=1,3
2840 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
2841 c           enddo
2842           else
2843 cd          write (iout,*) 'j>i'
2844             do k=1,3
2845               ggg(k)=-ggg(k)
2846 C Uncomment following line for SC-p interactions
2847 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
2848             enddo
2849           endif
2850           do k=1,3
2851             gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
2852           enddo
2853           kstart=min0(i+1,j)
2854           kend=max0(i-1,j-1)
2855 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
2856 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
2857           do k=kstart,kend
2858             do l=1,3
2859               gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
2860             enddo
2861           enddo
2862           endif
2863         enddo
2864         enddo ! iint
2865  1225   continue
2866       enddo ! i
2867       do i=1,nct
2868         do j=1,3
2869           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
2870           gradx_scp(j,i)=expon*gradx_scp(j,i)
2871         enddo
2872       enddo
2873 C******************************************************************************
2874 C
2875 C                              N O T E !!!
2876 C
2877 C To save time the factor EXPON has been extracted from ALL components
2878 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
2879 C use!
2880 C
2881 C******************************************************************************
2882       return
2883       end
2884 C--------------------------------------------------------------------------
2885       subroutine edis(ehpb)
2886
2887 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
2888 C
2889       implicit real*8 (a-h,o-z)
2890       include 'DIMENSIONS'
2891       include 'COMMON.SBRIDGE'
2892       include 'COMMON.CHAIN'
2893       include 'COMMON.DERIV'
2894       include 'COMMON.VAR'
2895       include 'COMMON.INTERACT'
2896       include 'COMMON.IOUNITS'
2897       dimension ggg(3)
2898       ehpb=0.0D0
2899 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
2900 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
2901       if (link_end.eq.0) return
2902       do i=link_start,link_end
2903 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
2904 C CA-CA distance used in regularization of structure.
2905         ii=ihpb(i)
2906         jj=jhpb(i)
2907 C iii and jjj point to the residues for which the distance is assigned.
2908         if (ii.gt.nres) then
2909           iii=ii-nres
2910           jjj=jj-nres 
2911         else
2912           iii=ii
2913           jjj=jj
2914         endif
2915 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
2916 c     &    dhpb(i),dhpb1(i),forcon(i)
2917 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
2918 C    distance and angle dependent SS bond potential.
2919         if (.not.dyn_ss .and. i.le.nss) then
2920 C 15/02/13 CC dynamic SSbond - additional check
2921         if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
2922           call ssbond_ene(iii,jjj,eij)
2923           ehpb=ehpb+2*eij
2924          endif
2925 cd          write (iout,*) "eij",eij
2926         else if (ii.gt.nres .and. jj.gt.nres) then
2927 c Restraints from contact prediction
2928           dd=dist(ii,jj)
2929           if (dhpb1(i).gt.0.0d0) then
2930             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2931             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
2932 c            write (iout,*) "beta nmr",
2933 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2934           else
2935             dd=dist(ii,jj)
2936             rdis=dd-dhpb(i)
2937 C Get the force constant corresponding to this distance.
2938             waga=forcon(i)
2939 C Calculate the contribution to energy.
2940             ehpb=ehpb+waga*rdis*rdis
2941 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
2942 C
2943 C Evaluate gradient.
2944 C
2945             fac=waga*rdis/dd
2946           endif  
2947           do j=1,3
2948             ggg(j)=fac*(c(j,jj)-c(j,ii))
2949           enddo
2950           do j=1,3
2951             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
2952             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
2953           enddo
2954           do k=1,3
2955             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
2956             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
2957           enddo
2958         else
2959 C Calculate the distance between the two points and its difference from the
2960 C target distance.
2961           dd=dist(ii,jj)
2962           if (dhpb1(i).gt.0.0d0) then
2963             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2964             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
2965 c            write (iout,*) "alph nmr",
2966 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
2967           else
2968             rdis=dd-dhpb(i)
2969 C Get the force constant corresponding to this distance.
2970             waga=forcon(i)
2971 C Calculate the contribution to energy.
2972             ehpb=ehpb+waga*rdis*rdis
2973 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
2974 C
2975 C Evaluate gradient.
2976 C
2977             fac=waga*rdis/dd
2978           endif
2979 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
2980 cd   &   ' waga=',waga,' fac=',fac
2981             do j=1,3
2982               ggg(j)=fac*(c(j,jj)-c(j,ii))
2983             enddo
2984 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
2985 C If this is a SC-SC distance, we need to calculate the contributions to the
2986 C Cartesian gradient in the SC vectors (ghpbx).
2987           if (iii.lt.ii) then
2988           do j=1,3
2989             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
2990             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
2991           enddo
2992           endif
2993           do k=1,3
2994             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
2995             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
2996           enddo
2997         endif
2998       enddo
2999       ehpb=0.5D0*ehpb
3000       return
3001       end
3002 C--------------------------------------------------------------------------
3003       subroutine ssbond_ene(i,j,eij)
3004
3005 C Calculate the distance and angle dependent SS-bond potential energy
3006 C using a free-energy function derived based on RHF/6-31G** ab initio
3007 C calculations of diethyl disulfide.
3008 C
3009 C A. Liwo and U. Kozlowska, 11/24/03
3010 C
3011       implicit real*8 (a-h,o-z)
3012       include 'DIMENSIONS'
3013       include 'DIMENSIONS.ZSCOPT'
3014       include 'COMMON.SBRIDGE'
3015       include 'COMMON.CHAIN'
3016       include 'COMMON.DERIV'
3017       include 'COMMON.LOCAL'
3018       include 'COMMON.INTERACT'
3019       include 'COMMON.VAR'
3020       include 'COMMON.IOUNITS'
3021       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
3022       itypi=itype(i)
3023       xi=c(1,nres+i)
3024       yi=c(2,nres+i)
3025       zi=c(3,nres+i)
3026       dxi=dc_norm(1,nres+i)
3027       dyi=dc_norm(2,nres+i)
3028       dzi=dc_norm(3,nres+i)
3029       dsci_inv=dsc_inv(itypi)
3030       itypj=itype(j)
3031       dscj_inv=dsc_inv(itypj)
3032       xj=c(1,nres+j)-xi
3033       yj=c(2,nres+j)-yi
3034       zj=c(3,nres+j)-zi
3035       dxj=dc_norm(1,nres+j)
3036       dyj=dc_norm(2,nres+j)
3037       dzj=dc_norm(3,nres+j)
3038       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
3039       rij=dsqrt(rrij)
3040       erij(1)=xj*rij
3041       erij(2)=yj*rij
3042       erij(3)=zj*rij
3043       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
3044       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
3045       om12=dxi*dxj+dyi*dyj+dzi*dzj
3046       do k=1,3
3047         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
3048         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
3049       enddo
3050       rij=1.0d0/rij
3051       deltad=rij-d0cm
3052       deltat1=1.0d0-om1
3053       deltat2=1.0d0+om2
3054       deltat12=om2-om1+2.0d0
3055       cosphi=om12-om1*om2
3056       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
3057      &  +akct*deltad*deltat12+ebr
3058 c     &  +akct*deltad*deltat12
3059      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
3060       write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
3061      &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
3062      &  " deltat12",deltat12," eij",eij,"ebr",ebr
3063       ed=2*akcm*deltad+akct*deltat12
3064       pom1=akct*deltad
3065       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
3066       eom1=-2*akth*deltat1-pom1-om2*pom2
3067       eom2= 2*akth*deltat2+pom1-om1*pom2
3068       eom12=pom2
3069       do k=1,3
3070         gg(k)=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
3071       enddo
3072       do k=1,3
3073         ghpbx(k,i)=ghpbx(k,i)-gg(k)
3074      &            +(eom12*dc_norm(k,nres+j)+eom1*erij(k))*dsci_inv
3075         ghpbx(k,j)=ghpbx(k,j)+gg(k)
3076      &            +(eom12*dc_norm(k,nres+i)+eom2*erij(k))*dscj_inv
3077       enddo
3078 C
3079 C Calculate the components of the gradient in DC and X
3080 C
3081       do k=i,j-1
3082         do l=1,3
3083           ghpbc(l,k)=ghpbc(l,k)+gg(l)
3084         enddo
3085       enddo
3086       return
3087       end
3088 C--------------------------------------------------------------------------
3089       subroutine ebond(estr)
3090 c
3091 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
3092 c
3093       implicit real*8 (a-h,o-z)
3094       include 'DIMENSIONS'
3095       include 'DIMENSIONS.ZSCOPT'
3096       include 'COMMON.LOCAL'
3097       include 'COMMON.GEO'
3098       include 'COMMON.INTERACT'
3099       include 'COMMON.DERIV'
3100       include 'COMMON.VAR'
3101       include 'COMMON.CHAIN'
3102       include 'COMMON.IOUNITS'
3103       include 'COMMON.NAMES'
3104       include 'COMMON.FFIELD'
3105       include 'COMMON.CONTROL'
3106       double precision u(3),ud(3)
3107       logical :: lprn=.false.
3108       estr=0.0d0
3109       do i=nnt+1,nct
3110         diff = vbld(i)-vbldp0
3111 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
3112         estr=estr+diff*diff
3113         do j=1,3
3114           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
3115         enddo
3116       enddo
3117       estr=0.5d0*AKP*estr
3118 c
3119 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
3120 c
3121       do i=nnt,nct
3122         iti=itype(i)
3123         if (iti.ne.10) then
3124           nbi=nbondterm(iti)
3125           if (nbi.eq.1) then
3126             diff=vbld(i+nres)-vbldsc0(1,iti)
3127             if (lprn)
3128      &      write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
3129      &      AKSC(1,iti),AKSC(1,iti)*diff*diff
3130             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
3131             do j=1,3
3132               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
3133             enddo
3134           else
3135             do j=1,nbi
3136               diff=vbld(i+nres)-vbldsc0(j,iti)
3137               ud(j)=aksc(j,iti)*diff
3138               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
3139             enddo
3140             uprod=u(1)
3141             do j=2,nbi
3142               uprod=uprod*u(j)
3143             enddo
3144             usum=0.0d0
3145             usumsqder=0.0d0
3146             do j=1,nbi
3147               uprod1=1.0d0
3148               uprod2=1.0d0
3149               do k=1,nbi
3150                 if (k.ne.j) then
3151                   uprod1=uprod1*u(k)
3152                   uprod2=uprod2*u(k)*u(k)
3153                 endif
3154               enddo
3155               usum=usum+uprod1
3156               usumsqder=usumsqder+ud(j)*uprod2
3157             enddo
3158             if (lprn)
3159      &      write (iout,*) i,iti,vbld(i+nres),(vbldsc0(j,iti),
3160      &      AKSC(j,iti),abond0(j,iti),u(j),j=1,nbi)
3161             estr=estr+uprod/usum
3162             do j=1,3
3163              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
3164             enddo
3165           endif
3166         endif
3167       enddo
3168       return
3169       end
3170 #ifdef CRYST_THETA
3171 C--------------------------------------------------------------------------
3172       subroutine ebend(etheta)
3173 C
3174 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
3175 C angles gamma and its derivatives in consecutive thetas and gammas.
3176 C
3177       implicit real*8 (a-h,o-z)
3178       include 'DIMENSIONS'
3179       include 'DIMENSIONS.ZSCOPT'
3180       include 'COMMON.LOCAL'
3181       include 'COMMON.GEO'
3182       include 'COMMON.INTERACT'
3183       include 'COMMON.DERIV'
3184       include 'COMMON.VAR'
3185       include 'COMMON.CHAIN'
3186       include 'COMMON.IOUNITS'
3187       include 'COMMON.NAMES'
3188       include 'COMMON.FFIELD'
3189       common /calcthet/ term1,term2,termm,diffak,ratak,
3190      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3191      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3192       double precision y(2),z(2)
3193       delta=0.02d0*pi
3194       time11=dexp(-2*time)
3195       time12=1.0d0
3196       etheta=0.0D0
3197 c      write (iout,*) "nres",nres
3198 c     write (*,'(a,i2)') 'EBEND ICG=',icg
3199 c      write (iout,*) ithet_start,ithet_end
3200       do i=ithet_start,ithet_end
3201 C Zero the energy function and its derivative at 0 or pi.
3202         call splinthet(theta(i),0.5d0*delta,ss,ssd)
3203         it=itype(i-1)
3204 c        if (i.gt.ithet_start .and. 
3205 c     &     (itel(i-1).eq.0 .or. itel(i-2).eq.0)) goto 1215
3206 c        if (i.gt.3 .and. (i.le.4 .or. itel(i-3).ne.0)) then
3207 c          phii=phi(i)
3208 c          y(1)=dcos(phii)
3209 c          y(2)=dsin(phii)
3210 c        else 
3211 c          y(1)=0.0D0
3212 c          y(2)=0.0D0
3213 c        endif
3214 c        if (i.lt.nres .and. itel(i).ne.0) then
3215 c          phii1=phi(i+1)
3216 c          z(1)=dcos(phii1)
3217 c          z(2)=dsin(phii1)
3218 c        else
3219 c          z(1)=0.0D0
3220 c          z(2)=0.0D0
3221 c        endif  
3222         if (i.gt.3) then
3223 #ifdef OSF
3224           phii=phi(i)
3225           icrc=0
3226           call proc_proc(phii,icrc)
3227           if (icrc.eq.1) phii=150.0
3228 #else
3229           phii=phi(i)
3230 #endif
3231           y(1)=dcos(phii)
3232           y(2)=dsin(phii)
3233         else
3234           y(1)=0.0D0
3235           y(2)=0.0D0
3236         endif
3237         if (i.lt.nres) then
3238 #ifdef OSF
3239           phii1=phi(i+1)
3240           icrc=0
3241           call proc_proc(phii1,icrc)
3242           if (icrc.eq.1) phii1=150.0
3243           phii1=pinorm(phii1)
3244           z(1)=cos(phii1)
3245 #else
3246           phii1=phi(i+1)
3247           z(1)=dcos(phii1)
3248 #endif
3249           z(2)=dsin(phii1)
3250         else
3251           z(1)=0.0D0
3252           z(2)=0.0D0
3253         endif
3254 C Calculate the "mean" value of theta from the part of the distribution
3255 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
3256 C In following comments this theta will be referred to as t_c.
3257         thet_pred_mean=0.0d0
3258         do k=1,2
3259           athetk=athet(k,it)
3260           bthetk=bthet(k,it)
3261           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
3262         enddo
3263 c        write (iout,*) "thet_pred_mean",thet_pred_mean
3264         dthett=thet_pred_mean*ssd
3265         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
3266 c        write (iout,*) "thet_pred_mean",thet_pred_mean
3267 C Derivatives of the "mean" values in gamma1 and gamma2.
3268         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
3269         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
3270         if (theta(i).gt.pi-delta) then
3271           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
3272      &         E_tc0)
3273           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
3274           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
3275           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
3276      &        E_theta)
3277           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
3278      &        E_tc)
3279         else if (theta(i).lt.delta) then
3280           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
3281           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
3282           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
3283      &        E_theta)
3284           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
3285           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
3286      &        E_tc)
3287         else
3288           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
3289      &        E_theta,E_tc)
3290         endif
3291         etheta=etheta+ethetai
3292 c        write (iout,'(2i3,3f8.3,f10.5)') i,it,rad2deg*theta(i),
3293 c     &    rad2deg*phii,rad2deg*phii1,ethetai
3294         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
3295         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
3296         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
3297  1215   continue
3298       enddo
3299 C Ufff.... We've done all this!!! 
3300       return
3301       end
3302 C---------------------------------------------------------------------------
3303       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
3304      &     E_tc)
3305       implicit real*8 (a-h,o-z)
3306       include 'DIMENSIONS'
3307       include 'COMMON.LOCAL'
3308       include 'COMMON.IOUNITS'
3309       common /calcthet/ term1,term2,termm,diffak,ratak,
3310      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3311      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3312 C Calculate the contributions to both Gaussian lobes.
3313 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
3314 C The "polynomial part" of the "standard deviation" of this part of 
3315 C the distribution.
3316         sig=polthet(3,it)
3317         do j=2,0,-1
3318           sig=sig*thet_pred_mean+polthet(j,it)
3319         enddo
3320 C Derivative of the "interior part" of the "standard deviation of the" 
3321 C gamma-dependent Gaussian lobe in t_c.
3322         sigtc=3*polthet(3,it)
3323         do j=2,1,-1
3324           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
3325         enddo
3326         sigtc=sig*sigtc
3327 C Set the parameters of both Gaussian lobes of the distribution.
3328 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
3329         fac=sig*sig+sigc0(it)
3330         sigcsq=fac+fac
3331         sigc=1.0D0/sigcsq
3332 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
3333         sigsqtc=-4.0D0*sigcsq*sigtc
3334 c       print *,i,sig,sigtc,sigsqtc
3335 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
3336         sigtc=-sigtc/(fac*fac)
3337 C Following variable is sigma(t_c)**(-2)
3338         sigcsq=sigcsq*sigcsq
3339         sig0i=sig0(it)
3340         sig0inv=1.0D0/sig0i**2
3341         delthec=thetai-thet_pred_mean
3342         delthe0=thetai-theta0i
3343         term1=-0.5D0*sigcsq*delthec*delthec
3344         term2=-0.5D0*sig0inv*delthe0*delthe0
3345 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
3346 C NaNs in taking the logarithm. We extract the largest exponent which is added
3347 C to the energy (this being the log of the distribution) at the end of energy
3348 C term evaluation for this virtual-bond angle.
3349         if (term1.gt.term2) then
3350           termm=term1
3351           term2=dexp(term2-termm)
3352           term1=1.0d0
3353         else
3354           termm=term2
3355           term1=dexp(term1-termm)
3356           term2=1.0d0
3357         endif
3358 C The ratio between the gamma-independent and gamma-dependent lobes of
3359 C the distribution is a Gaussian function of thet_pred_mean too.
3360         diffak=gthet(2,it)-thet_pred_mean
3361         ratak=diffak/gthet(3,it)**2
3362         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
3363 C Let's differentiate it in thet_pred_mean NOW.
3364         aktc=ak*ratak
3365 C Now put together the distribution terms to make complete distribution.
3366         termexp=term1+ak*term2
3367         termpre=sigc+ak*sig0i
3368 C Contribution of the bending energy from this theta is just the -log of
3369 C the sum of the contributions from the two lobes and the pre-exponential
3370 C factor. Simple enough, isn't it?
3371         ethetai=(-dlog(termexp)-termm+dlog(termpre))
3372 C NOW the derivatives!!!
3373 C 6/6/97 Take into account the deformation.
3374         E_theta=(delthec*sigcsq*term1
3375      &       +ak*delthe0*sig0inv*term2)/termexp
3376         E_tc=((sigtc+aktc*sig0i)/termpre
3377      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
3378      &       aktc*term2)/termexp)
3379       return
3380       end
3381 c-----------------------------------------------------------------------------
3382       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
3383       implicit real*8 (a-h,o-z)
3384       include 'DIMENSIONS'
3385       include 'COMMON.LOCAL'
3386       include 'COMMON.IOUNITS'
3387       common /calcthet/ term1,term2,termm,diffak,ratak,
3388      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3389      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3390       delthec=thetai-thet_pred_mean
3391       delthe0=thetai-theta0i
3392 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
3393       t3 = thetai-thet_pred_mean
3394       t6 = t3**2
3395       t9 = term1
3396       t12 = t3*sigcsq
3397       t14 = t12+t6*sigsqtc
3398       t16 = 1.0d0
3399       t21 = thetai-theta0i
3400       t23 = t21**2
3401       t26 = term2
3402       t27 = t21*t26
3403       t32 = termexp
3404       t40 = t32**2
3405       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
3406      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
3407      & *(-t12*t9-ak*sig0inv*t27)
3408       return
3409       end
3410 #else
3411 C--------------------------------------------------------------------------
3412       subroutine ebend(etheta)
3413 C
3414 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
3415 C angles gamma and its derivatives in consecutive thetas and gammas.
3416 C ab initio-derived potentials from 
3417 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
3418 C
3419       implicit real*8 (a-h,o-z)
3420       include 'DIMENSIONS'
3421       include 'DIMENSIONS.ZSCOPT'
3422       include 'COMMON.LOCAL'
3423       include 'COMMON.GEO'
3424       include 'COMMON.INTERACT'
3425       include 'COMMON.DERIV'
3426       include 'COMMON.VAR'
3427       include 'COMMON.CHAIN'
3428       include 'COMMON.IOUNITS'
3429       include 'COMMON.NAMES'
3430       include 'COMMON.FFIELD'
3431       include 'COMMON.CONTROL'
3432       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
3433      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
3434      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
3435      & sinph1ph2(maxdouble,maxdouble)
3436       logical lprn /.false./, lprn1 /.false./
3437       etheta=0.0D0
3438 c      write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1)
3439       do i=ithet_start,ithet_end
3440         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
3441      &(itype(i).eq.ntyp1)) cycle
3442         dethetai=0.0d0
3443         dephii=0.0d0
3444         dephii1=0.0d0
3445         theti2=0.5d0*theta(i)
3446         ityp2=ithetyp(itype(i-1))
3447         do k=1,nntheterm
3448           coskt(k)=dcos(k*theti2)
3449           sinkt(k)=dsin(k*theti2)
3450         enddo
3451         if (i.gt.3 .and. itype(max0(i-3,1)).ne.ntyp1) then
3452 #ifdef OSF
3453           phii=phi(i)
3454           if (phii.ne.phii) phii=150.0
3455 #else
3456           phii=phi(i)
3457 #endif
3458           ityp1=ithetyp(itype(i-2))
3459           do k=1,nsingle
3460             cosph1(k)=dcos(k*phii)
3461             sinph1(k)=dsin(k*phii)
3462           enddo
3463         else
3464           phii=0.0d0
3465           ityp1=ithetyp(itype(i-2))
3466           do k=1,nsingle
3467             cosph1(k)=0.0d0
3468             sinph1(k)=0.0d0
3469           enddo 
3470         endif
3471         if (i.lt.nres .and. itype(i+1).ne.ntyp1) then
3472 #ifdef OSF
3473           phii1=phi(i+1)
3474           if (phii1.ne.phii1) phii1=150.0
3475           phii1=pinorm(phii1)
3476 #else
3477           phii1=phi(i+1)
3478 #endif
3479           ityp3=ithetyp(itype(i))
3480           do k=1,nsingle
3481             cosph2(k)=dcos(k*phii1)
3482             sinph2(k)=dsin(k*phii1)
3483           enddo
3484         else
3485           phii1=0.0d0
3486           ityp3=ithetyp(itype(i))
3487           do k=1,nsingle
3488             cosph2(k)=0.0d0
3489             sinph2(k)=0.0d0
3490           enddo
3491         endif  
3492 c        write (iout,*) "i",i," ityp1",itype(i-2),ityp1,
3493 c     &   " ityp2",itype(i-1),ityp2," ityp3",itype(i),ityp3
3494 c        call flush(iout)
3495         ethetai=aa0thet(ityp1,ityp2,ityp3)
3496         do k=1,ndouble
3497           do l=1,k-1
3498             ccl=cosph1(l)*cosph2(k-l)
3499             ssl=sinph1(l)*sinph2(k-l)
3500             scl=sinph1(l)*cosph2(k-l)
3501             csl=cosph1(l)*sinph2(k-l)
3502             cosph1ph2(l,k)=ccl-ssl
3503             cosph1ph2(k,l)=ccl+ssl
3504             sinph1ph2(l,k)=scl+csl
3505             sinph1ph2(k,l)=scl-csl
3506           enddo
3507         enddo
3508         if (lprn) then
3509         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
3510      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
3511         write (iout,*) "coskt and sinkt"
3512         do k=1,nntheterm
3513           write (iout,*) k,coskt(k),sinkt(k)
3514         enddo
3515         endif
3516         do k=1,ntheterm
3517           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
3518           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
3519      &      *coskt(k)
3520           if (lprn)
3521      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
3522      &     " ethetai",ethetai
3523         enddo
3524         if (lprn) then
3525         write (iout,*) "cosph and sinph"
3526         do k=1,nsingle
3527           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
3528         enddo
3529         write (iout,*) "cosph1ph2 and sinph2ph2"
3530         do k=2,ndouble
3531           do l=1,k-1
3532             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
3533      &         sinph1ph2(l,k),sinph1ph2(k,l) 
3534           enddo
3535         enddo
3536         write(iout,*) "ethetai",ethetai
3537         endif
3538         do m=1,ntheterm2
3539           do k=1,nsingle
3540             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
3541      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
3542      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
3543      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
3544             ethetai=ethetai+sinkt(m)*aux
3545             dethetai=dethetai+0.5d0*m*aux*coskt(m)
3546             dephii=dephii+k*sinkt(m)*(
3547      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
3548      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
3549             dephii1=dephii1+k*sinkt(m)*(
3550      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
3551      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
3552             if (lprn)
3553      &      write (iout,*) "m",m," k",k," bbthet",
3554      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
3555      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
3556      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
3557      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
3558           enddo
3559         enddo
3560         if (lprn)
3561      &  write(iout,*) "ethetai",ethetai
3562         do m=1,ntheterm3
3563           do k=2,ndouble
3564             do l=1,k-1
3565               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
3566      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
3567      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
3568      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
3569               ethetai=ethetai+sinkt(m)*aux
3570               dethetai=dethetai+0.5d0*m*coskt(m)*aux
3571               dephii=dephii+l*sinkt(m)*(
3572      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
3573      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
3574      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
3575      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
3576               dephii1=dephii1+(k-l)*sinkt(m)*(
3577      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
3578      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
3579      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
3580      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
3581               if (lprn) then
3582               write (iout,*) "m",m," k",k," l",l," ffthet",
3583      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
3584      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
3585      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
3586      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
3587               write (iout,*) cosph1ph2(l,k)*sinkt(m),
3588      &            cosph1ph2(k,l)*sinkt(m),
3589      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
3590               endif
3591             enddo
3592           enddo
3593         enddo
3594 10      continue
3595 c        lprn1=.true.
3596         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
3597      &  'ebe',i,theta(i)*rad2deg,phii*rad2deg,
3598      &   phii1*rad2deg,ethetai
3599 c        lprn1=.false.
3600         etheta=etheta+ethetai
3601         
3602         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
3603         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
3604         gloc(nphi+i-2,icg)=wang*dethetai
3605       enddo
3606       return
3607       end
3608 #endif
3609 #ifdef CRYST_SC
3610 c-----------------------------------------------------------------------------
3611       subroutine esc(escloc)
3612 C Calculate the local energy of a side chain and its derivatives in the
3613 C corresponding virtual-bond valence angles THETA and the spherical angles 
3614 C ALPHA and OMEGA.
3615       implicit real*8 (a-h,o-z)
3616       include 'DIMENSIONS'
3617       include 'DIMENSIONS.ZSCOPT'
3618       include 'COMMON.GEO'
3619       include 'COMMON.LOCAL'
3620       include 'COMMON.VAR'
3621       include 'COMMON.INTERACT'
3622       include 'COMMON.DERIV'
3623       include 'COMMON.CHAIN'
3624       include 'COMMON.IOUNITS'
3625       include 'COMMON.NAMES'
3626       include 'COMMON.FFIELD'
3627       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
3628      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
3629       common /sccalc/ time11,time12,time112,theti,it,nlobit
3630       delta=0.02d0*pi
3631       escloc=0.0D0
3632 c     write (iout,'(a)') 'ESC'
3633       do i=loc_start,loc_end
3634         it=itype(i)
3635         if (it.eq.10) goto 1
3636         nlobit=nlob(it)
3637 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
3638 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
3639         theti=theta(i+1)-pipol
3640         x(1)=dtan(theti)
3641         x(2)=alph(i)
3642         x(3)=omeg(i)
3643 c        write (iout,*) "i",i," x",x(1),x(2),x(3)
3644
3645         if (x(2).gt.pi-delta) then
3646           xtemp(1)=x(1)
3647           xtemp(2)=pi-delta
3648           xtemp(3)=x(3)
3649           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
3650           xtemp(2)=pi
3651           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
3652           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
3653      &        escloci,dersc(2))
3654           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
3655      &        ddersc0(1),dersc(1))
3656           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
3657      &        ddersc0(3),dersc(3))
3658           xtemp(2)=pi-delta
3659           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
3660           xtemp(2)=pi
3661           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
3662           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
3663      &            dersc0(2),esclocbi,dersc02)
3664           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
3665      &            dersc12,dersc01)
3666           call splinthet(x(2),0.5d0*delta,ss,ssd)
3667           dersc0(1)=dersc01
3668           dersc0(2)=dersc02
3669           dersc0(3)=0.0d0
3670           do k=1,3
3671             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
3672           enddo
3673           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
3674 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
3675 c    &             esclocbi,ss,ssd
3676           escloci=ss*escloci+(1.0d0-ss)*esclocbi
3677 c         escloci=esclocbi
3678 c         write (iout,*) escloci
3679         else if (x(2).lt.delta) then
3680           xtemp(1)=x(1)
3681           xtemp(2)=delta
3682           xtemp(3)=x(3)
3683           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
3684           xtemp(2)=0.0d0
3685           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
3686           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
3687      &        escloci,dersc(2))
3688           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
3689      &        ddersc0(1),dersc(1))
3690           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
3691      &        ddersc0(3),dersc(3))
3692           xtemp(2)=delta
3693           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
3694           xtemp(2)=0.0d0
3695           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
3696           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
3697      &            dersc0(2),esclocbi,dersc02)
3698           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
3699      &            dersc12,dersc01)
3700           dersc0(1)=dersc01
3701           dersc0(2)=dersc02
3702           dersc0(3)=0.0d0
3703           call splinthet(x(2),0.5d0*delta,ss,ssd)
3704           do k=1,3
3705             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
3706           enddo
3707           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
3708 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
3709 c    &             esclocbi,ss,ssd
3710           escloci=ss*escloci+(1.0d0-ss)*esclocbi
3711 c         write (iout,*) escloci
3712         else
3713           call enesc(x,escloci,dersc,ddummy,.false.)
3714         endif
3715
3716         escloc=escloc+escloci
3717 c        write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
3718
3719         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
3720      &   wscloc*dersc(1)
3721         gloc(ialph(i,1),icg)=wscloc*dersc(2)
3722         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
3723     1   continue
3724       enddo
3725       return
3726       end
3727 C---------------------------------------------------------------------------
3728       subroutine enesc(x,escloci,dersc,ddersc,mixed)
3729       implicit real*8 (a-h,o-z)
3730       include 'DIMENSIONS'
3731       include 'COMMON.GEO'
3732       include 'COMMON.LOCAL'
3733       include 'COMMON.IOUNITS'
3734       common /sccalc/ time11,time12,time112,theti,it,nlobit
3735       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
3736       double precision contr(maxlob,-1:1)
3737       logical mixed
3738 c       write (iout,*) 'it=',it,' nlobit=',nlobit
3739         escloc_i=0.0D0
3740         do j=1,3
3741           dersc(j)=0.0D0
3742           if (mixed) ddersc(j)=0.0d0
3743         enddo
3744         x3=x(3)
3745
3746 C Because of periodicity of the dependence of the SC energy in omega we have
3747 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
3748 C To avoid underflows, first compute & store the exponents.
3749
3750         do iii=-1,1
3751
3752           x(3)=x3+iii*dwapi
3753  
3754           do j=1,nlobit
3755             do k=1,3
3756               z(k)=x(k)-censc(k,j,it)
3757             enddo
3758             do k=1,3
3759               Axk=0.0D0
3760               do l=1,3
3761                 Axk=Axk+gaussc(l,k,j,it)*z(l)
3762               enddo
3763               Ax(k,j,iii)=Axk
3764             enddo 
3765             expfac=0.0D0 
3766             do k=1,3
3767               expfac=expfac+Ax(k,j,iii)*z(k)
3768             enddo
3769             contr(j,iii)=expfac
3770           enddo ! j
3771
3772         enddo ! iii
3773
3774         x(3)=x3
3775 C As in the case of ebend, we want to avoid underflows in exponentiation and
3776 C subsequent NaNs and INFs in energy calculation.
3777 C Find the largest exponent
3778         emin=contr(1,-1)
3779         do iii=-1,1
3780           do j=1,nlobit
3781             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
3782           enddo 
3783         enddo
3784         emin=0.5D0*emin
3785 cd      print *,'it=',it,' emin=',emin
3786
3787 C Compute the contribution to SC energy and derivatives
3788         do iii=-1,1
3789
3790           do j=1,nlobit
3791             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
3792 cd          print *,'j=',j,' expfac=',expfac
3793             escloc_i=escloc_i+expfac
3794             do k=1,3
3795               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
3796             enddo
3797             if (mixed) then
3798               do k=1,3,2
3799                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
3800      &            +gaussc(k,2,j,it))*expfac
3801               enddo
3802             endif
3803           enddo
3804
3805         enddo ! iii
3806
3807         dersc(1)=dersc(1)/cos(theti)**2
3808         ddersc(1)=ddersc(1)/cos(theti)**2
3809         ddersc(3)=ddersc(3)
3810
3811         escloci=-(dlog(escloc_i)-emin)
3812         do j=1,3
3813           dersc(j)=dersc(j)/escloc_i
3814         enddo
3815         if (mixed) then
3816           do j=1,3,2
3817             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
3818           enddo
3819         endif
3820       return
3821       end
3822 C------------------------------------------------------------------------------
3823       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
3824       implicit real*8 (a-h,o-z)
3825       include 'DIMENSIONS'
3826       include 'COMMON.GEO'
3827       include 'COMMON.LOCAL'
3828       include 'COMMON.IOUNITS'
3829       common /sccalc/ time11,time12,time112,theti,it,nlobit
3830       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
3831       double precision contr(maxlob)
3832       logical mixed
3833
3834       escloc_i=0.0D0
3835
3836       do j=1,3
3837         dersc(j)=0.0D0
3838       enddo
3839
3840       do j=1,nlobit
3841         do k=1,2
3842           z(k)=x(k)-censc(k,j,it)
3843         enddo
3844         z(3)=dwapi
3845         do k=1,3
3846           Axk=0.0D0
3847           do l=1,3
3848             Axk=Axk+gaussc(l,k,j,it)*z(l)
3849           enddo
3850           Ax(k,j)=Axk
3851         enddo 
3852         expfac=0.0D0 
3853         do k=1,3
3854           expfac=expfac+Ax(k,j)*z(k)
3855         enddo
3856         contr(j)=expfac
3857       enddo ! j
3858
3859 C As in the case of ebend, we want to avoid underflows in exponentiation and
3860 C subsequent NaNs and INFs in energy calculation.
3861 C Find the largest exponent
3862       emin=contr(1)
3863       do j=1,nlobit
3864         if (emin.gt.contr(j)) emin=contr(j)
3865       enddo 
3866       emin=0.5D0*emin
3867  
3868 C Compute the contribution to SC energy and derivatives
3869
3870       dersc12=0.0d0
3871       do j=1,nlobit
3872         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
3873         escloc_i=escloc_i+expfac
3874         do k=1,2
3875           dersc(k)=dersc(k)+Ax(k,j)*expfac
3876         enddo
3877         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
3878      &            +gaussc(1,2,j,it))*expfac
3879         dersc(3)=0.0d0
3880       enddo
3881
3882       dersc(1)=dersc(1)/cos(theti)**2
3883       dersc12=dersc12/cos(theti)**2
3884       escloci=-(dlog(escloc_i)-emin)
3885       do j=1,2
3886         dersc(j)=dersc(j)/escloc_i
3887       enddo
3888       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
3889       return
3890       end
3891 #else
3892 c----------------------------------------------------------------------------------
3893       subroutine esc(escloc)
3894 C Calculate the local energy of a side chain and its derivatives in the
3895 C corresponding virtual-bond valence angles THETA and the spherical angles 
3896 C ALPHA and OMEGA derived from AM1 all-atom calculations.
3897 C added by Urszula Kozlowska. 07/11/2007
3898 C
3899       implicit real*8 (a-h,o-z)
3900       include 'DIMENSIONS'
3901       include 'DIMENSIONS.ZSCOPT'
3902       include 'COMMON.GEO'
3903       include 'COMMON.LOCAL'
3904       include 'COMMON.VAR'
3905       include 'COMMON.SCROT'
3906       include 'COMMON.INTERACT'
3907       include 'COMMON.DERIV'
3908       include 'COMMON.CHAIN'
3909       include 'COMMON.IOUNITS'
3910       include 'COMMON.NAMES'
3911       include 'COMMON.FFIELD'
3912       include 'COMMON.CONTROL'
3913       include 'COMMON.VECTORS'
3914       double precision x_prime(3),y_prime(3),z_prime(3)
3915      &    , sumene,dsc_i,dp2_i,x(65),
3916      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
3917      &    de_dxx,de_dyy,de_dzz,de_dt
3918       double precision s1_t,s1_6_t,s2_t,s2_6_t
3919       double precision 
3920      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
3921      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
3922      & dt_dCi(3),dt_dCi1(3)
3923       common /sccalc/ time11,time12,time112,theti,it,nlobit
3924       delta=0.02d0*pi
3925       escloc=0.0D0
3926       do i=loc_start,loc_end
3927         costtab(i+1) =dcos(theta(i+1))
3928         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
3929         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
3930         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
3931         cosfac2=0.5d0/(1.0d0+costtab(i+1))
3932         cosfac=dsqrt(cosfac2)
3933         sinfac2=0.5d0/(1.0d0-costtab(i+1))
3934         sinfac=dsqrt(sinfac2)
3935         it=itype(i)
3936         if (it.eq.10) goto 1
3937 c
3938 C  Compute the axes of tghe local cartesian coordinates system; store in
3939 c   x_prime, y_prime and z_prime 
3940 c
3941         do j=1,3
3942           x_prime(j) = 0.00
3943           y_prime(j) = 0.00
3944           z_prime(j) = 0.00
3945         enddo
3946 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
3947 C     &   dc_norm(3,i+nres)
3948         do j = 1,3
3949           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
3950           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
3951         enddo
3952         do j = 1,3
3953           z_prime(j) = -uz(j,i-1)
3954         enddo     
3955 c       write (2,*) "i",i
3956 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
3957 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
3958 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
3959 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
3960 c      & " xy",scalar(x_prime(1),y_prime(1)),
3961 c      & " xz",scalar(x_prime(1),z_prime(1)),
3962 c      & " yy",scalar(y_prime(1),y_prime(1)),
3963 c      & " yz",scalar(y_prime(1),z_prime(1)),
3964 c      & " zz",scalar(z_prime(1),z_prime(1))
3965 c
3966 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
3967 C to local coordinate system. Store in xx, yy, zz.
3968 c
3969         xx=0.0d0
3970         yy=0.0d0
3971         zz=0.0d0
3972         do j = 1,3
3973           xx = xx + x_prime(j)*dc_norm(j,i+nres)
3974           yy = yy + y_prime(j)*dc_norm(j,i+nres)
3975           zz = zz + z_prime(j)*dc_norm(j,i+nres)
3976         enddo
3977
3978         xxtab(i)=xx
3979         yytab(i)=yy
3980         zztab(i)=zz
3981 C
3982 C Compute the energy of the ith side cbain
3983 C
3984 c        write (2,*) "xx",xx," yy",yy," zz",zz
3985         it=itype(i)
3986         do j = 1,65
3987           x(j) = sc_parmin(j,it) 
3988         enddo
3989 #ifdef CHECK_COORD
3990 Cc diagnostics - remove later
3991         xx1 = dcos(alph(2))
3992         yy1 = dsin(alph(2))*dcos(omeg(2))
3993         zz1 = -dsin(alph(2))*dsin(omeg(2))
3994         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
3995      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
3996      &    xx1,yy1,zz1
3997 C,"  --- ", xx_w,yy_w,zz_w
3998 c end diagnostics
3999 #endif
4000         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
4001      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
4002      &   + x(10)*yy*zz
4003         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
4004      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
4005      & + x(20)*yy*zz
4006         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
4007      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
4008      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
4009      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
4010      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
4011      &  +x(40)*xx*yy*zz
4012         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
4013      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
4014      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
4015      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
4016      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
4017      &  +x(60)*xx*yy*zz
4018         dsc_i   = 0.743d0+x(61)
4019         dp2_i   = 1.9d0+x(62)
4020         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
4021      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
4022         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
4023      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
4024         s1=(1+x(63))/(0.1d0 + dscp1)
4025         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
4026         s2=(1+x(65))/(0.1d0 + dscp2)
4027         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
4028         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
4029      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
4030 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
4031 c     &   sumene4,
4032 c     &   dscp1,dscp2,sumene
4033 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4034         escloc = escloc + sumene
4035 c        write (2,*) "escloc",escloc
4036         if (.not. calc_grad) goto 1
4037
4038 #ifdef DEBUG2
4039 C
4040 C This section to check the numerical derivatives of the energy of ith side
4041 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
4042 C #define DEBUG in the code to turn it on.
4043 C
4044         write (2,*) "sumene               =",sumene
4045         aincr=1.0d-7
4046         xxsave=xx
4047         xx=xx+aincr
4048         write (2,*) xx,yy,zz
4049         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4050         de_dxx_num=(sumenep-sumene)/aincr
4051         xx=xxsave
4052         write (2,*) "xx+ sumene from enesc=",sumenep
4053         yysave=yy
4054         yy=yy+aincr
4055         write (2,*) xx,yy,zz
4056         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4057         de_dyy_num=(sumenep-sumene)/aincr
4058         yy=yysave
4059         write (2,*) "yy+ sumene from enesc=",sumenep
4060         zzsave=zz
4061         zz=zz+aincr
4062         write (2,*) xx,yy,zz
4063         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4064         de_dzz_num=(sumenep-sumene)/aincr
4065         zz=zzsave
4066         write (2,*) "zz+ sumene from enesc=",sumenep
4067         costsave=cost2tab(i+1)
4068         sintsave=sint2tab(i+1)
4069         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
4070         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
4071         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4072         de_dt_num=(sumenep-sumene)/aincr
4073         write (2,*) " t+ sumene from enesc=",sumenep
4074         cost2tab(i+1)=costsave
4075         sint2tab(i+1)=sintsave
4076 C End of diagnostics section.
4077 #endif
4078 C        
4079 C Compute the gradient of esc
4080 C
4081         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
4082         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
4083         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
4084         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
4085         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
4086         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
4087         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
4088         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
4089         pom1=(sumene3*sint2tab(i+1)+sumene1)
4090      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
4091         pom2=(sumene4*cost2tab(i+1)+sumene2)
4092      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
4093         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
4094         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
4095      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
4096      &  +x(40)*yy*zz
4097         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
4098         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
4099      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
4100      &  +x(60)*yy*zz
4101         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
4102      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
4103      &        +(pom1+pom2)*pom_dx
4104 #ifdef DEBUG
4105         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
4106 #endif
4107 C
4108         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
4109         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
4110      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
4111      &  +x(40)*xx*zz
4112         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
4113         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
4114      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
4115      &  +x(59)*zz**2 +x(60)*xx*zz
4116         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
4117      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
4118      &        +(pom1-pom2)*pom_dy
4119 #ifdef DEBUG
4120         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
4121 #endif
4122 C
4123         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
4124      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
4125      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
4126      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
4127      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
4128      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
4129      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
4130      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
4131 #ifdef DEBUG
4132         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
4133 #endif
4134 C
4135         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
4136      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
4137      &  +pom1*pom_dt1+pom2*pom_dt2
4138 #ifdef DEBUG
4139         write(2,*), "de_dt = ", de_dt,de_dt_num
4140 #endif
4141
4142 C
4143        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
4144        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
4145        cosfac2xx=cosfac2*xx
4146        sinfac2yy=sinfac2*yy
4147        do k = 1,3
4148          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
4149      &      vbld_inv(i+1)
4150          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
4151      &      vbld_inv(i)
4152          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
4153          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
4154 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
4155 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
4156 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
4157 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
4158          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
4159          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
4160          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
4161          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
4162          dZZ_Ci1(k)=0.0d0
4163          dZZ_Ci(k)=0.0d0
4164          do j=1,3
4165            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
4166            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
4167          enddo
4168           
4169          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
4170          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
4171          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
4172 c
4173          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
4174          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
4175        enddo
4176
4177        do k=1,3
4178          dXX_Ctab(k,i)=dXX_Ci(k)
4179          dXX_C1tab(k,i)=dXX_Ci1(k)
4180          dYY_Ctab(k,i)=dYY_Ci(k)
4181          dYY_C1tab(k,i)=dYY_Ci1(k)
4182          dZZ_Ctab(k,i)=dZZ_Ci(k)
4183          dZZ_C1tab(k,i)=dZZ_Ci1(k)
4184          dXX_XYZtab(k,i)=dXX_XYZ(k)
4185          dYY_XYZtab(k,i)=dYY_XYZ(k)
4186          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
4187        enddo
4188
4189        do k = 1,3
4190 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
4191 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
4192 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
4193 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
4194 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
4195 c     &    dt_dci(k)
4196 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
4197 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
4198          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
4199      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
4200          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
4201      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
4202          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
4203      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
4204        enddo
4205 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
4206 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
4207
4208 C to check gradient call subroutine check_grad
4209
4210     1 continue
4211       enddo
4212       return
4213       end
4214 #endif
4215 c------------------------------------------------------------------------------
4216       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
4217 C
4218 C This procedure calculates two-body contact function g(rij) and its derivative:
4219 C
4220 C           eps0ij                                     !       x < -1
4221 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
4222 C            0                                         !       x > 1
4223 C
4224 C where x=(rij-r0ij)/delta
4225 C
4226 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
4227 C
4228       implicit none
4229       double precision rij,r0ij,eps0ij,fcont,fprimcont
4230       double precision x,x2,x4,delta
4231 c     delta=0.02D0*r0ij
4232 c      delta=0.2D0*r0ij
4233       x=(rij-r0ij)/delta
4234       if (x.lt.-1.0D0) then
4235         fcont=eps0ij
4236         fprimcont=0.0D0
4237       else if (x.le.1.0D0) then  
4238         x2=x*x
4239         x4=x2*x2
4240         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
4241         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
4242       else
4243         fcont=0.0D0
4244         fprimcont=0.0D0
4245       endif
4246       return
4247       end
4248 c------------------------------------------------------------------------------
4249       subroutine splinthet(theti,delta,ss,ssder)
4250       implicit real*8 (a-h,o-z)
4251       include 'DIMENSIONS'
4252       include 'DIMENSIONS.ZSCOPT'
4253       include 'COMMON.VAR'
4254       include 'COMMON.GEO'
4255       thetup=pi-delta
4256       thetlow=delta
4257       if (theti.gt.pipol) then
4258         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
4259       else
4260         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
4261         ssder=-ssder
4262       endif
4263       return
4264       end
4265 c------------------------------------------------------------------------------
4266       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
4267       implicit none
4268       double precision x,x0,delta,f0,f1,fprim0,f,fprim
4269       double precision ksi,ksi2,ksi3,a1,a2,a3
4270       a1=fprim0*delta/(f1-f0)
4271       a2=3.0d0-2.0d0*a1
4272       a3=a1-2.0d0
4273       ksi=(x-x0)/delta
4274       ksi2=ksi*ksi
4275       ksi3=ksi2*ksi  
4276       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
4277       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
4278       return
4279       end
4280 c------------------------------------------------------------------------------
4281       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
4282       implicit none
4283       double precision x,x0,delta,f0x,f1x,fprim0x,fx
4284       double precision ksi,ksi2,ksi3,a1,a2,a3
4285       ksi=(x-x0)/delta  
4286       ksi2=ksi*ksi
4287       ksi3=ksi2*ksi
4288       a1=fprim0x*delta
4289       a2=3*(f1x-f0x)-2*fprim0x*delta
4290       a3=fprim0x*delta-2*(f1x-f0x)
4291       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
4292       return
4293       end
4294 C-----------------------------------------------------------------------------
4295 #ifdef CRYST_TOR
4296 C-----------------------------------------------------------------------------
4297       subroutine etor(etors,edihcnstr,fact)
4298       implicit real*8 (a-h,o-z)
4299       include 'DIMENSIONS'
4300       include 'DIMENSIONS.ZSCOPT'
4301       include 'COMMON.VAR'
4302       include 'COMMON.GEO'
4303       include 'COMMON.LOCAL'
4304       include 'COMMON.TORSION'
4305       include 'COMMON.INTERACT'
4306       include 'COMMON.DERIV'
4307       include 'COMMON.CHAIN'
4308       include 'COMMON.NAMES'
4309       include 'COMMON.IOUNITS'
4310       include 'COMMON.FFIELD'
4311       include 'COMMON.TORCNSTR'
4312       logical lprn
4313 C Set lprn=.true. for debugging
4314       lprn=.false.
4315 c      lprn=.true.
4316       etors=0.0D0
4317       do i=iphi_start,iphi_end
4318         itori=itortyp(itype(i-2))
4319         itori1=itortyp(itype(i-1))
4320         phii=phi(i)
4321         gloci=0.0D0
4322 C Proline-Proline pair is a special case...
4323         if (itori.eq.3 .and. itori1.eq.3) then
4324           if (phii.gt.-dwapi3) then
4325             cosphi=dcos(3*phii)
4326             fac=1.0D0/(1.0D0-cosphi)
4327             etorsi=v1(1,3,3)*fac
4328             etorsi=etorsi+etorsi
4329             etors=etors+etorsi-v1(1,3,3)
4330             gloci=gloci-3*fac*etorsi*dsin(3*phii)
4331           endif
4332           do j=1,3
4333             v1ij=v1(j+1,itori,itori1)
4334             v2ij=v2(j+1,itori,itori1)
4335             cosphi=dcos(j*phii)
4336             sinphi=dsin(j*phii)
4337             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
4338             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4339           enddo
4340         else 
4341           do j=1,nterm_old
4342             v1ij=v1(j,itori,itori1)
4343             v2ij=v2(j,itori,itori1)
4344             cosphi=dcos(j*phii)
4345             sinphi=dsin(j*phii)
4346             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
4347             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4348           enddo
4349         endif
4350         if (lprn)
4351      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
4352      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
4353      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
4354         gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
4355 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
4356       enddo
4357 ! 6/20/98 - dihedral angle constraints
4358       edihcnstr=0.0d0
4359       do i=1,ndih_constr
4360         itori=idih_constr(i)
4361         phii=phi(itori)
4362         difi=phii-phi0(i)
4363         if (difi.gt.drange(i)) then
4364           difi=difi-drange(i)
4365           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4366           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4367         else if (difi.lt.-drange(i)) then
4368           difi=difi+drange(i)
4369           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4370           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4371         endif
4372 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
4373 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
4374       enddo
4375 !      write (iout,*) 'edihcnstr',edihcnstr
4376       return
4377       end
4378 c------------------------------------------------------------------------------
4379 #else
4380       subroutine etor(etors,edihcnstr,fact)
4381       implicit real*8 (a-h,o-z)
4382       include 'DIMENSIONS'
4383       include 'DIMENSIONS.ZSCOPT'
4384       include 'COMMON.VAR'
4385       include 'COMMON.GEO'
4386       include 'COMMON.LOCAL'
4387       include 'COMMON.TORSION'
4388       include 'COMMON.INTERACT'
4389       include 'COMMON.DERIV'
4390       include 'COMMON.CHAIN'
4391       include 'COMMON.NAMES'
4392       include 'COMMON.IOUNITS'
4393       include 'COMMON.FFIELD'
4394       include 'COMMON.TORCNSTR'
4395       logical lprn
4396 C Set lprn=.true. for debugging
4397       lprn=.false.
4398 c      lprn=.true.
4399       etors=0.0D0
4400       do i=iphi_start,iphi_end
4401         if (itel(i-2).eq.0 .or. itel(i-1).eq.0) goto 1215
4402         itori=itortyp(itype(i-2))
4403         itori1=itortyp(itype(i-1))
4404         phii=phi(i)
4405         gloci=0.0D0
4406 C Regular cosine and sine terms
4407         do j=1,nterm(itori,itori1)
4408           v1ij=v1(j,itori,itori1)
4409           v2ij=v2(j,itori,itori1)
4410           cosphi=dcos(j*phii)
4411           sinphi=dsin(j*phii)
4412           etors=etors+v1ij*cosphi+v2ij*sinphi
4413           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4414         enddo
4415 C Lorentz terms
4416 C                         v1
4417 C  E = SUM ----------------------------------- - v1
4418 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
4419 C
4420         cosphi=dcos(0.5d0*phii)
4421         sinphi=dsin(0.5d0*phii)
4422         do j=1,nlor(itori,itori1)
4423           vl1ij=vlor1(j,itori,itori1)
4424           vl2ij=vlor2(j,itori,itori1)
4425           vl3ij=vlor3(j,itori,itori1)
4426           pom=vl2ij*cosphi+vl3ij*sinphi
4427           pom1=1.0d0/(pom*pom+1.0d0)
4428           etors=etors+vl1ij*pom1
4429           pom=-pom*pom1*pom1
4430           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
4431         enddo
4432 C Subtract the constant term
4433         etors=etors-v0(itori,itori1)
4434         if (lprn)
4435      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
4436      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
4437      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
4438         gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
4439 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
4440  1215   continue
4441       enddo
4442 ! 6/20/98 - dihedral angle constraints
4443       edihcnstr=0.0d0
4444       do i=1,ndih_constr
4445         itori=idih_constr(i)
4446         phii=phi(itori)
4447         difi=pinorm(phii-phi0(i))
4448         edihi=0.0d0
4449         if (difi.gt.drange(i)) then
4450           difi=difi-drange(i)
4451           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4452           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4453           edihi=0.25d0*ftors*difi**4
4454         else if (difi.lt.-drange(i)) then
4455           difi=difi+drange(i)
4456           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4457           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4458           edihi=0.25d0*ftors*difi**4
4459         else
4460           difi=0.0d0
4461         endif
4462 c        write (iout,'(2i5,4f10.5,e15.5)') i,itori,phii,phi0(i),difi,
4463 c     &    drange(i),edihi
4464 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
4465 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
4466       enddo
4467 !      write (iout,*) 'edihcnstr',edihcnstr
4468       return
4469       end
4470 c----------------------------------------------------------------------------
4471       subroutine etor_d(etors_d,fact2)
4472 C 6/23/01 Compute double torsional energy
4473       implicit real*8 (a-h,o-z)
4474       include 'DIMENSIONS'
4475       include 'DIMENSIONS.ZSCOPT'
4476       include 'COMMON.VAR'
4477       include 'COMMON.GEO'
4478       include 'COMMON.LOCAL'
4479       include 'COMMON.TORSION'
4480       include 'COMMON.INTERACT'
4481       include 'COMMON.DERIV'
4482       include 'COMMON.CHAIN'
4483       include 'COMMON.NAMES'
4484       include 'COMMON.IOUNITS'
4485       include 'COMMON.FFIELD'
4486       include 'COMMON.TORCNSTR'
4487       logical lprn
4488 C Set lprn=.true. for debugging
4489       lprn=.false.
4490 c     lprn=.true.
4491       etors_d=0.0D0
4492       do i=iphi_start,iphi_end-1
4493         if (itel(i-2).eq.0 .or. itel(i-1).eq.0 .or. itel(i).eq.0) 
4494      &     goto 1215
4495         itori=itortyp(itype(i-2))
4496         itori1=itortyp(itype(i-1))
4497         itori2=itortyp(itype(i))
4498         phii=phi(i)
4499         phii1=phi(i+1)
4500         gloci1=0.0D0
4501         gloci2=0.0D0
4502 C Regular cosine and sine terms
4503         do j=1,ntermd_1(itori,itori1,itori2)
4504           v1cij=v1c(1,j,itori,itori1,itori2)
4505           v1sij=v1s(1,j,itori,itori1,itori2)
4506           v2cij=v1c(2,j,itori,itori1,itori2)
4507           v2sij=v1s(2,j,itori,itori1,itori2)
4508           cosphi1=dcos(j*phii)
4509           sinphi1=dsin(j*phii)
4510           cosphi2=dcos(j*phii1)
4511           sinphi2=dsin(j*phii1)
4512           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
4513      &     v2cij*cosphi2+v2sij*sinphi2
4514           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
4515           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
4516         enddo
4517         do k=2,ntermd_2(itori,itori1,itori2)
4518           do l=1,k-1
4519             v1cdij = v2c(k,l,itori,itori1,itori2)
4520             v2cdij = v2c(l,k,itori,itori1,itori2)
4521             v1sdij = v2s(k,l,itori,itori1,itori2)
4522             v2sdij = v2s(l,k,itori,itori1,itori2)
4523             cosphi1p2=dcos(l*phii+(k-l)*phii1)
4524             cosphi1m2=dcos(l*phii-(k-l)*phii1)
4525             sinphi1p2=dsin(l*phii+(k-l)*phii1)
4526             sinphi1m2=dsin(l*phii-(k-l)*phii1)
4527             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
4528      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
4529             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
4530      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
4531             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
4532      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
4533           enddo
4534         enddo
4535         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*fact2*gloci1
4536         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*fact2*gloci2
4537  1215   continue
4538       enddo
4539       return
4540       end
4541 #endif
4542 c------------------------------------------------------------------------------
4543       subroutine eback_sc_corr(esccor)
4544 c 7/21/2007 Correlations between the backbone-local and side-chain-local
4545 c        conformational states; temporarily implemented as differences
4546 c        between UNRES torsional potentials (dependent on three types of
4547 c        residues) and the torsional potentials dependent on all 20 types
4548 c        of residues computed from AM1 energy surfaces of terminally-blocked
4549 c        amino-acid residues.
4550       implicit real*8 (a-h,o-z)
4551       include 'DIMENSIONS'
4552       include 'DIMENSIONS.ZSCOPT'
4553       include 'COMMON.VAR'
4554       include 'COMMON.GEO'
4555       include 'COMMON.LOCAL'
4556       include 'COMMON.TORSION'
4557       include 'COMMON.SCCOR'
4558       include 'COMMON.INTERACT'
4559       include 'COMMON.DERIV'
4560       include 'COMMON.CHAIN'
4561       include 'COMMON.NAMES'
4562       include 'COMMON.IOUNITS'
4563       include 'COMMON.FFIELD'
4564       include 'COMMON.CONTROL'
4565       logical lprn
4566 C Set lprn=.true. for debugging
4567       lprn=.false.
4568 c      lprn=.true.
4569 c      write (iout,*) "EBACK_SC_COR",itau_start,itau_end,nterm_sccor
4570       esccor=0.0D0
4571       do i=itau_start,itau_end
4572         esccor_ii=0.0D0
4573
4574         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
4575         isccori=isccortyp(itype(i-2))
4576         isccori1=isccortyp(itype(i-1))
4577         phii=phi(i)
4578 cccc  Added 9 May 2012
4579 cc Tauangle is torsional engle depending on the value of first digit 
4580 c(see comment below)
4581 cc Omicron is flat angle depending on the value of first digit 
4582 c(see comment below)
4583
4584
4585         do intertyp=1,3 !intertyp
4586 cc Added 09 May 2012 (Adasko)
4587 cc  Intertyp means interaction type of backbone mainchain correlation: 
4588 c   1 = SC...Ca...Ca...Ca
4589 c   2 = Ca...Ca...Ca...SC
4590 c   3 = SC...Ca...Ca...SCi
4591         gloci=0.0D0
4592         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
4593      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
4594      &      (itype(i-1).eq.21)))
4595      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
4596      &     .or.(itype(i-2).eq.21)))
4597      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
4598      &      (itype(i-1).eq.21)))) cycle
4599         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
4600         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
4601      & cycle
4602         do j=1,nterm_sccor(isccori,isccori1)
4603           v1ij=v1sccor(j,intertyp,isccori,isccori1)
4604           v2ij=v2sccor(j,intertyp,isccori,isccori1)
4605           cosphi=dcos(j*tauangle(intertyp,i))
4606           sinphi=dsin(j*tauangle(intertyp,i))
4607           esccor=esccor+v1ij*cosphi+v2ij*sinphi
4608 #ifdef DEBUG
4609           esccor_ii=esccor_ii+v1ij*cosphi+v2ij*sinphi
4610 #endif
4611           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4612         enddo
4613         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
4614 c       write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
4615 c     &gloc_sc(intertyp,i-3,icg)
4616         if (lprn)
4617      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
4618      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
4619      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
4620      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
4621         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
4622        enddo !intertyp
4623       enddo
4624 c        do i=1,nres
4625 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
4626 c        enddo
4627       return
4628       end
4629 c------------------------------------------------------------------------------
4630       subroutine multibody(ecorr)
4631 C This subroutine calculates multi-body contributions to energy following
4632 C the idea of Skolnick et al. If side chains I and J make a contact and
4633 C at the same time side chains I+1 and J+1 make a contact, an extra 
4634 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
4635       implicit real*8 (a-h,o-z)
4636       include 'DIMENSIONS'
4637       include 'COMMON.IOUNITS'
4638       include 'COMMON.DERIV'
4639       include 'COMMON.INTERACT'
4640       include 'COMMON.CONTACTS'
4641       double precision gx(3),gx1(3)
4642       logical lprn
4643
4644 C Set lprn=.true. for debugging
4645       lprn=.false.
4646
4647       if (lprn) then
4648         write (iout,'(a)') 'Contact function values:'
4649         do i=nnt,nct-2
4650           write (iout,'(i2,20(1x,i2,f10.5))') 
4651      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
4652         enddo
4653       endif
4654       ecorr=0.0D0
4655       do i=nnt,nct
4656         do j=1,3
4657           gradcorr(j,i)=0.0D0
4658           gradxorr(j,i)=0.0D0
4659         enddo
4660       enddo
4661       do i=nnt,nct-2
4662
4663         DO ISHIFT = 3,4
4664
4665         i1=i+ishift
4666         num_conti=num_cont(i)
4667         num_conti1=num_cont(i1)
4668         do jj=1,num_conti
4669           j=jcont(jj,i)
4670           do kk=1,num_conti1
4671             j1=jcont(kk,i1)
4672             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
4673 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
4674 cd   &                   ' ishift=',ishift
4675 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
4676 C The system gains extra energy.
4677               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
4678             endif   ! j1==j+-ishift
4679           enddo     ! kk  
4680         enddo       ! jj
4681
4682         ENDDO ! ISHIFT
4683
4684       enddo         ! i
4685       return
4686       end
4687 c------------------------------------------------------------------------------
4688       double precision function esccorr(i,j,k,l,jj,kk)
4689       implicit real*8 (a-h,o-z)
4690       include 'DIMENSIONS'
4691       include 'COMMON.IOUNITS'
4692       include 'COMMON.DERIV'
4693       include 'COMMON.INTERACT'
4694       include 'COMMON.CONTACTS'
4695       double precision gx(3),gx1(3)
4696       logical lprn
4697       lprn=.false.
4698       eij=facont(jj,i)
4699       ekl=facont(kk,k)
4700 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
4701 C Calculate the multi-body contribution to energy.
4702 C Calculate multi-body contributions to the gradient.
4703 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
4704 cd   & k,l,(gacont(m,kk,k),m=1,3)
4705       do m=1,3
4706         gx(m) =ekl*gacont(m,jj,i)
4707         gx1(m)=eij*gacont(m,kk,k)
4708         gradxorr(m,i)=gradxorr(m,i)-gx(m)
4709         gradxorr(m,j)=gradxorr(m,j)+gx(m)
4710         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
4711         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
4712       enddo
4713       do m=i,j-1
4714         do ll=1,3
4715           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
4716         enddo
4717       enddo
4718       do m=k,l-1
4719         do ll=1,3
4720           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
4721         enddo
4722       enddo 
4723       esccorr=-eij*ekl
4724       return
4725       end
4726 c------------------------------------------------------------------------------
4727 #ifdef MPL
4728       subroutine pack_buffer(dimen1,dimen2,atom,indx,buffer)
4729       implicit real*8 (a-h,o-z)
4730       include 'DIMENSIONS' 
4731       integer dimen1,dimen2,atom,indx
4732       double precision buffer(dimen1,dimen2)
4733       double precision zapas 
4734       common /contacts_hb/ zapas(3,20,maxres,7),
4735      &   facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres),
4736      &         num_cont_hb(maxres),jcont_hb(20,maxres)
4737       num_kont=num_cont_hb(atom)
4738       do i=1,num_kont
4739         do k=1,7
4740           do j=1,3
4741             buffer(i,indx+(k-1)*3+j)=zapas(j,i,atom,k)
4742           enddo ! j
4743         enddo ! k
4744         buffer(i,indx+22)=facont_hb(i,atom)
4745         buffer(i,indx+23)=ees0p(i,atom)
4746         buffer(i,indx+24)=ees0m(i,atom)
4747         buffer(i,indx+25)=dfloat(jcont_hb(i,atom))
4748       enddo ! i
4749       buffer(1,indx+26)=dfloat(num_kont)
4750       return
4751       end
4752 c------------------------------------------------------------------------------
4753       subroutine unpack_buffer(dimen1,dimen2,atom,indx,buffer)
4754       implicit real*8 (a-h,o-z)
4755       include 'DIMENSIONS' 
4756       integer dimen1,dimen2,atom,indx
4757       double precision buffer(dimen1,dimen2)
4758       double precision zapas 
4759       common /contacts_hb/ zapas(3,20,maxres,7),
4760      &         facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres),
4761      &         num_cont_hb(maxres),jcont_hb(20,maxres)
4762       num_kont=buffer(1,indx+26)
4763       num_kont_old=num_cont_hb(atom)
4764       num_cont_hb(atom)=num_kont+num_kont_old
4765       do i=1,num_kont
4766         ii=i+num_kont_old
4767         do k=1,7    
4768           do j=1,3
4769             zapas(j,ii,atom,k)=buffer(i,indx+(k-1)*3+j)
4770           enddo ! j 
4771         enddo ! k 
4772         facont_hb(ii,atom)=buffer(i,indx+22)
4773         ees0p(ii,atom)=buffer(i,indx+23)
4774         ees0m(ii,atom)=buffer(i,indx+24)
4775         jcont_hb(ii,atom)=buffer(i,indx+25)
4776       enddo ! i
4777       return
4778       end
4779 c------------------------------------------------------------------------------
4780 #endif
4781       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
4782 C This subroutine calculates multi-body contributions to hydrogen-bonding 
4783       implicit real*8 (a-h,o-z)
4784       include 'DIMENSIONS'
4785       include 'DIMENSIONS.ZSCOPT'
4786       include 'COMMON.IOUNITS'
4787 #ifdef MPL
4788       include 'COMMON.INFO'
4789 #endif
4790       include 'COMMON.FFIELD'
4791       include 'COMMON.DERIV'
4792       include 'COMMON.INTERACT'
4793       include 'COMMON.CONTACTS'
4794 #ifdef MPL
4795       parameter (max_cont=maxconts)
4796       parameter (max_dim=2*(8*3+2))
4797       parameter (msglen1=max_cont*max_dim*4)
4798       parameter (msglen2=2*msglen1)
4799       integer source,CorrelType,CorrelID,Error
4800       double precision buffer(max_cont,max_dim)
4801 #endif
4802       double precision gx(3),gx1(3)
4803       logical lprn,ldone
4804
4805 C Set lprn=.true. for debugging
4806       lprn=.false.
4807 #ifdef MPL
4808       n_corr=0
4809       n_corr1=0
4810       if (fgProcs.le.1) goto 30
4811       if (lprn) then
4812         write (iout,'(a)') 'Contact function values:'
4813         do i=nnt,nct-2
4814           write (iout,'(2i3,50(1x,i2,f5.2))') 
4815      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
4816      &    j=1,num_cont_hb(i))
4817         enddo
4818       endif
4819 C Caution! Following code assumes that electrostatic interactions concerning
4820 C a given atom are split among at most two processors!
4821       CorrelType=477
4822       CorrelID=MyID+1
4823       ldone=.false.
4824       do i=1,max_cont
4825         do j=1,max_dim
4826           buffer(i,j)=0.0D0
4827         enddo
4828       enddo
4829       mm=mod(MyRank,2)
4830 cd    write (iout,*) 'MyRank',MyRank,' mm',mm
4831       if (mm) 20,20,10 
4832    10 continue
4833 cd    write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone
4834       if (MyRank.gt.0) then
4835 C Send correlation contributions to the preceding processor
4836         msglen=msglen1
4837         nn=num_cont_hb(iatel_s)
4838         call pack_buffer(max_cont,max_dim,iatel_s,0,buffer)
4839 cd      write (iout,*) 'The BUFFER array:'
4840 cd      do i=1,nn
4841 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26)
4842 cd      enddo
4843         if (ielstart(iatel_s).gt.iatel_s+ispp) then
4844           msglen=msglen2
4845             call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer)
4846 C Clear the contacts of the atom passed to the neighboring processor
4847         nn=num_cont_hb(iatel_s+1)
4848 cd      do i=1,nn
4849 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26)
4850 cd      enddo
4851             num_cont_hb(iatel_s)=0
4852         endif 
4853 cd      write (iout,*) 'Processor ',MyID,MyRank,
4854 cd   & ' is sending correlation contribution to processor',MyID-1,
4855 cd   & ' msglen=',msglen
4856 cd      write (*,*) 'Processor ',MyID,MyRank,
4857 cd   & ' is sending correlation contribution to processor',MyID-1,
4858 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
4859         call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID)
4860 cd      write (iout,*) 'Processor ',MyID,
4861 cd   & ' has sent correlation contribution to processor',MyID-1,
4862 cd   & ' msglen=',msglen,' CorrelID=',CorrelID
4863 cd      write (*,*) 'Processor ',MyID,
4864 cd   & ' has sent correlation contribution to processor',MyID-1,
4865 cd   & ' msglen=',msglen,' CorrelID=',CorrelID
4866         msglen=msglen1
4867       endif ! (MyRank.gt.0)
4868       if (ldone) goto 30
4869       ldone=.true.
4870    20 continue
4871 cd    write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone
4872       if (MyRank.lt.fgProcs-1) then
4873 C Receive correlation contributions from the next processor
4874         msglen=msglen1
4875         if (ielend(iatel_e).lt.nct-1) msglen=msglen2
4876 cd      write (iout,*) 'Processor',MyID,
4877 cd   & ' is receiving correlation contribution from processor',MyID+1,
4878 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
4879 cd      write (*,*) 'Processor',MyID,
4880 cd   & ' is receiving correlation contribution from processor',MyID+1,
4881 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
4882         nbytes=-1
4883         do while (nbytes.le.0)
4884           call mp_probe(MyID+1,CorrelType,nbytes)
4885         enddo
4886 cd      print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes
4887         call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes)
4888 cd      write (iout,*) 'Processor',MyID,
4889 cd   & ' has received correlation contribution from processor',MyID+1,
4890 cd   & ' msglen=',msglen,' nbytes=',nbytes
4891 cd      write (iout,*) 'The received BUFFER array:'
4892 cd      do i=1,max_cont
4893 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52)
4894 cd      enddo
4895         if (msglen.eq.msglen1) then
4896           call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer)
4897         else if (msglen.eq.msglen2)  then
4898           call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer) 
4899           call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer) 
4900         else
4901           write (iout,*) 
4902      & 'ERROR!!!! message length changed while processing correlations.'
4903           write (*,*) 
4904      & 'ERROR!!!! message length changed while processing correlations.'
4905           call mp_stopall(Error)
4906         endif ! msglen.eq.msglen1
4907       endif ! MyRank.lt.fgProcs-1
4908       if (ldone) goto 30
4909       ldone=.true.
4910       goto 10
4911    30 continue
4912 #endif
4913       if (lprn) then
4914         write (iout,'(a)') 'Contact function values:'
4915         do i=nnt,nct-2
4916           write (iout,'(2i3,50(1x,i2,f5.2))') 
4917      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
4918      &    j=1,num_cont_hb(i))
4919         enddo
4920       endif
4921       ecorr=0.0D0
4922 C Remove the loop below after debugging !!!
4923       do i=nnt,nct
4924         do j=1,3
4925           gradcorr(j,i)=0.0D0
4926           gradxorr(j,i)=0.0D0
4927         enddo
4928       enddo
4929 C Calculate the local-electrostatic correlation terms
4930       do i=iatel_s,iatel_e+1
4931         i1=i+1
4932         num_conti=num_cont_hb(i)
4933         num_conti1=num_cont_hb(i+1)
4934         do jj=1,num_conti
4935           j=jcont_hb(jj,i)
4936           do kk=1,num_conti1
4937             j1=jcont_hb(kk,i1)
4938 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
4939 c     &         ' jj=',jj,' kk=',kk
4940             if (j1.eq.j+1 .or. j1.eq.j-1) then
4941 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
4942 C The system gains extra energy.
4943               ecorr=ecorr+ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
4944               n_corr=n_corr+1
4945             else if (j1.eq.j) then
4946 C Contacts I-J and I-(J+1) occur simultaneously. 
4947 C The system loses extra energy.
4948 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
4949             endif
4950           enddo ! kk
4951           do kk=1,num_conti
4952             j1=jcont_hb(kk,i)
4953 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
4954 c    &         ' jj=',jj,' kk=',kk
4955             if (j1.eq.j+1) then
4956 C Contacts I-J and (I+1)-J occur simultaneously. 
4957 C The system loses extra energy.
4958 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
4959             endif ! j1==j+1
4960           enddo ! kk
4961         enddo ! jj
4962       enddo ! i
4963       return
4964       end
4965 c------------------------------------------------------------------------------
4966       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
4967      &  n_corr1)
4968 C This subroutine calculates multi-body contributions to hydrogen-bonding 
4969       implicit real*8 (a-h,o-z)
4970       include 'DIMENSIONS'
4971       include 'DIMENSIONS.ZSCOPT'
4972       include 'COMMON.IOUNITS'
4973 #ifdef MPL
4974       include 'COMMON.INFO'
4975 #endif
4976       include 'COMMON.FFIELD'
4977       include 'COMMON.DERIV'
4978       include 'COMMON.INTERACT'
4979       include 'COMMON.CONTACTS'
4980 #ifdef MPL
4981       parameter (max_cont=maxconts)
4982       parameter (max_dim=2*(8*3+2))
4983       parameter (msglen1=max_cont*max_dim*4)
4984       parameter (msglen2=2*msglen1)
4985       integer source,CorrelType,CorrelID,Error
4986       double precision buffer(max_cont,max_dim)
4987 #endif
4988       double precision gx(3),gx1(3)
4989       logical lprn,ldone
4990
4991 C Set lprn=.true. for debugging
4992       lprn=.false.
4993       eturn6=0.0d0
4994 #ifdef MPL
4995       n_corr=0
4996       n_corr1=0
4997       if (fgProcs.le.1) goto 30
4998       if (lprn) then
4999         write (iout,'(a)') 'Contact function values:'
5000         do i=nnt,nct-2
5001           write (iout,'(2i3,50(1x,i2,f5.2))') 
5002      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5003      &    j=1,num_cont_hb(i))
5004         enddo
5005       endif
5006 C Caution! Following code assumes that electrostatic interactions concerning
5007 C a given atom are split among at most two processors!
5008       CorrelType=477
5009       CorrelID=MyID+1
5010       ldone=.false.
5011       do i=1,max_cont
5012         do j=1,max_dim
5013           buffer(i,j)=0.0D0
5014         enddo
5015       enddo
5016       mm=mod(MyRank,2)
5017 cd    write (iout,*) 'MyRank',MyRank,' mm',mm
5018       if (mm) 20,20,10 
5019    10 continue
5020 cd    write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone
5021       if (MyRank.gt.0) then
5022 C Send correlation contributions to the preceding processor
5023         msglen=msglen1
5024         nn=num_cont_hb(iatel_s)
5025         call pack_buffer(max_cont,max_dim,iatel_s,0,buffer)
5026 cd      write (iout,*) 'The BUFFER array:'
5027 cd      do i=1,nn
5028 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26)
5029 cd      enddo
5030         if (ielstart(iatel_s).gt.iatel_s+ispp) then
5031           msglen=msglen2
5032             call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer)
5033 C Clear the contacts of the atom passed to the neighboring processor
5034         nn=num_cont_hb(iatel_s+1)
5035 cd      do i=1,nn
5036 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26)
5037 cd      enddo
5038             num_cont_hb(iatel_s)=0
5039         endif 
5040 cd      write (iout,*) 'Processor ',MyID,MyRank,
5041 cd   & ' is sending correlation contribution to processor',MyID-1,
5042 cd   & ' msglen=',msglen
5043 cd      write (*,*) 'Processor ',MyID,MyRank,
5044 cd   & ' is sending correlation contribution to processor',MyID-1,
5045 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5046         call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID)
5047 cd      write (iout,*) 'Processor ',MyID,
5048 cd   & ' has sent correlation contribution to processor',MyID-1,
5049 cd   & ' msglen=',msglen,' CorrelID=',CorrelID
5050 cd      write (*,*) 'Processor ',MyID,
5051 cd   & ' has sent correlation contribution to processor',MyID-1,
5052 cd   & ' msglen=',msglen,' CorrelID=',CorrelID
5053         msglen=msglen1
5054       endif ! (MyRank.gt.0)
5055       if (ldone) goto 30
5056       ldone=.true.
5057    20 continue
5058 cd    write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone
5059       if (MyRank.lt.fgProcs-1) then
5060 C Receive correlation contributions from the next processor
5061         msglen=msglen1
5062         if (ielend(iatel_e).lt.nct-1) msglen=msglen2
5063 cd      write (iout,*) 'Processor',MyID,
5064 cd   & ' is receiving correlation contribution from processor',MyID+1,
5065 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5066 cd      write (*,*) 'Processor',MyID,
5067 cd   & ' is receiving correlation contribution from processor',MyID+1,
5068 cd   & ' msglen=',msglen,' CorrelType=',CorrelType
5069         nbytes=-1
5070         do while (nbytes.le.0)
5071           call mp_probe(MyID+1,CorrelType,nbytes)
5072         enddo
5073 cd      print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes
5074         call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes)
5075 cd      write (iout,*) 'Processor',MyID,
5076 cd   & ' has received correlation contribution from processor',MyID+1,
5077 cd   & ' msglen=',msglen,' nbytes=',nbytes
5078 cd      write (iout,*) 'The received BUFFER array:'
5079 cd      do i=1,max_cont
5080 cd        write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52)
5081 cd      enddo
5082         if (msglen.eq.msglen1) then
5083           call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer)
5084         else if (msglen.eq.msglen2)  then
5085           call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer) 
5086           call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer) 
5087         else
5088           write (iout,*) 
5089      & 'ERROR!!!! message length changed while processing correlations.'
5090           write (*,*) 
5091      & 'ERROR!!!! message length changed while processing correlations.'
5092           call mp_stopall(Error)
5093         endif ! msglen.eq.msglen1
5094       endif ! MyRank.lt.fgProcs-1
5095       if (ldone) goto 30
5096       ldone=.true.
5097       goto 10
5098    30 continue
5099 #endif
5100       if (lprn) then
5101         write (iout,'(a)') 'Contact function values:'
5102         do i=nnt,nct-2
5103           write (iout,'(2i3,50(1x,i2,f5.2))') 
5104      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5105      &    j=1,num_cont_hb(i))
5106         enddo
5107       endif
5108       ecorr=0.0D0
5109       ecorr5=0.0d0
5110       ecorr6=0.0d0
5111 C Remove the loop below after debugging !!!
5112       do i=nnt,nct
5113         do j=1,3
5114           gradcorr(j,i)=0.0D0
5115           gradxorr(j,i)=0.0D0
5116         enddo
5117       enddo
5118 C Calculate the dipole-dipole interaction energies
5119       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
5120       do i=iatel_s,iatel_e+1
5121         num_conti=num_cont_hb(i)
5122         do jj=1,num_conti
5123           j=jcont_hb(jj,i)
5124           call dipole(i,j,jj)
5125         enddo
5126       enddo
5127       endif
5128 C Calculate the local-electrostatic correlation terms
5129       do i=iatel_s,iatel_e+1
5130         i1=i+1
5131         num_conti=num_cont_hb(i)
5132         num_conti1=num_cont_hb(i+1)
5133         do jj=1,num_conti
5134           j=jcont_hb(jj,i)
5135           do kk=1,num_conti1
5136             j1=jcont_hb(kk,i1)
5137 c            write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5138 c     &         ' jj=',jj,' kk=',kk
5139             if (j1.eq.j+1 .or. j1.eq.j-1) then
5140 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
5141 C The system gains extra energy.
5142               n_corr=n_corr+1
5143               sqd1=dsqrt(d_cont(jj,i))
5144               sqd2=dsqrt(d_cont(kk,i1))
5145               sred_geom = sqd1*sqd2
5146               IF (sred_geom.lt.cutoff_corr) THEN
5147                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
5148      &            ekont,fprimcont)
5149 c               write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5150 c     &         ' jj=',jj,' kk=',kk
5151                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
5152                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
5153                 do l=1,3
5154                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
5155                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
5156                 enddo
5157                 n_corr1=n_corr1+1
5158 cd               write (iout,*) 'sred_geom=',sred_geom,
5159 cd     &          ' ekont=',ekont,' fprim=',fprimcont
5160                 call calc_eello(i,j,i+1,j1,jj,kk)
5161                 if (wcorr4.gt.0.0d0) 
5162      &            ecorr=ecorr+eello4(i,j,i+1,j1,jj,kk)
5163                 if (wcorr5.gt.0.0d0)
5164      &            ecorr5=ecorr5+eello5(i,j,i+1,j1,jj,kk)
5165 c                print *,"wcorr5",ecorr5
5166 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
5167 cd                write(2,*)'ijkl',i,j,i+1,j1 
5168                 if (wcorr6.gt.0.0d0 .and. (j.ne.i+4 .or. j1.ne.i+3
5169      &               .or. wturn6.eq.0.0d0))then
5170 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
5171                   ecorr6=ecorr6+eello6(i,j,i+1,j1,jj,kk)
5172 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
5173 cd     &            'ecorr6=',ecorr6
5174 cd                write (iout,'(4e15.5)') sred_geom,
5175 cd     &          dabs(eello4(i,j,i+1,j1,jj,kk)),
5176 cd     &          dabs(eello5(i,j,i+1,j1,jj,kk)),
5177 cd     &          dabs(eello6(i,j,i+1,j1,jj,kk))
5178                 else if (wturn6.gt.0.0d0
5179      &            .and. (j.eq.i+4 .and. j1.eq.i+3)) then
5180 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,j,i+1,j1
5181                   eturn6=eturn6+eello_turn6(i,jj,kk)
5182 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
5183                 endif
5184               ENDIF
5185 1111          continue
5186             else if (j1.eq.j) then
5187 C Contacts I-J and I-(J+1) occur simultaneously. 
5188 C The system loses extra energy.
5189 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
5190             endif
5191           enddo ! kk
5192           do kk=1,num_conti
5193             j1=jcont_hb(kk,i)
5194 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5195 c    &         ' jj=',jj,' kk=',kk
5196             if (j1.eq.j+1) then
5197 C Contacts I-J and (I+1)-J occur simultaneously. 
5198 C The system loses extra energy.
5199 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
5200             endif ! j1==j+1
5201           enddo ! kk
5202         enddo ! jj
5203       enddo ! i
5204       return
5205       end
5206 c------------------------------------------------------------------------------
5207       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
5208       implicit real*8 (a-h,o-z)
5209       include 'DIMENSIONS'
5210       include 'COMMON.IOUNITS'
5211       include 'COMMON.DERIV'
5212       include 'COMMON.INTERACT'
5213       include 'COMMON.CONTACTS'
5214       double precision gx(3),gx1(3)
5215       logical lprn
5216       lprn=.false.
5217       eij=facont_hb(jj,i)
5218       ekl=facont_hb(kk,k)
5219       ees0pij=ees0p(jj,i)
5220       ees0pkl=ees0p(kk,k)
5221       ees0mij=ees0m(jj,i)
5222       ees0mkl=ees0m(kk,k)
5223       ekont=eij*ekl
5224       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
5225 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
5226 C Following 4 lines for diagnostics.
5227 cd    ees0pkl=0.0D0
5228 cd    ees0pij=1.0D0
5229 cd    ees0mkl=0.0D0
5230 cd    ees0mij=1.0D0
5231 c     write (iout,*)'Contacts have occurred for peptide groups',i,j,
5232 c    &   ' and',k,l
5233 c     write (iout,*)'Contacts have occurred for peptide groups',
5234 c    &  i,j,' fcont:',eij,' eij',' eesij',ees0pij,ees0mij,' and ',k,l
5235 c    & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' ees=',ees
5236 C Calculate the multi-body contribution to energy.
5237       ecorr=ecorr+ekont*ees
5238       if (calc_grad) then
5239 C Calculate multi-body contributions to the gradient.
5240       do ll=1,3
5241         ghalf=0.5D0*ees*ekl*gacont_hbr(ll,jj,i)
5242         gradcorr(ll,i)=gradcorr(ll,i)+ghalf
5243      &  -ekont*(coeffp*ees0pkl*gacontp_hb1(ll,jj,i)+
5244      &  coeffm*ees0mkl*gacontm_hb1(ll,jj,i))
5245         gradcorr(ll,j)=gradcorr(ll,j)+ghalf
5246      &  -ekont*(coeffp*ees0pkl*gacontp_hb2(ll,jj,i)+
5247      &  coeffm*ees0mkl*gacontm_hb2(ll,jj,i))
5248         ghalf=0.5D0*ees*eij*gacont_hbr(ll,kk,k)
5249         gradcorr(ll,k)=gradcorr(ll,k)+ghalf
5250      &  -ekont*(coeffp*ees0pij*gacontp_hb1(ll,kk,k)+
5251      &  coeffm*ees0mij*gacontm_hb1(ll,kk,k))
5252         gradcorr(ll,l)=gradcorr(ll,l)+ghalf
5253      &  -ekont*(coeffp*ees0pij*gacontp_hb2(ll,kk,k)+
5254      &  coeffm*ees0mij*gacontm_hb2(ll,kk,k))
5255       enddo
5256       do m=i+1,j-1
5257         do ll=1,3
5258           gradcorr(ll,m)=gradcorr(ll,m)+
5259      &     ees*ekl*gacont_hbr(ll,jj,i)-
5260      &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
5261      &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
5262         enddo
5263       enddo
5264       do m=k+1,l-1
5265         do ll=1,3
5266           gradcorr(ll,m)=gradcorr(ll,m)+
5267      &     ees*eij*gacont_hbr(ll,kk,k)-
5268      &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
5269      &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
5270         enddo
5271       enddo 
5272       endif
5273       ehbcorr=ekont*ees
5274       return
5275       end
5276 C---------------------------------------------------------------------------
5277       subroutine dipole(i,j,jj)
5278       implicit real*8 (a-h,o-z)
5279       include 'DIMENSIONS'
5280       include 'DIMENSIONS.ZSCOPT'
5281       include 'COMMON.IOUNITS'
5282       include 'COMMON.CHAIN'
5283       include 'COMMON.FFIELD'
5284       include 'COMMON.DERIV'
5285       include 'COMMON.INTERACT'
5286       include 'COMMON.CONTACTS'
5287       include 'COMMON.TORSION'
5288       include 'COMMON.VAR'
5289       include 'COMMON.GEO'
5290       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
5291      &  auxmat(2,2)
5292       iti1 = itortyp(itype(i+1))
5293       if (j.lt.nres-1) then
5294         itj1 = itortyp(itype(j+1))
5295       else
5296         itj1=ntortyp+1
5297       endif
5298       do iii=1,2
5299         dipi(iii,1)=Ub2(iii,i)
5300         dipderi(iii)=Ub2der(iii,i)
5301         dipi(iii,2)=b1(iii,iti1)
5302         dipj(iii,1)=Ub2(iii,j)
5303         dipderj(iii)=Ub2der(iii,j)
5304         dipj(iii,2)=b1(iii,itj1)
5305       enddo
5306       kkk=0
5307       do iii=1,2
5308         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
5309         do jjj=1,2
5310           kkk=kkk+1
5311           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
5312         enddo
5313       enddo
5314       if (.not.calc_grad) return
5315       do kkk=1,5
5316         do lll=1,3
5317           mmm=0
5318           do iii=1,2
5319             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
5320      &        auxvec(1))
5321             do jjj=1,2
5322               mmm=mmm+1
5323               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
5324             enddo
5325           enddo
5326         enddo
5327       enddo
5328       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
5329       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
5330       do iii=1,2
5331         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
5332       enddo
5333       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
5334       do iii=1,2
5335         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
5336       enddo
5337       return
5338       end
5339 C---------------------------------------------------------------------------
5340       subroutine calc_eello(i,j,k,l,jj,kk)
5341
5342 C This subroutine computes matrices and vectors needed to calculate 
5343 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
5344 C
5345       implicit real*8 (a-h,o-z)
5346       include 'DIMENSIONS'
5347       include 'DIMENSIONS.ZSCOPT'
5348       include 'COMMON.IOUNITS'
5349       include 'COMMON.CHAIN'
5350       include 'COMMON.DERIV'
5351       include 'COMMON.INTERACT'
5352       include 'COMMON.CONTACTS'
5353       include 'COMMON.TORSION'
5354       include 'COMMON.VAR'
5355       include 'COMMON.GEO'
5356       include 'COMMON.FFIELD'
5357       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
5358      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
5359       logical lprn
5360       common /kutas/ lprn
5361 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
5362 cd     & ' jj=',jj,' kk=',kk
5363 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
5364       do iii=1,2
5365         do jjj=1,2
5366           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
5367           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
5368         enddo
5369       enddo
5370       call transpose2(aa1(1,1),aa1t(1,1))
5371       call transpose2(aa2(1,1),aa2t(1,1))
5372       do kkk=1,5
5373         do lll=1,3
5374           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
5375      &      aa1tder(1,1,lll,kkk))
5376           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
5377      &      aa2tder(1,1,lll,kkk))
5378         enddo
5379       enddo 
5380       if (l.eq.j+1) then
5381 C parallel orientation of the two CA-CA-CA frames.
5382         if (i.gt.1) then
5383           iti=itortyp(itype(i))
5384         else
5385           iti=ntortyp+1
5386         endif
5387         itk1=itortyp(itype(k+1))
5388         itj=itortyp(itype(j))
5389         if (l.lt.nres-1) then
5390           itl1=itortyp(itype(l+1))
5391         else
5392           itl1=ntortyp+1
5393         endif
5394 C A1 kernel(j+1) A2T
5395 cd        do iii=1,2
5396 cd          write (iout,'(3f10.5,5x,3f10.5)') 
5397 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
5398 cd        enddo
5399         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5400      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
5401      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
5402 C Following matrices are needed only for 6-th order cumulants
5403         IF (wcorr6.gt.0.0d0) THEN
5404         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5405      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
5406      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
5407         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5408      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
5409      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
5410      &   ADtEAderx(1,1,1,1,1,1))
5411         lprn=.false.
5412         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5413      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
5414      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
5415      &   ADtEA1derx(1,1,1,1,1,1))
5416         ENDIF
5417 C End 6-th order cumulants
5418 cd        lprn=.false.
5419 cd        if (lprn) then
5420 cd        write (2,*) 'In calc_eello6'
5421 cd        do iii=1,2
5422 cd          write (2,*) 'iii=',iii
5423 cd          do kkk=1,5
5424 cd            write (2,*) 'kkk=',kkk
5425 cd            do jjj=1,2
5426 cd              write (2,'(3(2f10.5),5x)') 
5427 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
5428 cd            enddo
5429 cd          enddo
5430 cd        enddo
5431 cd        endif
5432         call transpose2(EUgder(1,1,k),auxmat(1,1))
5433         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
5434         call transpose2(EUg(1,1,k),auxmat(1,1))
5435         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
5436         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
5437         do iii=1,2
5438           do kkk=1,5
5439             do lll=1,3
5440               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
5441      &          EAEAderx(1,1,lll,kkk,iii,1))
5442             enddo
5443           enddo
5444         enddo
5445 C A1T kernel(i+1) A2
5446         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
5447      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
5448      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
5449 C Following matrices are needed only for 6-th order cumulants
5450         IF (wcorr6.gt.0.0d0) THEN
5451         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
5452      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
5453      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
5454         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
5455      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
5456      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
5457      &   ADtEAderx(1,1,1,1,1,2))
5458         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
5459      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
5460      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
5461      &   ADtEA1derx(1,1,1,1,1,2))
5462         ENDIF
5463 C End 6-th order cumulants
5464         call transpose2(EUgder(1,1,l),auxmat(1,1))
5465         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
5466         call transpose2(EUg(1,1,l),auxmat(1,1))
5467         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
5468         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
5469         do iii=1,2
5470           do kkk=1,5
5471             do lll=1,3
5472               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
5473      &          EAEAderx(1,1,lll,kkk,iii,2))
5474             enddo
5475           enddo
5476         enddo
5477 C AEAb1 and AEAb2
5478 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
5479 C They are needed only when the fifth- or the sixth-order cumulants are
5480 C indluded.
5481         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
5482         call transpose2(AEA(1,1,1),auxmat(1,1))
5483         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
5484         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
5485         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
5486         call transpose2(AEAderg(1,1,1),auxmat(1,1))
5487         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
5488         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
5489         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
5490         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
5491         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
5492         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
5493         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
5494         call transpose2(AEA(1,1,2),auxmat(1,1))
5495         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
5496         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
5497         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
5498         call transpose2(AEAderg(1,1,2),auxmat(1,1))
5499         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
5500         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
5501         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
5502         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
5503         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
5504         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
5505         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
5506 C Calculate the Cartesian derivatives of the vectors.
5507         do iii=1,2
5508           do kkk=1,5
5509             do lll=1,3
5510               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
5511               call matvec2(auxmat(1,1),b1(1,iti),
5512      &          AEAb1derx(1,lll,kkk,iii,1,1))
5513               call matvec2(auxmat(1,1),Ub2(1,i),
5514      &          AEAb2derx(1,lll,kkk,iii,1,1))
5515               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
5516      &          AEAb1derx(1,lll,kkk,iii,2,1))
5517               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
5518      &          AEAb2derx(1,lll,kkk,iii,2,1))
5519               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
5520               call matvec2(auxmat(1,1),b1(1,itj),
5521      &          AEAb1derx(1,lll,kkk,iii,1,2))
5522               call matvec2(auxmat(1,1),Ub2(1,j),
5523      &          AEAb2derx(1,lll,kkk,iii,1,2))
5524               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
5525      &          AEAb1derx(1,lll,kkk,iii,2,2))
5526               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
5527      &          AEAb2derx(1,lll,kkk,iii,2,2))
5528             enddo
5529           enddo
5530         enddo
5531         ENDIF
5532 C End vectors
5533       else
5534 C Antiparallel orientation of the two CA-CA-CA frames.
5535         if (i.gt.1) then
5536           iti=itortyp(itype(i))
5537         else
5538           iti=ntortyp+1
5539         endif
5540         itk1=itortyp(itype(k+1))
5541         itl=itortyp(itype(l))
5542         itj=itortyp(itype(j))
5543         if (j.lt.nres-1) then
5544           itj1=itortyp(itype(j+1))
5545         else 
5546           itj1=ntortyp+1
5547         endif
5548 C A2 kernel(j-1)T A1T
5549         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5550      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
5551      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
5552 C Following matrices are needed only for 6-th order cumulants
5553         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
5554      &     j.eq.i+4 .and. l.eq.i+3)) THEN
5555         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5556      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
5557      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
5558         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5559      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
5560      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
5561      &   ADtEAderx(1,1,1,1,1,1))
5562         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5563      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
5564      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
5565      &   ADtEA1derx(1,1,1,1,1,1))
5566         ENDIF
5567 C End 6-th order cumulants
5568         call transpose2(EUgder(1,1,k),auxmat(1,1))
5569         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
5570         call transpose2(EUg(1,1,k),auxmat(1,1))
5571         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
5572         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
5573         do iii=1,2
5574           do kkk=1,5
5575             do lll=1,3
5576               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
5577      &          EAEAderx(1,1,lll,kkk,iii,1))
5578             enddo
5579           enddo
5580         enddo
5581 C A2T kernel(i+1)T A1
5582         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
5583      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
5584      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
5585 C Following matrices are needed only for 6-th order cumulants
5586         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
5587      &     j.eq.i+4 .and. l.eq.i+3)) THEN
5588         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
5589      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
5590      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
5591         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
5592      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
5593      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
5594      &   ADtEAderx(1,1,1,1,1,2))
5595         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
5596      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
5597      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
5598      &   ADtEA1derx(1,1,1,1,1,2))
5599         ENDIF
5600 C End 6-th order cumulants
5601         call transpose2(EUgder(1,1,j),auxmat(1,1))
5602         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
5603         call transpose2(EUg(1,1,j),auxmat(1,1))
5604         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
5605         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
5606         do iii=1,2
5607           do kkk=1,5
5608             do lll=1,3
5609               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
5610      &          EAEAderx(1,1,lll,kkk,iii,2))
5611             enddo
5612           enddo
5613         enddo
5614 C AEAb1 and AEAb2
5615 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
5616 C They are needed only when the fifth- or the sixth-order cumulants are
5617 C indluded.
5618         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
5619      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
5620         call transpose2(AEA(1,1,1),auxmat(1,1))
5621         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
5622         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
5623         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
5624         call transpose2(AEAderg(1,1,1),auxmat(1,1))
5625         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
5626         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
5627         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
5628         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
5629         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
5630         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
5631         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
5632         call transpose2(AEA(1,1,2),auxmat(1,1))
5633         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
5634         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
5635         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
5636         call transpose2(AEAderg(1,1,2),auxmat(1,1))
5637         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
5638         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
5639         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
5640         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
5641         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
5642         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
5643         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
5644 C Calculate the Cartesian derivatives of the vectors.
5645         do iii=1,2
5646           do kkk=1,5
5647             do lll=1,3
5648               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
5649               call matvec2(auxmat(1,1),b1(1,iti),
5650      &          AEAb1derx(1,lll,kkk,iii,1,1))
5651               call matvec2(auxmat(1,1),Ub2(1,i),
5652      &          AEAb2derx(1,lll,kkk,iii,1,1))
5653               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
5654      &          AEAb1derx(1,lll,kkk,iii,2,1))
5655               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
5656      &          AEAb2derx(1,lll,kkk,iii,2,1))
5657               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
5658               call matvec2(auxmat(1,1),b1(1,itl),
5659      &          AEAb1derx(1,lll,kkk,iii,1,2))
5660               call matvec2(auxmat(1,1),Ub2(1,l),
5661      &          AEAb2derx(1,lll,kkk,iii,1,2))
5662               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
5663      &          AEAb1derx(1,lll,kkk,iii,2,2))
5664               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
5665      &          AEAb2derx(1,lll,kkk,iii,2,2))
5666             enddo
5667           enddo
5668         enddo
5669         ENDIF
5670 C End vectors
5671       endif
5672       return
5673       end
5674 C---------------------------------------------------------------------------
5675       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
5676      &  KK,KKderg,AKA,AKAderg,AKAderx)
5677       implicit none
5678       integer nderg
5679       logical transp
5680       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
5681      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
5682      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
5683       integer iii,kkk,lll
5684       integer jjj,mmm
5685       logical lprn
5686       common /kutas/ lprn
5687       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
5688       do iii=1,nderg 
5689         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
5690      &    AKAderg(1,1,iii))
5691       enddo
5692 cd      if (lprn) write (2,*) 'In kernel'
5693       do kkk=1,5
5694 cd        if (lprn) write (2,*) 'kkk=',kkk
5695         do lll=1,3
5696           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
5697      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
5698 cd          if (lprn) then
5699 cd            write (2,*) 'lll=',lll
5700 cd            write (2,*) 'iii=1'
5701 cd            do jjj=1,2
5702 cd              write (2,'(3(2f10.5),5x)') 
5703 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
5704 cd            enddo
5705 cd          endif
5706           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
5707      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
5708 cd          if (lprn) then
5709 cd            write (2,*) 'lll=',lll
5710 cd            write (2,*) 'iii=2'
5711 cd            do jjj=1,2
5712 cd              write (2,'(3(2f10.5),5x)') 
5713 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
5714 cd            enddo
5715 cd          endif
5716         enddo
5717       enddo
5718       return
5719       end
5720 C---------------------------------------------------------------------------
5721       double precision function eello4(i,j,k,l,jj,kk)
5722       implicit real*8 (a-h,o-z)
5723       include 'DIMENSIONS'
5724       include 'DIMENSIONS.ZSCOPT'
5725       include 'COMMON.IOUNITS'
5726       include 'COMMON.CHAIN'
5727       include 'COMMON.DERIV'
5728       include 'COMMON.INTERACT'
5729       include 'COMMON.CONTACTS'
5730       include 'COMMON.TORSION'
5731       include 'COMMON.VAR'
5732       include 'COMMON.GEO'
5733       double precision pizda(2,2),ggg1(3),ggg2(3)
5734 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
5735 cd        eello4=0.0d0
5736 cd        return
5737 cd      endif
5738 cd      print *,'eello4:',i,j,k,l,jj,kk
5739 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
5740 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
5741 cold      eij=facont_hb(jj,i)
5742 cold      ekl=facont_hb(kk,k)
5743 cold      ekont=eij*ekl
5744       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
5745       if (calc_grad) then
5746 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
5747       gcorr_loc(k-1)=gcorr_loc(k-1)
5748      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
5749       if (l.eq.j+1) then
5750         gcorr_loc(l-1)=gcorr_loc(l-1)
5751      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
5752       else
5753         gcorr_loc(j-1)=gcorr_loc(j-1)
5754      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
5755       endif
5756       do iii=1,2
5757         do kkk=1,5
5758           do lll=1,3
5759             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
5760      &                        -EAEAderx(2,2,lll,kkk,iii,1)
5761 cd            derx(lll,kkk,iii)=0.0d0
5762           enddo
5763         enddo
5764       enddo
5765 cd      gcorr_loc(l-1)=0.0d0
5766 cd      gcorr_loc(j-1)=0.0d0
5767 cd      gcorr_loc(k-1)=0.0d0
5768 cd      eel4=1.0d0
5769 cd      write (iout,*)'Contacts have occurred for peptide groups',
5770 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
5771 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
5772       if (j.lt.nres-1) then
5773         j1=j+1
5774         j2=j-1
5775       else
5776         j1=j-1
5777         j2=j-2
5778       endif
5779       if (l.lt.nres-1) then
5780         l1=l+1
5781         l2=l-1
5782       else
5783         l1=l-1
5784         l2=l-2
5785       endif
5786       do ll=1,3
5787 cold        ghalf=0.5d0*eel4*ekl*gacont_hbr(ll,jj,i)
5788         ggg1(ll)=eel4*g_contij(ll,1)
5789         ggg2(ll)=eel4*g_contij(ll,2)
5790         ghalf=0.5d0*ggg1(ll)
5791 cd        ghalf=0.0d0
5792         gradcorr(ll,i)=gradcorr(ll,i)+ghalf+ekont*derx(ll,2,1)
5793         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
5794         gradcorr(ll,j)=gradcorr(ll,j)+ghalf+ekont*derx(ll,4,1)
5795         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
5796 cold        ghalf=0.5d0*eel4*eij*gacont_hbr(ll,kk,k)
5797         ghalf=0.5d0*ggg2(ll)
5798 cd        ghalf=0.0d0
5799         gradcorr(ll,k)=gradcorr(ll,k)+ghalf+ekont*derx(ll,2,2)
5800         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
5801         gradcorr(ll,l)=gradcorr(ll,l)+ghalf+ekont*derx(ll,4,2)
5802         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
5803       enddo
5804 cd      goto 1112
5805       do m=i+1,j-1
5806         do ll=1,3
5807 cold          gradcorr(ll,m)=gradcorr(ll,m)+eel4*ekl*gacont_hbr(ll,jj,i)
5808           gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
5809         enddo
5810       enddo
5811       do m=k+1,l-1
5812         do ll=1,3
5813 cold          gradcorr(ll,m)=gradcorr(ll,m)+eel4*eij*gacont_hbr(ll,kk,k)
5814           gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
5815         enddo
5816       enddo
5817 1112  continue
5818       do m=i+2,j2
5819         do ll=1,3
5820           gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
5821         enddo
5822       enddo
5823       do m=k+2,l2
5824         do ll=1,3
5825           gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
5826         enddo
5827       enddo 
5828 cd      do iii=1,nres-3
5829 cd        write (2,*) iii,gcorr_loc(iii)
5830 cd      enddo
5831       endif
5832       eello4=ekont*eel4
5833 cd      write (2,*) 'ekont',ekont
5834 cd      write (iout,*) 'eello4',ekont*eel4
5835       return
5836       end
5837 C---------------------------------------------------------------------------
5838       double precision function eello5(i,j,k,l,jj,kk)
5839       implicit real*8 (a-h,o-z)
5840       include 'DIMENSIONS'
5841       include 'DIMENSIONS.ZSCOPT'
5842       include 'COMMON.IOUNITS'
5843       include 'COMMON.CHAIN'
5844       include 'COMMON.DERIV'
5845       include 'COMMON.INTERACT'
5846       include 'COMMON.CONTACTS'
5847       include 'COMMON.TORSION'
5848       include 'COMMON.VAR'
5849       include 'COMMON.GEO'
5850       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
5851       double precision ggg1(3),ggg2(3)
5852 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
5853 C                                                                              C
5854 C                            Parallel chains                                   C
5855 C                                                                              C
5856 C          o             o                   o             o                   C
5857 C         /l\           / \             \   / \           / \   /              C
5858 C        /   \         /   \             \ /   \         /   \ /               C
5859 C       j| o |l1       | o |              o| o |         | o |o                C
5860 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
5861 C      \i/   \         /   \ /             /   \         /   \                 C
5862 C       o    k1             o                                                  C
5863 C         (I)          (II)                (III)          (IV)                 C
5864 C                                                                              C
5865 C      eello5_1        eello5_2            eello5_3       eello5_4             C
5866 C                                                                              C
5867 C                            Antiparallel chains                               C
5868 C                                                                              C
5869 C          o             o                   o             o                   C
5870 C         /j\           / \             \   / \           / \   /              C
5871 C        /   \         /   \             \ /   \         /   \ /               C
5872 C      j1| o |l        | o |              o| o |         | o |o                C
5873 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
5874 C      \i/   \         /   \ /             /   \         /   \                 C
5875 C       o     k1            o                                                  C
5876 C         (I)          (II)                (III)          (IV)                 C
5877 C                                                                              C
5878 C      eello5_1        eello5_2            eello5_3       eello5_4             C
5879 C                                                                              C
5880 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
5881 C                                                                              C
5882 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
5883 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
5884 cd        eello5=0.0d0
5885 cd        return
5886 cd      endif
5887 cd      write (iout,*)
5888 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
5889 cd     &   ' and',k,l
5890       itk=itortyp(itype(k))
5891       itl=itortyp(itype(l))
5892       itj=itortyp(itype(j))
5893       eello5_1=0.0d0
5894       eello5_2=0.0d0
5895       eello5_3=0.0d0
5896       eello5_4=0.0d0
5897 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
5898 cd     &   eel5_3_num,eel5_4_num)
5899       do iii=1,2
5900         do kkk=1,5
5901           do lll=1,3
5902             derx(lll,kkk,iii)=0.0d0
5903           enddo
5904         enddo
5905       enddo
5906 cd      eij=facont_hb(jj,i)
5907 cd      ekl=facont_hb(kk,k)
5908 cd      ekont=eij*ekl
5909 cd      write (iout,*)'Contacts have occurred for peptide groups',
5910 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
5911 cd      goto 1111
5912 C Contribution from the graph I.
5913 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
5914 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
5915       call transpose2(EUg(1,1,k),auxmat(1,1))
5916       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
5917       vv(1)=pizda(1,1)-pizda(2,2)
5918       vv(2)=pizda(1,2)+pizda(2,1)
5919       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
5920      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
5921       if (calc_grad) then
5922 C Explicit gradient in virtual-dihedral angles.
5923       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
5924      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
5925      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
5926       call transpose2(EUgder(1,1,k),auxmat1(1,1))
5927       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
5928       vv(1)=pizda(1,1)-pizda(2,2)
5929       vv(2)=pizda(1,2)+pizda(2,1)
5930       g_corr5_loc(k-1)=g_corr5_loc(k-1)
5931      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
5932      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
5933       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
5934       vv(1)=pizda(1,1)-pizda(2,2)
5935       vv(2)=pizda(1,2)+pizda(2,1)
5936       if (l.eq.j+1) then
5937         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
5938      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
5939      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
5940       else
5941         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
5942      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
5943      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
5944       endif 
5945 C Cartesian gradient
5946       do iii=1,2
5947         do kkk=1,5
5948           do lll=1,3
5949             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
5950      &        pizda(1,1))
5951             vv(1)=pizda(1,1)-pizda(2,2)
5952             vv(2)=pizda(1,2)+pizda(2,1)
5953             derx(lll,kkk,iii)=derx(lll,kkk,iii)
5954      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
5955      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
5956           enddo
5957         enddo
5958       enddo
5959 c      goto 1112
5960       endif
5961 c1111  continue
5962 C Contribution from graph II 
5963       call transpose2(EE(1,1,itk),auxmat(1,1))
5964       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
5965       vv(1)=pizda(1,1)+pizda(2,2)
5966       vv(2)=pizda(2,1)-pizda(1,2)
5967       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
5968      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
5969       if (calc_grad) then
5970 C Explicit gradient in virtual-dihedral angles.
5971       g_corr5_loc(k-1)=g_corr5_loc(k-1)
5972      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
5973       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
5974       vv(1)=pizda(1,1)+pizda(2,2)
5975       vv(2)=pizda(2,1)-pizda(1,2)
5976       if (l.eq.j+1) then
5977         g_corr5_loc(l-1)=g_corr5_loc(l-1)
5978      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
5979      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
5980       else
5981         g_corr5_loc(j-1)=g_corr5_loc(j-1)
5982      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
5983      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
5984       endif
5985 C Cartesian gradient
5986       do iii=1,2
5987         do kkk=1,5
5988           do lll=1,3
5989             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
5990      &        pizda(1,1))
5991             vv(1)=pizda(1,1)+pizda(2,2)
5992             vv(2)=pizda(2,1)-pizda(1,2)
5993             derx(lll,kkk,iii)=derx(lll,kkk,iii)
5994      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
5995      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
5996           enddo
5997         enddo
5998       enddo
5999 cd      goto 1112
6000       endif
6001 cd1111  continue
6002       if (l.eq.j+1) then
6003 cd        goto 1110
6004 C Parallel orientation
6005 C Contribution from graph III
6006         call transpose2(EUg(1,1,l),auxmat(1,1))
6007         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
6008         vv(1)=pizda(1,1)-pizda(2,2)
6009         vv(2)=pizda(1,2)+pizda(2,1)
6010         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
6011      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
6012         if (calc_grad) then
6013 C Explicit gradient in virtual-dihedral angles.
6014         g_corr5_loc(j-1)=g_corr5_loc(j-1)
6015      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
6016      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
6017         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
6018         vv(1)=pizda(1,1)-pizda(2,2)
6019         vv(2)=pizda(1,2)+pizda(2,1)
6020         g_corr5_loc(k-1)=g_corr5_loc(k-1)
6021      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
6022      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
6023         call transpose2(EUgder(1,1,l),auxmat1(1,1))
6024         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
6025         vv(1)=pizda(1,1)-pizda(2,2)
6026         vv(2)=pizda(1,2)+pizda(2,1)
6027         g_corr5_loc(l-1)=g_corr5_loc(l-1)
6028      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
6029      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
6030 C Cartesian gradient
6031         do iii=1,2
6032           do kkk=1,5
6033             do lll=1,3
6034               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
6035      &          pizda(1,1))
6036               vv(1)=pizda(1,1)-pizda(2,2)
6037               vv(2)=pizda(1,2)+pizda(2,1)
6038               derx(lll,kkk,iii)=derx(lll,kkk,iii)
6039      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
6040      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
6041             enddo
6042           enddo
6043         enddo
6044 cd        goto 1112
6045         endif
6046 C Contribution from graph IV
6047 cd1110    continue
6048         call transpose2(EE(1,1,itl),auxmat(1,1))
6049         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
6050         vv(1)=pizda(1,1)+pizda(2,2)
6051         vv(2)=pizda(2,1)-pizda(1,2)
6052         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
6053      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
6054         if (calc_grad) then
6055 C Explicit gradient in virtual-dihedral angles.
6056         g_corr5_loc(l-1)=g_corr5_loc(l-1)
6057      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
6058         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
6059         vv(1)=pizda(1,1)+pizda(2,2)
6060         vv(2)=pizda(2,1)-pizda(1,2)
6061         g_corr5_loc(k-1)=g_corr5_loc(k-1)
6062      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
6063      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
6064 C Cartesian gradient
6065         do iii=1,2
6066           do kkk=1,5
6067             do lll=1,3
6068               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6069      &          pizda(1,1))
6070               vv(1)=pizda(1,1)+pizda(2,2)
6071               vv(2)=pizda(2,1)-pizda(1,2)
6072               derx(lll,kkk,iii)=derx(lll,kkk,iii)
6073      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
6074      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
6075             enddo
6076           enddo
6077         enddo
6078         endif
6079       else
6080 C Antiparallel orientation
6081 C Contribution from graph III
6082 c        goto 1110
6083         call transpose2(EUg(1,1,j),auxmat(1,1))
6084         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
6085         vv(1)=pizda(1,1)-pizda(2,2)
6086         vv(2)=pizda(1,2)+pizda(2,1)
6087         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
6088      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
6089         if (calc_grad) then
6090 C Explicit gradient in virtual-dihedral angles.
6091         g_corr5_loc(l-1)=g_corr5_loc(l-1)
6092      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
6093      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
6094         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
6095         vv(1)=pizda(1,1)-pizda(2,2)
6096         vv(2)=pizda(1,2)+pizda(2,1)
6097         g_corr5_loc(k-1)=g_corr5_loc(k-1)
6098      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
6099      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
6100         call transpose2(EUgder(1,1,j),auxmat1(1,1))
6101         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
6102         vv(1)=pizda(1,1)-pizda(2,2)
6103         vv(2)=pizda(1,2)+pizda(2,1)
6104         g_corr5_loc(j-1)=g_corr5_loc(j-1)
6105      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
6106      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
6107 C Cartesian gradient
6108         do iii=1,2
6109           do kkk=1,5
6110             do lll=1,3
6111               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
6112      &          pizda(1,1))
6113               vv(1)=pizda(1,1)-pizda(2,2)
6114               vv(2)=pizda(1,2)+pizda(2,1)
6115               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
6116      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
6117      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
6118             enddo
6119           enddo
6120         enddo
6121 cd        goto 1112
6122         endif
6123 C Contribution from graph IV
6124 1110    continue
6125         call transpose2(EE(1,1,itj),auxmat(1,1))
6126         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
6127         vv(1)=pizda(1,1)+pizda(2,2)
6128         vv(2)=pizda(2,1)-pizda(1,2)
6129         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
6130      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
6131         if (calc_grad) then
6132 C Explicit gradient in virtual-dihedral angles.
6133         g_corr5_loc(j-1)=g_corr5_loc(j-1)
6134      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
6135         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
6136         vv(1)=pizda(1,1)+pizda(2,2)
6137         vv(2)=pizda(2,1)-pizda(1,2)
6138         g_corr5_loc(k-1)=g_corr5_loc(k-1)
6139      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
6140      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
6141 C Cartesian gradient
6142         do iii=1,2
6143           do kkk=1,5
6144             do lll=1,3
6145               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6146      &          pizda(1,1))
6147               vv(1)=pizda(1,1)+pizda(2,2)
6148               vv(2)=pizda(2,1)-pizda(1,2)
6149               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
6150      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
6151      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
6152             enddo
6153           enddo
6154         enddo
6155       endif
6156       endif
6157 1112  continue
6158       eel5=eello5_1+eello5_2+eello5_3+eello5_4
6159 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
6160 cd        write (2,*) 'ijkl',i,j,k,l
6161 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
6162 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
6163 cd      endif
6164 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
6165 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
6166 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
6167 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
6168       if (calc_grad) then
6169       if (j.lt.nres-1) then
6170         j1=j+1
6171         j2=j-1
6172       else
6173         j1=j-1
6174         j2=j-2
6175       endif
6176       if (l.lt.nres-1) then
6177         l1=l+1
6178         l2=l-1
6179       else
6180         l1=l-1
6181         l2=l-2
6182       endif
6183 cd      eij=1.0d0
6184 cd      ekl=1.0d0
6185 cd      ekont=1.0d0
6186 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
6187       do ll=1,3
6188         ggg1(ll)=eel5*g_contij(ll,1)
6189         ggg2(ll)=eel5*g_contij(ll,2)
6190 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
6191         ghalf=0.5d0*ggg1(ll)
6192 cd        ghalf=0.0d0
6193         gradcorr5(ll,i)=gradcorr5(ll,i)+ghalf+ekont*derx(ll,2,1)
6194         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
6195         gradcorr5(ll,j)=gradcorr5(ll,j)+ghalf+ekont*derx(ll,4,1)
6196         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
6197 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
6198         ghalf=0.5d0*ggg2(ll)
6199 cd        ghalf=0.0d0
6200         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
6201         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
6202         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
6203         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
6204       enddo
6205 cd      goto 1112
6206       do m=i+1,j-1
6207         do ll=1,3
6208 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
6209           gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
6210         enddo
6211       enddo
6212       do m=k+1,l-1
6213         do ll=1,3
6214 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
6215           gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
6216         enddo
6217       enddo
6218 c1112  continue
6219       do m=i+2,j2
6220         do ll=1,3
6221           gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
6222         enddo
6223       enddo
6224       do m=k+2,l2
6225         do ll=1,3
6226           gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
6227         enddo
6228       enddo 
6229 cd      do iii=1,nres-3
6230 cd        write (2,*) iii,g_corr5_loc(iii)
6231 cd      enddo
6232       endif
6233       eello5=ekont*eel5
6234 cd      write (2,*) 'ekont',ekont
6235 cd      write (iout,*) 'eello5',ekont*eel5
6236       return
6237       end
6238 c--------------------------------------------------------------------------
6239       double precision function eello6(i,j,k,l,jj,kk)
6240       implicit real*8 (a-h,o-z)
6241       include 'DIMENSIONS'
6242       include 'DIMENSIONS.ZSCOPT'
6243       include 'COMMON.IOUNITS'
6244       include 'COMMON.CHAIN'
6245       include 'COMMON.DERIV'
6246       include 'COMMON.INTERACT'
6247       include 'COMMON.CONTACTS'
6248       include 'COMMON.TORSION'
6249       include 'COMMON.VAR'
6250       include 'COMMON.GEO'
6251       include 'COMMON.FFIELD'
6252       double precision ggg1(3),ggg2(3)
6253 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
6254 cd        eello6=0.0d0
6255 cd        return
6256 cd      endif
6257 cd      write (iout,*)
6258 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
6259 cd     &   ' and',k,l
6260       eello6_1=0.0d0
6261       eello6_2=0.0d0
6262       eello6_3=0.0d0
6263       eello6_4=0.0d0
6264       eello6_5=0.0d0
6265       eello6_6=0.0d0
6266 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
6267 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
6268       do iii=1,2
6269         do kkk=1,5
6270           do lll=1,3
6271             derx(lll,kkk,iii)=0.0d0
6272           enddo
6273         enddo
6274       enddo
6275 cd      eij=facont_hb(jj,i)
6276 cd      ekl=facont_hb(kk,k)
6277 cd      ekont=eij*ekl
6278 cd      eij=1.0d0
6279 cd      ekl=1.0d0
6280 cd      ekont=1.0d0
6281       if (l.eq.j+1) then
6282         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
6283         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
6284         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
6285         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
6286         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
6287         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
6288       else
6289         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
6290         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
6291         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
6292         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
6293         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
6294           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
6295         else
6296           eello6_5=0.0d0
6297         endif
6298         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
6299       endif
6300 C If turn contributions are considered, they will be handled separately.
6301       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
6302 cd      write(iout,*) 'eello6_1',eello6_1,' eel6_1_num',16*eel6_1_num
6303 cd      write(iout,*) 'eello6_2',eello6_2,' eel6_2_num',16*eel6_2_num
6304 cd      write(iout,*) 'eello6_3',eello6_3,' eel6_3_num',16*eel6_3_num
6305 cd      write(iout,*) 'eello6_4',eello6_4,' eel6_4_num',16*eel6_4_num
6306 cd      write(iout,*) 'eello6_5',eello6_5,' eel6_5_num',16*eel6_5_num
6307 cd      write(iout,*) 'eello6_6',eello6_6,' eel6_6_num',16*eel6_6_num
6308 cd      goto 1112
6309       if (calc_grad) then
6310       if (j.lt.nres-1) then
6311         j1=j+1
6312         j2=j-1
6313       else
6314         j1=j-1
6315         j2=j-2
6316       endif
6317       if (l.lt.nres-1) then
6318         l1=l+1
6319         l2=l-1
6320       else
6321         l1=l-1
6322         l2=l-2
6323       endif
6324       do ll=1,3
6325         ggg1(ll)=eel6*g_contij(ll,1)
6326         ggg2(ll)=eel6*g_contij(ll,2)
6327 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
6328         ghalf=0.5d0*ggg1(ll)
6329 cd        ghalf=0.0d0
6330         gradcorr6(ll,i)=gradcorr6(ll,i)+ghalf+ekont*derx(ll,2,1)
6331         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
6332         gradcorr6(ll,j)=gradcorr6(ll,j)+ghalf+ekont*derx(ll,4,1)
6333         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
6334         ghalf=0.5d0*ggg2(ll)
6335 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
6336 cd        ghalf=0.0d0
6337         gradcorr6(ll,k)=gradcorr6(ll,k)+ghalf+ekont*derx(ll,2,2)
6338         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
6339         gradcorr6(ll,l)=gradcorr6(ll,l)+ghalf+ekont*derx(ll,4,2)
6340         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
6341       enddo
6342 cd      goto 1112
6343       do m=i+1,j-1
6344         do ll=1,3
6345 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
6346           gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
6347         enddo
6348       enddo
6349       do m=k+1,l-1
6350         do ll=1,3
6351 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
6352           gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
6353         enddo
6354       enddo
6355 1112  continue
6356       do m=i+2,j2
6357         do ll=1,3
6358           gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
6359         enddo
6360       enddo
6361       do m=k+2,l2
6362         do ll=1,3
6363           gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
6364         enddo
6365       enddo 
6366 cd      do iii=1,nres-3
6367 cd        write (2,*) iii,g_corr6_loc(iii)
6368 cd      enddo
6369       endif
6370       eello6=ekont*eel6
6371 cd      write (2,*) 'ekont',ekont
6372 cd      write (iout,*) 'eello6',ekont*eel6
6373       return
6374       end
6375 c--------------------------------------------------------------------------
6376       double precision function eello6_graph1(i,j,k,l,imat,swap)
6377       implicit real*8 (a-h,o-z)
6378       include 'DIMENSIONS'
6379       include 'DIMENSIONS.ZSCOPT'
6380       include 'COMMON.IOUNITS'
6381       include 'COMMON.CHAIN'
6382       include 'COMMON.DERIV'
6383       include 'COMMON.INTERACT'
6384       include 'COMMON.CONTACTS'
6385       include 'COMMON.TORSION'
6386       include 'COMMON.VAR'
6387       include 'COMMON.GEO'
6388       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
6389       logical swap
6390       logical lprn
6391       common /kutas/ lprn
6392 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6393 C                                                                              C
6394 C      Parallel       Antiparallel                                             C
6395 C                                                                              C
6396 C          o             o                                                     C
6397 C         /l\           /j\                                                    C 
6398 C        /   \         /   \                                                   C
6399 C       /| o |         | o |\                                                  C
6400 C     \ j|/k\|  /   \  |/k\|l /                                                C
6401 C      \ /   \ /     \ /   \ /                                                 C
6402 C       o     o       o     o                                                  C
6403 C       i             i                                                        C
6404 C                                                                              C
6405 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6406       itk=itortyp(itype(k))
6407       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
6408       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
6409       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
6410       call transpose2(EUgC(1,1,k),auxmat(1,1))
6411       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
6412       vv1(1)=pizda1(1,1)-pizda1(2,2)
6413       vv1(2)=pizda1(1,2)+pizda1(2,1)
6414       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
6415       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
6416       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
6417       s5=scalar2(vv(1),Dtobr2(1,i))
6418 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
6419       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
6420       if (.not. calc_grad) return
6421       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
6422      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
6423      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
6424      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
6425      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
6426      & +scalar2(vv(1),Dtobr2der(1,i)))
6427       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
6428       vv1(1)=pizda1(1,1)-pizda1(2,2)
6429       vv1(2)=pizda1(1,2)+pizda1(2,1)
6430       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
6431       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
6432       if (l.eq.j+1) then
6433         g_corr6_loc(l-1)=g_corr6_loc(l-1)
6434      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
6435      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
6436      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
6437      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
6438       else
6439         g_corr6_loc(j-1)=g_corr6_loc(j-1)
6440      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
6441      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
6442      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
6443      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
6444       endif
6445       call transpose2(EUgCder(1,1,k),auxmat(1,1))
6446       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
6447       vv1(1)=pizda1(1,1)-pizda1(2,2)
6448       vv1(2)=pizda1(1,2)+pizda1(2,1)
6449       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
6450      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
6451      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
6452      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
6453       do iii=1,2
6454         if (swap) then
6455           ind=3-iii
6456         else
6457           ind=iii
6458         endif
6459         do kkk=1,5
6460           do lll=1,3
6461             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
6462             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
6463             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
6464             call transpose2(EUgC(1,1,k),auxmat(1,1))
6465             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
6466      &        pizda1(1,1))
6467             vv1(1)=pizda1(1,1)-pizda1(2,2)
6468             vv1(2)=pizda1(1,2)+pizda1(2,1)
6469             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
6470             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
6471      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
6472             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
6473      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
6474             s5=scalar2(vv(1),Dtobr2(1,i))
6475             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
6476           enddo
6477         enddo
6478       enddo
6479       return
6480       end
6481 c----------------------------------------------------------------------------
6482       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
6483       implicit real*8 (a-h,o-z)
6484       include 'DIMENSIONS'
6485       include 'DIMENSIONS.ZSCOPT'
6486       include 'COMMON.IOUNITS'
6487       include 'COMMON.CHAIN'
6488       include 'COMMON.DERIV'
6489       include 'COMMON.INTERACT'
6490       include 'COMMON.CONTACTS'
6491       include 'COMMON.TORSION'
6492       include 'COMMON.VAR'
6493       include 'COMMON.GEO'
6494       logical swap
6495       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
6496      & auxvec1(2),auxvec2(2),auxmat1(2,2)
6497       logical lprn
6498       common /kutas/ lprn
6499 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6500 C                                                                              C 
6501 C      Parallel       Antiparallel                                             C
6502 C                                                                              C
6503 C          o             o                                                     C
6504 C     \   /l\           /j\   /                                                C
6505 C      \ /   \         /   \ /                                                 C
6506 C       o| o |         | o |o                                                  C
6507 C     \ j|/k\|      \  |/k\|l                                                  C
6508 C      \ /   \       \ /   \                                                   C
6509 C       o             o                                                        C
6510 C       i             i                                                        C
6511 C                                                                              C
6512 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6513 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
6514 C AL 7/4/01 s1 would occur in the sixth-order moment, 
6515 C           but not in a cluster cumulant
6516 #ifdef MOMENT
6517       s1=dip(1,jj,i)*dip(1,kk,k)
6518 #endif
6519       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
6520       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
6521       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
6522       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
6523       call transpose2(EUg(1,1,k),auxmat(1,1))
6524       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
6525       vv(1)=pizda(1,1)-pizda(2,2)
6526       vv(2)=pizda(1,2)+pizda(2,1)
6527       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6528 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
6529 #ifdef MOMENT
6530       eello6_graph2=-(s1+s2+s3+s4)
6531 #else
6532       eello6_graph2=-(s2+s3+s4)
6533 #endif
6534 c      eello6_graph2=-s3
6535       if (.not. calc_grad) return
6536 C Derivatives in gamma(i-1)
6537       if (i.gt.1) then
6538 #ifdef MOMENT
6539         s1=dipderg(1,jj,i)*dip(1,kk,k)
6540 #endif
6541         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
6542         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
6543         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
6544         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
6545 #ifdef MOMENT
6546         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
6547 #else
6548         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
6549 #endif
6550 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
6551       endif
6552 C Derivatives in gamma(k-1)
6553 #ifdef MOMENT
6554       s1=dip(1,jj,i)*dipderg(1,kk,k)
6555 #endif
6556       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
6557       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
6558       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
6559       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
6560       call transpose2(EUgder(1,1,k),auxmat1(1,1))
6561       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
6562       vv(1)=pizda(1,1)-pizda(2,2)
6563       vv(2)=pizda(1,2)+pizda(2,1)
6564       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6565 #ifdef MOMENT
6566       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
6567 #else
6568       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
6569 #endif
6570 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
6571 C Derivatives in gamma(j-1) or gamma(l-1)
6572       if (j.gt.1) then
6573 #ifdef MOMENT
6574         s1=dipderg(3,jj,i)*dip(1,kk,k) 
6575 #endif
6576         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
6577         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
6578         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
6579         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
6580         vv(1)=pizda(1,1)-pizda(2,2)
6581         vv(2)=pizda(1,2)+pizda(2,1)
6582         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6583 #ifdef MOMENT
6584         if (swap) then
6585           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
6586         else
6587           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
6588         endif
6589 #endif
6590         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
6591 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
6592       endif
6593 C Derivatives in gamma(l-1) or gamma(j-1)
6594       if (l.gt.1) then 
6595 #ifdef MOMENT
6596         s1=dip(1,jj,i)*dipderg(3,kk,k)
6597 #endif
6598         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
6599         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
6600         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
6601         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
6602         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
6603         vv(1)=pizda(1,1)-pizda(2,2)
6604         vv(2)=pizda(1,2)+pizda(2,1)
6605         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6606 #ifdef MOMENT
6607         if (swap) then
6608           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
6609         else
6610           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
6611         endif
6612 #endif
6613         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
6614 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
6615       endif
6616 C Cartesian derivatives.
6617       if (lprn) then
6618         write (2,*) 'In eello6_graph2'
6619         do iii=1,2
6620           write (2,*) 'iii=',iii
6621           do kkk=1,5
6622             write (2,*) 'kkk=',kkk
6623             do jjj=1,2
6624               write (2,'(3(2f10.5),5x)') 
6625      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
6626             enddo
6627           enddo
6628         enddo
6629       endif
6630       do iii=1,2
6631         do kkk=1,5
6632           do lll=1,3
6633 #ifdef MOMENT
6634             if (iii.eq.1) then
6635               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
6636             else
6637               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
6638             endif
6639 #endif
6640             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
6641      &        auxvec(1))
6642             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
6643             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
6644      &        auxvec(1))
6645             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
6646             call transpose2(EUg(1,1,k),auxmat(1,1))
6647             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
6648      &        pizda(1,1))
6649             vv(1)=pizda(1,1)-pizda(2,2)
6650             vv(2)=pizda(1,2)+pizda(2,1)
6651             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6652 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
6653 #ifdef MOMENT
6654             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
6655 #else
6656             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
6657 #endif
6658             if (swap) then
6659               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
6660             else
6661               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
6662             endif
6663           enddo
6664         enddo
6665       enddo
6666       return
6667       end
6668 c----------------------------------------------------------------------------
6669       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
6670       implicit real*8 (a-h,o-z)
6671       include 'DIMENSIONS'
6672       include 'DIMENSIONS.ZSCOPT'
6673       include 'COMMON.IOUNITS'
6674       include 'COMMON.CHAIN'
6675       include 'COMMON.DERIV'
6676       include 'COMMON.INTERACT'
6677       include 'COMMON.CONTACTS'
6678       include 'COMMON.TORSION'
6679       include 'COMMON.VAR'
6680       include 'COMMON.GEO'
6681       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
6682       logical swap
6683 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6684 C                                                                              C
6685 C      Parallel       Antiparallel                                             C
6686 C                                                                              C
6687 C          o             o                                                     C
6688 C         /l\   /   \   /j\                                                    C
6689 C        /   \ /     \ /   \                                                   C
6690 C       /| o |o       o| o |\                                                  C
6691 C       j|/k\|  /      |/k\|l /                                                C
6692 C        /   \ /       /   \ /                                                 C
6693 C       /     o       /     o                                                  C
6694 C       i             i                                                        C
6695 C                                                                              C
6696 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6697 C
6698 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
6699 C           energy moment and not to the cluster cumulant.
6700       iti=itortyp(itype(i))
6701       if (j.lt.nres-1) then
6702         itj1=itortyp(itype(j+1))
6703       else
6704         itj1=ntortyp+1
6705       endif
6706       itk=itortyp(itype(k))
6707       itk1=itortyp(itype(k+1))
6708       if (l.lt.nres-1) then
6709         itl1=itortyp(itype(l+1))
6710       else
6711         itl1=ntortyp+1
6712       endif
6713 #ifdef MOMENT
6714       s1=dip(4,jj,i)*dip(4,kk,k)
6715 #endif
6716       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
6717       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
6718       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
6719       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
6720       call transpose2(EE(1,1,itk),auxmat(1,1))
6721       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
6722       vv(1)=pizda(1,1)+pizda(2,2)
6723       vv(2)=pizda(2,1)-pizda(1,2)
6724       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
6725 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4
6726 #ifdef MOMENT
6727       eello6_graph3=-(s1+s2+s3+s4)
6728 #else
6729       eello6_graph3=-(s2+s3+s4)
6730 #endif
6731 c      eello6_graph3=-s4
6732       if (.not. calc_grad) return
6733 C Derivatives in gamma(k-1)
6734       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
6735       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
6736       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
6737       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
6738 C Derivatives in gamma(l-1)
6739       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
6740       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
6741       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
6742       vv(1)=pizda(1,1)+pizda(2,2)
6743       vv(2)=pizda(2,1)-pizda(1,2)
6744       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
6745       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
6746 C Cartesian derivatives.
6747       do iii=1,2
6748         do kkk=1,5
6749           do lll=1,3
6750 #ifdef MOMENT
6751             if (iii.eq.1) then
6752               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
6753             else
6754               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
6755             endif
6756 #endif
6757             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
6758      &        auxvec(1))
6759             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
6760             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
6761      &        auxvec(1))
6762             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
6763             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
6764      &        pizda(1,1))
6765             vv(1)=pizda(1,1)+pizda(2,2)
6766             vv(2)=pizda(2,1)-pizda(1,2)
6767             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
6768 #ifdef MOMENT
6769             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
6770 #else
6771             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
6772 #endif
6773             if (swap) then
6774               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
6775             else
6776               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
6777             endif
6778 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
6779           enddo
6780         enddo
6781       enddo
6782       return
6783       end
6784 c----------------------------------------------------------------------------
6785       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
6786       implicit real*8 (a-h,o-z)
6787       include 'DIMENSIONS'
6788       include 'DIMENSIONS.ZSCOPT'
6789       include 'COMMON.IOUNITS'
6790       include 'COMMON.CHAIN'
6791       include 'COMMON.DERIV'
6792       include 'COMMON.INTERACT'
6793       include 'COMMON.CONTACTS'
6794       include 'COMMON.TORSION'
6795       include 'COMMON.VAR'
6796       include 'COMMON.GEO'
6797       include 'COMMON.FFIELD'
6798       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
6799      & auxvec1(2),auxmat1(2,2)
6800       logical swap
6801 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6802 C                                                                              C
6803 C      Parallel       Antiparallel                                             C
6804 C                                                                              C
6805 C          o             o                                                     C 
6806 C         /l\   /   \   /j\                                                    C
6807 C        /   \ /     \ /   \                                                   C
6808 C       /| o |o       o| o |\                                                  C
6809 C     \ j|/k\|      \  |/k\|l                                                  C
6810 C      \ /   \       \ /   \                                                   C
6811 C       o     \       o     \                                                  C
6812 C       i             i                                                        C
6813 C                                                                              C
6814 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6815 C
6816 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
6817 C           energy moment and not to the cluster cumulant.
6818 cd      write (2,*) 'eello_graph4: wturn6',wturn6
6819       iti=itortyp(itype(i))
6820       itj=itortyp(itype(j))
6821       if (j.lt.nres-1) then
6822         itj1=itortyp(itype(j+1))
6823       else
6824         itj1=ntortyp+1
6825       endif
6826       itk=itortyp(itype(k))
6827       if (k.lt.nres-1) then
6828         itk1=itortyp(itype(k+1))
6829       else
6830         itk1=ntortyp+1
6831       endif
6832       itl=itortyp(itype(l))
6833       if (l.lt.nres-1) then
6834         itl1=itortyp(itype(l+1))
6835       else
6836         itl1=ntortyp+1
6837       endif
6838 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
6839 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
6840 cd     & ' itl',itl,' itl1',itl1
6841 #ifdef MOMENT
6842       if (imat.eq.1) then
6843         s1=dip(3,jj,i)*dip(3,kk,k)
6844       else
6845         s1=dip(2,jj,j)*dip(2,kk,l)
6846       endif
6847 #endif
6848       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
6849       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
6850       if (j.eq.l+1) then
6851         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
6852         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
6853       else
6854         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
6855         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
6856       endif
6857       call transpose2(EUg(1,1,k),auxmat(1,1))
6858       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
6859       vv(1)=pizda(1,1)-pizda(2,2)
6860       vv(2)=pizda(2,1)+pizda(1,2)
6861       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6862 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
6863 #ifdef MOMENT
6864       eello6_graph4=-(s1+s2+s3+s4)
6865 #else
6866       eello6_graph4=-(s2+s3+s4)
6867 #endif
6868       if (.not. calc_grad) return
6869 C Derivatives in gamma(i-1)
6870       if (i.gt.1) then
6871 #ifdef MOMENT
6872         if (imat.eq.1) then
6873           s1=dipderg(2,jj,i)*dip(3,kk,k)
6874         else
6875           s1=dipderg(4,jj,j)*dip(2,kk,l)
6876         endif
6877 #endif
6878         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
6879         if (j.eq.l+1) then
6880           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
6881           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
6882         else
6883           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
6884           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
6885         endif
6886         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
6887         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
6888 cd          write (2,*) 'turn6 derivatives'
6889 #ifdef MOMENT
6890           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
6891 #else
6892           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
6893 #endif
6894         else
6895 #ifdef MOMENT
6896           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
6897 #else
6898           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
6899 #endif
6900         endif
6901       endif
6902 C Derivatives in gamma(k-1)
6903 #ifdef MOMENT
6904       if (imat.eq.1) then
6905         s1=dip(3,jj,i)*dipderg(2,kk,k)
6906       else
6907         s1=dip(2,jj,j)*dipderg(4,kk,l)
6908       endif
6909 #endif
6910       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
6911       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
6912       if (j.eq.l+1) then
6913         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
6914         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
6915       else
6916         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
6917         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
6918       endif
6919       call transpose2(EUgder(1,1,k),auxmat1(1,1))
6920       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
6921       vv(1)=pizda(1,1)-pizda(2,2)
6922       vv(2)=pizda(2,1)+pizda(1,2)
6923       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6924       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
6925 #ifdef MOMENT
6926         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
6927 #else
6928         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
6929 #endif
6930       else
6931 #ifdef MOMENT
6932         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
6933 #else
6934         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
6935 #endif
6936       endif
6937 C Derivatives in gamma(j-1) or gamma(l-1)
6938       if (l.eq.j+1 .and. l.gt.1) then
6939         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
6940         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
6941         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
6942         vv(1)=pizda(1,1)-pizda(2,2)
6943         vv(2)=pizda(2,1)+pizda(1,2)
6944         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6945         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
6946       else if (j.gt.1) then
6947         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
6948         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
6949         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
6950         vv(1)=pizda(1,1)-pizda(2,2)
6951         vv(2)=pizda(2,1)+pizda(1,2)
6952         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6953         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
6954           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
6955         else
6956           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
6957         endif
6958       endif
6959 C Cartesian derivatives.
6960       do iii=1,2
6961         do kkk=1,5
6962           do lll=1,3
6963 #ifdef MOMENT
6964             if (iii.eq.1) then
6965               if (imat.eq.1) then
6966                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
6967               else
6968                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
6969               endif
6970             else
6971               if (imat.eq.1) then
6972                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
6973               else
6974                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
6975               endif
6976             endif
6977 #endif
6978             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
6979      &        auxvec(1))
6980             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
6981             if (j.eq.l+1) then
6982               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
6983      &          b1(1,itj1),auxvec(1))
6984               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
6985             else
6986               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
6987      &          b1(1,itl1),auxvec(1))
6988               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
6989             endif
6990             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
6991      &        pizda(1,1))
6992             vv(1)=pizda(1,1)-pizda(2,2)
6993             vv(2)=pizda(2,1)+pizda(1,2)
6994             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6995             if (swap) then
6996               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
6997 #ifdef MOMENT
6998                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
6999      &             -(s1+s2+s4)
7000 #else
7001                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
7002      &             -(s2+s4)
7003 #endif
7004                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
7005               else
7006 #ifdef MOMENT
7007                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
7008 #else
7009                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
7010 #endif
7011                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7012               endif
7013             else
7014 #ifdef MOMENT
7015               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
7016 #else
7017               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
7018 #endif
7019               if (l.eq.j+1) then
7020                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
7021               else 
7022                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
7023               endif
7024             endif 
7025           enddo
7026         enddo
7027       enddo
7028       return
7029       end
7030 c----------------------------------------------------------------------------
7031       double precision function eello_turn6(i,jj,kk)
7032       implicit real*8 (a-h,o-z)
7033       include 'DIMENSIONS'
7034       include 'DIMENSIONS.ZSCOPT'
7035       include 'COMMON.IOUNITS'
7036       include 'COMMON.CHAIN'
7037       include 'COMMON.DERIV'
7038       include 'COMMON.INTERACT'
7039       include 'COMMON.CONTACTS'
7040       include 'COMMON.TORSION'
7041       include 'COMMON.VAR'
7042       include 'COMMON.GEO'
7043       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
7044      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
7045      &  ggg1(3),ggg2(3)
7046       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
7047      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
7048 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
7049 C           the respective energy moment and not to the cluster cumulant.
7050       eello_turn6=0.0d0
7051       j=i+4
7052       k=i+1
7053       l=i+3
7054       iti=itortyp(itype(i))
7055       itk=itortyp(itype(k))
7056       itk1=itortyp(itype(k+1))
7057       itl=itortyp(itype(l))
7058       itj=itortyp(itype(j))
7059 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
7060 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
7061 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7062 cd        eello6=0.0d0
7063 cd        return
7064 cd      endif
7065 cd      write (iout,*)
7066 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7067 cd     &   ' and',k,l
7068 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
7069       do iii=1,2
7070         do kkk=1,5
7071           do lll=1,3
7072             derx_turn(lll,kkk,iii)=0.0d0
7073           enddo
7074         enddo
7075       enddo
7076 cd      eij=1.0d0
7077 cd      ekl=1.0d0
7078 cd      ekont=1.0d0
7079       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7080 cd      eello6_5=0.0d0
7081 cd      write (2,*) 'eello6_5',eello6_5
7082 #ifdef MOMENT
7083       call transpose2(AEA(1,1,1),auxmat(1,1))
7084       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
7085       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
7086       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
7087 #else
7088       s1 = 0.0d0
7089 #endif
7090       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
7091       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
7092       s2 = scalar2(b1(1,itk),vtemp1(1))
7093 #ifdef MOMENT
7094       call transpose2(AEA(1,1,2),atemp(1,1))
7095       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
7096       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
7097       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7098 #else
7099       s8=0.0d0
7100 #endif
7101       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
7102       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
7103       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
7104 #ifdef MOMENT
7105       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
7106       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
7107       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
7108       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
7109       ss13 = scalar2(b1(1,itk),vtemp4(1))
7110       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
7111 #else
7112       s13=0.0d0
7113 #endif
7114 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
7115 c      s1=0.0d0
7116 c      s2=0.0d0
7117 c      s8=0.0d0
7118 c      s12=0.0d0
7119 c      s13=0.0d0
7120       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
7121       if (calc_grad) then
7122 C Derivatives in gamma(i+2)
7123 #ifdef MOMENT
7124       call transpose2(AEA(1,1,1),auxmatd(1,1))
7125       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7126       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7127       call transpose2(AEAderg(1,1,2),atempd(1,1))
7128       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
7129       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7130 #else
7131       s8d=0.0d0
7132 #endif
7133       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
7134       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7135       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7136 c      s1d=0.0d0
7137 c      s2d=0.0d0
7138 c      s8d=0.0d0
7139 c      s12d=0.0d0
7140 c      s13d=0.0d0
7141       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
7142 C Derivatives in gamma(i+3)
7143 #ifdef MOMENT
7144       call transpose2(AEA(1,1,1),auxmatd(1,1))
7145       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7146       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
7147       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
7148 #else
7149       s1d=0.0d0
7150 #endif
7151       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
7152       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
7153       s2d = scalar2(b1(1,itk),vtemp1d(1))
7154 #ifdef MOMENT
7155       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
7156       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
7157 #endif
7158       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
7159 #ifdef MOMENT
7160       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
7161       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
7162       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
7163 #else
7164       s13d=0.0d0
7165 #endif
7166 c      s1d=0.0d0
7167 c      s2d=0.0d0
7168 c      s8d=0.0d0
7169 c      s12d=0.0d0
7170 c      s13d=0.0d0
7171 #ifdef MOMENT
7172       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
7173      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
7174 #else
7175       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
7176      &               -0.5d0*ekont*(s2d+s12d)
7177 #endif
7178 C Derivatives in gamma(i+4)
7179       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
7180       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7181       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7182 #ifdef MOMENT
7183       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
7184       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
7185       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
7186 #else
7187       s13d = 0.0d0
7188 #endif
7189 c      s1d=0.0d0
7190 c      s2d=0.0d0
7191 c      s8d=0.0d0
7192 C      s12d=0.0d0
7193 c      s13d=0.0d0
7194 #ifdef MOMENT
7195       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
7196 #else
7197       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
7198 #endif
7199 C Derivatives in gamma(i+5)
7200 #ifdef MOMENT
7201       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
7202       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7203       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7204 #else
7205       s1d = 0.0d0
7206 #endif
7207       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
7208       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
7209       s2d = scalar2(b1(1,itk),vtemp1d(1))
7210 #ifdef MOMENT
7211       call transpose2(AEA(1,1,2),atempd(1,1))
7212       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
7213       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7214 #else
7215       s8d = 0.0d0
7216 #endif
7217       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
7218       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7219 #ifdef MOMENT
7220       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
7221       ss13d = scalar2(b1(1,itk),vtemp4d(1))
7222       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
7223 #else
7224       s13d = 0.0d0
7225 #endif
7226 c      s1d=0.0d0
7227 c      s2d=0.0d0
7228 c      s8d=0.0d0
7229 c      s12d=0.0d0
7230 c      s13d=0.0d0
7231 #ifdef MOMENT
7232       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
7233      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
7234 #else
7235       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
7236      &               -0.5d0*ekont*(s2d+s12d)
7237 #endif
7238 C Cartesian derivatives
7239       do iii=1,2
7240         do kkk=1,5
7241           do lll=1,3
7242 #ifdef MOMENT
7243             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
7244             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7245             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7246 #else
7247             s1d = 0.0d0
7248 #endif
7249             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
7250             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
7251      &          vtemp1d(1))
7252             s2d = scalar2(b1(1,itk),vtemp1d(1))
7253 #ifdef MOMENT
7254             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
7255             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
7256             s8d = -(atempd(1,1)+atempd(2,2))*
7257      &           scalar2(cc(1,1,itl),vtemp2(1))
7258 #else
7259             s8d = 0.0d0
7260 #endif
7261             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
7262      &           auxmatd(1,1))
7263             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7264             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7265 c      s1d=0.0d0
7266 c      s2d=0.0d0
7267 c      s8d=0.0d0
7268 c      s12d=0.0d0
7269 c      s13d=0.0d0
7270 #ifdef MOMENT
7271             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
7272      &        - 0.5d0*(s1d+s2d)
7273 #else
7274             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
7275      &        - 0.5d0*s2d
7276 #endif
7277 #ifdef MOMENT
7278             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
7279      &        - 0.5d0*(s8d+s12d)
7280 #else
7281             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
7282      &        - 0.5d0*s12d
7283 #endif
7284           enddo
7285         enddo
7286       enddo
7287 #ifdef MOMENT
7288       do kkk=1,5
7289         do lll=1,3
7290           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
7291      &      achuj_tempd(1,1))
7292           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
7293           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
7294           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
7295           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
7296           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
7297      &      vtemp4d(1)) 
7298           ss13d = scalar2(b1(1,itk),vtemp4d(1))
7299           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
7300           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
7301         enddo
7302       enddo
7303 #endif
7304 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
7305 cd     &  16*eel_turn6_num
7306 cd      goto 1112
7307       if (j.lt.nres-1) then
7308         j1=j+1
7309         j2=j-1
7310       else
7311         j1=j-1
7312         j2=j-2
7313       endif
7314       if (l.lt.nres-1) then
7315         l1=l+1
7316         l2=l-1
7317       else
7318         l1=l-1
7319         l2=l-2
7320       endif
7321       do ll=1,3
7322         ggg1(ll)=eel_turn6*g_contij(ll,1)
7323         ggg2(ll)=eel_turn6*g_contij(ll,2)
7324         ghalf=0.5d0*ggg1(ll)
7325 cd        ghalf=0.0d0
7326         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)+ghalf
7327      &    +ekont*derx_turn(ll,2,1)
7328         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
7329         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)+ghalf
7330      &    +ekont*derx_turn(ll,4,1)
7331         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
7332         ghalf=0.5d0*ggg2(ll)
7333 cd        ghalf=0.0d0
7334         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)+ghalf
7335      &    +ekont*derx_turn(ll,2,2)
7336         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
7337         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)+ghalf
7338      &    +ekont*derx_turn(ll,4,2)
7339         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
7340       enddo
7341 cd      goto 1112
7342       do m=i+1,j-1
7343         do ll=1,3
7344           gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
7345         enddo
7346       enddo
7347       do m=k+1,l-1
7348         do ll=1,3
7349           gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
7350         enddo
7351       enddo
7352 1112  continue
7353       do m=i+2,j2
7354         do ll=1,3
7355           gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
7356         enddo
7357       enddo
7358       do m=k+2,l2
7359         do ll=1,3
7360           gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
7361         enddo
7362       enddo 
7363 cd      do iii=1,nres-3
7364 cd        write (2,*) iii,g_corr6_loc(iii)
7365 cd      enddo
7366       endif
7367       eello_turn6=ekont*eel_turn6
7368 cd      write (2,*) 'ekont',ekont
7369 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
7370       return
7371       end
7372 crc-------------------------------------------------
7373       SUBROUTINE MATVEC2(A1,V1,V2)
7374       implicit real*8 (a-h,o-z)
7375       include 'DIMENSIONS'
7376       DIMENSION A1(2,2),V1(2),V2(2)
7377 c      DO 1 I=1,2
7378 c        VI=0.0
7379 c        DO 3 K=1,2
7380 c    3     VI=VI+A1(I,K)*V1(K)
7381 c        Vaux(I)=VI
7382 c    1 CONTINUE
7383
7384       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
7385       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
7386
7387       v2(1)=vaux1
7388       v2(2)=vaux2
7389       END
7390 C---------------------------------------
7391       SUBROUTINE MATMAT2(A1,A2,A3)
7392       implicit real*8 (a-h,o-z)
7393       include 'DIMENSIONS'
7394       DIMENSION A1(2,2),A2(2,2),A3(2,2)
7395 c      DIMENSION AI3(2,2)
7396 c        DO  J=1,2
7397 c          A3IJ=0.0
7398 c          DO K=1,2
7399 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
7400 c          enddo
7401 c          A3(I,J)=A3IJ
7402 c       enddo
7403 c      enddo
7404
7405       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
7406       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
7407       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
7408       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
7409
7410       A3(1,1)=AI3_11
7411       A3(2,1)=AI3_21
7412       A3(1,2)=AI3_12
7413       A3(2,2)=AI3_22
7414       END
7415
7416 c-------------------------------------------------------------------------
7417       double precision function scalar2(u,v)
7418       implicit none
7419       double precision u(2),v(2)
7420       double precision sc
7421       integer i
7422       scalar2=u(1)*v(1)+u(2)*v(2)
7423       return
7424       end
7425
7426 C-----------------------------------------------------------------------------
7427
7428       subroutine transpose2(a,at)
7429       implicit none
7430       double precision a(2,2),at(2,2)
7431       at(1,1)=a(1,1)
7432       at(1,2)=a(2,1)
7433       at(2,1)=a(1,2)
7434       at(2,2)=a(2,2)
7435       return
7436       end
7437 c--------------------------------------------------------------------------
7438       subroutine transpose(n,a,at)
7439       implicit none
7440       integer n,i,j
7441       double precision a(n,n),at(n,n)
7442       do i=1,n
7443         do j=1,n
7444           at(j,i)=a(i,j)
7445         enddo
7446       enddo
7447       return
7448       end
7449 C---------------------------------------------------------------------------
7450       subroutine prodmat3(a1,a2,kk,transp,prod)
7451       implicit none
7452       integer i,j
7453       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
7454       logical transp
7455 crc      double precision auxmat(2,2),prod_(2,2)
7456
7457       if (transp) then
7458 crc        call transpose2(kk(1,1),auxmat(1,1))
7459 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
7460 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
7461         
7462            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
7463      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
7464            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
7465      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
7466            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
7467      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
7468            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
7469      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
7470
7471       else
7472 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
7473 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
7474
7475            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
7476      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
7477            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
7478      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
7479            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
7480      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
7481            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
7482      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
7483
7484       endif
7485 c      call transpose2(a2(1,1),a2t(1,1))
7486
7487 crc      print *,transp
7488 crc      print *,((prod_(i,j),i=1,2),j=1,2)
7489 crc      print *,((prod(i,j),i=1,2),j=1,2)
7490
7491       return
7492       end
7493 C-----------------------------------------------------------------------------
7494       double precision function scalar(u,v)
7495       implicit none
7496       double precision u(3),v(3)
7497       double precision sc
7498       integer i
7499       sc=0.0d0
7500       do i=1,3
7501         sc=sc+u(i)*v(i)
7502       enddo
7503       scalar=sc
7504       return
7505       end
7506