zmiany w prereleasie drobne
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=itype(j)
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026         dxi=dc(1,i)
3027         dyi=dc(2,i)
3028         dzi=dc(3,i)
3029         dx_normi=dc_norm(1,i)
3030         dy_normi=dc_norm(2,i)
3031         dz_normi=dc_norm(3,i)
3032         xmedi=c(1,i)+0.5d0*dxi
3033         ymedi=c(2,i)+0.5d0*dyi
3034         zmedi=c(3,i)+0.5d0*dzi
3035         num_conti=0
3036         call eelecij(i,i+2,ees,evdw1,eel_loc)
3037         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3038         num_cont_hb(i)=num_conti
3039       enddo
3040       do i=iturn4_start,iturn4_end
3041         dxi=dc(1,i)
3042         dyi=dc(2,i)
3043         dzi=dc(3,i)
3044         dx_normi=dc_norm(1,i)
3045         dy_normi=dc_norm(2,i)
3046         dz_normi=dc_norm(3,i)
3047         xmedi=c(1,i)+0.5d0*dxi
3048         ymedi=c(2,i)+0.5d0*dyi
3049         zmedi=c(3,i)+0.5d0*dzi
3050         num_conti=num_cont_hb(i)
3051         call eelecij(i,i+3,ees,evdw1,eel_loc)
3052         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3053         num_cont_hb(i)=num_conti
3054       enddo   ! i
3055 c
3056 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3057 c
3058       do i=iatel_s,iatel_e
3059         dxi=dc(1,i)
3060         dyi=dc(2,i)
3061         dzi=dc(3,i)
3062         dx_normi=dc_norm(1,i)
3063         dy_normi=dc_norm(2,i)
3064         dz_normi=dc_norm(3,i)
3065         xmedi=c(1,i)+0.5d0*dxi
3066         ymedi=c(2,i)+0.5d0*dyi
3067         zmedi=c(3,i)+0.5d0*dzi
3068 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3069         num_conti=num_cont_hb(i)
3070         do j=ielstart(i),ielend(i)
3071           call eelecij(i,j,ees,evdw1,eel_loc)
3072         enddo ! j
3073         num_cont_hb(i)=num_conti
3074       enddo   ! i
3075 c      write (iout,*) "Number of loop steps in EELEC:",ind
3076 cd      do i=1,nres
3077 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3078 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3079 cd      enddo
3080 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3081 ccc      eel_loc=eel_loc+eello_turn3
3082 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3083       return
3084       end
3085 C-------------------------------------------------------------------------------
3086       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3087       implicit real*8 (a-h,o-z)
3088       include 'DIMENSIONS'
3089 #ifdef MPI
3090       include "mpif.h"
3091 #endif
3092       include 'COMMON.CONTROL'
3093       include 'COMMON.IOUNITS'
3094       include 'COMMON.GEO'
3095       include 'COMMON.VAR'
3096       include 'COMMON.LOCAL'
3097       include 'COMMON.CHAIN'
3098       include 'COMMON.DERIV'
3099       include 'COMMON.INTERACT'
3100       include 'COMMON.CONTACTS'
3101       include 'COMMON.TORSION'
3102       include 'COMMON.VECTORS'
3103       include 'COMMON.FFIELD'
3104       include 'COMMON.TIME1'
3105       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3106      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3107       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3108      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3109       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3110      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3111      &    num_conti,j1,j2
3112 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3113 #ifdef MOMENT
3114       double precision scal_el /1.0d0/
3115 #else
3116       double precision scal_el /0.5d0/
3117 #endif
3118 C 12/13/98 
3119 C 13-go grudnia roku pamietnego... 
3120       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3121      &                   0.0d0,1.0d0,0.0d0,
3122      &                   0.0d0,0.0d0,1.0d0/
3123 c          time00=MPI_Wtime()
3124 cd      write (iout,*) "eelecij",i,j
3125 c          ind=ind+1
3126           iteli=itel(i)
3127           itelj=itel(j)
3128           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3129           aaa=app(iteli,itelj)
3130           bbb=bpp(iteli,itelj)
3131           ael6i=ael6(iteli,itelj)
3132           ael3i=ael3(iteli,itelj) 
3133           dxj=dc(1,j)
3134           dyj=dc(2,j)
3135           dzj=dc(3,j)
3136           dx_normj=dc_norm(1,j)
3137           dy_normj=dc_norm(2,j)
3138           dz_normj=dc_norm(3,j)
3139           xj=c(1,j)+0.5D0*dxj-xmedi
3140           yj=c(2,j)+0.5D0*dyj-ymedi
3141           zj=c(3,j)+0.5D0*dzj-zmedi
3142           rij=xj*xj+yj*yj+zj*zj
3143           rrmij=1.0D0/rij
3144           rij=dsqrt(rij)
3145           rmij=1.0D0/rij
3146           r3ij=rrmij*rmij
3147           r6ij=r3ij*r3ij  
3148           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3149           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3150           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3151           fac=cosa-3.0D0*cosb*cosg
3152           ev1=aaa*r6ij*r6ij
3153 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3154           if (j.eq.i+2) ev1=scal_el*ev1
3155           ev2=bbb*r6ij
3156           fac3=ael6i*r6ij
3157           fac4=ael3i*r3ij
3158           evdwij=ev1+ev2
3159           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3160           el2=fac4*fac       
3161           eesij=el1+el2
3162 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3163           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3164           ees=ees+eesij
3165           evdw1=evdw1+evdwij
3166 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3167 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3168 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3169 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3170
3171           if (energy_dec) then 
3172               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3173               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3174           endif
3175
3176 C
3177 C Calculate contributions to the Cartesian gradient.
3178 C
3179 #ifdef SPLITELE
3180           facvdw=-6*rrmij*(ev1+evdwij)
3181           facel=-3*rrmij*(el1+eesij)
3182           fac1=fac
3183           erij(1)=xj*rmij
3184           erij(2)=yj*rmij
3185           erij(3)=zj*rmij
3186 *
3187 * Radial derivatives. First process both termini of the fragment (i,j)
3188 *
3189           ggg(1)=facel*xj
3190           ggg(2)=facel*yj
3191           ggg(3)=facel*zj
3192 c          do k=1,3
3193 c            ghalf=0.5D0*ggg(k)
3194 c            gelc(k,i)=gelc(k,i)+ghalf
3195 c            gelc(k,j)=gelc(k,j)+ghalf
3196 c          enddo
3197 c 9/28/08 AL Gradient compotents will be summed only at the end
3198           do k=1,3
3199             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3200             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3201           enddo
3202 *
3203 * Loop over residues i+1 thru j-1.
3204 *
3205 cgrad          do k=i+1,j-1
3206 cgrad            do l=1,3
3207 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3208 cgrad            enddo
3209 cgrad          enddo
3210           ggg(1)=facvdw*xj
3211           ggg(2)=facvdw*yj
3212           ggg(3)=facvdw*zj
3213 c          do k=1,3
3214 c            ghalf=0.5D0*ggg(k)
3215 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3216 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3217 c          enddo
3218 c 9/28/08 AL Gradient compotents will be summed only at the end
3219           do k=1,3
3220             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3221             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3222           enddo
3223 *
3224 * Loop over residues i+1 thru j-1.
3225 *
3226 cgrad          do k=i+1,j-1
3227 cgrad            do l=1,3
3228 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3229 cgrad            enddo
3230 cgrad          enddo
3231 #else
3232           facvdw=ev1+evdwij 
3233           facel=el1+eesij  
3234           fac1=fac
3235           fac=-3*rrmij*(facvdw+facvdw+facel)
3236           erij(1)=xj*rmij
3237           erij(2)=yj*rmij
3238           erij(3)=zj*rmij
3239 *
3240 * Radial derivatives. First process both termini of the fragment (i,j)
3241
3242           ggg(1)=fac*xj
3243           ggg(2)=fac*yj
3244           ggg(3)=fac*zj
3245 c          do k=1,3
3246 c            ghalf=0.5D0*ggg(k)
3247 c            gelc(k,i)=gelc(k,i)+ghalf
3248 c            gelc(k,j)=gelc(k,j)+ghalf
3249 c          enddo
3250 c 9/28/08 AL Gradient compotents will be summed only at the end
3251           do k=1,3
3252             gelc_long(k,j)=gelc(k,j)+ggg(k)
3253             gelc_long(k,i)=gelc(k,i)-ggg(k)
3254           enddo
3255 *
3256 * Loop over residues i+1 thru j-1.
3257 *
3258 cgrad          do k=i+1,j-1
3259 cgrad            do l=1,3
3260 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3261 cgrad            enddo
3262 cgrad          enddo
3263 c 9/28/08 AL Gradient compotents will be summed only at the end
3264           ggg(1)=facvdw*xj
3265           ggg(2)=facvdw*yj
3266           ggg(3)=facvdw*zj
3267           do k=1,3
3268             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3269             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3270           enddo
3271 #endif
3272 *
3273 * Angular part
3274 *          
3275           ecosa=2.0D0*fac3*fac1+fac4
3276           fac4=-3.0D0*fac4
3277           fac3=-6.0D0*fac3
3278           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3279           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3280           do k=1,3
3281             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3282             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3283           enddo
3284 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3285 cd   &          (dcosg(k),k=1,3)
3286           do k=1,3
3287             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3288           enddo
3289 c          do k=1,3
3290 c            ghalf=0.5D0*ggg(k)
3291 c            gelc(k,i)=gelc(k,i)+ghalf
3292 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3293 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3294 c            gelc(k,j)=gelc(k,j)+ghalf
3295 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3296 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3297 c          enddo
3298 cgrad          do k=i+1,j-1
3299 cgrad            do l=1,3
3300 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3301 cgrad            enddo
3302 cgrad          enddo
3303           do k=1,3
3304             gelc(k,i)=gelc(k,i)
3305      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3306      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3307             gelc(k,j)=gelc(k,j)
3308      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3309      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3310             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3311             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3312           enddo
3313           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3314      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3315      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3316 C
3317 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3318 C   energy of a peptide unit is assumed in the form of a second-order 
3319 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3320 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3321 C   are computed for EVERY pair of non-contiguous peptide groups.
3322 C
3323           if (j.lt.nres-1) then
3324             j1=j+1
3325             j2=j-1
3326           else
3327             j1=j-1
3328             j2=j-2
3329           endif
3330           kkk=0
3331           do k=1,2
3332             do l=1,2
3333               kkk=kkk+1
3334               muij(kkk)=mu(k,i)*mu(l,j)
3335             enddo
3336           enddo  
3337 cd         write (iout,*) 'EELEC: i',i,' j',j
3338 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3339 cd          write(iout,*) 'muij',muij
3340           ury=scalar(uy(1,i),erij)
3341           urz=scalar(uz(1,i),erij)
3342           vry=scalar(uy(1,j),erij)
3343           vrz=scalar(uz(1,j),erij)
3344           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3345           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3346           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3347           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3348           fac=dsqrt(-ael6i)*r3ij
3349           a22=a22*fac
3350           a23=a23*fac
3351           a32=a32*fac
3352           a33=a33*fac
3353 cd          write (iout,'(4i5,4f10.5)')
3354 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3355 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3356 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3357 cd     &      uy(:,j),uz(:,j)
3358 cd          write (iout,'(4f10.5)') 
3359 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3360 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3361 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3362 cd           write (iout,'(9f10.5/)') 
3363 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3364 C Derivatives of the elements of A in virtual-bond vectors
3365           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3366           do k=1,3
3367             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3368             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3369             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3370             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3371             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3372             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3373             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3374             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3375             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3376             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3377             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3378             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3379           enddo
3380 C Compute radial contributions to the gradient
3381           facr=-3.0d0*rrmij
3382           a22der=a22*facr
3383           a23der=a23*facr
3384           a32der=a32*facr
3385           a33der=a33*facr
3386           agg(1,1)=a22der*xj
3387           agg(2,1)=a22der*yj
3388           agg(3,1)=a22der*zj
3389           agg(1,2)=a23der*xj
3390           agg(2,2)=a23der*yj
3391           agg(3,2)=a23der*zj
3392           agg(1,3)=a32der*xj
3393           agg(2,3)=a32der*yj
3394           agg(3,3)=a32der*zj
3395           agg(1,4)=a33der*xj
3396           agg(2,4)=a33der*yj
3397           agg(3,4)=a33der*zj
3398 C Add the contributions coming from er
3399           fac3=-3.0d0*fac
3400           do k=1,3
3401             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3402             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3403             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3404             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3405           enddo
3406           do k=1,3
3407 C Derivatives in DC(i) 
3408 cgrad            ghalf1=0.5d0*agg(k,1)
3409 cgrad            ghalf2=0.5d0*agg(k,2)
3410 cgrad            ghalf3=0.5d0*agg(k,3)
3411 cgrad            ghalf4=0.5d0*agg(k,4)
3412             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3413      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3414             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3415      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3416             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3417      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3418             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3419      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3420 C Derivatives in DC(i+1)
3421             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3422      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3423             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3424      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3425             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3426      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3427             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3428      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3429 C Derivatives in DC(j)
3430             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3431      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3432             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3433      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3434             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3435      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3436             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3437      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3438 C Derivatives in DC(j+1) or DC(nres-1)
3439             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3440      &      -3.0d0*vryg(k,3)*ury)
3441             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3442      &      -3.0d0*vrzg(k,3)*ury)
3443             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3444      &      -3.0d0*vryg(k,3)*urz)
3445             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3446      &      -3.0d0*vrzg(k,3)*urz)
3447 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3448 cgrad              do l=1,4
3449 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3450 cgrad              enddo
3451 cgrad            endif
3452           enddo
3453           acipa(1,1)=a22
3454           acipa(1,2)=a23
3455           acipa(2,1)=a32
3456           acipa(2,2)=a33
3457           a22=-a22
3458           a23=-a23
3459           do l=1,2
3460             do k=1,3
3461               agg(k,l)=-agg(k,l)
3462               aggi(k,l)=-aggi(k,l)
3463               aggi1(k,l)=-aggi1(k,l)
3464               aggj(k,l)=-aggj(k,l)
3465               aggj1(k,l)=-aggj1(k,l)
3466             enddo
3467           enddo
3468           if (j.lt.nres-1) then
3469             a22=-a22
3470             a32=-a32
3471             do l=1,3,2
3472               do k=1,3
3473                 agg(k,l)=-agg(k,l)
3474                 aggi(k,l)=-aggi(k,l)
3475                 aggi1(k,l)=-aggi1(k,l)
3476                 aggj(k,l)=-aggj(k,l)
3477                 aggj1(k,l)=-aggj1(k,l)
3478               enddo
3479             enddo
3480           else
3481             a22=-a22
3482             a23=-a23
3483             a32=-a32
3484             a33=-a33
3485             do l=1,4
3486               do k=1,3
3487                 agg(k,l)=-agg(k,l)
3488                 aggi(k,l)=-aggi(k,l)
3489                 aggi1(k,l)=-aggi1(k,l)
3490                 aggj(k,l)=-aggj(k,l)
3491                 aggj1(k,l)=-aggj1(k,l)
3492               enddo
3493             enddo 
3494           endif    
3495           ENDIF ! WCORR
3496           IF (wel_loc.gt.0.0d0) THEN
3497 C Contribution to the local-electrostatic energy coming from the i-j pair
3498           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3499      &     +a33*muij(4)
3500 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3501
3502           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3503      &            'eelloc',i,j,eel_loc_ij
3504
3505           eel_loc=eel_loc+eel_loc_ij
3506 C Partial derivatives in virtual-bond dihedral angles gamma
3507           if (i.gt.1)
3508      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3509      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3510      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3511           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3512      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3513      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3514 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3515           do l=1,3
3516             ggg(l)=agg(l,1)*muij(1)+
3517      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3518             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3519             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3520 cgrad            ghalf=0.5d0*ggg(l)
3521 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3522 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3523           enddo
3524 cgrad          do k=i+1,j2
3525 cgrad            do l=1,3
3526 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3527 cgrad            enddo
3528 cgrad          enddo
3529 C Remaining derivatives of eello
3530           do l=1,3
3531             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3532      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3533             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3534      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3535             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3536      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3537             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3538      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3539           enddo
3540           ENDIF
3541 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3542 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3543           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3544      &       .and. num_conti.le.maxconts) then
3545 c            write (iout,*) i,j," entered corr"
3546 C
3547 C Calculate the contact function. The ith column of the array JCONT will 
3548 C contain the numbers of atoms that make contacts with the atom I (of numbers
3549 C greater than I). The arrays FACONT and GACONT will contain the values of
3550 C the contact function and its derivative.
3551 c           r0ij=1.02D0*rpp(iteli,itelj)
3552 c           r0ij=1.11D0*rpp(iteli,itelj)
3553             r0ij=2.20D0*rpp(iteli,itelj)
3554 c           r0ij=1.55D0*rpp(iteli,itelj)
3555             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3556             if (fcont.gt.0.0D0) then
3557               num_conti=num_conti+1
3558               if (num_conti.gt.maxconts) then
3559                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3560      &                         ' will skip next contacts for this conf.'
3561               else
3562                 jcont_hb(num_conti,i)=j
3563 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3564 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3565                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3566      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3567 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3568 C  terms.
3569                 d_cont(num_conti,i)=rij
3570 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3571 C     --- Electrostatic-interaction matrix --- 
3572                 a_chuj(1,1,num_conti,i)=a22
3573                 a_chuj(1,2,num_conti,i)=a23
3574                 a_chuj(2,1,num_conti,i)=a32
3575                 a_chuj(2,2,num_conti,i)=a33
3576 C     --- Gradient of rij
3577                 do kkk=1,3
3578                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3579                 enddo
3580                 kkll=0
3581                 do k=1,2
3582                   do l=1,2
3583                     kkll=kkll+1
3584                     do m=1,3
3585                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3586                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3587                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3588                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3589                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3590                     enddo
3591                   enddo
3592                 enddo
3593                 ENDIF
3594                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3595 C Calculate contact energies
3596                 cosa4=4.0D0*cosa
3597                 wij=cosa-3.0D0*cosb*cosg
3598                 cosbg1=cosb+cosg
3599                 cosbg2=cosb-cosg
3600 c               fac3=dsqrt(-ael6i)/r0ij**3     
3601                 fac3=dsqrt(-ael6i)*r3ij
3602 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3603                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3604                 if (ees0tmp.gt.0) then
3605                   ees0pij=dsqrt(ees0tmp)
3606                 else
3607                   ees0pij=0
3608                 endif
3609 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3610                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3611                 if (ees0tmp.gt.0) then
3612                   ees0mij=dsqrt(ees0tmp)
3613                 else
3614                   ees0mij=0
3615                 endif
3616 c               ees0mij=0.0D0
3617                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3618                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3619 C Diagnostics. Comment out or remove after debugging!
3620 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3621 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3622 c               ees0m(num_conti,i)=0.0D0
3623 C End diagnostics.
3624 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3625 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3626 C Angular derivatives of the contact function
3627                 ees0pij1=fac3/ees0pij 
3628                 ees0mij1=fac3/ees0mij
3629                 fac3p=-3.0D0*fac3*rrmij
3630                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3631                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3632 c               ees0mij1=0.0D0
3633                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3634                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3635                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3636                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3637                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3638                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3639                 ecosap=ecosa1+ecosa2
3640                 ecosbp=ecosb1+ecosb2
3641                 ecosgp=ecosg1+ecosg2
3642                 ecosam=ecosa1-ecosa2
3643                 ecosbm=ecosb1-ecosb2
3644                 ecosgm=ecosg1-ecosg2
3645 C Diagnostics
3646 c               ecosap=ecosa1
3647 c               ecosbp=ecosb1
3648 c               ecosgp=ecosg1
3649 c               ecosam=0.0D0
3650 c               ecosbm=0.0D0
3651 c               ecosgm=0.0D0
3652 C End diagnostics
3653                 facont_hb(num_conti,i)=fcont
3654                 fprimcont=fprimcont/rij
3655 cd              facont_hb(num_conti,i)=1.0D0
3656 C Following line is for diagnostics.
3657 cd              fprimcont=0.0D0
3658                 do k=1,3
3659                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3660                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3661                 enddo
3662                 do k=1,3
3663                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3664                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3665                 enddo
3666                 gggp(1)=gggp(1)+ees0pijp*xj
3667                 gggp(2)=gggp(2)+ees0pijp*yj
3668                 gggp(3)=gggp(3)+ees0pijp*zj
3669                 gggm(1)=gggm(1)+ees0mijp*xj
3670                 gggm(2)=gggm(2)+ees0mijp*yj
3671                 gggm(3)=gggm(3)+ees0mijp*zj
3672 C Derivatives due to the contact function
3673                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3674                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3675                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3676                 do k=1,3
3677 c
3678 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3679 c          following the change of gradient-summation algorithm.
3680 c
3681 cgrad                  ghalfp=0.5D0*gggp(k)
3682 cgrad                  ghalfm=0.5D0*gggm(k)
3683                   gacontp_hb1(k,num_conti,i)=!ghalfp
3684      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3685      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3686                   gacontp_hb2(k,num_conti,i)=!ghalfp
3687      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3688      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3689                   gacontp_hb3(k,num_conti,i)=gggp(k)
3690                   gacontm_hb1(k,num_conti,i)=!ghalfm
3691      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3692      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3693                   gacontm_hb2(k,num_conti,i)=!ghalfm
3694      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3695      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3696                   gacontm_hb3(k,num_conti,i)=gggm(k)
3697                 enddo
3698 C Diagnostics. Comment out or remove after debugging!
3699 cdiag           do k=1,3
3700 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3701 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3702 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3703 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3704 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3705 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3706 cdiag           enddo
3707               ENDIF ! wcorr
3708               endif  ! num_conti.le.maxconts
3709             endif  ! fcont.gt.0
3710           endif    ! j.gt.i+1
3711           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3712             do k=1,4
3713               do l=1,3
3714                 ghalf=0.5d0*agg(l,k)
3715                 aggi(l,k)=aggi(l,k)+ghalf
3716                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3717                 aggj(l,k)=aggj(l,k)+ghalf
3718               enddo
3719             enddo
3720             if (j.eq.nres-1 .and. i.lt.j-2) then
3721               do k=1,4
3722                 do l=1,3
3723                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3724                 enddo
3725               enddo
3726             endif
3727           endif
3728 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3729       return
3730       end
3731 C-----------------------------------------------------------------------------
3732       subroutine eturn3(i,eello_turn3)
3733 C Third- and fourth-order contributions from turns
3734       implicit real*8 (a-h,o-z)
3735       include 'DIMENSIONS'
3736       include 'COMMON.IOUNITS'
3737       include 'COMMON.GEO'
3738       include 'COMMON.VAR'
3739       include 'COMMON.LOCAL'
3740       include 'COMMON.CHAIN'
3741       include 'COMMON.DERIV'
3742       include 'COMMON.INTERACT'
3743       include 'COMMON.CONTACTS'
3744       include 'COMMON.TORSION'
3745       include 'COMMON.VECTORS'
3746       include 'COMMON.FFIELD'
3747       include 'COMMON.CONTROL'
3748       dimension ggg(3)
3749       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3750      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3751      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3752       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3753      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3754       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3755      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3756      &    num_conti,j1,j2
3757       j=i+2
3758 c      write (iout,*) "eturn3",i,j,j1,j2
3759       a_temp(1,1)=a22
3760       a_temp(1,2)=a23
3761       a_temp(2,1)=a32
3762       a_temp(2,2)=a33
3763 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3764 C
3765 C               Third-order contributions
3766 C        
3767 C                 (i+2)o----(i+3)
3768 C                      | |
3769 C                      | |
3770 C                 (i+1)o----i
3771 C
3772 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3773 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3774         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3775         call transpose2(auxmat(1,1),auxmat1(1,1))
3776         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3777         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3778         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3779      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3780 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3781 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3782 cd     &    ' eello_turn3_num',4*eello_turn3_num
3783 C Derivatives in gamma(i)
3784         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3785         call transpose2(auxmat2(1,1),auxmat3(1,1))
3786         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3787         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3788 C Derivatives in gamma(i+1)
3789         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3790         call transpose2(auxmat2(1,1),auxmat3(1,1))
3791         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3792         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3793      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3794 C Cartesian derivatives
3795         do l=1,3
3796 c            ghalf1=0.5d0*agg(l,1)
3797 c            ghalf2=0.5d0*agg(l,2)
3798 c            ghalf3=0.5d0*agg(l,3)
3799 c            ghalf4=0.5d0*agg(l,4)
3800           a_temp(1,1)=aggi(l,1)!+ghalf1
3801           a_temp(1,2)=aggi(l,2)!+ghalf2
3802           a_temp(2,1)=aggi(l,3)!+ghalf3
3803           a_temp(2,2)=aggi(l,4)!+ghalf4
3804           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3805           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3806      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3807           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3808           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3809           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3810           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3811           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3812           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3813      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3814           a_temp(1,1)=aggj(l,1)!+ghalf1
3815           a_temp(1,2)=aggj(l,2)!+ghalf2
3816           a_temp(2,1)=aggj(l,3)!+ghalf3
3817           a_temp(2,2)=aggj(l,4)!+ghalf4
3818           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3819           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3820      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3821           a_temp(1,1)=aggj1(l,1)
3822           a_temp(1,2)=aggj1(l,2)
3823           a_temp(2,1)=aggj1(l,3)
3824           a_temp(2,2)=aggj1(l,4)
3825           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3826           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3827      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3828         enddo
3829       return
3830       end
3831 C-------------------------------------------------------------------------------
3832       subroutine eturn4(i,eello_turn4)
3833 C Third- and fourth-order contributions from turns
3834       implicit real*8 (a-h,o-z)
3835       include 'DIMENSIONS'
3836       include 'COMMON.IOUNITS'
3837       include 'COMMON.GEO'
3838       include 'COMMON.VAR'
3839       include 'COMMON.LOCAL'
3840       include 'COMMON.CHAIN'
3841       include 'COMMON.DERIV'
3842       include 'COMMON.INTERACT'
3843       include 'COMMON.CONTACTS'
3844       include 'COMMON.TORSION'
3845       include 'COMMON.VECTORS'
3846       include 'COMMON.FFIELD'
3847       include 'COMMON.CONTROL'
3848       dimension ggg(3)
3849       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3850      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3851      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3852       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3853      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3854       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3855      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3856      &    num_conti,j1,j2
3857       j=i+3
3858 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3859 C
3860 C               Fourth-order contributions
3861 C        
3862 C                 (i+3)o----(i+4)
3863 C                     /  |
3864 C               (i+2)o   |
3865 C                     \  |
3866 C                 (i+1)o----i
3867 C
3868 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3869 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3870 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3871         a_temp(1,1)=a22
3872         a_temp(1,2)=a23
3873         a_temp(2,1)=a32
3874         a_temp(2,2)=a33
3875         iti1=itortyp(itype(i+1))
3876         iti2=itortyp(itype(i+2))
3877         iti3=itortyp(itype(i+3))
3878 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3879         call transpose2(EUg(1,1,i+1),e1t(1,1))
3880         call transpose2(Eug(1,1,i+2),e2t(1,1))
3881         call transpose2(Eug(1,1,i+3),e3t(1,1))
3882         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3883         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3884         s1=scalar2(b1(1,iti2),auxvec(1))
3885         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3886         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3887         s2=scalar2(b1(1,iti1),auxvec(1))
3888         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3889         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3890         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3891         eello_turn4=eello_turn4-(s1+s2+s3)
3892         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3893      &      'eturn4',i,j,-(s1+s2+s3)
3894 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3895 cd     &    ' eello_turn4_num',8*eello_turn4_num
3896 C Derivatives in gamma(i)
3897         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3898         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3899         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3900         s1=scalar2(b1(1,iti2),auxvec(1))
3901         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3902         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3904 C Derivatives in gamma(i+1)
3905         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3906         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3907         s2=scalar2(b1(1,iti1),auxvec(1))
3908         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3909         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3910         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3911         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3912 C Derivatives in gamma(i+2)
3913         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3914         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3915         s1=scalar2(b1(1,iti2),auxvec(1))
3916         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3917         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3920         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3923 C Cartesian derivatives
3924 C Derivatives of this turn contributions in DC(i+2)
3925         if (j.lt.nres-1) then
3926           do l=1,3
3927             a_temp(1,1)=agg(l,1)
3928             a_temp(1,2)=agg(l,2)
3929             a_temp(2,1)=agg(l,3)
3930             a_temp(2,2)=agg(l,4)
3931             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3932             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3933             s1=scalar2(b1(1,iti2),auxvec(1))
3934             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3935             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3936             s2=scalar2(b1(1,iti1),auxvec(1))
3937             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3938             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3939             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3940             ggg(l)=-(s1+s2+s3)
3941             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3942           enddo
3943         endif
3944 C Remaining derivatives of this turn contribution
3945         do l=1,3
3946           a_temp(1,1)=aggi(l,1)
3947           a_temp(1,2)=aggi(l,2)
3948           a_temp(2,1)=aggi(l,3)
3949           a_temp(2,2)=aggi(l,4)
3950           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3951           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3952           s1=scalar2(b1(1,iti2),auxvec(1))
3953           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3954           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3955           s2=scalar2(b1(1,iti1),auxvec(1))
3956           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3957           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3958           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3959           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3960           a_temp(1,1)=aggi1(l,1)
3961           a_temp(1,2)=aggi1(l,2)
3962           a_temp(2,1)=aggi1(l,3)
3963           a_temp(2,2)=aggi1(l,4)
3964           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3965           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3966           s1=scalar2(b1(1,iti2),auxvec(1))
3967           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3968           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3969           s2=scalar2(b1(1,iti1),auxvec(1))
3970           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3971           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3972           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3973           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3974           a_temp(1,1)=aggj(l,1)
3975           a_temp(1,2)=aggj(l,2)
3976           a_temp(2,1)=aggj(l,3)
3977           a_temp(2,2)=aggj(l,4)
3978           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3979           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3980           s1=scalar2(b1(1,iti2),auxvec(1))
3981           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3982           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3983           s2=scalar2(b1(1,iti1),auxvec(1))
3984           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3985           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3986           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3987           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3988           a_temp(1,1)=aggj1(l,1)
3989           a_temp(1,2)=aggj1(l,2)
3990           a_temp(2,1)=aggj1(l,3)
3991           a_temp(2,2)=aggj1(l,4)
3992           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3993           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3994           s1=scalar2(b1(1,iti2),auxvec(1))
3995           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3996           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3997           s2=scalar2(b1(1,iti1),auxvec(1))
3998           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3999           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4000           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4001 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4002           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4003         enddo
4004       return
4005       end
4006 C-----------------------------------------------------------------------------
4007       subroutine vecpr(u,v,w)
4008       implicit real*8(a-h,o-z)
4009       dimension u(3),v(3),w(3)
4010       w(1)=u(2)*v(3)-u(3)*v(2)
4011       w(2)=-u(1)*v(3)+u(3)*v(1)
4012       w(3)=u(1)*v(2)-u(2)*v(1)
4013       return
4014       end
4015 C-----------------------------------------------------------------------------
4016       subroutine unormderiv(u,ugrad,unorm,ungrad)
4017 C This subroutine computes the derivatives of a normalized vector u, given
4018 C the derivatives computed without normalization conditions, ugrad. Returns
4019 C ungrad.
4020       implicit none
4021       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4022       double precision vec(3)
4023       double precision scalar
4024       integer i,j
4025 c      write (2,*) 'ugrad',ugrad
4026 c      write (2,*) 'u',u
4027       do i=1,3
4028         vec(i)=scalar(ugrad(1,i),u(1))
4029       enddo
4030 c      write (2,*) 'vec',vec
4031       do i=1,3
4032         do j=1,3
4033           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4034         enddo
4035       enddo
4036 c      write (2,*) 'ungrad',ungrad
4037       return
4038       end
4039 C-----------------------------------------------------------------------------
4040       subroutine escp_soft_sphere(evdw2,evdw2_14)
4041 C
4042 C This subroutine calculates the excluded-volume interaction energy between
4043 C peptide-group centers and side chains and its gradient in virtual-bond and
4044 C side-chain vectors.
4045 C
4046       implicit real*8 (a-h,o-z)
4047       include 'DIMENSIONS'
4048       include 'COMMON.GEO'
4049       include 'COMMON.VAR'
4050       include 'COMMON.LOCAL'
4051       include 'COMMON.CHAIN'
4052       include 'COMMON.DERIV'
4053       include 'COMMON.INTERACT'
4054       include 'COMMON.FFIELD'
4055       include 'COMMON.IOUNITS'
4056       include 'COMMON.CONTROL'
4057       dimension ggg(3)
4058       evdw2=0.0D0
4059       evdw2_14=0.0d0
4060       r0_scp=4.5d0
4061 cd    print '(a)','Enter ESCP'
4062 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4063       do i=iatscp_s,iatscp_e
4064         iteli=itel(i)
4065         xi=0.5D0*(c(1,i)+c(1,i+1))
4066         yi=0.5D0*(c(2,i)+c(2,i+1))
4067         zi=0.5D0*(c(3,i)+c(3,i+1))
4068
4069         do iint=1,nscp_gr(i)
4070
4071         do j=iscpstart(i,iint),iscpend(i,iint)
4072           itypj=itype(j)
4073 C Uncomment following three lines for SC-p interactions
4074 c         xj=c(1,nres+j)-xi
4075 c         yj=c(2,nres+j)-yi
4076 c         zj=c(3,nres+j)-zi
4077 C Uncomment following three lines for Ca-p interactions
4078           xj=c(1,j)-xi
4079           yj=c(2,j)-yi
4080           zj=c(3,j)-zi
4081           rij=xj*xj+yj*yj+zj*zj
4082           r0ij=r0_scp
4083           r0ijsq=r0ij*r0ij
4084           if (rij.lt.r0ijsq) then
4085             evdwij=0.25d0*(rij-r0ijsq)**2
4086             fac=rij-r0ijsq
4087           else
4088             evdwij=0.0d0
4089             fac=0.0d0
4090           endif 
4091           evdw2=evdw2+evdwij
4092 C
4093 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4094 C
4095           ggg(1)=xj*fac
4096           ggg(2)=yj*fac
4097           ggg(3)=zj*fac
4098 cgrad          if (j.lt.i) then
4099 cd          write (iout,*) 'j<i'
4100 C Uncomment following three lines for SC-p interactions
4101 c           do k=1,3
4102 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4103 c           enddo
4104 cgrad          else
4105 cd          write (iout,*) 'j>i'
4106 cgrad            do k=1,3
4107 cgrad              ggg(k)=-ggg(k)
4108 C Uncomment following line for SC-p interactions
4109 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4110 cgrad            enddo
4111 cgrad          endif
4112 cgrad          do k=1,3
4113 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4114 cgrad          enddo
4115 cgrad          kstart=min0(i+1,j)
4116 cgrad          kend=max0(i-1,j-1)
4117 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4118 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4119 cgrad          do k=kstart,kend
4120 cgrad            do l=1,3
4121 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4122 cgrad            enddo
4123 cgrad          enddo
4124           do k=1,3
4125             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4126             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4127           enddo
4128         enddo
4129
4130         enddo ! iint
4131       enddo ! i
4132       return
4133       end
4134 C-----------------------------------------------------------------------------
4135       subroutine escp(evdw2,evdw2_14)
4136 C
4137 C This subroutine calculates the excluded-volume interaction energy between
4138 C peptide-group centers and side chains and its gradient in virtual-bond and
4139 C side-chain vectors.
4140 C
4141       implicit real*8 (a-h,o-z)
4142       include 'DIMENSIONS'
4143       include 'COMMON.GEO'
4144       include 'COMMON.VAR'
4145       include 'COMMON.LOCAL'
4146       include 'COMMON.CHAIN'
4147       include 'COMMON.DERIV'
4148       include 'COMMON.INTERACT'
4149       include 'COMMON.FFIELD'
4150       include 'COMMON.IOUNITS'
4151       include 'COMMON.CONTROL'
4152       dimension ggg(3)
4153       evdw2=0.0D0
4154       evdw2_14=0.0d0
4155 cd    print '(a)','Enter ESCP'
4156 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4157       do i=iatscp_s,iatscp_e
4158         iteli=itel(i)
4159         xi=0.5D0*(c(1,i)+c(1,i+1))
4160         yi=0.5D0*(c(2,i)+c(2,i+1))
4161         zi=0.5D0*(c(3,i)+c(3,i+1))
4162
4163         do iint=1,nscp_gr(i)
4164
4165         do j=iscpstart(i,iint),iscpend(i,iint)
4166           itypj=itype(j)
4167 C Uncomment following three lines for SC-p interactions
4168 c         xj=c(1,nres+j)-xi
4169 c         yj=c(2,nres+j)-yi
4170 c         zj=c(3,nres+j)-zi
4171 C Uncomment following three lines for Ca-p interactions
4172           xj=c(1,j)-xi
4173           yj=c(2,j)-yi
4174           zj=c(3,j)-zi
4175           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4176           fac=rrij**expon2
4177           e1=fac*fac*aad(itypj,iteli)
4178           e2=fac*bad(itypj,iteli)
4179           if (iabs(j-i) .le. 2) then
4180             e1=scal14*e1
4181             e2=scal14*e2
4182             evdw2_14=evdw2_14+e1+e2
4183           endif
4184           evdwij=e1+e2
4185           evdw2=evdw2+evdwij
4186           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4187      &        'evdw2',i,j,evdwij
4188 C
4189 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4190 C
4191           fac=-(evdwij+e1)*rrij
4192           ggg(1)=xj*fac
4193           ggg(2)=yj*fac
4194           ggg(3)=zj*fac
4195 cgrad          if (j.lt.i) then
4196 cd          write (iout,*) 'j<i'
4197 C Uncomment following three lines for SC-p interactions
4198 c           do k=1,3
4199 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4200 c           enddo
4201 cgrad          else
4202 cd          write (iout,*) 'j>i'
4203 cgrad            do k=1,3
4204 cgrad              ggg(k)=-ggg(k)
4205 C Uncomment following line for SC-p interactions
4206 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4207 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4208 cgrad            enddo
4209 cgrad          endif
4210 cgrad          do k=1,3
4211 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4212 cgrad          enddo
4213 cgrad          kstart=min0(i+1,j)
4214 cgrad          kend=max0(i-1,j-1)
4215 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4216 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4217 cgrad          do k=kstart,kend
4218 cgrad            do l=1,3
4219 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4220 cgrad            enddo
4221 cgrad          enddo
4222           do k=1,3
4223             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4224             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4225           enddo
4226         enddo
4227
4228         enddo ! iint
4229       enddo ! i
4230       do i=1,nct
4231         do j=1,3
4232           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4233           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4234           gradx_scp(j,i)=expon*gradx_scp(j,i)
4235         enddo
4236       enddo
4237 C******************************************************************************
4238 C
4239 C                              N O T E !!!
4240 C
4241 C To save time the factor EXPON has been extracted from ALL components
4242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4243 C use!
4244 C
4245 C******************************************************************************
4246       return
4247       end
4248 C--------------------------------------------------------------------------
4249       subroutine edis(ehpb)
4250
4251 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4252 C
4253       implicit real*8 (a-h,o-z)
4254       include 'DIMENSIONS'
4255       include 'COMMON.SBRIDGE'
4256       include 'COMMON.CHAIN'
4257       include 'COMMON.DERIV'
4258       include 'COMMON.VAR'
4259       include 'COMMON.INTERACT'
4260       include 'COMMON.IOUNITS'
4261       dimension ggg(3)
4262       ehpb=0.0D0
4263 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4264 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4265       if (link_end.eq.0) return
4266       do i=link_start,link_end
4267 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4268 C CA-CA distance used in regularization of structure.
4269         ii=ihpb(i)
4270         jj=jhpb(i)
4271 C iii and jjj point to the residues for which the distance is assigned.
4272         if (ii.gt.nres) then
4273           iii=ii-nres
4274           jjj=jj-nres 
4275         else
4276           iii=ii
4277           jjj=jj
4278         endif
4279 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4280 c     &    dhpb(i),dhpb1(i),forcon(i)
4281 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4282 C    distance and angle dependent SS bond potential.
4283 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4284 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4285         if (.not.dyn_ss .and. i.le.nss) then
4286 C 15/02/13 CC dynamic SSbond - additional check
4287          if (ii.gt.nres 
4288      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4289           call ssbond_ene(iii,jjj,eij)
4290           ehpb=ehpb+2*eij
4291          endif
4292 cd          write (iout,*) "eij",eij
4293         else if (ii.gt.nres .and. jj.gt.nres) then
4294 c Restraints from contact prediction
4295           dd=dist(ii,jj)
4296           if (dhpb1(i).gt.0.0d0) then
4297             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4298             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4299 c            write (iout,*) "beta nmr",
4300 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4301           else
4302             dd=dist(ii,jj)
4303             rdis=dd-dhpb(i)
4304 C Get the force constant corresponding to this distance.
4305             waga=forcon(i)
4306 C Calculate the contribution to energy.
4307             ehpb=ehpb+waga*rdis*rdis
4308 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4309 C
4310 C Evaluate gradient.
4311 C
4312             fac=waga*rdis/dd
4313           endif  
4314           do j=1,3
4315             ggg(j)=fac*(c(j,jj)-c(j,ii))
4316           enddo
4317           do j=1,3
4318             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4319             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4320           enddo
4321           do k=1,3
4322             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4323             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4324           enddo
4325         else
4326 C Calculate the distance between the two points and its difference from the
4327 C target distance.
4328           dd=dist(ii,jj)
4329           if (dhpb1(i).gt.0.0d0) then
4330             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4331             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4332 c            write (iout,*) "alph nmr",
4333 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4334           else
4335             rdis=dd-dhpb(i)
4336 C Get the force constant corresponding to this distance.
4337             waga=forcon(i)
4338 C Calculate the contribution to energy.
4339             ehpb=ehpb+waga*rdis*rdis
4340 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4341 C
4342 C Evaluate gradient.
4343 C
4344             fac=waga*rdis/dd
4345           endif
4346 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4347 cd   &   ' waga=',waga,' fac=',fac
4348             do j=1,3
4349               ggg(j)=fac*(c(j,jj)-c(j,ii))
4350             enddo
4351 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4352 C If this is a SC-SC distance, we need to calculate the contributions to the
4353 C Cartesian gradient in the SC vectors (ghpbx).
4354           if (iii.lt.ii) then
4355           do j=1,3
4356             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4357             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4358           enddo
4359           endif
4360 cgrad        do j=iii,jjj-1
4361 cgrad          do k=1,3
4362 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4363 cgrad          enddo
4364 cgrad        enddo
4365           do k=1,3
4366             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4367             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4368           enddo
4369         endif
4370       enddo
4371       ehpb=0.5D0*ehpb
4372       return
4373       end
4374 C--------------------------------------------------------------------------
4375       subroutine ssbond_ene(i,j,eij)
4376
4377 C Calculate the distance and angle dependent SS-bond potential energy
4378 C using a free-energy function derived based on RHF/6-31G** ab initio
4379 C calculations of diethyl disulfide.
4380 C
4381 C A. Liwo and U. Kozlowska, 11/24/03
4382 C
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.SBRIDGE'
4386       include 'COMMON.CHAIN'
4387       include 'COMMON.DERIV'
4388       include 'COMMON.LOCAL'
4389       include 'COMMON.INTERACT'
4390       include 'COMMON.VAR'
4391       include 'COMMON.IOUNITS'
4392       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4393       itypi=itype(i)
4394       xi=c(1,nres+i)
4395       yi=c(2,nres+i)
4396       zi=c(3,nres+i)
4397       dxi=dc_norm(1,nres+i)
4398       dyi=dc_norm(2,nres+i)
4399       dzi=dc_norm(3,nres+i)
4400 c      dsci_inv=dsc_inv(itypi)
4401       dsci_inv=vbld_inv(nres+i)
4402       itypj=itype(j)
4403 c      dscj_inv=dsc_inv(itypj)
4404       dscj_inv=vbld_inv(nres+j)
4405       xj=c(1,nres+j)-xi
4406       yj=c(2,nres+j)-yi
4407       zj=c(3,nres+j)-zi
4408       dxj=dc_norm(1,nres+j)
4409       dyj=dc_norm(2,nres+j)
4410       dzj=dc_norm(3,nres+j)
4411       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4412       rij=dsqrt(rrij)
4413       erij(1)=xj*rij
4414       erij(2)=yj*rij
4415       erij(3)=zj*rij
4416       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4417       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4418       om12=dxi*dxj+dyi*dyj+dzi*dzj
4419       do k=1,3
4420         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4421         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4422       enddo
4423       rij=1.0d0/rij
4424       deltad=rij-d0cm
4425       deltat1=1.0d0-om1
4426       deltat2=1.0d0+om2
4427       deltat12=om2-om1+2.0d0
4428       cosphi=om12-om1*om2
4429       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4430      &  +akct*deltad*deltat12+ebr
4431      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4432 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4433 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4434 c     &  " deltat12",deltat12," eij",eij 
4435       ed=2*akcm*deltad+akct*deltat12
4436       pom1=akct*deltad
4437       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4438       eom1=-2*akth*deltat1-pom1-om2*pom2
4439       eom2= 2*akth*deltat2+pom1-om1*pom2
4440       eom12=pom2
4441       do k=1,3
4442         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4443         ghpbx(k,i)=ghpbx(k,i)-ggk
4444      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4445      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4446         ghpbx(k,j)=ghpbx(k,j)+ggk
4447      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4448      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4449         ghpbc(k,i)=ghpbc(k,i)-ggk
4450         ghpbc(k,j)=ghpbc(k,j)+ggk
4451       enddo
4452 C
4453 C Calculate the components of the gradient in DC and X
4454 C
4455 cgrad      do k=i,j-1
4456 cgrad        do l=1,3
4457 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4458 cgrad        enddo
4459 cgrad      enddo
4460       return
4461       end
4462 C--------------------------------------------------------------------------
4463       subroutine ebond(estr)
4464 c
4465 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4466 c
4467       implicit real*8 (a-h,o-z)
4468       include 'DIMENSIONS'
4469       include 'COMMON.LOCAL'
4470       include 'COMMON.GEO'
4471       include 'COMMON.INTERACT'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.VAR'
4474       include 'COMMON.CHAIN'
4475       include 'COMMON.IOUNITS'
4476       include 'COMMON.NAMES'
4477       include 'COMMON.FFIELD'
4478       include 'COMMON.CONTROL'
4479       include 'COMMON.SETUP'
4480       double precision u(3),ud(3)
4481       estr=0.0d0
4482       do i=ibondp_start,ibondp_end
4483         diff = vbld(i)-vbldp0
4484 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4485         estr=estr+diff*diff
4486         do j=1,3
4487           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4488         enddo
4489 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4490       enddo
4491       estr=0.5d0*AKP*estr
4492 c
4493 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4494 c
4495       do i=ibond_start,ibond_end
4496         iti=itype(i)
4497         if (iti.ne.10) then
4498           nbi=nbondterm(iti)
4499           if (nbi.eq.1) then
4500             diff=vbld(i+nres)-vbldsc0(1,iti)
4501 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4502 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4503             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4504             do j=1,3
4505               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4506             enddo
4507           else
4508             do j=1,nbi
4509               diff=vbld(i+nres)-vbldsc0(j,iti) 
4510               ud(j)=aksc(j,iti)*diff
4511               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4512             enddo
4513             uprod=u(1)
4514             do j=2,nbi
4515               uprod=uprod*u(j)
4516             enddo
4517             usum=0.0d0
4518             usumsqder=0.0d0
4519             do j=1,nbi
4520               uprod1=1.0d0
4521               uprod2=1.0d0
4522               do k=1,nbi
4523                 if (k.ne.j) then
4524                   uprod1=uprod1*u(k)
4525                   uprod2=uprod2*u(k)*u(k)
4526                 endif
4527               enddo
4528               usum=usum+uprod1
4529               usumsqder=usumsqder+ud(j)*uprod2   
4530             enddo
4531             estr=estr+uprod/usum
4532             do j=1,3
4533              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4534             enddo
4535           endif
4536         endif
4537       enddo
4538       return
4539       end 
4540 #ifdef CRYST_THETA
4541 C--------------------------------------------------------------------------
4542       subroutine ebend(etheta)
4543 C
4544 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4545 C angles gamma and its derivatives in consecutive thetas and gammas.
4546 C
4547       implicit real*8 (a-h,o-z)
4548       include 'DIMENSIONS'
4549       include 'COMMON.LOCAL'
4550       include 'COMMON.GEO'
4551       include 'COMMON.INTERACT'
4552       include 'COMMON.DERIV'
4553       include 'COMMON.VAR'
4554       include 'COMMON.CHAIN'
4555       include 'COMMON.IOUNITS'
4556       include 'COMMON.NAMES'
4557       include 'COMMON.FFIELD'
4558       include 'COMMON.CONTROL'
4559       common /calcthet/ term1,term2,termm,diffak,ratak,
4560      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4561      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4562       double precision y(2),z(2)
4563       delta=0.02d0*pi
4564 c      time11=dexp(-2*time)
4565 c      time12=1.0d0
4566       etheta=0.0D0
4567 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4568       do i=ithet_start,ithet_end
4569 C Zero the energy function and its derivative at 0 or pi.
4570         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4571         it=itype(i-1)
4572         if (i.gt.3) then
4573 #ifdef OSF
4574           phii=phi(i)
4575           if (phii.ne.phii) phii=150.0
4576 #else
4577           phii=phi(i)
4578 #endif
4579           y(1)=dcos(phii)
4580           y(2)=dsin(phii)
4581         else 
4582           y(1)=0.0D0
4583           y(2)=0.0D0
4584         endif
4585         if (i.lt.nres) then
4586 #ifdef OSF
4587           phii1=phi(i+1)
4588           if (phii1.ne.phii1) phii1=150.0
4589           phii1=pinorm(phii1)
4590           z(1)=cos(phii1)
4591 #else
4592           phii1=phi(i+1)
4593           z(1)=dcos(phii1)
4594 #endif
4595           z(2)=dsin(phii1)
4596         else
4597           z(1)=0.0D0
4598           z(2)=0.0D0
4599         endif  
4600 C Calculate the "mean" value of theta from the part of the distribution
4601 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4602 C In following comments this theta will be referred to as t_c.
4603         thet_pred_mean=0.0d0
4604         do k=1,2
4605           athetk=athet(k,it)
4606           bthetk=bthet(k,it)
4607           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4608         enddo
4609         dthett=thet_pred_mean*ssd
4610         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4611 C Derivatives of the "mean" values in gamma1 and gamma2.
4612         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4613         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4614         if (theta(i).gt.pi-delta) then
4615           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4616      &         E_tc0)
4617           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4618           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4619           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4620      &        E_theta)
4621           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4622      &        E_tc)
4623         else if (theta(i).lt.delta) then
4624           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4625           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4626           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4627      &        E_theta)
4628           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4630      &        E_tc)
4631         else
4632           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4633      &        E_theta,E_tc)
4634         endif
4635         etheta=etheta+ethetai
4636         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4637      &      'ebend',i,ethetai
4638         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4639         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4640         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4641       enddo
4642 C Ufff.... We've done all this!!! 
4643       return
4644       end
4645 C---------------------------------------------------------------------------
4646       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4647      &     E_tc)
4648       implicit real*8 (a-h,o-z)
4649       include 'DIMENSIONS'
4650       include 'COMMON.LOCAL'
4651       include 'COMMON.IOUNITS'
4652       common /calcthet/ term1,term2,termm,diffak,ratak,
4653      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4654      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4655 C Calculate the contributions to both Gaussian lobes.
4656 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4657 C The "polynomial part" of the "standard deviation" of this part of 
4658 C the distribution.
4659         sig=polthet(3,it)
4660         do j=2,0,-1
4661           sig=sig*thet_pred_mean+polthet(j,it)
4662         enddo
4663 C Derivative of the "interior part" of the "standard deviation of the" 
4664 C gamma-dependent Gaussian lobe in t_c.
4665         sigtc=3*polthet(3,it)
4666         do j=2,1,-1
4667           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4668         enddo
4669         sigtc=sig*sigtc
4670 C Set the parameters of both Gaussian lobes of the distribution.
4671 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4672         fac=sig*sig+sigc0(it)
4673         sigcsq=fac+fac
4674         sigc=1.0D0/sigcsq
4675 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4676         sigsqtc=-4.0D0*sigcsq*sigtc
4677 c       print *,i,sig,sigtc,sigsqtc
4678 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4679         sigtc=-sigtc/(fac*fac)
4680 C Following variable is sigma(t_c)**(-2)
4681         sigcsq=sigcsq*sigcsq
4682         sig0i=sig0(it)
4683         sig0inv=1.0D0/sig0i**2
4684         delthec=thetai-thet_pred_mean
4685         delthe0=thetai-theta0i
4686         term1=-0.5D0*sigcsq*delthec*delthec
4687         term2=-0.5D0*sig0inv*delthe0*delthe0
4688 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4689 C NaNs in taking the logarithm. We extract the largest exponent which is added
4690 C to the energy (this being the log of the distribution) at the end of energy
4691 C term evaluation for this virtual-bond angle.
4692         if (term1.gt.term2) then
4693           termm=term1
4694           term2=dexp(term2-termm)
4695           term1=1.0d0
4696         else
4697           termm=term2
4698           term1=dexp(term1-termm)
4699           term2=1.0d0
4700         endif
4701 C The ratio between the gamma-independent and gamma-dependent lobes of
4702 C the distribution is a Gaussian function of thet_pred_mean too.
4703         diffak=gthet(2,it)-thet_pred_mean
4704         ratak=diffak/gthet(3,it)**2
4705         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4706 C Let's differentiate it in thet_pred_mean NOW.
4707         aktc=ak*ratak
4708 C Now put together the distribution terms to make complete distribution.
4709         termexp=term1+ak*term2
4710         termpre=sigc+ak*sig0i
4711 C Contribution of the bending energy from this theta is just the -log of
4712 C the sum of the contributions from the two lobes and the pre-exponential
4713 C factor. Simple enough, isn't it?
4714         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4715 C NOW the derivatives!!!
4716 C 6/6/97 Take into account the deformation.
4717         E_theta=(delthec*sigcsq*term1
4718      &       +ak*delthe0*sig0inv*term2)/termexp
4719         E_tc=((sigtc+aktc*sig0i)/termpre
4720      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4721      &       aktc*term2)/termexp)
4722       return
4723       end
4724 c-----------------------------------------------------------------------------
4725       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4726       implicit real*8 (a-h,o-z)
4727       include 'DIMENSIONS'
4728       include 'COMMON.LOCAL'
4729       include 'COMMON.IOUNITS'
4730       common /calcthet/ term1,term2,termm,diffak,ratak,
4731      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4732      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4733       delthec=thetai-thet_pred_mean
4734       delthe0=thetai-theta0i
4735 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4736       t3 = thetai-thet_pred_mean
4737       t6 = t3**2
4738       t9 = term1
4739       t12 = t3*sigcsq
4740       t14 = t12+t6*sigsqtc
4741       t16 = 1.0d0
4742       t21 = thetai-theta0i
4743       t23 = t21**2
4744       t26 = term2
4745       t27 = t21*t26
4746       t32 = termexp
4747       t40 = t32**2
4748       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4749      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4750      & *(-t12*t9-ak*sig0inv*t27)
4751       return
4752       end
4753 #else
4754 C--------------------------------------------------------------------------
4755       subroutine ebend(etheta)
4756 C
4757 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4758 C angles gamma and its derivatives in consecutive thetas and gammas.
4759 C ab initio-derived potentials from 
4760 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4761 C
4762       implicit real*8 (a-h,o-z)
4763       include 'DIMENSIONS'
4764       include 'COMMON.LOCAL'
4765       include 'COMMON.GEO'
4766       include 'COMMON.INTERACT'
4767       include 'COMMON.DERIV'
4768       include 'COMMON.VAR'
4769       include 'COMMON.CHAIN'
4770       include 'COMMON.IOUNITS'
4771       include 'COMMON.NAMES'
4772       include 'COMMON.FFIELD'
4773       include 'COMMON.CONTROL'
4774       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4775      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4776      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4777      & sinph1ph2(maxdouble,maxdouble)
4778       logical lprn /.false./, lprn1 /.false./
4779       etheta=0.0D0
4780       do i=ithet_start,ithet_end
4781         dethetai=0.0d0
4782         dephii=0.0d0
4783         dephii1=0.0d0
4784         theti2=0.5d0*theta(i)
4785         ityp2=ithetyp(itype(i-1))
4786         do k=1,nntheterm
4787           coskt(k)=dcos(k*theti2)
4788           sinkt(k)=dsin(k*theti2)
4789         enddo
4790         if (i.gt.3) then
4791 #ifdef OSF
4792           phii=phi(i)
4793           if (phii.ne.phii) phii=150.0
4794 #else
4795           phii=phi(i)
4796 #endif
4797           ityp1=ithetyp(itype(i-2))
4798           do k=1,nsingle
4799             cosph1(k)=dcos(k*phii)
4800             sinph1(k)=dsin(k*phii)
4801           enddo
4802         else
4803           phii=0.0d0
4804           ityp1=nthetyp+1
4805           do k=1,nsingle
4806             cosph1(k)=0.0d0
4807             sinph1(k)=0.0d0
4808           enddo 
4809         endif
4810         if (i.lt.nres) then
4811 #ifdef OSF
4812           phii1=phi(i+1)
4813           if (phii1.ne.phii1) phii1=150.0
4814           phii1=pinorm(phii1)
4815 #else
4816           phii1=phi(i+1)
4817 #endif
4818           ityp3=ithetyp(itype(i))
4819           do k=1,nsingle
4820             cosph2(k)=dcos(k*phii1)
4821             sinph2(k)=dsin(k*phii1)
4822           enddo
4823         else
4824           phii1=0.0d0
4825           ityp3=nthetyp+1
4826           do k=1,nsingle
4827             cosph2(k)=0.0d0
4828             sinph2(k)=0.0d0
4829           enddo
4830         endif  
4831         ethetai=aa0thet(ityp1,ityp2,ityp3)
4832         do k=1,ndouble
4833           do l=1,k-1
4834             ccl=cosph1(l)*cosph2(k-l)
4835             ssl=sinph1(l)*sinph2(k-l)
4836             scl=sinph1(l)*cosph2(k-l)
4837             csl=cosph1(l)*sinph2(k-l)
4838             cosph1ph2(l,k)=ccl-ssl
4839             cosph1ph2(k,l)=ccl+ssl
4840             sinph1ph2(l,k)=scl+csl
4841             sinph1ph2(k,l)=scl-csl
4842           enddo
4843         enddo
4844         if (lprn) then
4845         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4846      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4847         write (iout,*) "coskt and sinkt"
4848         do k=1,nntheterm
4849           write (iout,*) k,coskt(k),sinkt(k)
4850         enddo
4851         endif
4852         do k=1,ntheterm
4853           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4854           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4855      &      *coskt(k)
4856           if (lprn)
4857      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4858      &     " ethetai",ethetai
4859         enddo
4860         if (lprn) then
4861         write (iout,*) "cosph and sinph"
4862         do k=1,nsingle
4863           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4864         enddo
4865         write (iout,*) "cosph1ph2 and sinph2ph2"
4866         do k=2,ndouble
4867           do l=1,k-1
4868             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4869      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4870           enddo
4871         enddo
4872         write(iout,*) "ethetai",ethetai
4873         endif
4874         do m=1,ntheterm2
4875           do k=1,nsingle
4876             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4877      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4878      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4879      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4880             ethetai=ethetai+sinkt(m)*aux
4881             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4882             dephii=dephii+k*sinkt(m)*(
4883      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4884      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4885             dephii1=dephii1+k*sinkt(m)*(
4886      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4887      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4888             if (lprn)
4889      &      write (iout,*) "m",m," k",k," bbthet",
4890      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4891      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4892      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4893      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4894           enddo
4895         enddo
4896         if (lprn)
4897      &  write(iout,*) "ethetai",ethetai
4898         do m=1,ntheterm3
4899           do k=2,ndouble
4900             do l=1,k-1
4901               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4902      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4903      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4904      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4905               ethetai=ethetai+sinkt(m)*aux
4906               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4907               dephii=dephii+l*sinkt(m)*(
4908      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4909      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4910      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4911      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4912               dephii1=dephii1+(k-l)*sinkt(m)*(
4913      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4914      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4915      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4916      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4917               if (lprn) then
4918               write (iout,*) "m",m," k",k," l",l," ffthet",
4919      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4920      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4921      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4922      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4923               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4924      &            cosph1ph2(k,l)*sinkt(m),
4925      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4926               endif
4927             enddo
4928           enddo
4929         enddo
4930 10      continue
4931         lprn1=.true.
4932         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
4933      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
4934      &   phii1*rad2deg,ethetai
4935         lprn1=.false.
4936         etheta=etheta+ethetai
4937         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4938         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4939         gloc(nphi+i-2,icg)=wang*dethetai
4940       enddo
4941       return
4942       end
4943 #endif
4944 #ifdef CRYST_SC
4945 c-----------------------------------------------------------------------------
4946       subroutine esc(escloc)
4947 C Calculate the local energy of a side chain and its derivatives in the
4948 C corresponding virtual-bond valence angles THETA and the spherical angles 
4949 C ALPHA and OMEGA.
4950       implicit real*8 (a-h,o-z)
4951       include 'DIMENSIONS'
4952       include 'COMMON.GEO'
4953       include 'COMMON.LOCAL'
4954       include 'COMMON.VAR'
4955       include 'COMMON.INTERACT'
4956       include 'COMMON.DERIV'
4957       include 'COMMON.CHAIN'
4958       include 'COMMON.IOUNITS'
4959       include 'COMMON.NAMES'
4960       include 'COMMON.FFIELD'
4961       include 'COMMON.CONTROL'
4962       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4963      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4964       common /sccalc/ time11,time12,time112,theti,it,nlobit
4965       delta=0.02d0*pi
4966       escloc=0.0D0
4967 c     write (iout,'(a)') 'ESC'
4968       do i=loc_start,loc_end
4969         it=itype(i)
4970         if (it.eq.10) goto 1
4971         nlobit=nlob(it)
4972 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4973 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4974         theti=theta(i+1)-pipol
4975         x(1)=dtan(theti)
4976         x(2)=alph(i)
4977         x(3)=omeg(i)
4978
4979         if (x(2).gt.pi-delta) then
4980           xtemp(1)=x(1)
4981           xtemp(2)=pi-delta
4982           xtemp(3)=x(3)
4983           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4984           xtemp(2)=pi
4985           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4986           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4987      &        escloci,dersc(2))
4988           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4989      &        ddersc0(1),dersc(1))
4990           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4991      &        ddersc0(3),dersc(3))
4992           xtemp(2)=pi-delta
4993           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4994           xtemp(2)=pi
4995           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4996           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4997      &            dersc0(2),esclocbi,dersc02)
4998           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4999      &            dersc12,dersc01)
5000           call splinthet(x(2),0.5d0*delta,ss,ssd)
5001           dersc0(1)=dersc01
5002           dersc0(2)=dersc02
5003           dersc0(3)=0.0d0
5004           do k=1,3
5005             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5006           enddo
5007           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5008 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5009 c    &             esclocbi,ss,ssd
5010           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5011 c         escloci=esclocbi
5012 c         write (iout,*) escloci
5013         else if (x(2).lt.delta) then
5014           xtemp(1)=x(1)
5015           xtemp(2)=delta
5016           xtemp(3)=x(3)
5017           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5018           xtemp(2)=0.0d0
5019           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5020           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5021      &        escloci,dersc(2))
5022           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5023      &        ddersc0(1),dersc(1))
5024           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5025      &        ddersc0(3),dersc(3))
5026           xtemp(2)=delta
5027           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5028           xtemp(2)=0.0d0
5029           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5030           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5031      &            dersc0(2),esclocbi,dersc02)
5032           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5033      &            dersc12,dersc01)
5034           dersc0(1)=dersc01
5035           dersc0(2)=dersc02
5036           dersc0(3)=0.0d0
5037           call splinthet(x(2),0.5d0*delta,ss,ssd)
5038           do k=1,3
5039             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5040           enddo
5041           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5042 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5043 c    &             esclocbi,ss,ssd
5044           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5045 c         write (iout,*) escloci
5046         else
5047           call enesc(x,escloci,dersc,ddummy,.false.)
5048         endif
5049
5050         escloc=escloc+escloci
5051         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5052      &     'escloc',i,escloci
5053 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5054
5055         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5056      &   wscloc*dersc(1)
5057         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5058         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5059     1   continue
5060       enddo
5061       return
5062       end
5063 C---------------------------------------------------------------------------
5064       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5065       implicit real*8 (a-h,o-z)
5066       include 'DIMENSIONS'
5067       include 'COMMON.GEO'
5068       include 'COMMON.LOCAL'
5069       include 'COMMON.IOUNITS'
5070       common /sccalc/ time11,time12,time112,theti,it,nlobit
5071       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5072       double precision contr(maxlob,-1:1)
5073       logical mixed
5074 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5075         escloc_i=0.0D0
5076         do j=1,3
5077           dersc(j)=0.0D0
5078           if (mixed) ddersc(j)=0.0d0
5079         enddo
5080         x3=x(3)
5081
5082 C Because of periodicity of the dependence of the SC energy in omega we have
5083 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5084 C To avoid underflows, first compute & store the exponents.
5085
5086         do iii=-1,1
5087
5088           x(3)=x3+iii*dwapi
5089  
5090           do j=1,nlobit
5091             do k=1,3
5092               z(k)=x(k)-censc(k,j,it)
5093             enddo
5094             do k=1,3
5095               Axk=0.0D0
5096               do l=1,3
5097                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5098               enddo
5099               Ax(k,j,iii)=Axk
5100             enddo 
5101             expfac=0.0D0 
5102             do k=1,3
5103               expfac=expfac+Ax(k,j,iii)*z(k)
5104             enddo
5105             contr(j,iii)=expfac
5106           enddo ! j
5107
5108         enddo ! iii
5109
5110         x(3)=x3
5111 C As in the case of ebend, we want to avoid underflows in exponentiation and
5112 C subsequent NaNs and INFs in energy calculation.
5113 C Find the largest exponent
5114         emin=contr(1,-1)
5115         do iii=-1,1
5116           do j=1,nlobit
5117             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5118           enddo 
5119         enddo
5120         emin=0.5D0*emin
5121 cd      print *,'it=',it,' emin=',emin
5122
5123 C Compute the contribution to SC energy and derivatives
5124         do iii=-1,1
5125
5126           do j=1,nlobit
5127 #ifdef OSF
5128             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5129             if(adexp.ne.adexp) adexp=1.0
5130             expfac=dexp(adexp)
5131 #else
5132             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5133 #endif
5134 cd          print *,'j=',j,' expfac=',expfac
5135             escloc_i=escloc_i+expfac
5136             do k=1,3
5137               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5138             enddo
5139             if (mixed) then
5140               do k=1,3,2
5141                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5142      &            +gaussc(k,2,j,it))*expfac
5143               enddo
5144             endif
5145           enddo
5146
5147         enddo ! iii
5148
5149         dersc(1)=dersc(1)/cos(theti)**2
5150         ddersc(1)=ddersc(1)/cos(theti)**2
5151         ddersc(3)=ddersc(3)
5152
5153         escloci=-(dlog(escloc_i)-emin)
5154         do j=1,3
5155           dersc(j)=dersc(j)/escloc_i
5156         enddo
5157         if (mixed) then
5158           do j=1,3,2
5159             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5160           enddo
5161         endif
5162       return
5163       end
5164 C------------------------------------------------------------------------------
5165       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5166       implicit real*8 (a-h,o-z)
5167       include 'DIMENSIONS'
5168       include 'COMMON.GEO'
5169       include 'COMMON.LOCAL'
5170       include 'COMMON.IOUNITS'
5171       common /sccalc/ time11,time12,time112,theti,it,nlobit
5172       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5173       double precision contr(maxlob)
5174       logical mixed
5175
5176       escloc_i=0.0D0
5177
5178       do j=1,3
5179         dersc(j)=0.0D0
5180       enddo
5181
5182       do j=1,nlobit
5183         do k=1,2
5184           z(k)=x(k)-censc(k,j,it)
5185         enddo
5186         z(3)=dwapi
5187         do k=1,3
5188           Axk=0.0D0
5189           do l=1,3
5190             Axk=Axk+gaussc(l,k,j,it)*z(l)
5191           enddo
5192           Ax(k,j)=Axk
5193         enddo 
5194         expfac=0.0D0 
5195         do k=1,3
5196           expfac=expfac+Ax(k,j)*z(k)
5197         enddo
5198         contr(j)=expfac
5199       enddo ! j
5200
5201 C As in the case of ebend, we want to avoid underflows in exponentiation and
5202 C subsequent NaNs and INFs in energy calculation.
5203 C Find the largest exponent
5204       emin=contr(1)
5205       do j=1,nlobit
5206         if (emin.gt.contr(j)) emin=contr(j)
5207       enddo 
5208       emin=0.5D0*emin
5209  
5210 C Compute the contribution to SC energy and derivatives
5211
5212       dersc12=0.0d0
5213       do j=1,nlobit
5214         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5215         escloc_i=escloc_i+expfac
5216         do k=1,2
5217           dersc(k)=dersc(k)+Ax(k,j)*expfac
5218         enddo
5219         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5220      &            +gaussc(1,2,j,it))*expfac
5221         dersc(3)=0.0d0
5222       enddo
5223
5224       dersc(1)=dersc(1)/cos(theti)**2
5225       dersc12=dersc12/cos(theti)**2
5226       escloci=-(dlog(escloc_i)-emin)
5227       do j=1,2
5228         dersc(j)=dersc(j)/escloc_i
5229       enddo
5230       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5231       return
5232       end
5233 #else
5234 c----------------------------------------------------------------------------------
5235       subroutine esc(escloc)
5236 C Calculate the local energy of a side chain and its derivatives in the
5237 C corresponding virtual-bond valence angles THETA and the spherical angles 
5238 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5239 C added by Urszula Kozlowska. 07/11/2007
5240 C
5241       implicit real*8 (a-h,o-z)
5242       include 'DIMENSIONS'
5243       include 'COMMON.GEO'
5244       include 'COMMON.LOCAL'
5245       include 'COMMON.VAR'
5246       include 'COMMON.SCROT'
5247       include 'COMMON.INTERACT'
5248       include 'COMMON.DERIV'
5249       include 'COMMON.CHAIN'
5250       include 'COMMON.IOUNITS'
5251       include 'COMMON.NAMES'
5252       include 'COMMON.FFIELD'
5253       include 'COMMON.CONTROL'
5254       include 'COMMON.VECTORS'
5255       double precision x_prime(3),y_prime(3),z_prime(3)
5256      &    , sumene,dsc_i,dp2_i,x(65),
5257      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5258      &    de_dxx,de_dyy,de_dzz,de_dt
5259       double precision s1_t,s1_6_t,s2_t,s2_6_t
5260       double precision 
5261      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5262      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5263      & dt_dCi(3),dt_dCi1(3)
5264       common /sccalc/ time11,time12,time112,theti,it,nlobit
5265       delta=0.02d0*pi
5266       escloc=0.0D0
5267       do i=loc_start,loc_end
5268         costtab(i+1) =dcos(theta(i+1))
5269         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5270         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5271         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5272         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5273         cosfac=dsqrt(cosfac2)
5274         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5275         sinfac=dsqrt(sinfac2)
5276         it=itype(i)
5277         if (it.eq.10) goto 1
5278 c
5279 C  Compute the axes of tghe local cartesian coordinates system; store in
5280 c   x_prime, y_prime and z_prime 
5281 c
5282         do j=1,3
5283           x_prime(j) = 0.00
5284           y_prime(j) = 0.00
5285           z_prime(j) = 0.00
5286         enddo
5287 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5288 C     &   dc_norm(3,i+nres)
5289         do j = 1,3
5290           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5291           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5292         enddo
5293         do j = 1,3
5294           z_prime(j) = -uz(j,i-1)
5295         enddo     
5296 c       write (2,*) "i",i
5297 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5298 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5299 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5300 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5301 c      & " xy",scalar(x_prime(1),y_prime(1)),
5302 c      & " xz",scalar(x_prime(1),z_prime(1)),
5303 c      & " yy",scalar(y_prime(1),y_prime(1)),
5304 c      & " yz",scalar(y_prime(1),z_prime(1)),
5305 c      & " zz",scalar(z_prime(1),z_prime(1))
5306 c
5307 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5308 C to local coordinate system. Store in xx, yy, zz.
5309 c
5310         xx=0.0d0
5311         yy=0.0d0
5312         zz=0.0d0
5313         do j = 1,3
5314           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5315           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5316           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5317         enddo
5318
5319         xxtab(i)=xx
5320         yytab(i)=yy
5321         zztab(i)=zz
5322 C
5323 C Compute the energy of the ith side cbain
5324 C
5325 c        write (2,*) "xx",xx," yy",yy," zz",zz
5326         it=itype(i)
5327         do j = 1,65
5328           x(j) = sc_parmin(j,it) 
5329         enddo
5330 #ifdef CHECK_COORD
5331 Cc diagnostics - remove later
5332         xx1 = dcos(alph(2))
5333         yy1 = dsin(alph(2))*dcos(omeg(2))
5334         zz1 = -dsin(alph(2))*dsin(omeg(2))
5335         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5336      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5337      &    xx1,yy1,zz1
5338 C,"  --- ", xx_w,yy_w,zz_w
5339 c end diagnostics
5340 #endif
5341         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5342      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5343      &   + x(10)*yy*zz
5344         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5345      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5346      & + x(20)*yy*zz
5347         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5348      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5349      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5350      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5351      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5352      &  +x(40)*xx*yy*zz
5353         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5354      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5355      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5356      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5357      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5358      &  +x(60)*xx*yy*zz
5359         dsc_i   = 0.743d0+x(61)
5360         dp2_i   = 1.9d0+x(62)
5361         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5362      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5363         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5364      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5365         s1=(1+x(63))/(0.1d0 + dscp1)
5366         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5367         s2=(1+x(65))/(0.1d0 + dscp2)
5368         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5369         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5370      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5371 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5372 c     &   sumene4,
5373 c     &   dscp1,dscp2,sumene
5374 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5375         escloc = escloc + sumene
5376 c        write (2,*) "i",i," escloc",sumene,escloc
5377 #ifdef DEBUG
5378 C
5379 C This section to check the numerical derivatives of the energy of ith side
5380 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5381 C #define DEBUG in the code to turn it on.
5382 C
5383         write (2,*) "sumene               =",sumene
5384         aincr=1.0d-7
5385         xxsave=xx
5386         xx=xx+aincr
5387         write (2,*) xx,yy,zz
5388         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5389         de_dxx_num=(sumenep-sumene)/aincr
5390         xx=xxsave
5391         write (2,*) "xx+ sumene from enesc=",sumenep
5392         yysave=yy
5393         yy=yy+aincr
5394         write (2,*) xx,yy,zz
5395         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5396         de_dyy_num=(sumenep-sumene)/aincr
5397         yy=yysave
5398         write (2,*) "yy+ sumene from enesc=",sumenep
5399         zzsave=zz
5400         zz=zz+aincr
5401         write (2,*) xx,yy,zz
5402         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5403         de_dzz_num=(sumenep-sumene)/aincr
5404         zz=zzsave
5405         write (2,*) "zz+ sumene from enesc=",sumenep
5406         costsave=cost2tab(i+1)
5407         sintsave=sint2tab(i+1)
5408         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5409         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5410         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5411         de_dt_num=(sumenep-sumene)/aincr
5412         write (2,*) " t+ sumene from enesc=",sumenep
5413         cost2tab(i+1)=costsave
5414         sint2tab(i+1)=sintsave
5415 C End of diagnostics section.
5416 #endif
5417 C        
5418 C Compute the gradient of esc
5419 C
5420         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5421         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5422         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5423         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5424         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5425         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5426         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5427         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5428         pom1=(sumene3*sint2tab(i+1)+sumene1)
5429      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5430         pom2=(sumene4*cost2tab(i+1)+sumene2)
5431      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5432         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5433         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5434      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5435      &  +x(40)*yy*zz
5436         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5437         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5438      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5439      &  +x(60)*yy*zz
5440         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5441      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5442      &        +(pom1+pom2)*pom_dx
5443 #ifdef DEBUG
5444         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5445 #endif
5446 C
5447         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5448         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5449      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5450      &  +x(40)*xx*zz
5451         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5452         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5453      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5454      &  +x(59)*zz**2 +x(60)*xx*zz
5455         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5456      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5457      &        +(pom1-pom2)*pom_dy
5458 #ifdef DEBUG
5459         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5460 #endif
5461 C
5462         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5463      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5464      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5465      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5466      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5467      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5468      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5469      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5470 #ifdef DEBUG
5471         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5472 #endif
5473 C
5474         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5475      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5476      &  +pom1*pom_dt1+pom2*pom_dt2
5477 #ifdef DEBUG
5478         write(2,*), "de_dt = ", de_dt,de_dt_num
5479 #endif
5480
5481 C
5482        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5483        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5484        cosfac2xx=cosfac2*xx
5485        sinfac2yy=sinfac2*yy
5486        do k = 1,3
5487          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5488      &      vbld_inv(i+1)
5489          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5490      &      vbld_inv(i)
5491          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5492          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5493 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5494 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5495 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5496 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5497          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5498          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5499          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5500          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5501          dZZ_Ci1(k)=0.0d0
5502          dZZ_Ci(k)=0.0d0
5503          do j=1,3
5504            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5505            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5506          enddo
5507           
5508          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5509          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5510          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5511 c
5512          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5513          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5514        enddo
5515
5516        do k=1,3
5517          dXX_Ctab(k,i)=dXX_Ci(k)
5518          dXX_C1tab(k,i)=dXX_Ci1(k)
5519          dYY_Ctab(k,i)=dYY_Ci(k)
5520          dYY_C1tab(k,i)=dYY_Ci1(k)
5521          dZZ_Ctab(k,i)=dZZ_Ci(k)
5522          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5523          dXX_XYZtab(k,i)=dXX_XYZ(k)
5524          dYY_XYZtab(k,i)=dYY_XYZ(k)
5525          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5526        enddo
5527
5528        do k = 1,3
5529 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5530 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5531 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5532 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5533 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5534 c     &    dt_dci(k)
5535 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5536 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5537          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5538      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5539          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5540      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5541          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5542      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5543        enddo
5544 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5545 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5546
5547 C to check gradient call subroutine check_grad
5548
5549     1 continue
5550       enddo
5551       return
5552       end
5553 c------------------------------------------------------------------------------
5554       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5555       implicit none
5556       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5557      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5558       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5559      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5560      &   + x(10)*yy*zz
5561       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5562      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5563      & + x(20)*yy*zz
5564       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5565      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5566      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5567      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5568      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5569      &  +x(40)*xx*yy*zz
5570       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5571      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5572      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5573      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5574      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5575      &  +x(60)*xx*yy*zz
5576       dsc_i   = 0.743d0+x(61)
5577       dp2_i   = 1.9d0+x(62)
5578       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5579      &          *(xx*cost2+yy*sint2))
5580       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5581      &          *(xx*cost2-yy*sint2))
5582       s1=(1+x(63))/(0.1d0 + dscp1)
5583       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5584       s2=(1+x(65))/(0.1d0 + dscp2)
5585       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5586       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5587      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5588       enesc=sumene
5589       return
5590       end
5591 #endif
5592 c------------------------------------------------------------------------------
5593       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5594 C
5595 C This procedure calculates two-body contact function g(rij) and its derivative:
5596 C
5597 C           eps0ij                                     !       x < -1
5598 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5599 C            0                                         !       x > 1
5600 C
5601 C where x=(rij-r0ij)/delta
5602 C
5603 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5604 C
5605       implicit none
5606       double precision rij,r0ij,eps0ij,fcont,fprimcont
5607       double precision x,x2,x4,delta
5608 c     delta=0.02D0*r0ij
5609 c      delta=0.2D0*r0ij
5610       x=(rij-r0ij)/delta
5611       if (x.lt.-1.0D0) then
5612         fcont=eps0ij
5613         fprimcont=0.0D0
5614       else if (x.le.1.0D0) then  
5615         x2=x*x
5616         x4=x2*x2
5617         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5618         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5619       else
5620         fcont=0.0D0
5621         fprimcont=0.0D0
5622       endif
5623       return
5624       end
5625 c------------------------------------------------------------------------------
5626       subroutine splinthet(theti,delta,ss,ssder)
5627       implicit real*8 (a-h,o-z)
5628       include 'DIMENSIONS'
5629       include 'COMMON.VAR'
5630       include 'COMMON.GEO'
5631       thetup=pi-delta
5632       thetlow=delta
5633       if (theti.gt.pipol) then
5634         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5635       else
5636         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5637         ssder=-ssder
5638       endif
5639       return
5640       end
5641 c------------------------------------------------------------------------------
5642       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5643       implicit none
5644       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5645       double precision ksi,ksi2,ksi3,a1,a2,a3
5646       a1=fprim0*delta/(f1-f0)
5647       a2=3.0d0-2.0d0*a1
5648       a3=a1-2.0d0
5649       ksi=(x-x0)/delta
5650       ksi2=ksi*ksi
5651       ksi3=ksi2*ksi  
5652       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5653       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5654       return
5655       end
5656 c------------------------------------------------------------------------------
5657       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5658       implicit none
5659       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5660       double precision ksi,ksi2,ksi3,a1,a2,a3
5661       ksi=(x-x0)/delta  
5662       ksi2=ksi*ksi
5663       ksi3=ksi2*ksi
5664       a1=fprim0x*delta
5665       a2=3*(f1x-f0x)-2*fprim0x*delta
5666       a3=fprim0x*delta-2*(f1x-f0x)
5667       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5668       return
5669       end
5670 C-----------------------------------------------------------------------------
5671 #ifdef CRYST_TOR
5672 C-----------------------------------------------------------------------------
5673       subroutine etor(etors,edihcnstr)
5674       implicit real*8 (a-h,o-z)
5675       include 'DIMENSIONS'
5676       include 'COMMON.VAR'
5677       include 'COMMON.GEO'
5678       include 'COMMON.LOCAL'
5679       include 'COMMON.TORSION'
5680       include 'COMMON.INTERACT'
5681       include 'COMMON.DERIV'
5682       include 'COMMON.CHAIN'
5683       include 'COMMON.NAMES'
5684       include 'COMMON.IOUNITS'
5685       include 'COMMON.FFIELD'
5686       include 'COMMON.TORCNSTR'
5687       include 'COMMON.CONTROL'
5688       logical lprn
5689 C Set lprn=.true. for debugging
5690       lprn=.false.
5691 c      lprn=.true.
5692       etors=0.0D0
5693       do i=iphi_start,iphi_end
5694       etors_ii=0.0D0
5695         itori=itortyp(itype(i-2))
5696         itori1=itortyp(itype(i-1))
5697         phii=phi(i)
5698         gloci=0.0D0
5699 C Proline-Proline pair is a special case...
5700         if (itori.eq.3 .and. itori1.eq.3) then
5701           if (phii.gt.-dwapi3) then
5702             cosphi=dcos(3*phii)
5703             fac=1.0D0/(1.0D0-cosphi)
5704             etorsi=v1(1,3,3)*fac
5705             etorsi=etorsi+etorsi
5706             etors=etors+etorsi-v1(1,3,3)
5707             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5708             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5709           endif
5710           do j=1,3
5711             v1ij=v1(j+1,itori,itori1)
5712             v2ij=v2(j+1,itori,itori1)
5713             cosphi=dcos(j*phii)
5714             sinphi=dsin(j*phii)
5715             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5716             if (energy_dec) etors_ii=etors_ii+
5717      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5718             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5719           enddo
5720         else 
5721           do j=1,nterm_old
5722             v1ij=v1(j,itori,itori1)
5723             v2ij=v2(j,itori,itori1)
5724             cosphi=dcos(j*phii)
5725             sinphi=dsin(j*phii)
5726             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5727             if (energy_dec) etors_ii=etors_ii+
5728      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5729             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5730           enddo
5731         endif
5732         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5733      &        'etor',i,etors_ii
5734         if (lprn)
5735      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5736      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5737      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5738         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5739         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5740       enddo
5741 ! 6/20/98 - dihedral angle constraints
5742       edihcnstr=0.0d0
5743       do i=1,ndih_constr
5744         itori=idih_constr(i)
5745         phii=phi(itori)
5746         difi=phii-phi0(i)
5747         if (difi.gt.drange(i)) then
5748           difi=difi-drange(i)
5749           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5750           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5751         else if (difi.lt.-drange(i)) then
5752           difi=difi+drange(i)
5753           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5754           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5755         endif
5756 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5757 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5758       enddo
5759 !      write (iout,*) 'edihcnstr',edihcnstr
5760       return
5761       end
5762 c------------------------------------------------------------------------------
5763       subroutine etor_d(etors_d)
5764       etors_d=0.0d0
5765       return
5766       end
5767 c----------------------------------------------------------------------------
5768 #else
5769       subroutine etor(etors,edihcnstr)
5770       implicit real*8 (a-h,o-z)
5771       include 'DIMENSIONS'
5772       include 'COMMON.VAR'
5773       include 'COMMON.GEO'
5774       include 'COMMON.LOCAL'
5775       include 'COMMON.TORSION'
5776       include 'COMMON.INTERACT'
5777       include 'COMMON.DERIV'
5778       include 'COMMON.CHAIN'
5779       include 'COMMON.NAMES'
5780       include 'COMMON.IOUNITS'
5781       include 'COMMON.FFIELD'
5782       include 'COMMON.TORCNSTR'
5783       include 'COMMON.CONTROL'
5784       logical lprn
5785 C Set lprn=.true. for debugging
5786       lprn=.false.
5787 c     lprn=.true.
5788       etors=0.0D0
5789       do i=iphi_start,iphi_end
5790       etors_ii=0.0D0
5791         itori=itortyp(itype(i-2))
5792         itori1=itortyp(itype(i-1))
5793         phii=phi(i)
5794         gloci=0.0D0
5795 C Regular cosine and sine terms
5796         do j=1,nterm(itori,itori1)
5797           v1ij=v1(j,itori,itori1)
5798           v2ij=v2(j,itori,itori1)
5799           cosphi=dcos(j*phii)
5800           sinphi=dsin(j*phii)
5801           etors=etors+v1ij*cosphi+v2ij*sinphi
5802           if (energy_dec) etors_ii=etors_ii+
5803      &                v1ij*cosphi+v2ij*sinphi
5804           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5805         enddo
5806 C Lorentz terms
5807 C                         v1
5808 C  E = SUM ----------------------------------- - v1
5809 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5810 C
5811         cosphi=dcos(0.5d0*phii)
5812         sinphi=dsin(0.5d0*phii)
5813         do j=1,nlor(itori,itori1)
5814           vl1ij=vlor1(j,itori,itori1)
5815           vl2ij=vlor2(j,itori,itori1)
5816           vl3ij=vlor3(j,itori,itori1)
5817           pom=vl2ij*cosphi+vl3ij*sinphi
5818           pom1=1.0d0/(pom*pom+1.0d0)
5819           etors=etors+vl1ij*pom1
5820           if (energy_dec) etors_ii=etors_ii+
5821      &                vl1ij*pom1
5822           pom=-pom*pom1*pom1
5823           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5824         enddo
5825 C Subtract the constant term
5826         etors=etors-v0(itori,itori1)
5827           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5828      &         'etor',i,etors_ii-v0(itori,itori1)
5829         if (lprn)
5830      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5831      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5832      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5833         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5834 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5835       enddo
5836 ! 6/20/98 - dihedral angle constraints
5837       edihcnstr=0.0d0
5838 c      do i=1,ndih_constr
5839       do i=idihconstr_start,idihconstr_end
5840         itori=idih_constr(i)
5841         phii=phi(itori)
5842         difi=pinorm(phii-phi0(i))
5843         if (difi.gt.drange(i)) then
5844           difi=difi-drange(i)
5845           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5846           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5847         else if (difi.lt.-drange(i)) then
5848           difi=difi+drange(i)
5849           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5850           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5851         else
5852           difi=0.0
5853         endif
5854 c        write (iout,*) "gloci", gloc(i-3,icg)
5855 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5856 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5857 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5858       enddo
5859 cd       write (iout,*) 'edihcnstr',edihcnstr
5860       return
5861       end
5862 c----------------------------------------------------------------------------
5863       subroutine etor_d(etors_d)
5864 C 6/23/01 Compute double torsional energy
5865       implicit real*8 (a-h,o-z)
5866       include 'DIMENSIONS'
5867       include 'COMMON.VAR'
5868       include 'COMMON.GEO'
5869       include 'COMMON.LOCAL'
5870       include 'COMMON.TORSION'
5871       include 'COMMON.INTERACT'
5872       include 'COMMON.DERIV'
5873       include 'COMMON.CHAIN'
5874       include 'COMMON.NAMES'
5875       include 'COMMON.IOUNITS'
5876       include 'COMMON.FFIELD'
5877       include 'COMMON.TORCNSTR'
5878       logical lprn
5879 C Set lprn=.true. for debugging
5880       lprn=.false.
5881 c     lprn=.true.
5882       etors_d=0.0D0
5883       do i=iphid_start,iphid_end
5884         itori=itortyp(itype(i-2))
5885         itori1=itortyp(itype(i-1))
5886         itori2=itortyp(itype(i))
5887         phii=phi(i)
5888         phii1=phi(i+1)
5889         gloci1=0.0D0
5890         gloci2=0.0D0
5891         do j=1,ntermd_1(itori,itori1,itori2)
5892           v1cij=v1c(1,j,itori,itori1,itori2)
5893           v1sij=v1s(1,j,itori,itori1,itori2)
5894           v2cij=v1c(2,j,itori,itori1,itori2)
5895           v2sij=v1s(2,j,itori,itori1,itori2)
5896           cosphi1=dcos(j*phii)
5897           sinphi1=dsin(j*phii)
5898           cosphi2=dcos(j*phii1)
5899           sinphi2=dsin(j*phii1)
5900           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5901      &     v2cij*cosphi2+v2sij*sinphi2
5902           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5903           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5904         enddo
5905         do k=2,ntermd_2(itori,itori1,itori2)
5906           do l=1,k-1
5907             v1cdij = v2c(k,l,itori,itori1,itori2)
5908             v2cdij = v2c(l,k,itori,itori1,itori2)
5909             v1sdij = v2s(k,l,itori,itori1,itori2)
5910             v2sdij = v2s(l,k,itori,itori1,itori2)
5911             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5912             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5913             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5914             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5915             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5916      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5917             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5918      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5919             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5920      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5921           enddo
5922         enddo
5923         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5924         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5925 c        write (iout,*) "gloci", gloc(i-3,icg)
5926       enddo
5927       return
5928       end
5929 #endif
5930 c------------------------------------------------------------------------------
5931       subroutine eback_sc_corr(esccor)
5932 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5933 c        conformational states; temporarily implemented as differences
5934 c        between UNRES torsional potentials (dependent on three types of
5935 c        residues) and the torsional potentials dependent on all 20 types
5936 c        of residues computed from AM1  energy surfaces of terminally-blocked
5937 c        amino-acid residues.
5938       implicit real*8 (a-h,o-z)
5939       include 'DIMENSIONS'
5940       include 'COMMON.VAR'
5941       include 'COMMON.GEO'
5942       include 'COMMON.LOCAL'
5943       include 'COMMON.TORSION'
5944       include 'COMMON.SCCOR'
5945       include 'COMMON.INTERACT'
5946       include 'COMMON.DERIV'
5947       include 'COMMON.CHAIN'
5948       include 'COMMON.NAMES'
5949       include 'COMMON.IOUNITS'
5950       include 'COMMON.FFIELD'
5951       include 'COMMON.CONTROL'
5952       logical lprn
5953 C Set lprn=.true. for debugging
5954       lprn=.false.
5955 c      lprn=.true.
5956 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5957       esccor=0.0D0
5958       do i=itau_start,itau_end
5959         esccor_ii=0.0D0
5960         isccori=isccortyp(itype(i-2))
5961         isccori1=isccortyp(itype(i-1))
5962         phii=phi(i)
5963 cccc  Added 9 May 2012
5964 cc Tauangle is torsional engle depending on the value of first digit 
5965 c(see comment below)
5966 cc Omicron is flat angle depending on the value of first digit 
5967 c(see comment below)
5968
5969         
5970         do intertyp=1,3 !intertyp
5971 cc Added 09 May 2012 (Adasko)
5972 cc  Intertyp means interaction type of backbone mainchain correlation: 
5973 c   1 = SC...Ca...Ca...Ca
5974 c   2 = Ca...Ca...Ca...SC
5975 c   3 = SC...Ca...Ca...SCi
5976         gloci=0.0D0
5977         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5978      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
5979      &      (itype(i-1).eq.21)))
5980      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5981      &     .or.(itype(i-2).eq.21)))
5982      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5983      &      (itype(i-1).eq.21)))) cycle  
5984         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
5985         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
5986      & cycle
5987         do j=1,nterm_sccor(isccori,isccori1)
5988           v1ij=v1sccor(j,intertyp,isccori,isccori1)
5989           v2ij=v2sccor(j,intertyp,isccori,isccori1)
5990           cosphi=dcos(j*tauangle(intertyp,i))
5991           sinphi=dsin(j*tauangle(intertyp,i))
5992           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5993           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5994         enddo
5995         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
5996 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
5997 c     &gloc_sc(intertyp,i-3,icg)
5998         if (lprn)
5999      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6000      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6001      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6002      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6003         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6004        enddo !intertyp
6005       enddo
6006 c        do i=1,nres
6007 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6008 c        enddo
6009       return
6010       end
6011 c----------------------------------------------------------------------------
6012       subroutine multibody(ecorr)
6013 C This subroutine calculates multi-body contributions to energy following
6014 C the idea of Skolnick et al. If side chains I and J make a contact and
6015 C at the same time side chains I+1 and J+1 make a contact, an extra 
6016 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6017       implicit real*8 (a-h,o-z)
6018       include 'DIMENSIONS'
6019       include 'COMMON.IOUNITS'
6020       include 'COMMON.DERIV'
6021       include 'COMMON.INTERACT'
6022       include 'COMMON.CONTACTS'
6023       double precision gx(3),gx1(3)
6024       logical lprn
6025
6026 C Set lprn=.true. for debugging
6027       lprn=.false.
6028
6029       if (lprn) then
6030         write (iout,'(a)') 'Contact function values:'
6031         do i=nnt,nct-2
6032           write (iout,'(i2,20(1x,i2,f10.5))') 
6033      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6034         enddo
6035       endif
6036       ecorr=0.0D0
6037       do i=nnt,nct
6038         do j=1,3
6039           gradcorr(j,i)=0.0D0
6040           gradxorr(j,i)=0.0D0
6041         enddo
6042       enddo
6043       do i=nnt,nct-2
6044
6045         DO ISHIFT = 3,4
6046
6047         i1=i+ishift
6048         num_conti=num_cont(i)
6049         num_conti1=num_cont(i1)
6050         do jj=1,num_conti
6051           j=jcont(jj,i)
6052           do kk=1,num_conti1
6053             j1=jcont(kk,i1)
6054             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6055 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6056 cd   &                   ' ishift=',ishift
6057 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6058 C The system gains extra energy.
6059               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6060             endif   ! j1==j+-ishift
6061           enddo     ! kk  
6062         enddo       ! jj
6063
6064         ENDDO ! ISHIFT
6065
6066       enddo         ! i
6067       return
6068       end
6069 c------------------------------------------------------------------------------
6070       double precision function esccorr(i,j,k,l,jj,kk)
6071       implicit real*8 (a-h,o-z)
6072       include 'DIMENSIONS'
6073       include 'COMMON.IOUNITS'
6074       include 'COMMON.DERIV'
6075       include 'COMMON.INTERACT'
6076       include 'COMMON.CONTACTS'
6077       double precision gx(3),gx1(3)
6078       logical lprn
6079       lprn=.false.
6080       eij=facont(jj,i)
6081       ekl=facont(kk,k)
6082 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6083 C Calculate the multi-body contribution to energy.
6084 C Calculate multi-body contributions to the gradient.
6085 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6086 cd   & k,l,(gacont(m,kk,k),m=1,3)
6087       do m=1,3
6088         gx(m) =ekl*gacont(m,jj,i)
6089         gx1(m)=eij*gacont(m,kk,k)
6090         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6091         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6092         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6093         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6094       enddo
6095       do m=i,j-1
6096         do ll=1,3
6097           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6098         enddo
6099       enddo
6100       do m=k,l-1
6101         do ll=1,3
6102           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6103         enddo
6104       enddo 
6105       esccorr=-eij*ekl
6106       return
6107       end
6108 c------------------------------------------------------------------------------
6109       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6110 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6111       implicit real*8 (a-h,o-z)
6112       include 'DIMENSIONS'
6113       include 'COMMON.IOUNITS'
6114 #ifdef MPI
6115       include "mpif.h"
6116       parameter (max_cont=maxconts)
6117       parameter (max_dim=26)
6118       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6119       double precision zapas(max_dim,maxconts,max_fg_procs),
6120      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6121       common /przechowalnia/ zapas
6122       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6123      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6124 #endif
6125       include 'COMMON.SETUP'
6126       include 'COMMON.FFIELD'
6127       include 'COMMON.DERIV'
6128       include 'COMMON.INTERACT'
6129       include 'COMMON.CONTACTS'
6130       include 'COMMON.CONTROL'
6131       include 'COMMON.LOCAL'
6132       double precision gx(3),gx1(3),time00
6133       logical lprn,ldone
6134
6135 C Set lprn=.true. for debugging
6136       lprn=.false.
6137 #ifdef MPI
6138       n_corr=0
6139       n_corr1=0
6140       if (nfgtasks.le.1) goto 30
6141       if (lprn) then
6142         write (iout,'(a)') 'Contact function values before RECEIVE:'
6143         do i=nnt,nct-2
6144           write (iout,'(2i3,50(1x,i2,f5.2))') 
6145      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6146      &    j=1,num_cont_hb(i))
6147         enddo
6148       endif
6149       call flush(iout)
6150       do i=1,ntask_cont_from
6151         ncont_recv(i)=0
6152       enddo
6153       do i=1,ntask_cont_to
6154         ncont_sent(i)=0
6155       enddo
6156 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6157 c     & ntask_cont_to
6158 C Make the list of contacts to send to send to other procesors
6159 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6160 c      call flush(iout)
6161       do i=iturn3_start,iturn3_end
6162 c        write (iout,*) "make contact list turn3",i," num_cont",
6163 c     &    num_cont_hb(i)
6164         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6165       enddo
6166       do i=iturn4_start,iturn4_end
6167 c        write (iout,*) "make contact list turn4",i," num_cont",
6168 c     &   num_cont_hb(i)
6169         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6170       enddo
6171       do ii=1,nat_sent
6172         i=iat_sent(ii)
6173 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6174 c     &    num_cont_hb(i)
6175         do j=1,num_cont_hb(i)
6176         do k=1,4
6177           jjc=jcont_hb(j,i)
6178           iproc=iint_sent_local(k,jjc,ii)
6179 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6180           if (iproc.gt.0) then
6181             ncont_sent(iproc)=ncont_sent(iproc)+1
6182             nn=ncont_sent(iproc)
6183             zapas(1,nn,iproc)=i
6184             zapas(2,nn,iproc)=jjc
6185             zapas(3,nn,iproc)=facont_hb(j,i)
6186             zapas(4,nn,iproc)=ees0p(j,i)
6187             zapas(5,nn,iproc)=ees0m(j,i)
6188             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6189             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6190             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6191             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6192             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6193             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6194             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6195             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6196             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6197             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6198             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6199             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6200             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6201             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6202             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6203             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6204             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6205             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6206             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6207             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6208             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6209           endif
6210         enddo
6211         enddo
6212       enddo
6213       if (lprn) then
6214       write (iout,*) 
6215      &  "Numbers of contacts to be sent to other processors",
6216      &  (ncont_sent(i),i=1,ntask_cont_to)
6217       write (iout,*) "Contacts sent"
6218       do ii=1,ntask_cont_to
6219         nn=ncont_sent(ii)
6220         iproc=itask_cont_to(ii)
6221         write (iout,*) nn," contacts to processor",iproc,
6222      &   " of CONT_TO_COMM group"
6223         do i=1,nn
6224           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6225         enddo
6226       enddo
6227       call flush(iout)
6228       endif
6229       CorrelType=477
6230       CorrelID=fg_rank+1
6231       CorrelType1=478
6232       CorrelID1=nfgtasks+fg_rank+1
6233       ireq=0
6234 C Receive the numbers of needed contacts from other processors 
6235       do ii=1,ntask_cont_from
6236         iproc=itask_cont_from(ii)
6237         ireq=ireq+1
6238         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6239      &    FG_COMM,req(ireq),IERR)
6240       enddo
6241 c      write (iout,*) "IRECV ended"
6242 c      call flush(iout)
6243 C Send the number of contacts needed by other processors
6244       do ii=1,ntask_cont_to
6245         iproc=itask_cont_to(ii)
6246         ireq=ireq+1
6247         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6248      &    FG_COMM,req(ireq),IERR)
6249       enddo
6250 c      write (iout,*) "ISEND ended"
6251 c      write (iout,*) "number of requests (nn)",ireq
6252       call flush(iout)
6253       if (ireq.gt.0) 
6254      &  call MPI_Waitall(ireq,req,status_array,ierr)
6255 c      write (iout,*) 
6256 c     &  "Numbers of contacts to be received from other processors",
6257 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6258 c      call flush(iout)
6259 C Receive contacts
6260       ireq=0
6261       do ii=1,ntask_cont_from
6262         iproc=itask_cont_from(ii)
6263         nn=ncont_recv(ii)
6264 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6265 c     &   " of CONT_TO_COMM group"
6266         call flush(iout)
6267         if (nn.gt.0) then
6268           ireq=ireq+1
6269           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6270      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6271 c          write (iout,*) "ireq,req",ireq,req(ireq)
6272         endif
6273       enddo
6274 C Send the contacts to processors that need them
6275       do ii=1,ntask_cont_to
6276         iproc=itask_cont_to(ii)
6277         nn=ncont_sent(ii)
6278 c        write (iout,*) nn," contacts to processor",iproc,
6279 c     &   " of CONT_TO_COMM group"
6280         if (nn.gt.0) then
6281           ireq=ireq+1 
6282           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6283      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6284 c          write (iout,*) "ireq,req",ireq,req(ireq)
6285 c          do i=1,nn
6286 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6287 c          enddo
6288         endif  
6289       enddo
6290 c      write (iout,*) "number of requests (contacts)",ireq
6291 c      write (iout,*) "req",(req(i),i=1,4)
6292 c      call flush(iout)
6293       if (ireq.gt.0) 
6294      & call MPI_Waitall(ireq,req,status_array,ierr)
6295       do iii=1,ntask_cont_from
6296         iproc=itask_cont_from(iii)
6297         nn=ncont_recv(iii)
6298         if (lprn) then
6299         write (iout,*) "Received",nn," contacts from processor",iproc,
6300      &   " of CONT_FROM_COMM group"
6301         call flush(iout)
6302         do i=1,nn
6303           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6304         enddo
6305         call flush(iout)
6306         endif
6307         do i=1,nn
6308           ii=zapas_recv(1,i,iii)
6309 c Flag the received contacts to prevent double-counting
6310           jj=-zapas_recv(2,i,iii)
6311 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6312 c          call flush(iout)
6313           nnn=num_cont_hb(ii)+1
6314           num_cont_hb(ii)=nnn
6315           jcont_hb(nnn,ii)=jj
6316           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6317           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6318           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6319           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6320           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6321           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6322           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6323           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6324           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6325           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6326           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6327           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6328           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6329           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6330           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6331           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6332           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6333           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6334           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6335           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6336           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6337           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6338           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6339           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6340         enddo
6341       enddo
6342       call flush(iout)
6343       if (lprn) then
6344         write (iout,'(a)') 'Contact function values after receive:'
6345         do i=nnt,nct-2
6346           write (iout,'(2i3,50(1x,i3,f5.2))') 
6347      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6348      &    j=1,num_cont_hb(i))
6349         enddo
6350         call flush(iout)
6351       endif
6352    30 continue
6353 #endif
6354       if (lprn) then
6355         write (iout,'(a)') 'Contact function values:'
6356         do i=nnt,nct-2
6357           write (iout,'(2i3,50(1x,i3,f5.2))') 
6358      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6359      &    j=1,num_cont_hb(i))
6360         enddo
6361       endif
6362       ecorr=0.0D0
6363 C Remove the loop below after debugging !!!
6364       do i=nnt,nct
6365         do j=1,3
6366           gradcorr(j,i)=0.0D0
6367           gradxorr(j,i)=0.0D0
6368         enddo
6369       enddo
6370 C Calculate the local-electrostatic correlation terms
6371       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6372         i1=i+1
6373         num_conti=num_cont_hb(i)
6374         num_conti1=num_cont_hb(i+1)
6375         do jj=1,num_conti
6376           j=jcont_hb(jj,i)
6377           jp=iabs(j)
6378           do kk=1,num_conti1
6379             j1=jcont_hb(kk,i1)
6380             jp1=iabs(j1)
6381 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6382 c     &         ' jj=',jj,' kk=',kk
6383             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6384      &          .or. j.lt.0 .and. j1.gt.0) .and.
6385      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6386 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6387 C The system gains extra energy.
6388               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6389               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6390      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6391               n_corr=n_corr+1
6392             else if (j1.eq.j) then
6393 C Contacts I-J and I-(J+1) occur simultaneously. 
6394 C The system loses extra energy.
6395 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6396             endif
6397           enddo ! kk
6398           do kk=1,num_conti
6399             j1=jcont_hb(kk,i)
6400 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6401 c    &         ' jj=',jj,' kk=',kk
6402             if (j1.eq.j+1) then
6403 C Contacts I-J and (I+1)-J occur simultaneously. 
6404 C The system loses extra energy.
6405 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6406             endif ! j1==j+1
6407           enddo ! kk
6408         enddo ! jj
6409       enddo ! i
6410       return
6411       end
6412 c------------------------------------------------------------------------------
6413       subroutine add_hb_contact(ii,jj,itask)
6414       implicit real*8 (a-h,o-z)
6415       include "DIMENSIONS"
6416       include "COMMON.IOUNITS"
6417       integer max_cont
6418       integer max_dim
6419       parameter (max_cont=maxconts)
6420       parameter (max_dim=26)
6421       include "COMMON.CONTACTS"
6422       double precision zapas(max_dim,maxconts,max_fg_procs),
6423      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6424       common /przechowalnia/ zapas
6425       integer i,j,ii,jj,iproc,itask(4),nn
6426 c      write (iout,*) "itask",itask
6427       do i=1,2
6428         iproc=itask(i)
6429         if (iproc.gt.0) then
6430           do j=1,num_cont_hb(ii)
6431             jjc=jcont_hb(j,ii)
6432 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6433             if (jjc.eq.jj) then
6434               ncont_sent(iproc)=ncont_sent(iproc)+1
6435               nn=ncont_sent(iproc)
6436               zapas(1,nn,iproc)=ii
6437               zapas(2,nn,iproc)=jjc
6438               zapas(3,nn,iproc)=facont_hb(j,ii)
6439               zapas(4,nn,iproc)=ees0p(j,ii)
6440               zapas(5,nn,iproc)=ees0m(j,ii)
6441               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6442               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6443               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6444               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6445               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6446               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6447               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6448               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6449               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6450               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6451               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6452               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6453               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6454               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6455               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6456               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6457               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6458               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6459               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6460               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6461               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6462               exit
6463             endif
6464           enddo
6465         endif
6466       enddo
6467       return
6468       end
6469 c------------------------------------------------------------------------------
6470       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6471      &  n_corr1)
6472 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6473       implicit real*8 (a-h,o-z)
6474       include 'DIMENSIONS'
6475       include 'COMMON.IOUNITS'
6476 #ifdef MPI
6477       include "mpif.h"
6478       parameter (max_cont=maxconts)
6479       parameter (max_dim=70)
6480       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6481       double precision zapas(max_dim,maxconts,max_fg_procs),
6482      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6483       common /przechowalnia/ zapas
6484       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6485      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6486 #endif
6487       include 'COMMON.SETUP'
6488       include 'COMMON.FFIELD'
6489       include 'COMMON.DERIV'
6490       include 'COMMON.LOCAL'
6491       include 'COMMON.INTERACT'
6492       include 'COMMON.CONTACTS'
6493       include 'COMMON.CHAIN'
6494       include 'COMMON.CONTROL'
6495       double precision gx(3),gx1(3)
6496       integer num_cont_hb_old(maxres)
6497       logical lprn,ldone
6498       double precision eello4,eello5,eelo6,eello_turn6
6499       external eello4,eello5,eello6,eello_turn6
6500 C Set lprn=.true. for debugging
6501       lprn=.false.
6502       eturn6=0.0d0
6503 #ifdef MPI
6504       do i=1,nres
6505         num_cont_hb_old(i)=num_cont_hb(i)
6506       enddo
6507       n_corr=0
6508       n_corr1=0
6509       if (nfgtasks.le.1) goto 30
6510       if (lprn) then
6511         write (iout,'(a)') 'Contact function values before RECEIVE:'
6512         do i=nnt,nct-2
6513           write (iout,'(2i3,50(1x,i2,f5.2))') 
6514      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6515      &    j=1,num_cont_hb(i))
6516         enddo
6517       endif
6518       call flush(iout)
6519       do i=1,ntask_cont_from
6520         ncont_recv(i)=0
6521       enddo
6522       do i=1,ntask_cont_to
6523         ncont_sent(i)=0
6524       enddo
6525 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6526 c     & ntask_cont_to
6527 C Make the list of contacts to send to send to other procesors
6528       do i=iturn3_start,iturn3_end
6529 c        write (iout,*) "make contact list turn3",i," num_cont",
6530 c     &    num_cont_hb(i)
6531         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6532       enddo
6533       do i=iturn4_start,iturn4_end
6534 c        write (iout,*) "make contact list turn4",i," num_cont",
6535 c     &   num_cont_hb(i)
6536         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6537       enddo
6538       do ii=1,nat_sent
6539         i=iat_sent(ii)
6540 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6541 c     &    num_cont_hb(i)
6542         do j=1,num_cont_hb(i)
6543         do k=1,4
6544           jjc=jcont_hb(j,i)
6545           iproc=iint_sent_local(k,jjc,ii)
6546 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6547           if (iproc.ne.0) then
6548             ncont_sent(iproc)=ncont_sent(iproc)+1
6549             nn=ncont_sent(iproc)
6550             zapas(1,nn,iproc)=i
6551             zapas(2,nn,iproc)=jjc
6552             zapas(3,nn,iproc)=d_cont(j,i)
6553             ind=3
6554             do kk=1,3
6555               ind=ind+1
6556               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6557             enddo
6558             do kk=1,2
6559               do ll=1,2
6560                 ind=ind+1
6561                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6562               enddo
6563             enddo
6564             do jj=1,5
6565               do kk=1,3
6566                 do ll=1,2
6567                   do mm=1,2
6568                     ind=ind+1
6569                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6570                   enddo
6571                 enddo
6572               enddo
6573             enddo
6574           endif
6575         enddo
6576         enddo
6577       enddo
6578       if (lprn) then
6579       write (iout,*) 
6580      &  "Numbers of contacts to be sent to other processors",
6581      &  (ncont_sent(i),i=1,ntask_cont_to)
6582       write (iout,*) "Contacts sent"
6583       do ii=1,ntask_cont_to
6584         nn=ncont_sent(ii)
6585         iproc=itask_cont_to(ii)
6586         write (iout,*) nn," contacts to processor",iproc,
6587      &   " of CONT_TO_COMM group"
6588         do i=1,nn
6589           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6590         enddo
6591       enddo
6592       call flush(iout)
6593       endif
6594       CorrelType=477
6595       CorrelID=fg_rank+1
6596       CorrelType1=478
6597       CorrelID1=nfgtasks+fg_rank+1
6598       ireq=0
6599 C Receive the numbers of needed contacts from other processors 
6600       do ii=1,ntask_cont_from
6601         iproc=itask_cont_from(ii)
6602         ireq=ireq+1
6603         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6604      &    FG_COMM,req(ireq),IERR)
6605       enddo
6606 c      write (iout,*) "IRECV ended"
6607 c      call flush(iout)
6608 C Send the number of contacts needed by other processors
6609       do ii=1,ntask_cont_to
6610         iproc=itask_cont_to(ii)
6611         ireq=ireq+1
6612         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6613      &    FG_COMM,req(ireq),IERR)
6614       enddo
6615 c      write (iout,*) "ISEND ended"
6616 c      write (iout,*) "number of requests (nn)",ireq
6617       call flush(iout)
6618       if (ireq.gt.0) 
6619      &  call MPI_Waitall(ireq,req,status_array,ierr)
6620 c      write (iout,*) 
6621 c     &  "Numbers of contacts to be received from other processors",
6622 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6623 c      call flush(iout)
6624 C Receive contacts
6625       ireq=0
6626       do ii=1,ntask_cont_from
6627         iproc=itask_cont_from(ii)
6628         nn=ncont_recv(ii)
6629 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6630 c     &   " of CONT_TO_COMM group"
6631         call flush(iout)
6632         if (nn.gt.0) then
6633           ireq=ireq+1
6634           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6635      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6636 c          write (iout,*) "ireq,req",ireq,req(ireq)
6637         endif
6638       enddo
6639 C Send the contacts to processors that need them
6640       do ii=1,ntask_cont_to
6641         iproc=itask_cont_to(ii)
6642         nn=ncont_sent(ii)
6643 c        write (iout,*) nn," contacts to processor",iproc,
6644 c     &   " of CONT_TO_COMM group"
6645         if (nn.gt.0) then
6646           ireq=ireq+1 
6647           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6648      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6649 c          write (iout,*) "ireq,req",ireq,req(ireq)
6650 c          do i=1,nn
6651 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6652 c          enddo
6653         endif  
6654       enddo
6655 c      write (iout,*) "number of requests (contacts)",ireq
6656 c      write (iout,*) "req",(req(i),i=1,4)
6657 c      call flush(iout)
6658       if (ireq.gt.0) 
6659      & call MPI_Waitall(ireq,req,status_array,ierr)
6660       do iii=1,ntask_cont_from
6661         iproc=itask_cont_from(iii)
6662         nn=ncont_recv(iii)
6663         if (lprn) then
6664         write (iout,*) "Received",nn," contacts from processor",iproc,
6665      &   " of CONT_FROM_COMM group"
6666         call flush(iout)
6667         do i=1,nn
6668           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6669         enddo
6670         call flush(iout)
6671         endif
6672         do i=1,nn
6673           ii=zapas_recv(1,i,iii)
6674 c Flag the received contacts to prevent double-counting
6675           jj=-zapas_recv(2,i,iii)
6676 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6677 c          call flush(iout)
6678           nnn=num_cont_hb(ii)+1
6679           num_cont_hb(ii)=nnn
6680           jcont_hb(nnn,ii)=jj
6681           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6682           ind=3
6683           do kk=1,3
6684             ind=ind+1
6685             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6686           enddo
6687           do kk=1,2
6688             do ll=1,2
6689               ind=ind+1
6690               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6691             enddo
6692           enddo
6693           do jj=1,5
6694             do kk=1,3
6695               do ll=1,2
6696                 do mm=1,2
6697                   ind=ind+1
6698                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6699                 enddo
6700               enddo
6701             enddo
6702           enddo
6703         enddo
6704       enddo
6705       call flush(iout)
6706       if (lprn) then
6707         write (iout,'(a)') 'Contact function values after receive:'
6708         do i=nnt,nct-2
6709           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6710      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6711      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6712         enddo
6713         call flush(iout)
6714       endif
6715    30 continue
6716 #endif
6717       if (lprn) then
6718         write (iout,'(a)') 'Contact function values:'
6719         do i=nnt,nct-2
6720           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6721      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6722      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6723         enddo
6724       endif
6725       ecorr=0.0D0
6726       ecorr5=0.0d0
6727       ecorr6=0.0d0
6728 C Remove the loop below after debugging !!!
6729       do i=nnt,nct
6730         do j=1,3
6731           gradcorr(j,i)=0.0D0
6732           gradxorr(j,i)=0.0D0
6733         enddo
6734       enddo
6735 C Calculate the dipole-dipole interaction energies
6736       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6737       do i=iatel_s,iatel_e+1
6738         num_conti=num_cont_hb(i)
6739         do jj=1,num_conti
6740           j=jcont_hb(jj,i)
6741 #ifdef MOMENT
6742           call dipole(i,j,jj)
6743 #endif
6744         enddo
6745       enddo
6746       endif
6747 C Calculate the local-electrostatic correlation terms
6748 c                write (iout,*) "gradcorr5 in eello5 before loop"
6749 c                do iii=1,nres
6750 c                  write (iout,'(i5,3f10.5)') 
6751 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6752 c                enddo
6753       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6754 c        write (iout,*) "corr loop i",i
6755         i1=i+1
6756         num_conti=num_cont_hb(i)
6757         num_conti1=num_cont_hb(i+1)
6758         do jj=1,num_conti
6759           j=jcont_hb(jj,i)
6760           jp=iabs(j)
6761           do kk=1,num_conti1
6762             j1=jcont_hb(kk,i1)
6763             jp1=iabs(j1)
6764 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6765 c     &         ' jj=',jj,' kk=',kk
6766 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6767             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6768      &          .or. j.lt.0 .and. j1.gt.0) .and.
6769      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6770 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6771 C The system gains extra energy.
6772               n_corr=n_corr+1
6773               sqd1=dsqrt(d_cont(jj,i))
6774               sqd2=dsqrt(d_cont(kk,i1))
6775               sred_geom = sqd1*sqd2
6776               IF (sred_geom.lt.cutoff_corr) THEN
6777                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6778      &            ekont,fprimcont)
6779 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6780 cd     &         ' jj=',jj,' kk=',kk
6781                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6782                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6783                 do l=1,3
6784                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6785                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6786                 enddo
6787                 n_corr1=n_corr1+1
6788 cd               write (iout,*) 'sred_geom=',sred_geom,
6789 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6790 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6791 cd               write (iout,*) "g_contij",g_contij
6792 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6793 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6794                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6795                 if (wcorr4.gt.0.0d0) 
6796      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6797                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6798      1                 write (iout,'(a6,4i5,0pf7.3)')
6799      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6800 c                write (iout,*) "gradcorr5 before eello5"
6801 c                do iii=1,nres
6802 c                  write (iout,'(i5,3f10.5)') 
6803 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6804 c                enddo
6805                 if (wcorr5.gt.0.0d0)
6806      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6807 c                write (iout,*) "gradcorr5 after eello5"
6808 c                do iii=1,nres
6809 c                  write (iout,'(i5,3f10.5)') 
6810 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6811 c                enddo
6812                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6813      1                 write (iout,'(a6,4i5,0pf7.3)')
6814      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6815 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6816 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6817                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6818      &               .or. wturn6.eq.0.0d0))then
6819 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6820                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6821                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6822      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6823 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6824 cd     &            'ecorr6=',ecorr6
6825 cd                write (iout,'(4e15.5)') sred_geom,
6826 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6827 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6828 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6829                 else if (wturn6.gt.0.0d0
6830      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6831 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6832                   eturn6=eturn6+eello_turn6(i,jj,kk)
6833                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6834      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6835 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6836                 endif
6837               ENDIF
6838 1111          continue
6839             endif
6840           enddo ! kk
6841         enddo ! jj
6842       enddo ! i
6843       do i=1,nres
6844         num_cont_hb(i)=num_cont_hb_old(i)
6845       enddo
6846 c                write (iout,*) "gradcorr5 in eello5"
6847 c                do iii=1,nres
6848 c                  write (iout,'(i5,3f10.5)') 
6849 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6850 c                enddo
6851       return
6852       end
6853 c------------------------------------------------------------------------------
6854       subroutine add_hb_contact_eello(ii,jj,itask)
6855       implicit real*8 (a-h,o-z)
6856       include "DIMENSIONS"
6857       include "COMMON.IOUNITS"
6858       integer max_cont
6859       integer max_dim
6860       parameter (max_cont=maxconts)
6861       parameter (max_dim=70)
6862       include "COMMON.CONTACTS"
6863       double precision zapas(max_dim,maxconts,max_fg_procs),
6864      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6865       common /przechowalnia/ zapas
6866       integer i,j,ii,jj,iproc,itask(4),nn
6867 c      write (iout,*) "itask",itask
6868       do i=1,2
6869         iproc=itask(i)
6870         if (iproc.gt.0) then
6871           do j=1,num_cont_hb(ii)
6872             jjc=jcont_hb(j,ii)
6873 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6874             if (jjc.eq.jj) then
6875               ncont_sent(iproc)=ncont_sent(iproc)+1
6876               nn=ncont_sent(iproc)
6877               zapas(1,nn,iproc)=ii
6878               zapas(2,nn,iproc)=jjc
6879               zapas(3,nn,iproc)=d_cont(j,ii)
6880               ind=3
6881               do kk=1,3
6882                 ind=ind+1
6883                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6884               enddo
6885               do kk=1,2
6886                 do ll=1,2
6887                   ind=ind+1
6888                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6889                 enddo
6890               enddo
6891               do jj=1,5
6892                 do kk=1,3
6893                   do ll=1,2
6894                     do mm=1,2
6895                       ind=ind+1
6896                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6897                     enddo
6898                   enddo
6899                 enddo
6900               enddo
6901               exit
6902             endif
6903           enddo
6904         endif
6905       enddo
6906       return
6907       end
6908 c------------------------------------------------------------------------------
6909       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6910       implicit real*8 (a-h,o-z)
6911       include 'DIMENSIONS'
6912       include 'COMMON.IOUNITS'
6913       include 'COMMON.DERIV'
6914       include 'COMMON.INTERACT'
6915       include 'COMMON.CONTACTS'
6916       double precision gx(3),gx1(3)
6917       logical lprn
6918       lprn=.false.
6919       eij=facont_hb(jj,i)
6920       ekl=facont_hb(kk,k)
6921       ees0pij=ees0p(jj,i)
6922       ees0pkl=ees0p(kk,k)
6923       ees0mij=ees0m(jj,i)
6924       ees0mkl=ees0m(kk,k)
6925       ekont=eij*ekl
6926       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6927 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6928 C Following 4 lines for diagnostics.
6929 cd    ees0pkl=0.0D0
6930 cd    ees0pij=1.0D0
6931 cd    ees0mkl=0.0D0
6932 cd    ees0mij=1.0D0
6933 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6934 c     & 'Contacts ',i,j,
6935 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6936 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6937 c     & 'gradcorr_long'
6938 C Calculate the multi-body contribution to energy.
6939 c      ecorr=ecorr+ekont*ees
6940 C Calculate multi-body contributions to the gradient.
6941       coeffpees0pij=coeffp*ees0pij
6942       coeffmees0mij=coeffm*ees0mij
6943       coeffpees0pkl=coeffp*ees0pkl
6944       coeffmees0mkl=coeffm*ees0mkl
6945       do ll=1,3
6946 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6947         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6948      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6949      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6950         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6951      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6952      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6953 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6954         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6955      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6956      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6957         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6958      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6959      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6960         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6961      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6962      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6963         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6964         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6965         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6966      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6967      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6968         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6969         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6970 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6971       enddo
6972 c      write (iout,*)
6973 cgrad      do m=i+1,j-1
6974 cgrad        do ll=1,3
6975 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6976 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6977 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6978 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6979 cgrad        enddo
6980 cgrad      enddo
6981 cgrad      do m=k+1,l-1
6982 cgrad        do ll=1,3
6983 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6984 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6985 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6986 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6987 cgrad        enddo
6988 cgrad      enddo 
6989 c      write (iout,*) "ehbcorr",ekont*ees
6990       ehbcorr=ekont*ees
6991       return
6992       end
6993 #ifdef MOMENT
6994 C---------------------------------------------------------------------------
6995       subroutine dipole(i,j,jj)
6996       implicit real*8 (a-h,o-z)
6997       include 'DIMENSIONS'
6998       include 'COMMON.IOUNITS'
6999       include 'COMMON.CHAIN'
7000       include 'COMMON.FFIELD'
7001       include 'COMMON.DERIV'
7002       include 'COMMON.INTERACT'
7003       include 'COMMON.CONTACTS'
7004       include 'COMMON.TORSION'
7005       include 'COMMON.VAR'
7006       include 'COMMON.GEO'
7007       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7008      &  auxmat(2,2)
7009       iti1 = itortyp(itype(i+1))
7010       if (j.lt.nres-1) then
7011         itj1 = itortyp(itype(j+1))
7012       else
7013         itj1=ntortyp+1
7014       endif
7015       do iii=1,2
7016         dipi(iii,1)=Ub2(iii,i)
7017         dipderi(iii)=Ub2der(iii,i)
7018         dipi(iii,2)=b1(iii,iti1)
7019         dipj(iii,1)=Ub2(iii,j)
7020         dipderj(iii)=Ub2der(iii,j)
7021         dipj(iii,2)=b1(iii,itj1)
7022       enddo
7023       kkk=0
7024       do iii=1,2
7025         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7026         do jjj=1,2
7027           kkk=kkk+1
7028           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7029         enddo
7030       enddo
7031       do kkk=1,5
7032         do lll=1,3
7033           mmm=0
7034           do iii=1,2
7035             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7036      &        auxvec(1))
7037             do jjj=1,2
7038               mmm=mmm+1
7039               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7040             enddo
7041           enddo
7042         enddo
7043       enddo
7044       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7045       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7046       do iii=1,2
7047         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7048       enddo
7049       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7050       do iii=1,2
7051         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7052       enddo
7053       return
7054       end
7055 #endif
7056 C---------------------------------------------------------------------------
7057       subroutine calc_eello(i,j,k,l,jj,kk)
7058
7059 C This subroutine computes matrices and vectors needed to calculate 
7060 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7061 C
7062       implicit real*8 (a-h,o-z)
7063       include 'DIMENSIONS'
7064       include 'COMMON.IOUNITS'
7065       include 'COMMON.CHAIN'
7066       include 'COMMON.DERIV'
7067       include 'COMMON.INTERACT'
7068       include 'COMMON.CONTACTS'
7069       include 'COMMON.TORSION'
7070       include 'COMMON.VAR'
7071       include 'COMMON.GEO'
7072       include 'COMMON.FFIELD'
7073       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7074      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7075       logical lprn
7076       common /kutas/ lprn
7077 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7078 cd     & ' jj=',jj,' kk=',kk
7079 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7080 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7081 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7082       do iii=1,2
7083         do jjj=1,2
7084           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7085           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7086         enddo
7087       enddo
7088       call transpose2(aa1(1,1),aa1t(1,1))
7089       call transpose2(aa2(1,1),aa2t(1,1))
7090       do kkk=1,5
7091         do lll=1,3
7092           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7093      &      aa1tder(1,1,lll,kkk))
7094           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7095      &      aa2tder(1,1,lll,kkk))
7096         enddo
7097       enddo 
7098       if (l.eq.j+1) then
7099 C parallel orientation of the two CA-CA-CA frames.
7100         if (i.gt.1) then
7101           iti=itortyp(itype(i))
7102         else
7103           iti=ntortyp+1
7104         endif
7105         itk1=itortyp(itype(k+1))
7106         itj=itortyp(itype(j))
7107         if (l.lt.nres-1) then
7108           itl1=itortyp(itype(l+1))
7109         else
7110           itl1=ntortyp+1
7111         endif
7112 C A1 kernel(j+1) A2T
7113 cd        do iii=1,2
7114 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7115 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7116 cd        enddo
7117         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7118      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7119      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7120 C Following matrices are needed only for 6-th order cumulants
7121         IF (wcorr6.gt.0.0d0) THEN
7122         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7123      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7124      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7125         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7126      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7127      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7128      &   ADtEAderx(1,1,1,1,1,1))
7129         lprn=.false.
7130         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7131      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7132      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7133      &   ADtEA1derx(1,1,1,1,1,1))
7134         ENDIF
7135 C End 6-th order cumulants
7136 cd        lprn=.false.
7137 cd        if (lprn) then
7138 cd        write (2,*) 'In calc_eello6'
7139 cd        do iii=1,2
7140 cd          write (2,*) 'iii=',iii
7141 cd          do kkk=1,5
7142 cd            write (2,*) 'kkk=',kkk
7143 cd            do jjj=1,2
7144 cd              write (2,'(3(2f10.5),5x)') 
7145 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7146 cd            enddo
7147 cd          enddo
7148 cd        enddo
7149 cd        endif
7150         call transpose2(EUgder(1,1,k),auxmat(1,1))
7151         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7152         call transpose2(EUg(1,1,k),auxmat(1,1))
7153         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7154         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7155         do iii=1,2
7156           do kkk=1,5
7157             do lll=1,3
7158               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7159      &          EAEAderx(1,1,lll,kkk,iii,1))
7160             enddo
7161           enddo
7162         enddo
7163 C A1T kernel(i+1) A2
7164         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7165      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7166      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7167 C Following matrices are needed only for 6-th order cumulants
7168         IF (wcorr6.gt.0.0d0) THEN
7169         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7170      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7171      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7172         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7173      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7174      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7175      &   ADtEAderx(1,1,1,1,1,2))
7176         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7177      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7178      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7179      &   ADtEA1derx(1,1,1,1,1,2))
7180         ENDIF
7181 C End 6-th order cumulants
7182         call transpose2(EUgder(1,1,l),auxmat(1,1))
7183         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7184         call transpose2(EUg(1,1,l),auxmat(1,1))
7185         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7186         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7187         do iii=1,2
7188           do kkk=1,5
7189             do lll=1,3
7190               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7191      &          EAEAderx(1,1,lll,kkk,iii,2))
7192             enddo
7193           enddo
7194         enddo
7195 C AEAb1 and AEAb2
7196 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7197 C They are needed only when the fifth- or the sixth-order cumulants are
7198 C indluded.
7199         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7200         call transpose2(AEA(1,1,1),auxmat(1,1))
7201         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7202         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7203         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7204         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7205         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7206         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7207         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7208         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7209         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7210         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7211         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7212         call transpose2(AEA(1,1,2),auxmat(1,1))
7213         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7214         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7215         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7216         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7217         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7218         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7219         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7220         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7221         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7222         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7223         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7224 C Calculate the Cartesian derivatives of the vectors.
7225         do iii=1,2
7226           do kkk=1,5
7227             do lll=1,3
7228               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7229               call matvec2(auxmat(1,1),b1(1,iti),
7230      &          AEAb1derx(1,lll,kkk,iii,1,1))
7231               call matvec2(auxmat(1,1),Ub2(1,i),
7232      &          AEAb2derx(1,lll,kkk,iii,1,1))
7233               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7234      &          AEAb1derx(1,lll,kkk,iii,2,1))
7235               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7236      &          AEAb2derx(1,lll,kkk,iii,2,1))
7237               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7238               call matvec2(auxmat(1,1),b1(1,itj),
7239      &          AEAb1derx(1,lll,kkk,iii,1,2))
7240               call matvec2(auxmat(1,1),Ub2(1,j),
7241      &          AEAb2derx(1,lll,kkk,iii,1,2))
7242               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7243      &          AEAb1derx(1,lll,kkk,iii,2,2))
7244               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7245      &          AEAb2derx(1,lll,kkk,iii,2,2))
7246             enddo
7247           enddo
7248         enddo
7249         ENDIF
7250 C End vectors
7251       else
7252 C Antiparallel orientation of the two CA-CA-CA frames.
7253         if (i.gt.1) then
7254           iti=itortyp(itype(i))
7255         else
7256           iti=ntortyp+1
7257         endif
7258         itk1=itortyp(itype(k+1))
7259         itl=itortyp(itype(l))
7260         itj=itortyp(itype(j))
7261         if (j.lt.nres-1) then
7262           itj1=itortyp(itype(j+1))
7263         else 
7264           itj1=ntortyp+1
7265         endif
7266 C A2 kernel(j-1)T A1T
7267         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7268      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7269      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7270 C Following matrices are needed only for 6-th order cumulants
7271         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7272      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7273         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7274      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7275      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7276         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7277      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7278      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7279      &   ADtEAderx(1,1,1,1,1,1))
7280         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7281      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7282      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7283      &   ADtEA1derx(1,1,1,1,1,1))
7284         ENDIF
7285 C End 6-th order cumulants
7286         call transpose2(EUgder(1,1,k),auxmat(1,1))
7287         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7288         call transpose2(EUg(1,1,k),auxmat(1,1))
7289         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7290         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7291         do iii=1,2
7292           do kkk=1,5
7293             do lll=1,3
7294               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7295      &          EAEAderx(1,1,lll,kkk,iii,1))
7296             enddo
7297           enddo
7298         enddo
7299 C A2T kernel(i+1)T A1
7300         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7301      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7302      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7303 C Following matrices are needed only for 6-th order cumulants
7304         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7305      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7306         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7307      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7308      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7309         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7310      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7311      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7312      &   ADtEAderx(1,1,1,1,1,2))
7313         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7314      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7315      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7316      &   ADtEA1derx(1,1,1,1,1,2))
7317         ENDIF
7318 C End 6-th order cumulants
7319         call transpose2(EUgder(1,1,j),auxmat(1,1))
7320         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7321         call transpose2(EUg(1,1,j),auxmat(1,1))
7322         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7323         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7324         do iii=1,2
7325           do kkk=1,5
7326             do lll=1,3
7327               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7328      &          EAEAderx(1,1,lll,kkk,iii,2))
7329             enddo
7330           enddo
7331         enddo
7332 C AEAb1 and AEAb2
7333 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7334 C They are needed only when the fifth- or the sixth-order cumulants are
7335 C indluded.
7336         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7337      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7338         call transpose2(AEA(1,1,1),auxmat(1,1))
7339         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7340         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7341         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7342         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7343         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7344         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7345         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7346         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7347         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7348         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7349         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7350         call transpose2(AEA(1,1,2),auxmat(1,1))
7351         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7352         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7353         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7354         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7355         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7356         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7357         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7358         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7359         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7360         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7361         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7362 C Calculate the Cartesian derivatives of the vectors.
7363         do iii=1,2
7364           do kkk=1,5
7365             do lll=1,3
7366               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7367               call matvec2(auxmat(1,1),b1(1,iti),
7368      &          AEAb1derx(1,lll,kkk,iii,1,1))
7369               call matvec2(auxmat(1,1),Ub2(1,i),
7370      &          AEAb2derx(1,lll,kkk,iii,1,1))
7371               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7372      &          AEAb1derx(1,lll,kkk,iii,2,1))
7373               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7374      &          AEAb2derx(1,lll,kkk,iii,2,1))
7375               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7376               call matvec2(auxmat(1,1),b1(1,itl),
7377      &          AEAb1derx(1,lll,kkk,iii,1,2))
7378               call matvec2(auxmat(1,1),Ub2(1,l),
7379      &          AEAb2derx(1,lll,kkk,iii,1,2))
7380               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7381      &          AEAb1derx(1,lll,kkk,iii,2,2))
7382               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7383      &          AEAb2derx(1,lll,kkk,iii,2,2))
7384             enddo
7385           enddo
7386         enddo
7387         ENDIF
7388 C End vectors
7389       endif
7390       return
7391       end
7392 C---------------------------------------------------------------------------
7393       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7394      &  KK,KKderg,AKA,AKAderg,AKAderx)
7395       implicit none
7396       integer nderg
7397       logical transp
7398       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7399      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7400      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7401       integer iii,kkk,lll
7402       integer jjj,mmm
7403       logical lprn
7404       common /kutas/ lprn
7405       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7406       do iii=1,nderg 
7407         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7408      &    AKAderg(1,1,iii))
7409       enddo
7410 cd      if (lprn) write (2,*) 'In kernel'
7411       do kkk=1,5
7412 cd        if (lprn) write (2,*) 'kkk=',kkk
7413         do lll=1,3
7414           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7415      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7416 cd          if (lprn) then
7417 cd            write (2,*) 'lll=',lll
7418 cd            write (2,*) 'iii=1'
7419 cd            do jjj=1,2
7420 cd              write (2,'(3(2f10.5),5x)') 
7421 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7422 cd            enddo
7423 cd          endif
7424           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7425      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7426 cd          if (lprn) then
7427 cd            write (2,*) 'lll=',lll
7428 cd            write (2,*) 'iii=2'
7429 cd            do jjj=1,2
7430 cd              write (2,'(3(2f10.5),5x)') 
7431 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7432 cd            enddo
7433 cd          endif
7434         enddo
7435       enddo
7436       return
7437       end
7438 C---------------------------------------------------------------------------
7439       double precision function eello4(i,j,k,l,jj,kk)
7440       implicit real*8 (a-h,o-z)
7441       include 'DIMENSIONS'
7442       include 'COMMON.IOUNITS'
7443       include 'COMMON.CHAIN'
7444       include 'COMMON.DERIV'
7445       include 'COMMON.INTERACT'
7446       include 'COMMON.CONTACTS'
7447       include 'COMMON.TORSION'
7448       include 'COMMON.VAR'
7449       include 'COMMON.GEO'
7450       double precision pizda(2,2),ggg1(3),ggg2(3)
7451 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7452 cd        eello4=0.0d0
7453 cd        return
7454 cd      endif
7455 cd      print *,'eello4:',i,j,k,l,jj,kk
7456 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7457 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7458 cold      eij=facont_hb(jj,i)
7459 cold      ekl=facont_hb(kk,k)
7460 cold      ekont=eij*ekl
7461       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7462 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7463       gcorr_loc(k-1)=gcorr_loc(k-1)
7464      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7465       if (l.eq.j+1) then
7466         gcorr_loc(l-1)=gcorr_loc(l-1)
7467      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7468       else
7469         gcorr_loc(j-1)=gcorr_loc(j-1)
7470      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7471       endif
7472       do iii=1,2
7473         do kkk=1,5
7474           do lll=1,3
7475             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7476      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7477 cd            derx(lll,kkk,iii)=0.0d0
7478           enddo
7479         enddo
7480       enddo
7481 cd      gcorr_loc(l-1)=0.0d0
7482 cd      gcorr_loc(j-1)=0.0d0
7483 cd      gcorr_loc(k-1)=0.0d0
7484 cd      eel4=1.0d0
7485 cd      write (iout,*)'Contacts have occurred for peptide groups',
7486 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7487 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7488       if (j.lt.nres-1) then
7489         j1=j+1
7490         j2=j-1
7491       else
7492         j1=j-1
7493         j2=j-2
7494       endif
7495       if (l.lt.nres-1) then
7496         l1=l+1
7497         l2=l-1
7498       else
7499         l1=l-1
7500         l2=l-2
7501       endif
7502       do ll=1,3
7503 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7504 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7505         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7506         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7507 cgrad        ghalf=0.5d0*ggg1(ll)
7508         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7509         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7510         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7511         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7512         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7513         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7514 cgrad        ghalf=0.5d0*ggg2(ll)
7515         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7516         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7517         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7518         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7519         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7520         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7521       enddo
7522 cgrad      do m=i+1,j-1
7523 cgrad        do ll=1,3
7524 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7525 cgrad        enddo
7526 cgrad      enddo
7527 cgrad      do m=k+1,l-1
7528 cgrad        do ll=1,3
7529 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7530 cgrad        enddo
7531 cgrad      enddo
7532 cgrad      do m=i+2,j2
7533 cgrad        do ll=1,3
7534 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7535 cgrad        enddo
7536 cgrad      enddo
7537 cgrad      do m=k+2,l2
7538 cgrad        do ll=1,3
7539 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7540 cgrad        enddo
7541 cgrad      enddo 
7542 cd      do iii=1,nres-3
7543 cd        write (2,*) iii,gcorr_loc(iii)
7544 cd      enddo
7545       eello4=ekont*eel4
7546 cd      write (2,*) 'ekont',ekont
7547 cd      write (iout,*) 'eello4',ekont*eel4
7548       return
7549       end
7550 C---------------------------------------------------------------------------
7551       double precision function eello5(i,j,k,l,jj,kk)
7552       implicit real*8 (a-h,o-z)
7553       include 'DIMENSIONS'
7554       include 'COMMON.IOUNITS'
7555       include 'COMMON.CHAIN'
7556       include 'COMMON.DERIV'
7557       include 'COMMON.INTERACT'
7558       include 'COMMON.CONTACTS'
7559       include 'COMMON.TORSION'
7560       include 'COMMON.VAR'
7561       include 'COMMON.GEO'
7562       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7563       double precision ggg1(3),ggg2(3)
7564 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7565 C                                                                              C
7566 C                            Parallel chains                                   C
7567 C                                                                              C
7568 C          o             o                   o             o                   C
7569 C         /l\           / \             \   / \           / \   /              C
7570 C        /   \         /   \             \ /   \         /   \ /               C
7571 C       j| o |l1       | o |              o| o |         | o |o                C
7572 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7573 C      \i/   \         /   \ /             /   \         /   \                 C
7574 C       o    k1             o                                                  C
7575 C         (I)          (II)                (III)          (IV)                 C
7576 C                                                                              C
7577 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7578 C                                                                              C
7579 C                            Antiparallel chains                               C
7580 C                                                                              C
7581 C          o             o                   o             o                   C
7582 C         /j\           / \             \   / \           / \   /              C
7583 C        /   \         /   \             \ /   \         /   \ /               C
7584 C      j1| o |l        | o |              o| o |         | o |o                C
7585 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7586 C      \i/   \         /   \ /             /   \         /   \                 C
7587 C       o     k1            o                                                  C
7588 C         (I)          (II)                (III)          (IV)                 C
7589 C                                                                              C
7590 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7591 C                                                                              C
7592 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7593 C                                                                              C
7594 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7595 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7596 cd        eello5=0.0d0
7597 cd        return
7598 cd      endif
7599 cd      write (iout,*)
7600 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7601 cd     &   ' and',k,l
7602       itk=itortyp(itype(k))
7603       itl=itortyp(itype(l))
7604       itj=itortyp(itype(j))
7605       eello5_1=0.0d0
7606       eello5_2=0.0d0
7607       eello5_3=0.0d0
7608       eello5_4=0.0d0
7609 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7610 cd     &   eel5_3_num,eel5_4_num)
7611       do iii=1,2
7612         do kkk=1,5
7613           do lll=1,3
7614             derx(lll,kkk,iii)=0.0d0
7615           enddo
7616         enddo
7617       enddo
7618 cd      eij=facont_hb(jj,i)
7619 cd      ekl=facont_hb(kk,k)
7620 cd      ekont=eij*ekl
7621 cd      write (iout,*)'Contacts have occurred for peptide groups',
7622 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7623 cd      goto 1111
7624 C Contribution from the graph I.
7625 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7626 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7627       call transpose2(EUg(1,1,k),auxmat(1,1))
7628       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7629       vv(1)=pizda(1,1)-pizda(2,2)
7630       vv(2)=pizda(1,2)+pizda(2,1)
7631       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7632      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7633 C Explicit gradient in virtual-dihedral angles.
7634       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7635      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7636      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7637       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7638       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7639       vv(1)=pizda(1,1)-pizda(2,2)
7640       vv(2)=pizda(1,2)+pizda(2,1)
7641       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7642      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7643      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7644       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7645       vv(1)=pizda(1,1)-pizda(2,2)
7646       vv(2)=pizda(1,2)+pizda(2,1)
7647       if (l.eq.j+1) then
7648         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7649      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7650      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7651       else
7652         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7653      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7654      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7655       endif 
7656 C Cartesian gradient
7657       do iii=1,2
7658         do kkk=1,5
7659           do lll=1,3
7660             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7661      &        pizda(1,1))
7662             vv(1)=pizda(1,1)-pizda(2,2)
7663             vv(2)=pizda(1,2)+pizda(2,1)
7664             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7665      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7666      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7667           enddo
7668         enddo
7669       enddo
7670 c      goto 1112
7671 c1111  continue
7672 C Contribution from graph II 
7673       call transpose2(EE(1,1,itk),auxmat(1,1))
7674       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7675       vv(1)=pizda(1,1)+pizda(2,2)
7676       vv(2)=pizda(2,1)-pizda(1,2)
7677       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7678      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7679 C Explicit gradient in virtual-dihedral angles.
7680       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7681      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7682       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7683       vv(1)=pizda(1,1)+pizda(2,2)
7684       vv(2)=pizda(2,1)-pizda(1,2)
7685       if (l.eq.j+1) then
7686         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7687      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7688      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7689       else
7690         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7691      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7692      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7693       endif
7694 C Cartesian gradient
7695       do iii=1,2
7696         do kkk=1,5
7697           do lll=1,3
7698             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7699      &        pizda(1,1))
7700             vv(1)=pizda(1,1)+pizda(2,2)
7701             vv(2)=pizda(2,1)-pizda(1,2)
7702             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7703      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7704      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7705           enddo
7706         enddo
7707       enddo
7708 cd      goto 1112
7709 cd1111  continue
7710       if (l.eq.j+1) then
7711 cd        goto 1110
7712 C Parallel orientation
7713 C Contribution from graph III
7714         call transpose2(EUg(1,1,l),auxmat(1,1))
7715         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7716         vv(1)=pizda(1,1)-pizda(2,2)
7717         vv(2)=pizda(1,2)+pizda(2,1)
7718         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7719      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7720 C Explicit gradient in virtual-dihedral angles.
7721         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7722      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7723      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7724         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7725         vv(1)=pizda(1,1)-pizda(2,2)
7726         vv(2)=pizda(1,2)+pizda(2,1)
7727         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7728      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7729      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7730         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7731         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7732         vv(1)=pizda(1,1)-pizda(2,2)
7733         vv(2)=pizda(1,2)+pizda(2,1)
7734         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7735      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7736      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7737 C Cartesian gradient
7738         do iii=1,2
7739           do kkk=1,5
7740             do lll=1,3
7741               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7742      &          pizda(1,1))
7743               vv(1)=pizda(1,1)-pizda(2,2)
7744               vv(2)=pizda(1,2)+pizda(2,1)
7745               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7746      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7747      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7748             enddo
7749           enddo
7750         enddo
7751 cd        goto 1112
7752 C Contribution from graph IV
7753 cd1110    continue
7754         call transpose2(EE(1,1,itl),auxmat(1,1))
7755         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7756         vv(1)=pizda(1,1)+pizda(2,2)
7757         vv(2)=pizda(2,1)-pizda(1,2)
7758         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7759      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7760 C Explicit gradient in virtual-dihedral angles.
7761         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7762      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7763         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7764         vv(1)=pizda(1,1)+pizda(2,2)
7765         vv(2)=pizda(2,1)-pizda(1,2)
7766         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7767      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7768      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7769 C Cartesian gradient
7770         do iii=1,2
7771           do kkk=1,5
7772             do lll=1,3
7773               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7774      &          pizda(1,1))
7775               vv(1)=pizda(1,1)+pizda(2,2)
7776               vv(2)=pizda(2,1)-pizda(1,2)
7777               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7778      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7779      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7780             enddo
7781           enddo
7782         enddo
7783       else
7784 C Antiparallel orientation
7785 C Contribution from graph III
7786 c        goto 1110
7787         call transpose2(EUg(1,1,j),auxmat(1,1))
7788         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7789         vv(1)=pizda(1,1)-pizda(2,2)
7790         vv(2)=pizda(1,2)+pizda(2,1)
7791         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7792      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7793 C Explicit gradient in virtual-dihedral angles.
7794         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7795      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7796      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7797         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7798         vv(1)=pizda(1,1)-pizda(2,2)
7799         vv(2)=pizda(1,2)+pizda(2,1)
7800         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7801      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7802      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7803         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7804         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7805         vv(1)=pizda(1,1)-pizda(2,2)
7806         vv(2)=pizda(1,2)+pizda(2,1)
7807         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7808      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7809      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7810 C Cartesian gradient
7811         do iii=1,2
7812           do kkk=1,5
7813             do lll=1,3
7814               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7815      &          pizda(1,1))
7816               vv(1)=pizda(1,1)-pizda(2,2)
7817               vv(2)=pizda(1,2)+pizda(2,1)
7818               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7819      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7820      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7821             enddo
7822           enddo
7823         enddo
7824 cd        goto 1112
7825 C Contribution from graph IV
7826 1110    continue
7827         call transpose2(EE(1,1,itj),auxmat(1,1))
7828         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7829         vv(1)=pizda(1,1)+pizda(2,2)
7830         vv(2)=pizda(2,1)-pizda(1,2)
7831         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7832      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7833 C Explicit gradient in virtual-dihedral angles.
7834         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7835      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7836         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7837         vv(1)=pizda(1,1)+pizda(2,2)
7838         vv(2)=pizda(2,1)-pizda(1,2)
7839         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7840      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7841      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7842 C Cartesian gradient
7843         do iii=1,2
7844           do kkk=1,5
7845             do lll=1,3
7846               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7847      &          pizda(1,1))
7848               vv(1)=pizda(1,1)+pizda(2,2)
7849               vv(2)=pizda(2,1)-pizda(1,2)
7850               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7851      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7852      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7853             enddo
7854           enddo
7855         enddo
7856       endif
7857 1112  continue
7858       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7859 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7860 cd        write (2,*) 'ijkl',i,j,k,l
7861 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7862 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7863 cd      endif
7864 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7865 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7866 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7867 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7868       if (j.lt.nres-1) then
7869         j1=j+1
7870         j2=j-1
7871       else
7872         j1=j-1
7873         j2=j-2
7874       endif
7875       if (l.lt.nres-1) then
7876         l1=l+1
7877         l2=l-1
7878       else
7879         l1=l-1
7880         l2=l-2
7881       endif
7882 cd      eij=1.0d0
7883 cd      ekl=1.0d0
7884 cd      ekont=1.0d0
7885 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7886 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7887 C        summed up outside the subrouine as for the other subroutines 
7888 C        handling long-range interactions. The old code is commented out
7889 C        with "cgrad" to keep track of changes.
7890       do ll=1,3
7891 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7892 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7893         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7894         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7895 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7896 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7897 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7898 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7899 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7900 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7901 c     &   gradcorr5ij,
7902 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7903 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7904 cgrad        ghalf=0.5d0*ggg1(ll)
7905 cd        ghalf=0.0d0
7906         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7907         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7908         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7909         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7910         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7911         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7912 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7913 cgrad        ghalf=0.5d0*ggg2(ll)
7914 cd        ghalf=0.0d0
7915         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7916         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7917         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7918         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7919         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7920         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7921       enddo
7922 cd      goto 1112
7923 cgrad      do m=i+1,j-1
7924 cgrad        do ll=1,3
7925 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7926 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7927 cgrad        enddo
7928 cgrad      enddo
7929 cgrad      do m=k+1,l-1
7930 cgrad        do ll=1,3
7931 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7932 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7933 cgrad        enddo
7934 cgrad      enddo
7935 c1112  continue
7936 cgrad      do m=i+2,j2
7937 cgrad        do ll=1,3
7938 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7939 cgrad        enddo
7940 cgrad      enddo
7941 cgrad      do m=k+2,l2
7942 cgrad        do ll=1,3
7943 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7944 cgrad        enddo
7945 cgrad      enddo 
7946 cd      do iii=1,nres-3
7947 cd        write (2,*) iii,g_corr5_loc(iii)
7948 cd      enddo
7949       eello5=ekont*eel5
7950 cd      write (2,*) 'ekont',ekont
7951 cd      write (iout,*) 'eello5',ekont*eel5
7952       return
7953       end
7954 c--------------------------------------------------------------------------
7955       double precision function eello6(i,j,k,l,jj,kk)
7956       implicit real*8 (a-h,o-z)
7957       include 'DIMENSIONS'
7958       include 'COMMON.IOUNITS'
7959       include 'COMMON.CHAIN'
7960       include 'COMMON.DERIV'
7961       include 'COMMON.INTERACT'
7962       include 'COMMON.CONTACTS'
7963       include 'COMMON.TORSION'
7964       include 'COMMON.VAR'
7965       include 'COMMON.GEO'
7966       include 'COMMON.FFIELD'
7967       double precision ggg1(3),ggg2(3)
7968 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7969 cd        eello6=0.0d0
7970 cd        return
7971 cd      endif
7972 cd      write (iout,*)
7973 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7974 cd     &   ' and',k,l
7975       eello6_1=0.0d0
7976       eello6_2=0.0d0
7977       eello6_3=0.0d0
7978       eello6_4=0.0d0
7979       eello6_5=0.0d0
7980       eello6_6=0.0d0
7981 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7982 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7983       do iii=1,2
7984         do kkk=1,5
7985           do lll=1,3
7986             derx(lll,kkk,iii)=0.0d0
7987           enddo
7988         enddo
7989       enddo
7990 cd      eij=facont_hb(jj,i)
7991 cd      ekl=facont_hb(kk,k)
7992 cd      ekont=eij*ekl
7993 cd      eij=1.0d0
7994 cd      ekl=1.0d0
7995 cd      ekont=1.0d0
7996       if (l.eq.j+1) then
7997         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7998         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
7999         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8000         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8001         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8002         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8003       else
8004         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8005         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8006         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8007         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8008         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8009           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8010         else
8011           eello6_5=0.0d0
8012         endif
8013         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8014       endif
8015 C If turn contributions are considered, they will be handled separately.
8016       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8017 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8018 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8019 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8020 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8021 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8022 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8023 cd      goto 1112
8024       if (j.lt.nres-1) then
8025         j1=j+1
8026         j2=j-1
8027       else
8028         j1=j-1
8029         j2=j-2
8030       endif
8031       if (l.lt.nres-1) then
8032         l1=l+1
8033         l2=l-1
8034       else
8035         l1=l-1
8036         l2=l-2
8037       endif
8038       do ll=1,3
8039 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8040 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8041 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8042 cgrad        ghalf=0.5d0*ggg1(ll)
8043 cd        ghalf=0.0d0
8044         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8045         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8046         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8047         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8048         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8049         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8050         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8051         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8052 cgrad        ghalf=0.5d0*ggg2(ll)
8053 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8054 cd        ghalf=0.0d0
8055         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8056         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8057         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8058         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8059         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8060         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8061       enddo
8062 cd      goto 1112
8063 cgrad      do m=i+1,j-1
8064 cgrad        do ll=1,3
8065 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8066 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8067 cgrad        enddo
8068 cgrad      enddo
8069 cgrad      do m=k+1,l-1
8070 cgrad        do ll=1,3
8071 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8072 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8073 cgrad        enddo
8074 cgrad      enddo
8075 cgrad1112  continue
8076 cgrad      do m=i+2,j2
8077 cgrad        do ll=1,3
8078 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8079 cgrad        enddo
8080 cgrad      enddo
8081 cgrad      do m=k+2,l2
8082 cgrad        do ll=1,3
8083 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8084 cgrad        enddo
8085 cgrad      enddo 
8086 cd      do iii=1,nres-3
8087 cd        write (2,*) iii,g_corr6_loc(iii)
8088 cd      enddo
8089       eello6=ekont*eel6
8090 cd      write (2,*) 'ekont',ekont
8091 cd      write (iout,*) 'eello6',ekont*eel6
8092       return
8093       end
8094 c--------------------------------------------------------------------------
8095       double precision function eello6_graph1(i,j,k,l,imat,swap)
8096       implicit real*8 (a-h,o-z)
8097       include 'DIMENSIONS'
8098       include 'COMMON.IOUNITS'
8099       include 'COMMON.CHAIN'
8100       include 'COMMON.DERIV'
8101       include 'COMMON.INTERACT'
8102       include 'COMMON.CONTACTS'
8103       include 'COMMON.TORSION'
8104       include 'COMMON.VAR'
8105       include 'COMMON.GEO'
8106       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8107       logical swap
8108       logical lprn
8109       common /kutas/ lprn
8110 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8111 C                                              
8112 C      Parallel       Antiparallel
8113 C                                             
8114 C          o             o         
8115 C         /l\           /j\
8116 C        /   \         /   \
8117 C       /| o |         | o |\
8118 C     \ j|/k\|  /   \  |/k\|l /   
8119 C      \ /   \ /     \ /   \ /    
8120 C       o     o       o     o                
8121 C       i             i                     
8122 C
8123 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8124       itk=itortyp(itype(k))
8125       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8126       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8127       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8128       call transpose2(EUgC(1,1,k),auxmat(1,1))
8129       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8130       vv1(1)=pizda1(1,1)-pizda1(2,2)
8131       vv1(2)=pizda1(1,2)+pizda1(2,1)
8132       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8133       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8134       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8135       s5=scalar2(vv(1),Dtobr2(1,i))
8136 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8137       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8138       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8139      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8140      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8141      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8142      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8143      & +scalar2(vv(1),Dtobr2der(1,i)))
8144       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8145       vv1(1)=pizda1(1,1)-pizda1(2,2)
8146       vv1(2)=pizda1(1,2)+pizda1(2,1)
8147       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8148       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8149       if (l.eq.j+1) then
8150         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8151      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8152      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8153      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8154      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8155       else
8156         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8157      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8158      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8159      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8160      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8161       endif
8162       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8163       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8164       vv1(1)=pizda1(1,1)-pizda1(2,2)
8165       vv1(2)=pizda1(1,2)+pizda1(2,1)
8166       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8167      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8168      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8169      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8170       do iii=1,2
8171         if (swap) then
8172           ind=3-iii
8173         else
8174           ind=iii
8175         endif
8176         do kkk=1,5
8177           do lll=1,3
8178             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8179             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8180             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8181             call transpose2(EUgC(1,1,k),auxmat(1,1))
8182             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8183      &        pizda1(1,1))
8184             vv1(1)=pizda1(1,1)-pizda1(2,2)
8185             vv1(2)=pizda1(1,2)+pizda1(2,1)
8186             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8187             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8188      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8189             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8190      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8191             s5=scalar2(vv(1),Dtobr2(1,i))
8192             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8193           enddo
8194         enddo
8195       enddo
8196       return
8197       end
8198 c----------------------------------------------------------------------------
8199       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8200       implicit real*8 (a-h,o-z)
8201       include 'DIMENSIONS'
8202       include 'COMMON.IOUNITS'
8203       include 'COMMON.CHAIN'
8204       include 'COMMON.DERIV'
8205       include 'COMMON.INTERACT'
8206       include 'COMMON.CONTACTS'
8207       include 'COMMON.TORSION'
8208       include 'COMMON.VAR'
8209       include 'COMMON.GEO'
8210       logical swap
8211       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8212      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8213       logical lprn
8214       common /kutas/ lprn
8215 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8216 C                                                                              C
8217 C      Parallel       Antiparallel                                             C
8218 C                                                                              C
8219 C          o             o                                                     C
8220 C     \   /l\           /j\   /                                                C
8221 C      \ /   \         /   \ /                                                 C
8222 C       o| o |         | o |o                                                  C                
8223 C     \ j|/k\|      \  |/k\|l                                                  C
8224 C      \ /   \       \ /   \                                                   C
8225 C       o             o                                                        C
8226 C       i             i                                                        C 
8227 C                                                                              C           
8228 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8229 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8230 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8231 C           but not in a cluster cumulant
8232 #ifdef MOMENT
8233       s1=dip(1,jj,i)*dip(1,kk,k)
8234 #endif
8235       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8236       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8237       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8238       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8239       call transpose2(EUg(1,1,k),auxmat(1,1))
8240       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8241       vv(1)=pizda(1,1)-pizda(2,2)
8242       vv(2)=pizda(1,2)+pizda(2,1)
8243       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8244 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8245 #ifdef MOMENT
8246       eello6_graph2=-(s1+s2+s3+s4)
8247 #else
8248       eello6_graph2=-(s2+s3+s4)
8249 #endif
8250 c      eello6_graph2=-s3
8251 C Derivatives in gamma(i-1)
8252       if (i.gt.1) then
8253 #ifdef MOMENT
8254         s1=dipderg(1,jj,i)*dip(1,kk,k)
8255 #endif
8256         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8257         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8258         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8259         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8260 #ifdef MOMENT
8261         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8262 #else
8263         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8264 #endif
8265 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8266       endif
8267 C Derivatives in gamma(k-1)
8268 #ifdef MOMENT
8269       s1=dip(1,jj,i)*dipderg(1,kk,k)
8270 #endif
8271       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8272       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8273       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8274       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8275       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8276       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8277       vv(1)=pizda(1,1)-pizda(2,2)
8278       vv(2)=pizda(1,2)+pizda(2,1)
8279       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8280 #ifdef MOMENT
8281       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8282 #else
8283       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8284 #endif
8285 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8286 C Derivatives in gamma(j-1) or gamma(l-1)
8287       if (j.gt.1) then
8288 #ifdef MOMENT
8289         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8290 #endif
8291         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8292         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8293         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8294         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8295         vv(1)=pizda(1,1)-pizda(2,2)
8296         vv(2)=pizda(1,2)+pizda(2,1)
8297         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8298 #ifdef MOMENT
8299         if (swap) then
8300           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8301         else
8302           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8303         endif
8304 #endif
8305         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8306 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8307       endif
8308 C Derivatives in gamma(l-1) or gamma(j-1)
8309       if (l.gt.1) then 
8310 #ifdef MOMENT
8311         s1=dip(1,jj,i)*dipderg(3,kk,k)
8312 #endif
8313         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8314         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8315         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8316         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8317         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8318         vv(1)=pizda(1,1)-pizda(2,2)
8319         vv(2)=pizda(1,2)+pizda(2,1)
8320         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8321 #ifdef MOMENT
8322         if (swap) then
8323           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8324         else
8325           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8326         endif
8327 #endif
8328         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8329 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8330       endif
8331 C Cartesian derivatives.
8332       if (lprn) then
8333         write (2,*) 'In eello6_graph2'
8334         do iii=1,2
8335           write (2,*) 'iii=',iii
8336           do kkk=1,5
8337             write (2,*) 'kkk=',kkk
8338             do jjj=1,2
8339               write (2,'(3(2f10.5),5x)') 
8340      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8341             enddo
8342           enddo
8343         enddo
8344       endif
8345       do iii=1,2
8346         do kkk=1,5
8347           do lll=1,3
8348 #ifdef MOMENT
8349             if (iii.eq.1) then
8350               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8351             else
8352               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8353             endif
8354 #endif
8355             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8356      &        auxvec(1))
8357             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8358             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8359      &        auxvec(1))
8360             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8361             call transpose2(EUg(1,1,k),auxmat(1,1))
8362             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8363      &        pizda(1,1))
8364             vv(1)=pizda(1,1)-pizda(2,2)
8365             vv(2)=pizda(1,2)+pizda(2,1)
8366             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8367 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8368 #ifdef MOMENT
8369             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8370 #else
8371             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8372 #endif
8373             if (swap) then
8374               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8375             else
8376               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8377             endif
8378           enddo
8379         enddo
8380       enddo
8381       return
8382       end
8383 c----------------------------------------------------------------------------
8384       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8385       implicit real*8 (a-h,o-z)
8386       include 'DIMENSIONS'
8387       include 'COMMON.IOUNITS'
8388       include 'COMMON.CHAIN'
8389       include 'COMMON.DERIV'
8390       include 'COMMON.INTERACT'
8391       include 'COMMON.CONTACTS'
8392       include 'COMMON.TORSION'
8393       include 'COMMON.VAR'
8394       include 'COMMON.GEO'
8395       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8396       logical swap
8397 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8398 C                                                                              C 
8399 C      Parallel       Antiparallel                                             C
8400 C                                                                              C
8401 C          o             o                                                     C 
8402 C         /l\   /   \   /j\                                                    C 
8403 C        /   \ /     \ /   \                                                   C
8404 C       /| o |o       o| o |\                                                  C
8405 C       j|/k\|  /      |/k\|l /                                                C
8406 C        /   \ /       /   \ /                                                 C
8407 C       /     o       /     o                                                  C
8408 C       i             i                                                        C
8409 C                                                                              C
8410 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8411 C
8412 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8413 C           energy moment and not to the cluster cumulant.
8414       iti=itortyp(itype(i))
8415       if (j.lt.nres-1) then
8416         itj1=itortyp(itype(j+1))
8417       else
8418         itj1=ntortyp+1
8419       endif
8420       itk=itortyp(itype(k))
8421       itk1=itortyp(itype(k+1))
8422       if (l.lt.nres-1) then
8423         itl1=itortyp(itype(l+1))
8424       else
8425         itl1=ntortyp+1
8426       endif
8427 #ifdef MOMENT
8428       s1=dip(4,jj,i)*dip(4,kk,k)
8429 #endif
8430       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8431       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8432       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8433       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8434       call transpose2(EE(1,1,itk),auxmat(1,1))
8435       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8436       vv(1)=pizda(1,1)+pizda(2,2)
8437       vv(2)=pizda(2,1)-pizda(1,2)
8438       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8439 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8440 cd     & "sum",-(s2+s3+s4)
8441 #ifdef MOMENT
8442       eello6_graph3=-(s1+s2+s3+s4)
8443 #else
8444       eello6_graph3=-(s2+s3+s4)
8445 #endif
8446 c      eello6_graph3=-s4
8447 C Derivatives in gamma(k-1)
8448       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8449       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8450       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8451       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8452 C Derivatives in gamma(l-1)
8453       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8454       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8455       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8456       vv(1)=pizda(1,1)+pizda(2,2)
8457       vv(2)=pizda(2,1)-pizda(1,2)
8458       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8459       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8460 C Cartesian derivatives.
8461       do iii=1,2
8462         do kkk=1,5
8463           do lll=1,3
8464 #ifdef MOMENT
8465             if (iii.eq.1) then
8466               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8467             else
8468               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8469             endif
8470 #endif
8471             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8472      &        auxvec(1))
8473             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8474             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8475      &        auxvec(1))
8476             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8477             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8478      &        pizda(1,1))
8479             vv(1)=pizda(1,1)+pizda(2,2)
8480             vv(2)=pizda(2,1)-pizda(1,2)
8481             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8482 #ifdef MOMENT
8483             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8484 #else
8485             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8486 #endif
8487             if (swap) then
8488               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8489             else
8490               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8491             endif
8492 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8493           enddo
8494         enddo
8495       enddo
8496       return
8497       end
8498 c----------------------------------------------------------------------------
8499       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8500       implicit real*8 (a-h,o-z)
8501       include 'DIMENSIONS'
8502       include 'COMMON.IOUNITS'
8503       include 'COMMON.CHAIN'
8504       include 'COMMON.DERIV'
8505       include 'COMMON.INTERACT'
8506       include 'COMMON.CONTACTS'
8507       include 'COMMON.TORSION'
8508       include 'COMMON.VAR'
8509       include 'COMMON.GEO'
8510       include 'COMMON.FFIELD'
8511       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8512      & auxvec1(2),auxmat1(2,2)
8513       logical swap
8514 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8515 C                                                                              C                       
8516 C      Parallel       Antiparallel                                             C
8517 C                                                                              C
8518 C          o             o                                                     C
8519 C         /l\   /   \   /j\                                                    C
8520 C        /   \ /     \ /   \                                                   C
8521 C       /| o |o       o| o |\                                                  C
8522 C     \ j|/k\|      \  |/k\|l                                                  C
8523 C      \ /   \       \ /   \                                                   C 
8524 C       o     \       o     \                                                  C
8525 C       i             i                                                        C
8526 C                                                                              C 
8527 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8528 C
8529 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8530 C           energy moment and not to the cluster cumulant.
8531 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8532       iti=itortyp(itype(i))
8533       itj=itortyp(itype(j))
8534       if (j.lt.nres-1) then
8535         itj1=itortyp(itype(j+1))
8536       else
8537         itj1=ntortyp+1
8538       endif
8539       itk=itortyp(itype(k))
8540       if (k.lt.nres-1) then
8541         itk1=itortyp(itype(k+1))
8542       else
8543         itk1=ntortyp+1
8544       endif
8545       itl=itortyp(itype(l))
8546       if (l.lt.nres-1) then
8547         itl1=itortyp(itype(l+1))
8548       else
8549         itl1=ntortyp+1
8550       endif
8551 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8552 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8553 cd     & ' itl',itl,' itl1',itl1
8554 #ifdef MOMENT
8555       if (imat.eq.1) then
8556         s1=dip(3,jj,i)*dip(3,kk,k)
8557       else
8558         s1=dip(2,jj,j)*dip(2,kk,l)
8559       endif
8560 #endif
8561       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8562       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8563       if (j.eq.l+1) then
8564         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8565         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8566       else
8567         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8568         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8569       endif
8570       call transpose2(EUg(1,1,k),auxmat(1,1))
8571       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8572       vv(1)=pizda(1,1)-pizda(2,2)
8573       vv(2)=pizda(2,1)+pizda(1,2)
8574       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8575 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8576 #ifdef MOMENT
8577       eello6_graph4=-(s1+s2+s3+s4)
8578 #else
8579       eello6_graph4=-(s2+s3+s4)
8580 #endif
8581 C Derivatives in gamma(i-1)
8582       if (i.gt.1) then
8583 #ifdef MOMENT
8584         if (imat.eq.1) then
8585           s1=dipderg(2,jj,i)*dip(3,kk,k)
8586         else
8587           s1=dipderg(4,jj,j)*dip(2,kk,l)
8588         endif
8589 #endif
8590         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8591         if (j.eq.l+1) then
8592           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8593           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8594         else
8595           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8596           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8597         endif
8598         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8599         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8600 cd          write (2,*) 'turn6 derivatives'
8601 #ifdef MOMENT
8602           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8603 #else
8604           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8605 #endif
8606         else
8607 #ifdef MOMENT
8608           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8609 #else
8610           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8611 #endif
8612         endif
8613       endif
8614 C Derivatives in gamma(k-1)
8615 #ifdef MOMENT
8616       if (imat.eq.1) then
8617         s1=dip(3,jj,i)*dipderg(2,kk,k)
8618       else
8619         s1=dip(2,jj,j)*dipderg(4,kk,l)
8620       endif
8621 #endif
8622       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8623       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8624       if (j.eq.l+1) then
8625         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8626         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8627       else
8628         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8629         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8630       endif
8631       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8632       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8633       vv(1)=pizda(1,1)-pizda(2,2)
8634       vv(2)=pizda(2,1)+pizda(1,2)
8635       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8636       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8637 #ifdef MOMENT
8638         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8639 #else
8640         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8641 #endif
8642       else
8643 #ifdef MOMENT
8644         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8645 #else
8646         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8647 #endif
8648       endif
8649 C Derivatives in gamma(j-1) or gamma(l-1)
8650       if (l.eq.j+1 .and. l.gt.1) then
8651         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8652         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8653         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8654         vv(1)=pizda(1,1)-pizda(2,2)
8655         vv(2)=pizda(2,1)+pizda(1,2)
8656         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8657         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8658       else if (j.gt.1) then
8659         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8660         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8661         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8662         vv(1)=pizda(1,1)-pizda(2,2)
8663         vv(2)=pizda(2,1)+pizda(1,2)
8664         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8665         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8666           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8667         else
8668           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8669         endif
8670       endif
8671 C Cartesian derivatives.
8672       do iii=1,2
8673         do kkk=1,5
8674           do lll=1,3
8675 #ifdef MOMENT
8676             if (iii.eq.1) then
8677               if (imat.eq.1) then
8678                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8679               else
8680                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8681               endif
8682             else
8683               if (imat.eq.1) then
8684                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8685               else
8686                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8687               endif
8688             endif
8689 #endif
8690             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8691      &        auxvec(1))
8692             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8693             if (j.eq.l+1) then
8694               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8695      &          b1(1,itj1),auxvec(1))
8696               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8697             else
8698               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8699      &          b1(1,itl1),auxvec(1))
8700               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8701             endif
8702             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8703      &        pizda(1,1))
8704             vv(1)=pizda(1,1)-pizda(2,2)
8705             vv(2)=pizda(2,1)+pizda(1,2)
8706             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8707             if (swap) then
8708               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8709 #ifdef MOMENT
8710                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8711      &             -(s1+s2+s4)
8712 #else
8713                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8714      &             -(s2+s4)
8715 #endif
8716                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8717               else
8718 #ifdef MOMENT
8719                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8720 #else
8721                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8722 #endif
8723                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8724               endif
8725             else
8726 #ifdef MOMENT
8727               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8728 #else
8729               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8730 #endif
8731               if (l.eq.j+1) then
8732                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8733               else 
8734                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8735               endif
8736             endif 
8737           enddo
8738         enddo
8739       enddo
8740       return
8741       end
8742 c----------------------------------------------------------------------------
8743       double precision function eello_turn6(i,jj,kk)
8744       implicit real*8 (a-h,o-z)
8745       include 'DIMENSIONS'
8746       include 'COMMON.IOUNITS'
8747       include 'COMMON.CHAIN'
8748       include 'COMMON.DERIV'
8749       include 'COMMON.INTERACT'
8750       include 'COMMON.CONTACTS'
8751       include 'COMMON.TORSION'
8752       include 'COMMON.VAR'
8753       include 'COMMON.GEO'
8754       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8755      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8756      &  ggg1(3),ggg2(3)
8757       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8758      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8759 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8760 C           the respective energy moment and not to the cluster cumulant.
8761       s1=0.0d0
8762       s8=0.0d0
8763       s13=0.0d0
8764 c
8765       eello_turn6=0.0d0
8766       j=i+4
8767       k=i+1
8768       l=i+3
8769       iti=itortyp(itype(i))
8770       itk=itortyp(itype(k))
8771       itk1=itortyp(itype(k+1))
8772       itl=itortyp(itype(l))
8773       itj=itortyp(itype(j))
8774 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8775 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8776 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8777 cd        eello6=0.0d0
8778 cd        return
8779 cd      endif
8780 cd      write (iout,*)
8781 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8782 cd     &   ' and',k,l
8783 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8784       do iii=1,2
8785         do kkk=1,5
8786           do lll=1,3
8787             derx_turn(lll,kkk,iii)=0.0d0
8788           enddo
8789         enddo
8790       enddo
8791 cd      eij=1.0d0
8792 cd      ekl=1.0d0
8793 cd      ekont=1.0d0
8794       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8795 cd      eello6_5=0.0d0
8796 cd      write (2,*) 'eello6_5',eello6_5
8797 #ifdef MOMENT
8798       call transpose2(AEA(1,1,1),auxmat(1,1))
8799       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8800       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8801       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8802 #endif
8803       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8804       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8805       s2 = scalar2(b1(1,itk),vtemp1(1))
8806 #ifdef MOMENT
8807       call transpose2(AEA(1,1,2),atemp(1,1))
8808       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8809       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8810       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8811 #endif
8812       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8813       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8814       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8815 #ifdef MOMENT
8816       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8817       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8818       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8819       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8820       ss13 = scalar2(b1(1,itk),vtemp4(1))
8821       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8822 #endif
8823 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8824 c      s1=0.0d0
8825 c      s2=0.0d0
8826 c      s8=0.0d0
8827 c      s12=0.0d0
8828 c      s13=0.0d0
8829       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8830 C Derivatives in gamma(i+2)
8831       s1d =0.0d0
8832       s8d =0.0d0
8833 #ifdef MOMENT
8834       call transpose2(AEA(1,1,1),auxmatd(1,1))
8835       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8836       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8837       call transpose2(AEAderg(1,1,2),atempd(1,1))
8838       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8839       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8840 #endif
8841       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8842       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8843       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8844 c      s1d=0.0d0
8845 c      s2d=0.0d0
8846 c      s8d=0.0d0
8847 c      s12d=0.0d0
8848 c      s13d=0.0d0
8849       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8850 C Derivatives in gamma(i+3)
8851 #ifdef MOMENT
8852       call transpose2(AEA(1,1,1),auxmatd(1,1))
8853       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8854       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8855       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8856 #endif
8857       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8858       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8859       s2d = scalar2(b1(1,itk),vtemp1d(1))
8860 #ifdef MOMENT
8861       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8862       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8863 #endif
8864       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8865 #ifdef MOMENT
8866       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8867       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8868       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8869 #endif
8870 c      s1d=0.0d0
8871 c      s2d=0.0d0
8872 c      s8d=0.0d0
8873 c      s12d=0.0d0
8874 c      s13d=0.0d0
8875 #ifdef MOMENT
8876       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8877      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8878 #else
8879       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8880      &               -0.5d0*ekont*(s2d+s12d)
8881 #endif
8882 C Derivatives in gamma(i+4)
8883       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8884       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8885       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8886 #ifdef MOMENT
8887       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8888       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8889       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8890 #endif
8891 c      s1d=0.0d0
8892 c      s2d=0.0d0
8893 c      s8d=0.0d0
8894 C      s12d=0.0d0
8895 c      s13d=0.0d0
8896 #ifdef MOMENT
8897       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8898 #else
8899       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8900 #endif
8901 C Derivatives in gamma(i+5)
8902 #ifdef MOMENT
8903       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8904       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8905       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8906 #endif
8907       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8908       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8909       s2d = scalar2(b1(1,itk),vtemp1d(1))
8910 #ifdef MOMENT
8911       call transpose2(AEA(1,1,2),atempd(1,1))
8912       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8913       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8914 #endif
8915       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8916       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8917 #ifdef MOMENT
8918       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8919       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8920       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8921 #endif
8922 c      s1d=0.0d0
8923 c      s2d=0.0d0
8924 c      s8d=0.0d0
8925 c      s12d=0.0d0
8926 c      s13d=0.0d0
8927 #ifdef MOMENT
8928       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8929      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8930 #else
8931       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8932      &               -0.5d0*ekont*(s2d+s12d)
8933 #endif
8934 C Cartesian derivatives
8935       do iii=1,2
8936         do kkk=1,5
8937           do lll=1,3
8938 #ifdef MOMENT
8939             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8940             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8941             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8942 #endif
8943             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8944             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8945      &          vtemp1d(1))
8946             s2d = scalar2(b1(1,itk),vtemp1d(1))
8947 #ifdef MOMENT
8948             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8949             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8950             s8d = -(atempd(1,1)+atempd(2,2))*
8951      &           scalar2(cc(1,1,itl),vtemp2(1))
8952 #endif
8953             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8954      &           auxmatd(1,1))
8955             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8956             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8957 c      s1d=0.0d0
8958 c      s2d=0.0d0
8959 c      s8d=0.0d0
8960 c      s12d=0.0d0
8961 c      s13d=0.0d0
8962 #ifdef MOMENT
8963             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8964      &        - 0.5d0*(s1d+s2d)
8965 #else
8966             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8967      &        - 0.5d0*s2d
8968 #endif
8969 #ifdef MOMENT
8970             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8971      &        - 0.5d0*(s8d+s12d)
8972 #else
8973             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8974      &        - 0.5d0*s12d
8975 #endif
8976           enddo
8977         enddo
8978       enddo
8979 #ifdef MOMENT
8980       do kkk=1,5
8981         do lll=1,3
8982           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8983      &      achuj_tempd(1,1))
8984           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8985           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8986           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8987           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8988           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8989      &      vtemp4d(1)) 
8990           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8991           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8992           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8993         enddo
8994       enddo
8995 #endif
8996 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
8997 cd     &  16*eel_turn6_num
8998 cd      goto 1112
8999       if (j.lt.nres-1) then
9000         j1=j+1
9001         j2=j-1
9002       else
9003         j1=j-1
9004         j2=j-2
9005       endif
9006       if (l.lt.nres-1) then
9007         l1=l+1
9008         l2=l-1
9009       else
9010         l1=l-1
9011         l2=l-2
9012       endif
9013       do ll=1,3
9014 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9015 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9016 cgrad        ghalf=0.5d0*ggg1(ll)
9017 cd        ghalf=0.0d0
9018         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9019         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9020         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9021      &    +ekont*derx_turn(ll,2,1)
9022         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9023         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9024      &    +ekont*derx_turn(ll,4,1)
9025         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9026         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9027         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9028 cgrad        ghalf=0.5d0*ggg2(ll)
9029 cd        ghalf=0.0d0
9030         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9031      &    +ekont*derx_turn(ll,2,2)
9032         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9033         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9034      &    +ekont*derx_turn(ll,4,2)
9035         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9036         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9037         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9038       enddo
9039 cd      goto 1112
9040 cgrad      do m=i+1,j-1
9041 cgrad        do ll=1,3
9042 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9043 cgrad        enddo
9044 cgrad      enddo
9045 cgrad      do m=k+1,l-1
9046 cgrad        do ll=1,3
9047 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9048 cgrad        enddo
9049 cgrad      enddo
9050 cgrad1112  continue
9051 cgrad      do m=i+2,j2
9052 cgrad        do ll=1,3
9053 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9054 cgrad        enddo
9055 cgrad      enddo
9056 cgrad      do m=k+2,l2
9057 cgrad        do ll=1,3
9058 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9059 cgrad        enddo
9060 cgrad      enddo 
9061 cd      do iii=1,nres-3
9062 cd        write (2,*) iii,g_corr6_loc(iii)
9063 cd      enddo
9064       eello_turn6=ekont*eel_turn6
9065 cd      write (2,*) 'ekont',ekont
9066 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9067       return
9068       end
9069
9070 C-----------------------------------------------------------------------------
9071       double precision function scalar(u,v)
9072 !DIR$ INLINEALWAYS scalar
9073 #ifndef OSF
9074 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9075 #endif
9076       implicit none
9077       double precision u(3),v(3)
9078 cd      double precision sc
9079 cd      integer i
9080 cd      sc=0.0d0
9081 cd      do i=1,3
9082 cd        sc=sc+u(i)*v(i)
9083 cd      enddo
9084 cd      scalar=sc
9085
9086       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9087       return
9088       end
9089 crc-------------------------------------------------
9090       SUBROUTINE MATVEC2(A1,V1,V2)
9091 !DIR$ INLINEALWAYS MATVEC2
9092 #ifndef OSF
9093 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9094 #endif
9095       implicit real*8 (a-h,o-z)
9096       include 'DIMENSIONS'
9097       DIMENSION A1(2,2),V1(2),V2(2)
9098 c      DO 1 I=1,2
9099 c        VI=0.0
9100 c        DO 3 K=1,2
9101 c    3     VI=VI+A1(I,K)*V1(K)
9102 c        Vaux(I)=VI
9103 c    1 CONTINUE
9104
9105       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9106       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9107
9108       v2(1)=vaux1
9109       v2(2)=vaux2
9110       END
9111 C---------------------------------------
9112       SUBROUTINE MATMAT2(A1,A2,A3)
9113 #ifndef OSF
9114 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9115 #endif
9116       implicit real*8 (a-h,o-z)
9117       include 'DIMENSIONS'
9118       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9119 c      DIMENSION AI3(2,2)
9120 c        DO  J=1,2
9121 c          A3IJ=0.0
9122 c          DO K=1,2
9123 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9124 c          enddo
9125 c          A3(I,J)=A3IJ
9126 c       enddo
9127 c      enddo
9128
9129       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9130       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9131       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9132       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9133
9134       A3(1,1)=AI3_11
9135       A3(2,1)=AI3_21
9136       A3(1,2)=AI3_12
9137       A3(2,2)=AI3_22
9138       END
9139
9140 c-------------------------------------------------------------------------
9141       double precision function scalar2(u,v)
9142 !DIR$ INLINEALWAYS scalar2
9143       implicit none
9144       double precision u(2),v(2)
9145       double precision sc
9146       integer i
9147       scalar2=u(1)*v(1)+u(2)*v(2)
9148       return
9149       end
9150
9151 C-----------------------------------------------------------------------------
9152
9153       subroutine transpose2(a,at)
9154 !DIR$ INLINEALWAYS transpose2
9155 #ifndef OSF
9156 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9157 #endif
9158       implicit none
9159       double precision a(2,2),at(2,2)
9160       at(1,1)=a(1,1)
9161       at(1,2)=a(2,1)
9162       at(2,1)=a(1,2)
9163       at(2,2)=a(2,2)
9164       return
9165       end
9166 c--------------------------------------------------------------------------
9167       subroutine transpose(n,a,at)
9168       implicit none
9169       integer n,i,j
9170       double precision a(n,n),at(n,n)
9171       do i=1,n
9172         do j=1,n
9173           at(j,i)=a(i,j)
9174         enddo
9175       enddo
9176       return
9177       end
9178 C---------------------------------------------------------------------------
9179       subroutine prodmat3(a1,a2,kk,transp,prod)
9180 !DIR$ INLINEALWAYS prodmat3
9181 #ifndef OSF
9182 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9183 #endif
9184       implicit none
9185       integer i,j
9186       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9187       logical transp
9188 crc      double precision auxmat(2,2),prod_(2,2)
9189
9190       if (transp) then
9191 crc        call transpose2(kk(1,1),auxmat(1,1))
9192 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9193 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9194         
9195            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9196      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9197            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9198      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9199            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9200      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9201            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9202      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9203
9204       else
9205 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9206 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9207
9208            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9209      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9210            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9211      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9212            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9213      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9214            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9215      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9216
9217       endif
9218 c      call transpose2(a2(1,1),a2t(1,1))
9219
9220 crc      print *,transp
9221 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9222 crc      print *,((prod(i,j),i=1,2),j=1,2)
9223
9224       return
9225       end
9226