dynamic dissulfides with finegrain parallelization cont.
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=itype(j)
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026         dxi=dc(1,i)
3027         dyi=dc(2,i)
3028         dzi=dc(3,i)
3029         dx_normi=dc_norm(1,i)
3030         dy_normi=dc_norm(2,i)
3031         dz_normi=dc_norm(3,i)
3032         xmedi=c(1,i)+0.5d0*dxi
3033         ymedi=c(2,i)+0.5d0*dyi
3034         zmedi=c(3,i)+0.5d0*dzi
3035         num_conti=0
3036         call eelecij(i,i+2,ees,evdw1,eel_loc)
3037         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3038         num_cont_hb(i)=num_conti
3039       enddo
3040       do i=iturn4_start,iturn4_end
3041         dxi=dc(1,i)
3042         dyi=dc(2,i)
3043         dzi=dc(3,i)
3044         dx_normi=dc_norm(1,i)
3045         dy_normi=dc_norm(2,i)
3046         dz_normi=dc_norm(3,i)
3047         xmedi=c(1,i)+0.5d0*dxi
3048         ymedi=c(2,i)+0.5d0*dyi
3049         zmedi=c(3,i)+0.5d0*dzi
3050         num_conti=num_cont_hb(i)
3051         call eelecij(i,i+3,ees,evdw1,eel_loc)
3052         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3053         num_cont_hb(i)=num_conti
3054       enddo   ! i
3055 c
3056 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3057 c
3058       do i=iatel_s,iatel_e
3059         dxi=dc(1,i)
3060         dyi=dc(2,i)
3061         dzi=dc(3,i)
3062         dx_normi=dc_norm(1,i)
3063         dy_normi=dc_norm(2,i)
3064         dz_normi=dc_norm(3,i)
3065         xmedi=c(1,i)+0.5d0*dxi
3066         ymedi=c(2,i)+0.5d0*dyi
3067         zmedi=c(3,i)+0.5d0*dzi
3068 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3069         num_conti=num_cont_hb(i)
3070         do j=ielstart(i),ielend(i)
3071           call eelecij(i,j,ees,evdw1,eel_loc)
3072         enddo ! j
3073         num_cont_hb(i)=num_conti
3074       enddo   ! i
3075 c      write (iout,*) "Number of loop steps in EELEC:",ind
3076 cd      do i=1,nres
3077 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3078 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3079 cd      enddo
3080 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3081 ccc      eel_loc=eel_loc+eello_turn3
3082 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3083       return
3084       end
3085 C-------------------------------------------------------------------------------
3086       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3087       implicit real*8 (a-h,o-z)
3088       include 'DIMENSIONS'
3089 #ifdef MPI
3090       include "mpif.h"
3091 #endif
3092       include 'COMMON.CONTROL'
3093       include 'COMMON.IOUNITS'
3094       include 'COMMON.GEO'
3095       include 'COMMON.VAR'
3096       include 'COMMON.LOCAL'
3097       include 'COMMON.CHAIN'
3098       include 'COMMON.DERIV'
3099       include 'COMMON.INTERACT'
3100       include 'COMMON.CONTACTS'
3101       include 'COMMON.TORSION'
3102       include 'COMMON.VECTORS'
3103       include 'COMMON.FFIELD'
3104       include 'COMMON.TIME1'
3105       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3106      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3107       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3108      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3109       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3110      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3111      &    num_conti,j1,j2
3112 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3113 #ifdef MOMENT
3114       double precision scal_el /1.0d0/
3115 #else
3116       double precision scal_el /0.5d0/
3117 #endif
3118 C 12/13/98 
3119 C 13-go grudnia roku pamietnego... 
3120       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3121      &                   0.0d0,1.0d0,0.0d0,
3122      &                   0.0d0,0.0d0,1.0d0/
3123 c          time00=MPI_Wtime()
3124 cd      write (iout,*) "eelecij",i,j
3125 c          ind=ind+1
3126           iteli=itel(i)
3127           itelj=itel(j)
3128           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3129           aaa=app(iteli,itelj)
3130           bbb=bpp(iteli,itelj)
3131           ael6i=ael6(iteli,itelj)
3132           ael3i=ael3(iteli,itelj) 
3133           dxj=dc(1,j)
3134           dyj=dc(2,j)
3135           dzj=dc(3,j)
3136           dx_normj=dc_norm(1,j)
3137           dy_normj=dc_norm(2,j)
3138           dz_normj=dc_norm(3,j)
3139           xj=c(1,j)+0.5D0*dxj-xmedi
3140           yj=c(2,j)+0.5D0*dyj-ymedi
3141           zj=c(3,j)+0.5D0*dzj-zmedi
3142           rij=xj*xj+yj*yj+zj*zj
3143           rrmij=1.0D0/rij
3144           rij=dsqrt(rij)
3145           rmij=1.0D0/rij
3146           r3ij=rrmij*rmij
3147           r6ij=r3ij*r3ij  
3148           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3149           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3150           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3151           fac=cosa-3.0D0*cosb*cosg
3152           ev1=aaa*r6ij*r6ij
3153 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3154           if (j.eq.i+2) ev1=scal_el*ev1
3155           ev2=bbb*r6ij
3156           fac3=ael6i*r6ij
3157           fac4=ael3i*r3ij
3158           evdwij=ev1+ev2
3159           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3160           el2=fac4*fac       
3161           eesij=el1+el2
3162 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3163           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3164           ees=ees+eesij
3165           evdw1=evdw1+evdwij
3166 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3167 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3168 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3169 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3170
3171           if (energy_dec) then 
3172               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3173               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3174           endif
3175
3176 C
3177 C Calculate contributions to the Cartesian gradient.
3178 C
3179 #ifdef SPLITELE
3180           facvdw=-6*rrmij*(ev1+evdwij)
3181           facel=-3*rrmij*(el1+eesij)
3182           fac1=fac
3183           erij(1)=xj*rmij
3184           erij(2)=yj*rmij
3185           erij(3)=zj*rmij
3186 *
3187 * Radial derivatives. First process both termini of the fragment (i,j)
3188 *
3189           ggg(1)=facel*xj
3190           ggg(2)=facel*yj
3191           ggg(3)=facel*zj
3192 c          do k=1,3
3193 c            ghalf=0.5D0*ggg(k)
3194 c            gelc(k,i)=gelc(k,i)+ghalf
3195 c            gelc(k,j)=gelc(k,j)+ghalf
3196 c          enddo
3197 c 9/28/08 AL Gradient compotents will be summed only at the end
3198           do k=1,3
3199             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3200             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3201           enddo
3202 *
3203 * Loop over residues i+1 thru j-1.
3204 *
3205 cgrad          do k=i+1,j-1
3206 cgrad            do l=1,3
3207 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3208 cgrad            enddo
3209 cgrad          enddo
3210           ggg(1)=facvdw*xj
3211           ggg(2)=facvdw*yj
3212           ggg(3)=facvdw*zj
3213 c          do k=1,3
3214 c            ghalf=0.5D0*ggg(k)
3215 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3216 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3217 c          enddo
3218 c 9/28/08 AL Gradient compotents will be summed only at the end
3219           do k=1,3
3220             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3221             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3222           enddo
3223 *
3224 * Loop over residues i+1 thru j-1.
3225 *
3226 cgrad          do k=i+1,j-1
3227 cgrad            do l=1,3
3228 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3229 cgrad            enddo
3230 cgrad          enddo
3231 #else
3232           facvdw=ev1+evdwij 
3233           facel=el1+eesij  
3234           fac1=fac
3235           fac=-3*rrmij*(facvdw+facvdw+facel)
3236           erij(1)=xj*rmij
3237           erij(2)=yj*rmij
3238           erij(3)=zj*rmij
3239 *
3240 * Radial derivatives. First process both termini of the fragment (i,j)
3241
3242           ggg(1)=fac*xj
3243           ggg(2)=fac*yj
3244           ggg(3)=fac*zj
3245 c          do k=1,3
3246 c            ghalf=0.5D0*ggg(k)
3247 c            gelc(k,i)=gelc(k,i)+ghalf
3248 c            gelc(k,j)=gelc(k,j)+ghalf
3249 c          enddo
3250 c 9/28/08 AL Gradient compotents will be summed only at the end
3251           do k=1,3
3252             gelc_long(k,j)=gelc(k,j)+ggg(k)
3253             gelc_long(k,i)=gelc(k,i)-ggg(k)
3254           enddo
3255 *
3256 * Loop over residues i+1 thru j-1.
3257 *
3258 cgrad          do k=i+1,j-1
3259 cgrad            do l=1,3
3260 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3261 cgrad            enddo
3262 cgrad          enddo
3263 c 9/28/08 AL Gradient compotents will be summed only at the end
3264           ggg(1)=facvdw*xj
3265           ggg(2)=facvdw*yj
3266           ggg(3)=facvdw*zj
3267           do k=1,3
3268             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3269             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3270           enddo
3271 #endif
3272 *
3273 * Angular part
3274 *          
3275           ecosa=2.0D0*fac3*fac1+fac4
3276           fac4=-3.0D0*fac4
3277           fac3=-6.0D0*fac3
3278           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3279           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3280           do k=1,3
3281             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3282             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3283           enddo
3284 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3285 cd   &          (dcosg(k),k=1,3)
3286           do k=1,3
3287             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3288           enddo
3289 c          do k=1,3
3290 c            ghalf=0.5D0*ggg(k)
3291 c            gelc(k,i)=gelc(k,i)+ghalf
3292 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3293 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3294 c            gelc(k,j)=gelc(k,j)+ghalf
3295 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3296 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3297 c          enddo
3298 cgrad          do k=i+1,j-1
3299 cgrad            do l=1,3
3300 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3301 cgrad            enddo
3302 cgrad          enddo
3303           do k=1,3
3304             gelc(k,i)=gelc(k,i)
3305      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3306      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3307             gelc(k,j)=gelc(k,j)
3308      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3309      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3310             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3311             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3312           enddo
3313           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3314      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3315      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3316 C
3317 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3318 C   energy of a peptide unit is assumed in the form of a second-order 
3319 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3320 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3321 C   are computed for EVERY pair of non-contiguous peptide groups.
3322 C
3323           if (j.lt.nres-1) then
3324             j1=j+1
3325             j2=j-1
3326           else
3327             j1=j-1
3328             j2=j-2
3329           endif
3330           kkk=0
3331           do k=1,2
3332             do l=1,2
3333               kkk=kkk+1
3334               muij(kkk)=mu(k,i)*mu(l,j)
3335             enddo
3336           enddo  
3337 cd         write (iout,*) 'EELEC: i',i,' j',j
3338 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3339 cd          write(iout,*) 'muij',muij
3340           ury=scalar(uy(1,i),erij)
3341           urz=scalar(uz(1,i),erij)
3342           vry=scalar(uy(1,j),erij)
3343           vrz=scalar(uz(1,j),erij)
3344           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3345           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3346           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3347           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3348           fac=dsqrt(-ael6i)*r3ij
3349           a22=a22*fac
3350           a23=a23*fac
3351           a32=a32*fac
3352           a33=a33*fac
3353 cd          write (iout,'(4i5,4f10.5)')
3354 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3355 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3356 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3357 cd     &      uy(:,j),uz(:,j)
3358 cd          write (iout,'(4f10.5)') 
3359 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3360 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3361 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3362 cd           write (iout,'(9f10.5/)') 
3363 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3364 C Derivatives of the elements of A in virtual-bond vectors
3365           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3366           do k=1,3
3367             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3368             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3369             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3370             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3371             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3372             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3373             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3374             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3375             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3376             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3377             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3378             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3379           enddo
3380 C Compute radial contributions to the gradient
3381           facr=-3.0d0*rrmij
3382           a22der=a22*facr
3383           a23der=a23*facr
3384           a32der=a32*facr
3385           a33der=a33*facr
3386           agg(1,1)=a22der*xj
3387           agg(2,1)=a22der*yj
3388           agg(3,1)=a22der*zj
3389           agg(1,2)=a23der*xj
3390           agg(2,2)=a23der*yj
3391           agg(3,2)=a23der*zj
3392           agg(1,3)=a32der*xj
3393           agg(2,3)=a32der*yj
3394           agg(3,3)=a32der*zj
3395           agg(1,4)=a33der*xj
3396           agg(2,4)=a33der*yj
3397           agg(3,4)=a33der*zj
3398 C Add the contributions coming from er
3399           fac3=-3.0d0*fac
3400           do k=1,3
3401             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3402             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3403             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3404             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3405           enddo
3406           do k=1,3
3407 C Derivatives in DC(i) 
3408 cgrad            ghalf1=0.5d0*agg(k,1)
3409 cgrad            ghalf2=0.5d0*agg(k,2)
3410 cgrad            ghalf3=0.5d0*agg(k,3)
3411 cgrad            ghalf4=0.5d0*agg(k,4)
3412             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3413      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3414             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3415      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3416             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3417      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3418             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3419      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3420 C Derivatives in DC(i+1)
3421             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3422      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3423             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3424      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3425             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3426      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3427             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3428      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3429 C Derivatives in DC(j)
3430             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3431      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3432             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3433      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3434             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3435      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3436             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3437      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3438 C Derivatives in DC(j+1) or DC(nres-1)
3439             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3440      &      -3.0d0*vryg(k,3)*ury)
3441             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3442      &      -3.0d0*vrzg(k,3)*ury)
3443             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3444      &      -3.0d0*vryg(k,3)*urz)
3445             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3446      &      -3.0d0*vrzg(k,3)*urz)
3447 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3448 cgrad              do l=1,4
3449 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3450 cgrad              enddo
3451 cgrad            endif
3452           enddo
3453           acipa(1,1)=a22
3454           acipa(1,2)=a23
3455           acipa(2,1)=a32
3456           acipa(2,2)=a33
3457           a22=-a22
3458           a23=-a23
3459           do l=1,2
3460             do k=1,3
3461               agg(k,l)=-agg(k,l)
3462               aggi(k,l)=-aggi(k,l)
3463               aggi1(k,l)=-aggi1(k,l)
3464               aggj(k,l)=-aggj(k,l)
3465               aggj1(k,l)=-aggj1(k,l)
3466             enddo
3467           enddo
3468           if (j.lt.nres-1) then
3469             a22=-a22
3470             a32=-a32
3471             do l=1,3,2
3472               do k=1,3
3473                 agg(k,l)=-agg(k,l)
3474                 aggi(k,l)=-aggi(k,l)
3475                 aggi1(k,l)=-aggi1(k,l)
3476                 aggj(k,l)=-aggj(k,l)
3477                 aggj1(k,l)=-aggj1(k,l)
3478               enddo
3479             enddo
3480           else
3481             a22=-a22
3482             a23=-a23
3483             a32=-a32
3484             a33=-a33
3485             do l=1,4
3486               do k=1,3
3487                 agg(k,l)=-agg(k,l)
3488                 aggi(k,l)=-aggi(k,l)
3489                 aggi1(k,l)=-aggi1(k,l)
3490                 aggj(k,l)=-aggj(k,l)
3491                 aggj1(k,l)=-aggj1(k,l)
3492               enddo
3493             enddo 
3494           endif    
3495           ENDIF ! WCORR
3496           IF (wel_loc.gt.0.0d0) THEN
3497 C Contribution to the local-electrostatic energy coming from the i-j pair
3498           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3499      &     +a33*muij(4)
3500 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3501
3502           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3503      &            'eelloc',i,j,eel_loc_ij
3504
3505           eel_loc=eel_loc+eel_loc_ij
3506 C Partial derivatives in virtual-bond dihedral angles gamma
3507           if (i.gt.1)
3508      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3509      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3510      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3511           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3512      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3513      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3514 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3515           do l=1,3
3516             ggg(l)=agg(l,1)*muij(1)+
3517      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3518             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3519             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3520 cgrad            ghalf=0.5d0*ggg(l)
3521 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3522 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3523           enddo
3524 cgrad          do k=i+1,j2
3525 cgrad            do l=1,3
3526 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3527 cgrad            enddo
3528 cgrad          enddo
3529 C Remaining derivatives of eello
3530           do l=1,3
3531             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3532      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3533             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3534      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3535             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3536      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3537             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3538      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3539           enddo
3540           ENDIF
3541 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3542 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3543           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3544      &       .and. num_conti.le.maxconts) then
3545 c            write (iout,*) i,j," entered corr"
3546 C
3547 C Calculate the contact function. The ith column of the array JCONT will 
3548 C contain the numbers of atoms that make contacts with the atom I (of numbers
3549 C greater than I). The arrays FACONT and GACONT will contain the values of
3550 C the contact function and its derivative.
3551 c           r0ij=1.02D0*rpp(iteli,itelj)
3552 c           r0ij=1.11D0*rpp(iteli,itelj)
3553             r0ij=2.20D0*rpp(iteli,itelj)
3554 c           r0ij=1.55D0*rpp(iteli,itelj)
3555             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3556             if (fcont.gt.0.0D0) then
3557               num_conti=num_conti+1
3558               if (num_conti.gt.maxconts) then
3559                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3560      &                         ' will skip next contacts for this conf.'
3561               else
3562                 jcont_hb(num_conti,i)=j
3563 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3564 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3565                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3566      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3567 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3568 C  terms.
3569                 d_cont(num_conti,i)=rij
3570 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3571 C     --- Electrostatic-interaction matrix --- 
3572                 a_chuj(1,1,num_conti,i)=a22
3573                 a_chuj(1,2,num_conti,i)=a23
3574                 a_chuj(2,1,num_conti,i)=a32
3575                 a_chuj(2,2,num_conti,i)=a33
3576 C     --- Gradient of rij
3577                 do kkk=1,3
3578                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3579                 enddo
3580                 kkll=0
3581                 do k=1,2
3582                   do l=1,2
3583                     kkll=kkll+1
3584                     do m=1,3
3585                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3586                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3587                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3588                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3589                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3590                     enddo
3591                   enddo
3592                 enddo
3593                 ENDIF
3594                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3595 C Calculate contact energies
3596                 cosa4=4.0D0*cosa
3597                 wij=cosa-3.0D0*cosb*cosg
3598                 cosbg1=cosb+cosg
3599                 cosbg2=cosb-cosg
3600 c               fac3=dsqrt(-ael6i)/r0ij**3     
3601                 fac3=dsqrt(-ael6i)*r3ij
3602 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3603                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3604                 if (ees0tmp.gt.0) then
3605                   ees0pij=dsqrt(ees0tmp)
3606                 else
3607                   ees0pij=0
3608                 endif
3609 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3610                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3611                 if (ees0tmp.gt.0) then
3612                   ees0mij=dsqrt(ees0tmp)
3613                 else
3614                   ees0mij=0
3615                 endif
3616 c               ees0mij=0.0D0
3617                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3618                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3619 C Diagnostics. Comment out or remove after debugging!
3620 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3621 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3622 c               ees0m(num_conti,i)=0.0D0
3623 C End diagnostics.
3624 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3625 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3626 C Angular derivatives of the contact function
3627                 ees0pij1=fac3/ees0pij 
3628                 ees0mij1=fac3/ees0mij
3629                 fac3p=-3.0D0*fac3*rrmij
3630                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3631                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3632 c               ees0mij1=0.0D0
3633                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3634                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3635                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3636                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3637                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3638                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3639                 ecosap=ecosa1+ecosa2
3640                 ecosbp=ecosb1+ecosb2
3641                 ecosgp=ecosg1+ecosg2
3642                 ecosam=ecosa1-ecosa2
3643                 ecosbm=ecosb1-ecosb2
3644                 ecosgm=ecosg1-ecosg2
3645 C Diagnostics
3646 c               ecosap=ecosa1
3647 c               ecosbp=ecosb1
3648 c               ecosgp=ecosg1
3649 c               ecosam=0.0D0
3650 c               ecosbm=0.0D0
3651 c               ecosgm=0.0D0
3652 C End diagnostics
3653                 facont_hb(num_conti,i)=fcont
3654                 fprimcont=fprimcont/rij
3655 cd              facont_hb(num_conti,i)=1.0D0
3656 C Following line is for diagnostics.
3657 cd              fprimcont=0.0D0
3658                 do k=1,3
3659                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3660                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3661                 enddo
3662                 do k=1,3
3663                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3664                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3665                 enddo
3666                 gggp(1)=gggp(1)+ees0pijp*xj
3667                 gggp(2)=gggp(2)+ees0pijp*yj
3668                 gggp(3)=gggp(3)+ees0pijp*zj
3669                 gggm(1)=gggm(1)+ees0mijp*xj
3670                 gggm(2)=gggm(2)+ees0mijp*yj
3671                 gggm(3)=gggm(3)+ees0mijp*zj
3672 C Derivatives due to the contact function
3673                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3674                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3675                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3676                 do k=1,3
3677 c
3678 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3679 c          following the change of gradient-summation algorithm.
3680 c
3681 cgrad                  ghalfp=0.5D0*gggp(k)
3682 cgrad                  ghalfm=0.5D0*gggm(k)
3683                   gacontp_hb1(k,num_conti,i)=!ghalfp
3684      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3685      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3686                   gacontp_hb2(k,num_conti,i)=!ghalfp
3687      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3688      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3689                   gacontp_hb3(k,num_conti,i)=gggp(k)
3690                   gacontm_hb1(k,num_conti,i)=!ghalfm
3691      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3692      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3693                   gacontm_hb2(k,num_conti,i)=!ghalfm
3694      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3695      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3696                   gacontm_hb3(k,num_conti,i)=gggm(k)
3697                 enddo
3698 C Diagnostics. Comment out or remove after debugging!
3699 cdiag           do k=1,3
3700 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3701 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3702 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3703 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3704 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3705 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3706 cdiag           enddo
3707               ENDIF ! wcorr
3708               endif  ! num_conti.le.maxconts
3709             endif  ! fcont.gt.0
3710           endif    ! j.gt.i+1
3711           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3712             do k=1,4
3713               do l=1,3
3714                 ghalf=0.5d0*agg(l,k)
3715                 aggi(l,k)=aggi(l,k)+ghalf
3716                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3717                 aggj(l,k)=aggj(l,k)+ghalf
3718               enddo
3719             enddo
3720             if (j.eq.nres-1 .and. i.lt.j-2) then
3721               do k=1,4
3722                 do l=1,3
3723                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3724                 enddo
3725               enddo
3726             endif
3727           endif
3728 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3729       return
3730       end
3731 C-----------------------------------------------------------------------------
3732       subroutine eturn3(i,eello_turn3)
3733 C Third- and fourth-order contributions from turns
3734       implicit real*8 (a-h,o-z)
3735       include 'DIMENSIONS'
3736       include 'COMMON.IOUNITS'
3737       include 'COMMON.GEO'
3738       include 'COMMON.VAR'
3739       include 'COMMON.LOCAL'
3740       include 'COMMON.CHAIN'
3741       include 'COMMON.DERIV'
3742       include 'COMMON.INTERACT'
3743       include 'COMMON.CONTACTS'
3744       include 'COMMON.TORSION'
3745       include 'COMMON.VECTORS'
3746       include 'COMMON.FFIELD'
3747       include 'COMMON.CONTROL'
3748       dimension ggg(3)
3749       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3750      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3751      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3752       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3753      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3754       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3755      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3756      &    num_conti,j1,j2
3757       j=i+2
3758 c      write (iout,*) "eturn3",i,j,j1,j2
3759       a_temp(1,1)=a22
3760       a_temp(1,2)=a23
3761       a_temp(2,1)=a32
3762       a_temp(2,2)=a33
3763 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3764 C
3765 C               Third-order contributions
3766 C        
3767 C                 (i+2)o----(i+3)
3768 C                      | |
3769 C                      | |
3770 C                 (i+1)o----i
3771 C
3772 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3773 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3774         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3775         call transpose2(auxmat(1,1),auxmat1(1,1))
3776         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3777         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3778         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3779      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3780 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3781 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3782 cd     &    ' eello_turn3_num',4*eello_turn3_num
3783 C Derivatives in gamma(i)
3784         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3785         call transpose2(auxmat2(1,1),auxmat3(1,1))
3786         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3787         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3788 C Derivatives in gamma(i+1)
3789         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3790         call transpose2(auxmat2(1,1),auxmat3(1,1))
3791         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3792         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3793      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3794 C Cartesian derivatives
3795         do l=1,3
3796 c            ghalf1=0.5d0*agg(l,1)
3797 c            ghalf2=0.5d0*agg(l,2)
3798 c            ghalf3=0.5d0*agg(l,3)
3799 c            ghalf4=0.5d0*agg(l,4)
3800           a_temp(1,1)=aggi(l,1)!+ghalf1
3801           a_temp(1,2)=aggi(l,2)!+ghalf2
3802           a_temp(2,1)=aggi(l,3)!+ghalf3
3803           a_temp(2,2)=aggi(l,4)!+ghalf4
3804           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3805           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3806      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3807           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3808           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3809           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3810           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3811           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3812           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3813      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3814           a_temp(1,1)=aggj(l,1)!+ghalf1
3815           a_temp(1,2)=aggj(l,2)!+ghalf2
3816           a_temp(2,1)=aggj(l,3)!+ghalf3
3817           a_temp(2,2)=aggj(l,4)!+ghalf4
3818           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3819           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3820      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3821           a_temp(1,1)=aggj1(l,1)
3822           a_temp(1,2)=aggj1(l,2)
3823           a_temp(2,1)=aggj1(l,3)
3824           a_temp(2,2)=aggj1(l,4)
3825           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3826           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3827      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3828         enddo
3829       return
3830       end
3831 C-------------------------------------------------------------------------------
3832       subroutine eturn4(i,eello_turn4)
3833 C Third- and fourth-order contributions from turns
3834       implicit real*8 (a-h,o-z)
3835       include 'DIMENSIONS'
3836       include 'COMMON.IOUNITS'
3837       include 'COMMON.GEO'
3838       include 'COMMON.VAR'
3839       include 'COMMON.LOCAL'
3840       include 'COMMON.CHAIN'
3841       include 'COMMON.DERIV'
3842       include 'COMMON.INTERACT'
3843       include 'COMMON.CONTACTS'
3844       include 'COMMON.TORSION'
3845       include 'COMMON.VECTORS'
3846       include 'COMMON.FFIELD'
3847       include 'COMMON.CONTROL'
3848       dimension ggg(3)
3849       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3850      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3851      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3852       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3853      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3854       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3855      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3856      &    num_conti,j1,j2
3857       j=i+3
3858 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3859 C
3860 C               Fourth-order contributions
3861 C        
3862 C                 (i+3)o----(i+4)
3863 C                     /  |
3864 C               (i+2)o   |
3865 C                     \  |
3866 C                 (i+1)o----i
3867 C
3868 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3869 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3870 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3871         a_temp(1,1)=a22
3872         a_temp(1,2)=a23
3873         a_temp(2,1)=a32
3874         a_temp(2,2)=a33
3875         iti1=itortyp(itype(i+1))
3876         iti2=itortyp(itype(i+2))
3877         iti3=itortyp(itype(i+3))
3878 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3879         call transpose2(EUg(1,1,i+1),e1t(1,1))
3880         call transpose2(Eug(1,1,i+2),e2t(1,1))
3881         call transpose2(Eug(1,1,i+3),e3t(1,1))
3882         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3883         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3884         s1=scalar2(b1(1,iti2),auxvec(1))
3885         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3886         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3887         s2=scalar2(b1(1,iti1),auxvec(1))
3888         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3889         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3890         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3891         eello_turn4=eello_turn4-(s1+s2+s3)
3892         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3893      &      'eturn4',i,j,-(s1+s2+s3)
3894 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3895 cd     &    ' eello_turn4_num',8*eello_turn4_num
3896 C Derivatives in gamma(i)
3897         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3898         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3899         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3900         s1=scalar2(b1(1,iti2),auxvec(1))
3901         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3902         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3904 C Derivatives in gamma(i+1)
3905         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3906         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3907         s2=scalar2(b1(1,iti1),auxvec(1))
3908         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3909         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3910         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3911         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3912 C Derivatives in gamma(i+2)
3913         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3914         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3915         s1=scalar2(b1(1,iti2),auxvec(1))
3916         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3917         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3920         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3923 C Cartesian derivatives
3924 C Derivatives of this turn contributions in DC(i+2)
3925         if (j.lt.nres-1) then
3926           do l=1,3
3927             a_temp(1,1)=agg(l,1)
3928             a_temp(1,2)=agg(l,2)
3929             a_temp(2,1)=agg(l,3)
3930             a_temp(2,2)=agg(l,4)
3931             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3932             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3933             s1=scalar2(b1(1,iti2),auxvec(1))
3934             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3935             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3936             s2=scalar2(b1(1,iti1),auxvec(1))
3937             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3938             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3939             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3940             ggg(l)=-(s1+s2+s3)
3941             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3942           enddo
3943         endif
3944 C Remaining derivatives of this turn contribution
3945         do l=1,3
3946           a_temp(1,1)=aggi(l,1)
3947           a_temp(1,2)=aggi(l,2)
3948           a_temp(2,1)=aggi(l,3)
3949           a_temp(2,2)=aggi(l,4)
3950           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3951           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3952           s1=scalar2(b1(1,iti2),auxvec(1))
3953           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3954           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3955           s2=scalar2(b1(1,iti1),auxvec(1))
3956           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3957           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3958           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3959           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3960           a_temp(1,1)=aggi1(l,1)
3961           a_temp(1,2)=aggi1(l,2)
3962           a_temp(2,1)=aggi1(l,3)
3963           a_temp(2,2)=aggi1(l,4)
3964           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3965           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3966           s1=scalar2(b1(1,iti2),auxvec(1))
3967           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3968           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3969           s2=scalar2(b1(1,iti1),auxvec(1))
3970           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3971           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3972           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3973           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3974           a_temp(1,1)=aggj(l,1)
3975           a_temp(1,2)=aggj(l,2)
3976           a_temp(2,1)=aggj(l,3)
3977           a_temp(2,2)=aggj(l,4)
3978           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3979           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3980           s1=scalar2(b1(1,iti2),auxvec(1))
3981           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3982           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3983           s2=scalar2(b1(1,iti1),auxvec(1))
3984           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3985           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3986           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3987           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3988           a_temp(1,1)=aggj1(l,1)
3989           a_temp(1,2)=aggj1(l,2)
3990           a_temp(2,1)=aggj1(l,3)
3991           a_temp(2,2)=aggj1(l,4)
3992           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3993           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3994           s1=scalar2(b1(1,iti2),auxvec(1))
3995           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3996           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3997           s2=scalar2(b1(1,iti1),auxvec(1))
3998           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3999           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4000           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4001 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4002           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4003         enddo
4004       return
4005       end
4006 C-----------------------------------------------------------------------------
4007       subroutine vecpr(u,v,w)
4008       implicit real*8(a-h,o-z)
4009       dimension u(3),v(3),w(3)
4010       w(1)=u(2)*v(3)-u(3)*v(2)
4011       w(2)=-u(1)*v(3)+u(3)*v(1)
4012       w(3)=u(1)*v(2)-u(2)*v(1)
4013       return
4014       end
4015 C-----------------------------------------------------------------------------
4016       subroutine unormderiv(u,ugrad,unorm,ungrad)
4017 C This subroutine computes the derivatives of a normalized vector u, given
4018 C the derivatives computed without normalization conditions, ugrad. Returns
4019 C ungrad.
4020       implicit none
4021       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4022       double precision vec(3)
4023       double precision scalar
4024       integer i,j
4025 c      write (2,*) 'ugrad',ugrad
4026 c      write (2,*) 'u',u
4027       do i=1,3
4028         vec(i)=scalar(ugrad(1,i),u(1))
4029       enddo
4030 c      write (2,*) 'vec',vec
4031       do i=1,3
4032         do j=1,3
4033           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4034         enddo
4035       enddo
4036 c      write (2,*) 'ungrad',ungrad
4037       return
4038       end
4039 C-----------------------------------------------------------------------------
4040       subroutine escp_soft_sphere(evdw2,evdw2_14)
4041 C
4042 C This subroutine calculates the excluded-volume interaction energy between
4043 C peptide-group centers and side chains and its gradient in virtual-bond and
4044 C side-chain vectors.
4045 C
4046       implicit real*8 (a-h,o-z)
4047       include 'DIMENSIONS'
4048       include 'COMMON.GEO'
4049       include 'COMMON.VAR'
4050       include 'COMMON.LOCAL'
4051       include 'COMMON.CHAIN'
4052       include 'COMMON.DERIV'
4053       include 'COMMON.INTERACT'
4054       include 'COMMON.FFIELD'
4055       include 'COMMON.IOUNITS'
4056       include 'COMMON.CONTROL'
4057       dimension ggg(3)
4058       evdw2=0.0D0
4059       evdw2_14=0.0d0
4060       r0_scp=4.5d0
4061 cd    print '(a)','Enter ESCP'
4062 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4063       do i=iatscp_s,iatscp_e
4064         iteli=itel(i)
4065         xi=0.5D0*(c(1,i)+c(1,i+1))
4066         yi=0.5D0*(c(2,i)+c(2,i+1))
4067         zi=0.5D0*(c(3,i)+c(3,i+1))
4068
4069         do iint=1,nscp_gr(i)
4070
4071         do j=iscpstart(i,iint),iscpend(i,iint)
4072           itypj=itype(j)
4073 C Uncomment following three lines for SC-p interactions
4074 c         xj=c(1,nres+j)-xi
4075 c         yj=c(2,nres+j)-yi
4076 c         zj=c(3,nres+j)-zi
4077 C Uncomment following three lines for Ca-p interactions
4078           xj=c(1,j)-xi
4079           yj=c(2,j)-yi
4080           zj=c(3,j)-zi
4081           rij=xj*xj+yj*yj+zj*zj
4082           r0ij=r0_scp
4083           r0ijsq=r0ij*r0ij
4084           if (rij.lt.r0ijsq) then
4085             evdwij=0.25d0*(rij-r0ijsq)**2
4086             fac=rij-r0ijsq
4087           else
4088             evdwij=0.0d0
4089             fac=0.0d0
4090           endif 
4091           evdw2=evdw2+evdwij
4092 C
4093 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4094 C
4095           ggg(1)=xj*fac
4096           ggg(2)=yj*fac
4097           ggg(3)=zj*fac
4098 cgrad          if (j.lt.i) then
4099 cd          write (iout,*) 'j<i'
4100 C Uncomment following three lines for SC-p interactions
4101 c           do k=1,3
4102 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4103 c           enddo
4104 cgrad          else
4105 cd          write (iout,*) 'j>i'
4106 cgrad            do k=1,3
4107 cgrad              ggg(k)=-ggg(k)
4108 C Uncomment following line for SC-p interactions
4109 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4110 cgrad            enddo
4111 cgrad          endif
4112 cgrad          do k=1,3
4113 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4114 cgrad          enddo
4115 cgrad          kstart=min0(i+1,j)
4116 cgrad          kend=max0(i-1,j-1)
4117 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4118 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4119 cgrad          do k=kstart,kend
4120 cgrad            do l=1,3
4121 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4122 cgrad            enddo
4123 cgrad          enddo
4124           do k=1,3
4125             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4126             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4127           enddo
4128         enddo
4129
4130         enddo ! iint
4131       enddo ! i
4132       return
4133       end
4134 C-----------------------------------------------------------------------------
4135       subroutine escp(evdw2,evdw2_14)
4136 C
4137 C This subroutine calculates the excluded-volume interaction energy between
4138 C peptide-group centers and side chains and its gradient in virtual-bond and
4139 C side-chain vectors.
4140 C
4141       implicit real*8 (a-h,o-z)
4142       include 'DIMENSIONS'
4143       include 'COMMON.GEO'
4144       include 'COMMON.VAR'
4145       include 'COMMON.LOCAL'
4146       include 'COMMON.CHAIN'
4147       include 'COMMON.DERIV'
4148       include 'COMMON.INTERACT'
4149       include 'COMMON.FFIELD'
4150       include 'COMMON.IOUNITS'
4151       include 'COMMON.CONTROL'
4152       dimension ggg(3)
4153       evdw2=0.0D0
4154       evdw2_14=0.0d0
4155 cd    print '(a)','Enter ESCP'
4156 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4157       do i=iatscp_s,iatscp_e
4158         iteli=itel(i)
4159         xi=0.5D0*(c(1,i)+c(1,i+1))
4160         yi=0.5D0*(c(2,i)+c(2,i+1))
4161         zi=0.5D0*(c(3,i)+c(3,i+1))
4162
4163         do iint=1,nscp_gr(i)
4164
4165         do j=iscpstart(i,iint),iscpend(i,iint)
4166           itypj=itype(j)
4167 C Uncomment following three lines for SC-p interactions
4168 c         xj=c(1,nres+j)-xi
4169 c         yj=c(2,nres+j)-yi
4170 c         zj=c(3,nres+j)-zi
4171 C Uncomment following three lines for Ca-p interactions
4172           xj=c(1,j)-xi
4173           yj=c(2,j)-yi
4174           zj=c(3,j)-zi
4175           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4176           fac=rrij**expon2
4177           e1=fac*fac*aad(itypj,iteli)
4178           e2=fac*bad(itypj,iteli)
4179           if (iabs(j-i) .le. 2) then
4180             e1=scal14*e1
4181             e2=scal14*e2
4182             evdw2_14=evdw2_14+e1+e2
4183           endif
4184           evdwij=e1+e2
4185           evdw2=evdw2+evdwij
4186           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4187      &        'evdw2',i,j,evdwij
4188 C
4189 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4190 C
4191           fac=-(evdwij+e1)*rrij
4192           ggg(1)=xj*fac
4193           ggg(2)=yj*fac
4194           ggg(3)=zj*fac
4195 cgrad          if (j.lt.i) then
4196 cd          write (iout,*) 'j<i'
4197 C Uncomment following three lines for SC-p interactions
4198 c           do k=1,3
4199 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4200 c           enddo
4201 cgrad          else
4202 cd          write (iout,*) 'j>i'
4203 cgrad            do k=1,3
4204 cgrad              ggg(k)=-ggg(k)
4205 C Uncomment following line for SC-p interactions
4206 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4207 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4208 cgrad            enddo
4209 cgrad          endif
4210 cgrad          do k=1,3
4211 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4212 cgrad          enddo
4213 cgrad          kstart=min0(i+1,j)
4214 cgrad          kend=max0(i-1,j-1)
4215 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4216 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4217 cgrad          do k=kstart,kend
4218 cgrad            do l=1,3
4219 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4220 cgrad            enddo
4221 cgrad          enddo
4222           do k=1,3
4223             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4224             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4225           enddo
4226         enddo
4227
4228         enddo ! iint
4229       enddo ! i
4230       do i=1,nct
4231         do j=1,3
4232           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4233           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4234           gradx_scp(j,i)=expon*gradx_scp(j,i)
4235         enddo
4236       enddo
4237 C******************************************************************************
4238 C
4239 C                              N O T E !!!
4240 C
4241 C To save time the factor EXPON has been extracted from ALL components
4242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4243 C use!
4244 C
4245 C******************************************************************************
4246       return
4247       end
4248 C--------------------------------------------------------------------------
4249       subroutine edis(ehpb)
4250
4251 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4252 C
4253       implicit real*8 (a-h,o-z)
4254       include 'DIMENSIONS'
4255       include 'COMMON.SBRIDGE'
4256       include 'COMMON.CHAIN'
4257       include 'COMMON.DERIV'
4258       include 'COMMON.VAR'
4259       include 'COMMON.INTERACT'
4260       include 'COMMON.IOUNITS'
4261       dimension ggg(3)
4262       ehpb=0.0D0
4263 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4264 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4265       if (link_end.eq.0) return
4266       do i=link_start,link_end
4267 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4268 C CA-CA distance used in regularization of structure.
4269         ii=ihpb(i)
4270         jj=jhpb(i)
4271 C iii and jjj point to the residues for which the distance is assigned.
4272         if (ii.gt.nres) then
4273           iii=ii-nres
4274           jjj=jj-nres 
4275         else
4276           iii=ii
4277           jjj=jj
4278         endif
4279 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4280 c     &    dhpb(i),dhpb1(i),forcon(i)
4281 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4282 C    distance and angle dependent SS bond potential.
4283 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4284 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4285         if (.not.dyn_ss .and. i.le.nss) then
4286 C 15/02/13 CC dynamic SSbond - additional check
4287          if (ii.gt.nres 
4288      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4289           call ssbond_ene(iii,jjj,eij)
4290           ehpb=ehpb+2*eij
4291          endif
4292 cd          write (iout,*) "eij",eij
4293         else if (ii.gt.nres .and. jj.gt.nres) then
4294 c Restraints from contact prediction
4295           dd=dist(ii,jj)
4296           if (dhpb1(i).gt.0.0d0) then
4297             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4298             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4299 c            write (iout,*) "beta nmr",
4300 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4301           else
4302             dd=dist(ii,jj)
4303             rdis=dd-dhpb(i)
4304 C Get the force constant corresponding to this distance.
4305             waga=forcon(i)
4306 C Calculate the contribution to energy.
4307             ehpb=ehpb+waga*rdis*rdis
4308 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4309 C
4310 C Evaluate gradient.
4311 C
4312             fac=waga*rdis/dd
4313           endif  
4314           do j=1,3
4315             ggg(j)=fac*(c(j,jj)-c(j,ii))
4316           enddo
4317           do j=1,3
4318             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4319             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4320           enddo
4321           do k=1,3
4322             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4323             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4324           enddo
4325         else
4326 C Calculate the distance between the two points and its difference from the
4327 C target distance.
4328           dd=dist(ii,jj)
4329           if (dhpb1(i).gt.0.0d0) then
4330             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4331             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4332 c            write (iout,*) "alph nmr",
4333 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4334           else
4335             rdis=dd-dhpb(i)
4336 C Get the force constant corresponding to this distance.
4337             waga=forcon(i)
4338 C Calculate the contribution to energy.
4339             ehpb=ehpb+waga*rdis*rdis
4340 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4341 C
4342 C Evaluate gradient.
4343 C
4344             fac=waga*rdis/dd
4345           endif
4346 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4347 cd   &   ' waga=',waga,' fac=',fac
4348             do j=1,3
4349               ggg(j)=fac*(c(j,jj)-c(j,ii))
4350             enddo
4351 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4352 C If this is a SC-SC distance, we need to calculate the contributions to the
4353 C Cartesian gradient in the SC vectors (ghpbx).
4354           if (iii.lt.ii) then
4355           do j=1,3
4356             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4357             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4358           enddo
4359           endif
4360 cgrad        do j=iii,jjj-1
4361 cgrad          do k=1,3
4362 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4363 cgrad          enddo
4364 cgrad        enddo
4365           do k=1,3
4366             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4367             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4368           enddo
4369         endif
4370       enddo
4371       ehpb=0.5D0*ehpb
4372       return
4373       end
4374 C--------------------------------------------------------------------------
4375       subroutine ssbond_ene(i,j,eij)
4376
4377 C Calculate the distance and angle dependent SS-bond potential energy
4378 C using a free-energy function derived based on RHF/6-31G** ab initio
4379 C calculations of diethyl disulfide.
4380 C
4381 C A. Liwo and U. Kozlowska, 11/24/03
4382 C
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.SBRIDGE'
4386       include 'COMMON.CHAIN'
4387       include 'COMMON.DERIV'
4388       include 'COMMON.LOCAL'
4389       include 'COMMON.INTERACT'
4390       include 'COMMON.VAR'
4391       include 'COMMON.IOUNITS'
4392       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4393       itypi=itype(i)
4394       xi=c(1,nres+i)
4395       yi=c(2,nres+i)
4396       zi=c(3,nres+i)
4397       dxi=dc_norm(1,nres+i)
4398       dyi=dc_norm(2,nres+i)
4399       dzi=dc_norm(3,nres+i)
4400 c      dsci_inv=dsc_inv(itypi)
4401       dsci_inv=vbld_inv(nres+i)
4402       itypj=itype(j)
4403 c      dscj_inv=dsc_inv(itypj)
4404       dscj_inv=vbld_inv(nres+j)
4405       xj=c(1,nres+j)-xi
4406       yj=c(2,nres+j)-yi
4407       zj=c(3,nres+j)-zi
4408       dxj=dc_norm(1,nres+j)
4409       dyj=dc_norm(2,nres+j)
4410       dzj=dc_norm(3,nres+j)
4411       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4412       rij=dsqrt(rrij)
4413       erij(1)=xj*rij
4414       erij(2)=yj*rij
4415       erij(3)=zj*rij
4416       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4417       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4418       om12=dxi*dxj+dyi*dyj+dzi*dzj
4419       do k=1,3
4420         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4421         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4422       enddo
4423       rij=1.0d0/rij
4424       deltad=rij-d0cm
4425       deltat1=1.0d0-om1
4426       deltat2=1.0d0+om2
4427       deltat12=om2-om1+2.0d0
4428       cosphi=om12-om1*om2
4429       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4430      &  +akct*deltad*deltat12+ebr
4431      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4432 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4433 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4434 c     &  " deltat12",deltat12," eij",eij 
4435       ed=2*akcm*deltad+akct*deltat12
4436       pom1=akct*deltad
4437       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4438       eom1=-2*akth*deltat1-pom1-om2*pom2
4439       eom2= 2*akth*deltat2+pom1-om1*pom2
4440       eom12=pom2
4441       do k=1,3
4442         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4443         ghpbx(k,i)=ghpbx(k,i)-ggk
4444      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4445      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4446         ghpbx(k,j)=ghpbx(k,j)+ggk
4447      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4448      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4449         ghpbc(k,i)=ghpbc(k,i)-ggk
4450         ghpbc(k,j)=ghpbc(k,j)+ggk
4451       enddo
4452 C
4453 C Calculate the components of the gradient in DC and X
4454 C
4455 cgrad      do k=i,j-1
4456 cgrad        do l=1,3
4457 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4458 cgrad        enddo
4459 cgrad      enddo
4460       return
4461       end
4462 C--------------------------------------------------------------------------
4463       subroutine ebond(estr)
4464 c
4465 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4466 c
4467       implicit real*8 (a-h,o-z)
4468       include 'DIMENSIONS'
4469       include 'COMMON.LOCAL'
4470       include 'COMMON.GEO'
4471       include 'COMMON.INTERACT'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.VAR'
4474       include 'COMMON.CHAIN'
4475       include 'COMMON.IOUNITS'
4476       include 'COMMON.NAMES'
4477       include 'COMMON.FFIELD'
4478       include 'COMMON.CONTROL'
4479       include 'COMMON.SETUP'
4480       double precision u(3),ud(3)
4481       estr=0.0d0
4482       do i=ibondp_start,ibondp_end
4483         diff = vbld(i)-vbldp0
4484 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4485         estr=estr+diff*diff
4486         do j=1,3
4487           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4488         enddo
4489 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4490       enddo
4491       estr=0.5d0*AKP*estr
4492 c
4493 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4494 c
4495       do i=ibond_start,ibond_end
4496         iti=itype(i)
4497         if (iti.ne.10) then
4498           nbi=nbondterm(iti)
4499           if (nbi.eq.1) then
4500             diff=vbld(i+nres)-vbldsc0(1,iti)
4501 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4502 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4503             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4504             do j=1,3
4505               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4506             enddo
4507           else
4508             do j=1,nbi
4509               diff=vbld(i+nres)-vbldsc0(j,iti) 
4510               ud(j)=aksc(j,iti)*diff
4511               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4512             enddo
4513             uprod=u(1)
4514             do j=2,nbi
4515               uprod=uprod*u(j)
4516             enddo
4517             usum=0.0d0
4518             usumsqder=0.0d0
4519             do j=1,nbi
4520               uprod1=1.0d0
4521               uprod2=1.0d0
4522               do k=1,nbi
4523                 if (k.ne.j) then
4524                   uprod1=uprod1*u(k)
4525                   uprod2=uprod2*u(k)*u(k)
4526                 endif
4527               enddo
4528               usum=usum+uprod1
4529               usumsqder=usumsqder+ud(j)*uprod2   
4530             enddo
4531             estr=estr+uprod/usum
4532             do j=1,3
4533              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4534             enddo
4535           endif
4536         endif
4537       enddo
4538       return
4539       end 
4540 #ifdef CRYST_THETA
4541 C--------------------------------------------------------------------------
4542       subroutine ebend(etheta)
4543 C
4544 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4545 C angles gamma and its derivatives in consecutive thetas and gammas.
4546 C
4547       implicit real*8 (a-h,o-z)
4548       include 'DIMENSIONS'
4549       include 'COMMON.LOCAL'
4550       include 'COMMON.GEO'
4551       include 'COMMON.INTERACT'
4552       include 'COMMON.DERIV'
4553       include 'COMMON.VAR'
4554       include 'COMMON.CHAIN'
4555       include 'COMMON.IOUNITS'
4556       include 'COMMON.NAMES'
4557       include 'COMMON.FFIELD'
4558       include 'COMMON.CONTROL'
4559       common /calcthet/ term1,term2,termm,diffak,ratak,
4560      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4561      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4562       double precision y(2),z(2)
4563       delta=0.02d0*pi
4564 c      time11=dexp(-2*time)
4565 c      time12=1.0d0
4566       etheta=0.0D0
4567 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4568       do i=ithet_start,ithet_end
4569 C Zero the energy function and its derivative at 0 or pi.
4570         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4571         it=itype(i-1)
4572         if (i.gt.3) then
4573 #ifdef OSF
4574           phii=phi(i)
4575           if (phii.ne.phii) phii=150.0
4576 #else
4577           phii=phi(i)
4578 #endif
4579           y(1)=dcos(phii)
4580           y(2)=dsin(phii)
4581         else 
4582           y(1)=0.0D0
4583           y(2)=0.0D0
4584         endif
4585         if (i.lt.nres) then
4586 #ifdef OSF
4587           phii1=phi(i+1)
4588           if (phii1.ne.phii1) phii1=150.0
4589           phii1=pinorm(phii1)
4590           z(1)=cos(phii1)
4591 #else
4592           phii1=phi(i+1)
4593           z(1)=dcos(phii1)
4594 #endif
4595           z(2)=dsin(phii1)
4596         else
4597           z(1)=0.0D0
4598           z(2)=0.0D0
4599         endif  
4600 C Calculate the "mean" value of theta from the part of the distribution
4601 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4602 C In following comments this theta will be referred to as t_c.
4603         thet_pred_mean=0.0d0
4604         do k=1,2
4605           athetk=athet(k,it)
4606           bthetk=bthet(k,it)
4607           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4608         enddo
4609         dthett=thet_pred_mean*ssd
4610         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4611 C Derivatives of the "mean" values in gamma1 and gamma2.
4612         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4613         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4614         if (theta(i).gt.pi-delta) then
4615           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4616      &         E_tc0)
4617           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4618           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4619           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4620      &        E_theta)
4621           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4622      &        E_tc)
4623         else if (theta(i).lt.delta) then
4624           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4625           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4626           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4627      &        E_theta)
4628           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4630      &        E_tc)
4631         else
4632           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4633      &        E_theta,E_tc)
4634         endif
4635         etheta=etheta+ethetai
4636         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4637      &      'ebend',i,ethetai
4638         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4639         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4640         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4641       enddo
4642 C Ufff.... We've done all this!!! 
4643       return
4644       end
4645 C---------------------------------------------------------------------------
4646       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4647      &     E_tc)
4648       implicit real*8 (a-h,o-z)
4649       include 'DIMENSIONS'
4650       include 'COMMON.LOCAL'
4651       include 'COMMON.IOUNITS'
4652       common /calcthet/ term1,term2,termm,diffak,ratak,
4653      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4654      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4655 C Calculate the contributions to both Gaussian lobes.
4656 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4657 C The "polynomial part" of the "standard deviation" of this part of 
4658 C the distribution.
4659         sig=polthet(3,it)
4660         do j=2,0,-1
4661           sig=sig*thet_pred_mean+polthet(j,it)
4662         enddo
4663 C Derivative of the "interior part" of the "standard deviation of the" 
4664 C gamma-dependent Gaussian lobe in t_c.
4665         sigtc=3*polthet(3,it)
4666         do j=2,1,-1
4667           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4668         enddo
4669         sigtc=sig*sigtc
4670 C Set the parameters of both Gaussian lobes of the distribution.
4671 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4672         fac=sig*sig+sigc0(it)
4673         sigcsq=fac+fac
4674         sigc=1.0D0/sigcsq
4675 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4676         sigsqtc=-4.0D0*sigcsq*sigtc
4677 c       print *,i,sig,sigtc,sigsqtc
4678 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4679         sigtc=-sigtc/(fac*fac)
4680 C Following variable is sigma(t_c)**(-2)
4681         sigcsq=sigcsq*sigcsq
4682         sig0i=sig0(it)
4683         sig0inv=1.0D0/sig0i**2
4684         delthec=thetai-thet_pred_mean
4685         delthe0=thetai-theta0i
4686         term1=-0.5D0*sigcsq*delthec*delthec
4687         term2=-0.5D0*sig0inv*delthe0*delthe0
4688 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4689 C NaNs in taking the logarithm. We extract the largest exponent which is added
4690 C to the energy (this being the log of the distribution) at the end of energy
4691 C term evaluation for this virtual-bond angle.
4692         if (term1.gt.term2) then
4693           termm=term1
4694           term2=dexp(term2-termm)
4695           term1=1.0d0
4696         else
4697           termm=term2
4698           term1=dexp(term1-termm)
4699           term2=1.0d0
4700         endif
4701 C The ratio between the gamma-independent and gamma-dependent lobes of
4702 C the distribution is a Gaussian function of thet_pred_mean too.
4703         diffak=gthet(2,it)-thet_pred_mean
4704         ratak=diffak/gthet(3,it)**2
4705         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4706 C Let's differentiate it in thet_pred_mean NOW.
4707         aktc=ak*ratak
4708 C Now put together the distribution terms to make complete distribution.
4709         termexp=term1+ak*term2
4710         termpre=sigc+ak*sig0i
4711 C Contribution of the bending energy from this theta is just the -log of
4712 C the sum of the contributions from the two lobes and the pre-exponential
4713 C factor. Simple enough, isn't it?
4714         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4715 C NOW the derivatives!!!
4716 C 6/6/97 Take into account the deformation.
4717         E_theta=(delthec*sigcsq*term1
4718      &       +ak*delthe0*sig0inv*term2)/termexp
4719         E_tc=((sigtc+aktc*sig0i)/termpre
4720      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4721      &       aktc*term2)/termexp)
4722       return
4723       end
4724 c-----------------------------------------------------------------------------
4725       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4726       implicit real*8 (a-h,o-z)
4727       include 'DIMENSIONS'
4728       include 'COMMON.LOCAL'
4729       include 'COMMON.IOUNITS'
4730       common /calcthet/ term1,term2,termm,diffak,ratak,
4731      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4732      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4733       delthec=thetai-thet_pred_mean
4734       delthe0=thetai-theta0i
4735 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4736       t3 = thetai-thet_pred_mean
4737       t6 = t3**2
4738       t9 = term1
4739       t12 = t3*sigcsq
4740       t14 = t12+t6*sigsqtc
4741       t16 = 1.0d0
4742       t21 = thetai-theta0i
4743       t23 = t21**2
4744       t26 = term2
4745       t27 = t21*t26
4746       t32 = termexp
4747       t40 = t32**2
4748       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4749      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4750      & *(-t12*t9-ak*sig0inv*t27)
4751       return
4752       end
4753 #else
4754 C--------------------------------------------------------------------------
4755       subroutine ebend(etheta)
4756 C
4757 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4758 C angles gamma and its derivatives in consecutive thetas and gammas.
4759 C ab initio-derived potentials from 
4760 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4761 C
4762       implicit real*8 (a-h,o-z)
4763       include 'DIMENSIONS'
4764       include 'COMMON.LOCAL'
4765       include 'COMMON.GEO'
4766       include 'COMMON.INTERACT'
4767       include 'COMMON.DERIV'
4768       include 'COMMON.VAR'
4769       include 'COMMON.CHAIN'
4770       include 'COMMON.IOUNITS'
4771       include 'COMMON.NAMES'
4772       include 'COMMON.FFIELD'
4773       include 'COMMON.CONTROL'
4774       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4775      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4776      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4777      & sinph1ph2(maxdouble,maxdouble)
4778       logical lprn /.false./, lprn1 /.false./
4779       etheta=0.0D0
4780       do i=ithet_start,ithet_end
4781         dethetai=0.0d0
4782         dephii=0.0d0
4783         dephii1=0.0d0
4784         theti2=0.5d0*theta(i)
4785         ityp2=ithetyp(itype(i-1))
4786         do k=1,nntheterm
4787           coskt(k)=dcos(k*theti2)
4788           sinkt(k)=dsin(k*theti2)
4789         enddo
4790         if (i.gt.3) then
4791 #ifdef OSF
4792           phii=phi(i)
4793           if (phii.ne.phii) phii=150.0
4794 #else
4795           phii=phi(i)
4796 #endif
4797           ityp1=ithetyp(itype(i-2))
4798           do k=1,nsingle
4799             cosph1(k)=dcos(k*phii)
4800             sinph1(k)=dsin(k*phii)
4801           enddo
4802         else
4803           phii=0.0d0
4804           ityp1=nthetyp+1
4805           do k=1,nsingle
4806             cosph1(k)=0.0d0
4807             sinph1(k)=0.0d0
4808           enddo 
4809         endif
4810         if (i.lt.nres) then
4811 #ifdef OSF
4812           phii1=phi(i+1)
4813           if (phii1.ne.phii1) phii1=150.0
4814           phii1=pinorm(phii1)
4815 #else
4816           phii1=phi(i+1)
4817 #endif
4818           ityp3=ithetyp(itype(i))
4819           do k=1,nsingle
4820             cosph2(k)=dcos(k*phii1)
4821             sinph2(k)=dsin(k*phii1)
4822           enddo
4823         else
4824           phii1=0.0d0
4825           ityp3=nthetyp+1
4826           do k=1,nsingle
4827             cosph2(k)=0.0d0
4828             sinph2(k)=0.0d0
4829           enddo
4830         endif  
4831         ethetai=aa0thet(ityp1,ityp2,ityp3)
4832         do k=1,ndouble
4833           do l=1,k-1
4834             ccl=cosph1(l)*cosph2(k-l)
4835             ssl=sinph1(l)*sinph2(k-l)
4836             scl=sinph1(l)*cosph2(k-l)
4837             csl=cosph1(l)*sinph2(k-l)
4838             cosph1ph2(l,k)=ccl-ssl
4839             cosph1ph2(k,l)=ccl+ssl
4840             sinph1ph2(l,k)=scl+csl
4841             sinph1ph2(k,l)=scl-csl
4842           enddo
4843         enddo
4844         if (lprn) then
4845         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4846      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4847         write (iout,*) "coskt and sinkt"
4848         do k=1,nntheterm
4849           write (iout,*) k,coskt(k),sinkt(k)
4850         enddo
4851         endif
4852         do k=1,ntheterm
4853           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4854           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4855      &      *coskt(k)
4856           if (lprn)
4857      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4858      &     " ethetai",ethetai
4859         enddo
4860         if (lprn) then
4861         write (iout,*) "cosph and sinph"
4862         do k=1,nsingle
4863           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4864         enddo
4865         write (iout,*) "cosph1ph2 and sinph2ph2"
4866         do k=2,ndouble
4867           do l=1,k-1
4868             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4869      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4870           enddo
4871         enddo
4872         write(iout,*) "ethetai",ethetai
4873         endif
4874         do m=1,ntheterm2
4875           do k=1,nsingle
4876             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4877      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4878      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4879      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4880             ethetai=ethetai+sinkt(m)*aux
4881             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4882             dephii=dephii+k*sinkt(m)*(
4883      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4884      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4885             dephii1=dephii1+k*sinkt(m)*(
4886      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4887      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4888             if (lprn)
4889      &      write (iout,*) "m",m," k",k," bbthet",
4890      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4891      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4892      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4893      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4894           enddo
4895         enddo
4896         if (lprn)
4897      &  write(iout,*) "ethetai",ethetai
4898         do m=1,ntheterm3
4899           do k=2,ndouble
4900             do l=1,k-1
4901               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4902      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4903      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4904      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4905               ethetai=ethetai+sinkt(m)*aux
4906               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4907               dephii=dephii+l*sinkt(m)*(
4908      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4909      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4910      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4911      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4912               dephii1=dephii1+(k-l)*sinkt(m)*(
4913      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4914      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4915      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4916      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4917               if (lprn) then
4918               write (iout,*) "m",m," k",k," l",l," ffthet",
4919      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4920      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4921      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4922      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4923               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4924      &            cosph1ph2(k,l)*sinkt(m),
4925      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4926               endif
4927             enddo
4928           enddo
4929         enddo
4930 10      continue
4931         if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
4932      &   i,theta(i)*rad2deg,phii*rad2deg,
4933      &   phii1*rad2deg,ethetai
4934         etheta=etheta+ethetai
4935         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4936         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4937         gloc(nphi+i-2,icg)=wang*dethetai
4938       enddo
4939       return
4940       end
4941 #endif
4942 #ifdef CRYST_SC
4943 c-----------------------------------------------------------------------------
4944       subroutine esc(escloc)
4945 C Calculate the local energy of a side chain and its derivatives in the
4946 C corresponding virtual-bond valence angles THETA and the spherical angles 
4947 C ALPHA and OMEGA.
4948       implicit real*8 (a-h,o-z)
4949       include 'DIMENSIONS'
4950       include 'COMMON.GEO'
4951       include 'COMMON.LOCAL'
4952       include 'COMMON.VAR'
4953       include 'COMMON.INTERACT'
4954       include 'COMMON.DERIV'
4955       include 'COMMON.CHAIN'
4956       include 'COMMON.IOUNITS'
4957       include 'COMMON.NAMES'
4958       include 'COMMON.FFIELD'
4959       include 'COMMON.CONTROL'
4960       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4961      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4962       common /sccalc/ time11,time12,time112,theti,it,nlobit
4963       delta=0.02d0*pi
4964       escloc=0.0D0
4965 c     write (iout,'(a)') 'ESC'
4966       do i=loc_start,loc_end
4967         it=itype(i)
4968         if (it.eq.10) goto 1
4969         nlobit=nlob(it)
4970 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4971 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4972         theti=theta(i+1)-pipol
4973         x(1)=dtan(theti)
4974         x(2)=alph(i)
4975         x(3)=omeg(i)
4976
4977         if (x(2).gt.pi-delta) then
4978           xtemp(1)=x(1)
4979           xtemp(2)=pi-delta
4980           xtemp(3)=x(3)
4981           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4982           xtemp(2)=pi
4983           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4984           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4985      &        escloci,dersc(2))
4986           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4987      &        ddersc0(1),dersc(1))
4988           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4989      &        ddersc0(3),dersc(3))
4990           xtemp(2)=pi-delta
4991           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4992           xtemp(2)=pi
4993           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4994           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4995      &            dersc0(2),esclocbi,dersc02)
4996           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4997      &            dersc12,dersc01)
4998           call splinthet(x(2),0.5d0*delta,ss,ssd)
4999           dersc0(1)=dersc01
5000           dersc0(2)=dersc02
5001           dersc0(3)=0.0d0
5002           do k=1,3
5003             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5004           enddo
5005           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5006 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5007 c    &             esclocbi,ss,ssd
5008           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5009 c         escloci=esclocbi
5010 c         write (iout,*) escloci
5011         else if (x(2).lt.delta) then
5012           xtemp(1)=x(1)
5013           xtemp(2)=delta
5014           xtemp(3)=x(3)
5015           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5016           xtemp(2)=0.0d0
5017           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5018           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5019      &        escloci,dersc(2))
5020           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5021      &        ddersc0(1),dersc(1))
5022           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5023      &        ddersc0(3),dersc(3))
5024           xtemp(2)=delta
5025           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5026           xtemp(2)=0.0d0
5027           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5028           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5029      &            dersc0(2),esclocbi,dersc02)
5030           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5031      &            dersc12,dersc01)
5032           dersc0(1)=dersc01
5033           dersc0(2)=dersc02
5034           dersc0(3)=0.0d0
5035           call splinthet(x(2),0.5d0*delta,ss,ssd)
5036           do k=1,3
5037             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5038           enddo
5039           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5040 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5041 c    &             esclocbi,ss,ssd
5042           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5043 c         write (iout,*) escloci
5044         else
5045           call enesc(x,escloci,dersc,ddummy,.false.)
5046         endif
5047
5048         escloc=escloc+escloci
5049         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5050      &     'escloc',i,escloci
5051 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5052
5053         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5054      &   wscloc*dersc(1)
5055         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5056         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5057     1   continue
5058       enddo
5059       return
5060       end
5061 C---------------------------------------------------------------------------
5062       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5063       implicit real*8 (a-h,o-z)
5064       include 'DIMENSIONS'
5065       include 'COMMON.GEO'
5066       include 'COMMON.LOCAL'
5067       include 'COMMON.IOUNITS'
5068       common /sccalc/ time11,time12,time112,theti,it,nlobit
5069       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5070       double precision contr(maxlob,-1:1)
5071       logical mixed
5072 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5073         escloc_i=0.0D0
5074         do j=1,3
5075           dersc(j)=0.0D0
5076           if (mixed) ddersc(j)=0.0d0
5077         enddo
5078         x3=x(3)
5079
5080 C Because of periodicity of the dependence of the SC energy in omega we have
5081 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5082 C To avoid underflows, first compute & store the exponents.
5083
5084         do iii=-1,1
5085
5086           x(3)=x3+iii*dwapi
5087  
5088           do j=1,nlobit
5089             do k=1,3
5090               z(k)=x(k)-censc(k,j,it)
5091             enddo
5092             do k=1,3
5093               Axk=0.0D0
5094               do l=1,3
5095                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5096               enddo
5097               Ax(k,j,iii)=Axk
5098             enddo 
5099             expfac=0.0D0 
5100             do k=1,3
5101               expfac=expfac+Ax(k,j,iii)*z(k)
5102             enddo
5103             contr(j,iii)=expfac
5104           enddo ! j
5105
5106         enddo ! iii
5107
5108         x(3)=x3
5109 C As in the case of ebend, we want to avoid underflows in exponentiation and
5110 C subsequent NaNs and INFs in energy calculation.
5111 C Find the largest exponent
5112         emin=contr(1,-1)
5113         do iii=-1,1
5114           do j=1,nlobit
5115             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5116           enddo 
5117         enddo
5118         emin=0.5D0*emin
5119 cd      print *,'it=',it,' emin=',emin
5120
5121 C Compute the contribution to SC energy and derivatives
5122         do iii=-1,1
5123
5124           do j=1,nlobit
5125 #ifdef OSF
5126             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5127             if(adexp.ne.adexp) adexp=1.0
5128             expfac=dexp(adexp)
5129 #else
5130             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5131 #endif
5132 cd          print *,'j=',j,' expfac=',expfac
5133             escloc_i=escloc_i+expfac
5134             do k=1,3
5135               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5136             enddo
5137             if (mixed) then
5138               do k=1,3,2
5139                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5140      &            +gaussc(k,2,j,it))*expfac
5141               enddo
5142             endif
5143           enddo
5144
5145         enddo ! iii
5146
5147         dersc(1)=dersc(1)/cos(theti)**2
5148         ddersc(1)=ddersc(1)/cos(theti)**2
5149         ddersc(3)=ddersc(3)
5150
5151         escloci=-(dlog(escloc_i)-emin)
5152         do j=1,3
5153           dersc(j)=dersc(j)/escloc_i
5154         enddo
5155         if (mixed) then
5156           do j=1,3,2
5157             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5158           enddo
5159         endif
5160       return
5161       end
5162 C------------------------------------------------------------------------------
5163       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5164       implicit real*8 (a-h,o-z)
5165       include 'DIMENSIONS'
5166       include 'COMMON.GEO'
5167       include 'COMMON.LOCAL'
5168       include 'COMMON.IOUNITS'
5169       common /sccalc/ time11,time12,time112,theti,it,nlobit
5170       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5171       double precision contr(maxlob)
5172       logical mixed
5173
5174       escloc_i=0.0D0
5175
5176       do j=1,3
5177         dersc(j)=0.0D0
5178       enddo
5179
5180       do j=1,nlobit
5181         do k=1,2
5182           z(k)=x(k)-censc(k,j,it)
5183         enddo
5184         z(3)=dwapi
5185         do k=1,3
5186           Axk=0.0D0
5187           do l=1,3
5188             Axk=Axk+gaussc(l,k,j,it)*z(l)
5189           enddo
5190           Ax(k,j)=Axk
5191         enddo 
5192         expfac=0.0D0 
5193         do k=1,3
5194           expfac=expfac+Ax(k,j)*z(k)
5195         enddo
5196         contr(j)=expfac
5197       enddo ! j
5198
5199 C As in the case of ebend, we want to avoid underflows in exponentiation and
5200 C subsequent NaNs and INFs in energy calculation.
5201 C Find the largest exponent
5202       emin=contr(1)
5203       do j=1,nlobit
5204         if (emin.gt.contr(j)) emin=contr(j)
5205       enddo 
5206       emin=0.5D0*emin
5207  
5208 C Compute the contribution to SC energy and derivatives
5209
5210       dersc12=0.0d0
5211       do j=1,nlobit
5212         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5213         escloc_i=escloc_i+expfac
5214         do k=1,2
5215           dersc(k)=dersc(k)+Ax(k,j)*expfac
5216         enddo
5217         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5218      &            +gaussc(1,2,j,it))*expfac
5219         dersc(3)=0.0d0
5220       enddo
5221
5222       dersc(1)=dersc(1)/cos(theti)**2
5223       dersc12=dersc12/cos(theti)**2
5224       escloci=-(dlog(escloc_i)-emin)
5225       do j=1,2
5226         dersc(j)=dersc(j)/escloc_i
5227       enddo
5228       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5229       return
5230       end
5231 #else
5232 c----------------------------------------------------------------------------------
5233       subroutine esc(escloc)
5234 C Calculate the local energy of a side chain and its derivatives in the
5235 C corresponding virtual-bond valence angles THETA and the spherical angles 
5236 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5237 C added by Urszula Kozlowska. 07/11/2007
5238 C
5239       implicit real*8 (a-h,o-z)
5240       include 'DIMENSIONS'
5241       include 'COMMON.GEO'
5242       include 'COMMON.LOCAL'
5243       include 'COMMON.VAR'
5244       include 'COMMON.SCROT'
5245       include 'COMMON.INTERACT'
5246       include 'COMMON.DERIV'
5247       include 'COMMON.CHAIN'
5248       include 'COMMON.IOUNITS'
5249       include 'COMMON.NAMES'
5250       include 'COMMON.FFIELD'
5251       include 'COMMON.CONTROL'
5252       include 'COMMON.VECTORS'
5253       double precision x_prime(3),y_prime(3),z_prime(3)
5254      &    , sumene,dsc_i,dp2_i,x(65),
5255      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5256      &    de_dxx,de_dyy,de_dzz,de_dt
5257       double precision s1_t,s1_6_t,s2_t,s2_6_t
5258       double precision 
5259      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5260      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5261      & dt_dCi(3),dt_dCi1(3)
5262       common /sccalc/ time11,time12,time112,theti,it,nlobit
5263       delta=0.02d0*pi
5264       escloc=0.0D0
5265       do i=loc_start,loc_end
5266         costtab(i+1) =dcos(theta(i+1))
5267         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5268         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5269         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5270         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5271         cosfac=dsqrt(cosfac2)
5272         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5273         sinfac=dsqrt(sinfac2)
5274         it=itype(i)
5275         if (it.eq.10) goto 1
5276 c
5277 C  Compute the axes of tghe local cartesian coordinates system; store in
5278 c   x_prime, y_prime and z_prime 
5279 c
5280         do j=1,3
5281           x_prime(j) = 0.00
5282           y_prime(j) = 0.00
5283           z_prime(j) = 0.00
5284         enddo
5285 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5286 C     &   dc_norm(3,i+nres)
5287         do j = 1,3
5288           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5289           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5290         enddo
5291         do j = 1,3
5292           z_prime(j) = -uz(j,i-1)
5293         enddo     
5294 c       write (2,*) "i",i
5295 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5296 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5297 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5298 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5299 c      & " xy",scalar(x_prime(1),y_prime(1)),
5300 c      & " xz",scalar(x_prime(1),z_prime(1)),
5301 c      & " yy",scalar(y_prime(1),y_prime(1)),
5302 c      & " yz",scalar(y_prime(1),z_prime(1)),
5303 c      & " zz",scalar(z_prime(1),z_prime(1))
5304 c
5305 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5306 C to local coordinate system. Store in xx, yy, zz.
5307 c
5308         xx=0.0d0
5309         yy=0.0d0
5310         zz=0.0d0
5311         do j = 1,3
5312           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5313           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5314           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5315         enddo
5316
5317         xxtab(i)=xx
5318         yytab(i)=yy
5319         zztab(i)=zz
5320 C
5321 C Compute the energy of the ith side cbain
5322 C
5323 c        write (2,*) "xx",xx," yy",yy," zz",zz
5324         it=itype(i)
5325         do j = 1,65
5326           x(j) = sc_parmin(j,it) 
5327         enddo
5328 #ifdef CHECK_COORD
5329 Cc diagnostics - remove later
5330         xx1 = dcos(alph(2))
5331         yy1 = dsin(alph(2))*dcos(omeg(2))
5332         zz1 = -dsin(alph(2))*dsin(omeg(2))
5333         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5334      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5335      &    xx1,yy1,zz1
5336 C,"  --- ", xx_w,yy_w,zz_w
5337 c end diagnostics
5338 #endif
5339         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5340      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5341      &   + x(10)*yy*zz
5342         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5343      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5344      & + x(20)*yy*zz
5345         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5346      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5347      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5348      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5349      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5350      &  +x(40)*xx*yy*zz
5351         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5352      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5353      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5354      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5355      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5356      &  +x(60)*xx*yy*zz
5357         dsc_i   = 0.743d0+x(61)
5358         dp2_i   = 1.9d0+x(62)
5359         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5360      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5361         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5362      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5363         s1=(1+x(63))/(0.1d0 + dscp1)
5364         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5365         s2=(1+x(65))/(0.1d0 + dscp2)
5366         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5367         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5368      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5369 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5370 c     &   sumene4,
5371 c     &   dscp1,dscp2,sumene
5372 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5373         escloc = escloc + sumene
5374 c        write (2,*) "i",i," escloc",sumene,escloc
5375 #ifdef DEBUG
5376 C
5377 C This section to check the numerical derivatives of the energy of ith side
5378 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5379 C #define DEBUG in the code to turn it on.
5380 C
5381         write (2,*) "sumene               =",sumene
5382         aincr=1.0d-7
5383         xxsave=xx
5384         xx=xx+aincr
5385         write (2,*) xx,yy,zz
5386         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5387         de_dxx_num=(sumenep-sumene)/aincr
5388         xx=xxsave
5389         write (2,*) "xx+ sumene from enesc=",sumenep
5390         yysave=yy
5391         yy=yy+aincr
5392         write (2,*) xx,yy,zz
5393         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5394         de_dyy_num=(sumenep-sumene)/aincr
5395         yy=yysave
5396         write (2,*) "yy+ sumene from enesc=",sumenep
5397         zzsave=zz
5398         zz=zz+aincr
5399         write (2,*) xx,yy,zz
5400         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5401         de_dzz_num=(sumenep-sumene)/aincr
5402         zz=zzsave
5403         write (2,*) "zz+ sumene from enesc=",sumenep
5404         costsave=cost2tab(i+1)
5405         sintsave=sint2tab(i+1)
5406         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5407         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5408         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5409         de_dt_num=(sumenep-sumene)/aincr
5410         write (2,*) " t+ sumene from enesc=",sumenep
5411         cost2tab(i+1)=costsave
5412         sint2tab(i+1)=sintsave
5413 C End of diagnostics section.
5414 #endif
5415 C        
5416 C Compute the gradient of esc
5417 C
5418         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5419         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5420         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5421         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5422         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5423         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5424         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5425         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5426         pom1=(sumene3*sint2tab(i+1)+sumene1)
5427      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5428         pom2=(sumene4*cost2tab(i+1)+sumene2)
5429      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5430         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5431         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5432      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5433      &  +x(40)*yy*zz
5434         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5435         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5436      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5437      &  +x(60)*yy*zz
5438         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5439      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5440      &        +(pom1+pom2)*pom_dx
5441 #ifdef DEBUG
5442         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5443 #endif
5444 C
5445         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5446         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5447      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5448      &  +x(40)*xx*zz
5449         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5450         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5451      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5452      &  +x(59)*zz**2 +x(60)*xx*zz
5453         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5454      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5455      &        +(pom1-pom2)*pom_dy
5456 #ifdef DEBUG
5457         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5458 #endif
5459 C
5460         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5461      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5462      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5463      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5464      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5465      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5466      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5467      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5468 #ifdef DEBUG
5469         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5470 #endif
5471 C
5472         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5473      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5474      &  +pom1*pom_dt1+pom2*pom_dt2
5475 #ifdef DEBUG
5476         write(2,*), "de_dt = ", de_dt,de_dt_num
5477 #endif
5478
5479 C
5480        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5481        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5482        cosfac2xx=cosfac2*xx
5483        sinfac2yy=sinfac2*yy
5484        do k = 1,3
5485          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5486      &      vbld_inv(i+1)
5487          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5488      &      vbld_inv(i)
5489          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5490          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5491 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5492 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5493 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5494 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5495          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5496          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5497          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5498          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5499          dZZ_Ci1(k)=0.0d0
5500          dZZ_Ci(k)=0.0d0
5501          do j=1,3
5502            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5503            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5504          enddo
5505           
5506          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5507          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5508          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5509 c
5510          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5511          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5512        enddo
5513
5514        do k=1,3
5515          dXX_Ctab(k,i)=dXX_Ci(k)
5516          dXX_C1tab(k,i)=dXX_Ci1(k)
5517          dYY_Ctab(k,i)=dYY_Ci(k)
5518          dYY_C1tab(k,i)=dYY_Ci1(k)
5519          dZZ_Ctab(k,i)=dZZ_Ci(k)
5520          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5521          dXX_XYZtab(k,i)=dXX_XYZ(k)
5522          dYY_XYZtab(k,i)=dYY_XYZ(k)
5523          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5524        enddo
5525
5526        do k = 1,3
5527 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5528 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5529 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5530 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5531 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5532 c     &    dt_dci(k)
5533 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5534 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5535          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5536      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5537          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5538      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5539          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5540      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5541        enddo
5542 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5543 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5544
5545 C to check gradient call subroutine check_grad
5546
5547     1 continue
5548       enddo
5549       return
5550       end
5551 c------------------------------------------------------------------------------
5552       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5553       implicit none
5554       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5555      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5556       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5557      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5558      &   + x(10)*yy*zz
5559       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5560      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5561      & + x(20)*yy*zz
5562       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5563      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5564      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5565      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5566      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5567      &  +x(40)*xx*yy*zz
5568       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5569      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5570      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5571      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5572      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5573      &  +x(60)*xx*yy*zz
5574       dsc_i   = 0.743d0+x(61)
5575       dp2_i   = 1.9d0+x(62)
5576       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5577      &          *(xx*cost2+yy*sint2))
5578       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5579      &          *(xx*cost2-yy*sint2))
5580       s1=(1+x(63))/(0.1d0 + dscp1)
5581       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5582       s2=(1+x(65))/(0.1d0 + dscp2)
5583       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5584       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5585      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5586       enesc=sumene
5587       return
5588       end
5589 #endif
5590 c------------------------------------------------------------------------------
5591       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5592 C
5593 C This procedure calculates two-body contact function g(rij) and its derivative:
5594 C
5595 C           eps0ij                                     !       x < -1
5596 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5597 C            0                                         !       x > 1
5598 C
5599 C where x=(rij-r0ij)/delta
5600 C
5601 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5602 C
5603       implicit none
5604       double precision rij,r0ij,eps0ij,fcont,fprimcont
5605       double precision x,x2,x4,delta
5606 c     delta=0.02D0*r0ij
5607 c      delta=0.2D0*r0ij
5608       x=(rij-r0ij)/delta
5609       if (x.lt.-1.0D0) then
5610         fcont=eps0ij
5611         fprimcont=0.0D0
5612       else if (x.le.1.0D0) then  
5613         x2=x*x
5614         x4=x2*x2
5615         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5616         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5617       else
5618         fcont=0.0D0
5619         fprimcont=0.0D0
5620       endif
5621       return
5622       end
5623 c------------------------------------------------------------------------------
5624       subroutine splinthet(theti,delta,ss,ssder)
5625       implicit real*8 (a-h,o-z)
5626       include 'DIMENSIONS'
5627       include 'COMMON.VAR'
5628       include 'COMMON.GEO'
5629       thetup=pi-delta
5630       thetlow=delta
5631       if (theti.gt.pipol) then
5632         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5633       else
5634         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5635         ssder=-ssder
5636       endif
5637       return
5638       end
5639 c------------------------------------------------------------------------------
5640       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5641       implicit none
5642       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5643       double precision ksi,ksi2,ksi3,a1,a2,a3
5644       a1=fprim0*delta/(f1-f0)
5645       a2=3.0d0-2.0d0*a1
5646       a3=a1-2.0d0
5647       ksi=(x-x0)/delta
5648       ksi2=ksi*ksi
5649       ksi3=ksi2*ksi  
5650       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5651       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5652       return
5653       end
5654 c------------------------------------------------------------------------------
5655       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5656       implicit none
5657       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5658       double precision ksi,ksi2,ksi3,a1,a2,a3
5659       ksi=(x-x0)/delta  
5660       ksi2=ksi*ksi
5661       ksi3=ksi2*ksi
5662       a1=fprim0x*delta
5663       a2=3*(f1x-f0x)-2*fprim0x*delta
5664       a3=fprim0x*delta-2*(f1x-f0x)
5665       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5666       return
5667       end
5668 C-----------------------------------------------------------------------------
5669 #ifdef CRYST_TOR
5670 C-----------------------------------------------------------------------------
5671       subroutine etor(etors,edihcnstr)
5672       implicit real*8 (a-h,o-z)
5673       include 'DIMENSIONS'
5674       include 'COMMON.VAR'
5675       include 'COMMON.GEO'
5676       include 'COMMON.LOCAL'
5677       include 'COMMON.TORSION'
5678       include 'COMMON.INTERACT'
5679       include 'COMMON.DERIV'
5680       include 'COMMON.CHAIN'
5681       include 'COMMON.NAMES'
5682       include 'COMMON.IOUNITS'
5683       include 'COMMON.FFIELD'
5684       include 'COMMON.TORCNSTR'
5685       include 'COMMON.CONTROL'
5686       logical lprn
5687 C Set lprn=.true. for debugging
5688       lprn=.false.
5689 c      lprn=.true.
5690       etors=0.0D0
5691       do i=iphi_start,iphi_end
5692       etors_ii=0.0D0
5693         itori=itortyp(itype(i-2))
5694         itori1=itortyp(itype(i-1))
5695         phii=phi(i)
5696         gloci=0.0D0
5697 C Proline-Proline pair is a special case...
5698         if (itori.eq.3 .and. itori1.eq.3) then
5699           if (phii.gt.-dwapi3) then
5700             cosphi=dcos(3*phii)
5701             fac=1.0D0/(1.0D0-cosphi)
5702             etorsi=v1(1,3,3)*fac
5703             etorsi=etorsi+etorsi
5704             etors=etors+etorsi-v1(1,3,3)
5705             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5706             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5707           endif
5708           do j=1,3
5709             v1ij=v1(j+1,itori,itori1)
5710             v2ij=v2(j+1,itori,itori1)
5711             cosphi=dcos(j*phii)
5712             sinphi=dsin(j*phii)
5713             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5714             if (energy_dec) etors_ii=etors_ii+
5715      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5716             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5717           enddo
5718         else 
5719           do j=1,nterm_old
5720             v1ij=v1(j,itori,itori1)
5721             v2ij=v2(j,itori,itori1)
5722             cosphi=dcos(j*phii)
5723             sinphi=dsin(j*phii)
5724             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5725             if (energy_dec) etors_ii=etors_ii+
5726      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5727             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5728           enddo
5729         endif
5730         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5731      &        'etor',i,etors_ii
5732         if (lprn)
5733      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5734      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5735      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5736         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5737         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5738       enddo
5739 ! 6/20/98 - dihedral angle constraints
5740       edihcnstr=0.0d0
5741       do i=1,ndih_constr
5742         itori=idih_constr(i)
5743         phii=phi(itori)
5744         difi=phii-phi0(i)
5745         if (difi.gt.drange(i)) then
5746           difi=difi-drange(i)
5747           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5748           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5749         else if (difi.lt.-drange(i)) then
5750           difi=difi+drange(i)
5751           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5752           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5753         endif
5754 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5755 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5756       enddo
5757 !      write (iout,*) 'edihcnstr',edihcnstr
5758       return
5759       end
5760 c------------------------------------------------------------------------------
5761       subroutine etor_d(etors_d)
5762       etors_d=0.0d0
5763       return
5764       end
5765 c----------------------------------------------------------------------------
5766 #else
5767       subroutine etor(etors,edihcnstr)
5768       implicit real*8 (a-h,o-z)
5769       include 'DIMENSIONS'
5770       include 'COMMON.VAR'
5771       include 'COMMON.GEO'
5772       include 'COMMON.LOCAL'
5773       include 'COMMON.TORSION'
5774       include 'COMMON.INTERACT'
5775       include 'COMMON.DERIV'
5776       include 'COMMON.CHAIN'
5777       include 'COMMON.NAMES'
5778       include 'COMMON.IOUNITS'
5779       include 'COMMON.FFIELD'
5780       include 'COMMON.TORCNSTR'
5781       include 'COMMON.CONTROL'
5782       logical lprn
5783 C Set lprn=.true. for debugging
5784       lprn=.false.
5785 c     lprn=.true.
5786       etors=0.0D0
5787       do i=iphi_start,iphi_end
5788       etors_ii=0.0D0
5789         itori=itortyp(itype(i-2))
5790         itori1=itortyp(itype(i-1))
5791         phii=phi(i)
5792         gloci=0.0D0
5793 C Regular cosine and sine terms
5794         do j=1,nterm(itori,itori1)
5795           v1ij=v1(j,itori,itori1)
5796           v2ij=v2(j,itori,itori1)
5797           cosphi=dcos(j*phii)
5798           sinphi=dsin(j*phii)
5799           etors=etors+v1ij*cosphi+v2ij*sinphi
5800           if (energy_dec) etors_ii=etors_ii+
5801      &                v1ij*cosphi+v2ij*sinphi
5802           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5803         enddo
5804 C Lorentz terms
5805 C                         v1
5806 C  E = SUM ----------------------------------- - v1
5807 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5808 C
5809         cosphi=dcos(0.5d0*phii)
5810         sinphi=dsin(0.5d0*phii)
5811         do j=1,nlor(itori,itori1)
5812           vl1ij=vlor1(j,itori,itori1)
5813           vl2ij=vlor2(j,itori,itori1)
5814           vl3ij=vlor3(j,itori,itori1)
5815           pom=vl2ij*cosphi+vl3ij*sinphi
5816           pom1=1.0d0/(pom*pom+1.0d0)
5817           etors=etors+vl1ij*pom1
5818           if (energy_dec) etors_ii=etors_ii+
5819      &                vl1ij*pom1
5820           pom=-pom*pom1*pom1
5821           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5822         enddo
5823 C Subtract the constant term
5824         etors=etors-v0(itori,itori1)
5825           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5826      &         'etor',i,etors_ii-v0(itori,itori1)
5827         if (lprn)
5828      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5829      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5830      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5831         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5832 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5833       enddo
5834 ! 6/20/98 - dihedral angle constraints
5835       edihcnstr=0.0d0
5836 c      do i=1,ndih_constr
5837       do i=idihconstr_start,idihconstr_end
5838         itori=idih_constr(i)
5839         phii=phi(itori)
5840         difi=pinorm(phii-phi0(i))
5841         if (difi.gt.drange(i)) then
5842           difi=difi-drange(i)
5843           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5844           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5845         else if (difi.lt.-drange(i)) then
5846           difi=difi+drange(i)
5847           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5848           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5849         else
5850           difi=0.0
5851         endif
5852 c        write (iout,*) "gloci", gloc(i-3,icg)
5853 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5854 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5855 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5856       enddo
5857 cd       write (iout,*) 'edihcnstr',edihcnstr
5858       return
5859       end
5860 c----------------------------------------------------------------------------
5861       subroutine etor_d(etors_d)
5862 C 6/23/01 Compute double torsional energy
5863       implicit real*8 (a-h,o-z)
5864       include 'DIMENSIONS'
5865       include 'COMMON.VAR'
5866       include 'COMMON.GEO'
5867       include 'COMMON.LOCAL'
5868       include 'COMMON.TORSION'
5869       include 'COMMON.INTERACT'
5870       include 'COMMON.DERIV'
5871       include 'COMMON.CHAIN'
5872       include 'COMMON.NAMES'
5873       include 'COMMON.IOUNITS'
5874       include 'COMMON.FFIELD'
5875       include 'COMMON.TORCNSTR'
5876       logical lprn
5877 C Set lprn=.true. for debugging
5878       lprn=.false.
5879 c     lprn=.true.
5880       etors_d=0.0D0
5881       do i=iphid_start,iphid_end
5882         itori=itortyp(itype(i-2))
5883         itori1=itortyp(itype(i-1))
5884         itori2=itortyp(itype(i))
5885         phii=phi(i)
5886         phii1=phi(i+1)
5887         gloci1=0.0D0
5888         gloci2=0.0D0
5889         do j=1,ntermd_1(itori,itori1,itori2)
5890           v1cij=v1c(1,j,itori,itori1,itori2)
5891           v1sij=v1s(1,j,itori,itori1,itori2)
5892           v2cij=v1c(2,j,itori,itori1,itori2)
5893           v2sij=v1s(2,j,itori,itori1,itori2)
5894           cosphi1=dcos(j*phii)
5895           sinphi1=dsin(j*phii)
5896           cosphi2=dcos(j*phii1)
5897           sinphi2=dsin(j*phii1)
5898           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5899      &     v2cij*cosphi2+v2sij*sinphi2
5900           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5901           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5902         enddo
5903         do k=2,ntermd_2(itori,itori1,itori2)
5904           do l=1,k-1
5905             v1cdij = v2c(k,l,itori,itori1,itori2)
5906             v2cdij = v2c(l,k,itori,itori1,itori2)
5907             v1sdij = v2s(k,l,itori,itori1,itori2)
5908             v2sdij = v2s(l,k,itori,itori1,itori2)
5909             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5910             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5911             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5912             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5913             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5914      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5915             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5916      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5917             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5918      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5919           enddo
5920         enddo
5921         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5922         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5923 c        write (iout,*) "gloci", gloc(i-3,icg)
5924       enddo
5925       return
5926       end
5927 #endif
5928 c------------------------------------------------------------------------------
5929       subroutine eback_sc_corr(esccor)
5930 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5931 c        conformational states; temporarily implemented as differences
5932 c        between UNRES torsional potentials (dependent on three types of
5933 c        residues) and the torsional potentials dependent on all 20 types
5934 c        of residues computed from AM1  energy surfaces of terminally-blocked
5935 c        amino-acid residues.
5936       implicit real*8 (a-h,o-z)
5937       include 'DIMENSIONS'
5938       include 'COMMON.VAR'
5939       include 'COMMON.GEO'
5940       include 'COMMON.LOCAL'
5941       include 'COMMON.TORSION'
5942       include 'COMMON.SCCOR'
5943       include 'COMMON.INTERACT'
5944       include 'COMMON.DERIV'
5945       include 'COMMON.CHAIN'
5946       include 'COMMON.NAMES'
5947       include 'COMMON.IOUNITS'
5948       include 'COMMON.FFIELD'
5949       include 'COMMON.CONTROL'
5950       logical lprn
5951 C Set lprn=.true. for debugging
5952       lprn=.false.
5953 c      lprn=.true.
5954 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5955       esccor=0.0D0
5956       do i=itau_start,itau_end
5957         esccor_ii=0.0D0
5958         isccori=isccortyp(itype(i-2))
5959         isccori1=isccortyp(itype(i-1))
5960         phii=phi(i)
5961 cccc  Added 9 May 2012
5962 cc Tauangle is torsional engle depending on the value of first digit 
5963 c(see comment below)
5964 cc Omicron is flat angle depending on the value of first digit 
5965 c(see comment below)
5966
5967         
5968         do intertyp=1,3 !intertyp
5969 cc Added 09 May 2012 (Adasko)
5970 cc  Intertyp means interaction type of backbone mainchain correlation: 
5971 c   1 = SC...Ca...Ca...Ca
5972 c   2 = Ca...Ca...Ca...SC
5973 c   3 = SC...Ca...Ca...SCi
5974         gloci=0.0D0
5975         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5976      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
5977      &      (itype(i-1).eq.21)))
5978      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5979      &     .or.(itype(i-2).eq.21)))
5980      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5981      &      (itype(i-1).eq.21)))) cycle  
5982         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
5983         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
5984      & cycle
5985         do j=1,nterm_sccor(isccori,isccori1)
5986           v1ij=v1sccor(j,intertyp,isccori,isccori1)
5987           v2ij=v2sccor(j,intertyp,isccori,isccori1)
5988           cosphi=dcos(j*tauangle(intertyp,i))
5989           sinphi=dsin(j*tauangle(intertyp,i))
5990           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5991           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5992         enddo
5993         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
5994 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
5995 c     &gloc_sc(intertyp,i-3,icg)
5996         if (lprn)
5997      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5998      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5999      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6000      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6001         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6002        enddo !intertyp
6003       enddo
6004 c        do i=1,nres
6005 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6006 c        enddo
6007       return
6008       end
6009 c----------------------------------------------------------------------------
6010       subroutine multibody(ecorr)
6011 C This subroutine calculates multi-body contributions to energy following
6012 C the idea of Skolnick et al. If side chains I and J make a contact and
6013 C at the same time side chains I+1 and J+1 make a contact, an extra 
6014 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6015       implicit real*8 (a-h,o-z)
6016       include 'DIMENSIONS'
6017       include 'COMMON.IOUNITS'
6018       include 'COMMON.DERIV'
6019       include 'COMMON.INTERACT'
6020       include 'COMMON.CONTACTS'
6021       double precision gx(3),gx1(3)
6022       logical lprn
6023
6024 C Set lprn=.true. for debugging
6025       lprn=.false.
6026
6027       if (lprn) then
6028         write (iout,'(a)') 'Contact function values:'
6029         do i=nnt,nct-2
6030           write (iout,'(i2,20(1x,i2,f10.5))') 
6031      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6032         enddo
6033       endif
6034       ecorr=0.0D0
6035       do i=nnt,nct
6036         do j=1,3
6037           gradcorr(j,i)=0.0D0
6038           gradxorr(j,i)=0.0D0
6039         enddo
6040       enddo
6041       do i=nnt,nct-2
6042
6043         DO ISHIFT = 3,4
6044
6045         i1=i+ishift
6046         num_conti=num_cont(i)
6047         num_conti1=num_cont(i1)
6048         do jj=1,num_conti
6049           j=jcont(jj,i)
6050           do kk=1,num_conti1
6051             j1=jcont(kk,i1)
6052             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6053 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6054 cd   &                   ' ishift=',ishift
6055 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6056 C The system gains extra energy.
6057               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6058             endif   ! j1==j+-ishift
6059           enddo     ! kk  
6060         enddo       ! jj
6061
6062         ENDDO ! ISHIFT
6063
6064       enddo         ! i
6065       return
6066       end
6067 c------------------------------------------------------------------------------
6068       double precision function esccorr(i,j,k,l,jj,kk)
6069       implicit real*8 (a-h,o-z)
6070       include 'DIMENSIONS'
6071       include 'COMMON.IOUNITS'
6072       include 'COMMON.DERIV'
6073       include 'COMMON.INTERACT'
6074       include 'COMMON.CONTACTS'
6075       double precision gx(3),gx1(3)
6076       logical lprn
6077       lprn=.false.
6078       eij=facont(jj,i)
6079       ekl=facont(kk,k)
6080 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6081 C Calculate the multi-body contribution to energy.
6082 C Calculate multi-body contributions to the gradient.
6083 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6084 cd   & k,l,(gacont(m,kk,k),m=1,3)
6085       do m=1,3
6086         gx(m) =ekl*gacont(m,jj,i)
6087         gx1(m)=eij*gacont(m,kk,k)
6088         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6089         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6090         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6091         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6092       enddo
6093       do m=i,j-1
6094         do ll=1,3
6095           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6096         enddo
6097       enddo
6098       do m=k,l-1
6099         do ll=1,3
6100           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6101         enddo
6102       enddo 
6103       esccorr=-eij*ekl
6104       return
6105       end
6106 c------------------------------------------------------------------------------
6107       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6108 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6109       implicit real*8 (a-h,o-z)
6110       include 'DIMENSIONS'
6111       include 'COMMON.IOUNITS'
6112 #ifdef MPI
6113       include "mpif.h"
6114       parameter (max_cont=maxconts)
6115       parameter (max_dim=26)
6116       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6117       double precision zapas(max_dim,maxconts,max_fg_procs),
6118      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6119       common /przechowalnia/ zapas
6120       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6121      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6122 #endif
6123       include 'COMMON.SETUP'
6124       include 'COMMON.FFIELD'
6125       include 'COMMON.DERIV'
6126       include 'COMMON.INTERACT'
6127       include 'COMMON.CONTACTS'
6128       include 'COMMON.CONTROL'
6129       include 'COMMON.LOCAL'
6130       double precision gx(3),gx1(3),time00
6131       logical lprn,ldone
6132
6133 C Set lprn=.true. for debugging
6134       lprn=.false.
6135 #ifdef MPI
6136       n_corr=0
6137       n_corr1=0
6138       if (nfgtasks.le.1) goto 30
6139       if (lprn) then
6140         write (iout,'(a)') 'Contact function values before RECEIVE:'
6141         do i=nnt,nct-2
6142           write (iout,'(2i3,50(1x,i2,f5.2))') 
6143      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6144      &    j=1,num_cont_hb(i))
6145         enddo
6146       endif
6147       call flush(iout)
6148       do i=1,ntask_cont_from
6149         ncont_recv(i)=0
6150       enddo
6151       do i=1,ntask_cont_to
6152         ncont_sent(i)=0
6153       enddo
6154 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6155 c     & ntask_cont_to
6156 C Make the list of contacts to send to send to other procesors
6157 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6158 c      call flush(iout)
6159       do i=iturn3_start,iturn3_end
6160 c        write (iout,*) "make contact list turn3",i," num_cont",
6161 c     &    num_cont_hb(i)
6162         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6163       enddo
6164       do i=iturn4_start,iturn4_end
6165 c        write (iout,*) "make contact list turn4",i," num_cont",
6166 c     &   num_cont_hb(i)
6167         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6168       enddo
6169       do ii=1,nat_sent
6170         i=iat_sent(ii)
6171 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6172 c     &    num_cont_hb(i)
6173         do j=1,num_cont_hb(i)
6174         do k=1,4
6175           jjc=jcont_hb(j,i)
6176           iproc=iint_sent_local(k,jjc,ii)
6177 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6178           if (iproc.gt.0) then
6179             ncont_sent(iproc)=ncont_sent(iproc)+1
6180             nn=ncont_sent(iproc)
6181             zapas(1,nn,iproc)=i
6182             zapas(2,nn,iproc)=jjc
6183             zapas(3,nn,iproc)=facont_hb(j,i)
6184             zapas(4,nn,iproc)=ees0p(j,i)
6185             zapas(5,nn,iproc)=ees0m(j,i)
6186             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6187             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6188             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6189             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6190             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6191             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6192             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6193             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6194             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6195             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6196             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6197             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6198             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6199             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6200             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6201             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6202             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6203             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6204             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6205             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6206             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6207           endif
6208         enddo
6209         enddo
6210       enddo
6211       if (lprn) then
6212       write (iout,*) 
6213      &  "Numbers of contacts to be sent to other processors",
6214      &  (ncont_sent(i),i=1,ntask_cont_to)
6215       write (iout,*) "Contacts sent"
6216       do ii=1,ntask_cont_to
6217         nn=ncont_sent(ii)
6218         iproc=itask_cont_to(ii)
6219         write (iout,*) nn," contacts to processor",iproc,
6220      &   " of CONT_TO_COMM group"
6221         do i=1,nn
6222           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6223         enddo
6224       enddo
6225       call flush(iout)
6226       endif
6227       CorrelType=477
6228       CorrelID=fg_rank+1
6229       CorrelType1=478
6230       CorrelID1=nfgtasks+fg_rank+1
6231       ireq=0
6232 C Receive the numbers of needed contacts from other processors 
6233       do ii=1,ntask_cont_from
6234         iproc=itask_cont_from(ii)
6235         ireq=ireq+1
6236         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6237      &    FG_COMM,req(ireq),IERR)
6238       enddo
6239 c      write (iout,*) "IRECV ended"
6240 c      call flush(iout)
6241 C Send the number of contacts needed by other processors
6242       do ii=1,ntask_cont_to
6243         iproc=itask_cont_to(ii)
6244         ireq=ireq+1
6245         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6246      &    FG_COMM,req(ireq),IERR)
6247       enddo
6248 c      write (iout,*) "ISEND ended"
6249 c      write (iout,*) "number of requests (nn)",ireq
6250       call flush(iout)
6251       if (ireq.gt.0) 
6252      &  call MPI_Waitall(ireq,req,status_array,ierr)
6253 c      write (iout,*) 
6254 c     &  "Numbers of contacts to be received from other processors",
6255 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6256 c      call flush(iout)
6257 C Receive contacts
6258       ireq=0
6259       do ii=1,ntask_cont_from
6260         iproc=itask_cont_from(ii)
6261         nn=ncont_recv(ii)
6262 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6263 c     &   " of CONT_TO_COMM group"
6264         call flush(iout)
6265         if (nn.gt.0) then
6266           ireq=ireq+1
6267           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6268      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6269 c          write (iout,*) "ireq,req",ireq,req(ireq)
6270         endif
6271       enddo
6272 C Send the contacts to processors that need them
6273       do ii=1,ntask_cont_to
6274         iproc=itask_cont_to(ii)
6275         nn=ncont_sent(ii)
6276 c        write (iout,*) nn," contacts to processor",iproc,
6277 c     &   " of CONT_TO_COMM group"
6278         if (nn.gt.0) then
6279           ireq=ireq+1 
6280           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6281      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6282 c          write (iout,*) "ireq,req",ireq,req(ireq)
6283 c          do i=1,nn
6284 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6285 c          enddo
6286         endif  
6287       enddo
6288 c      write (iout,*) "number of requests (contacts)",ireq
6289 c      write (iout,*) "req",(req(i),i=1,4)
6290 c      call flush(iout)
6291       if (ireq.gt.0) 
6292      & call MPI_Waitall(ireq,req,status_array,ierr)
6293       do iii=1,ntask_cont_from
6294         iproc=itask_cont_from(iii)
6295         nn=ncont_recv(iii)
6296         if (lprn) then
6297         write (iout,*) "Received",nn," contacts from processor",iproc,
6298      &   " of CONT_FROM_COMM group"
6299         call flush(iout)
6300         do i=1,nn
6301           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6302         enddo
6303         call flush(iout)
6304         endif
6305         do i=1,nn
6306           ii=zapas_recv(1,i,iii)
6307 c Flag the received contacts to prevent double-counting
6308           jj=-zapas_recv(2,i,iii)
6309 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6310 c          call flush(iout)
6311           nnn=num_cont_hb(ii)+1
6312           num_cont_hb(ii)=nnn
6313           jcont_hb(nnn,ii)=jj
6314           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6315           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6316           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6317           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6318           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6319           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6320           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6321           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6322           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6323           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6324           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6325           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6326           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6327           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6328           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6329           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6330           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6331           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6332           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6333           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6334           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6335           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6336           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6337           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6338         enddo
6339       enddo
6340       call flush(iout)
6341       if (lprn) then
6342         write (iout,'(a)') 'Contact function values after receive:'
6343         do i=nnt,nct-2
6344           write (iout,'(2i3,50(1x,i3,f5.2))') 
6345      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6346      &    j=1,num_cont_hb(i))
6347         enddo
6348         call flush(iout)
6349       endif
6350    30 continue
6351 #endif
6352       if (lprn) then
6353         write (iout,'(a)') 'Contact function values:'
6354         do i=nnt,nct-2
6355           write (iout,'(2i3,50(1x,i3,f5.2))') 
6356      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6357      &    j=1,num_cont_hb(i))
6358         enddo
6359       endif
6360       ecorr=0.0D0
6361 C Remove the loop below after debugging !!!
6362       do i=nnt,nct
6363         do j=1,3
6364           gradcorr(j,i)=0.0D0
6365           gradxorr(j,i)=0.0D0
6366         enddo
6367       enddo
6368 C Calculate the local-electrostatic correlation terms
6369       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6370         i1=i+1
6371         num_conti=num_cont_hb(i)
6372         num_conti1=num_cont_hb(i+1)
6373         do jj=1,num_conti
6374           j=jcont_hb(jj,i)
6375           jp=iabs(j)
6376           do kk=1,num_conti1
6377             j1=jcont_hb(kk,i1)
6378             jp1=iabs(j1)
6379 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6380 c     &         ' jj=',jj,' kk=',kk
6381             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6382      &          .or. j.lt.0 .and. j1.gt.0) .and.
6383      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6384 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6385 C The system gains extra energy.
6386               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6387               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6388      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6389               n_corr=n_corr+1
6390             else if (j1.eq.j) then
6391 C Contacts I-J and I-(J+1) occur simultaneously. 
6392 C The system loses extra energy.
6393 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6394             endif
6395           enddo ! kk
6396           do kk=1,num_conti
6397             j1=jcont_hb(kk,i)
6398 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6399 c    &         ' jj=',jj,' kk=',kk
6400             if (j1.eq.j+1) then
6401 C Contacts I-J and (I+1)-J occur simultaneously. 
6402 C The system loses extra energy.
6403 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6404             endif ! j1==j+1
6405           enddo ! kk
6406         enddo ! jj
6407       enddo ! i
6408       return
6409       end
6410 c------------------------------------------------------------------------------
6411       subroutine add_hb_contact(ii,jj,itask)
6412       implicit real*8 (a-h,o-z)
6413       include "DIMENSIONS"
6414       include "COMMON.IOUNITS"
6415       integer max_cont
6416       integer max_dim
6417       parameter (max_cont=maxconts)
6418       parameter (max_dim=26)
6419       include "COMMON.CONTACTS"
6420       double precision zapas(max_dim,maxconts,max_fg_procs),
6421      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6422       common /przechowalnia/ zapas
6423       integer i,j,ii,jj,iproc,itask(4),nn
6424 c      write (iout,*) "itask",itask
6425       do i=1,2
6426         iproc=itask(i)
6427         if (iproc.gt.0) then
6428           do j=1,num_cont_hb(ii)
6429             jjc=jcont_hb(j,ii)
6430 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6431             if (jjc.eq.jj) then
6432               ncont_sent(iproc)=ncont_sent(iproc)+1
6433               nn=ncont_sent(iproc)
6434               zapas(1,nn,iproc)=ii
6435               zapas(2,nn,iproc)=jjc
6436               zapas(3,nn,iproc)=facont_hb(j,ii)
6437               zapas(4,nn,iproc)=ees0p(j,ii)
6438               zapas(5,nn,iproc)=ees0m(j,ii)
6439               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6440               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6441               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6442               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6443               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6444               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6445               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6446               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6447               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6448               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6449               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6450               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6451               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6452               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6453               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6454               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6455               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6456               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6457               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6458               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6459               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6460               exit
6461             endif
6462           enddo
6463         endif
6464       enddo
6465       return
6466       end
6467 c------------------------------------------------------------------------------
6468       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6469      &  n_corr1)
6470 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6471       implicit real*8 (a-h,o-z)
6472       include 'DIMENSIONS'
6473       include 'COMMON.IOUNITS'
6474 #ifdef MPI
6475       include "mpif.h"
6476       parameter (max_cont=maxconts)
6477       parameter (max_dim=70)
6478       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6479       double precision zapas(max_dim,maxconts,max_fg_procs),
6480      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6481       common /przechowalnia/ zapas
6482       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6483      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6484 #endif
6485       include 'COMMON.SETUP'
6486       include 'COMMON.FFIELD'
6487       include 'COMMON.DERIV'
6488       include 'COMMON.LOCAL'
6489       include 'COMMON.INTERACT'
6490       include 'COMMON.CONTACTS'
6491       include 'COMMON.CHAIN'
6492       include 'COMMON.CONTROL'
6493       double precision gx(3),gx1(3)
6494       integer num_cont_hb_old(maxres)
6495       logical lprn,ldone
6496       double precision eello4,eello5,eelo6,eello_turn6
6497       external eello4,eello5,eello6,eello_turn6
6498 C Set lprn=.true. for debugging
6499       lprn=.false.
6500       eturn6=0.0d0
6501 #ifdef MPI
6502       do i=1,nres
6503         num_cont_hb_old(i)=num_cont_hb(i)
6504       enddo
6505       n_corr=0
6506       n_corr1=0
6507       if (nfgtasks.le.1) goto 30
6508       if (lprn) then
6509         write (iout,'(a)') 'Contact function values before RECEIVE:'
6510         do i=nnt,nct-2
6511           write (iout,'(2i3,50(1x,i2,f5.2))') 
6512      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6513      &    j=1,num_cont_hb(i))
6514         enddo
6515       endif
6516       call flush(iout)
6517       do i=1,ntask_cont_from
6518         ncont_recv(i)=0
6519       enddo
6520       do i=1,ntask_cont_to
6521         ncont_sent(i)=0
6522       enddo
6523 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6524 c     & ntask_cont_to
6525 C Make the list of contacts to send to send to other procesors
6526       do i=iturn3_start,iturn3_end
6527 c        write (iout,*) "make contact list turn3",i," num_cont",
6528 c     &    num_cont_hb(i)
6529         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6530       enddo
6531       do i=iturn4_start,iturn4_end
6532 c        write (iout,*) "make contact list turn4",i," num_cont",
6533 c     &   num_cont_hb(i)
6534         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6535       enddo
6536       do ii=1,nat_sent
6537         i=iat_sent(ii)
6538 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6539 c     &    num_cont_hb(i)
6540         do j=1,num_cont_hb(i)
6541         do k=1,4
6542           jjc=jcont_hb(j,i)
6543           iproc=iint_sent_local(k,jjc,ii)
6544 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6545           if (iproc.ne.0) then
6546             ncont_sent(iproc)=ncont_sent(iproc)+1
6547             nn=ncont_sent(iproc)
6548             zapas(1,nn,iproc)=i
6549             zapas(2,nn,iproc)=jjc
6550             zapas(3,nn,iproc)=d_cont(j,i)
6551             ind=3
6552             do kk=1,3
6553               ind=ind+1
6554               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6555             enddo
6556             do kk=1,2
6557               do ll=1,2
6558                 ind=ind+1
6559                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6560               enddo
6561             enddo
6562             do jj=1,5
6563               do kk=1,3
6564                 do ll=1,2
6565                   do mm=1,2
6566                     ind=ind+1
6567                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6568                   enddo
6569                 enddo
6570               enddo
6571             enddo
6572           endif
6573         enddo
6574         enddo
6575       enddo
6576       if (lprn) then
6577       write (iout,*) 
6578      &  "Numbers of contacts to be sent to other processors",
6579      &  (ncont_sent(i),i=1,ntask_cont_to)
6580       write (iout,*) "Contacts sent"
6581       do ii=1,ntask_cont_to
6582         nn=ncont_sent(ii)
6583         iproc=itask_cont_to(ii)
6584         write (iout,*) nn," contacts to processor",iproc,
6585      &   " of CONT_TO_COMM group"
6586         do i=1,nn
6587           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6588         enddo
6589       enddo
6590       call flush(iout)
6591       endif
6592       CorrelType=477
6593       CorrelID=fg_rank+1
6594       CorrelType1=478
6595       CorrelID1=nfgtasks+fg_rank+1
6596       ireq=0
6597 C Receive the numbers of needed contacts from other processors 
6598       do ii=1,ntask_cont_from
6599         iproc=itask_cont_from(ii)
6600         ireq=ireq+1
6601         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6602      &    FG_COMM,req(ireq),IERR)
6603       enddo
6604 c      write (iout,*) "IRECV ended"
6605 c      call flush(iout)
6606 C Send the number of contacts needed by other processors
6607       do ii=1,ntask_cont_to
6608         iproc=itask_cont_to(ii)
6609         ireq=ireq+1
6610         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6611      &    FG_COMM,req(ireq),IERR)
6612       enddo
6613 c      write (iout,*) "ISEND ended"
6614 c      write (iout,*) "number of requests (nn)",ireq
6615       call flush(iout)
6616       if (ireq.gt.0) 
6617      &  call MPI_Waitall(ireq,req,status_array,ierr)
6618 c      write (iout,*) 
6619 c     &  "Numbers of contacts to be received from other processors",
6620 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6621 c      call flush(iout)
6622 C Receive contacts
6623       ireq=0
6624       do ii=1,ntask_cont_from
6625         iproc=itask_cont_from(ii)
6626         nn=ncont_recv(ii)
6627 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6628 c     &   " of CONT_TO_COMM group"
6629         call flush(iout)
6630         if (nn.gt.0) then
6631           ireq=ireq+1
6632           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6633      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6634 c          write (iout,*) "ireq,req",ireq,req(ireq)
6635         endif
6636       enddo
6637 C Send the contacts to processors that need them
6638       do ii=1,ntask_cont_to
6639         iproc=itask_cont_to(ii)
6640         nn=ncont_sent(ii)
6641 c        write (iout,*) nn," contacts to processor",iproc,
6642 c     &   " of CONT_TO_COMM group"
6643         if (nn.gt.0) then
6644           ireq=ireq+1 
6645           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6646      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6647 c          write (iout,*) "ireq,req",ireq,req(ireq)
6648 c          do i=1,nn
6649 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6650 c          enddo
6651         endif  
6652       enddo
6653 c      write (iout,*) "number of requests (contacts)",ireq
6654 c      write (iout,*) "req",(req(i),i=1,4)
6655 c      call flush(iout)
6656       if (ireq.gt.0) 
6657      & call MPI_Waitall(ireq,req,status_array,ierr)
6658       do iii=1,ntask_cont_from
6659         iproc=itask_cont_from(iii)
6660         nn=ncont_recv(iii)
6661         if (lprn) then
6662         write (iout,*) "Received",nn," contacts from processor",iproc,
6663      &   " of CONT_FROM_COMM group"
6664         call flush(iout)
6665         do i=1,nn
6666           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6667         enddo
6668         call flush(iout)
6669         endif
6670         do i=1,nn
6671           ii=zapas_recv(1,i,iii)
6672 c Flag the received contacts to prevent double-counting
6673           jj=-zapas_recv(2,i,iii)
6674 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6675 c          call flush(iout)
6676           nnn=num_cont_hb(ii)+1
6677           num_cont_hb(ii)=nnn
6678           jcont_hb(nnn,ii)=jj
6679           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6680           ind=3
6681           do kk=1,3
6682             ind=ind+1
6683             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6684           enddo
6685           do kk=1,2
6686             do ll=1,2
6687               ind=ind+1
6688               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6689             enddo
6690           enddo
6691           do jj=1,5
6692             do kk=1,3
6693               do ll=1,2
6694                 do mm=1,2
6695                   ind=ind+1
6696                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6697                 enddo
6698               enddo
6699             enddo
6700           enddo
6701         enddo
6702       enddo
6703       call flush(iout)
6704       if (lprn) then
6705         write (iout,'(a)') 'Contact function values after receive:'
6706         do i=nnt,nct-2
6707           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6708      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6709      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6710         enddo
6711         call flush(iout)
6712       endif
6713    30 continue
6714 #endif
6715       if (lprn) then
6716         write (iout,'(a)') 'Contact function values:'
6717         do i=nnt,nct-2
6718           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6719      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6720      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6721         enddo
6722       endif
6723       ecorr=0.0D0
6724       ecorr5=0.0d0
6725       ecorr6=0.0d0
6726 C Remove the loop below after debugging !!!
6727       do i=nnt,nct
6728         do j=1,3
6729           gradcorr(j,i)=0.0D0
6730           gradxorr(j,i)=0.0D0
6731         enddo
6732       enddo
6733 C Calculate the dipole-dipole interaction energies
6734       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6735       do i=iatel_s,iatel_e+1
6736         num_conti=num_cont_hb(i)
6737         do jj=1,num_conti
6738           j=jcont_hb(jj,i)
6739 #ifdef MOMENT
6740           call dipole(i,j,jj)
6741 #endif
6742         enddo
6743       enddo
6744       endif
6745 C Calculate the local-electrostatic correlation terms
6746 c                write (iout,*) "gradcorr5 in eello5 before loop"
6747 c                do iii=1,nres
6748 c                  write (iout,'(i5,3f10.5)') 
6749 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6750 c                enddo
6751       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6752 c        write (iout,*) "corr loop i",i
6753         i1=i+1
6754         num_conti=num_cont_hb(i)
6755         num_conti1=num_cont_hb(i+1)
6756         do jj=1,num_conti
6757           j=jcont_hb(jj,i)
6758           jp=iabs(j)
6759           do kk=1,num_conti1
6760             j1=jcont_hb(kk,i1)
6761             jp1=iabs(j1)
6762 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6763 c     &         ' jj=',jj,' kk=',kk
6764 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6765             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6766      &          .or. j.lt.0 .and. j1.gt.0) .and.
6767      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6768 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6769 C The system gains extra energy.
6770               n_corr=n_corr+1
6771               sqd1=dsqrt(d_cont(jj,i))
6772               sqd2=dsqrt(d_cont(kk,i1))
6773               sred_geom = sqd1*sqd2
6774               IF (sred_geom.lt.cutoff_corr) THEN
6775                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6776      &            ekont,fprimcont)
6777 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6778 cd     &         ' jj=',jj,' kk=',kk
6779                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6780                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6781                 do l=1,3
6782                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6783                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6784                 enddo
6785                 n_corr1=n_corr1+1
6786 cd               write (iout,*) 'sred_geom=',sred_geom,
6787 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6788 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6789 cd               write (iout,*) "g_contij",g_contij
6790 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6791 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6792                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6793                 if (wcorr4.gt.0.0d0) 
6794      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6795                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6796      1                 write (iout,'(a6,4i5,0pf7.3)')
6797      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6798 c                write (iout,*) "gradcorr5 before eello5"
6799 c                do iii=1,nres
6800 c                  write (iout,'(i5,3f10.5)') 
6801 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6802 c                enddo
6803                 if (wcorr5.gt.0.0d0)
6804      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6805 c                write (iout,*) "gradcorr5 after eello5"
6806 c                do iii=1,nres
6807 c                  write (iout,'(i5,3f10.5)') 
6808 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6809 c                enddo
6810                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6811      1                 write (iout,'(a6,4i5,0pf7.3)')
6812      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6813 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6814 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6815                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6816      &               .or. wturn6.eq.0.0d0))then
6817 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6818                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6819                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6820      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6821 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6822 cd     &            'ecorr6=',ecorr6
6823 cd                write (iout,'(4e15.5)') sred_geom,
6824 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6825 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6826 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6827                 else if (wturn6.gt.0.0d0
6828      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6829 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6830                   eturn6=eturn6+eello_turn6(i,jj,kk)
6831                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6832      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6833 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6834                 endif
6835               ENDIF
6836 1111          continue
6837             endif
6838           enddo ! kk
6839         enddo ! jj
6840       enddo ! i
6841       do i=1,nres
6842         num_cont_hb(i)=num_cont_hb_old(i)
6843       enddo
6844 c                write (iout,*) "gradcorr5 in eello5"
6845 c                do iii=1,nres
6846 c                  write (iout,'(i5,3f10.5)') 
6847 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6848 c                enddo
6849       return
6850       end
6851 c------------------------------------------------------------------------------
6852       subroutine add_hb_contact_eello(ii,jj,itask)
6853       implicit real*8 (a-h,o-z)
6854       include "DIMENSIONS"
6855       include "COMMON.IOUNITS"
6856       integer max_cont
6857       integer max_dim
6858       parameter (max_cont=maxconts)
6859       parameter (max_dim=70)
6860       include "COMMON.CONTACTS"
6861       double precision zapas(max_dim,maxconts,max_fg_procs),
6862      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6863       common /przechowalnia/ zapas
6864       integer i,j,ii,jj,iproc,itask(4),nn
6865 c      write (iout,*) "itask",itask
6866       do i=1,2
6867         iproc=itask(i)
6868         if (iproc.gt.0) then
6869           do j=1,num_cont_hb(ii)
6870             jjc=jcont_hb(j,ii)
6871 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6872             if (jjc.eq.jj) then
6873               ncont_sent(iproc)=ncont_sent(iproc)+1
6874               nn=ncont_sent(iproc)
6875               zapas(1,nn,iproc)=ii
6876               zapas(2,nn,iproc)=jjc
6877               zapas(3,nn,iproc)=d_cont(j,ii)
6878               ind=3
6879               do kk=1,3
6880                 ind=ind+1
6881                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6882               enddo
6883               do kk=1,2
6884                 do ll=1,2
6885                   ind=ind+1
6886                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6887                 enddo
6888               enddo
6889               do jj=1,5
6890                 do kk=1,3
6891                   do ll=1,2
6892                     do mm=1,2
6893                       ind=ind+1
6894                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6895                     enddo
6896                   enddo
6897                 enddo
6898               enddo
6899               exit
6900             endif
6901           enddo
6902         endif
6903       enddo
6904       return
6905       end
6906 c------------------------------------------------------------------------------
6907       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6908       implicit real*8 (a-h,o-z)
6909       include 'DIMENSIONS'
6910       include 'COMMON.IOUNITS'
6911       include 'COMMON.DERIV'
6912       include 'COMMON.INTERACT'
6913       include 'COMMON.CONTACTS'
6914       double precision gx(3),gx1(3)
6915       logical lprn
6916       lprn=.false.
6917       eij=facont_hb(jj,i)
6918       ekl=facont_hb(kk,k)
6919       ees0pij=ees0p(jj,i)
6920       ees0pkl=ees0p(kk,k)
6921       ees0mij=ees0m(jj,i)
6922       ees0mkl=ees0m(kk,k)
6923       ekont=eij*ekl
6924       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6925 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6926 C Following 4 lines for diagnostics.
6927 cd    ees0pkl=0.0D0
6928 cd    ees0pij=1.0D0
6929 cd    ees0mkl=0.0D0
6930 cd    ees0mij=1.0D0
6931 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6932 c     & 'Contacts ',i,j,
6933 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6934 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6935 c     & 'gradcorr_long'
6936 C Calculate the multi-body contribution to energy.
6937 c      ecorr=ecorr+ekont*ees
6938 C Calculate multi-body contributions to the gradient.
6939       coeffpees0pij=coeffp*ees0pij
6940       coeffmees0mij=coeffm*ees0mij
6941       coeffpees0pkl=coeffp*ees0pkl
6942       coeffmees0mkl=coeffm*ees0mkl
6943       do ll=1,3
6944 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6945         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6946      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6947      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6948         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6949      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6950      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6951 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6952         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6953      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6954      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6955         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6956      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6957      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6958         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6959      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6960      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6961         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6962         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6963         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6964      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6965      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6966         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6967         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6968 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6969       enddo
6970 c      write (iout,*)
6971 cgrad      do m=i+1,j-1
6972 cgrad        do ll=1,3
6973 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6974 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6975 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6976 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6977 cgrad        enddo
6978 cgrad      enddo
6979 cgrad      do m=k+1,l-1
6980 cgrad        do ll=1,3
6981 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6982 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6983 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6984 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6985 cgrad        enddo
6986 cgrad      enddo 
6987 c      write (iout,*) "ehbcorr",ekont*ees
6988       ehbcorr=ekont*ees
6989       return
6990       end
6991 #ifdef MOMENT
6992 C---------------------------------------------------------------------------
6993       subroutine dipole(i,j,jj)
6994       implicit real*8 (a-h,o-z)
6995       include 'DIMENSIONS'
6996       include 'COMMON.IOUNITS'
6997       include 'COMMON.CHAIN'
6998       include 'COMMON.FFIELD'
6999       include 'COMMON.DERIV'
7000       include 'COMMON.INTERACT'
7001       include 'COMMON.CONTACTS'
7002       include 'COMMON.TORSION'
7003       include 'COMMON.VAR'
7004       include 'COMMON.GEO'
7005       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7006      &  auxmat(2,2)
7007       iti1 = itortyp(itype(i+1))
7008       if (j.lt.nres-1) then
7009         itj1 = itortyp(itype(j+1))
7010       else
7011         itj1=ntortyp+1
7012       endif
7013       do iii=1,2
7014         dipi(iii,1)=Ub2(iii,i)
7015         dipderi(iii)=Ub2der(iii,i)
7016         dipi(iii,2)=b1(iii,iti1)
7017         dipj(iii,1)=Ub2(iii,j)
7018         dipderj(iii)=Ub2der(iii,j)
7019         dipj(iii,2)=b1(iii,itj1)
7020       enddo
7021       kkk=0
7022       do iii=1,2
7023         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7024         do jjj=1,2
7025           kkk=kkk+1
7026           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7027         enddo
7028       enddo
7029       do kkk=1,5
7030         do lll=1,3
7031           mmm=0
7032           do iii=1,2
7033             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7034      &        auxvec(1))
7035             do jjj=1,2
7036               mmm=mmm+1
7037               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7038             enddo
7039           enddo
7040         enddo
7041       enddo
7042       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7043       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7044       do iii=1,2
7045         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7046       enddo
7047       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7048       do iii=1,2
7049         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7050       enddo
7051       return
7052       end
7053 #endif
7054 C---------------------------------------------------------------------------
7055       subroutine calc_eello(i,j,k,l,jj,kk)
7056
7057 C This subroutine computes matrices and vectors needed to calculate 
7058 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7059 C
7060       implicit real*8 (a-h,o-z)
7061       include 'DIMENSIONS'
7062       include 'COMMON.IOUNITS'
7063       include 'COMMON.CHAIN'
7064       include 'COMMON.DERIV'
7065       include 'COMMON.INTERACT'
7066       include 'COMMON.CONTACTS'
7067       include 'COMMON.TORSION'
7068       include 'COMMON.VAR'
7069       include 'COMMON.GEO'
7070       include 'COMMON.FFIELD'
7071       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7072      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7073       logical lprn
7074       common /kutas/ lprn
7075 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7076 cd     & ' jj=',jj,' kk=',kk
7077 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7078 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7079 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7080       do iii=1,2
7081         do jjj=1,2
7082           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7083           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7084         enddo
7085       enddo
7086       call transpose2(aa1(1,1),aa1t(1,1))
7087       call transpose2(aa2(1,1),aa2t(1,1))
7088       do kkk=1,5
7089         do lll=1,3
7090           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7091      &      aa1tder(1,1,lll,kkk))
7092           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7093      &      aa2tder(1,1,lll,kkk))
7094         enddo
7095       enddo 
7096       if (l.eq.j+1) then
7097 C parallel orientation of the two CA-CA-CA frames.
7098         if (i.gt.1) then
7099           iti=itortyp(itype(i))
7100         else
7101           iti=ntortyp+1
7102         endif
7103         itk1=itortyp(itype(k+1))
7104         itj=itortyp(itype(j))
7105         if (l.lt.nres-1) then
7106           itl1=itortyp(itype(l+1))
7107         else
7108           itl1=ntortyp+1
7109         endif
7110 C A1 kernel(j+1) A2T
7111 cd        do iii=1,2
7112 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7113 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7114 cd        enddo
7115         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7116      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7117      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7118 C Following matrices are needed only for 6-th order cumulants
7119         IF (wcorr6.gt.0.0d0) THEN
7120         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7121      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7122      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7123         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7124      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7125      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7126      &   ADtEAderx(1,1,1,1,1,1))
7127         lprn=.false.
7128         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7129      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7130      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7131      &   ADtEA1derx(1,1,1,1,1,1))
7132         ENDIF
7133 C End 6-th order cumulants
7134 cd        lprn=.false.
7135 cd        if (lprn) then
7136 cd        write (2,*) 'In calc_eello6'
7137 cd        do iii=1,2
7138 cd          write (2,*) 'iii=',iii
7139 cd          do kkk=1,5
7140 cd            write (2,*) 'kkk=',kkk
7141 cd            do jjj=1,2
7142 cd              write (2,'(3(2f10.5),5x)') 
7143 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7144 cd            enddo
7145 cd          enddo
7146 cd        enddo
7147 cd        endif
7148         call transpose2(EUgder(1,1,k),auxmat(1,1))
7149         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7150         call transpose2(EUg(1,1,k),auxmat(1,1))
7151         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7152         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7153         do iii=1,2
7154           do kkk=1,5
7155             do lll=1,3
7156               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7157      &          EAEAderx(1,1,lll,kkk,iii,1))
7158             enddo
7159           enddo
7160         enddo
7161 C A1T kernel(i+1) A2
7162         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7163      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7164      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7165 C Following matrices are needed only for 6-th order cumulants
7166         IF (wcorr6.gt.0.0d0) THEN
7167         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7168      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7169      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7170         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7171      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7172      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7173      &   ADtEAderx(1,1,1,1,1,2))
7174         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7175      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7176      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7177      &   ADtEA1derx(1,1,1,1,1,2))
7178         ENDIF
7179 C End 6-th order cumulants
7180         call transpose2(EUgder(1,1,l),auxmat(1,1))
7181         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7182         call transpose2(EUg(1,1,l),auxmat(1,1))
7183         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7184         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7185         do iii=1,2
7186           do kkk=1,5
7187             do lll=1,3
7188               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7189      &          EAEAderx(1,1,lll,kkk,iii,2))
7190             enddo
7191           enddo
7192         enddo
7193 C AEAb1 and AEAb2
7194 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7195 C They are needed only when the fifth- or the sixth-order cumulants are
7196 C indluded.
7197         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7198         call transpose2(AEA(1,1,1),auxmat(1,1))
7199         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7200         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7201         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7202         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7203         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7204         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7205         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7206         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7207         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7208         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7209         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7210         call transpose2(AEA(1,1,2),auxmat(1,1))
7211         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7212         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7213         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7214         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7215         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7216         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7217         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7218         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7219         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7220         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7221         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7222 C Calculate the Cartesian derivatives of the vectors.
7223         do iii=1,2
7224           do kkk=1,5
7225             do lll=1,3
7226               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7227               call matvec2(auxmat(1,1),b1(1,iti),
7228      &          AEAb1derx(1,lll,kkk,iii,1,1))
7229               call matvec2(auxmat(1,1),Ub2(1,i),
7230      &          AEAb2derx(1,lll,kkk,iii,1,1))
7231               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7232      &          AEAb1derx(1,lll,kkk,iii,2,1))
7233               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7234      &          AEAb2derx(1,lll,kkk,iii,2,1))
7235               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7236               call matvec2(auxmat(1,1),b1(1,itj),
7237      &          AEAb1derx(1,lll,kkk,iii,1,2))
7238               call matvec2(auxmat(1,1),Ub2(1,j),
7239      &          AEAb2derx(1,lll,kkk,iii,1,2))
7240               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7241      &          AEAb1derx(1,lll,kkk,iii,2,2))
7242               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7243      &          AEAb2derx(1,lll,kkk,iii,2,2))
7244             enddo
7245           enddo
7246         enddo
7247         ENDIF
7248 C End vectors
7249       else
7250 C Antiparallel orientation of the two CA-CA-CA frames.
7251         if (i.gt.1) then
7252           iti=itortyp(itype(i))
7253         else
7254           iti=ntortyp+1
7255         endif
7256         itk1=itortyp(itype(k+1))
7257         itl=itortyp(itype(l))
7258         itj=itortyp(itype(j))
7259         if (j.lt.nres-1) then
7260           itj1=itortyp(itype(j+1))
7261         else 
7262           itj1=ntortyp+1
7263         endif
7264 C A2 kernel(j-1)T A1T
7265         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7266      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7267      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7268 C Following matrices are needed only for 6-th order cumulants
7269         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7270      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7271         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7272      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7273      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7274         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7275      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7276      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7277      &   ADtEAderx(1,1,1,1,1,1))
7278         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7279      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7280      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7281      &   ADtEA1derx(1,1,1,1,1,1))
7282         ENDIF
7283 C End 6-th order cumulants
7284         call transpose2(EUgder(1,1,k),auxmat(1,1))
7285         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7286         call transpose2(EUg(1,1,k),auxmat(1,1))
7287         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7288         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7289         do iii=1,2
7290           do kkk=1,5
7291             do lll=1,3
7292               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7293      &          EAEAderx(1,1,lll,kkk,iii,1))
7294             enddo
7295           enddo
7296         enddo
7297 C A2T kernel(i+1)T A1
7298         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7299      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7300      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7301 C Following matrices are needed only for 6-th order cumulants
7302         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7303      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7304         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7305      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7306      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7307         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7308      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7309      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7310      &   ADtEAderx(1,1,1,1,1,2))
7311         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7312      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7313      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7314      &   ADtEA1derx(1,1,1,1,1,2))
7315         ENDIF
7316 C End 6-th order cumulants
7317         call transpose2(EUgder(1,1,j),auxmat(1,1))
7318         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7319         call transpose2(EUg(1,1,j),auxmat(1,1))
7320         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7321         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7322         do iii=1,2
7323           do kkk=1,5
7324             do lll=1,3
7325               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7326      &          EAEAderx(1,1,lll,kkk,iii,2))
7327             enddo
7328           enddo
7329         enddo
7330 C AEAb1 and AEAb2
7331 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7332 C They are needed only when the fifth- or the sixth-order cumulants are
7333 C indluded.
7334         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7335      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7336         call transpose2(AEA(1,1,1),auxmat(1,1))
7337         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7338         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7339         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7340         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7341         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7342         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7343         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7344         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7345         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7346         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7347         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7348         call transpose2(AEA(1,1,2),auxmat(1,1))
7349         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7350         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7351         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7352         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7353         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7354         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7355         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7356         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7357         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7358         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7359         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7360 C Calculate the Cartesian derivatives of the vectors.
7361         do iii=1,2
7362           do kkk=1,5
7363             do lll=1,3
7364               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7365               call matvec2(auxmat(1,1),b1(1,iti),
7366      &          AEAb1derx(1,lll,kkk,iii,1,1))
7367               call matvec2(auxmat(1,1),Ub2(1,i),
7368      &          AEAb2derx(1,lll,kkk,iii,1,1))
7369               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7370      &          AEAb1derx(1,lll,kkk,iii,2,1))
7371               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7372      &          AEAb2derx(1,lll,kkk,iii,2,1))
7373               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7374               call matvec2(auxmat(1,1),b1(1,itl),
7375      &          AEAb1derx(1,lll,kkk,iii,1,2))
7376               call matvec2(auxmat(1,1),Ub2(1,l),
7377      &          AEAb2derx(1,lll,kkk,iii,1,2))
7378               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7379      &          AEAb1derx(1,lll,kkk,iii,2,2))
7380               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7381      &          AEAb2derx(1,lll,kkk,iii,2,2))
7382             enddo
7383           enddo
7384         enddo
7385         ENDIF
7386 C End vectors
7387       endif
7388       return
7389       end
7390 C---------------------------------------------------------------------------
7391       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7392      &  KK,KKderg,AKA,AKAderg,AKAderx)
7393       implicit none
7394       integer nderg
7395       logical transp
7396       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7397      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7398      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7399       integer iii,kkk,lll
7400       integer jjj,mmm
7401       logical lprn
7402       common /kutas/ lprn
7403       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7404       do iii=1,nderg 
7405         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7406      &    AKAderg(1,1,iii))
7407       enddo
7408 cd      if (lprn) write (2,*) 'In kernel'
7409       do kkk=1,5
7410 cd        if (lprn) write (2,*) 'kkk=',kkk
7411         do lll=1,3
7412           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7413      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7414 cd          if (lprn) then
7415 cd            write (2,*) 'lll=',lll
7416 cd            write (2,*) 'iii=1'
7417 cd            do jjj=1,2
7418 cd              write (2,'(3(2f10.5),5x)') 
7419 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7420 cd            enddo
7421 cd          endif
7422           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7423      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7424 cd          if (lprn) then
7425 cd            write (2,*) 'lll=',lll
7426 cd            write (2,*) 'iii=2'
7427 cd            do jjj=1,2
7428 cd              write (2,'(3(2f10.5),5x)') 
7429 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7430 cd            enddo
7431 cd          endif
7432         enddo
7433       enddo
7434       return
7435       end
7436 C---------------------------------------------------------------------------
7437       double precision function eello4(i,j,k,l,jj,kk)
7438       implicit real*8 (a-h,o-z)
7439       include 'DIMENSIONS'
7440       include 'COMMON.IOUNITS'
7441       include 'COMMON.CHAIN'
7442       include 'COMMON.DERIV'
7443       include 'COMMON.INTERACT'
7444       include 'COMMON.CONTACTS'
7445       include 'COMMON.TORSION'
7446       include 'COMMON.VAR'
7447       include 'COMMON.GEO'
7448       double precision pizda(2,2),ggg1(3),ggg2(3)
7449 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7450 cd        eello4=0.0d0
7451 cd        return
7452 cd      endif
7453 cd      print *,'eello4:',i,j,k,l,jj,kk
7454 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7455 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7456 cold      eij=facont_hb(jj,i)
7457 cold      ekl=facont_hb(kk,k)
7458 cold      ekont=eij*ekl
7459       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7460 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7461       gcorr_loc(k-1)=gcorr_loc(k-1)
7462      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7463       if (l.eq.j+1) then
7464         gcorr_loc(l-1)=gcorr_loc(l-1)
7465      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7466       else
7467         gcorr_loc(j-1)=gcorr_loc(j-1)
7468      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7469       endif
7470       do iii=1,2
7471         do kkk=1,5
7472           do lll=1,3
7473             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7474      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7475 cd            derx(lll,kkk,iii)=0.0d0
7476           enddo
7477         enddo
7478       enddo
7479 cd      gcorr_loc(l-1)=0.0d0
7480 cd      gcorr_loc(j-1)=0.0d0
7481 cd      gcorr_loc(k-1)=0.0d0
7482 cd      eel4=1.0d0
7483 cd      write (iout,*)'Contacts have occurred for peptide groups',
7484 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7485 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7486       if (j.lt.nres-1) then
7487         j1=j+1
7488         j2=j-1
7489       else
7490         j1=j-1
7491         j2=j-2
7492       endif
7493       if (l.lt.nres-1) then
7494         l1=l+1
7495         l2=l-1
7496       else
7497         l1=l-1
7498         l2=l-2
7499       endif
7500       do ll=1,3
7501 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7502 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7503         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7504         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7505 cgrad        ghalf=0.5d0*ggg1(ll)
7506         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7507         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7508         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7509         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7510         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7511         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7512 cgrad        ghalf=0.5d0*ggg2(ll)
7513         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7514         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7515         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7516         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7517         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7518         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7519       enddo
7520 cgrad      do m=i+1,j-1
7521 cgrad        do ll=1,3
7522 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7523 cgrad        enddo
7524 cgrad      enddo
7525 cgrad      do m=k+1,l-1
7526 cgrad        do ll=1,3
7527 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7528 cgrad        enddo
7529 cgrad      enddo
7530 cgrad      do m=i+2,j2
7531 cgrad        do ll=1,3
7532 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7533 cgrad        enddo
7534 cgrad      enddo
7535 cgrad      do m=k+2,l2
7536 cgrad        do ll=1,3
7537 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7538 cgrad        enddo
7539 cgrad      enddo 
7540 cd      do iii=1,nres-3
7541 cd        write (2,*) iii,gcorr_loc(iii)
7542 cd      enddo
7543       eello4=ekont*eel4
7544 cd      write (2,*) 'ekont',ekont
7545 cd      write (iout,*) 'eello4',ekont*eel4
7546       return
7547       end
7548 C---------------------------------------------------------------------------
7549       double precision function eello5(i,j,k,l,jj,kk)
7550       implicit real*8 (a-h,o-z)
7551       include 'DIMENSIONS'
7552       include 'COMMON.IOUNITS'
7553       include 'COMMON.CHAIN'
7554       include 'COMMON.DERIV'
7555       include 'COMMON.INTERACT'
7556       include 'COMMON.CONTACTS'
7557       include 'COMMON.TORSION'
7558       include 'COMMON.VAR'
7559       include 'COMMON.GEO'
7560       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7561       double precision ggg1(3),ggg2(3)
7562 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7563 C                                                                              C
7564 C                            Parallel chains                                   C
7565 C                                                                              C
7566 C          o             o                   o             o                   C
7567 C         /l\           / \             \   / \           / \   /              C
7568 C        /   \         /   \             \ /   \         /   \ /               C
7569 C       j| o |l1       | o |              o| o |         | o |o                C
7570 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7571 C      \i/   \         /   \ /             /   \         /   \                 C
7572 C       o    k1             o                                                  C
7573 C         (I)          (II)                (III)          (IV)                 C
7574 C                                                                              C
7575 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7576 C                                                                              C
7577 C                            Antiparallel chains                               C
7578 C                                                                              C
7579 C          o             o                   o             o                   C
7580 C         /j\           / \             \   / \           / \   /              C
7581 C        /   \         /   \             \ /   \         /   \ /               C
7582 C      j1| o |l        | o |              o| o |         | o |o                C
7583 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7584 C      \i/   \         /   \ /             /   \         /   \                 C
7585 C       o     k1            o                                                  C
7586 C         (I)          (II)                (III)          (IV)                 C
7587 C                                                                              C
7588 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7589 C                                                                              C
7590 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7591 C                                                                              C
7592 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7593 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7594 cd        eello5=0.0d0
7595 cd        return
7596 cd      endif
7597 cd      write (iout,*)
7598 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7599 cd     &   ' and',k,l
7600       itk=itortyp(itype(k))
7601       itl=itortyp(itype(l))
7602       itj=itortyp(itype(j))
7603       eello5_1=0.0d0
7604       eello5_2=0.0d0
7605       eello5_3=0.0d0
7606       eello5_4=0.0d0
7607 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7608 cd     &   eel5_3_num,eel5_4_num)
7609       do iii=1,2
7610         do kkk=1,5
7611           do lll=1,3
7612             derx(lll,kkk,iii)=0.0d0
7613           enddo
7614         enddo
7615       enddo
7616 cd      eij=facont_hb(jj,i)
7617 cd      ekl=facont_hb(kk,k)
7618 cd      ekont=eij*ekl
7619 cd      write (iout,*)'Contacts have occurred for peptide groups',
7620 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7621 cd      goto 1111
7622 C Contribution from the graph I.
7623 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7624 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7625       call transpose2(EUg(1,1,k),auxmat(1,1))
7626       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7627       vv(1)=pizda(1,1)-pizda(2,2)
7628       vv(2)=pizda(1,2)+pizda(2,1)
7629       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7630      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7631 C Explicit gradient in virtual-dihedral angles.
7632       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7633      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7634      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7635       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7636       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7637       vv(1)=pizda(1,1)-pizda(2,2)
7638       vv(2)=pizda(1,2)+pizda(2,1)
7639       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7640      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7641      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7642       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7643       vv(1)=pizda(1,1)-pizda(2,2)
7644       vv(2)=pizda(1,2)+pizda(2,1)
7645       if (l.eq.j+1) then
7646         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7647      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7648      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7649       else
7650         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7651      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7652      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7653       endif 
7654 C Cartesian gradient
7655       do iii=1,2
7656         do kkk=1,5
7657           do lll=1,3
7658             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7659      &        pizda(1,1))
7660             vv(1)=pizda(1,1)-pizda(2,2)
7661             vv(2)=pizda(1,2)+pizda(2,1)
7662             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7663      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7664      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7665           enddo
7666         enddo
7667       enddo
7668 c      goto 1112
7669 c1111  continue
7670 C Contribution from graph II 
7671       call transpose2(EE(1,1,itk),auxmat(1,1))
7672       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7673       vv(1)=pizda(1,1)+pizda(2,2)
7674       vv(2)=pizda(2,1)-pizda(1,2)
7675       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7676      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7677 C Explicit gradient in virtual-dihedral angles.
7678       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7679      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7680       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7681       vv(1)=pizda(1,1)+pizda(2,2)
7682       vv(2)=pizda(2,1)-pizda(1,2)
7683       if (l.eq.j+1) then
7684         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7685      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7686      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7687       else
7688         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7689      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7690      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7691       endif
7692 C Cartesian gradient
7693       do iii=1,2
7694         do kkk=1,5
7695           do lll=1,3
7696             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7697      &        pizda(1,1))
7698             vv(1)=pizda(1,1)+pizda(2,2)
7699             vv(2)=pizda(2,1)-pizda(1,2)
7700             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7701      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7702      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7703           enddo
7704         enddo
7705       enddo
7706 cd      goto 1112
7707 cd1111  continue
7708       if (l.eq.j+1) then
7709 cd        goto 1110
7710 C Parallel orientation
7711 C Contribution from graph III
7712         call transpose2(EUg(1,1,l),auxmat(1,1))
7713         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7714         vv(1)=pizda(1,1)-pizda(2,2)
7715         vv(2)=pizda(1,2)+pizda(2,1)
7716         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7717      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7718 C Explicit gradient in virtual-dihedral angles.
7719         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7720      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7721      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7722         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7723         vv(1)=pizda(1,1)-pizda(2,2)
7724         vv(2)=pizda(1,2)+pizda(2,1)
7725         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7726      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7727      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7728         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7729         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7730         vv(1)=pizda(1,1)-pizda(2,2)
7731         vv(2)=pizda(1,2)+pizda(2,1)
7732         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7733      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7734      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7735 C Cartesian gradient
7736         do iii=1,2
7737           do kkk=1,5
7738             do lll=1,3
7739               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7740      &          pizda(1,1))
7741               vv(1)=pizda(1,1)-pizda(2,2)
7742               vv(2)=pizda(1,2)+pizda(2,1)
7743               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7744      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7745      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7746             enddo
7747           enddo
7748         enddo
7749 cd        goto 1112
7750 C Contribution from graph IV
7751 cd1110    continue
7752         call transpose2(EE(1,1,itl),auxmat(1,1))
7753         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7754         vv(1)=pizda(1,1)+pizda(2,2)
7755         vv(2)=pizda(2,1)-pizda(1,2)
7756         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7757      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7758 C Explicit gradient in virtual-dihedral angles.
7759         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7760      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7761         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7762         vv(1)=pizda(1,1)+pizda(2,2)
7763         vv(2)=pizda(2,1)-pizda(1,2)
7764         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7765      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7766      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7767 C Cartesian gradient
7768         do iii=1,2
7769           do kkk=1,5
7770             do lll=1,3
7771               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7772      &          pizda(1,1))
7773               vv(1)=pizda(1,1)+pizda(2,2)
7774               vv(2)=pizda(2,1)-pizda(1,2)
7775               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7776      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7777      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7778             enddo
7779           enddo
7780         enddo
7781       else
7782 C Antiparallel orientation
7783 C Contribution from graph III
7784 c        goto 1110
7785         call transpose2(EUg(1,1,j),auxmat(1,1))
7786         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7787         vv(1)=pizda(1,1)-pizda(2,2)
7788         vv(2)=pizda(1,2)+pizda(2,1)
7789         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7790      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7791 C Explicit gradient in virtual-dihedral angles.
7792         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7793      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7794      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7795         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7796         vv(1)=pizda(1,1)-pizda(2,2)
7797         vv(2)=pizda(1,2)+pizda(2,1)
7798         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7799      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7800      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7801         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7802         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7803         vv(1)=pizda(1,1)-pizda(2,2)
7804         vv(2)=pizda(1,2)+pizda(2,1)
7805         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7806      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7807      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7808 C Cartesian gradient
7809         do iii=1,2
7810           do kkk=1,5
7811             do lll=1,3
7812               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7813      &          pizda(1,1))
7814               vv(1)=pizda(1,1)-pizda(2,2)
7815               vv(2)=pizda(1,2)+pizda(2,1)
7816               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7817      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7818      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7819             enddo
7820           enddo
7821         enddo
7822 cd        goto 1112
7823 C Contribution from graph IV
7824 1110    continue
7825         call transpose2(EE(1,1,itj),auxmat(1,1))
7826         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7827         vv(1)=pizda(1,1)+pizda(2,2)
7828         vv(2)=pizda(2,1)-pizda(1,2)
7829         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7830      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7831 C Explicit gradient in virtual-dihedral angles.
7832         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7833      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7834         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7835         vv(1)=pizda(1,1)+pizda(2,2)
7836         vv(2)=pizda(2,1)-pizda(1,2)
7837         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7838      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7839      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7840 C Cartesian gradient
7841         do iii=1,2
7842           do kkk=1,5
7843             do lll=1,3
7844               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7845      &          pizda(1,1))
7846               vv(1)=pizda(1,1)+pizda(2,2)
7847               vv(2)=pizda(2,1)-pizda(1,2)
7848               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7849      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7850      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7851             enddo
7852           enddo
7853         enddo
7854       endif
7855 1112  continue
7856       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7857 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7858 cd        write (2,*) 'ijkl',i,j,k,l
7859 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7860 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7861 cd      endif
7862 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7863 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7864 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7865 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7866       if (j.lt.nres-1) then
7867         j1=j+1
7868         j2=j-1
7869       else
7870         j1=j-1
7871         j2=j-2
7872       endif
7873       if (l.lt.nres-1) then
7874         l1=l+1
7875         l2=l-1
7876       else
7877         l1=l-1
7878         l2=l-2
7879       endif
7880 cd      eij=1.0d0
7881 cd      ekl=1.0d0
7882 cd      ekont=1.0d0
7883 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7884 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7885 C        summed up outside the subrouine as for the other subroutines 
7886 C        handling long-range interactions. The old code is commented out
7887 C        with "cgrad" to keep track of changes.
7888       do ll=1,3
7889 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7890 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7891         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7892         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7893 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7894 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7895 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7896 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7897 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7898 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7899 c     &   gradcorr5ij,
7900 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7901 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7902 cgrad        ghalf=0.5d0*ggg1(ll)
7903 cd        ghalf=0.0d0
7904         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7905         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7906         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7907         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7908         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7909         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7910 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7911 cgrad        ghalf=0.5d0*ggg2(ll)
7912 cd        ghalf=0.0d0
7913         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7914         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7915         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7916         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7917         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7918         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7919       enddo
7920 cd      goto 1112
7921 cgrad      do m=i+1,j-1
7922 cgrad        do ll=1,3
7923 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7924 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7925 cgrad        enddo
7926 cgrad      enddo
7927 cgrad      do m=k+1,l-1
7928 cgrad        do ll=1,3
7929 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7930 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7931 cgrad        enddo
7932 cgrad      enddo
7933 c1112  continue
7934 cgrad      do m=i+2,j2
7935 cgrad        do ll=1,3
7936 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7937 cgrad        enddo
7938 cgrad      enddo
7939 cgrad      do m=k+2,l2
7940 cgrad        do ll=1,3
7941 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7942 cgrad        enddo
7943 cgrad      enddo 
7944 cd      do iii=1,nres-3
7945 cd        write (2,*) iii,g_corr5_loc(iii)
7946 cd      enddo
7947       eello5=ekont*eel5
7948 cd      write (2,*) 'ekont',ekont
7949 cd      write (iout,*) 'eello5',ekont*eel5
7950       return
7951       end
7952 c--------------------------------------------------------------------------
7953       double precision function eello6(i,j,k,l,jj,kk)
7954       implicit real*8 (a-h,o-z)
7955       include 'DIMENSIONS'
7956       include 'COMMON.IOUNITS'
7957       include 'COMMON.CHAIN'
7958       include 'COMMON.DERIV'
7959       include 'COMMON.INTERACT'
7960       include 'COMMON.CONTACTS'
7961       include 'COMMON.TORSION'
7962       include 'COMMON.VAR'
7963       include 'COMMON.GEO'
7964       include 'COMMON.FFIELD'
7965       double precision ggg1(3),ggg2(3)
7966 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7967 cd        eello6=0.0d0
7968 cd        return
7969 cd      endif
7970 cd      write (iout,*)
7971 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7972 cd     &   ' and',k,l
7973       eello6_1=0.0d0
7974       eello6_2=0.0d0
7975       eello6_3=0.0d0
7976       eello6_4=0.0d0
7977       eello6_5=0.0d0
7978       eello6_6=0.0d0
7979 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7980 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7981       do iii=1,2
7982         do kkk=1,5
7983           do lll=1,3
7984             derx(lll,kkk,iii)=0.0d0
7985           enddo
7986         enddo
7987       enddo
7988 cd      eij=facont_hb(jj,i)
7989 cd      ekl=facont_hb(kk,k)
7990 cd      ekont=eij*ekl
7991 cd      eij=1.0d0
7992 cd      ekl=1.0d0
7993 cd      ekont=1.0d0
7994       if (l.eq.j+1) then
7995         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7996         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
7997         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
7998         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7999         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8000         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8001       else
8002         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8003         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8004         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8005         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8006         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8007           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8008         else
8009           eello6_5=0.0d0
8010         endif
8011         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8012       endif
8013 C If turn contributions are considered, they will be handled separately.
8014       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8015 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8016 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8017 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8018 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8019 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8020 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8021 cd      goto 1112
8022       if (j.lt.nres-1) then
8023         j1=j+1
8024         j2=j-1
8025       else
8026         j1=j-1
8027         j2=j-2
8028       endif
8029       if (l.lt.nres-1) then
8030         l1=l+1
8031         l2=l-1
8032       else
8033         l1=l-1
8034         l2=l-2
8035       endif
8036       do ll=1,3
8037 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8038 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8039 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8040 cgrad        ghalf=0.5d0*ggg1(ll)
8041 cd        ghalf=0.0d0
8042         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8043         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8044         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8045         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8046         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8047         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8048         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8049         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8050 cgrad        ghalf=0.5d0*ggg2(ll)
8051 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8052 cd        ghalf=0.0d0
8053         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8054         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8055         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8056         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8057         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8058         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8059       enddo
8060 cd      goto 1112
8061 cgrad      do m=i+1,j-1
8062 cgrad        do ll=1,3
8063 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8064 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8065 cgrad        enddo
8066 cgrad      enddo
8067 cgrad      do m=k+1,l-1
8068 cgrad        do ll=1,3
8069 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8070 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8071 cgrad        enddo
8072 cgrad      enddo
8073 cgrad1112  continue
8074 cgrad      do m=i+2,j2
8075 cgrad        do ll=1,3
8076 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8077 cgrad        enddo
8078 cgrad      enddo
8079 cgrad      do m=k+2,l2
8080 cgrad        do ll=1,3
8081 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8082 cgrad        enddo
8083 cgrad      enddo 
8084 cd      do iii=1,nres-3
8085 cd        write (2,*) iii,g_corr6_loc(iii)
8086 cd      enddo
8087       eello6=ekont*eel6
8088 cd      write (2,*) 'ekont',ekont
8089 cd      write (iout,*) 'eello6',ekont*eel6
8090       return
8091       end
8092 c--------------------------------------------------------------------------
8093       double precision function eello6_graph1(i,j,k,l,imat,swap)
8094       implicit real*8 (a-h,o-z)
8095       include 'DIMENSIONS'
8096       include 'COMMON.IOUNITS'
8097       include 'COMMON.CHAIN'
8098       include 'COMMON.DERIV'
8099       include 'COMMON.INTERACT'
8100       include 'COMMON.CONTACTS'
8101       include 'COMMON.TORSION'
8102       include 'COMMON.VAR'
8103       include 'COMMON.GEO'
8104       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8105       logical swap
8106       logical lprn
8107       common /kutas/ lprn
8108 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8109 C                                              
8110 C      Parallel       Antiparallel
8111 C                                             
8112 C          o             o         
8113 C         /l\           /j\
8114 C        /   \         /   \
8115 C       /| o |         | o |\
8116 C     \ j|/k\|  /   \  |/k\|l /   
8117 C      \ /   \ /     \ /   \ /    
8118 C       o     o       o     o                
8119 C       i             i                     
8120 C
8121 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8122       itk=itortyp(itype(k))
8123       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8124       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8125       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8126       call transpose2(EUgC(1,1,k),auxmat(1,1))
8127       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8128       vv1(1)=pizda1(1,1)-pizda1(2,2)
8129       vv1(2)=pizda1(1,2)+pizda1(2,1)
8130       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8131       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8132       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8133       s5=scalar2(vv(1),Dtobr2(1,i))
8134 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8135       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8136       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8137      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8138      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8139      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8140      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8141      & +scalar2(vv(1),Dtobr2der(1,i)))
8142       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8143       vv1(1)=pizda1(1,1)-pizda1(2,2)
8144       vv1(2)=pizda1(1,2)+pizda1(2,1)
8145       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8146       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8147       if (l.eq.j+1) then
8148         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8149      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8150      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8151      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8152      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8153       else
8154         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8155      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8156      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8157      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8158      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8159       endif
8160       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8161       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8162       vv1(1)=pizda1(1,1)-pizda1(2,2)
8163       vv1(2)=pizda1(1,2)+pizda1(2,1)
8164       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8165      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8166      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8167      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8168       do iii=1,2
8169         if (swap) then
8170           ind=3-iii
8171         else
8172           ind=iii
8173         endif
8174         do kkk=1,5
8175           do lll=1,3
8176             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8177             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8178             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8179             call transpose2(EUgC(1,1,k),auxmat(1,1))
8180             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8181      &        pizda1(1,1))
8182             vv1(1)=pizda1(1,1)-pizda1(2,2)
8183             vv1(2)=pizda1(1,2)+pizda1(2,1)
8184             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8185             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8186      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8187             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8188      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8189             s5=scalar2(vv(1),Dtobr2(1,i))
8190             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8191           enddo
8192         enddo
8193       enddo
8194       return
8195       end
8196 c----------------------------------------------------------------------------
8197       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8198       implicit real*8 (a-h,o-z)
8199       include 'DIMENSIONS'
8200       include 'COMMON.IOUNITS'
8201       include 'COMMON.CHAIN'
8202       include 'COMMON.DERIV'
8203       include 'COMMON.INTERACT'
8204       include 'COMMON.CONTACTS'
8205       include 'COMMON.TORSION'
8206       include 'COMMON.VAR'
8207       include 'COMMON.GEO'
8208       logical swap
8209       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8210      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8211       logical lprn
8212       common /kutas/ lprn
8213 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8214 C                                                                              C
8215 C      Parallel       Antiparallel                                             C
8216 C                                                                              C
8217 C          o             o                                                     C
8218 C     \   /l\           /j\   /                                                C
8219 C      \ /   \         /   \ /                                                 C
8220 C       o| o |         | o |o                                                  C                
8221 C     \ j|/k\|      \  |/k\|l                                                  C
8222 C      \ /   \       \ /   \                                                   C
8223 C       o             o                                                        C
8224 C       i             i                                                        C 
8225 C                                                                              C           
8226 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8227 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8228 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8229 C           but not in a cluster cumulant
8230 #ifdef MOMENT
8231       s1=dip(1,jj,i)*dip(1,kk,k)
8232 #endif
8233       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8234       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8235       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8236       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8237       call transpose2(EUg(1,1,k),auxmat(1,1))
8238       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8239       vv(1)=pizda(1,1)-pizda(2,2)
8240       vv(2)=pizda(1,2)+pizda(2,1)
8241       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8242 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8243 #ifdef MOMENT
8244       eello6_graph2=-(s1+s2+s3+s4)
8245 #else
8246       eello6_graph2=-(s2+s3+s4)
8247 #endif
8248 c      eello6_graph2=-s3
8249 C Derivatives in gamma(i-1)
8250       if (i.gt.1) then
8251 #ifdef MOMENT
8252         s1=dipderg(1,jj,i)*dip(1,kk,k)
8253 #endif
8254         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8255         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8256         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8257         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8258 #ifdef MOMENT
8259         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8260 #else
8261         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8262 #endif
8263 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8264       endif
8265 C Derivatives in gamma(k-1)
8266 #ifdef MOMENT
8267       s1=dip(1,jj,i)*dipderg(1,kk,k)
8268 #endif
8269       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8270       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8271       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8272       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8273       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8274       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8275       vv(1)=pizda(1,1)-pizda(2,2)
8276       vv(2)=pizda(1,2)+pizda(2,1)
8277       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8278 #ifdef MOMENT
8279       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8280 #else
8281       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8282 #endif
8283 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8284 C Derivatives in gamma(j-1) or gamma(l-1)
8285       if (j.gt.1) then
8286 #ifdef MOMENT
8287         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8288 #endif
8289         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8290         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8291         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8292         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8293         vv(1)=pizda(1,1)-pizda(2,2)
8294         vv(2)=pizda(1,2)+pizda(2,1)
8295         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8296 #ifdef MOMENT
8297         if (swap) then
8298           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8299         else
8300           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8301         endif
8302 #endif
8303         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8304 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8305       endif
8306 C Derivatives in gamma(l-1) or gamma(j-1)
8307       if (l.gt.1) then 
8308 #ifdef MOMENT
8309         s1=dip(1,jj,i)*dipderg(3,kk,k)
8310 #endif
8311         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8312         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8313         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8314         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8315         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8316         vv(1)=pizda(1,1)-pizda(2,2)
8317         vv(2)=pizda(1,2)+pizda(2,1)
8318         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8319 #ifdef MOMENT
8320         if (swap) then
8321           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8322         else
8323           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8324         endif
8325 #endif
8326         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8327 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8328       endif
8329 C Cartesian derivatives.
8330       if (lprn) then
8331         write (2,*) 'In eello6_graph2'
8332         do iii=1,2
8333           write (2,*) 'iii=',iii
8334           do kkk=1,5
8335             write (2,*) 'kkk=',kkk
8336             do jjj=1,2
8337               write (2,'(3(2f10.5),5x)') 
8338      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8339             enddo
8340           enddo
8341         enddo
8342       endif
8343       do iii=1,2
8344         do kkk=1,5
8345           do lll=1,3
8346 #ifdef MOMENT
8347             if (iii.eq.1) then
8348               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8349             else
8350               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8351             endif
8352 #endif
8353             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8354      &        auxvec(1))
8355             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8356             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8357      &        auxvec(1))
8358             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8359             call transpose2(EUg(1,1,k),auxmat(1,1))
8360             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8361      &        pizda(1,1))
8362             vv(1)=pizda(1,1)-pizda(2,2)
8363             vv(2)=pizda(1,2)+pizda(2,1)
8364             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8365 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8366 #ifdef MOMENT
8367             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8368 #else
8369             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8370 #endif
8371             if (swap) then
8372               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8373             else
8374               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8375             endif
8376           enddo
8377         enddo
8378       enddo
8379       return
8380       end
8381 c----------------------------------------------------------------------------
8382       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8383       implicit real*8 (a-h,o-z)
8384       include 'DIMENSIONS'
8385       include 'COMMON.IOUNITS'
8386       include 'COMMON.CHAIN'
8387       include 'COMMON.DERIV'
8388       include 'COMMON.INTERACT'
8389       include 'COMMON.CONTACTS'
8390       include 'COMMON.TORSION'
8391       include 'COMMON.VAR'
8392       include 'COMMON.GEO'
8393       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8394       logical swap
8395 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8396 C                                                                              C 
8397 C      Parallel       Antiparallel                                             C
8398 C                                                                              C
8399 C          o             o                                                     C 
8400 C         /l\   /   \   /j\                                                    C 
8401 C        /   \ /     \ /   \                                                   C
8402 C       /| o |o       o| o |\                                                  C
8403 C       j|/k\|  /      |/k\|l /                                                C
8404 C        /   \ /       /   \ /                                                 C
8405 C       /     o       /     o                                                  C
8406 C       i             i                                                        C
8407 C                                                                              C
8408 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8409 C
8410 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8411 C           energy moment and not to the cluster cumulant.
8412       iti=itortyp(itype(i))
8413       if (j.lt.nres-1) then
8414         itj1=itortyp(itype(j+1))
8415       else
8416         itj1=ntortyp+1
8417       endif
8418       itk=itortyp(itype(k))
8419       itk1=itortyp(itype(k+1))
8420       if (l.lt.nres-1) then
8421         itl1=itortyp(itype(l+1))
8422       else
8423         itl1=ntortyp+1
8424       endif
8425 #ifdef MOMENT
8426       s1=dip(4,jj,i)*dip(4,kk,k)
8427 #endif
8428       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8429       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8430       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8431       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8432       call transpose2(EE(1,1,itk),auxmat(1,1))
8433       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8434       vv(1)=pizda(1,1)+pizda(2,2)
8435       vv(2)=pizda(2,1)-pizda(1,2)
8436       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8437 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8438 cd     & "sum",-(s2+s3+s4)
8439 #ifdef MOMENT
8440       eello6_graph3=-(s1+s2+s3+s4)
8441 #else
8442       eello6_graph3=-(s2+s3+s4)
8443 #endif
8444 c      eello6_graph3=-s4
8445 C Derivatives in gamma(k-1)
8446       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8447       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8448       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8449       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8450 C Derivatives in gamma(l-1)
8451       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8452       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8453       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8454       vv(1)=pizda(1,1)+pizda(2,2)
8455       vv(2)=pizda(2,1)-pizda(1,2)
8456       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8457       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8458 C Cartesian derivatives.
8459       do iii=1,2
8460         do kkk=1,5
8461           do lll=1,3
8462 #ifdef MOMENT
8463             if (iii.eq.1) then
8464               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8465             else
8466               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8467             endif
8468 #endif
8469             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8470      &        auxvec(1))
8471             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8472             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8473      &        auxvec(1))
8474             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8475             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8476      &        pizda(1,1))
8477             vv(1)=pizda(1,1)+pizda(2,2)
8478             vv(2)=pizda(2,1)-pizda(1,2)
8479             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8480 #ifdef MOMENT
8481             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8482 #else
8483             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8484 #endif
8485             if (swap) then
8486               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8487             else
8488               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8489             endif
8490 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8491           enddo
8492         enddo
8493       enddo
8494       return
8495       end
8496 c----------------------------------------------------------------------------
8497       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8498       implicit real*8 (a-h,o-z)
8499       include 'DIMENSIONS'
8500       include 'COMMON.IOUNITS'
8501       include 'COMMON.CHAIN'
8502       include 'COMMON.DERIV'
8503       include 'COMMON.INTERACT'
8504       include 'COMMON.CONTACTS'
8505       include 'COMMON.TORSION'
8506       include 'COMMON.VAR'
8507       include 'COMMON.GEO'
8508       include 'COMMON.FFIELD'
8509       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8510      & auxvec1(2),auxmat1(2,2)
8511       logical swap
8512 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8513 C                                                                              C                       
8514 C      Parallel       Antiparallel                                             C
8515 C                                                                              C
8516 C          o             o                                                     C
8517 C         /l\   /   \   /j\                                                    C
8518 C        /   \ /     \ /   \                                                   C
8519 C       /| o |o       o| o |\                                                  C
8520 C     \ j|/k\|      \  |/k\|l                                                  C
8521 C      \ /   \       \ /   \                                                   C 
8522 C       o     \       o     \                                                  C
8523 C       i             i                                                        C
8524 C                                                                              C 
8525 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8526 C
8527 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8528 C           energy moment and not to the cluster cumulant.
8529 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8530       iti=itortyp(itype(i))
8531       itj=itortyp(itype(j))
8532       if (j.lt.nres-1) then
8533         itj1=itortyp(itype(j+1))
8534       else
8535         itj1=ntortyp+1
8536       endif
8537       itk=itortyp(itype(k))
8538       if (k.lt.nres-1) then
8539         itk1=itortyp(itype(k+1))
8540       else
8541         itk1=ntortyp+1
8542       endif
8543       itl=itortyp(itype(l))
8544       if (l.lt.nres-1) then
8545         itl1=itortyp(itype(l+1))
8546       else
8547         itl1=ntortyp+1
8548       endif
8549 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8550 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8551 cd     & ' itl',itl,' itl1',itl1
8552 #ifdef MOMENT
8553       if (imat.eq.1) then
8554         s1=dip(3,jj,i)*dip(3,kk,k)
8555       else
8556         s1=dip(2,jj,j)*dip(2,kk,l)
8557       endif
8558 #endif
8559       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8560       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8561       if (j.eq.l+1) then
8562         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8563         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8564       else
8565         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8566         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8567       endif
8568       call transpose2(EUg(1,1,k),auxmat(1,1))
8569       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8570       vv(1)=pizda(1,1)-pizda(2,2)
8571       vv(2)=pizda(2,1)+pizda(1,2)
8572       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8573 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8574 #ifdef MOMENT
8575       eello6_graph4=-(s1+s2+s3+s4)
8576 #else
8577       eello6_graph4=-(s2+s3+s4)
8578 #endif
8579 C Derivatives in gamma(i-1)
8580       if (i.gt.1) then
8581 #ifdef MOMENT
8582         if (imat.eq.1) then
8583           s1=dipderg(2,jj,i)*dip(3,kk,k)
8584         else
8585           s1=dipderg(4,jj,j)*dip(2,kk,l)
8586         endif
8587 #endif
8588         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8589         if (j.eq.l+1) then
8590           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8591           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8592         else
8593           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8594           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8595         endif
8596         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8597         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8598 cd          write (2,*) 'turn6 derivatives'
8599 #ifdef MOMENT
8600           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8601 #else
8602           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8603 #endif
8604         else
8605 #ifdef MOMENT
8606           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8607 #else
8608           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8609 #endif
8610         endif
8611       endif
8612 C Derivatives in gamma(k-1)
8613 #ifdef MOMENT
8614       if (imat.eq.1) then
8615         s1=dip(3,jj,i)*dipderg(2,kk,k)
8616       else
8617         s1=dip(2,jj,j)*dipderg(4,kk,l)
8618       endif
8619 #endif
8620       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8621       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8622       if (j.eq.l+1) then
8623         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8624         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8625       else
8626         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8627         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8628       endif
8629       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8630       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8631       vv(1)=pizda(1,1)-pizda(2,2)
8632       vv(2)=pizda(2,1)+pizda(1,2)
8633       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8634       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8635 #ifdef MOMENT
8636         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8637 #else
8638         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8639 #endif
8640       else
8641 #ifdef MOMENT
8642         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8643 #else
8644         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8645 #endif
8646       endif
8647 C Derivatives in gamma(j-1) or gamma(l-1)
8648       if (l.eq.j+1 .and. l.gt.1) then
8649         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8650         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8651         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8652         vv(1)=pizda(1,1)-pizda(2,2)
8653         vv(2)=pizda(2,1)+pizda(1,2)
8654         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8655         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8656       else if (j.gt.1) then
8657         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8658         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8659         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8660         vv(1)=pizda(1,1)-pizda(2,2)
8661         vv(2)=pizda(2,1)+pizda(1,2)
8662         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8663         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8664           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8665         else
8666           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8667         endif
8668       endif
8669 C Cartesian derivatives.
8670       do iii=1,2
8671         do kkk=1,5
8672           do lll=1,3
8673 #ifdef MOMENT
8674             if (iii.eq.1) then
8675               if (imat.eq.1) then
8676                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8677               else
8678                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8679               endif
8680             else
8681               if (imat.eq.1) then
8682                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8683               else
8684                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8685               endif
8686             endif
8687 #endif
8688             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8689      &        auxvec(1))
8690             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8691             if (j.eq.l+1) then
8692               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8693      &          b1(1,itj1),auxvec(1))
8694               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8695             else
8696               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8697      &          b1(1,itl1),auxvec(1))
8698               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8699             endif
8700             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8701      &        pizda(1,1))
8702             vv(1)=pizda(1,1)-pizda(2,2)
8703             vv(2)=pizda(2,1)+pizda(1,2)
8704             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8705             if (swap) then
8706               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8707 #ifdef MOMENT
8708                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8709      &             -(s1+s2+s4)
8710 #else
8711                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8712      &             -(s2+s4)
8713 #endif
8714                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8715               else
8716 #ifdef MOMENT
8717                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8718 #else
8719                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8720 #endif
8721                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8722               endif
8723             else
8724 #ifdef MOMENT
8725               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8726 #else
8727               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8728 #endif
8729               if (l.eq.j+1) then
8730                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8731               else 
8732                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8733               endif
8734             endif 
8735           enddo
8736         enddo
8737       enddo
8738       return
8739       end
8740 c----------------------------------------------------------------------------
8741       double precision function eello_turn6(i,jj,kk)
8742       implicit real*8 (a-h,o-z)
8743       include 'DIMENSIONS'
8744       include 'COMMON.IOUNITS'
8745       include 'COMMON.CHAIN'
8746       include 'COMMON.DERIV'
8747       include 'COMMON.INTERACT'
8748       include 'COMMON.CONTACTS'
8749       include 'COMMON.TORSION'
8750       include 'COMMON.VAR'
8751       include 'COMMON.GEO'
8752       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8753      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8754      &  ggg1(3),ggg2(3)
8755       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8756      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8757 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8758 C           the respective energy moment and not to the cluster cumulant.
8759       s1=0.0d0
8760       s8=0.0d0
8761       s13=0.0d0
8762 c
8763       eello_turn6=0.0d0
8764       j=i+4
8765       k=i+1
8766       l=i+3
8767       iti=itortyp(itype(i))
8768       itk=itortyp(itype(k))
8769       itk1=itortyp(itype(k+1))
8770       itl=itortyp(itype(l))
8771       itj=itortyp(itype(j))
8772 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8773 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8774 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8775 cd        eello6=0.0d0
8776 cd        return
8777 cd      endif
8778 cd      write (iout,*)
8779 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8780 cd     &   ' and',k,l
8781 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8782       do iii=1,2
8783         do kkk=1,5
8784           do lll=1,3
8785             derx_turn(lll,kkk,iii)=0.0d0
8786           enddo
8787         enddo
8788       enddo
8789 cd      eij=1.0d0
8790 cd      ekl=1.0d0
8791 cd      ekont=1.0d0
8792       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8793 cd      eello6_5=0.0d0
8794 cd      write (2,*) 'eello6_5',eello6_5
8795 #ifdef MOMENT
8796       call transpose2(AEA(1,1,1),auxmat(1,1))
8797       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8798       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8799       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8800 #endif
8801       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8802       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8803       s2 = scalar2(b1(1,itk),vtemp1(1))
8804 #ifdef MOMENT
8805       call transpose2(AEA(1,1,2),atemp(1,1))
8806       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8807       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8808       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8809 #endif
8810       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8811       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8812       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8813 #ifdef MOMENT
8814       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8815       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8816       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8817       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8818       ss13 = scalar2(b1(1,itk),vtemp4(1))
8819       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8820 #endif
8821 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8822 c      s1=0.0d0
8823 c      s2=0.0d0
8824 c      s8=0.0d0
8825 c      s12=0.0d0
8826 c      s13=0.0d0
8827       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8828 C Derivatives in gamma(i+2)
8829       s1d =0.0d0
8830       s8d =0.0d0
8831 #ifdef MOMENT
8832       call transpose2(AEA(1,1,1),auxmatd(1,1))
8833       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8834       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8835       call transpose2(AEAderg(1,1,2),atempd(1,1))
8836       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8837       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8838 #endif
8839       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8840       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8841       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8842 c      s1d=0.0d0
8843 c      s2d=0.0d0
8844 c      s8d=0.0d0
8845 c      s12d=0.0d0
8846 c      s13d=0.0d0
8847       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8848 C Derivatives in gamma(i+3)
8849 #ifdef MOMENT
8850       call transpose2(AEA(1,1,1),auxmatd(1,1))
8851       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8852       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8853       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8854 #endif
8855       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8856       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8857       s2d = scalar2(b1(1,itk),vtemp1d(1))
8858 #ifdef MOMENT
8859       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8860       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8861 #endif
8862       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8863 #ifdef MOMENT
8864       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8865       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8866       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8867 #endif
8868 c      s1d=0.0d0
8869 c      s2d=0.0d0
8870 c      s8d=0.0d0
8871 c      s12d=0.0d0
8872 c      s13d=0.0d0
8873 #ifdef MOMENT
8874       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8875      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8876 #else
8877       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8878      &               -0.5d0*ekont*(s2d+s12d)
8879 #endif
8880 C Derivatives in gamma(i+4)
8881       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8882       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8883       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8884 #ifdef MOMENT
8885       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8886       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8887       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8888 #endif
8889 c      s1d=0.0d0
8890 c      s2d=0.0d0
8891 c      s8d=0.0d0
8892 C      s12d=0.0d0
8893 c      s13d=0.0d0
8894 #ifdef MOMENT
8895       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8896 #else
8897       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8898 #endif
8899 C Derivatives in gamma(i+5)
8900 #ifdef MOMENT
8901       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8902       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8903       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8904 #endif
8905       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8906       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8907       s2d = scalar2(b1(1,itk),vtemp1d(1))
8908 #ifdef MOMENT
8909       call transpose2(AEA(1,1,2),atempd(1,1))
8910       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8911       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8912 #endif
8913       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8914       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8915 #ifdef MOMENT
8916       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8917       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8918       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8919 #endif
8920 c      s1d=0.0d0
8921 c      s2d=0.0d0
8922 c      s8d=0.0d0
8923 c      s12d=0.0d0
8924 c      s13d=0.0d0
8925 #ifdef MOMENT
8926       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8927      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8928 #else
8929       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8930      &               -0.5d0*ekont*(s2d+s12d)
8931 #endif
8932 C Cartesian derivatives
8933       do iii=1,2
8934         do kkk=1,5
8935           do lll=1,3
8936 #ifdef MOMENT
8937             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8938             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8939             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8940 #endif
8941             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8942             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8943      &          vtemp1d(1))
8944             s2d = scalar2(b1(1,itk),vtemp1d(1))
8945 #ifdef MOMENT
8946             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8947             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8948             s8d = -(atempd(1,1)+atempd(2,2))*
8949      &           scalar2(cc(1,1,itl),vtemp2(1))
8950 #endif
8951             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8952      &           auxmatd(1,1))
8953             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8954             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8955 c      s1d=0.0d0
8956 c      s2d=0.0d0
8957 c      s8d=0.0d0
8958 c      s12d=0.0d0
8959 c      s13d=0.0d0
8960 #ifdef MOMENT
8961             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8962      &        - 0.5d0*(s1d+s2d)
8963 #else
8964             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8965      &        - 0.5d0*s2d
8966 #endif
8967 #ifdef MOMENT
8968             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8969      &        - 0.5d0*(s8d+s12d)
8970 #else
8971             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8972      &        - 0.5d0*s12d
8973 #endif
8974           enddo
8975         enddo
8976       enddo
8977 #ifdef MOMENT
8978       do kkk=1,5
8979         do lll=1,3
8980           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8981      &      achuj_tempd(1,1))
8982           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8983           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8984           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8985           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8986           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8987      &      vtemp4d(1)) 
8988           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8989           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8990           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8991         enddo
8992       enddo
8993 #endif
8994 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
8995 cd     &  16*eel_turn6_num
8996 cd      goto 1112
8997       if (j.lt.nres-1) then
8998         j1=j+1
8999         j2=j-1
9000       else
9001         j1=j-1
9002         j2=j-2
9003       endif
9004       if (l.lt.nres-1) then
9005         l1=l+1
9006         l2=l-1
9007       else
9008         l1=l-1
9009         l2=l-2
9010       endif
9011       do ll=1,3
9012 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9013 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9014 cgrad        ghalf=0.5d0*ggg1(ll)
9015 cd        ghalf=0.0d0
9016         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9017         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9018         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9019      &    +ekont*derx_turn(ll,2,1)
9020         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9021         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9022      &    +ekont*derx_turn(ll,4,1)
9023         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9024         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9025         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9026 cgrad        ghalf=0.5d0*ggg2(ll)
9027 cd        ghalf=0.0d0
9028         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9029      &    +ekont*derx_turn(ll,2,2)
9030         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9031         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9032      &    +ekont*derx_turn(ll,4,2)
9033         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9034         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9035         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9036       enddo
9037 cd      goto 1112
9038 cgrad      do m=i+1,j-1
9039 cgrad        do ll=1,3
9040 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9041 cgrad        enddo
9042 cgrad      enddo
9043 cgrad      do m=k+1,l-1
9044 cgrad        do ll=1,3
9045 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9046 cgrad        enddo
9047 cgrad      enddo
9048 cgrad1112  continue
9049 cgrad      do m=i+2,j2
9050 cgrad        do ll=1,3
9051 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9052 cgrad        enddo
9053 cgrad      enddo
9054 cgrad      do m=k+2,l2
9055 cgrad        do ll=1,3
9056 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9057 cgrad        enddo
9058 cgrad      enddo 
9059 cd      do iii=1,nres-3
9060 cd        write (2,*) iii,g_corr6_loc(iii)
9061 cd      enddo
9062       eello_turn6=ekont*eel_turn6
9063 cd      write (2,*) 'ekont',ekont
9064 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9065       return
9066       end
9067
9068 C-----------------------------------------------------------------------------
9069       double precision function scalar(u,v)
9070 !DIR$ INLINEALWAYS scalar
9071 #ifndef OSF
9072 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9073 #endif
9074       implicit none
9075       double precision u(3),v(3)
9076 cd      double precision sc
9077 cd      integer i
9078 cd      sc=0.0d0
9079 cd      do i=1,3
9080 cd        sc=sc+u(i)*v(i)
9081 cd      enddo
9082 cd      scalar=sc
9083
9084       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9085       return
9086       end
9087 crc-------------------------------------------------
9088       SUBROUTINE MATVEC2(A1,V1,V2)
9089 !DIR$ INLINEALWAYS MATVEC2
9090 #ifndef OSF
9091 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9092 #endif
9093       implicit real*8 (a-h,o-z)
9094       include 'DIMENSIONS'
9095       DIMENSION A1(2,2),V1(2),V2(2)
9096 c      DO 1 I=1,2
9097 c        VI=0.0
9098 c        DO 3 K=1,2
9099 c    3     VI=VI+A1(I,K)*V1(K)
9100 c        Vaux(I)=VI
9101 c    1 CONTINUE
9102
9103       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9104       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9105
9106       v2(1)=vaux1
9107       v2(2)=vaux2
9108       END
9109 C---------------------------------------
9110       SUBROUTINE MATMAT2(A1,A2,A3)
9111 #ifndef OSF
9112 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9113 #endif
9114       implicit real*8 (a-h,o-z)
9115       include 'DIMENSIONS'
9116       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9117 c      DIMENSION AI3(2,2)
9118 c        DO  J=1,2
9119 c          A3IJ=0.0
9120 c          DO K=1,2
9121 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9122 c          enddo
9123 c          A3(I,J)=A3IJ
9124 c       enddo
9125 c      enddo
9126
9127       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9128       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9129       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9130       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9131
9132       A3(1,1)=AI3_11
9133       A3(2,1)=AI3_21
9134       A3(1,2)=AI3_12
9135       A3(2,2)=AI3_22
9136       END
9137
9138 c-------------------------------------------------------------------------
9139       double precision function scalar2(u,v)
9140 !DIR$ INLINEALWAYS scalar2
9141       implicit none
9142       double precision u(2),v(2)
9143       double precision sc
9144       integer i
9145       scalar2=u(1)*v(1)+u(2)*v(2)
9146       return
9147       end
9148
9149 C-----------------------------------------------------------------------------
9150
9151       subroutine transpose2(a,at)
9152 !DIR$ INLINEALWAYS transpose2
9153 #ifndef OSF
9154 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9155 #endif
9156       implicit none
9157       double precision a(2,2),at(2,2)
9158       at(1,1)=a(1,1)
9159       at(1,2)=a(2,1)
9160       at(2,1)=a(1,2)
9161       at(2,2)=a(2,2)
9162       return
9163       end
9164 c--------------------------------------------------------------------------
9165       subroutine transpose(n,a,at)
9166       implicit none
9167       integer n,i,j
9168       double precision a(n,n),at(n,n)
9169       do i=1,n
9170         do j=1,n
9171           at(j,i)=a(i,j)
9172         enddo
9173       enddo
9174       return
9175       end
9176 C---------------------------------------------------------------------------
9177       subroutine prodmat3(a1,a2,kk,transp,prod)
9178 !DIR$ INLINEALWAYS prodmat3
9179 #ifndef OSF
9180 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9181 #endif
9182       implicit none
9183       integer i,j
9184       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9185       logical transp
9186 crc      double precision auxmat(2,2),prod_(2,2)
9187
9188       if (transp) then
9189 crc        call transpose2(kk(1,1),auxmat(1,1))
9190 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9191 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9192         
9193            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9194      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9195            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9196      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9197            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9198      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9199            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9200      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9201
9202       else
9203 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9204 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9205
9206            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9207      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9208            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9209      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9210            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9211      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9212            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9213      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9214
9215       endif
9216 c      call transpose2(a2(1,1),a2t(1,1))
9217
9218 crc      print *,transp
9219 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9220 crc      print *,((prod(i,j),i=1,2),j=1,2)
9221
9222       return
9223       end
9224