5/10/2012 by Adam
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 c      print *,"Processor",myrank," computed USCSC"
135 #ifdef TIMING
136 #ifdef MPI
137       time01=MPI_Wtime() 
138 #else
139       time00=tcpu()
140 #endif
141 #endif
142       call vec_and_deriv
143 #ifdef TIMING
144 #ifdef MPI
145       time_vec=time_vec+MPI_Wtime()-time01
146 #else
147       time_vec=time_vec+tcpu()-time01
148 #endif
149 #endif
150 c      print *,"Processor",myrank," left VEC_AND_DERIV"
151       if (ipot.lt.6) then
152 #ifdef SPLITELE
153          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
154      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
155      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
156      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
157 #else
158          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #endif
163             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
164          else
165             ees=0.0d0
166             evdw1=0.0d0
167             eel_loc=0.0d0
168             eello_turn3=0.0d0
169             eello_turn4=0.0d0
170          endif
171       else
172 c        write (iout,*) "Soft-spheer ELEC potential"
173         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
174      &   eello_turn4)
175       endif
176 c      print *,"Processor",myrank," computed UELEC"
177 C
178 C Calculate excluded-volume interaction energy between peptide groups
179 C and side chains.
180 C
181       if (ipot.lt.6) then
182        if(wscp.gt.0d0) then
183         call escp(evdw2,evdw2_14)
184        else
185         evdw2=0
186         evdw2_14=0
187        endif
188       else
189 c        write (iout,*) "Soft-sphere SCP potential"
190         call escp_soft_sphere(evdw2,evdw2_14)
191       endif
192 c
193 c Calculate the bond-stretching energy
194 c
195       call ebond(estr)
196
197 C Calculate the disulfide-bridge and other energy and the contributions
198 C from other distance constraints.
199 cd    print *,'Calling EHPB'
200       call edis(ehpb)
201 cd    print *,'EHPB exitted succesfully.'
202 C
203 C Calculate the virtual-bond-angle energy.
204 C
205       if (wang.gt.0d0) then
206         call ebend(ebe)
207       else
208         ebe=0
209       endif
210 c      print *,"Processor",myrank," computed UB"
211 C
212 C Calculate the SC local energy.
213 C
214       call esc(escloc)
215 c      print *,"Processor",myrank," computed USC"
216 C
217 C Calculate the virtual-bond torsional energy.
218 C
219 cd    print *,'nterm=',nterm
220       if (wtor.gt.0) then
221        call etor(etors,edihcnstr)
222       else
223        etors=0
224        edihcnstr=0
225       endif
226 c      print *,"Processor",myrank," computed Utor"
227 C
228 C 6/23/01 Calculate double-torsional energy
229 C
230       if (wtor_d.gt.0) then
231        call etor_d(etors_d)
232       else
233        etors_d=0
234       endif
235 c      print *,"Processor",myrank," computed Utord"
236 C
237 C 21/5/07 Calculate local sicdechain correlation energy
238 C
239       if (wsccor.gt.0.0d0) then
240         call eback_sc_corr(esccor)
241       else
242         esccor=0.0d0
243       endif
244 c      print *,"Processor",myrank," computed Usccorr"
245
246 C 12/1/95 Multi-body terms
247 C
248       n_corr=0
249       n_corr1=0
250       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
251      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
252          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
253 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
254 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
255       else
256          ecorr=0.0d0
257          ecorr5=0.0d0
258          ecorr6=0.0d0
259          eturn6=0.0d0
260       endif
261       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
262          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
263 cd         write (iout,*) "multibody_hb ecorr",ecorr
264       endif
265 c      print *,"Processor",myrank," computed Ucorr"
266
267 C If performing constraint dynamics, call the constraint energy
268 C  after the equilibration time
269       if(usampl.and.totT.gt.eq_time) then
270          call EconstrQ   
271          call Econstr_back
272       else
273          Uconst=0.0d0
274          Uconst_back=0.0d0
275       endif
276 #ifdef TIMING
277 #ifdef MPI
278       time_enecalc=time_enecalc+MPI_Wtime()-time00
279 #else
280       time_enecalc=time_enecalc+tcpu()-time00
281 #endif
282 #endif
283 c      print *,"Processor",myrank," computed Uconstr"
284 #ifdef TIMING
285 #ifdef MPI
286       time00=MPI_Wtime()
287 #else
288       time00=tcpu()
289 #endif
290 #endif
291 c
292 C Sum the energies
293 C
294       energia(1)=evdw
295 #ifdef SCP14
296       energia(2)=evdw2-evdw2_14
297       energia(18)=evdw2_14
298 #else
299       energia(2)=evdw2
300       energia(18)=0.0d0
301 #endif
302 #ifdef SPLITELE
303       energia(3)=ees
304       energia(16)=evdw1
305 #else
306       energia(3)=ees+evdw1
307       energia(16)=0.0d0
308 #endif
309       energia(4)=ecorr
310       energia(5)=ecorr5
311       energia(6)=ecorr6
312       energia(7)=eel_loc
313       energia(8)=eello_turn3
314       energia(9)=eello_turn4
315       energia(10)=eturn6
316       energia(11)=ebe
317       energia(12)=escloc
318       energia(13)=etors
319       energia(14)=etors_d
320       energia(15)=ehpb
321       energia(19)=edihcnstr
322       energia(17)=estr
323       energia(20)=Uconst+Uconst_back
324       energia(21)=esccor
325       energia(22)=evdw_p
326       energia(23)=evdw_m
327 c      print *," Processor",myrank," calls SUM_ENERGY"
328       call sum_energy(energia,.true.)
329 c      print *," Processor",myrank," left SUM_ENERGY"
330 #ifdef TIMING
331 #ifdef MPI
332       time_sumene=time_sumene+MPI_Wtime()-time00
333 #else
334       time_sumene=time_sumene+tcpu()-time00
335 #endif
336 #endif
337       return
338       end
339 c-------------------------------------------------------------------------------
340       subroutine sum_energy(energia,reduce)
341       implicit real*8 (a-h,o-z)
342       include 'DIMENSIONS'
343 #ifndef ISNAN
344       external proc_proc
345 #ifdef WINPGI
346 cMS$ATTRIBUTES C ::  proc_proc
347 #endif
348 #endif
349 #ifdef MPI
350       include "mpif.h"
351 #endif
352       include 'COMMON.SETUP'
353       include 'COMMON.IOUNITS'
354       double precision energia(0:n_ene),enebuff(0:n_ene+1)
355       include 'COMMON.FFIELD'
356       include 'COMMON.DERIV'
357       include 'COMMON.INTERACT'
358       include 'COMMON.SBRIDGE'
359       include 'COMMON.CHAIN'
360       include 'COMMON.VAR'
361       include 'COMMON.CONTROL'
362       include 'COMMON.TIME1'
363       logical reduce
364 #ifdef MPI
365       if (nfgtasks.gt.1 .and. reduce) then
366 #ifdef DEBUG
367         write (iout,*) "energies before REDUCE"
368         call enerprint(energia)
369         call flush(iout)
370 #endif
371         do i=0,n_ene
372           enebuff(i)=energia(i)
373         enddo
374         time00=MPI_Wtime()
375         call MPI_Barrier(FG_COMM,IERR)
376         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
377         time00=MPI_Wtime()
378         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
379      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
380 #ifdef DEBUG
381         write (iout,*) "energies after REDUCE"
382         call enerprint(energia)
383         call flush(iout)
384 #endif
385         time_Reduce=time_Reduce+MPI_Wtime()-time00
386       endif
387       if (fg_rank.eq.0) then
388 #endif
389 #ifdef TSCSC
390       evdw=energia(22)+wsct*energia(23)
391 #else
392       evdw=energia(1)
393 #endif
394 #ifdef SCP14
395       evdw2=energia(2)+energia(18)
396       evdw2_14=energia(18)
397 #else
398       evdw2=energia(2)
399 #endif
400 #ifdef SPLITELE
401       ees=energia(3)
402       evdw1=energia(16)
403 #else
404       ees=energia(3)
405       evdw1=0.0d0
406 #endif
407       ecorr=energia(4)
408       ecorr5=energia(5)
409       ecorr6=energia(6)
410       eel_loc=energia(7)
411       eello_turn3=energia(8)
412       eello_turn4=energia(9)
413       eturn6=energia(10)
414       ebe=energia(11)
415       escloc=energia(12)
416       etors=energia(13)
417       etors_d=energia(14)
418       ehpb=energia(15)
419       edihcnstr=energia(19)
420       estr=energia(17)
421       Uconst=energia(20)
422       esccor=energia(21)
423 #ifdef SPLITELE
424       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
425      & +wang*ebe+wtor*etors+wscloc*escloc
426      & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
427      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
428      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
429      & +wbond*estr+Uconst+wsccor*esccor
430 #else
431       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
432      & +wang*ebe+wtor*etors+wscloc*escloc
433      & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
434      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
435      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
436      & +wbond*estr+Uconst+wsccor*esccor
437 #endif
438       energia(0)=etot
439 c detecting NaNQ
440 #ifdef ISNAN
441 #ifdef AIX
442       if (isnan(etot).ne.0) energia(0)=1.0d+99
443 #else
444       if (isnan(etot)) energia(0)=1.0d+99
445 #endif
446 #else
447       i=0
448 #ifdef WINPGI
449       idumm=proc_proc(etot,i)
450 #else
451       call proc_proc(etot,i)
452 #endif
453       if(i.eq.1)energia(0)=1.0d+99
454 #endif
455 #ifdef MPI
456       endif
457 #endif
458       return
459       end
460 c-------------------------------------------------------------------------------
461       subroutine sum_gradient
462       implicit real*8 (a-h,o-z)
463       include 'DIMENSIONS'
464 #ifndef ISNAN
465       external proc_proc
466 #ifdef WINPGI
467 cMS$ATTRIBUTES C ::  proc_proc
468 #endif
469 #endif
470 #ifdef MPI
471       include 'mpif.h'
472 #endif
473       double precision gradbufc(3,maxres),gradbufx(3,maxres),
474      &  glocbuf(4*maxres),gradbufc_sum(3,maxres)
475       include 'COMMON.SETUP'
476       include 'COMMON.IOUNITS'
477       include 'COMMON.FFIELD'
478       include 'COMMON.DERIV'
479       include 'COMMON.INTERACT'
480       include 'COMMON.SBRIDGE'
481       include 'COMMON.CHAIN'
482       include 'COMMON.VAR'
483       include 'COMMON.CONTROL'
484       include 'COMMON.TIME1'
485       include 'COMMON.MAXGRAD'
486 #ifdef TIMING
487 #ifdef MPI
488       time01=MPI_Wtime()
489 #else
490       time01=tcpu()
491 #endif
492 #endif
493 #ifdef DEBUG
494       write (iout,*) "sum_gradient gvdwc, gvdwx"
495       do i=1,nres
496         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
497      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
498      &   (gvdwcT(j,i),j=1,3)
499       enddo
500       call flush(iout)
501 #endif
502 #ifdef MPI
503 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
504         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
505      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
506 #endif
507 C
508 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
509 C            in virtual-bond-vector coordinates
510 C
511 #ifdef DEBUG
512 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
513 c      do i=1,nres-1
514 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
515 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
516 c      enddo
517 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
518 c      do i=1,nres-1
519 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
520 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
521 c      enddo
522       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
523       do i=1,nres
524         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
525      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
526      &   g_corr5_loc(i)
527       enddo
528       call flush(iout)
529 #endif
530 #ifdef SPLITELE
531 #ifdef TSCSC
532       do i=1,nct
533         do j=1,3
534           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
535      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
536      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
537      &                wel_loc*gel_loc_long(j,i)+
538      &                wcorr*gradcorr_long(j,i)+
539      &                wcorr5*gradcorr5_long(j,i)+
540      &                wcorr6*gradcorr6_long(j,i)+
541      &                wturn6*gcorr6_turn_long(j,i)+
542      &                wstrain*ghpbc(j,i)
543         enddo
544       enddo 
545 #else
546       do i=1,nct
547         do j=1,3
548           gradbufc(j,i)=wsc*gvdwc(j,i)+
549      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
550      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
551      &                wel_loc*gel_loc_long(j,i)+
552      &                wcorr*gradcorr_long(j,i)+
553      &                wcorr5*gradcorr5_long(j,i)+
554      &                wcorr6*gradcorr6_long(j,i)+
555      &                wturn6*gcorr6_turn_long(j,i)+
556      &                wstrain*ghpbc(j,i)
557         enddo
558       enddo 
559 #endif
560 #else
561       do i=1,nct
562         do j=1,3
563           gradbufc(j,i)=wsc*gvdwc(j,i)+
564      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
565      &                welec*gelc_long(j,i)+
566      &                wbond*gradb(j,i)+
567      &                wel_loc*gel_loc_long(j,i)+
568      &                wcorr*gradcorr_long(j,i)+
569      &                wcorr5*gradcorr5_long(j,i)+
570      &                wcorr6*gradcorr6_long(j,i)+
571      &                wturn6*gcorr6_turn_long(j,i)+
572      &                wstrain*ghpbc(j,i)
573         enddo
574       enddo 
575 #endif
576 #ifdef MPI
577       if (nfgtasks.gt.1) then
578       time00=MPI_Wtime()
579 #ifdef DEBUG
580       write (iout,*) "gradbufc before allreduce"
581       do i=1,nres
582         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
583       enddo
584       call flush(iout)
585 #endif
586       do i=1,nres
587         do j=1,3
588           gradbufc_sum(j,i)=gradbufc(j,i)
589         enddo
590       enddo
591 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
592 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
593 c      time_reduce=time_reduce+MPI_Wtime()-time00
594 #ifdef DEBUG
595 c      write (iout,*) "gradbufc_sum after allreduce"
596 c      do i=1,nres
597 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
598 c      enddo
599 c      call flush(iout)
600 #endif
601 #ifdef TIMING
602 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
603 #endif
604       do i=nnt,nres
605         do k=1,3
606           gradbufc(k,i)=0.0d0
607         enddo
608       enddo
609 #ifdef DEBUG
610       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
611       write (iout,*) (i," jgrad_start",jgrad_start(i),
612      &                  " jgrad_end  ",jgrad_end(i),
613      &                  i=igrad_start,igrad_end)
614 #endif
615 c
616 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
617 c do not parallelize this part.
618 c
619 c      do i=igrad_start,igrad_end
620 c        do j=jgrad_start(i),jgrad_end(i)
621 c          do k=1,3
622 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
623 c          enddo
624 c        enddo
625 c      enddo
626       do j=1,3
627         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
628       enddo
629       do i=nres-2,nnt,-1
630         do j=1,3
631           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
632         enddo
633       enddo
634 #ifdef DEBUG
635       write (iout,*) "gradbufc after summing"
636       do i=1,nres
637         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
638       enddo
639       call flush(iout)
640 #endif
641       else
642 #endif
643 #ifdef DEBUG
644       write (iout,*) "gradbufc"
645       do i=1,nres
646         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
647       enddo
648       call flush(iout)
649 #endif
650       do i=1,nres
651         do j=1,3
652           gradbufc_sum(j,i)=gradbufc(j,i)
653           gradbufc(j,i)=0.0d0
654         enddo
655       enddo
656       do j=1,3
657         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
658       enddo
659       do i=nres-2,nnt,-1
660         do j=1,3
661           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
662         enddo
663       enddo
664 c      do i=nnt,nres-1
665 c        do k=1,3
666 c          gradbufc(k,i)=0.0d0
667 c        enddo
668 c        do j=i+1,nres
669 c          do k=1,3
670 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
671 c          enddo
672 c        enddo
673 c      enddo
674 #ifdef DEBUG
675       write (iout,*) "gradbufc after summing"
676       do i=1,nres
677         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
678       enddo
679       call flush(iout)
680 #endif
681 #ifdef MPI
682       endif
683 #endif
684       do k=1,3
685         gradbufc(k,nres)=0.0d0
686       enddo
687       do i=1,nct
688         do j=1,3
689 #ifdef SPLITELE
690           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
691      &                wel_loc*gel_loc(j,i)+
692      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
693      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
694      &                wel_loc*gel_loc_long(j,i)+
695      &                wcorr*gradcorr_long(j,i)+
696      &                wcorr5*gradcorr5_long(j,i)+
697      &                wcorr6*gradcorr6_long(j,i)+
698      &                wturn6*gcorr6_turn_long(j,i))+
699      &                wbond*gradb(j,i)+
700      &                wcorr*gradcorr(j,i)+
701      &                wturn3*gcorr3_turn(j,i)+
702      &                wturn4*gcorr4_turn(j,i)+
703      &                wcorr5*gradcorr5(j,i)+
704      &                wcorr6*gradcorr6(j,i)+
705      &                wturn6*gcorr6_turn(j,i)+
706      &                wsccor*gsccorc(j,i)
707      &               +wscloc*gscloc(j,i)
708 #else
709           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
710      &                wel_loc*gel_loc(j,i)+
711      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
712      &                welec*gelc_long(j,i)+
713      &                wel_loc*gel_loc_long(j,i)+
714      &                wcorr*gcorr_long(j,i)+
715      &                wcorr5*gradcorr5_long(j,i)+
716      &                wcorr6*gradcorr6_long(j,i)+
717      &                wturn6*gcorr6_turn_long(j,i))+
718      &                wbond*gradb(j,i)+
719      &                wcorr*gradcorr(j,i)+
720      &                wturn3*gcorr3_turn(j,i)+
721      &                wturn4*gcorr4_turn(j,i)+
722      &                wcorr5*gradcorr5(j,i)+
723      &                wcorr6*gradcorr6(j,i)+
724      &                wturn6*gcorr6_turn(j,i)+
725      &                wsccor*gsccorc(j,i)
726      &               +wscloc*gscloc(j,i)
727 #endif
728 #ifdef TSCSC
729           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
730      &                  wscp*gradx_scp(j,i)+
731      &                  wbond*gradbx(j,i)+
732      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
733      &                  wsccor*gsccorx(j,i)
734      &                 +wscloc*gsclocx(j,i)
735 #else
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
737      &                  wbond*gradbx(j,i)+
738      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
739      &                  wsccor*gsccorx(j,i)
740      &                 +wscloc*gsclocx(j,i)
741 #endif
742         enddo
743       enddo 
744 #ifdef DEBUG
745       write (iout,*) "gloc before adding corr"
746       do i=1,4*nres
747         write (iout,*) i,gloc(i,icg)
748       enddo
749 #endif
750       do i=1,nres-3
751         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
752      &   +wcorr5*g_corr5_loc(i)
753      &   +wcorr6*g_corr6_loc(i)
754      &   +wturn4*gel_loc_turn4(i)
755      &   +wturn3*gel_loc_turn3(i)
756      &   +wturn6*gel_loc_turn6(i)
757      &   +wel_loc*gel_loc_loc(i)
758      &   +wsccor*gsccor_loc(i)
759       enddo
760 #ifdef DEBUG
761       write (iout,*) "gloc after adding corr"
762       do i=1,4*nres
763         write (iout,*) i,gloc(i,icg)
764       enddo
765 #endif
766 #ifdef MPI
767       if (nfgtasks.gt.1) then
768         do j=1,3
769           do i=1,nres
770             gradbufc(j,i)=gradc(j,i,icg)
771             gradbufx(j,i)=gradx(j,i,icg)
772           enddo
773         enddo
774         do i=1,4*nres
775           glocbuf(i)=gloc(i,icg)
776         enddo
777         time00=MPI_Wtime()
778         call MPI_Barrier(FG_COMM,IERR)
779         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
780         time00=MPI_Wtime()
781         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
782      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
783         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
784      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
785         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
786      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
787         time_reduce=time_reduce+MPI_Wtime()-time00
788 #ifdef DEBUG
789       write (iout,*) "gloc after reduce"
790       do i=1,4*nres
791         write (iout,*) i,gloc(i,icg)
792       enddo
793 #endif
794       endif
795 #endif
796       if (gnorm_check) then
797 c
798 c Compute the maximum elements of the gradient
799 c
800       gvdwc_max=0.0d0
801       gvdwc_scp_max=0.0d0
802       gelc_max=0.0d0
803       gvdwpp_max=0.0d0
804       gradb_max=0.0d0
805       ghpbc_max=0.0d0
806       gradcorr_max=0.0d0
807       gel_loc_max=0.0d0
808       gcorr3_turn_max=0.0d0
809       gcorr4_turn_max=0.0d0
810       gradcorr5_max=0.0d0
811       gradcorr6_max=0.0d0
812       gcorr6_turn_max=0.0d0
813       gsccorc_max=0.0d0
814       gscloc_max=0.0d0
815       gvdwx_max=0.0d0
816       gradx_scp_max=0.0d0
817       ghpbx_max=0.0d0
818       gradxorr_max=0.0d0
819       gsccorx_max=0.0d0
820       gsclocx_max=0.0d0
821       do i=1,nct
822         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
823         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
824 #ifdef TSCSC
825         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
826         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
827 #endif
828         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
829         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
830      &   gvdwc_scp_max=gvdwc_scp_norm
831         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
832         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
833         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
834         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
835         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
836         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
837         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
838         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
839         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
840         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
841         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
842         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
843         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
844      &    gcorr3_turn(1,i)))
845         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
846      &    gcorr3_turn_max=gcorr3_turn_norm
847         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
848      &    gcorr4_turn(1,i)))
849         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
850      &    gcorr4_turn_max=gcorr4_turn_norm
851         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
852         if (gradcorr5_norm.gt.gradcorr5_max) 
853      &    gradcorr5_max=gradcorr5_norm
854         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
855         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
856         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
857      &    gcorr6_turn(1,i)))
858         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
859      &    gcorr6_turn_max=gcorr6_turn_norm
860         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
861         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
862         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
863         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
864         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
865         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
866 #ifdef TSCSC
867         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
868         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
869 #endif
870         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
871         if (gradx_scp_norm.gt.gradx_scp_max) 
872      &    gradx_scp_max=gradx_scp_norm
873         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
874         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
875         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
876         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
877         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
878         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
879         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
880         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
881       enddo 
882       if (gradout) then
883 #ifdef AIX
884         open(istat,file=statname,position="append")
885 #else
886         open(istat,file=statname,access="append")
887 #endif
888         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
889      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
890      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
891      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
892      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
893      &     gsccorx_max,gsclocx_max
894         close(istat)
895         if (gvdwc_max.gt.1.0d4) then
896           write (iout,*) "gvdwc gvdwx gradb gradbx"
897           do i=nnt,nct
898             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
899      &        gradb(j,i),gradbx(j,i),j=1,3)
900           enddo
901           call pdbout(0.0d0,'cipiszcze',iout)
902           call flush(iout)
903         endif
904       endif
905       endif
906 #ifdef DEBUG
907       write (iout,*) "gradc gradx gloc"
908       do i=1,nres
909         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
910      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
911       enddo 
912 #endif
913 #ifdef TIMING
914 #ifdef MPI
915       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
916 #else
917       time_sumgradient=time_sumgradient+tcpu()-time01
918 #endif
919 #endif
920       return
921       end
922 c-------------------------------------------------------------------------------
923       subroutine rescale_weights(t_bath)
924       implicit real*8 (a-h,o-z)
925       include 'DIMENSIONS'
926       include 'COMMON.IOUNITS'
927       include 'COMMON.FFIELD'
928       include 'COMMON.SBRIDGE'
929       double precision kfac /2.4d0/
930       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
931 c      facT=temp0/t_bath
932 c      facT=2*temp0/(t_bath+temp0)
933       if (rescale_mode.eq.0) then
934         facT=1.0d0
935         facT2=1.0d0
936         facT3=1.0d0
937         facT4=1.0d0
938         facT5=1.0d0
939       else if (rescale_mode.eq.1) then
940         facT=kfac/(kfac-1.0d0+t_bath/temp0)
941         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
942         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
943         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
944         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
945       else if (rescale_mode.eq.2) then
946         x=t_bath/temp0
947         x2=x*x
948         x3=x2*x
949         x4=x3*x
950         x5=x4*x
951         facT=licznik/dlog(dexp(x)+dexp(-x))
952         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
953         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
954         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
955         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
956       else
957         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
958         write (*,*) "Wrong RESCALE_MODE",rescale_mode
959 #ifdef MPI
960        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
961 #endif
962        stop 555
963       endif
964       welec=weights(3)*fact
965       wcorr=weights(4)*fact3
966       wcorr5=weights(5)*fact4
967       wcorr6=weights(6)*fact5
968       wel_loc=weights(7)*fact2
969       wturn3=weights(8)*fact2
970       wturn4=weights(9)*fact3
971       wturn6=weights(10)*fact5
972       wtor=weights(13)*fact
973       wtor_d=weights(14)*fact2
974       wsccor=weights(21)*fact
975 #ifdef TSCSC
976 c      wsct=t_bath/temp0
977       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
978 #endif
979       return
980       end
981 C------------------------------------------------------------------------
982       subroutine enerprint(energia)
983       implicit real*8 (a-h,o-z)
984       include 'DIMENSIONS'
985       include 'COMMON.IOUNITS'
986       include 'COMMON.FFIELD'
987       include 'COMMON.SBRIDGE'
988       include 'COMMON.MD'
989       double precision energia(0:n_ene)
990       etot=energia(0)
991 #ifdef TSCSC
992       evdw=energia(22)+wsct*energia(23)
993 #else
994       evdw=energia(1)
995 #endif
996       evdw2=energia(2)
997 #ifdef SCP14
998       evdw2=energia(2)+energia(18)
999 #else
1000       evdw2=energia(2)
1001 #endif
1002       ees=energia(3)
1003 #ifdef SPLITELE
1004       evdw1=energia(16)
1005 #endif
1006       ecorr=energia(4)
1007       ecorr5=energia(5)
1008       ecorr6=energia(6)
1009       eel_loc=energia(7)
1010       eello_turn3=energia(8)
1011       eello_turn4=energia(9)
1012       eello_turn6=energia(10)
1013       ebe=energia(11)
1014       escloc=energia(12)
1015       etors=energia(13)
1016       etors_d=energia(14)
1017       ehpb=energia(15)
1018       edihcnstr=energia(19)
1019       estr=energia(17)
1020       Uconst=energia(20)
1021       esccor=energia(21)
1022 #ifdef SPLITELE
1023       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1024      &  estr,wbond,ebe,wang,
1025      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1026      &  ecorr,wcorr,
1027      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1028      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1029      &  edihcnstr,ebr*nss,
1030      &  Uconst,etot
1031    10 format (/'Virtual-chain energies:'//
1032      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1033      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1034      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1035      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
1036      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1037      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1038      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1039      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1040      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1041      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1042      & ' (SS bridges & dist. cnstr.)'/
1043      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1044      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1045      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1046      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1047      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1048      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1049      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1050      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1051      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1052      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1053      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1054      & 'ETOT=  ',1pE16.6,' (total)')
1055 #else
1056       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1057      &  estr,wbond,ebe,wang,
1058      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1059      &  ecorr,wcorr,
1060      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1061      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1062      &  ebr*nss,Uconst,etot
1063    10 format (/'Virtual-chain energies:'//
1064      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1065      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1066      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1067      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1068      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1069      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1070      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1071      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1072      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1073      & ' (SS bridges & dist. cnstr.)'/
1074      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1075      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1076      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1077      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1078      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1079      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1080      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1081      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1082      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1083      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1084      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1085      & 'ETOT=  ',1pE16.6,' (total)')
1086 #endif
1087       return
1088       end
1089 C-----------------------------------------------------------------------
1090       subroutine elj(evdw,evdw_p,evdw_m)
1091 C
1092 C This subroutine calculates the interaction energy of nonbonded side chains
1093 C assuming the LJ potential of interaction.
1094 C
1095       implicit real*8 (a-h,o-z)
1096       include 'DIMENSIONS'
1097       parameter (accur=1.0d-10)
1098       include 'COMMON.GEO'
1099       include 'COMMON.VAR'
1100       include 'COMMON.LOCAL'
1101       include 'COMMON.CHAIN'
1102       include 'COMMON.DERIV'
1103       include 'COMMON.INTERACT'
1104       include 'COMMON.TORSION'
1105       include 'COMMON.SBRIDGE'
1106       include 'COMMON.NAMES'
1107       include 'COMMON.IOUNITS'
1108       include 'COMMON.CONTACTS'
1109       dimension gg(3)
1110 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1111       evdw=0.0D0
1112       do i=iatsc_s,iatsc_e
1113         itypi=itype(i)
1114         itypi1=itype(i+1)
1115         xi=c(1,nres+i)
1116         yi=c(2,nres+i)
1117         zi=c(3,nres+i)
1118 C Change 12/1/95
1119         num_conti=0
1120 C
1121 C Calculate SC interaction energy.
1122 C
1123         do iint=1,nint_gr(i)
1124 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1125 cd   &                  'iend=',iend(i,iint)
1126           do j=istart(i,iint),iend(i,iint)
1127             itypj=itype(j)
1128             xj=c(1,nres+j)-xi
1129             yj=c(2,nres+j)-yi
1130             zj=c(3,nres+j)-zi
1131 C Change 12/1/95 to calculate four-body interactions
1132             rij=xj*xj+yj*yj+zj*zj
1133             rrij=1.0D0/rij
1134 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1135             eps0ij=eps(itypi,itypj)
1136             fac=rrij**expon2
1137             e1=fac*fac*aa(itypi,itypj)
1138             e2=fac*bb(itypi,itypj)
1139             evdwij=e1+e2
1140 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1141 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1142 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1143 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1144 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1145 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1146 #ifdef TSCSC
1147             if (bb(itypi,itypj).gt.0) then
1148                evdw_p=evdw_p+evdwij
1149             else
1150                evdw_m=evdw_m+evdwij
1151             endif
1152 #else
1153             evdw=evdw+evdwij
1154 #endif
1155
1156 C Calculate the components of the gradient in DC and X
1157 C
1158             fac=-rrij*(e1+evdwij)
1159             gg(1)=xj*fac
1160             gg(2)=yj*fac
1161             gg(3)=zj*fac
1162 #ifdef TSCSC
1163             if (bb(itypi,itypj).gt.0.0d0) then
1164               do k=1,3
1165                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1166                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1167                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1168                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1169               enddo
1170             else
1171               do k=1,3
1172                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1173                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1174                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1175                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1176               enddo
1177             endif
1178 #else
1179             do k=1,3
1180               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1181               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1182               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1183               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1184             enddo
1185 #endif
1186 cgrad            do k=i,j-1
1187 cgrad              do l=1,3
1188 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1189 cgrad              enddo
1190 cgrad            enddo
1191 C
1192 C 12/1/95, revised on 5/20/97
1193 C
1194 C Calculate the contact function. The ith column of the array JCONT will 
1195 C contain the numbers of atoms that make contacts with the atom I (of numbers
1196 C greater than I). The arrays FACONT and GACONT will contain the values of
1197 C the contact function and its derivative.
1198 C
1199 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1200 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1201 C Uncomment next line, if the correlation interactions are contact function only
1202             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1203               rij=dsqrt(rij)
1204               sigij=sigma(itypi,itypj)
1205               r0ij=rs0(itypi,itypj)
1206 C
1207 C Check whether the SC's are not too far to make a contact.
1208 C
1209               rcut=1.5d0*r0ij
1210               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1211 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1212 C
1213               if (fcont.gt.0.0D0) then
1214 C If the SC-SC distance if close to sigma, apply spline.
1215 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1216 cAdam &             fcont1,fprimcont1)
1217 cAdam           fcont1=1.0d0-fcont1
1218 cAdam           if (fcont1.gt.0.0d0) then
1219 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1220 cAdam             fcont=fcont*fcont1
1221 cAdam           endif
1222 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1223 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1224 cga             do k=1,3
1225 cga               gg(k)=gg(k)*eps0ij
1226 cga             enddo
1227 cga             eps0ij=-evdwij*eps0ij
1228 C Uncomment for AL's type of SC correlation interactions.
1229 cadam           eps0ij=-evdwij
1230                 num_conti=num_conti+1
1231                 jcont(num_conti,i)=j
1232                 facont(num_conti,i)=fcont*eps0ij
1233                 fprimcont=eps0ij*fprimcont/rij
1234                 fcont=expon*fcont
1235 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1236 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1237 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1238 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1239                 gacont(1,num_conti,i)=-fprimcont*xj
1240                 gacont(2,num_conti,i)=-fprimcont*yj
1241                 gacont(3,num_conti,i)=-fprimcont*zj
1242 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1243 cd              write (iout,'(2i3,3f10.5)') 
1244 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1245               endif
1246             endif
1247           enddo      ! j
1248         enddo        ! iint
1249 C Change 12/1/95
1250         num_cont(i)=num_conti
1251       enddo          ! i
1252       do i=1,nct
1253         do j=1,3
1254           gvdwc(j,i)=expon*gvdwc(j,i)
1255           gvdwx(j,i)=expon*gvdwx(j,i)
1256         enddo
1257       enddo
1258 C******************************************************************************
1259 C
1260 C                              N O T E !!!
1261 C
1262 C To save time, the factor of EXPON has been extracted from ALL components
1263 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1264 C use!
1265 C
1266 C******************************************************************************
1267       return
1268       end
1269 C-----------------------------------------------------------------------------
1270       subroutine eljk(evdw,evdw_p,evdw_m)
1271 C
1272 C This subroutine calculates the interaction energy of nonbonded side chains
1273 C assuming the LJK potential of interaction.
1274 C
1275       implicit real*8 (a-h,o-z)
1276       include 'DIMENSIONS'
1277       include 'COMMON.GEO'
1278       include 'COMMON.VAR'
1279       include 'COMMON.LOCAL'
1280       include 'COMMON.CHAIN'
1281       include 'COMMON.DERIV'
1282       include 'COMMON.INTERACT'
1283       include 'COMMON.IOUNITS'
1284       include 'COMMON.NAMES'
1285       dimension gg(3)
1286       logical scheck
1287 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1288       evdw=0.0D0
1289       do i=iatsc_s,iatsc_e
1290         itypi=itype(i)
1291         itypi1=itype(i+1)
1292         xi=c(1,nres+i)
1293         yi=c(2,nres+i)
1294         zi=c(3,nres+i)
1295 C
1296 C Calculate SC interaction energy.
1297 C
1298         do iint=1,nint_gr(i)
1299           do j=istart(i,iint),iend(i,iint)
1300             itypj=itype(j)
1301             xj=c(1,nres+j)-xi
1302             yj=c(2,nres+j)-yi
1303             zj=c(3,nres+j)-zi
1304             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1305             fac_augm=rrij**expon
1306             e_augm=augm(itypi,itypj)*fac_augm
1307             r_inv_ij=dsqrt(rrij)
1308             rij=1.0D0/r_inv_ij 
1309             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1310             fac=r_shift_inv**expon
1311             e1=fac*fac*aa(itypi,itypj)
1312             e2=fac*bb(itypi,itypj)
1313             evdwij=e_augm+e1+e2
1314 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1315 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1316 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1317 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1318 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1319 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1320 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1321 #ifdef TSCSC
1322             if (bb(itypi,itypj).gt.0) then
1323                evdw_p=evdw_p+evdwij
1324             else
1325                evdw_m=evdw_m+evdwij
1326             endif
1327 #else
1328             evdw=evdw+evdwij
1329 #endif
1330
1331 C Calculate the components of the gradient in DC and X
1332 C
1333             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1334             gg(1)=xj*fac
1335             gg(2)=yj*fac
1336             gg(3)=zj*fac
1337 #ifdef TSCSC
1338             if (bb(itypi,itypj).gt.0.0d0) then
1339               do k=1,3
1340                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1341                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1342                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1343                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1344               enddo
1345             else
1346               do k=1,3
1347                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1348                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1349                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1350                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1351               enddo
1352             endif
1353 #else
1354             do k=1,3
1355               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1356               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1357               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1358               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1359             enddo
1360 #endif
1361 cgrad            do k=i,j-1
1362 cgrad              do l=1,3
1363 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1364 cgrad              enddo
1365 cgrad            enddo
1366           enddo      ! j
1367         enddo        ! iint
1368       enddo          ! i
1369       do i=1,nct
1370         do j=1,3
1371           gvdwc(j,i)=expon*gvdwc(j,i)
1372           gvdwx(j,i)=expon*gvdwx(j,i)
1373         enddo
1374       enddo
1375       return
1376       end
1377 C-----------------------------------------------------------------------------
1378       subroutine ebp(evdw,evdw_p,evdw_m)
1379 C
1380 C This subroutine calculates the interaction energy of nonbonded side chains
1381 C assuming the Berne-Pechukas potential of interaction.
1382 C
1383       implicit real*8 (a-h,o-z)
1384       include 'DIMENSIONS'
1385       include 'COMMON.GEO'
1386       include 'COMMON.VAR'
1387       include 'COMMON.LOCAL'
1388       include 'COMMON.CHAIN'
1389       include 'COMMON.DERIV'
1390       include 'COMMON.NAMES'
1391       include 'COMMON.INTERACT'
1392       include 'COMMON.IOUNITS'
1393       include 'COMMON.CALC'
1394       common /srutu/ icall
1395 c     double precision rrsave(maxdim)
1396       logical lprn
1397       evdw=0.0D0
1398 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1399       evdw=0.0D0
1400 c     if (icall.eq.0) then
1401 c       lprn=.true.
1402 c     else
1403         lprn=.false.
1404 c     endif
1405       ind=0
1406       do i=iatsc_s,iatsc_e
1407         itypi=itype(i)
1408         itypi1=itype(i+1)
1409         xi=c(1,nres+i)
1410         yi=c(2,nres+i)
1411         zi=c(3,nres+i)
1412         dxi=dc_norm(1,nres+i)
1413         dyi=dc_norm(2,nres+i)
1414         dzi=dc_norm(3,nres+i)
1415 c        dsci_inv=dsc_inv(itypi)
1416         dsci_inv=vbld_inv(i+nres)
1417 C
1418 C Calculate SC interaction energy.
1419 C
1420         do iint=1,nint_gr(i)
1421           do j=istart(i,iint),iend(i,iint)
1422             ind=ind+1
1423             itypj=itype(j)
1424 c            dscj_inv=dsc_inv(itypj)
1425             dscj_inv=vbld_inv(j+nres)
1426             chi1=chi(itypi,itypj)
1427             chi2=chi(itypj,itypi)
1428             chi12=chi1*chi2
1429             chip1=chip(itypi)
1430             chip2=chip(itypj)
1431             chip12=chip1*chip2
1432             alf1=alp(itypi)
1433             alf2=alp(itypj)
1434             alf12=0.5D0*(alf1+alf2)
1435 C For diagnostics only!!!
1436 c           chi1=0.0D0
1437 c           chi2=0.0D0
1438 c           chi12=0.0D0
1439 c           chip1=0.0D0
1440 c           chip2=0.0D0
1441 c           chip12=0.0D0
1442 c           alf1=0.0D0
1443 c           alf2=0.0D0
1444 c           alf12=0.0D0
1445             xj=c(1,nres+j)-xi
1446             yj=c(2,nres+j)-yi
1447             zj=c(3,nres+j)-zi
1448             dxj=dc_norm(1,nres+j)
1449             dyj=dc_norm(2,nres+j)
1450             dzj=dc_norm(3,nres+j)
1451             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1452 cd          if (icall.eq.0) then
1453 cd            rrsave(ind)=rrij
1454 cd          else
1455 cd            rrij=rrsave(ind)
1456 cd          endif
1457             rij=dsqrt(rrij)
1458 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1459             call sc_angular
1460 C Calculate whole angle-dependent part of epsilon and contributions
1461 C to its derivatives
1462             fac=(rrij*sigsq)**expon2
1463             e1=fac*fac*aa(itypi,itypj)
1464             e2=fac*bb(itypi,itypj)
1465             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1466             eps2der=evdwij*eps3rt
1467             eps3der=evdwij*eps2rt
1468             evdwij=evdwij*eps2rt*eps3rt
1469 #ifdef TSCSC
1470             if (bb(itypi,itypj).gt.0) then
1471                evdw_p=evdw_p+evdwij
1472             else
1473                evdw_m=evdw_m+evdwij
1474             endif
1475 #else
1476             evdw=evdw+evdwij
1477 #endif
1478             if (lprn) then
1479             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1480             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1481 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1482 cd     &        restyp(itypi),i,restyp(itypj),j,
1483 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1484 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1485 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1486 cd     &        evdwij
1487             endif
1488 C Calculate gradient components.
1489             e1=e1*eps1*eps2rt**2*eps3rt**2
1490             fac=-expon*(e1+evdwij)
1491             sigder=fac/sigsq
1492             fac=rrij*fac
1493 C Calculate radial part of the gradient
1494             gg(1)=xj*fac
1495             gg(2)=yj*fac
1496             gg(3)=zj*fac
1497 C Calculate the angular part of the gradient and sum add the contributions
1498 C to the appropriate components of the Cartesian gradient.
1499 #ifdef TSCSC
1500             if (bb(itypi,itypj).gt.0) then
1501                call sc_grad
1502             else
1503                call sc_grad_T
1504             endif
1505 #else
1506             call sc_grad
1507 #endif
1508           enddo      ! j
1509         enddo        ! iint
1510       enddo          ! i
1511 c     stop
1512       return
1513       end
1514 C-----------------------------------------------------------------------------
1515       subroutine egb(evdw,evdw_p,evdw_m)
1516 C
1517 C This subroutine calculates the interaction energy of nonbonded side chains
1518 C assuming the Gay-Berne potential of interaction.
1519 C
1520       implicit real*8 (a-h,o-z)
1521       include 'DIMENSIONS'
1522       include 'COMMON.GEO'
1523       include 'COMMON.VAR'
1524       include 'COMMON.LOCAL'
1525       include 'COMMON.CHAIN'
1526       include 'COMMON.DERIV'
1527       include 'COMMON.NAMES'
1528       include 'COMMON.INTERACT'
1529       include 'COMMON.IOUNITS'
1530       include 'COMMON.CALC'
1531       include 'COMMON.CONTROL'
1532       logical lprn
1533       evdw=0.0D0
1534 ccccc      energy_dec=.false.
1535 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1536       evdw=0.0D0
1537       evdw_p=0.0D0
1538       evdw_m=0.0D0
1539       lprn=.false.
1540 c     if (icall.eq.0) lprn=.false.
1541       ind=0
1542       do i=iatsc_s,iatsc_e
1543         itypi=itype(i)
1544         itypi1=itype(i+1)
1545         xi=c(1,nres+i)
1546         yi=c(2,nres+i)
1547         zi=c(3,nres+i)
1548         dxi=dc_norm(1,nres+i)
1549         dyi=dc_norm(2,nres+i)
1550         dzi=dc_norm(3,nres+i)
1551 c        dsci_inv=dsc_inv(itypi)
1552         dsci_inv=vbld_inv(i+nres)
1553 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1554 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1555 C
1556 C Calculate SC interaction energy.
1557 C
1558         do iint=1,nint_gr(i)
1559           do j=istart(i,iint),iend(i,iint)
1560             ind=ind+1
1561             itypj=itype(j)
1562 c            dscj_inv=dsc_inv(itypj)
1563             dscj_inv=vbld_inv(j+nres)
1564 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1565 c     &       1.0d0/vbld(j+nres)
1566 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1567             sig0ij=sigma(itypi,itypj)
1568             chi1=chi(itypi,itypj)
1569             chi2=chi(itypj,itypi)
1570             chi12=chi1*chi2
1571             chip1=chip(itypi)
1572             chip2=chip(itypj)
1573             chip12=chip1*chip2
1574             alf1=alp(itypi)
1575             alf2=alp(itypj)
1576             alf12=0.5D0*(alf1+alf2)
1577 C For diagnostics only!!!
1578 c           chi1=0.0D0
1579 c           chi2=0.0D0
1580 c           chi12=0.0D0
1581 c           chip1=0.0D0
1582 c           chip2=0.0D0
1583 c           chip12=0.0D0
1584 c           alf1=0.0D0
1585 c           alf2=0.0D0
1586 c           alf12=0.0D0
1587             xj=c(1,nres+j)-xi
1588             yj=c(2,nres+j)-yi
1589             zj=c(3,nres+j)-zi
1590             dxj=dc_norm(1,nres+j)
1591             dyj=dc_norm(2,nres+j)
1592             dzj=dc_norm(3,nres+j)
1593 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1594 c            write (iout,*) "j",j," dc_norm",
1595 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1596             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1597             rij=dsqrt(rrij)
1598 C Calculate angle-dependent terms of energy and contributions to their
1599 C derivatives.
1600             call sc_angular
1601             sigsq=1.0D0/sigsq
1602             sig=sig0ij*dsqrt(sigsq)
1603             rij_shift=1.0D0/rij-sig+sig0ij
1604 c for diagnostics; uncomment
1605 c            rij_shift=1.2*sig0ij
1606 C I hate to put IF's in the loops, but here don't have another choice!!!!
1607             if (rij_shift.le.0.0D0) then
1608               evdw=1.0D20
1609 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1610 cd     &        restyp(itypi),i,restyp(itypj),j,
1611 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1612               return
1613             endif
1614             sigder=-sig*sigsq
1615 c---------------------------------------------------------------
1616             rij_shift=1.0D0/rij_shift 
1617             fac=rij_shift**expon
1618             e1=fac*fac*aa(itypi,itypj)
1619             e2=fac*bb(itypi,itypj)
1620             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1621             eps2der=evdwij*eps3rt
1622             eps3der=evdwij*eps2rt
1623 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1624 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1625             evdwij=evdwij*eps2rt*eps3rt
1626 #ifdef TSCSC
1627             if (bb(itypi,itypj).gt.0) then
1628                evdw_p=evdw_p+evdwij
1629             else
1630                evdw_m=evdw_m+evdwij
1631             endif
1632 #else
1633             evdw=evdw+evdwij
1634 #endif
1635             if (lprn) then
1636             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1637             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1638             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1639      &        restyp(itypi),i,restyp(itypj),j,
1640      &        epsi,sigm,chi1,chi2,chip1,chip2,
1641      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1642      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1643      &        evdwij
1644             endif
1645
1646             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1647      &                        'evdw',i,j,evdwij
1648
1649 C Calculate gradient components.
1650             e1=e1*eps1*eps2rt**2*eps3rt**2
1651             fac=-expon*(e1+evdwij)*rij_shift
1652             sigder=fac*sigder
1653             fac=rij*fac
1654 c            fac=0.0d0
1655 C Calculate the radial part of the gradient
1656             gg(1)=xj*fac
1657             gg(2)=yj*fac
1658             gg(3)=zj*fac
1659 C Calculate angular part of the gradient.
1660 #ifdef TSCSC
1661             if (bb(itypi,itypj).gt.0) then
1662                call sc_grad
1663             else
1664                call sc_grad_T
1665             endif
1666 #else
1667             call sc_grad
1668 #endif
1669           enddo      ! j
1670         enddo        ! iint
1671       enddo          ! i
1672 c      write (iout,*) "Number of loop steps in EGB:",ind
1673 cccc      energy_dec=.false.
1674       return
1675       end
1676 C-----------------------------------------------------------------------------
1677       subroutine egbv(evdw,evdw_p,evdw_m)
1678 C
1679 C This subroutine calculates the interaction energy of nonbonded side chains
1680 C assuming the Gay-Berne-Vorobjev potential of interaction.
1681 C
1682       implicit real*8 (a-h,o-z)
1683       include 'DIMENSIONS'
1684       include 'COMMON.GEO'
1685       include 'COMMON.VAR'
1686       include 'COMMON.LOCAL'
1687       include 'COMMON.CHAIN'
1688       include 'COMMON.DERIV'
1689       include 'COMMON.NAMES'
1690       include 'COMMON.INTERACT'
1691       include 'COMMON.IOUNITS'
1692       include 'COMMON.CALC'
1693       common /srutu/ icall
1694       logical lprn
1695       evdw=0.0D0
1696 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1697       evdw=0.0D0
1698       lprn=.false.
1699 c     if (icall.eq.0) lprn=.true.
1700       ind=0
1701       do i=iatsc_s,iatsc_e
1702         itypi=itype(i)
1703         itypi1=itype(i+1)
1704         xi=c(1,nres+i)
1705         yi=c(2,nres+i)
1706         zi=c(3,nres+i)
1707         dxi=dc_norm(1,nres+i)
1708         dyi=dc_norm(2,nres+i)
1709         dzi=dc_norm(3,nres+i)
1710 c        dsci_inv=dsc_inv(itypi)
1711         dsci_inv=vbld_inv(i+nres)
1712 C
1713 C Calculate SC interaction energy.
1714 C
1715         do iint=1,nint_gr(i)
1716           do j=istart(i,iint),iend(i,iint)
1717             ind=ind+1
1718             itypj=itype(j)
1719 c            dscj_inv=dsc_inv(itypj)
1720             dscj_inv=vbld_inv(j+nres)
1721             sig0ij=sigma(itypi,itypj)
1722             r0ij=r0(itypi,itypj)
1723             chi1=chi(itypi,itypj)
1724             chi2=chi(itypj,itypi)
1725             chi12=chi1*chi2
1726             chip1=chip(itypi)
1727             chip2=chip(itypj)
1728             chip12=chip1*chip2
1729             alf1=alp(itypi)
1730             alf2=alp(itypj)
1731             alf12=0.5D0*(alf1+alf2)
1732 C For diagnostics only!!!
1733 c           chi1=0.0D0
1734 c           chi2=0.0D0
1735 c           chi12=0.0D0
1736 c           chip1=0.0D0
1737 c           chip2=0.0D0
1738 c           chip12=0.0D0
1739 c           alf1=0.0D0
1740 c           alf2=0.0D0
1741 c           alf12=0.0D0
1742             xj=c(1,nres+j)-xi
1743             yj=c(2,nres+j)-yi
1744             zj=c(3,nres+j)-zi
1745             dxj=dc_norm(1,nres+j)
1746             dyj=dc_norm(2,nres+j)
1747             dzj=dc_norm(3,nres+j)
1748             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1749             rij=dsqrt(rrij)
1750 C Calculate angle-dependent terms of energy and contributions to their
1751 C derivatives.
1752             call sc_angular
1753             sigsq=1.0D0/sigsq
1754             sig=sig0ij*dsqrt(sigsq)
1755             rij_shift=1.0D0/rij-sig+r0ij
1756 C I hate to put IF's in the loops, but here don't have another choice!!!!
1757             if (rij_shift.le.0.0D0) then
1758               evdw=1.0D20
1759               return
1760             endif
1761             sigder=-sig*sigsq
1762 c---------------------------------------------------------------
1763             rij_shift=1.0D0/rij_shift 
1764             fac=rij_shift**expon
1765             e1=fac*fac*aa(itypi,itypj)
1766             e2=fac*bb(itypi,itypj)
1767             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1768             eps2der=evdwij*eps3rt
1769             eps3der=evdwij*eps2rt
1770             fac_augm=rrij**expon
1771             e_augm=augm(itypi,itypj)*fac_augm
1772             evdwij=evdwij*eps2rt*eps3rt
1773 #ifdef TSCSC
1774             if (bb(itypi,itypj).gt.0) then
1775                evdw_p=evdw_p+evdwij+e_augm
1776             else
1777                evdw_m=evdw_m+evdwij+e_augm
1778             endif
1779 #else
1780             evdw=evdw+evdwij+e_augm
1781 #endif
1782             if (lprn) then
1783             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1784             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1785             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1786      &        restyp(itypi),i,restyp(itypj),j,
1787      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1788      &        chi1,chi2,chip1,chip2,
1789      &        eps1,eps2rt**2,eps3rt**2,
1790      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1791      &        evdwij+e_augm
1792             endif
1793 C Calculate gradient components.
1794             e1=e1*eps1*eps2rt**2*eps3rt**2
1795             fac=-expon*(e1+evdwij)*rij_shift
1796             sigder=fac*sigder
1797             fac=rij*fac-2*expon*rrij*e_augm
1798 C Calculate the radial part of the gradient
1799             gg(1)=xj*fac
1800             gg(2)=yj*fac
1801             gg(3)=zj*fac
1802 C Calculate angular part of the gradient.
1803 #ifdef TSCSC
1804             if (bb(itypi,itypj).gt.0) then
1805                call sc_grad
1806             else
1807                call sc_grad_T
1808             endif
1809 #else
1810             call sc_grad
1811 #endif
1812           enddo      ! j
1813         enddo        ! iint
1814       enddo          ! i
1815       end
1816 C-----------------------------------------------------------------------------
1817       subroutine sc_angular
1818 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1819 C om12. Called by ebp, egb, and egbv.
1820       implicit none
1821       include 'COMMON.CALC'
1822       include 'COMMON.IOUNITS'
1823       erij(1)=xj*rij
1824       erij(2)=yj*rij
1825       erij(3)=zj*rij
1826       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1827       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1828       om12=dxi*dxj+dyi*dyj+dzi*dzj
1829       chiom12=chi12*om12
1830 C Calculate eps1(om12) and its derivative in om12
1831       faceps1=1.0D0-om12*chiom12
1832       faceps1_inv=1.0D0/faceps1
1833       eps1=dsqrt(faceps1_inv)
1834 C Following variable is eps1*deps1/dom12
1835       eps1_om12=faceps1_inv*chiom12
1836 c diagnostics only
1837 c      faceps1_inv=om12
1838 c      eps1=om12
1839 c      eps1_om12=1.0d0
1840 c      write (iout,*) "om12",om12," eps1",eps1
1841 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1842 C and om12.
1843       om1om2=om1*om2
1844       chiom1=chi1*om1
1845       chiom2=chi2*om2
1846       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1847       sigsq=1.0D0-facsig*faceps1_inv
1848       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1849       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1850       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1851 c diagnostics only
1852 c      sigsq=1.0d0
1853 c      sigsq_om1=0.0d0
1854 c      sigsq_om2=0.0d0
1855 c      sigsq_om12=0.0d0
1856 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1857 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1858 c     &    " eps1",eps1
1859 C Calculate eps2 and its derivatives in om1, om2, and om12.
1860       chipom1=chip1*om1
1861       chipom2=chip2*om2
1862       chipom12=chip12*om12
1863       facp=1.0D0-om12*chipom12
1864       facp_inv=1.0D0/facp
1865       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1866 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1867 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1868 C Following variable is the square root of eps2
1869       eps2rt=1.0D0-facp1*facp_inv
1870 C Following three variables are the derivatives of the square root of eps
1871 C in om1, om2, and om12.
1872       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1873       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1874       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1875 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1876       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1877 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1878 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1879 c     &  " eps2rt_om12",eps2rt_om12
1880 C Calculate whole angle-dependent part of epsilon and contributions
1881 C to its derivatives
1882       return
1883       end
1884
1885 C----------------------------------------------------------------------------
1886       subroutine sc_grad_T
1887       implicit real*8 (a-h,o-z)
1888       include 'DIMENSIONS'
1889       include 'COMMON.CHAIN'
1890       include 'COMMON.DERIV'
1891       include 'COMMON.CALC'
1892       include 'COMMON.IOUNITS'
1893       double precision dcosom1(3),dcosom2(3)
1894       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1895       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1896       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1897      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1898 c diagnostics only
1899 c      eom1=0.0d0
1900 c      eom2=0.0d0
1901 c      eom12=evdwij*eps1_om12
1902 c end diagnostics
1903 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1904 c     &  " sigder",sigder
1905 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1906 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1907       do k=1,3
1908         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1909         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1910       enddo
1911       do k=1,3
1912         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1913       enddo 
1914 c      write (iout,*) "gg",(gg(k),k=1,3)
1915       do k=1,3
1916         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1917      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1918      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1919         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1920      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1921      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1922 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1923 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1924 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1925 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1926       enddo
1927
1928 C Calculate the components of the gradient in DC and X
1929 C
1930 cgrad      do k=i,j-1
1931 cgrad        do l=1,3
1932 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1933 cgrad        enddo
1934 cgrad      enddo
1935       do l=1,3
1936         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1937         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1938       enddo
1939       return
1940       end
1941
1942 C----------------------------------------------------------------------------
1943       subroutine sc_grad
1944       implicit real*8 (a-h,o-z)
1945       include 'DIMENSIONS'
1946       include 'COMMON.CHAIN'
1947       include 'COMMON.DERIV'
1948       include 'COMMON.CALC'
1949       include 'COMMON.IOUNITS'
1950       double precision dcosom1(3),dcosom2(3)
1951       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1952       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1953       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1954      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1955 c diagnostics only
1956 c      eom1=0.0d0
1957 c      eom2=0.0d0
1958 c      eom12=evdwij*eps1_om12
1959 c end diagnostics
1960 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1961 c     &  " sigder",sigder
1962 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1963 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1964       do k=1,3
1965         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1966         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1967       enddo
1968       do k=1,3
1969         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1970       enddo 
1971 c      write (iout,*) "gg",(gg(k),k=1,3)
1972       do k=1,3
1973         gvdwx(k,i)=gvdwx(k,i)-gg(k)
1974      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1975      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1976         gvdwx(k,j)=gvdwx(k,j)+gg(k)
1977      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1978      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1979 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1980 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1981 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1982 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1983       enddo
1984
1985 C Calculate the components of the gradient in DC and X
1986 C
1987 cgrad      do k=i,j-1
1988 cgrad        do l=1,3
1989 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1990 cgrad        enddo
1991 cgrad      enddo
1992       do l=1,3
1993         gvdwc(l,i)=gvdwc(l,i)-gg(l)
1994         gvdwc(l,j)=gvdwc(l,j)+gg(l)
1995       enddo
1996       return
1997       end
1998 C-----------------------------------------------------------------------
1999       subroutine e_softsphere(evdw)
2000 C
2001 C This subroutine calculates the interaction energy of nonbonded side chains
2002 C assuming the LJ potential of interaction.
2003 C
2004       implicit real*8 (a-h,o-z)
2005       include 'DIMENSIONS'
2006       parameter (accur=1.0d-10)
2007       include 'COMMON.GEO'
2008       include 'COMMON.VAR'
2009       include 'COMMON.LOCAL'
2010       include 'COMMON.CHAIN'
2011       include 'COMMON.DERIV'
2012       include 'COMMON.INTERACT'
2013       include 'COMMON.TORSION'
2014       include 'COMMON.SBRIDGE'
2015       include 'COMMON.NAMES'
2016       include 'COMMON.IOUNITS'
2017       include 'COMMON.CONTACTS'
2018       dimension gg(3)
2019 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2020       evdw=0.0D0
2021       do i=iatsc_s,iatsc_e
2022         itypi=itype(i)
2023         itypi1=itype(i+1)
2024         xi=c(1,nres+i)
2025         yi=c(2,nres+i)
2026         zi=c(3,nres+i)
2027 C
2028 C Calculate SC interaction energy.
2029 C
2030         do iint=1,nint_gr(i)
2031 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2032 cd   &                  'iend=',iend(i,iint)
2033           do j=istart(i,iint),iend(i,iint)
2034             itypj=itype(j)
2035             xj=c(1,nres+j)-xi
2036             yj=c(2,nres+j)-yi
2037             zj=c(3,nres+j)-zi
2038             rij=xj*xj+yj*yj+zj*zj
2039 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2040             r0ij=r0(itypi,itypj)
2041             r0ijsq=r0ij*r0ij
2042 c            print *,i,j,r0ij,dsqrt(rij)
2043             if (rij.lt.r0ijsq) then
2044               evdwij=0.25d0*(rij-r0ijsq)**2
2045               fac=rij-r0ijsq
2046             else
2047               evdwij=0.0d0
2048               fac=0.0d0
2049             endif
2050             evdw=evdw+evdwij
2051
2052 C Calculate the components of the gradient in DC and X
2053 C
2054             gg(1)=xj*fac
2055             gg(2)=yj*fac
2056             gg(3)=zj*fac
2057             do k=1,3
2058               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2059               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2060               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2061               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2062             enddo
2063 cgrad            do k=i,j-1
2064 cgrad              do l=1,3
2065 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2066 cgrad              enddo
2067 cgrad            enddo
2068           enddo ! j
2069         enddo ! iint
2070       enddo ! i
2071       return
2072       end
2073 C--------------------------------------------------------------------------
2074       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2075      &              eello_turn4)
2076 C
2077 C Soft-sphere potential of p-p interaction
2078
2079       implicit real*8 (a-h,o-z)
2080       include 'DIMENSIONS'
2081       include 'COMMON.CONTROL'
2082       include 'COMMON.IOUNITS'
2083       include 'COMMON.GEO'
2084       include 'COMMON.VAR'
2085       include 'COMMON.LOCAL'
2086       include 'COMMON.CHAIN'
2087       include 'COMMON.DERIV'
2088       include 'COMMON.INTERACT'
2089       include 'COMMON.CONTACTS'
2090       include 'COMMON.TORSION'
2091       include 'COMMON.VECTORS'
2092       include 'COMMON.FFIELD'
2093       dimension ggg(3)
2094 cd      write(iout,*) 'In EELEC_soft_sphere'
2095       ees=0.0D0
2096       evdw1=0.0D0
2097       eel_loc=0.0d0 
2098       eello_turn3=0.0d0
2099       eello_turn4=0.0d0
2100       ind=0
2101       do i=iatel_s,iatel_e
2102         dxi=dc(1,i)
2103         dyi=dc(2,i)
2104         dzi=dc(3,i)
2105         xmedi=c(1,i)+0.5d0*dxi
2106         ymedi=c(2,i)+0.5d0*dyi
2107         zmedi=c(3,i)+0.5d0*dzi
2108         num_conti=0
2109 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2110         do j=ielstart(i),ielend(i)
2111           ind=ind+1
2112           iteli=itel(i)
2113           itelj=itel(j)
2114           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2115           r0ij=rpp(iteli,itelj)
2116           r0ijsq=r0ij*r0ij 
2117           dxj=dc(1,j)
2118           dyj=dc(2,j)
2119           dzj=dc(3,j)
2120           xj=c(1,j)+0.5D0*dxj-xmedi
2121           yj=c(2,j)+0.5D0*dyj-ymedi
2122           zj=c(3,j)+0.5D0*dzj-zmedi
2123           rij=xj*xj+yj*yj+zj*zj
2124           if (rij.lt.r0ijsq) then
2125             evdw1ij=0.25d0*(rij-r0ijsq)**2
2126             fac=rij-r0ijsq
2127           else
2128             evdw1ij=0.0d0
2129             fac=0.0d0
2130           endif
2131           evdw1=evdw1+evdw1ij
2132 C
2133 C Calculate contributions to the Cartesian gradient.
2134 C
2135           ggg(1)=fac*xj
2136           ggg(2)=fac*yj
2137           ggg(3)=fac*zj
2138           do k=1,3
2139             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2140             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2141           enddo
2142 *
2143 * Loop over residues i+1 thru j-1.
2144 *
2145 cgrad          do k=i+1,j-1
2146 cgrad            do l=1,3
2147 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2148 cgrad            enddo
2149 cgrad          enddo
2150         enddo ! j
2151       enddo   ! i
2152 cgrad      do i=nnt,nct-1
2153 cgrad        do k=1,3
2154 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2155 cgrad        enddo
2156 cgrad        do j=i+1,nct-1
2157 cgrad          do k=1,3
2158 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2159 cgrad          enddo
2160 cgrad        enddo
2161 cgrad      enddo
2162       return
2163       end
2164 c------------------------------------------------------------------------------
2165       subroutine vec_and_deriv
2166       implicit real*8 (a-h,o-z)
2167       include 'DIMENSIONS'
2168 #ifdef MPI
2169       include 'mpif.h'
2170 #endif
2171       include 'COMMON.IOUNITS'
2172       include 'COMMON.GEO'
2173       include 'COMMON.VAR'
2174       include 'COMMON.LOCAL'
2175       include 'COMMON.CHAIN'
2176       include 'COMMON.VECTORS'
2177       include 'COMMON.SETUP'
2178       include 'COMMON.TIME1'
2179       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2180 C Compute the local reference systems. For reference system (i), the
2181 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2182 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2183 #ifdef PARVEC
2184       do i=ivec_start,ivec_end
2185 #else
2186       do i=1,nres-1
2187 #endif
2188           if (i.eq.nres-1) then
2189 C Case of the last full residue
2190 C Compute the Z-axis
2191             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2192             costh=dcos(pi-theta(nres))
2193             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2194             do k=1,3
2195               uz(k,i)=fac*uz(k,i)
2196             enddo
2197 C Compute the derivatives of uz
2198             uzder(1,1,1)= 0.0d0
2199             uzder(2,1,1)=-dc_norm(3,i-1)
2200             uzder(3,1,1)= dc_norm(2,i-1) 
2201             uzder(1,2,1)= dc_norm(3,i-1)
2202             uzder(2,2,1)= 0.0d0
2203             uzder(3,2,1)=-dc_norm(1,i-1)
2204             uzder(1,3,1)=-dc_norm(2,i-1)
2205             uzder(2,3,1)= dc_norm(1,i-1)
2206             uzder(3,3,1)= 0.0d0
2207             uzder(1,1,2)= 0.0d0
2208             uzder(2,1,2)= dc_norm(3,i)
2209             uzder(3,1,2)=-dc_norm(2,i) 
2210             uzder(1,2,2)=-dc_norm(3,i)
2211             uzder(2,2,2)= 0.0d0
2212             uzder(3,2,2)= dc_norm(1,i)
2213             uzder(1,3,2)= dc_norm(2,i)
2214             uzder(2,3,2)=-dc_norm(1,i)
2215             uzder(3,3,2)= 0.0d0
2216 C Compute the Y-axis
2217             facy=fac
2218             do k=1,3
2219               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2220             enddo
2221 C Compute the derivatives of uy
2222             do j=1,3
2223               do k=1,3
2224                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2225      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2226                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2227               enddo
2228               uyder(j,j,1)=uyder(j,j,1)-costh
2229               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2230             enddo
2231             do j=1,2
2232               do k=1,3
2233                 do l=1,3
2234                   uygrad(l,k,j,i)=uyder(l,k,j)
2235                   uzgrad(l,k,j,i)=uzder(l,k,j)
2236                 enddo
2237               enddo
2238             enddo 
2239             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2240             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2241             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2242             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2243           else
2244 C Other residues
2245 C Compute the Z-axis
2246             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2247             costh=dcos(pi-theta(i+2))
2248             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2249             do k=1,3
2250               uz(k,i)=fac*uz(k,i)
2251             enddo
2252 C Compute the derivatives of uz
2253             uzder(1,1,1)= 0.0d0
2254             uzder(2,1,1)=-dc_norm(3,i+1)
2255             uzder(3,1,1)= dc_norm(2,i+1) 
2256             uzder(1,2,1)= dc_norm(3,i+1)
2257             uzder(2,2,1)= 0.0d0
2258             uzder(3,2,1)=-dc_norm(1,i+1)
2259             uzder(1,3,1)=-dc_norm(2,i+1)
2260             uzder(2,3,1)= dc_norm(1,i+1)
2261             uzder(3,3,1)= 0.0d0
2262             uzder(1,1,2)= 0.0d0
2263             uzder(2,1,2)= dc_norm(3,i)
2264             uzder(3,1,2)=-dc_norm(2,i) 
2265             uzder(1,2,2)=-dc_norm(3,i)
2266             uzder(2,2,2)= 0.0d0
2267             uzder(3,2,2)= dc_norm(1,i)
2268             uzder(1,3,2)= dc_norm(2,i)
2269             uzder(2,3,2)=-dc_norm(1,i)
2270             uzder(3,3,2)= 0.0d0
2271 C Compute the Y-axis
2272             facy=fac
2273             do k=1,3
2274               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2275             enddo
2276 C Compute the derivatives of uy
2277             do j=1,3
2278               do k=1,3
2279                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2280      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2281                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2282               enddo
2283               uyder(j,j,1)=uyder(j,j,1)-costh
2284               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2285             enddo
2286             do j=1,2
2287               do k=1,3
2288                 do l=1,3
2289                   uygrad(l,k,j,i)=uyder(l,k,j)
2290                   uzgrad(l,k,j,i)=uzder(l,k,j)
2291                 enddo
2292               enddo
2293             enddo 
2294             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2295             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2296             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2297             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2298           endif
2299       enddo
2300       do i=1,nres-1
2301         vbld_inv_temp(1)=vbld_inv(i+1)
2302         if (i.lt.nres-1) then
2303           vbld_inv_temp(2)=vbld_inv(i+2)
2304           else
2305           vbld_inv_temp(2)=vbld_inv(i)
2306           endif
2307         do j=1,2
2308           do k=1,3
2309             do l=1,3
2310               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2311               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2312             enddo
2313           enddo
2314         enddo
2315       enddo
2316 #if defined(PARVEC) && defined(MPI)
2317       if (nfgtasks1.gt.1) then
2318         time00=MPI_Wtime()
2319 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2320 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2321 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2322         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2323      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2324      &   FG_COMM1,IERR)
2325         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2326      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2327      &   FG_COMM1,IERR)
2328         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2329      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2330      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2331         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2332      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2333      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2334         time_gather=time_gather+MPI_Wtime()-time00
2335       endif
2336 c      if (fg_rank.eq.0) then
2337 c        write (iout,*) "Arrays UY and UZ"
2338 c        do i=1,nres-1
2339 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2340 c     &     (uz(k,i),k=1,3)
2341 c        enddo
2342 c      endif
2343 #endif
2344       return
2345       end
2346 C-----------------------------------------------------------------------------
2347       subroutine check_vecgrad
2348       implicit real*8 (a-h,o-z)
2349       include 'DIMENSIONS'
2350       include 'COMMON.IOUNITS'
2351       include 'COMMON.GEO'
2352       include 'COMMON.VAR'
2353       include 'COMMON.LOCAL'
2354       include 'COMMON.CHAIN'
2355       include 'COMMON.VECTORS'
2356       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2357       dimension uyt(3,maxres),uzt(3,maxres)
2358       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2359       double precision delta /1.0d-7/
2360       call vec_and_deriv
2361 cd      do i=1,nres
2362 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2363 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2364 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2365 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2366 cd     &     (dc_norm(if90,i),if90=1,3)
2367 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2368 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2369 cd          write(iout,'(a)')
2370 cd      enddo
2371       do i=1,nres
2372         do j=1,2
2373           do k=1,3
2374             do l=1,3
2375               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2376               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2377             enddo
2378           enddo
2379         enddo
2380       enddo
2381       call vec_and_deriv
2382       do i=1,nres
2383         do j=1,3
2384           uyt(j,i)=uy(j,i)
2385           uzt(j,i)=uz(j,i)
2386         enddo
2387       enddo
2388       do i=1,nres
2389 cd        write (iout,*) 'i=',i
2390         do k=1,3
2391           erij(k)=dc_norm(k,i)
2392         enddo
2393         do j=1,3
2394           do k=1,3
2395             dc_norm(k,i)=erij(k)
2396           enddo
2397           dc_norm(j,i)=dc_norm(j,i)+delta
2398 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2399 c          do k=1,3
2400 c            dc_norm(k,i)=dc_norm(k,i)/fac
2401 c          enddo
2402 c          write (iout,*) (dc_norm(k,i),k=1,3)
2403 c          write (iout,*) (erij(k),k=1,3)
2404           call vec_and_deriv
2405           do k=1,3
2406             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2407             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2408             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2409             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2410           enddo 
2411 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2412 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2413 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2414         enddo
2415         do k=1,3
2416           dc_norm(k,i)=erij(k)
2417         enddo
2418 cd        do k=1,3
2419 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2420 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2421 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2422 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2423 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2424 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2425 cd          write (iout,'(a)')
2426 cd        enddo
2427       enddo
2428       return
2429       end
2430 C--------------------------------------------------------------------------
2431       subroutine set_matrices
2432       implicit real*8 (a-h,o-z)
2433       include 'DIMENSIONS'
2434 #ifdef MPI
2435       include "mpif.h"
2436       include "COMMON.SETUP"
2437       integer IERR
2438       integer status(MPI_STATUS_SIZE)
2439 #endif
2440       include 'COMMON.IOUNITS'
2441       include 'COMMON.GEO'
2442       include 'COMMON.VAR'
2443       include 'COMMON.LOCAL'
2444       include 'COMMON.CHAIN'
2445       include 'COMMON.DERIV'
2446       include 'COMMON.INTERACT'
2447       include 'COMMON.CONTACTS'
2448       include 'COMMON.TORSION'
2449       include 'COMMON.VECTORS'
2450       include 'COMMON.FFIELD'
2451       double precision auxvec(2),auxmat(2,2)
2452 C
2453 C Compute the virtual-bond-torsional-angle dependent quantities needed
2454 C to calculate the el-loc multibody terms of various order.
2455 C
2456 #ifdef PARMAT
2457       do i=ivec_start+2,ivec_end+2
2458 #else
2459       do i=3,nres+1
2460 #endif
2461         if (i .lt. nres+1) then
2462           sin1=dsin(phi(i))
2463           cos1=dcos(phi(i))
2464           sintab(i-2)=sin1
2465           costab(i-2)=cos1
2466           obrot(1,i-2)=cos1
2467           obrot(2,i-2)=sin1
2468           sin2=dsin(2*phi(i))
2469           cos2=dcos(2*phi(i))
2470           sintab2(i-2)=sin2
2471           costab2(i-2)=cos2
2472           obrot2(1,i-2)=cos2
2473           obrot2(2,i-2)=sin2
2474           Ug(1,1,i-2)=-cos1
2475           Ug(1,2,i-2)=-sin1
2476           Ug(2,1,i-2)=-sin1
2477           Ug(2,2,i-2)= cos1
2478           Ug2(1,1,i-2)=-cos2
2479           Ug2(1,2,i-2)=-sin2
2480           Ug2(2,1,i-2)=-sin2
2481           Ug2(2,2,i-2)= cos2
2482         else
2483           costab(i-2)=1.0d0
2484           sintab(i-2)=0.0d0
2485           obrot(1,i-2)=1.0d0
2486           obrot(2,i-2)=0.0d0
2487           obrot2(1,i-2)=0.0d0
2488           obrot2(2,i-2)=0.0d0
2489           Ug(1,1,i-2)=1.0d0
2490           Ug(1,2,i-2)=0.0d0
2491           Ug(2,1,i-2)=0.0d0
2492           Ug(2,2,i-2)=1.0d0
2493           Ug2(1,1,i-2)=0.0d0
2494           Ug2(1,2,i-2)=0.0d0
2495           Ug2(2,1,i-2)=0.0d0
2496           Ug2(2,2,i-2)=0.0d0
2497         endif
2498         if (i .gt. 3 .and. i .lt. nres+1) then
2499           obrot_der(1,i-2)=-sin1
2500           obrot_der(2,i-2)= cos1
2501           Ugder(1,1,i-2)= sin1
2502           Ugder(1,2,i-2)=-cos1
2503           Ugder(2,1,i-2)=-cos1
2504           Ugder(2,2,i-2)=-sin1
2505           dwacos2=cos2+cos2
2506           dwasin2=sin2+sin2
2507           obrot2_der(1,i-2)=-dwasin2
2508           obrot2_der(2,i-2)= dwacos2
2509           Ug2der(1,1,i-2)= dwasin2
2510           Ug2der(1,2,i-2)=-dwacos2
2511           Ug2der(2,1,i-2)=-dwacos2
2512           Ug2der(2,2,i-2)=-dwasin2
2513         else
2514           obrot_der(1,i-2)=0.0d0
2515           obrot_der(2,i-2)=0.0d0
2516           Ugder(1,1,i-2)=0.0d0
2517           Ugder(1,2,i-2)=0.0d0
2518           Ugder(2,1,i-2)=0.0d0
2519           Ugder(2,2,i-2)=0.0d0
2520           obrot2_der(1,i-2)=0.0d0
2521           obrot2_der(2,i-2)=0.0d0
2522           Ug2der(1,1,i-2)=0.0d0
2523           Ug2der(1,2,i-2)=0.0d0
2524           Ug2der(2,1,i-2)=0.0d0
2525           Ug2der(2,2,i-2)=0.0d0
2526         endif
2527 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2528         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2529           iti = itortyp(itype(i-2))
2530         else
2531           iti=ntortyp+1
2532         endif
2533 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2534         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2535           iti1 = itortyp(itype(i-1))
2536         else
2537           iti1=ntortyp+1
2538         endif
2539 cd        write (iout,*) '*******i',i,' iti1',iti
2540 cd        write (iout,*) 'b1',b1(:,iti)
2541 cd        write (iout,*) 'b2',b2(:,iti)
2542 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2543 c        if (i .gt. iatel_s+2) then
2544         if (i .gt. nnt+2) then
2545           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2546           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2547           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2548      &    then
2549           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2550           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2551           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2552           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2553           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2554           endif
2555         else
2556           do k=1,2
2557             Ub2(k,i-2)=0.0d0
2558             Ctobr(k,i-2)=0.0d0 
2559             Dtobr2(k,i-2)=0.0d0
2560             do l=1,2
2561               EUg(l,k,i-2)=0.0d0
2562               CUg(l,k,i-2)=0.0d0
2563               DUg(l,k,i-2)=0.0d0
2564               DtUg2(l,k,i-2)=0.0d0
2565             enddo
2566           enddo
2567         endif
2568         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2569         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2570         do k=1,2
2571           muder(k,i-2)=Ub2der(k,i-2)
2572         enddo
2573 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2574         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2575           iti1 = itortyp(itype(i-1))
2576         else
2577           iti1=ntortyp+1
2578         endif
2579         do k=1,2
2580           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2581         enddo
2582 cd        write (iout,*) 'mu ',mu(:,i-2)
2583 cd        write (iout,*) 'mu1',mu1(:,i-2)
2584 cd        write (iout,*) 'mu2',mu2(:,i-2)
2585         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2586      &  then  
2587         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2588         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2589         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2590         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2591         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2592 C Vectors and matrices dependent on a single virtual-bond dihedral.
2593         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2594         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2595         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2596         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2597         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2598         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2599         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2600         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2601         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2602         endif
2603       enddo
2604 C Matrices dependent on two consecutive virtual-bond dihedrals.
2605 C The order of matrices is from left to right.
2606       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2607      &then
2608 c      do i=max0(ivec_start,2),ivec_end
2609       do i=2,nres-1
2610         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2611         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2612         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2613         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2614         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2615         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2616         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2617         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2618       enddo
2619       endif
2620 #if defined(MPI) && defined(PARMAT)
2621 #ifdef DEBUG
2622 c      if (fg_rank.eq.0) then
2623         write (iout,*) "Arrays UG and UGDER before GATHER"
2624         do i=1,nres-1
2625           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2626      &     ((ug(l,k,i),l=1,2),k=1,2),
2627      &     ((ugder(l,k,i),l=1,2),k=1,2)
2628         enddo
2629         write (iout,*) "Arrays UG2 and UG2DER"
2630         do i=1,nres-1
2631           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2632      &     ((ug2(l,k,i),l=1,2),k=1,2),
2633      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2634         enddo
2635         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2636         do i=1,nres-1
2637           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2638      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2639      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2640         enddo
2641         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2642         do i=1,nres-1
2643           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2644      &     costab(i),sintab(i),costab2(i),sintab2(i)
2645         enddo
2646         write (iout,*) "Array MUDER"
2647         do i=1,nres-1
2648           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2649         enddo
2650 c      endif
2651 #endif
2652       if (nfgtasks.gt.1) then
2653         time00=MPI_Wtime()
2654 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2655 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2656 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2657 #ifdef MATGATHER
2658         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2659      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2660      &   FG_COMM1,IERR)
2661         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2662      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2663      &   FG_COMM1,IERR)
2664         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2665      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2666      &   FG_COMM1,IERR)
2667         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2668      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2669      &   FG_COMM1,IERR)
2670         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2671      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2672      &   FG_COMM1,IERR)
2673         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2674      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2675      &   FG_COMM1,IERR)
2676         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2677      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2678      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2679         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2680      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2681      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2682         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2683      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2684      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2685         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2686      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2687      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2688         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2689      &  then
2690         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2691      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2692      &   FG_COMM1,IERR)
2693         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2694      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2695      &   FG_COMM1,IERR)
2696         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2697      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2698      &   FG_COMM1,IERR)
2699        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2700      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2701      &   FG_COMM1,IERR)
2702         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2703      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2704      &   FG_COMM1,IERR)
2705         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2706      &   ivec_count(fg_rank1),
2707      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2708      &   FG_COMM1,IERR)
2709         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2710      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2711      &   FG_COMM1,IERR)
2712         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2713      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2714      &   FG_COMM1,IERR)
2715         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2716      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2717      &   FG_COMM1,IERR)
2718         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2719      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2720      &   FG_COMM1,IERR)
2721         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2722      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2723      &   FG_COMM1,IERR)
2724         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2725      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2726      &   FG_COMM1,IERR)
2727         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2731      &   ivec_count(fg_rank1),
2732      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2733      &   FG_COMM1,IERR)
2734         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2735      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2736      &   FG_COMM1,IERR)
2737        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2738      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2739      &   FG_COMM1,IERR)
2740         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2741      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2742      &   FG_COMM1,IERR)
2743        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2744      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2747      &   ivec_count(fg_rank1),
2748      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2749      &   FG_COMM1,IERR)
2750         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2751      &   ivec_count(fg_rank1),
2752      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2753      &   FG_COMM1,IERR)
2754         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2755      &   ivec_count(fg_rank1),
2756      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2757      &   MPI_MAT2,FG_COMM1,IERR)
2758         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2759      &   ivec_count(fg_rank1),
2760      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2761      &   MPI_MAT2,FG_COMM1,IERR)
2762         endif
2763 #else
2764 c Passes matrix info through the ring
2765       isend=fg_rank1
2766       irecv=fg_rank1-1
2767       if (irecv.lt.0) irecv=nfgtasks1-1 
2768       iprev=irecv
2769       inext=fg_rank1+1
2770       if (inext.ge.nfgtasks1) inext=0
2771       do i=1,nfgtasks1-1
2772 c        write (iout,*) "isend",isend," irecv",irecv
2773 c        call flush(iout)
2774         lensend=lentyp(isend)
2775         lenrecv=lentyp(irecv)
2776 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2777 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2778 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2779 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2780 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2781 c        write (iout,*) "Gather ROTAT1"
2782 c        call flush(iout)
2783 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2784 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2785 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2786 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2787 c        write (iout,*) "Gather ROTAT2"
2788 c        call flush(iout)
2789         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2790      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2791      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2792      &   iprev,4400+irecv,FG_COMM,status,IERR)
2793 c        write (iout,*) "Gather ROTAT_OLD"
2794 c        call flush(iout)
2795         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2796      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2797      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2798      &   iprev,5500+irecv,FG_COMM,status,IERR)
2799 c        write (iout,*) "Gather PRECOMP11"
2800 c        call flush(iout)
2801         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2802      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2803      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2804      &   iprev,6600+irecv,FG_COMM,status,IERR)
2805 c        write (iout,*) "Gather PRECOMP12"
2806 c        call flush(iout)
2807         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2808      &  then
2809         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2810      &   MPI_ROTAT2(lensend),inext,7700+isend,
2811      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2812      &   iprev,7700+irecv,FG_COMM,status,IERR)
2813 c        write (iout,*) "Gather PRECOMP21"
2814 c        call flush(iout)
2815         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2816      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2817      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2818      &   iprev,8800+irecv,FG_COMM,status,IERR)
2819 c        write (iout,*) "Gather PRECOMP22"
2820 c        call flush(iout)
2821         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2822      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2823      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2824      &   MPI_PRECOMP23(lenrecv),
2825      &   iprev,9900+irecv,FG_COMM,status,IERR)
2826 c        write (iout,*) "Gather PRECOMP23"
2827 c        call flush(iout)
2828         endif
2829         isend=irecv
2830         irecv=irecv-1
2831         if (irecv.lt.0) irecv=nfgtasks1-1
2832       enddo
2833 #endif
2834         time_gather=time_gather+MPI_Wtime()-time00
2835       endif
2836 #ifdef DEBUG
2837 c      if (fg_rank.eq.0) then
2838         write (iout,*) "Arrays UG and UGDER"
2839         do i=1,nres-1
2840           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2841      &     ((ug(l,k,i),l=1,2),k=1,2),
2842      &     ((ugder(l,k,i),l=1,2),k=1,2)
2843         enddo
2844         write (iout,*) "Arrays UG2 and UG2DER"
2845         do i=1,nres-1
2846           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2847      &     ((ug2(l,k,i),l=1,2),k=1,2),
2848      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2849         enddo
2850         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2851         do i=1,nres-1
2852           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2853      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2854      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2855         enddo
2856         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2857         do i=1,nres-1
2858           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2859      &     costab(i),sintab(i),costab2(i),sintab2(i)
2860         enddo
2861         write (iout,*) "Array MUDER"
2862         do i=1,nres-1
2863           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2864         enddo
2865 c      endif
2866 #endif
2867 #endif
2868 cd      do i=1,nres
2869 cd        iti = itortyp(itype(i))
2870 cd        write (iout,*) i
2871 cd        do j=1,2
2872 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2873 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2874 cd        enddo
2875 cd      enddo
2876       return
2877       end
2878 C--------------------------------------------------------------------------
2879       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2880 C
2881 C This subroutine calculates the average interaction energy and its gradient
2882 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2883 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2884 C The potential depends both on the distance of peptide-group centers and on 
2885 C the orientation of the CA-CA virtual bonds.
2886
2887       implicit real*8 (a-h,o-z)
2888 #ifdef MPI
2889       include 'mpif.h'
2890 #endif
2891       include 'DIMENSIONS'
2892       include 'COMMON.CONTROL'
2893       include 'COMMON.SETUP'
2894       include 'COMMON.IOUNITS'
2895       include 'COMMON.GEO'
2896       include 'COMMON.VAR'
2897       include 'COMMON.LOCAL'
2898       include 'COMMON.CHAIN'
2899       include 'COMMON.DERIV'
2900       include 'COMMON.INTERACT'
2901       include 'COMMON.CONTACTS'
2902       include 'COMMON.TORSION'
2903       include 'COMMON.VECTORS'
2904       include 'COMMON.FFIELD'
2905       include 'COMMON.TIME1'
2906       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2907      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2908       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2909      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2910       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2911      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2912      &    num_conti,j1,j2
2913 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2914 #ifdef MOMENT
2915       double precision scal_el /1.0d0/
2916 #else
2917       double precision scal_el /0.5d0/
2918 #endif
2919 C 12/13/98 
2920 C 13-go grudnia roku pamietnego... 
2921       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2922      &                   0.0d0,1.0d0,0.0d0,
2923      &                   0.0d0,0.0d0,1.0d0/
2924 cd      write(iout,*) 'In EELEC'
2925 cd      do i=1,nloctyp
2926 cd        write(iout,*) 'Type',i
2927 cd        write(iout,*) 'B1',B1(:,i)
2928 cd        write(iout,*) 'B2',B2(:,i)
2929 cd        write(iout,*) 'CC',CC(:,:,i)
2930 cd        write(iout,*) 'DD',DD(:,:,i)
2931 cd        write(iout,*) 'EE',EE(:,:,i)
2932 cd      enddo
2933 cd      call check_vecgrad
2934 cd      stop
2935       if (icheckgrad.eq.1) then
2936         do i=1,nres-1
2937           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2938           do k=1,3
2939             dc_norm(k,i)=dc(k,i)*fac
2940           enddo
2941 c          write (iout,*) 'i',i,' fac',fac
2942         enddo
2943       endif
2944       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2945      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2946      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2947 c        call vec_and_deriv
2948 #ifdef TIMING
2949         time01=MPI_Wtime()
2950 #endif
2951         call set_matrices
2952 #ifdef TIMING
2953         time_mat=time_mat+MPI_Wtime()-time01
2954 #endif
2955       endif
2956 cd      do i=1,nres-1
2957 cd        write (iout,*) 'i=',i
2958 cd        do k=1,3
2959 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2960 cd        enddo
2961 cd        do k=1,3
2962 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
2963 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
2964 cd        enddo
2965 cd      enddo
2966       t_eelecij=0.0d0
2967       ees=0.0D0
2968       evdw1=0.0D0
2969       eel_loc=0.0d0 
2970       eello_turn3=0.0d0
2971       eello_turn4=0.0d0
2972       ind=0
2973       do i=1,nres
2974         num_cont_hb(i)=0
2975       enddo
2976 cd      print '(a)','Enter EELEC'
2977 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
2978       do i=1,nres
2979         gel_loc_loc(i)=0.0d0
2980         gcorr_loc(i)=0.0d0
2981       enddo
2982 c
2983 c
2984 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
2985 C
2986 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
2987 C
2988       do i=iturn3_start,iturn3_end
2989         dxi=dc(1,i)
2990         dyi=dc(2,i)
2991         dzi=dc(3,i)
2992         dx_normi=dc_norm(1,i)
2993         dy_normi=dc_norm(2,i)
2994         dz_normi=dc_norm(3,i)
2995         xmedi=c(1,i)+0.5d0*dxi
2996         ymedi=c(2,i)+0.5d0*dyi
2997         zmedi=c(3,i)+0.5d0*dzi
2998         num_conti=0
2999         call eelecij(i,i+2,ees,evdw1,eel_loc)
3000         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3001         num_cont_hb(i)=num_conti
3002       enddo
3003       do i=iturn4_start,iturn4_end
3004         dxi=dc(1,i)
3005         dyi=dc(2,i)
3006         dzi=dc(3,i)
3007         dx_normi=dc_norm(1,i)
3008         dy_normi=dc_norm(2,i)
3009         dz_normi=dc_norm(3,i)
3010         xmedi=c(1,i)+0.5d0*dxi
3011         ymedi=c(2,i)+0.5d0*dyi
3012         zmedi=c(3,i)+0.5d0*dzi
3013         num_conti=num_cont_hb(i)
3014         call eelecij(i,i+3,ees,evdw1,eel_loc)
3015         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3016         num_cont_hb(i)=num_conti
3017       enddo   ! i
3018 c
3019 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3020 c
3021       do i=iatel_s,iatel_e
3022         dxi=dc(1,i)
3023         dyi=dc(2,i)
3024         dzi=dc(3,i)
3025         dx_normi=dc_norm(1,i)
3026         dy_normi=dc_norm(2,i)
3027         dz_normi=dc_norm(3,i)
3028         xmedi=c(1,i)+0.5d0*dxi
3029         ymedi=c(2,i)+0.5d0*dyi
3030         zmedi=c(3,i)+0.5d0*dzi
3031 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3032         num_conti=num_cont_hb(i)
3033         do j=ielstart(i),ielend(i)
3034           call eelecij(i,j,ees,evdw1,eel_loc)
3035         enddo ! j
3036         num_cont_hb(i)=num_conti
3037       enddo   ! i
3038 c      write (iout,*) "Number of loop steps in EELEC:",ind
3039 cd      do i=1,nres
3040 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3041 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3042 cd      enddo
3043 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3044 ccc      eel_loc=eel_loc+eello_turn3
3045 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3046       return
3047       end
3048 C-------------------------------------------------------------------------------
3049       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3050       implicit real*8 (a-h,o-z)
3051       include 'DIMENSIONS'
3052 #ifdef MPI
3053       include "mpif.h"
3054 #endif
3055       include 'COMMON.CONTROL'
3056       include 'COMMON.IOUNITS'
3057       include 'COMMON.GEO'
3058       include 'COMMON.VAR'
3059       include 'COMMON.LOCAL'
3060       include 'COMMON.CHAIN'
3061       include 'COMMON.DERIV'
3062       include 'COMMON.INTERACT'
3063       include 'COMMON.CONTACTS'
3064       include 'COMMON.TORSION'
3065       include 'COMMON.VECTORS'
3066       include 'COMMON.FFIELD'
3067       include 'COMMON.TIME1'
3068       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3069      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3070       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3071      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3072       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3073      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3074      &    num_conti,j1,j2
3075 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3076 #ifdef MOMENT
3077       double precision scal_el /1.0d0/
3078 #else
3079       double precision scal_el /0.5d0/
3080 #endif
3081 C 12/13/98 
3082 C 13-go grudnia roku pamietnego... 
3083       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3084      &                   0.0d0,1.0d0,0.0d0,
3085      &                   0.0d0,0.0d0,1.0d0/
3086 c          time00=MPI_Wtime()
3087 cd      write (iout,*) "eelecij",i,j
3088 c          ind=ind+1
3089           iteli=itel(i)
3090           itelj=itel(j)
3091           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3092           aaa=app(iteli,itelj)
3093           bbb=bpp(iteli,itelj)
3094           ael6i=ael6(iteli,itelj)
3095           ael3i=ael3(iteli,itelj) 
3096           dxj=dc(1,j)
3097           dyj=dc(2,j)
3098           dzj=dc(3,j)
3099           dx_normj=dc_norm(1,j)
3100           dy_normj=dc_norm(2,j)
3101           dz_normj=dc_norm(3,j)
3102           xj=c(1,j)+0.5D0*dxj-xmedi
3103           yj=c(2,j)+0.5D0*dyj-ymedi
3104           zj=c(3,j)+0.5D0*dzj-zmedi
3105           rij=xj*xj+yj*yj+zj*zj
3106           rrmij=1.0D0/rij
3107           rij=dsqrt(rij)
3108           rmij=1.0D0/rij
3109           r3ij=rrmij*rmij
3110           r6ij=r3ij*r3ij  
3111           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3112           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3113           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3114           fac=cosa-3.0D0*cosb*cosg
3115           ev1=aaa*r6ij*r6ij
3116 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3117           if (j.eq.i+2) ev1=scal_el*ev1
3118           ev2=bbb*r6ij
3119           fac3=ael6i*r6ij
3120           fac4=ael3i*r3ij
3121           evdwij=ev1+ev2
3122           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3123           el2=fac4*fac       
3124           eesij=el1+el2
3125 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3126           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3127           ees=ees+eesij
3128           evdw1=evdw1+evdwij
3129 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3130 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3131 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3132 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3133
3134           if (energy_dec) then 
3135               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3136               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3137           endif
3138
3139 C
3140 C Calculate contributions to the Cartesian gradient.
3141 C
3142 #ifdef SPLITELE
3143           facvdw=-6*rrmij*(ev1+evdwij)
3144           facel=-3*rrmij*(el1+eesij)
3145           fac1=fac
3146           erij(1)=xj*rmij
3147           erij(2)=yj*rmij
3148           erij(3)=zj*rmij
3149 *
3150 * Radial derivatives. First process both termini of the fragment (i,j)
3151 *
3152           ggg(1)=facel*xj
3153           ggg(2)=facel*yj
3154           ggg(3)=facel*zj
3155 c          do k=1,3
3156 c            ghalf=0.5D0*ggg(k)
3157 c            gelc(k,i)=gelc(k,i)+ghalf
3158 c            gelc(k,j)=gelc(k,j)+ghalf
3159 c          enddo
3160 c 9/28/08 AL Gradient compotents will be summed only at the end
3161           do k=1,3
3162             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3163             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3164           enddo
3165 *
3166 * Loop over residues i+1 thru j-1.
3167 *
3168 cgrad          do k=i+1,j-1
3169 cgrad            do l=1,3
3170 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3171 cgrad            enddo
3172 cgrad          enddo
3173           ggg(1)=facvdw*xj
3174           ggg(2)=facvdw*yj
3175           ggg(3)=facvdw*zj
3176 c          do k=1,3
3177 c            ghalf=0.5D0*ggg(k)
3178 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3179 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3180 c          enddo
3181 c 9/28/08 AL Gradient compotents will be summed only at the end
3182           do k=1,3
3183             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3184             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3185           enddo
3186 *
3187 * Loop over residues i+1 thru j-1.
3188 *
3189 cgrad          do k=i+1,j-1
3190 cgrad            do l=1,3
3191 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3192 cgrad            enddo
3193 cgrad          enddo
3194 #else
3195           facvdw=ev1+evdwij 
3196           facel=el1+eesij  
3197           fac1=fac
3198           fac=-3*rrmij*(facvdw+facvdw+facel)
3199           erij(1)=xj*rmij
3200           erij(2)=yj*rmij
3201           erij(3)=zj*rmij
3202 *
3203 * Radial derivatives. First process both termini of the fragment (i,j)
3204
3205           ggg(1)=fac*xj
3206           ggg(2)=fac*yj
3207           ggg(3)=fac*zj
3208 c          do k=1,3
3209 c            ghalf=0.5D0*ggg(k)
3210 c            gelc(k,i)=gelc(k,i)+ghalf
3211 c            gelc(k,j)=gelc(k,j)+ghalf
3212 c          enddo
3213 c 9/28/08 AL Gradient compotents will be summed only at the end
3214           do k=1,3
3215             gelc_long(k,j)=gelc(k,j)+ggg(k)
3216             gelc_long(k,i)=gelc(k,i)-ggg(k)
3217           enddo
3218 *
3219 * Loop over residues i+1 thru j-1.
3220 *
3221 cgrad          do k=i+1,j-1
3222 cgrad            do l=1,3
3223 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3224 cgrad            enddo
3225 cgrad          enddo
3226 c 9/28/08 AL Gradient compotents will be summed only at the end
3227           ggg(1)=facvdw*xj
3228           ggg(2)=facvdw*yj
3229           ggg(3)=facvdw*zj
3230           do k=1,3
3231             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3232             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3233           enddo
3234 #endif
3235 *
3236 * Angular part
3237 *          
3238           ecosa=2.0D0*fac3*fac1+fac4
3239           fac4=-3.0D0*fac4
3240           fac3=-6.0D0*fac3
3241           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3242           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3243           do k=1,3
3244             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3245             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3246           enddo
3247 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3248 cd   &          (dcosg(k),k=1,3)
3249           do k=1,3
3250             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3251           enddo
3252 c          do k=1,3
3253 c            ghalf=0.5D0*ggg(k)
3254 c            gelc(k,i)=gelc(k,i)+ghalf
3255 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3256 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3257 c            gelc(k,j)=gelc(k,j)+ghalf
3258 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3259 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3260 c          enddo
3261 cgrad          do k=i+1,j-1
3262 cgrad            do l=1,3
3263 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3264 cgrad            enddo
3265 cgrad          enddo
3266           do k=1,3
3267             gelc(k,i)=gelc(k,i)
3268      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3269      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3270             gelc(k,j)=gelc(k,j)
3271      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3272      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3273             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3274             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3275           enddo
3276           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3277      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3278      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3279 C
3280 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3281 C   energy of a peptide unit is assumed in the form of a second-order 
3282 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3283 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3284 C   are computed for EVERY pair of non-contiguous peptide groups.
3285 C
3286           if (j.lt.nres-1) then
3287             j1=j+1
3288             j2=j-1
3289           else
3290             j1=j-1
3291             j2=j-2
3292           endif
3293           kkk=0
3294           do k=1,2
3295             do l=1,2
3296               kkk=kkk+1
3297               muij(kkk)=mu(k,i)*mu(l,j)
3298             enddo
3299           enddo  
3300 cd         write (iout,*) 'EELEC: i',i,' j',j
3301 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3302 cd          write(iout,*) 'muij',muij
3303           ury=scalar(uy(1,i),erij)
3304           urz=scalar(uz(1,i),erij)
3305           vry=scalar(uy(1,j),erij)
3306           vrz=scalar(uz(1,j),erij)
3307           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3308           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3309           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3310           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3311           fac=dsqrt(-ael6i)*r3ij
3312           a22=a22*fac
3313           a23=a23*fac
3314           a32=a32*fac
3315           a33=a33*fac
3316 cd          write (iout,'(4i5,4f10.5)')
3317 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3318 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3319 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3320 cd     &      uy(:,j),uz(:,j)
3321 cd          write (iout,'(4f10.5)') 
3322 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3323 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3324 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3325 cd           write (iout,'(9f10.5/)') 
3326 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3327 C Derivatives of the elements of A in virtual-bond vectors
3328           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3329           do k=1,3
3330             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3331             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3332             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3333             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3334             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3335             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3336             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3337             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3338             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3339             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3340             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3341             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3342           enddo
3343 C Compute radial contributions to the gradient
3344           facr=-3.0d0*rrmij
3345           a22der=a22*facr
3346           a23der=a23*facr
3347           a32der=a32*facr
3348           a33der=a33*facr
3349           agg(1,1)=a22der*xj
3350           agg(2,1)=a22der*yj
3351           agg(3,1)=a22der*zj
3352           agg(1,2)=a23der*xj
3353           agg(2,2)=a23der*yj
3354           agg(3,2)=a23der*zj
3355           agg(1,3)=a32der*xj
3356           agg(2,3)=a32der*yj
3357           agg(3,3)=a32der*zj
3358           agg(1,4)=a33der*xj
3359           agg(2,4)=a33der*yj
3360           agg(3,4)=a33der*zj
3361 C Add the contributions coming from er
3362           fac3=-3.0d0*fac
3363           do k=1,3
3364             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3365             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3366             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3367             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3368           enddo
3369           do k=1,3
3370 C Derivatives in DC(i) 
3371 cgrad            ghalf1=0.5d0*agg(k,1)
3372 cgrad            ghalf2=0.5d0*agg(k,2)
3373 cgrad            ghalf3=0.5d0*agg(k,3)
3374 cgrad            ghalf4=0.5d0*agg(k,4)
3375             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3376      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3377             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3378      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3379             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3380      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3381             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3382      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3383 C Derivatives in DC(i+1)
3384             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3385      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3386             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3387      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3388             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3389      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3390             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3391      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3392 C Derivatives in DC(j)
3393             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3394      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3395             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3396      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3397             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3398      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3399             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3400      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3401 C Derivatives in DC(j+1) or DC(nres-1)
3402             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3403      &      -3.0d0*vryg(k,3)*ury)
3404             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3405      &      -3.0d0*vrzg(k,3)*ury)
3406             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3407      &      -3.0d0*vryg(k,3)*urz)
3408             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3409      &      -3.0d0*vrzg(k,3)*urz)
3410 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3411 cgrad              do l=1,4
3412 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3413 cgrad              enddo
3414 cgrad            endif
3415           enddo
3416           acipa(1,1)=a22
3417           acipa(1,2)=a23
3418           acipa(2,1)=a32
3419           acipa(2,2)=a33
3420           a22=-a22
3421           a23=-a23
3422           do l=1,2
3423             do k=1,3
3424               agg(k,l)=-agg(k,l)
3425               aggi(k,l)=-aggi(k,l)
3426               aggi1(k,l)=-aggi1(k,l)
3427               aggj(k,l)=-aggj(k,l)
3428               aggj1(k,l)=-aggj1(k,l)
3429             enddo
3430           enddo
3431           if (j.lt.nres-1) then
3432             a22=-a22
3433             a32=-a32
3434             do l=1,3,2
3435               do k=1,3
3436                 agg(k,l)=-agg(k,l)
3437                 aggi(k,l)=-aggi(k,l)
3438                 aggi1(k,l)=-aggi1(k,l)
3439                 aggj(k,l)=-aggj(k,l)
3440                 aggj1(k,l)=-aggj1(k,l)
3441               enddo
3442             enddo
3443           else
3444             a22=-a22
3445             a23=-a23
3446             a32=-a32
3447             a33=-a33
3448             do l=1,4
3449               do k=1,3
3450                 agg(k,l)=-agg(k,l)
3451                 aggi(k,l)=-aggi(k,l)
3452                 aggi1(k,l)=-aggi1(k,l)
3453                 aggj(k,l)=-aggj(k,l)
3454                 aggj1(k,l)=-aggj1(k,l)
3455               enddo
3456             enddo 
3457           endif    
3458           ENDIF ! WCORR
3459           IF (wel_loc.gt.0.0d0) THEN
3460 C Contribution to the local-electrostatic energy coming from the i-j pair
3461           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3462      &     +a33*muij(4)
3463 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3464
3465           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3466      &            'eelloc',i,j,eel_loc_ij
3467
3468           eel_loc=eel_loc+eel_loc_ij
3469 C Partial derivatives in virtual-bond dihedral angles gamma
3470           if (i.gt.1)
3471      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3472      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3473      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3474           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3475      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3476      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3477 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3478           do l=1,3
3479             ggg(l)=agg(l,1)*muij(1)+
3480      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3481             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3482             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3483 cgrad            ghalf=0.5d0*ggg(l)
3484 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3485 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3486           enddo
3487 cgrad          do k=i+1,j2
3488 cgrad            do l=1,3
3489 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3490 cgrad            enddo
3491 cgrad          enddo
3492 C Remaining derivatives of eello
3493           do l=1,3
3494             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3495      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3496             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3497      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3498             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3499      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3500             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3501      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3502           enddo
3503           ENDIF
3504 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3505 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3506           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3507      &       .and. num_conti.le.maxconts) then
3508 c            write (iout,*) i,j," entered corr"
3509 C
3510 C Calculate the contact function. The ith column of the array JCONT will 
3511 C contain the numbers of atoms that make contacts with the atom I (of numbers
3512 C greater than I). The arrays FACONT and GACONT will contain the values of
3513 C the contact function and its derivative.
3514 c           r0ij=1.02D0*rpp(iteli,itelj)
3515 c           r0ij=1.11D0*rpp(iteli,itelj)
3516             r0ij=2.20D0*rpp(iteli,itelj)
3517 c           r0ij=1.55D0*rpp(iteli,itelj)
3518             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3519             if (fcont.gt.0.0D0) then
3520               num_conti=num_conti+1
3521               if (num_conti.gt.maxconts) then
3522                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3523      &                         ' will skip next contacts for this conf.'
3524               else
3525                 jcont_hb(num_conti,i)=j
3526 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3527 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3528                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3529      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3530 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3531 C  terms.
3532                 d_cont(num_conti,i)=rij
3533 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3534 C     --- Electrostatic-interaction matrix --- 
3535                 a_chuj(1,1,num_conti,i)=a22
3536                 a_chuj(1,2,num_conti,i)=a23
3537                 a_chuj(2,1,num_conti,i)=a32
3538                 a_chuj(2,2,num_conti,i)=a33
3539 C     --- Gradient of rij
3540                 do kkk=1,3
3541                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3542                 enddo
3543                 kkll=0
3544                 do k=1,2
3545                   do l=1,2
3546                     kkll=kkll+1
3547                     do m=1,3
3548                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3549                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3550                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3551                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3552                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3553                     enddo
3554                   enddo
3555                 enddo
3556                 ENDIF
3557                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3558 C Calculate contact energies
3559                 cosa4=4.0D0*cosa
3560                 wij=cosa-3.0D0*cosb*cosg
3561                 cosbg1=cosb+cosg
3562                 cosbg2=cosb-cosg
3563 c               fac3=dsqrt(-ael6i)/r0ij**3     
3564                 fac3=dsqrt(-ael6i)*r3ij
3565 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3566                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3567                 if (ees0tmp.gt.0) then
3568                   ees0pij=dsqrt(ees0tmp)
3569                 else
3570                   ees0pij=0
3571                 endif
3572 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3573                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3574                 if (ees0tmp.gt.0) then
3575                   ees0mij=dsqrt(ees0tmp)
3576                 else
3577                   ees0mij=0
3578                 endif
3579 c               ees0mij=0.0D0
3580                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3581                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3582 C Diagnostics. Comment out or remove after debugging!
3583 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3584 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3585 c               ees0m(num_conti,i)=0.0D0
3586 C End diagnostics.
3587 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3588 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3589 C Angular derivatives of the contact function
3590                 ees0pij1=fac3/ees0pij 
3591                 ees0mij1=fac3/ees0mij
3592                 fac3p=-3.0D0*fac3*rrmij
3593                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3594                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3595 c               ees0mij1=0.0D0
3596                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3597                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3598                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3599                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3600                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3601                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3602                 ecosap=ecosa1+ecosa2
3603                 ecosbp=ecosb1+ecosb2
3604                 ecosgp=ecosg1+ecosg2
3605                 ecosam=ecosa1-ecosa2
3606                 ecosbm=ecosb1-ecosb2
3607                 ecosgm=ecosg1-ecosg2
3608 C Diagnostics
3609 c               ecosap=ecosa1
3610 c               ecosbp=ecosb1
3611 c               ecosgp=ecosg1
3612 c               ecosam=0.0D0
3613 c               ecosbm=0.0D0
3614 c               ecosgm=0.0D0
3615 C End diagnostics
3616                 facont_hb(num_conti,i)=fcont
3617                 fprimcont=fprimcont/rij
3618 cd              facont_hb(num_conti,i)=1.0D0
3619 C Following line is for diagnostics.
3620 cd              fprimcont=0.0D0
3621                 do k=1,3
3622                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3623                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3624                 enddo
3625                 do k=1,3
3626                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3627                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3628                 enddo
3629                 gggp(1)=gggp(1)+ees0pijp*xj
3630                 gggp(2)=gggp(2)+ees0pijp*yj
3631                 gggp(3)=gggp(3)+ees0pijp*zj
3632                 gggm(1)=gggm(1)+ees0mijp*xj
3633                 gggm(2)=gggm(2)+ees0mijp*yj
3634                 gggm(3)=gggm(3)+ees0mijp*zj
3635 C Derivatives due to the contact function
3636                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3637                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3638                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3639                 do k=1,3
3640 c
3641 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3642 c          following the change of gradient-summation algorithm.
3643 c
3644 cgrad                  ghalfp=0.5D0*gggp(k)
3645 cgrad                  ghalfm=0.5D0*gggm(k)
3646                   gacontp_hb1(k,num_conti,i)=!ghalfp
3647      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3648      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3649                   gacontp_hb2(k,num_conti,i)=!ghalfp
3650      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3651      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3652                   gacontp_hb3(k,num_conti,i)=gggp(k)
3653                   gacontm_hb1(k,num_conti,i)=!ghalfm
3654      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3655      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3656                   gacontm_hb2(k,num_conti,i)=!ghalfm
3657      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3658      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3659                   gacontm_hb3(k,num_conti,i)=gggm(k)
3660                 enddo
3661 C Diagnostics. Comment out or remove after debugging!
3662 cdiag           do k=1,3
3663 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3664 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3665 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3666 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3667 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3668 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3669 cdiag           enddo
3670               ENDIF ! wcorr
3671               endif  ! num_conti.le.maxconts
3672             endif  ! fcont.gt.0
3673           endif    ! j.gt.i+1
3674           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3675             do k=1,4
3676               do l=1,3
3677                 ghalf=0.5d0*agg(l,k)
3678                 aggi(l,k)=aggi(l,k)+ghalf
3679                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3680                 aggj(l,k)=aggj(l,k)+ghalf
3681               enddo
3682             enddo
3683             if (j.eq.nres-1 .and. i.lt.j-2) then
3684               do k=1,4
3685                 do l=1,3
3686                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3687                 enddo
3688               enddo
3689             endif
3690           endif
3691 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3692       return
3693       end
3694 C-----------------------------------------------------------------------------
3695       subroutine eturn3(i,eello_turn3)
3696 C Third- and fourth-order contributions from turns
3697       implicit real*8 (a-h,o-z)
3698       include 'DIMENSIONS'
3699       include 'COMMON.IOUNITS'
3700       include 'COMMON.GEO'
3701       include 'COMMON.VAR'
3702       include 'COMMON.LOCAL'
3703       include 'COMMON.CHAIN'
3704       include 'COMMON.DERIV'
3705       include 'COMMON.INTERACT'
3706       include 'COMMON.CONTACTS'
3707       include 'COMMON.TORSION'
3708       include 'COMMON.VECTORS'
3709       include 'COMMON.FFIELD'
3710       include 'COMMON.CONTROL'
3711       dimension ggg(3)
3712       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3713      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3714      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3715       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3716      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3717       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3718      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3719      &    num_conti,j1,j2
3720       j=i+2
3721 c      write (iout,*) "eturn3",i,j,j1,j2
3722       a_temp(1,1)=a22
3723       a_temp(1,2)=a23
3724       a_temp(2,1)=a32
3725       a_temp(2,2)=a33
3726 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3727 C
3728 C               Third-order contributions
3729 C        
3730 C                 (i+2)o----(i+3)
3731 C                      | |
3732 C                      | |
3733 C                 (i+1)o----i
3734 C
3735 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3736 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3737         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3738         call transpose2(auxmat(1,1),auxmat1(1,1))
3739         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3740         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3741         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3742      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3743 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3744 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3745 cd     &    ' eello_turn3_num',4*eello_turn3_num
3746 C Derivatives in gamma(i)
3747         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3748         call transpose2(auxmat2(1,1),auxmat3(1,1))
3749         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3750         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3751 C Derivatives in gamma(i+1)
3752         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3753         call transpose2(auxmat2(1,1),auxmat3(1,1))
3754         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3755         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3756      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3757 C Cartesian derivatives
3758         do l=1,3
3759 c            ghalf1=0.5d0*agg(l,1)
3760 c            ghalf2=0.5d0*agg(l,2)
3761 c            ghalf3=0.5d0*agg(l,3)
3762 c            ghalf4=0.5d0*agg(l,4)
3763           a_temp(1,1)=aggi(l,1)!+ghalf1
3764           a_temp(1,2)=aggi(l,2)!+ghalf2
3765           a_temp(2,1)=aggi(l,3)!+ghalf3
3766           a_temp(2,2)=aggi(l,4)!+ghalf4
3767           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3768           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3769      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3770           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3771           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3772           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3773           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3774           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3775           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3776      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3777           a_temp(1,1)=aggj(l,1)!+ghalf1
3778           a_temp(1,2)=aggj(l,2)!+ghalf2
3779           a_temp(2,1)=aggj(l,3)!+ghalf3
3780           a_temp(2,2)=aggj(l,4)!+ghalf4
3781           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3782           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3783      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3784           a_temp(1,1)=aggj1(l,1)
3785           a_temp(1,2)=aggj1(l,2)
3786           a_temp(2,1)=aggj1(l,3)
3787           a_temp(2,2)=aggj1(l,4)
3788           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3789           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3790      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3791         enddo
3792       return
3793       end
3794 C-------------------------------------------------------------------------------
3795       subroutine eturn4(i,eello_turn4)
3796 C Third- and fourth-order contributions from turns
3797       implicit real*8 (a-h,o-z)
3798       include 'DIMENSIONS'
3799       include 'COMMON.IOUNITS'
3800       include 'COMMON.GEO'
3801       include 'COMMON.VAR'
3802       include 'COMMON.LOCAL'
3803       include 'COMMON.CHAIN'
3804       include 'COMMON.DERIV'
3805       include 'COMMON.INTERACT'
3806       include 'COMMON.CONTACTS'
3807       include 'COMMON.TORSION'
3808       include 'COMMON.VECTORS'
3809       include 'COMMON.FFIELD'
3810       include 'COMMON.CONTROL'
3811       dimension ggg(3)
3812       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3813      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3814      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3815       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3816      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3817       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3818      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3819      &    num_conti,j1,j2
3820       j=i+3
3821 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3822 C
3823 C               Fourth-order contributions
3824 C        
3825 C                 (i+3)o----(i+4)
3826 C                     /  |
3827 C               (i+2)o   |
3828 C                     \  |
3829 C                 (i+1)o----i
3830 C
3831 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3832 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3833 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3834         a_temp(1,1)=a22
3835         a_temp(1,2)=a23
3836         a_temp(2,1)=a32
3837         a_temp(2,2)=a33
3838         iti1=itortyp(itype(i+1))
3839         iti2=itortyp(itype(i+2))
3840         iti3=itortyp(itype(i+3))
3841 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3842         call transpose2(EUg(1,1,i+1),e1t(1,1))
3843         call transpose2(Eug(1,1,i+2),e2t(1,1))
3844         call transpose2(Eug(1,1,i+3),e3t(1,1))
3845         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3846         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3847         s1=scalar2(b1(1,iti2),auxvec(1))
3848         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3849         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3850         s2=scalar2(b1(1,iti1),auxvec(1))
3851         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3852         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3853         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3854         eello_turn4=eello_turn4-(s1+s2+s3)
3855         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3856      &      'eturn4',i,j,-(s1+s2+s3)
3857 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3858 cd     &    ' eello_turn4_num',8*eello_turn4_num
3859 C Derivatives in gamma(i)
3860         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3861         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3862         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3863         s1=scalar2(b1(1,iti2),auxvec(1))
3864         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3865         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3866         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3867 C Derivatives in gamma(i+1)
3868         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3869         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3870         s2=scalar2(b1(1,iti1),auxvec(1))
3871         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3872         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3873         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3874         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3875 C Derivatives in gamma(i+2)
3876         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3877         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3878         s1=scalar2(b1(1,iti2),auxvec(1))
3879         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3880         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3881         s2=scalar2(b1(1,iti1),auxvec(1))
3882         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3883         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3884         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3885         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3886 C Cartesian derivatives
3887 C Derivatives of this turn contributions in DC(i+2)
3888         if (j.lt.nres-1) then
3889           do l=1,3
3890             a_temp(1,1)=agg(l,1)
3891             a_temp(1,2)=agg(l,2)
3892             a_temp(2,1)=agg(l,3)
3893             a_temp(2,2)=agg(l,4)
3894             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3895             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3896             s1=scalar2(b1(1,iti2),auxvec(1))
3897             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3898             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3899             s2=scalar2(b1(1,iti1),auxvec(1))
3900             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3901             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3902             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903             ggg(l)=-(s1+s2+s3)
3904             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3905           enddo
3906         endif
3907 C Remaining derivatives of this turn contribution
3908         do l=1,3
3909           a_temp(1,1)=aggi(l,1)
3910           a_temp(1,2)=aggi(l,2)
3911           a_temp(2,1)=aggi(l,3)
3912           a_temp(2,2)=aggi(l,4)
3913           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3914           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3915           s1=scalar2(b1(1,iti2),auxvec(1))
3916           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3917           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3918           s2=scalar2(b1(1,iti1),auxvec(1))
3919           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3920           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3921           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3923           a_temp(1,1)=aggi1(l,1)
3924           a_temp(1,2)=aggi1(l,2)
3925           a_temp(2,1)=aggi1(l,3)
3926           a_temp(2,2)=aggi1(l,4)
3927           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3928           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3929           s1=scalar2(b1(1,iti2),auxvec(1))
3930           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3931           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3932           s2=scalar2(b1(1,iti1),auxvec(1))
3933           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3934           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3935           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3936           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3937           a_temp(1,1)=aggj(l,1)
3938           a_temp(1,2)=aggj(l,2)
3939           a_temp(2,1)=aggj(l,3)
3940           a_temp(2,2)=aggj(l,4)
3941           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3942           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3943           s1=scalar2(b1(1,iti2),auxvec(1))
3944           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3945           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3946           s2=scalar2(b1(1,iti1),auxvec(1))
3947           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3948           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3949           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3950           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3951           a_temp(1,1)=aggj1(l,1)
3952           a_temp(1,2)=aggj1(l,2)
3953           a_temp(2,1)=aggj1(l,3)
3954           a_temp(2,2)=aggj1(l,4)
3955           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3956           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3957           s1=scalar2(b1(1,iti2),auxvec(1))
3958           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3959           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3960           s2=scalar2(b1(1,iti1),auxvec(1))
3961           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3962           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3963           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3964 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
3965           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
3966         enddo
3967       return
3968       end
3969 C-----------------------------------------------------------------------------
3970       subroutine vecpr(u,v,w)
3971       implicit real*8(a-h,o-z)
3972       dimension u(3),v(3),w(3)
3973       w(1)=u(2)*v(3)-u(3)*v(2)
3974       w(2)=-u(1)*v(3)+u(3)*v(1)
3975       w(3)=u(1)*v(2)-u(2)*v(1)
3976       return
3977       end
3978 C-----------------------------------------------------------------------------
3979       subroutine unormderiv(u,ugrad,unorm,ungrad)
3980 C This subroutine computes the derivatives of a normalized vector u, given
3981 C the derivatives computed without normalization conditions, ugrad. Returns
3982 C ungrad.
3983       implicit none
3984       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
3985       double precision vec(3)
3986       double precision scalar
3987       integer i,j
3988 c      write (2,*) 'ugrad',ugrad
3989 c      write (2,*) 'u',u
3990       do i=1,3
3991         vec(i)=scalar(ugrad(1,i),u(1))
3992       enddo
3993 c      write (2,*) 'vec',vec
3994       do i=1,3
3995         do j=1,3
3996           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
3997         enddo
3998       enddo
3999 c      write (2,*) 'ungrad',ungrad
4000       return
4001       end
4002 C-----------------------------------------------------------------------------
4003       subroutine escp_soft_sphere(evdw2,evdw2_14)
4004 C
4005 C This subroutine calculates the excluded-volume interaction energy between
4006 C peptide-group centers and side chains and its gradient in virtual-bond and
4007 C side-chain vectors.
4008 C
4009       implicit real*8 (a-h,o-z)
4010       include 'DIMENSIONS'
4011       include 'COMMON.GEO'
4012       include 'COMMON.VAR'
4013       include 'COMMON.LOCAL'
4014       include 'COMMON.CHAIN'
4015       include 'COMMON.DERIV'
4016       include 'COMMON.INTERACT'
4017       include 'COMMON.FFIELD'
4018       include 'COMMON.IOUNITS'
4019       include 'COMMON.CONTROL'
4020       dimension ggg(3)
4021       evdw2=0.0D0
4022       evdw2_14=0.0d0
4023       r0_scp=4.5d0
4024 cd    print '(a)','Enter ESCP'
4025 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4026       do i=iatscp_s,iatscp_e
4027         iteli=itel(i)
4028         xi=0.5D0*(c(1,i)+c(1,i+1))
4029         yi=0.5D0*(c(2,i)+c(2,i+1))
4030         zi=0.5D0*(c(3,i)+c(3,i+1))
4031
4032         do iint=1,nscp_gr(i)
4033
4034         do j=iscpstart(i,iint),iscpend(i,iint)
4035           itypj=itype(j)
4036 C Uncomment following three lines for SC-p interactions
4037 c         xj=c(1,nres+j)-xi
4038 c         yj=c(2,nres+j)-yi
4039 c         zj=c(3,nres+j)-zi
4040 C Uncomment following three lines for Ca-p interactions
4041           xj=c(1,j)-xi
4042           yj=c(2,j)-yi
4043           zj=c(3,j)-zi
4044           rij=xj*xj+yj*yj+zj*zj
4045           r0ij=r0_scp
4046           r0ijsq=r0ij*r0ij
4047           if (rij.lt.r0ijsq) then
4048             evdwij=0.25d0*(rij-r0ijsq)**2
4049             fac=rij-r0ijsq
4050           else
4051             evdwij=0.0d0
4052             fac=0.0d0
4053           endif 
4054           evdw2=evdw2+evdwij
4055 C
4056 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4057 C
4058           ggg(1)=xj*fac
4059           ggg(2)=yj*fac
4060           ggg(3)=zj*fac
4061 cgrad          if (j.lt.i) then
4062 cd          write (iout,*) 'j<i'
4063 C Uncomment following three lines for SC-p interactions
4064 c           do k=1,3
4065 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4066 c           enddo
4067 cgrad          else
4068 cd          write (iout,*) 'j>i'
4069 cgrad            do k=1,3
4070 cgrad              ggg(k)=-ggg(k)
4071 C Uncomment following line for SC-p interactions
4072 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4073 cgrad            enddo
4074 cgrad          endif
4075 cgrad          do k=1,3
4076 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4077 cgrad          enddo
4078 cgrad          kstart=min0(i+1,j)
4079 cgrad          kend=max0(i-1,j-1)
4080 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4081 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4082 cgrad          do k=kstart,kend
4083 cgrad            do l=1,3
4084 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4085 cgrad            enddo
4086 cgrad          enddo
4087           do k=1,3
4088             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4089             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4090           enddo
4091         enddo
4092
4093         enddo ! iint
4094       enddo ! i
4095       return
4096       end
4097 C-----------------------------------------------------------------------------
4098       subroutine escp(evdw2,evdw2_14)
4099 C
4100 C This subroutine calculates the excluded-volume interaction energy between
4101 C peptide-group centers and side chains and its gradient in virtual-bond and
4102 C side-chain vectors.
4103 C
4104       implicit real*8 (a-h,o-z)
4105       include 'DIMENSIONS'
4106       include 'COMMON.GEO'
4107       include 'COMMON.VAR'
4108       include 'COMMON.LOCAL'
4109       include 'COMMON.CHAIN'
4110       include 'COMMON.DERIV'
4111       include 'COMMON.INTERACT'
4112       include 'COMMON.FFIELD'
4113       include 'COMMON.IOUNITS'
4114       include 'COMMON.CONTROL'
4115       dimension ggg(3)
4116       evdw2=0.0D0
4117       evdw2_14=0.0d0
4118 cd    print '(a)','Enter ESCP'
4119 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4120       do i=iatscp_s,iatscp_e
4121         iteli=itel(i)
4122         xi=0.5D0*(c(1,i)+c(1,i+1))
4123         yi=0.5D0*(c(2,i)+c(2,i+1))
4124         zi=0.5D0*(c(3,i)+c(3,i+1))
4125
4126         do iint=1,nscp_gr(i)
4127
4128         do j=iscpstart(i,iint),iscpend(i,iint)
4129           itypj=itype(j)
4130 C Uncomment following three lines for SC-p interactions
4131 c         xj=c(1,nres+j)-xi
4132 c         yj=c(2,nres+j)-yi
4133 c         zj=c(3,nres+j)-zi
4134 C Uncomment following three lines for Ca-p interactions
4135           xj=c(1,j)-xi
4136           yj=c(2,j)-yi
4137           zj=c(3,j)-zi
4138           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4139           fac=rrij**expon2
4140           e1=fac*fac*aad(itypj,iteli)
4141           e2=fac*bad(itypj,iteli)
4142           if (iabs(j-i) .le. 2) then
4143             e1=scal14*e1
4144             e2=scal14*e2
4145             evdw2_14=evdw2_14+e1+e2
4146           endif
4147           evdwij=e1+e2
4148           evdw2=evdw2+evdwij
4149           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4150      &        'evdw2',i,j,evdwij
4151 C
4152 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4153 C
4154           fac=-(evdwij+e1)*rrij
4155           ggg(1)=xj*fac
4156           ggg(2)=yj*fac
4157           ggg(3)=zj*fac
4158 cgrad          if (j.lt.i) then
4159 cd          write (iout,*) 'j<i'
4160 C Uncomment following three lines for SC-p interactions
4161 c           do k=1,3
4162 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4163 c           enddo
4164 cgrad          else
4165 cd          write (iout,*) 'j>i'
4166 cgrad            do k=1,3
4167 cgrad              ggg(k)=-ggg(k)
4168 C Uncomment following line for SC-p interactions
4169 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4170 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4171 cgrad            enddo
4172 cgrad          endif
4173 cgrad          do k=1,3
4174 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4175 cgrad          enddo
4176 cgrad          kstart=min0(i+1,j)
4177 cgrad          kend=max0(i-1,j-1)
4178 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4179 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4180 cgrad          do k=kstart,kend
4181 cgrad            do l=1,3
4182 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4183 cgrad            enddo
4184 cgrad          enddo
4185           do k=1,3
4186             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4187             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4188           enddo
4189         enddo
4190
4191         enddo ! iint
4192       enddo ! i
4193       do i=1,nct
4194         do j=1,3
4195           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4196           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4197           gradx_scp(j,i)=expon*gradx_scp(j,i)
4198         enddo
4199       enddo
4200 C******************************************************************************
4201 C
4202 C                              N O T E !!!
4203 C
4204 C To save time the factor EXPON has been extracted from ALL components
4205 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4206 C use!
4207 C
4208 C******************************************************************************
4209       return
4210       end
4211 C--------------------------------------------------------------------------
4212       subroutine edis(ehpb)
4213
4214 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4215 C
4216       implicit real*8 (a-h,o-z)
4217       include 'DIMENSIONS'
4218       include 'COMMON.SBRIDGE'
4219       include 'COMMON.CHAIN'
4220       include 'COMMON.DERIV'
4221       include 'COMMON.VAR'
4222       include 'COMMON.INTERACT'
4223       include 'COMMON.IOUNITS'
4224       dimension ggg(3)
4225       ehpb=0.0D0
4226 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4227 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4228       if (link_end.eq.0) return
4229       do i=link_start,link_end
4230 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4231 C CA-CA distance used in regularization of structure.
4232         ii=ihpb(i)
4233         jj=jhpb(i)
4234 C iii and jjj point to the residues for which the distance is assigned.
4235         if (ii.gt.nres) then
4236           iii=ii-nres
4237           jjj=jj-nres 
4238         else
4239           iii=ii
4240           jjj=jj
4241         endif
4242 cd        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj
4243 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4244 C    distance and angle dependent SS bond potential.
4245         if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4246           call ssbond_ene(iii,jjj,eij)
4247           ehpb=ehpb+2*eij
4248 cd          write (iout,*) "eij",eij
4249         else
4250 C Calculate the distance between the two points and its difference from the
4251 C target distance.
4252         dd=dist(ii,jj)
4253         rdis=dd-dhpb(i)
4254 C Get the force constant corresponding to this distance.
4255         waga=forcon(i)
4256 C Calculate the contribution to energy.
4257         ehpb=ehpb+waga*rdis*rdis
4258 C
4259 C Evaluate gradient.
4260 C
4261         fac=waga*rdis/dd
4262 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4263 cd   &   ' waga=',waga,' fac=',fac
4264         do j=1,3
4265           ggg(j)=fac*(c(j,jj)-c(j,ii))
4266         enddo
4267 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4268 C If this is a SC-SC distance, we need to calculate the contributions to the
4269 C Cartesian gradient in the SC vectors (ghpbx).
4270         if (iii.lt.ii) then
4271           do j=1,3
4272             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4273             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4274           enddo
4275         endif
4276 cgrad        do j=iii,jjj-1
4277 cgrad          do k=1,3
4278 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4279 cgrad          enddo
4280 cgrad        enddo
4281         do k=1,3
4282           ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4283           ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4284         enddo
4285         endif
4286       enddo
4287       ehpb=0.5D0*ehpb
4288       return
4289       end
4290 C--------------------------------------------------------------------------
4291       subroutine ssbond_ene(i,j,eij)
4292
4293 C Calculate the distance and angle dependent SS-bond potential energy
4294 C using a free-energy function derived based on RHF/6-31G** ab initio
4295 C calculations of diethyl disulfide.
4296 C
4297 C A. Liwo and U. Kozlowska, 11/24/03
4298 C
4299       implicit real*8 (a-h,o-z)
4300       include 'DIMENSIONS'
4301       include 'COMMON.SBRIDGE'
4302       include 'COMMON.CHAIN'
4303       include 'COMMON.DERIV'
4304       include 'COMMON.LOCAL'
4305       include 'COMMON.INTERACT'
4306       include 'COMMON.VAR'
4307       include 'COMMON.IOUNITS'
4308       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4309       itypi=itype(i)
4310       xi=c(1,nres+i)
4311       yi=c(2,nres+i)
4312       zi=c(3,nres+i)
4313       dxi=dc_norm(1,nres+i)
4314       dyi=dc_norm(2,nres+i)
4315       dzi=dc_norm(3,nres+i)
4316 c      dsci_inv=dsc_inv(itypi)
4317       dsci_inv=vbld_inv(nres+i)
4318       itypj=itype(j)
4319 c      dscj_inv=dsc_inv(itypj)
4320       dscj_inv=vbld_inv(nres+j)
4321       xj=c(1,nres+j)-xi
4322       yj=c(2,nres+j)-yi
4323       zj=c(3,nres+j)-zi
4324       dxj=dc_norm(1,nres+j)
4325       dyj=dc_norm(2,nres+j)
4326       dzj=dc_norm(3,nres+j)
4327       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4328       rij=dsqrt(rrij)
4329       erij(1)=xj*rij
4330       erij(2)=yj*rij
4331       erij(3)=zj*rij
4332       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4333       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4334       om12=dxi*dxj+dyi*dyj+dzi*dzj
4335       do k=1,3
4336         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4337         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4338       enddo
4339       rij=1.0d0/rij
4340       deltad=rij-d0cm
4341       deltat1=1.0d0-om1
4342       deltat2=1.0d0+om2
4343       deltat12=om2-om1+2.0d0
4344       cosphi=om12-om1*om2
4345       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4346      &  +akct*deltad*deltat12
4347      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4348 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4349 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4350 c     &  " deltat12",deltat12," eij",eij 
4351       ed=2*akcm*deltad+akct*deltat12
4352       pom1=akct*deltad
4353       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4354       eom1=-2*akth*deltat1-pom1-om2*pom2
4355       eom2= 2*akth*deltat2+pom1-om1*pom2
4356       eom12=pom2
4357       do k=1,3
4358         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4359         ghpbx(k,i)=ghpbx(k,i)-ggk
4360      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4361      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4362         ghpbx(k,j)=ghpbx(k,j)+ggk
4363      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4364      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4365         ghpbc(k,i)=ghpbc(k,i)-ggk
4366         ghpbc(k,j)=ghpbc(k,j)+ggk
4367       enddo
4368 C
4369 C Calculate the components of the gradient in DC and X
4370 C
4371 cgrad      do k=i,j-1
4372 cgrad        do l=1,3
4373 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4374 cgrad        enddo
4375 cgrad      enddo
4376       return
4377       end
4378 C--------------------------------------------------------------------------
4379       subroutine ebond(estr)
4380 c
4381 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4382 c
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.LOCAL'
4386       include 'COMMON.GEO'
4387       include 'COMMON.INTERACT'
4388       include 'COMMON.DERIV'
4389       include 'COMMON.VAR'
4390       include 'COMMON.CHAIN'
4391       include 'COMMON.IOUNITS'
4392       include 'COMMON.NAMES'
4393       include 'COMMON.FFIELD'
4394       include 'COMMON.CONTROL'
4395       include 'COMMON.SETUP'
4396       double precision u(3),ud(3)
4397       estr=0.0d0
4398       do i=ibondp_start,ibondp_end
4399         diff = vbld(i)-vbldp0
4400 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4401         estr=estr+diff*diff
4402         do j=1,3
4403           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4404         enddo
4405 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4406       enddo
4407       estr=0.5d0*AKP*estr
4408 c
4409 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4410 c
4411       do i=ibond_start,ibond_end
4412         iti=itype(i)
4413         if (iti.ne.10) then
4414           nbi=nbondterm(iti)
4415           if (nbi.eq.1) then
4416             diff=vbld(i+nres)-vbldsc0(1,iti)
4417 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4418 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4419             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4420             do j=1,3
4421               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4422             enddo
4423           else
4424             do j=1,nbi
4425               diff=vbld(i+nres)-vbldsc0(j,iti) 
4426               ud(j)=aksc(j,iti)*diff
4427               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4428             enddo
4429             uprod=u(1)
4430             do j=2,nbi
4431               uprod=uprod*u(j)
4432             enddo
4433             usum=0.0d0
4434             usumsqder=0.0d0
4435             do j=1,nbi
4436               uprod1=1.0d0
4437               uprod2=1.0d0
4438               do k=1,nbi
4439                 if (k.ne.j) then
4440                   uprod1=uprod1*u(k)
4441                   uprod2=uprod2*u(k)*u(k)
4442                 endif
4443               enddo
4444               usum=usum+uprod1
4445               usumsqder=usumsqder+ud(j)*uprod2   
4446             enddo
4447             estr=estr+uprod/usum
4448             do j=1,3
4449              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4450             enddo
4451           endif
4452         endif
4453       enddo
4454       return
4455       end 
4456 #ifdef CRYST_THETA
4457 C--------------------------------------------------------------------------
4458       subroutine ebend(etheta)
4459 C
4460 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4461 C angles gamma and its derivatives in consecutive thetas and gammas.
4462 C
4463       implicit real*8 (a-h,o-z)
4464       include 'DIMENSIONS'
4465       include 'COMMON.LOCAL'
4466       include 'COMMON.GEO'
4467       include 'COMMON.INTERACT'
4468       include 'COMMON.DERIV'
4469       include 'COMMON.VAR'
4470       include 'COMMON.CHAIN'
4471       include 'COMMON.IOUNITS'
4472       include 'COMMON.NAMES'
4473       include 'COMMON.FFIELD'
4474       include 'COMMON.CONTROL'
4475       common /calcthet/ term1,term2,termm,diffak,ratak,
4476      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4477      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4478       double precision y(2),z(2)
4479       delta=0.02d0*pi
4480 c      time11=dexp(-2*time)
4481 c      time12=1.0d0
4482       etheta=0.0D0
4483 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4484       do i=ithet_start,ithet_end
4485 C Zero the energy function and its derivative at 0 or pi.
4486         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4487         it=itype(i-1)
4488         if (i.gt.3) then
4489 #ifdef OSF
4490           phii=phi(i)
4491           if (phii.ne.phii) phii=150.0
4492 #else
4493           phii=phi(i)
4494 #endif
4495           y(1)=dcos(phii)
4496           y(2)=dsin(phii)
4497         else 
4498           y(1)=0.0D0
4499           y(2)=0.0D0
4500         endif
4501         if (i.lt.nres) then
4502 #ifdef OSF
4503           phii1=phi(i+1)
4504           if (phii1.ne.phii1) phii1=150.0
4505           phii1=pinorm(phii1)
4506           z(1)=cos(phii1)
4507 #else
4508           phii1=phi(i+1)
4509           z(1)=dcos(phii1)
4510 #endif
4511           z(2)=dsin(phii1)
4512         else
4513           z(1)=0.0D0
4514           z(2)=0.0D0
4515         endif  
4516 C Calculate the "mean" value of theta from the part of the distribution
4517 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4518 C In following comments this theta will be referred to as t_c.
4519         thet_pred_mean=0.0d0
4520         do k=1,2
4521           athetk=athet(k,it)
4522           bthetk=bthet(k,it)
4523           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4524         enddo
4525         dthett=thet_pred_mean*ssd
4526         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4527 C Derivatives of the "mean" values in gamma1 and gamma2.
4528         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4529         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4530         if (theta(i).gt.pi-delta) then
4531           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4532      &         E_tc0)
4533           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4534           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4535           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4536      &        E_theta)
4537           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4538      &        E_tc)
4539         else if (theta(i).lt.delta) then
4540           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4541           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4542           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4543      &        E_theta)
4544           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4545           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4546      &        E_tc)
4547         else
4548           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4549      &        E_theta,E_tc)
4550         endif
4551         etheta=etheta+ethetai
4552         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4553      &      'ebend',i,ethetai
4554         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4555         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4556         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4557       enddo
4558 C Ufff.... We've done all this!!! 
4559       return
4560       end
4561 C---------------------------------------------------------------------------
4562       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4563      &     E_tc)
4564       implicit real*8 (a-h,o-z)
4565       include 'DIMENSIONS'
4566       include 'COMMON.LOCAL'
4567       include 'COMMON.IOUNITS'
4568       common /calcthet/ term1,term2,termm,diffak,ratak,
4569      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4570      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4571 C Calculate the contributions to both Gaussian lobes.
4572 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4573 C The "polynomial part" of the "standard deviation" of this part of 
4574 C the distribution.
4575         sig=polthet(3,it)
4576         do j=2,0,-1
4577           sig=sig*thet_pred_mean+polthet(j,it)
4578         enddo
4579 C Derivative of the "interior part" of the "standard deviation of the" 
4580 C gamma-dependent Gaussian lobe in t_c.
4581         sigtc=3*polthet(3,it)
4582         do j=2,1,-1
4583           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4584         enddo
4585         sigtc=sig*sigtc
4586 C Set the parameters of both Gaussian lobes of the distribution.
4587 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4588         fac=sig*sig+sigc0(it)
4589         sigcsq=fac+fac
4590         sigc=1.0D0/sigcsq
4591 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4592         sigsqtc=-4.0D0*sigcsq*sigtc
4593 c       print *,i,sig,sigtc,sigsqtc
4594 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4595         sigtc=-sigtc/(fac*fac)
4596 C Following variable is sigma(t_c)**(-2)
4597         sigcsq=sigcsq*sigcsq
4598         sig0i=sig0(it)
4599         sig0inv=1.0D0/sig0i**2
4600         delthec=thetai-thet_pred_mean
4601         delthe0=thetai-theta0i
4602         term1=-0.5D0*sigcsq*delthec*delthec
4603         term2=-0.5D0*sig0inv*delthe0*delthe0
4604 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4605 C NaNs in taking the logarithm. We extract the largest exponent which is added
4606 C to the energy (this being the log of the distribution) at the end of energy
4607 C term evaluation for this virtual-bond angle.
4608         if (term1.gt.term2) then
4609           termm=term1
4610           term2=dexp(term2-termm)
4611           term1=1.0d0
4612         else
4613           termm=term2
4614           term1=dexp(term1-termm)
4615           term2=1.0d0
4616         endif
4617 C The ratio between the gamma-independent and gamma-dependent lobes of
4618 C the distribution is a Gaussian function of thet_pred_mean too.
4619         diffak=gthet(2,it)-thet_pred_mean
4620         ratak=diffak/gthet(3,it)**2
4621         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4622 C Let's differentiate it in thet_pred_mean NOW.
4623         aktc=ak*ratak
4624 C Now put together the distribution terms to make complete distribution.
4625         termexp=term1+ak*term2
4626         termpre=sigc+ak*sig0i
4627 C Contribution of the bending energy from this theta is just the -log of
4628 C the sum of the contributions from the two lobes and the pre-exponential
4629 C factor. Simple enough, isn't it?
4630         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4631 C NOW the derivatives!!!
4632 C 6/6/97 Take into account the deformation.
4633         E_theta=(delthec*sigcsq*term1
4634      &       +ak*delthe0*sig0inv*term2)/termexp
4635         E_tc=((sigtc+aktc*sig0i)/termpre
4636      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4637      &       aktc*term2)/termexp)
4638       return
4639       end
4640 c-----------------------------------------------------------------------------
4641       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4642       implicit real*8 (a-h,o-z)
4643       include 'DIMENSIONS'
4644       include 'COMMON.LOCAL'
4645       include 'COMMON.IOUNITS'
4646       common /calcthet/ term1,term2,termm,diffak,ratak,
4647      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4648      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4649       delthec=thetai-thet_pred_mean
4650       delthe0=thetai-theta0i
4651 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4652       t3 = thetai-thet_pred_mean
4653       t6 = t3**2
4654       t9 = term1
4655       t12 = t3*sigcsq
4656       t14 = t12+t6*sigsqtc
4657       t16 = 1.0d0
4658       t21 = thetai-theta0i
4659       t23 = t21**2
4660       t26 = term2
4661       t27 = t21*t26
4662       t32 = termexp
4663       t40 = t32**2
4664       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4665      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4666      & *(-t12*t9-ak*sig0inv*t27)
4667       return
4668       end
4669 #else
4670 C--------------------------------------------------------------------------
4671       subroutine ebend(etheta)
4672 C
4673 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4674 C angles gamma and its derivatives in consecutive thetas and gammas.
4675 C ab initio-derived potentials from 
4676 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4677 C
4678       implicit real*8 (a-h,o-z)
4679       include 'DIMENSIONS'
4680       include 'COMMON.LOCAL'
4681       include 'COMMON.GEO'
4682       include 'COMMON.INTERACT'
4683       include 'COMMON.DERIV'
4684       include 'COMMON.VAR'
4685       include 'COMMON.CHAIN'
4686       include 'COMMON.IOUNITS'
4687       include 'COMMON.NAMES'
4688       include 'COMMON.FFIELD'
4689       include 'COMMON.CONTROL'
4690       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4691      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4692      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4693      & sinph1ph2(maxdouble,maxdouble)
4694       logical lprn /.false./, lprn1 /.false./
4695       etheta=0.0D0
4696       do i=ithet_start,ithet_end
4697         dethetai=0.0d0
4698         dephii=0.0d0
4699         dephii1=0.0d0
4700         theti2=0.5d0*theta(i)
4701         ityp2=ithetyp(itype(i-1))
4702         do k=1,nntheterm
4703           coskt(k)=dcos(k*theti2)
4704           sinkt(k)=dsin(k*theti2)
4705         enddo
4706         if (i.gt.3) then
4707 #ifdef OSF
4708           phii=phi(i)
4709           if (phii.ne.phii) phii=150.0
4710 #else
4711           phii=phi(i)
4712 #endif
4713           ityp1=ithetyp(itype(i-2))
4714           do k=1,nsingle
4715             cosph1(k)=dcos(k*phii)
4716             sinph1(k)=dsin(k*phii)
4717           enddo
4718         else
4719           phii=0.0d0
4720           ityp1=nthetyp+1
4721           do k=1,nsingle
4722             cosph1(k)=0.0d0
4723             sinph1(k)=0.0d0
4724           enddo 
4725         endif
4726         if (i.lt.nres) then
4727 #ifdef OSF
4728           phii1=phi(i+1)
4729           if (phii1.ne.phii1) phii1=150.0
4730           phii1=pinorm(phii1)
4731 #else
4732           phii1=phi(i+1)
4733 #endif
4734           ityp3=ithetyp(itype(i))
4735           do k=1,nsingle
4736             cosph2(k)=dcos(k*phii1)
4737             sinph2(k)=dsin(k*phii1)
4738           enddo
4739         else
4740           phii1=0.0d0
4741           ityp3=nthetyp+1
4742           do k=1,nsingle
4743             cosph2(k)=0.0d0
4744             sinph2(k)=0.0d0
4745           enddo
4746         endif  
4747         ethetai=aa0thet(ityp1,ityp2,ityp3)
4748         do k=1,ndouble
4749           do l=1,k-1
4750             ccl=cosph1(l)*cosph2(k-l)
4751             ssl=sinph1(l)*sinph2(k-l)
4752             scl=sinph1(l)*cosph2(k-l)
4753             csl=cosph1(l)*sinph2(k-l)
4754             cosph1ph2(l,k)=ccl-ssl
4755             cosph1ph2(k,l)=ccl+ssl
4756             sinph1ph2(l,k)=scl+csl
4757             sinph1ph2(k,l)=scl-csl
4758           enddo
4759         enddo
4760         if (lprn) then
4761         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4762      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4763         write (iout,*) "coskt and sinkt"
4764         do k=1,nntheterm
4765           write (iout,*) k,coskt(k),sinkt(k)
4766         enddo
4767         endif
4768         do k=1,ntheterm
4769           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4770           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4771      &      *coskt(k)
4772           if (lprn)
4773      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4774      &     " ethetai",ethetai
4775         enddo
4776         if (lprn) then
4777         write (iout,*) "cosph and sinph"
4778         do k=1,nsingle
4779           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4780         enddo
4781         write (iout,*) "cosph1ph2 and sinph2ph2"
4782         do k=2,ndouble
4783           do l=1,k-1
4784             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4785      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4786           enddo
4787         enddo
4788         write(iout,*) "ethetai",ethetai
4789         endif
4790         do m=1,ntheterm2
4791           do k=1,nsingle
4792             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4793      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4794      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4795      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4796             ethetai=ethetai+sinkt(m)*aux
4797             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4798             dephii=dephii+k*sinkt(m)*(
4799      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4800      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4801             dephii1=dephii1+k*sinkt(m)*(
4802      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4803      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4804             if (lprn)
4805      &      write (iout,*) "m",m," k",k," bbthet",
4806      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4807      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4808      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4809      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4810           enddo
4811         enddo
4812         if (lprn)
4813      &  write(iout,*) "ethetai",ethetai
4814         do m=1,ntheterm3
4815           do k=2,ndouble
4816             do l=1,k-1
4817               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4818      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4819      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4820      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4821               ethetai=ethetai+sinkt(m)*aux
4822               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4823               dephii=dephii+l*sinkt(m)*(
4824      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4825      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4826      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4827      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4828               dephii1=dephii1+(k-l)*sinkt(m)*(
4829      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4830      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4831      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4832      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4833               if (lprn) then
4834               write (iout,*) "m",m," k",k," l",l," ffthet",
4835      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4836      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4837      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4838      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4839               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4840      &            cosph1ph2(k,l)*sinkt(m),
4841      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4842               endif
4843             enddo
4844           enddo
4845         enddo
4846 10      continue
4847         if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
4848      &   i,theta(i)*rad2deg,phii*rad2deg,
4849      &   phii1*rad2deg,ethetai
4850         etheta=etheta+ethetai
4851         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4852         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4853         gloc(nphi+i-2,icg)=wang*dethetai
4854       enddo
4855       return
4856       end
4857 #endif
4858 #ifdef CRYST_SC
4859 c-----------------------------------------------------------------------------
4860       subroutine esc(escloc)
4861 C Calculate the local energy of a side chain and its derivatives in the
4862 C corresponding virtual-bond valence angles THETA and the spherical angles 
4863 C ALPHA and OMEGA.
4864       implicit real*8 (a-h,o-z)
4865       include 'DIMENSIONS'
4866       include 'COMMON.GEO'
4867       include 'COMMON.LOCAL'
4868       include 'COMMON.VAR'
4869       include 'COMMON.INTERACT'
4870       include 'COMMON.DERIV'
4871       include 'COMMON.CHAIN'
4872       include 'COMMON.IOUNITS'
4873       include 'COMMON.NAMES'
4874       include 'COMMON.FFIELD'
4875       include 'COMMON.CONTROL'
4876       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4877      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4878       common /sccalc/ time11,time12,time112,theti,it,nlobit
4879       delta=0.02d0*pi
4880       escloc=0.0D0
4881 c     write (iout,'(a)') 'ESC'
4882       do i=loc_start,loc_end
4883         it=itype(i)
4884         if (it.eq.10) goto 1
4885         nlobit=nlob(it)
4886 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4887 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4888         theti=theta(i+1)-pipol
4889         x(1)=dtan(theti)
4890         x(2)=alph(i)
4891         x(3)=omeg(i)
4892
4893         if (x(2).gt.pi-delta) then
4894           xtemp(1)=x(1)
4895           xtemp(2)=pi-delta
4896           xtemp(3)=x(3)
4897           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4898           xtemp(2)=pi
4899           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4900           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4901      &        escloci,dersc(2))
4902           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4903      &        ddersc0(1),dersc(1))
4904           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4905      &        ddersc0(3),dersc(3))
4906           xtemp(2)=pi-delta
4907           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4908           xtemp(2)=pi
4909           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4910           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4911      &            dersc0(2),esclocbi,dersc02)
4912           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4913      &            dersc12,dersc01)
4914           call splinthet(x(2),0.5d0*delta,ss,ssd)
4915           dersc0(1)=dersc01
4916           dersc0(2)=dersc02
4917           dersc0(3)=0.0d0
4918           do k=1,3
4919             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4920           enddo
4921           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4922 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4923 c    &             esclocbi,ss,ssd
4924           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4925 c         escloci=esclocbi
4926 c         write (iout,*) escloci
4927         else if (x(2).lt.delta) then
4928           xtemp(1)=x(1)
4929           xtemp(2)=delta
4930           xtemp(3)=x(3)
4931           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4932           xtemp(2)=0.0d0
4933           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4934           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
4935      &        escloci,dersc(2))
4936           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4937      &        ddersc0(1),dersc(1))
4938           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
4939      &        ddersc0(3),dersc(3))
4940           xtemp(2)=delta
4941           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4942           xtemp(2)=0.0d0
4943           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4944           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
4945      &            dersc0(2),esclocbi,dersc02)
4946           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4947      &            dersc12,dersc01)
4948           dersc0(1)=dersc01
4949           dersc0(2)=dersc02
4950           dersc0(3)=0.0d0
4951           call splinthet(x(2),0.5d0*delta,ss,ssd)
4952           do k=1,3
4953             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4954           enddo
4955           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4956 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4957 c    &             esclocbi,ss,ssd
4958           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4959 c         write (iout,*) escloci
4960         else
4961           call enesc(x,escloci,dersc,ddummy,.false.)
4962         endif
4963
4964         escloc=escloc+escloci
4965         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4966      &     'escloc',i,escloci
4967 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
4968
4969         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
4970      &   wscloc*dersc(1)
4971         gloc(ialph(i,1),icg)=wscloc*dersc(2)
4972         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
4973     1   continue
4974       enddo
4975       return
4976       end
4977 C---------------------------------------------------------------------------
4978       subroutine enesc(x,escloci,dersc,ddersc,mixed)
4979       implicit real*8 (a-h,o-z)
4980       include 'DIMENSIONS'
4981       include 'COMMON.GEO'
4982       include 'COMMON.LOCAL'
4983       include 'COMMON.IOUNITS'
4984       common /sccalc/ time11,time12,time112,theti,it,nlobit
4985       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
4986       double precision contr(maxlob,-1:1)
4987       logical mixed
4988 c       write (iout,*) 'it=',it,' nlobit=',nlobit
4989         escloc_i=0.0D0
4990         do j=1,3
4991           dersc(j)=0.0D0
4992           if (mixed) ddersc(j)=0.0d0
4993         enddo
4994         x3=x(3)
4995
4996 C Because of periodicity of the dependence of the SC energy in omega we have
4997 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
4998 C To avoid underflows, first compute & store the exponents.
4999
5000         do iii=-1,1
5001
5002           x(3)=x3+iii*dwapi
5003  
5004           do j=1,nlobit
5005             do k=1,3
5006               z(k)=x(k)-censc(k,j,it)
5007             enddo
5008             do k=1,3
5009               Axk=0.0D0
5010               do l=1,3
5011                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5012               enddo
5013               Ax(k,j,iii)=Axk
5014             enddo 
5015             expfac=0.0D0 
5016             do k=1,3
5017               expfac=expfac+Ax(k,j,iii)*z(k)
5018             enddo
5019             contr(j,iii)=expfac
5020           enddo ! j
5021
5022         enddo ! iii
5023
5024         x(3)=x3
5025 C As in the case of ebend, we want to avoid underflows in exponentiation and
5026 C subsequent NaNs and INFs in energy calculation.
5027 C Find the largest exponent
5028         emin=contr(1,-1)
5029         do iii=-1,1
5030           do j=1,nlobit
5031             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5032           enddo 
5033         enddo
5034         emin=0.5D0*emin
5035 cd      print *,'it=',it,' emin=',emin
5036
5037 C Compute the contribution to SC energy and derivatives
5038         do iii=-1,1
5039
5040           do j=1,nlobit
5041 #ifdef OSF
5042             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5043             if(adexp.ne.adexp) adexp=1.0
5044             expfac=dexp(adexp)
5045 #else
5046             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5047 #endif
5048 cd          print *,'j=',j,' expfac=',expfac
5049             escloc_i=escloc_i+expfac
5050             do k=1,3
5051               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5052             enddo
5053             if (mixed) then
5054               do k=1,3,2
5055                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5056      &            +gaussc(k,2,j,it))*expfac
5057               enddo
5058             endif
5059           enddo
5060
5061         enddo ! iii
5062
5063         dersc(1)=dersc(1)/cos(theti)**2
5064         ddersc(1)=ddersc(1)/cos(theti)**2
5065         ddersc(3)=ddersc(3)
5066
5067         escloci=-(dlog(escloc_i)-emin)
5068         do j=1,3
5069           dersc(j)=dersc(j)/escloc_i
5070         enddo
5071         if (mixed) then
5072           do j=1,3,2
5073             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5074           enddo
5075         endif
5076       return
5077       end
5078 C------------------------------------------------------------------------------
5079       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5080       implicit real*8 (a-h,o-z)
5081       include 'DIMENSIONS'
5082       include 'COMMON.GEO'
5083       include 'COMMON.LOCAL'
5084       include 'COMMON.IOUNITS'
5085       common /sccalc/ time11,time12,time112,theti,it,nlobit
5086       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5087       double precision contr(maxlob)
5088       logical mixed
5089
5090       escloc_i=0.0D0
5091
5092       do j=1,3
5093         dersc(j)=0.0D0
5094       enddo
5095
5096       do j=1,nlobit
5097         do k=1,2
5098           z(k)=x(k)-censc(k,j,it)
5099         enddo
5100         z(3)=dwapi
5101         do k=1,3
5102           Axk=0.0D0
5103           do l=1,3
5104             Axk=Axk+gaussc(l,k,j,it)*z(l)
5105           enddo
5106           Ax(k,j)=Axk
5107         enddo 
5108         expfac=0.0D0 
5109         do k=1,3
5110           expfac=expfac+Ax(k,j)*z(k)
5111         enddo
5112         contr(j)=expfac
5113       enddo ! j
5114
5115 C As in the case of ebend, we want to avoid underflows in exponentiation and
5116 C subsequent NaNs and INFs in energy calculation.
5117 C Find the largest exponent
5118       emin=contr(1)
5119       do j=1,nlobit
5120         if (emin.gt.contr(j)) emin=contr(j)
5121       enddo 
5122       emin=0.5D0*emin
5123  
5124 C Compute the contribution to SC energy and derivatives
5125
5126       dersc12=0.0d0
5127       do j=1,nlobit
5128         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5129         escloc_i=escloc_i+expfac
5130         do k=1,2
5131           dersc(k)=dersc(k)+Ax(k,j)*expfac
5132         enddo
5133         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5134      &            +gaussc(1,2,j,it))*expfac
5135         dersc(3)=0.0d0
5136       enddo
5137
5138       dersc(1)=dersc(1)/cos(theti)**2
5139       dersc12=dersc12/cos(theti)**2
5140       escloci=-(dlog(escloc_i)-emin)
5141       do j=1,2
5142         dersc(j)=dersc(j)/escloc_i
5143       enddo
5144       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5145       return
5146       end
5147 #else
5148 c----------------------------------------------------------------------------------
5149       subroutine esc(escloc)
5150 C Calculate the local energy of a side chain and its derivatives in the
5151 C corresponding virtual-bond valence angles THETA and the spherical angles 
5152 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5153 C added by Urszula Kozlowska. 07/11/2007
5154 C
5155       implicit real*8 (a-h,o-z)
5156       include 'DIMENSIONS'
5157       include 'COMMON.GEO'
5158       include 'COMMON.LOCAL'
5159       include 'COMMON.VAR'
5160       include 'COMMON.SCROT'
5161       include 'COMMON.INTERACT'
5162       include 'COMMON.DERIV'
5163       include 'COMMON.CHAIN'
5164       include 'COMMON.IOUNITS'
5165       include 'COMMON.NAMES'
5166       include 'COMMON.FFIELD'
5167       include 'COMMON.CONTROL'
5168       include 'COMMON.VECTORS'
5169       double precision x_prime(3),y_prime(3),z_prime(3)
5170      &    , sumene,dsc_i,dp2_i,x(65),
5171      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5172      &    de_dxx,de_dyy,de_dzz,de_dt
5173       double precision s1_t,s1_6_t,s2_t,s2_6_t
5174       double precision 
5175      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5176      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5177      & dt_dCi(3),dt_dCi1(3)
5178       common /sccalc/ time11,time12,time112,theti,it,nlobit
5179       delta=0.02d0*pi
5180       escloc=0.0D0
5181       do i=loc_start,loc_end
5182         costtab(i+1) =dcos(theta(i+1))
5183         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5184         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5185         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5186         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5187         cosfac=dsqrt(cosfac2)
5188         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5189         sinfac=dsqrt(sinfac2)
5190         it=itype(i)
5191         if (it.eq.10) goto 1
5192 c
5193 C  Compute the axes of tghe local cartesian coordinates system; store in
5194 c   x_prime, y_prime and z_prime 
5195 c
5196         do j=1,3
5197           x_prime(j) = 0.00
5198           y_prime(j) = 0.00
5199           z_prime(j) = 0.00
5200         enddo
5201 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5202 C     &   dc_norm(3,i+nres)
5203         do j = 1,3
5204           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5205           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5206         enddo
5207         do j = 1,3
5208           z_prime(j) = -uz(j,i-1)
5209         enddo     
5210 c       write (2,*) "i",i
5211 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5212 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5213 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5214 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5215 c      & " xy",scalar(x_prime(1),y_prime(1)),
5216 c      & " xz",scalar(x_prime(1),z_prime(1)),
5217 c      & " yy",scalar(y_prime(1),y_prime(1)),
5218 c      & " yz",scalar(y_prime(1),z_prime(1)),
5219 c      & " zz",scalar(z_prime(1),z_prime(1))
5220 c
5221 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5222 C to local coordinate system. Store in xx, yy, zz.
5223 c
5224         xx=0.0d0
5225         yy=0.0d0
5226         zz=0.0d0
5227         do j = 1,3
5228           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5229           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5230           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5231         enddo
5232
5233         xxtab(i)=xx
5234         yytab(i)=yy
5235         zztab(i)=zz
5236 C
5237 C Compute the energy of the ith side cbain
5238 C
5239 c        write (2,*) "xx",xx," yy",yy," zz",zz
5240         it=itype(i)
5241         do j = 1,65
5242           x(j) = sc_parmin(j,it) 
5243         enddo
5244 #ifdef CHECK_COORD
5245 Cc diagnostics - remove later
5246         xx1 = dcos(alph(2))
5247         yy1 = dsin(alph(2))*dcos(omeg(2))
5248         zz1 = -dsin(alph(2))*dsin(omeg(2))
5249         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5250      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5251      &    xx1,yy1,zz1
5252 C,"  --- ", xx_w,yy_w,zz_w
5253 c end diagnostics
5254 #endif
5255         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5256      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5257      &   + x(10)*yy*zz
5258         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5259      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5260      & + x(20)*yy*zz
5261         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5262      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5263      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5264      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5265      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5266      &  +x(40)*xx*yy*zz
5267         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5268      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5269      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5270      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5271      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5272      &  +x(60)*xx*yy*zz
5273         dsc_i   = 0.743d0+x(61)
5274         dp2_i   = 1.9d0+x(62)
5275         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5276      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5277         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5278      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5279         s1=(1+x(63))/(0.1d0 + dscp1)
5280         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5281         s2=(1+x(65))/(0.1d0 + dscp2)
5282         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5283         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5284      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5285 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5286 c     &   sumene4,
5287 c     &   dscp1,dscp2,sumene
5288 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5289         escloc = escloc + sumene
5290 c        write (2,*) "i",i," escloc",sumene,escloc
5291 #ifdef DEBUG
5292 C
5293 C This section to check the numerical derivatives of the energy of ith side
5294 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5295 C #define DEBUG in the code to turn it on.
5296 C
5297         write (2,*) "sumene               =",sumene
5298         aincr=1.0d-7
5299         xxsave=xx
5300         xx=xx+aincr
5301         write (2,*) xx,yy,zz
5302         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5303         de_dxx_num=(sumenep-sumene)/aincr
5304         xx=xxsave
5305         write (2,*) "xx+ sumene from enesc=",sumenep
5306         yysave=yy
5307         yy=yy+aincr
5308         write (2,*) xx,yy,zz
5309         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5310         de_dyy_num=(sumenep-sumene)/aincr
5311         yy=yysave
5312         write (2,*) "yy+ sumene from enesc=",sumenep
5313         zzsave=zz
5314         zz=zz+aincr
5315         write (2,*) xx,yy,zz
5316         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5317         de_dzz_num=(sumenep-sumene)/aincr
5318         zz=zzsave
5319         write (2,*) "zz+ sumene from enesc=",sumenep
5320         costsave=cost2tab(i+1)
5321         sintsave=sint2tab(i+1)
5322         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5323         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5324         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5325         de_dt_num=(sumenep-sumene)/aincr
5326         write (2,*) " t+ sumene from enesc=",sumenep
5327         cost2tab(i+1)=costsave
5328         sint2tab(i+1)=sintsave
5329 C End of diagnostics section.
5330 #endif
5331 C        
5332 C Compute the gradient of esc
5333 C
5334         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5335         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5336         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5337         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5338         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5339         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5340         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5341         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5342         pom1=(sumene3*sint2tab(i+1)+sumene1)
5343      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5344         pom2=(sumene4*cost2tab(i+1)+sumene2)
5345      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5346         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5347         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5348      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5349      &  +x(40)*yy*zz
5350         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5351         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5352      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5353      &  +x(60)*yy*zz
5354         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5355      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5356      &        +(pom1+pom2)*pom_dx
5357 #ifdef DEBUG
5358         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5359 #endif
5360 C
5361         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5362         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5363      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5364      &  +x(40)*xx*zz
5365         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5366         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5367      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5368      &  +x(59)*zz**2 +x(60)*xx*zz
5369         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5370      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5371      &        +(pom1-pom2)*pom_dy
5372 #ifdef DEBUG
5373         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5374 #endif
5375 C
5376         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5377      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5378      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5379      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5380      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5381      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5382      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5383      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5384 #ifdef DEBUG
5385         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5386 #endif
5387 C
5388         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5389      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5390      &  +pom1*pom_dt1+pom2*pom_dt2
5391 #ifdef DEBUG
5392         write(2,*), "de_dt = ", de_dt,de_dt_num
5393 #endif
5394
5395 C
5396        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5397        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5398        cosfac2xx=cosfac2*xx
5399        sinfac2yy=sinfac2*yy
5400        do k = 1,3
5401          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5402      &      vbld_inv(i+1)
5403          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5404      &      vbld_inv(i)
5405          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5406          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5407 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5408 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5409 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5410 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5411          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5412          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5413          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5414          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5415          dZZ_Ci1(k)=0.0d0
5416          dZZ_Ci(k)=0.0d0
5417          do j=1,3
5418            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5419            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5420          enddo
5421           
5422          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5423          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5424          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5425 c
5426          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5427          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5428        enddo
5429
5430        do k=1,3
5431          dXX_Ctab(k,i)=dXX_Ci(k)
5432          dXX_C1tab(k,i)=dXX_Ci1(k)
5433          dYY_Ctab(k,i)=dYY_Ci(k)
5434          dYY_C1tab(k,i)=dYY_Ci1(k)
5435          dZZ_Ctab(k,i)=dZZ_Ci(k)
5436          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5437          dXX_XYZtab(k,i)=dXX_XYZ(k)
5438          dYY_XYZtab(k,i)=dYY_XYZ(k)
5439          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5440        enddo
5441
5442        do k = 1,3
5443 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5444 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5445 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5446 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5447 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5448 c     &    dt_dci(k)
5449 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5450 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5451          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5452      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5453          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5454      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5455          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5456      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5457        enddo
5458 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5459 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5460
5461 C to check gradient call subroutine check_grad
5462
5463     1 continue
5464       enddo
5465       return
5466       end
5467 c------------------------------------------------------------------------------
5468       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5469       implicit none
5470       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5471      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5472       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5473      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5474      &   + x(10)*yy*zz
5475       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5476      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5477      & + x(20)*yy*zz
5478       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5479      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5480      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5481      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5482      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5483      &  +x(40)*xx*yy*zz
5484       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5485      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5486      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5487      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5488      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5489      &  +x(60)*xx*yy*zz
5490       dsc_i   = 0.743d0+x(61)
5491       dp2_i   = 1.9d0+x(62)
5492       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5493      &          *(xx*cost2+yy*sint2))
5494       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5495      &          *(xx*cost2-yy*sint2))
5496       s1=(1+x(63))/(0.1d0 + dscp1)
5497       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5498       s2=(1+x(65))/(0.1d0 + dscp2)
5499       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5500       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5501      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5502       enesc=sumene
5503       return
5504       end
5505 #endif
5506 c------------------------------------------------------------------------------
5507       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5508 C
5509 C This procedure calculates two-body contact function g(rij) and its derivative:
5510 C
5511 C           eps0ij                                     !       x < -1
5512 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5513 C            0                                         !       x > 1
5514 C
5515 C where x=(rij-r0ij)/delta
5516 C
5517 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5518 C
5519       implicit none
5520       double precision rij,r0ij,eps0ij,fcont,fprimcont
5521       double precision x,x2,x4,delta
5522 c     delta=0.02D0*r0ij
5523 c      delta=0.2D0*r0ij
5524       x=(rij-r0ij)/delta
5525       if (x.lt.-1.0D0) then
5526         fcont=eps0ij
5527         fprimcont=0.0D0
5528       else if (x.le.1.0D0) then  
5529         x2=x*x
5530         x4=x2*x2
5531         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5532         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5533       else
5534         fcont=0.0D0
5535         fprimcont=0.0D0
5536       endif
5537       return
5538       end
5539 c------------------------------------------------------------------------------
5540       subroutine splinthet(theti,delta,ss,ssder)
5541       implicit real*8 (a-h,o-z)
5542       include 'DIMENSIONS'
5543       include 'COMMON.VAR'
5544       include 'COMMON.GEO'
5545       thetup=pi-delta
5546       thetlow=delta
5547       if (theti.gt.pipol) then
5548         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5549       else
5550         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5551         ssder=-ssder
5552       endif
5553       return
5554       end
5555 c------------------------------------------------------------------------------
5556       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5557       implicit none
5558       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5559       double precision ksi,ksi2,ksi3,a1,a2,a3
5560       a1=fprim0*delta/(f1-f0)
5561       a2=3.0d0-2.0d0*a1
5562       a3=a1-2.0d0
5563       ksi=(x-x0)/delta
5564       ksi2=ksi*ksi
5565       ksi3=ksi2*ksi  
5566       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5567       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5568       return
5569       end
5570 c------------------------------------------------------------------------------
5571       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5572       implicit none
5573       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5574       double precision ksi,ksi2,ksi3,a1,a2,a3
5575       ksi=(x-x0)/delta  
5576       ksi2=ksi*ksi
5577       ksi3=ksi2*ksi
5578       a1=fprim0x*delta
5579       a2=3*(f1x-f0x)-2*fprim0x*delta
5580       a3=fprim0x*delta-2*(f1x-f0x)
5581       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5582       return
5583       end
5584 C-----------------------------------------------------------------------------
5585 #ifdef CRYST_TOR
5586 C-----------------------------------------------------------------------------
5587       subroutine etor(etors,edihcnstr)
5588       implicit real*8 (a-h,o-z)
5589       include 'DIMENSIONS'
5590       include 'COMMON.VAR'
5591       include 'COMMON.GEO'
5592       include 'COMMON.LOCAL'
5593       include 'COMMON.TORSION'
5594       include 'COMMON.INTERACT'
5595       include 'COMMON.DERIV'
5596       include 'COMMON.CHAIN'
5597       include 'COMMON.NAMES'
5598       include 'COMMON.IOUNITS'
5599       include 'COMMON.FFIELD'
5600       include 'COMMON.TORCNSTR'
5601       include 'COMMON.CONTROL'
5602       logical lprn
5603 C Set lprn=.true. for debugging
5604       lprn=.false.
5605 c      lprn=.true.
5606       etors=0.0D0
5607       do i=iphi_start,iphi_end
5608       etors_ii=0.0D0
5609         itori=itortyp(itype(i-2))
5610         itori1=itortyp(itype(i-1))
5611         phii=phi(i)
5612         gloci=0.0D0
5613 C Proline-Proline pair is a special case...
5614         if (itori.eq.3 .and. itori1.eq.3) then
5615           if (phii.gt.-dwapi3) then
5616             cosphi=dcos(3*phii)
5617             fac=1.0D0/(1.0D0-cosphi)
5618             etorsi=v1(1,3,3)*fac
5619             etorsi=etorsi+etorsi
5620             etors=etors+etorsi-v1(1,3,3)
5621             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5622             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5623           endif
5624           do j=1,3
5625             v1ij=v1(j+1,itori,itori1)
5626             v2ij=v2(j+1,itori,itori1)
5627             cosphi=dcos(j*phii)
5628             sinphi=dsin(j*phii)
5629             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5630             if (energy_dec) etors_ii=etors_ii+
5631      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5632             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5633           enddo
5634         else 
5635           do j=1,nterm_old
5636             v1ij=v1(j,itori,itori1)
5637             v2ij=v2(j,itori,itori1)
5638             cosphi=dcos(j*phii)
5639             sinphi=dsin(j*phii)
5640             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5641             if (energy_dec) etors_ii=etors_ii+
5642      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5643             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5644           enddo
5645         endif
5646         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5647      &        'etor',i,etors_ii
5648         if (lprn)
5649      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5650      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5651      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5652         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5653 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5654       enddo
5655 ! 6/20/98 - dihedral angle constraints
5656       edihcnstr=0.0d0
5657       do i=1,ndih_constr
5658         itori=idih_constr(i)
5659         phii=phi(itori)
5660         difi=phii-phi0(i)
5661         if (difi.gt.drange(i)) then
5662           difi=difi-drange(i)
5663           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5664           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5665         else if (difi.lt.-drange(i)) then
5666           difi=difi+drange(i)
5667           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5668           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5669         endif
5670 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5671 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5672       enddo
5673 !      write (iout,*) 'edihcnstr',edihcnstr
5674       return
5675       end
5676 c------------------------------------------------------------------------------
5677       subroutine etor_d(etors_d)
5678       etors_d=0.0d0
5679       return
5680       end
5681 c----------------------------------------------------------------------------
5682 #else
5683       subroutine etor(etors,edihcnstr)
5684       implicit real*8 (a-h,o-z)
5685       include 'DIMENSIONS'
5686       include 'COMMON.VAR'
5687       include 'COMMON.GEO'
5688       include 'COMMON.LOCAL'
5689       include 'COMMON.TORSION'
5690       include 'COMMON.INTERACT'
5691       include 'COMMON.DERIV'
5692       include 'COMMON.CHAIN'
5693       include 'COMMON.NAMES'
5694       include 'COMMON.IOUNITS'
5695       include 'COMMON.FFIELD'
5696       include 'COMMON.TORCNSTR'
5697       include 'COMMON.CONTROL'
5698       logical lprn
5699 C Set lprn=.true. for debugging
5700       lprn=.false.
5701 c     lprn=.true.
5702       etors=0.0D0
5703       do i=iphi_start,iphi_end
5704       etors_ii=0.0D0
5705         itori=itortyp(itype(i-2))
5706         itori1=itortyp(itype(i-1))
5707         phii=phi(i)
5708         gloci=0.0D0
5709 C Regular cosine and sine terms
5710         do j=1,nterm(itori,itori1)
5711           v1ij=v1(j,itori,itori1)
5712           v2ij=v2(j,itori,itori1)
5713           cosphi=dcos(j*phii)
5714           sinphi=dsin(j*phii)
5715           etors=etors+v1ij*cosphi+v2ij*sinphi
5716           if (energy_dec) etors_ii=etors_ii+
5717      &                v1ij*cosphi+v2ij*sinphi
5718           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5719         enddo
5720 C Lorentz terms
5721 C                         v1
5722 C  E = SUM ----------------------------------- - v1
5723 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5724 C
5725         cosphi=dcos(0.5d0*phii)
5726         sinphi=dsin(0.5d0*phii)
5727         do j=1,nlor(itori,itori1)
5728           vl1ij=vlor1(j,itori,itori1)
5729           vl2ij=vlor2(j,itori,itori1)
5730           vl3ij=vlor3(j,itori,itori1)
5731           pom=vl2ij*cosphi+vl3ij*sinphi
5732           pom1=1.0d0/(pom*pom+1.0d0)
5733           etors=etors+vl1ij*pom1
5734           if (energy_dec) etors_ii=etors_ii+
5735      &                vl1ij*pom1
5736           pom=-pom*pom1*pom1
5737           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5738         enddo
5739 C Subtract the constant term
5740         etors=etors-v0(itori,itori1)
5741           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5742      &         'etor',i,etors_ii-v0(itori,itori1)
5743         if (lprn)
5744      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5745      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5746      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5747         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5748 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5749       enddo
5750 ! 6/20/98 - dihedral angle constraints
5751       edihcnstr=0.0d0
5752 c      do i=1,ndih_constr
5753       do i=idihconstr_start,idihconstr_end
5754         itori=idih_constr(i)
5755         phii=phi(itori)
5756         difi=pinorm(phii-phi0(i))
5757         if (difi.gt.drange(i)) then
5758           difi=difi-drange(i)
5759           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5760           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5761         else if (difi.lt.-drange(i)) then
5762           difi=difi+drange(i)
5763           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5764           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5765         else
5766           difi=0.0
5767         endif
5768 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5769 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5770 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5771       enddo
5772 cd       write (iout,*) 'edihcnstr',edihcnstr
5773       return
5774       end
5775 c----------------------------------------------------------------------------
5776       subroutine etor_d(etors_d)
5777 C 6/23/01 Compute double torsional energy
5778       implicit real*8 (a-h,o-z)
5779       include 'DIMENSIONS'
5780       include 'COMMON.VAR'
5781       include 'COMMON.GEO'
5782       include 'COMMON.LOCAL'
5783       include 'COMMON.TORSION'
5784       include 'COMMON.INTERACT'
5785       include 'COMMON.DERIV'
5786       include 'COMMON.CHAIN'
5787       include 'COMMON.NAMES'
5788       include 'COMMON.IOUNITS'
5789       include 'COMMON.FFIELD'
5790       include 'COMMON.TORCNSTR'
5791       logical lprn
5792 C Set lprn=.true. for debugging
5793       lprn=.false.
5794 c     lprn=.true.
5795       etors_d=0.0D0
5796       do i=iphid_start,iphid_end
5797         itori=itortyp(itype(i-2))
5798         itori1=itortyp(itype(i-1))
5799         itori2=itortyp(itype(i))
5800         phii=phi(i)
5801         phii1=phi(i+1)
5802         gloci1=0.0D0
5803         gloci2=0.0D0
5804 C Regular cosine and sine terms
5805         do j=1,ntermd_1(itori,itori1,itori2)
5806           v1cij=v1c(1,j,itori,itori1,itori2)
5807           v1sij=v1s(1,j,itori,itori1,itori2)
5808           v2cij=v1c(2,j,itori,itori1,itori2)
5809           v2sij=v1s(2,j,itori,itori1,itori2)
5810           cosphi1=dcos(j*phii)
5811           sinphi1=dsin(j*phii)
5812           cosphi2=dcos(j*phii1)
5813           sinphi2=dsin(j*phii1)
5814           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5815      &     v2cij*cosphi2+v2sij*sinphi2
5816           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5817           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5818         enddo
5819         do k=2,ntermd_2(itori,itori1,itori2)
5820           do l=1,k-1
5821             v1cdij = v2c(k,l,itori,itori1,itori2)
5822             v2cdij = v2c(l,k,itori,itori1,itori2)
5823             v1sdij = v2s(k,l,itori,itori1,itori2)
5824             v2sdij = v2s(l,k,itori,itori1,itori2)
5825             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5826             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5827             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5828             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5829             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5830      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5831             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5832      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5833             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5834      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5835           enddo
5836         enddo
5837         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5838         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5839       enddo
5840       return
5841       end
5842 #endif
5843 c------------------------------------------------------------------------------
5844       subroutine eback_sc_corr(esccor)
5845 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5846 c        conformational states; temporarily implemented as differences
5847 c        between UNRES torsional potentials (dependent on three types of
5848 c        residues) and the torsional potentials dependent on all 20 types
5849 c        of residues computed from AM1  energy surfaces of terminally-blocked
5850 c        amino-acid residues.
5851       implicit real*8 (a-h,o-z)
5852       include 'DIMENSIONS'
5853       include 'COMMON.VAR'
5854       include 'COMMON.GEO'
5855       include 'COMMON.LOCAL'
5856       include 'COMMON.TORSION'
5857       include 'COMMON.SCCOR'
5858       include 'COMMON.INTERACT'
5859       include 'COMMON.DERIV'
5860       include 'COMMON.CHAIN'
5861       include 'COMMON.NAMES'
5862       include 'COMMON.IOUNITS'
5863       include 'COMMON.FFIELD'
5864       include 'COMMON.CONTROL'
5865       logical lprn
5866 C Set lprn=.true. for debugging
5867       lprn=.false.
5868 c      lprn=.true.
5869 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5870       esccor=0.0D0
5871       do i=iphi_start,iphi_end
5872         esccor_ii=0.0D0
5873         itori=itype(i-2)
5874         itori1=itype(i-1)
5875         phii=phi(i)
5876         gloci=0.0D0
5877         do j=1,nterm_sccor
5878           v1ij=v1sccor(j,itori,itori1)
5879           v2ij=v2sccor(j,itori,itori1)
5880           cosphi=dcos(j*phii)
5881           sinphi=dsin(j*phii)
5882           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5883           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5884         enddo
5885         if (lprn)
5886      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5887      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5888      &  (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6)
5889         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
5890       enddo
5891       return
5892       end
5893 c----------------------------------------------------------------------------
5894       subroutine multibody(ecorr)
5895 C This subroutine calculates multi-body contributions to energy following
5896 C the idea of Skolnick et al. If side chains I and J make a contact and
5897 C at the same time side chains I+1 and J+1 make a contact, an extra 
5898 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
5899       implicit real*8 (a-h,o-z)
5900       include 'DIMENSIONS'
5901       include 'COMMON.IOUNITS'
5902       include 'COMMON.DERIV'
5903       include 'COMMON.INTERACT'
5904       include 'COMMON.CONTACTS'
5905       double precision gx(3),gx1(3)
5906       logical lprn
5907
5908 C Set lprn=.true. for debugging
5909       lprn=.false.
5910
5911       if (lprn) then
5912         write (iout,'(a)') 'Contact function values:'
5913         do i=nnt,nct-2
5914           write (iout,'(i2,20(1x,i2,f10.5))') 
5915      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
5916         enddo
5917       endif
5918       ecorr=0.0D0
5919       do i=nnt,nct
5920         do j=1,3
5921           gradcorr(j,i)=0.0D0
5922           gradxorr(j,i)=0.0D0
5923         enddo
5924       enddo
5925       do i=nnt,nct-2
5926
5927         DO ISHIFT = 3,4
5928
5929         i1=i+ishift
5930         num_conti=num_cont(i)
5931         num_conti1=num_cont(i1)
5932         do jj=1,num_conti
5933           j=jcont(jj,i)
5934           do kk=1,num_conti1
5935             j1=jcont(kk,i1)
5936             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
5937 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5938 cd   &                   ' ishift=',ishift
5939 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
5940 C The system gains extra energy.
5941               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
5942             endif   ! j1==j+-ishift
5943           enddo     ! kk  
5944         enddo       ! jj
5945
5946         ENDDO ! ISHIFT
5947
5948       enddo         ! i
5949       return
5950       end
5951 c------------------------------------------------------------------------------
5952       double precision function esccorr(i,j,k,l,jj,kk)
5953       implicit real*8 (a-h,o-z)
5954       include 'DIMENSIONS'
5955       include 'COMMON.IOUNITS'
5956       include 'COMMON.DERIV'
5957       include 'COMMON.INTERACT'
5958       include 'COMMON.CONTACTS'
5959       double precision gx(3),gx1(3)
5960       logical lprn
5961       lprn=.false.
5962       eij=facont(jj,i)
5963       ekl=facont(kk,k)
5964 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
5965 C Calculate the multi-body contribution to energy.
5966 C Calculate multi-body contributions to the gradient.
5967 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
5968 cd   & k,l,(gacont(m,kk,k),m=1,3)
5969       do m=1,3
5970         gx(m) =ekl*gacont(m,jj,i)
5971         gx1(m)=eij*gacont(m,kk,k)
5972         gradxorr(m,i)=gradxorr(m,i)-gx(m)
5973         gradxorr(m,j)=gradxorr(m,j)+gx(m)
5974         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
5975         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
5976       enddo
5977       do m=i,j-1
5978         do ll=1,3
5979           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
5980         enddo
5981       enddo
5982       do m=k,l-1
5983         do ll=1,3
5984           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
5985         enddo
5986       enddo 
5987       esccorr=-eij*ekl
5988       return
5989       end
5990 c------------------------------------------------------------------------------
5991       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
5992 C This subroutine calculates multi-body contributions to hydrogen-bonding 
5993       implicit real*8 (a-h,o-z)
5994       include 'DIMENSIONS'
5995       include 'COMMON.IOUNITS'
5996 #ifdef MPI
5997       include "mpif.h"
5998       parameter (max_cont=maxconts)
5999       parameter (max_dim=26)
6000       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6001       double precision zapas(max_dim,maxconts,max_fg_procs),
6002      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6003       common /przechowalnia/ zapas
6004       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6005      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6006 #endif
6007       include 'COMMON.SETUP'
6008       include 'COMMON.FFIELD'
6009       include 'COMMON.DERIV'
6010       include 'COMMON.INTERACT'
6011       include 'COMMON.CONTACTS'
6012       include 'COMMON.CONTROL'
6013       include 'COMMON.LOCAL'
6014       double precision gx(3),gx1(3),time00
6015       logical lprn,ldone
6016
6017 C Set lprn=.true. for debugging
6018       lprn=.false.
6019 #ifdef MPI
6020       n_corr=0
6021       n_corr1=0
6022       if (nfgtasks.le.1) goto 30
6023       if (lprn) then
6024         write (iout,'(a)') 'Contact function values before RECEIVE:'
6025         do i=nnt,nct-2
6026           write (iout,'(2i3,50(1x,i2,f5.2))') 
6027      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6028      &    j=1,num_cont_hb(i))
6029         enddo
6030       endif
6031       call flush(iout)
6032       do i=1,ntask_cont_from
6033         ncont_recv(i)=0
6034       enddo
6035       do i=1,ntask_cont_to
6036         ncont_sent(i)=0
6037       enddo
6038 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6039 c     & ntask_cont_to
6040 C Make the list of contacts to send to send to other procesors
6041 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6042 c      call flush(iout)
6043       do i=iturn3_start,iturn3_end
6044 c        write (iout,*) "make contact list turn3",i," num_cont",
6045 c     &    num_cont_hb(i)
6046         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6047       enddo
6048       do i=iturn4_start,iturn4_end
6049 c        write (iout,*) "make contact list turn4",i," num_cont",
6050 c     &   num_cont_hb(i)
6051         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6052       enddo
6053       do ii=1,nat_sent
6054         i=iat_sent(ii)
6055 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6056 c     &    num_cont_hb(i)
6057         do j=1,num_cont_hb(i)
6058         do k=1,4
6059           jjc=jcont_hb(j,i)
6060           iproc=iint_sent_local(k,jjc,ii)
6061 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6062           if (iproc.gt.0) then
6063             ncont_sent(iproc)=ncont_sent(iproc)+1
6064             nn=ncont_sent(iproc)
6065             zapas(1,nn,iproc)=i
6066             zapas(2,nn,iproc)=jjc
6067             zapas(3,nn,iproc)=facont_hb(j,i)
6068             zapas(4,nn,iproc)=ees0p(j,i)
6069             zapas(5,nn,iproc)=ees0m(j,i)
6070             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6071             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6072             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6073             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6074             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6075             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6076             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6077             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6078             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6079             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6080             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6081             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6082             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6083             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6084             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6085             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6086             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6087             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6088             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6089             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6090             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6091           endif
6092         enddo
6093         enddo
6094       enddo
6095       if (lprn) then
6096       write (iout,*) 
6097      &  "Numbers of contacts to be sent to other processors",
6098      &  (ncont_sent(i),i=1,ntask_cont_to)
6099       write (iout,*) "Contacts sent"
6100       do ii=1,ntask_cont_to
6101         nn=ncont_sent(ii)
6102         iproc=itask_cont_to(ii)
6103         write (iout,*) nn," contacts to processor",iproc,
6104      &   " of CONT_TO_COMM group"
6105         do i=1,nn
6106           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6107         enddo
6108       enddo
6109       call flush(iout)
6110       endif
6111       CorrelType=477
6112       CorrelID=fg_rank+1
6113       CorrelType1=478
6114       CorrelID1=nfgtasks+fg_rank+1
6115       ireq=0
6116 C Receive the numbers of needed contacts from other processors 
6117       do ii=1,ntask_cont_from
6118         iproc=itask_cont_from(ii)
6119         ireq=ireq+1
6120         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6121      &    FG_COMM,req(ireq),IERR)
6122       enddo
6123 c      write (iout,*) "IRECV ended"
6124 c      call flush(iout)
6125 C Send the number of contacts needed by other processors
6126       do ii=1,ntask_cont_to
6127         iproc=itask_cont_to(ii)
6128         ireq=ireq+1
6129         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6130      &    FG_COMM,req(ireq),IERR)
6131       enddo
6132 c      write (iout,*) "ISEND ended"
6133 c      write (iout,*) "number of requests (nn)",ireq
6134       call flush(iout)
6135       if (ireq.gt.0) 
6136      &  call MPI_Waitall(ireq,req,status_array,ierr)
6137 c      write (iout,*) 
6138 c     &  "Numbers of contacts to be received from other processors",
6139 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6140 c      call flush(iout)
6141 C Receive contacts
6142       ireq=0
6143       do ii=1,ntask_cont_from
6144         iproc=itask_cont_from(ii)
6145         nn=ncont_recv(ii)
6146 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6147 c     &   " of CONT_TO_COMM group"
6148         call flush(iout)
6149         if (nn.gt.0) then
6150           ireq=ireq+1
6151           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6152      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6153 c          write (iout,*) "ireq,req",ireq,req(ireq)
6154         endif
6155       enddo
6156 C Send the contacts to processors that need them
6157       do ii=1,ntask_cont_to
6158         iproc=itask_cont_to(ii)
6159         nn=ncont_sent(ii)
6160 c        write (iout,*) nn," contacts to processor",iproc,
6161 c     &   " of CONT_TO_COMM group"
6162         if (nn.gt.0) then
6163           ireq=ireq+1 
6164           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6165      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6166 c          write (iout,*) "ireq,req",ireq,req(ireq)
6167 c          do i=1,nn
6168 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6169 c          enddo
6170         endif  
6171       enddo
6172 c      write (iout,*) "number of requests (contacts)",ireq
6173 c      write (iout,*) "req",(req(i),i=1,4)
6174 c      call flush(iout)
6175       if (ireq.gt.0) 
6176      & call MPI_Waitall(ireq,req,status_array,ierr)
6177       do iii=1,ntask_cont_from
6178         iproc=itask_cont_from(iii)
6179         nn=ncont_recv(iii)
6180         if (lprn) then
6181         write (iout,*) "Received",nn," contacts from processor",iproc,
6182      &   " of CONT_FROM_COMM group"
6183         call flush(iout)
6184         do i=1,nn
6185           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6186         enddo
6187         call flush(iout)
6188         endif
6189         do i=1,nn
6190           ii=zapas_recv(1,i,iii)
6191 c Flag the received contacts to prevent double-counting
6192           jj=-zapas_recv(2,i,iii)
6193 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6194 c          call flush(iout)
6195           nnn=num_cont_hb(ii)+1
6196           num_cont_hb(ii)=nnn
6197           jcont_hb(nnn,ii)=jj
6198           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6199           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6200           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6201           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6202           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6203           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6204           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6205           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6206           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6207           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6208           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6209           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6210           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6211           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6212           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6213           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6214           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6215           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6216           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6217           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6218           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6219           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6220           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6221           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6222         enddo
6223       enddo
6224       call flush(iout)
6225       if (lprn) then
6226         write (iout,'(a)') 'Contact function values after receive:'
6227         do i=nnt,nct-2
6228           write (iout,'(2i3,50(1x,i3,f5.2))') 
6229      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6230      &    j=1,num_cont_hb(i))
6231         enddo
6232         call flush(iout)
6233       endif
6234    30 continue
6235 #endif
6236       if (lprn) then
6237         write (iout,'(a)') 'Contact function values:'
6238         do i=nnt,nct-2
6239           write (iout,'(2i3,50(1x,i3,f5.2))') 
6240      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6241      &    j=1,num_cont_hb(i))
6242         enddo
6243       endif
6244       ecorr=0.0D0
6245 C Remove the loop below after debugging !!!
6246       do i=nnt,nct
6247         do j=1,3
6248           gradcorr(j,i)=0.0D0
6249           gradxorr(j,i)=0.0D0
6250         enddo
6251       enddo
6252 C Calculate the local-electrostatic correlation terms
6253       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6254         i1=i+1
6255         num_conti=num_cont_hb(i)
6256         num_conti1=num_cont_hb(i+1)
6257         do jj=1,num_conti
6258           j=jcont_hb(jj,i)
6259           jp=iabs(j)
6260           do kk=1,num_conti1
6261             j1=jcont_hb(kk,i1)
6262             jp1=iabs(j1)
6263 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6264 c     &         ' jj=',jj,' kk=',kk
6265             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6266      &          .or. j.lt.0 .and. j1.gt.0) .and.
6267      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6268 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6269 C The system gains extra energy.
6270               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6271               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6272      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6273               n_corr=n_corr+1
6274             else if (j1.eq.j) then
6275 C Contacts I-J and I-(J+1) occur simultaneously. 
6276 C The system loses extra energy.
6277 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6278             endif
6279           enddo ! kk
6280           do kk=1,num_conti
6281             j1=jcont_hb(kk,i)
6282 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6283 c    &         ' jj=',jj,' kk=',kk
6284             if (j1.eq.j+1) then
6285 C Contacts I-J and (I+1)-J occur simultaneously. 
6286 C The system loses extra energy.
6287 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6288             endif ! j1==j+1
6289           enddo ! kk
6290         enddo ! jj
6291       enddo ! i
6292       return
6293       end
6294 c------------------------------------------------------------------------------
6295       subroutine add_hb_contact(ii,jj,itask)
6296       implicit real*8 (a-h,o-z)
6297       include "DIMENSIONS"
6298       include "COMMON.IOUNITS"
6299       integer max_cont
6300       integer max_dim
6301       parameter (max_cont=maxconts)
6302       parameter (max_dim=26)
6303       include "COMMON.CONTACTS"
6304       double precision zapas(max_dim,maxconts,max_fg_procs),
6305      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6306       common /przechowalnia/ zapas
6307       integer i,j,ii,jj,iproc,itask(4),nn
6308 c      write (iout,*) "itask",itask
6309       do i=1,2
6310         iproc=itask(i)
6311         if (iproc.gt.0) then
6312           do j=1,num_cont_hb(ii)
6313             jjc=jcont_hb(j,ii)
6314 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6315             if (jjc.eq.jj) then
6316               ncont_sent(iproc)=ncont_sent(iproc)+1
6317               nn=ncont_sent(iproc)
6318               zapas(1,nn,iproc)=ii
6319               zapas(2,nn,iproc)=jjc
6320               zapas(3,nn,iproc)=facont_hb(j,ii)
6321               zapas(4,nn,iproc)=ees0p(j,ii)
6322               zapas(5,nn,iproc)=ees0m(j,ii)
6323               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6324               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6325               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6326               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6327               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6328               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6329               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6330               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6331               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6332               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6333               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6334               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6335               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6336               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6337               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6338               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6339               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6340               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6341               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6342               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6343               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6344               exit
6345             endif
6346           enddo
6347         endif
6348       enddo
6349       return
6350       end
6351 c------------------------------------------------------------------------------
6352       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6353      &  n_corr1)
6354 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6355       implicit real*8 (a-h,o-z)
6356       include 'DIMENSIONS'
6357       include 'COMMON.IOUNITS'
6358 #ifdef MPI
6359       include "mpif.h"
6360       parameter (max_cont=maxconts)
6361       parameter (max_dim=70)
6362       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6363       double precision zapas(max_dim,maxconts,max_fg_procs),
6364      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6365       common /przechowalnia/ zapas
6366       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6367      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6368 #endif
6369       include 'COMMON.SETUP'
6370       include 'COMMON.FFIELD'
6371       include 'COMMON.DERIV'
6372       include 'COMMON.LOCAL'
6373       include 'COMMON.INTERACT'
6374       include 'COMMON.CONTACTS'
6375       include 'COMMON.CHAIN'
6376       include 'COMMON.CONTROL'
6377       double precision gx(3),gx1(3)
6378       integer num_cont_hb_old(maxres)
6379       logical lprn,ldone
6380       double precision eello4,eello5,eelo6,eello_turn6
6381       external eello4,eello5,eello6,eello_turn6
6382 C Set lprn=.true. for debugging
6383       lprn=.false.
6384       eturn6=0.0d0
6385 #ifdef MPI
6386       do i=1,nres
6387         num_cont_hb_old(i)=num_cont_hb(i)
6388       enddo
6389       n_corr=0
6390       n_corr1=0
6391       if (nfgtasks.le.1) goto 30
6392       if (lprn) then
6393         write (iout,'(a)') 'Contact function values before RECEIVE:'
6394         do i=nnt,nct-2
6395           write (iout,'(2i3,50(1x,i2,f5.2))') 
6396      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6397      &    j=1,num_cont_hb(i))
6398         enddo
6399       endif
6400       call flush(iout)
6401       do i=1,ntask_cont_from
6402         ncont_recv(i)=0
6403       enddo
6404       do i=1,ntask_cont_to
6405         ncont_sent(i)=0
6406       enddo
6407 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6408 c     & ntask_cont_to
6409 C Make the list of contacts to send to send to other procesors
6410       do i=iturn3_start,iturn3_end
6411 c        write (iout,*) "make contact list turn3",i," num_cont",
6412 c     &    num_cont_hb(i)
6413         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6414       enddo
6415       do i=iturn4_start,iturn4_end
6416 c        write (iout,*) "make contact list turn4",i," num_cont",
6417 c     &   num_cont_hb(i)
6418         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6419       enddo
6420       do ii=1,nat_sent
6421         i=iat_sent(ii)
6422 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6423 c     &    num_cont_hb(i)
6424         do j=1,num_cont_hb(i)
6425         do k=1,4
6426           jjc=jcont_hb(j,i)
6427           iproc=iint_sent_local(k,jjc,ii)
6428 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6429           if (iproc.ne.0) then
6430             ncont_sent(iproc)=ncont_sent(iproc)+1
6431             nn=ncont_sent(iproc)
6432             zapas(1,nn,iproc)=i
6433             zapas(2,nn,iproc)=jjc
6434             zapas(3,nn,iproc)=d_cont(j,i)
6435             ind=3
6436             do kk=1,3
6437               ind=ind+1
6438               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6439             enddo
6440             do kk=1,2
6441               do ll=1,2
6442                 ind=ind+1
6443                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6444               enddo
6445             enddo
6446             do jj=1,5
6447               do kk=1,3
6448                 do ll=1,2
6449                   do mm=1,2
6450                     ind=ind+1
6451                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6452                   enddo
6453                 enddo
6454               enddo
6455             enddo
6456           endif
6457         enddo
6458         enddo
6459       enddo
6460       if (lprn) then
6461       write (iout,*) 
6462      &  "Numbers of contacts to be sent to other processors",
6463      &  (ncont_sent(i),i=1,ntask_cont_to)
6464       write (iout,*) "Contacts sent"
6465       do ii=1,ntask_cont_to
6466         nn=ncont_sent(ii)
6467         iproc=itask_cont_to(ii)
6468         write (iout,*) nn," contacts to processor",iproc,
6469      &   " of CONT_TO_COMM group"
6470         do i=1,nn
6471           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6472         enddo
6473       enddo
6474       call flush(iout)
6475       endif
6476       CorrelType=477
6477       CorrelID=fg_rank+1
6478       CorrelType1=478
6479       CorrelID1=nfgtasks+fg_rank+1
6480       ireq=0
6481 C Receive the numbers of needed contacts from other processors 
6482       do ii=1,ntask_cont_from
6483         iproc=itask_cont_from(ii)
6484         ireq=ireq+1
6485         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6486      &    FG_COMM,req(ireq),IERR)
6487       enddo
6488 c      write (iout,*) "IRECV ended"
6489 c      call flush(iout)
6490 C Send the number of contacts needed by other processors
6491       do ii=1,ntask_cont_to
6492         iproc=itask_cont_to(ii)
6493         ireq=ireq+1
6494         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6495      &    FG_COMM,req(ireq),IERR)
6496       enddo
6497 c      write (iout,*) "ISEND ended"
6498 c      write (iout,*) "number of requests (nn)",ireq
6499       call flush(iout)
6500       if (ireq.gt.0) 
6501      &  call MPI_Waitall(ireq,req,status_array,ierr)
6502 c      write (iout,*) 
6503 c     &  "Numbers of contacts to be received from other processors",
6504 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6505 c      call flush(iout)
6506 C Receive contacts
6507       ireq=0
6508       do ii=1,ntask_cont_from
6509         iproc=itask_cont_from(ii)
6510         nn=ncont_recv(ii)
6511 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6512 c     &   " of CONT_TO_COMM group"
6513         call flush(iout)
6514         if (nn.gt.0) then
6515           ireq=ireq+1
6516           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6517      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6518 c          write (iout,*) "ireq,req",ireq,req(ireq)
6519         endif
6520       enddo
6521 C Send the contacts to processors that need them
6522       do ii=1,ntask_cont_to
6523         iproc=itask_cont_to(ii)
6524         nn=ncont_sent(ii)
6525 c        write (iout,*) nn," contacts to processor",iproc,
6526 c     &   " of CONT_TO_COMM group"
6527         if (nn.gt.0) then
6528           ireq=ireq+1 
6529           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6530      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6531 c          write (iout,*) "ireq,req",ireq,req(ireq)
6532 c          do i=1,nn
6533 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6534 c          enddo
6535         endif  
6536       enddo
6537 c      write (iout,*) "number of requests (contacts)",ireq
6538 c      write (iout,*) "req",(req(i),i=1,4)
6539 c      call flush(iout)
6540       if (ireq.gt.0) 
6541      & call MPI_Waitall(ireq,req,status_array,ierr)
6542       do iii=1,ntask_cont_from
6543         iproc=itask_cont_from(iii)
6544         nn=ncont_recv(iii)
6545         if (lprn) then
6546         write (iout,*) "Received",nn," contacts from processor",iproc,
6547      &   " of CONT_FROM_COMM group"
6548         call flush(iout)
6549         do i=1,nn
6550           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6551         enddo
6552         call flush(iout)
6553         endif
6554         do i=1,nn
6555           ii=zapas_recv(1,i,iii)
6556 c Flag the received contacts to prevent double-counting
6557           jj=-zapas_recv(2,i,iii)
6558 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6559 c          call flush(iout)
6560           nnn=num_cont_hb(ii)+1
6561           num_cont_hb(ii)=nnn
6562           jcont_hb(nnn,ii)=jj
6563           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6564           ind=3
6565           do kk=1,3
6566             ind=ind+1
6567             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6568           enddo
6569           do kk=1,2
6570             do ll=1,2
6571               ind=ind+1
6572               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6573             enddo
6574           enddo
6575           do jj=1,5
6576             do kk=1,3
6577               do ll=1,2
6578                 do mm=1,2
6579                   ind=ind+1
6580                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6581                 enddo
6582               enddo
6583             enddo
6584           enddo
6585         enddo
6586       enddo
6587       call flush(iout)
6588       if (lprn) then
6589         write (iout,'(a)') 'Contact function values after receive:'
6590         do i=nnt,nct-2
6591           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6592      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6593      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6594         enddo
6595         call flush(iout)
6596       endif
6597    30 continue
6598 #endif
6599       if (lprn) then
6600         write (iout,'(a)') 'Contact function values:'
6601         do i=nnt,nct-2
6602           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6603      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6604      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6605         enddo
6606       endif
6607       ecorr=0.0D0
6608       ecorr5=0.0d0
6609       ecorr6=0.0d0
6610 C Remove the loop below after debugging !!!
6611       do i=nnt,nct
6612         do j=1,3
6613           gradcorr(j,i)=0.0D0
6614           gradxorr(j,i)=0.0D0
6615         enddo
6616       enddo
6617 C Calculate the dipole-dipole interaction energies
6618       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6619       do i=iatel_s,iatel_e+1
6620         num_conti=num_cont_hb(i)
6621         do jj=1,num_conti
6622           j=jcont_hb(jj,i)
6623 #ifdef MOMENT
6624           call dipole(i,j,jj)
6625 #endif
6626         enddo
6627       enddo
6628       endif
6629 C Calculate the local-electrostatic correlation terms
6630 c                write (iout,*) "gradcorr5 in eello5 before loop"
6631 c                do iii=1,nres
6632 c                  write (iout,'(i5,3f10.5)') 
6633 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6634 c                enddo
6635       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6636 c        write (iout,*) "corr loop i",i
6637         i1=i+1
6638         num_conti=num_cont_hb(i)
6639         num_conti1=num_cont_hb(i+1)
6640         do jj=1,num_conti
6641           j=jcont_hb(jj,i)
6642           jp=iabs(j)
6643           do kk=1,num_conti1
6644             j1=jcont_hb(kk,i1)
6645             jp1=iabs(j1)
6646 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6647 c     &         ' jj=',jj,' kk=',kk
6648 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6649             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6650      &          .or. j.lt.0 .and. j1.gt.0) .and.
6651      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6652 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6653 C The system gains extra energy.
6654               n_corr=n_corr+1
6655               sqd1=dsqrt(d_cont(jj,i))
6656               sqd2=dsqrt(d_cont(kk,i1))
6657               sred_geom = sqd1*sqd2
6658               IF (sred_geom.lt.cutoff_corr) THEN
6659                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6660      &            ekont,fprimcont)
6661 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6662 cd     &         ' jj=',jj,' kk=',kk
6663                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6664                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6665                 do l=1,3
6666                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6667                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6668                 enddo
6669                 n_corr1=n_corr1+1
6670 cd               write (iout,*) 'sred_geom=',sred_geom,
6671 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6672 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6673 cd               write (iout,*) "g_contij",g_contij
6674 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6675 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6676                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6677                 if (wcorr4.gt.0.0d0) 
6678      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6679                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6680      1                 write (iout,'(a6,4i5,0pf7.3)')
6681      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6682 c                write (iout,*) "gradcorr5 before eello5"
6683 c                do iii=1,nres
6684 c                  write (iout,'(i5,3f10.5)') 
6685 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6686 c                enddo
6687                 if (wcorr5.gt.0.0d0)
6688      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6689 c                write (iout,*) "gradcorr5 after eello5"
6690 c                do iii=1,nres
6691 c                  write (iout,'(i5,3f10.5)') 
6692 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6693 c                enddo
6694                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6695      1                 write (iout,'(a6,4i5,0pf7.3)')
6696      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6697 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6698 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6699                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6700      &               .or. wturn6.eq.0.0d0))then
6701 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6702                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6703                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6704      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6705 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6706 cd     &            'ecorr6=',ecorr6
6707 cd                write (iout,'(4e15.5)') sred_geom,
6708 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6709 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6710 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6711                 else if (wturn6.gt.0.0d0
6712      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6713 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6714                   eturn6=eturn6+eello_turn6(i,jj,kk)
6715                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6716      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6717 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6718                 endif
6719               ENDIF
6720 1111          continue
6721             endif
6722           enddo ! kk
6723         enddo ! jj
6724       enddo ! i
6725       do i=1,nres
6726         num_cont_hb(i)=num_cont_hb_old(i)
6727       enddo
6728 c                write (iout,*) "gradcorr5 in eello5"
6729 c                do iii=1,nres
6730 c                  write (iout,'(i5,3f10.5)') 
6731 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6732 c                enddo
6733       return
6734       end
6735 c------------------------------------------------------------------------------
6736       subroutine add_hb_contact_eello(ii,jj,itask)
6737       implicit real*8 (a-h,o-z)
6738       include "DIMENSIONS"
6739       include "COMMON.IOUNITS"
6740       integer max_cont
6741       integer max_dim
6742       parameter (max_cont=maxconts)
6743       parameter (max_dim=70)
6744       include "COMMON.CONTACTS"
6745       double precision zapas(max_dim,maxconts,max_fg_procs),
6746      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6747       common /przechowalnia/ zapas
6748       integer i,j,ii,jj,iproc,itask(4),nn
6749 c      write (iout,*) "itask",itask
6750       do i=1,2
6751         iproc=itask(i)
6752         if (iproc.gt.0) then
6753           do j=1,num_cont_hb(ii)
6754             jjc=jcont_hb(j,ii)
6755 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6756             if (jjc.eq.jj) then
6757               ncont_sent(iproc)=ncont_sent(iproc)+1
6758               nn=ncont_sent(iproc)
6759               zapas(1,nn,iproc)=ii
6760               zapas(2,nn,iproc)=jjc
6761               zapas(3,nn,iproc)=d_cont(j,ii)
6762               ind=3
6763               do kk=1,3
6764                 ind=ind+1
6765                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6766               enddo
6767               do kk=1,2
6768                 do ll=1,2
6769                   ind=ind+1
6770                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6771                 enddo
6772               enddo
6773               do jj=1,5
6774                 do kk=1,3
6775                   do ll=1,2
6776                     do mm=1,2
6777                       ind=ind+1
6778                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6779                     enddo
6780                   enddo
6781                 enddo
6782               enddo
6783               exit
6784             endif
6785           enddo
6786         endif
6787       enddo
6788       return
6789       end
6790 c------------------------------------------------------------------------------
6791       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6792       implicit real*8 (a-h,o-z)
6793       include 'DIMENSIONS'
6794       include 'COMMON.IOUNITS'
6795       include 'COMMON.DERIV'
6796       include 'COMMON.INTERACT'
6797       include 'COMMON.CONTACTS'
6798       double precision gx(3),gx1(3)
6799       logical lprn
6800       lprn=.false.
6801       eij=facont_hb(jj,i)
6802       ekl=facont_hb(kk,k)
6803       ees0pij=ees0p(jj,i)
6804       ees0pkl=ees0p(kk,k)
6805       ees0mij=ees0m(jj,i)
6806       ees0mkl=ees0m(kk,k)
6807       ekont=eij*ekl
6808       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6809 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6810 C Following 4 lines for diagnostics.
6811 cd    ees0pkl=0.0D0
6812 cd    ees0pij=1.0D0
6813 cd    ees0mkl=0.0D0
6814 cd    ees0mij=1.0D0
6815 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6816 c     & 'Contacts ',i,j,
6817 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6818 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6819 c     & 'gradcorr_long'
6820 C Calculate the multi-body contribution to energy.
6821 c      ecorr=ecorr+ekont*ees
6822 C Calculate multi-body contributions to the gradient.
6823       coeffpees0pij=coeffp*ees0pij
6824       coeffmees0mij=coeffm*ees0mij
6825       coeffpees0pkl=coeffp*ees0pkl
6826       coeffmees0mkl=coeffm*ees0mkl
6827       do ll=1,3
6828 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6829         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6830      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6831      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6832         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6833      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6834      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6835 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6836         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6837      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6838      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6839         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6840      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6841      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6842         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6843      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6844      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6845         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6846         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6847         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6848      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6849      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6850         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6851         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6852 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6853       enddo
6854 c      write (iout,*)
6855 cgrad      do m=i+1,j-1
6856 cgrad        do ll=1,3
6857 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6858 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6859 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6860 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6861 cgrad        enddo
6862 cgrad      enddo
6863 cgrad      do m=k+1,l-1
6864 cgrad        do ll=1,3
6865 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6866 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6867 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6868 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6869 cgrad        enddo
6870 cgrad      enddo 
6871 c      write (iout,*) "ehbcorr",ekont*ees
6872       ehbcorr=ekont*ees
6873       return
6874       end
6875 #ifdef MOMENT
6876 C---------------------------------------------------------------------------
6877       subroutine dipole(i,j,jj)
6878       implicit real*8 (a-h,o-z)
6879       include 'DIMENSIONS'
6880       include 'COMMON.IOUNITS'
6881       include 'COMMON.CHAIN'
6882       include 'COMMON.FFIELD'
6883       include 'COMMON.DERIV'
6884       include 'COMMON.INTERACT'
6885       include 'COMMON.CONTACTS'
6886       include 'COMMON.TORSION'
6887       include 'COMMON.VAR'
6888       include 'COMMON.GEO'
6889       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
6890      &  auxmat(2,2)
6891       iti1 = itortyp(itype(i+1))
6892       if (j.lt.nres-1) then
6893         itj1 = itortyp(itype(j+1))
6894       else
6895         itj1=ntortyp+1
6896       endif
6897       do iii=1,2
6898         dipi(iii,1)=Ub2(iii,i)
6899         dipderi(iii)=Ub2der(iii,i)
6900         dipi(iii,2)=b1(iii,iti1)
6901         dipj(iii,1)=Ub2(iii,j)
6902         dipderj(iii)=Ub2der(iii,j)
6903         dipj(iii,2)=b1(iii,itj1)
6904       enddo
6905       kkk=0
6906       do iii=1,2
6907         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
6908         do jjj=1,2
6909           kkk=kkk+1
6910           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6911         enddo
6912       enddo
6913       do kkk=1,5
6914         do lll=1,3
6915           mmm=0
6916           do iii=1,2
6917             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
6918      &        auxvec(1))
6919             do jjj=1,2
6920               mmm=mmm+1
6921               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6922             enddo
6923           enddo
6924         enddo
6925       enddo
6926       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
6927       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
6928       do iii=1,2
6929         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
6930       enddo
6931       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
6932       do iii=1,2
6933         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
6934       enddo
6935       return
6936       end
6937 #endif
6938 C---------------------------------------------------------------------------
6939       subroutine calc_eello(i,j,k,l,jj,kk)
6940
6941 C This subroutine computes matrices and vectors needed to calculate 
6942 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
6943 C
6944       implicit real*8 (a-h,o-z)
6945       include 'DIMENSIONS'
6946       include 'COMMON.IOUNITS'
6947       include 'COMMON.CHAIN'
6948       include 'COMMON.DERIV'
6949       include 'COMMON.INTERACT'
6950       include 'COMMON.CONTACTS'
6951       include 'COMMON.TORSION'
6952       include 'COMMON.VAR'
6953       include 'COMMON.GEO'
6954       include 'COMMON.FFIELD'
6955       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
6956      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
6957       logical lprn
6958       common /kutas/ lprn
6959 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
6960 cd     & ' jj=',jj,' kk=',kk
6961 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
6962 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
6963 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
6964       do iii=1,2
6965         do jjj=1,2
6966           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
6967           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
6968         enddo
6969       enddo
6970       call transpose2(aa1(1,1),aa1t(1,1))
6971       call transpose2(aa2(1,1),aa2t(1,1))
6972       do kkk=1,5
6973         do lll=1,3
6974           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
6975      &      aa1tder(1,1,lll,kkk))
6976           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
6977      &      aa2tder(1,1,lll,kkk))
6978         enddo
6979       enddo 
6980       if (l.eq.j+1) then
6981 C parallel orientation of the two CA-CA-CA frames.
6982         if (i.gt.1) then
6983           iti=itortyp(itype(i))
6984         else
6985           iti=ntortyp+1
6986         endif
6987         itk1=itortyp(itype(k+1))
6988         itj=itortyp(itype(j))
6989         if (l.lt.nres-1) then
6990           itl1=itortyp(itype(l+1))
6991         else
6992           itl1=ntortyp+1
6993         endif
6994 C A1 kernel(j+1) A2T
6995 cd        do iii=1,2
6996 cd          write (iout,'(3f10.5,5x,3f10.5)') 
6997 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
6998 cd        enddo
6999         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7000      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7001      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7002 C Following matrices are needed only for 6-th order cumulants
7003         IF (wcorr6.gt.0.0d0) THEN
7004         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7005      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7006      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7007         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7008      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7009      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7010      &   ADtEAderx(1,1,1,1,1,1))
7011         lprn=.false.
7012         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7013      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7014      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7015      &   ADtEA1derx(1,1,1,1,1,1))
7016         ENDIF
7017 C End 6-th order cumulants
7018 cd        lprn=.false.
7019 cd        if (lprn) then
7020 cd        write (2,*) 'In calc_eello6'
7021 cd        do iii=1,2
7022 cd          write (2,*) 'iii=',iii
7023 cd          do kkk=1,5
7024 cd            write (2,*) 'kkk=',kkk
7025 cd            do jjj=1,2
7026 cd              write (2,'(3(2f10.5),5x)') 
7027 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7028 cd            enddo
7029 cd          enddo
7030 cd        enddo
7031 cd        endif
7032         call transpose2(EUgder(1,1,k),auxmat(1,1))
7033         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7034         call transpose2(EUg(1,1,k),auxmat(1,1))
7035         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7036         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7037         do iii=1,2
7038           do kkk=1,5
7039             do lll=1,3
7040               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7041      &          EAEAderx(1,1,lll,kkk,iii,1))
7042             enddo
7043           enddo
7044         enddo
7045 C A1T kernel(i+1) A2
7046         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7047      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7048      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7049 C Following matrices are needed only for 6-th order cumulants
7050         IF (wcorr6.gt.0.0d0) THEN
7051         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7052      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7053      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7054         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7055      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7056      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7057      &   ADtEAderx(1,1,1,1,1,2))
7058         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7059      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7060      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7061      &   ADtEA1derx(1,1,1,1,1,2))
7062         ENDIF
7063 C End 6-th order cumulants
7064         call transpose2(EUgder(1,1,l),auxmat(1,1))
7065         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7066         call transpose2(EUg(1,1,l),auxmat(1,1))
7067         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7068         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7069         do iii=1,2
7070           do kkk=1,5
7071             do lll=1,3
7072               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7073      &          EAEAderx(1,1,lll,kkk,iii,2))
7074             enddo
7075           enddo
7076         enddo
7077 C AEAb1 and AEAb2
7078 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7079 C They are needed only when the fifth- or the sixth-order cumulants are
7080 C indluded.
7081         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7082         call transpose2(AEA(1,1,1),auxmat(1,1))
7083         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7084         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7085         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7086         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7087         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7088         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7089         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7090         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7091         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7092         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7093         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7094         call transpose2(AEA(1,1,2),auxmat(1,1))
7095         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7096         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7097         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7098         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7099         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7100         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7101         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7102         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7103         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7104         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7105         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7106 C Calculate the Cartesian derivatives of the vectors.
7107         do iii=1,2
7108           do kkk=1,5
7109             do lll=1,3
7110               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7111               call matvec2(auxmat(1,1),b1(1,iti),
7112      &          AEAb1derx(1,lll,kkk,iii,1,1))
7113               call matvec2(auxmat(1,1),Ub2(1,i),
7114      &          AEAb2derx(1,lll,kkk,iii,1,1))
7115               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7116      &          AEAb1derx(1,lll,kkk,iii,2,1))
7117               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7118      &          AEAb2derx(1,lll,kkk,iii,2,1))
7119               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7120               call matvec2(auxmat(1,1),b1(1,itj),
7121      &          AEAb1derx(1,lll,kkk,iii,1,2))
7122               call matvec2(auxmat(1,1),Ub2(1,j),
7123      &          AEAb2derx(1,lll,kkk,iii,1,2))
7124               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7125      &          AEAb1derx(1,lll,kkk,iii,2,2))
7126               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7127      &          AEAb2derx(1,lll,kkk,iii,2,2))
7128             enddo
7129           enddo
7130         enddo
7131         ENDIF
7132 C End vectors
7133       else
7134 C Antiparallel orientation of the two CA-CA-CA frames.
7135         if (i.gt.1) then
7136           iti=itortyp(itype(i))
7137         else
7138           iti=ntortyp+1
7139         endif
7140         itk1=itortyp(itype(k+1))
7141         itl=itortyp(itype(l))
7142         itj=itortyp(itype(j))
7143         if (j.lt.nres-1) then
7144           itj1=itortyp(itype(j+1))
7145         else 
7146           itj1=ntortyp+1
7147         endif
7148 C A2 kernel(j-1)T A1T
7149         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7150      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7151      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7152 C Following matrices are needed only for 6-th order cumulants
7153         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7154      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7155         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7156      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7157      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7158         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7159      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7160      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7161      &   ADtEAderx(1,1,1,1,1,1))
7162         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7163      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7164      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7165      &   ADtEA1derx(1,1,1,1,1,1))
7166         ENDIF
7167 C End 6-th order cumulants
7168         call transpose2(EUgder(1,1,k),auxmat(1,1))
7169         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7170         call transpose2(EUg(1,1,k),auxmat(1,1))
7171         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7172         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7173         do iii=1,2
7174           do kkk=1,5
7175             do lll=1,3
7176               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7177      &          EAEAderx(1,1,lll,kkk,iii,1))
7178             enddo
7179           enddo
7180         enddo
7181 C A2T kernel(i+1)T A1
7182         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7183      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7184      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7185 C Following matrices are needed only for 6-th order cumulants
7186         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7187      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7188         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7189      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7190      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7191         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7192      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7193      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7194      &   ADtEAderx(1,1,1,1,1,2))
7195         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7196      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7197      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7198      &   ADtEA1derx(1,1,1,1,1,2))
7199         ENDIF
7200 C End 6-th order cumulants
7201         call transpose2(EUgder(1,1,j),auxmat(1,1))
7202         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7203         call transpose2(EUg(1,1,j),auxmat(1,1))
7204         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7205         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7206         do iii=1,2
7207           do kkk=1,5
7208             do lll=1,3
7209               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7210      &          EAEAderx(1,1,lll,kkk,iii,2))
7211             enddo
7212           enddo
7213         enddo
7214 C AEAb1 and AEAb2
7215 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7216 C They are needed only when the fifth- or the sixth-order cumulants are
7217 C indluded.
7218         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7219      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7220         call transpose2(AEA(1,1,1),auxmat(1,1))
7221         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7222         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7223         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7224         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7225         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7226         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7227         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7228         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7229         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7230         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7231         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7232         call transpose2(AEA(1,1,2),auxmat(1,1))
7233         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7234         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7235         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7236         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7237         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7238         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7239         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7240         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7241         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7242         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7243         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7244 C Calculate the Cartesian derivatives of the vectors.
7245         do iii=1,2
7246           do kkk=1,5
7247             do lll=1,3
7248               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7249               call matvec2(auxmat(1,1),b1(1,iti),
7250      &          AEAb1derx(1,lll,kkk,iii,1,1))
7251               call matvec2(auxmat(1,1),Ub2(1,i),
7252      &          AEAb2derx(1,lll,kkk,iii,1,1))
7253               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7254      &          AEAb1derx(1,lll,kkk,iii,2,1))
7255               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7256      &          AEAb2derx(1,lll,kkk,iii,2,1))
7257               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7258               call matvec2(auxmat(1,1),b1(1,itl),
7259      &          AEAb1derx(1,lll,kkk,iii,1,2))
7260               call matvec2(auxmat(1,1),Ub2(1,l),
7261      &          AEAb2derx(1,lll,kkk,iii,1,2))
7262               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7263      &          AEAb1derx(1,lll,kkk,iii,2,2))
7264               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7265      &          AEAb2derx(1,lll,kkk,iii,2,2))
7266             enddo
7267           enddo
7268         enddo
7269         ENDIF
7270 C End vectors
7271       endif
7272       return
7273       end
7274 C---------------------------------------------------------------------------
7275       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7276      &  KK,KKderg,AKA,AKAderg,AKAderx)
7277       implicit none
7278       integer nderg
7279       logical transp
7280       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7281      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7282      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7283       integer iii,kkk,lll
7284       integer jjj,mmm
7285       logical lprn
7286       common /kutas/ lprn
7287       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7288       do iii=1,nderg 
7289         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7290      &    AKAderg(1,1,iii))
7291       enddo
7292 cd      if (lprn) write (2,*) 'In kernel'
7293       do kkk=1,5
7294 cd        if (lprn) write (2,*) 'kkk=',kkk
7295         do lll=1,3
7296           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7297      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7298 cd          if (lprn) then
7299 cd            write (2,*) 'lll=',lll
7300 cd            write (2,*) 'iii=1'
7301 cd            do jjj=1,2
7302 cd              write (2,'(3(2f10.5),5x)') 
7303 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7304 cd            enddo
7305 cd          endif
7306           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7307      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7308 cd          if (lprn) then
7309 cd            write (2,*) 'lll=',lll
7310 cd            write (2,*) 'iii=2'
7311 cd            do jjj=1,2
7312 cd              write (2,'(3(2f10.5),5x)') 
7313 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7314 cd            enddo
7315 cd          endif
7316         enddo
7317       enddo
7318       return
7319       end
7320 C---------------------------------------------------------------------------
7321       double precision function eello4(i,j,k,l,jj,kk)
7322       implicit real*8 (a-h,o-z)
7323       include 'DIMENSIONS'
7324       include 'COMMON.IOUNITS'
7325       include 'COMMON.CHAIN'
7326       include 'COMMON.DERIV'
7327       include 'COMMON.INTERACT'
7328       include 'COMMON.CONTACTS'
7329       include 'COMMON.TORSION'
7330       include 'COMMON.VAR'
7331       include 'COMMON.GEO'
7332       double precision pizda(2,2),ggg1(3),ggg2(3)
7333 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7334 cd        eello4=0.0d0
7335 cd        return
7336 cd      endif
7337 cd      print *,'eello4:',i,j,k,l,jj,kk
7338 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7339 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7340 cold      eij=facont_hb(jj,i)
7341 cold      ekl=facont_hb(kk,k)
7342 cold      ekont=eij*ekl
7343       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7344 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7345       gcorr_loc(k-1)=gcorr_loc(k-1)
7346      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7347       if (l.eq.j+1) then
7348         gcorr_loc(l-1)=gcorr_loc(l-1)
7349      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7350       else
7351         gcorr_loc(j-1)=gcorr_loc(j-1)
7352      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7353       endif
7354       do iii=1,2
7355         do kkk=1,5
7356           do lll=1,3
7357             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7358      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7359 cd            derx(lll,kkk,iii)=0.0d0
7360           enddo
7361         enddo
7362       enddo
7363 cd      gcorr_loc(l-1)=0.0d0
7364 cd      gcorr_loc(j-1)=0.0d0
7365 cd      gcorr_loc(k-1)=0.0d0
7366 cd      eel4=1.0d0
7367 cd      write (iout,*)'Contacts have occurred for peptide groups',
7368 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7369 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7370       if (j.lt.nres-1) then
7371         j1=j+1
7372         j2=j-1
7373       else
7374         j1=j-1
7375         j2=j-2
7376       endif
7377       if (l.lt.nres-1) then
7378         l1=l+1
7379         l2=l-1
7380       else
7381         l1=l-1
7382         l2=l-2
7383       endif
7384       do ll=1,3
7385 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7386 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7387         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7388         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7389 cgrad        ghalf=0.5d0*ggg1(ll)
7390         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7391         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7392         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7393         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7394         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7395         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7396 cgrad        ghalf=0.5d0*ggg2(ll)
7397         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7398         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7399         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7400         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7401         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7402         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7403       enddo
7404 cgrad      do m=i+1,j-1
7405 cgrad        do ll=1,3
7406 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7407 cgrad        enddo
7408 cgrad      enddo
7409 cgrad      do m=k+1,l-1
7410 cgrad        do ll=1,3
7411 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7412 cgrad        enddo
7413 cgrad      enddo
7414 cgrad      do m=i+2,j2
7415 cgrad        do ll=1,3
7416 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7417 cgrad        enddo
7418 cgrad      enddo
7419 cgrad      do m=k+2,l2
7420 cgrad        do ll=1,3
7421 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7422 cgrad        enddo
7423 cgrad      enddo 
7424 cd      do iii=1,nres-3
7425 cd        write (2,*) iii,gcorr_loc(iii)
7426 cd      enddo
7427       eello4=ekont*eel4
7428 cd      write (2,*) 'ekont',ekont
7429 cd      write (iout,*) 'eello4',ekont*eel4
7430       return
7431       end
7432 C---------------------------------------------------------------------------
7433       double precision function eello5(i,j,k,l,jj,kk)
7434       implicit real*8 (a-h,o-z)
7435       include 'DIMENSIONS'
7436       include 'COMMON.IOUNITS'
7437       include 'COMMON.CHAIN'
7438       include 'COMMON.DERIV'
7439       include 'COMMON.INTERACT'
7440       include 'COMMON.CONTACTS'
7441       include 'COMMON.TORSION'
7442       include 'COMMON.VAR'
7443       include 'COMMON.GEO'
7444       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7445       double precision ggg1(3),ggg2(3)
7446 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7447 C                                                                              C
7448 C                            Parallel chains                                   C
7449 C                                                                              C
7450 C          o             o                   o             o                   C
7451 C         /l\           / \             \   / \           / \   /              C
7452 C        /   \         /   \             \ /   \         /   \ /               C
7453 C       j| o |l1       | o |              o| o |         | o |o                C
7454 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7455 C      \i/   \         /   \ /             /   \         /   \                 C
7456 C       o    k1             o                                                  C
7457 C         (I)          (II)                (III)          (IV)                 C
7458 C                                                                              C
7459 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7460 C                                                                              C
7461 C                            Antiparallel chains                               C
7462 C                                                                              C
7463 C          o             o                   o             o                   C
7464 C         /j\           / \             \   / \           / \   /              C
7465 C        /   \         /   \             \ /   \         /   \ /               C
7466 C      j1| o |l        | o |              o| o |         | o |o                C
7467 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7468 C      \i/   \         /   \ /             /   \         /   \                 C
7469 C       o     k1            o                                                  C
7470 C         (I)          (II)                (III)          (IV)                 C
7471 C                                                                              C
7472 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7473 C                                                                              C
7474 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7475 C                                                                              C
7476 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7477 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7478 cd        eello5=0.0d0
7479 cd        return
7480 cd      endif
7481 cd      write (iout,*)
7482 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7483 cd     &   ' and',k,l
7484       itk=itortyp(itype(k))
7485       itl=itortyp(itype(l))
7486       itj=itortyp(itype(j))
7487       eello5_1=0.0d0
7488       eello5_2=0.0d0
7489       eello5_3=0.0d0
7490       eello5_4=0.0d0
7491 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7492 cd     &   eel5_3_num,eel5_4_num)
7493       do iii=1,2
7494         do kkk=1,5
7495           do lll=1,3
7496             derx(lll,kkk,iii)=0.0d0
7497           enddo
7498         enddo
7499       enddo
7500 cd      eij=facont_hb(jj,i)
7501 cd      ekl=facont_hb(kk,k)
7502 cd      ekont=eij*ekl
7503 cd      write (iout,*)'Contacts have occurred for peptide groups',
7504 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7505 cd      goto 1111
7506 C Contribution from the graph I.
7507 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7508 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7509       call transpose2(EUg(1,1,k),auxmat(1,1))
7510       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7511       vv(1)=pizda(1,1)-pizda(2,2)
7512       vv(2)=pizda(1,2)+pizda(2,1)
7513       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7514      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7515 C Explicit gradient in virtual-dihedral angles.
7516       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7517      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7518      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7519       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7520       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7521       vv(1)=pizda(1,1)-pizda(2,2)
7522       vv(2)=pizda(1,2)+pizda(2,1)
7523       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7524      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7525      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7526       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7527       vv(1)=pizda(1,1)-pizda(2,2)
7528       vv(2)=pizda(1,2)+pizda(2,1)
7529       if (l.eq.j+1) then
7530         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7531      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7532      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7533       else
7534         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7535      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7536      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7537       endif 
7538 C Cartesian gradient
7539       do iii=1,2
7540         do kkk=1,5
7541           do lll=1,3
7542             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7543      &        pizda(1,1))
7544             vv(1)=pizda(1,1)-pizda(2,2)
7545             vv(2)=pizda(1,2)+pizda(2,1)
7546             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7547      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7548      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7549           enddo
7550         enddo
7551       enddo
7552 c      goto 1112
7553 c1111  continue
7554 C Contribution from graph II 
7555       call transpose2(EE(1,1,itk),auxmat(1,1))
7556       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7557       vv(1)=pizda(1,1)+pizda(2,2)
7558       vv(2)=pizda(2,1)-pizda(1,2)
7559       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7560      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7561 C Explicit gradient in virtual-dihedral angles.
7562       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7563      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7564       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7565       vv(1)=pizda(1,1)+pizda(2,2)
7566       vv(2)=pizda(2,1)-pizda(1,2)
7567       if (l.eq.j+1) then
7568         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7569      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7570      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7571       else
7572         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7573      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7574      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7575       endif
7576 C Cartesian gradient
7577       do iii=1,2
7578         do kkk=1,5
7579           do lll=1,3
7580             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7581      &        pizda(1,1))
7582             vv(1)=pizda(1,1)+pizda(2,2)
7583             vv(2)=pizda(2,1)-pizda(1,2)
7584             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7585      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7586      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7587           enddo
7588         enddo
7589       enddo
7590 cd      goto 1112
7591 cd1111  continue
7592       if (l.eq.j+1) then
7593 cd        goto 1110
7594 C Parallel orientation
7595 C Contribution from graph III
7596         call transpose2(EUg(1,1,l),auxmat(1,1))
7597         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7598         vv(1)=pizda(1,1)-pizda(2,2)
7599         vv(2)=pizda(1,2)+pizda(2,1)
7600         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7601      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7602 C Explicit gradient in virtual-dihedral angles.
7603         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7604      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7605      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7606         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7607         vv(1)=pizda(1,1)-pizda(2,2)
7608         vv(2)=pizda(1,2)+pizda(2,1)
7609         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7610      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7611      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7612         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7613         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7614         vv(1)=pizda(1,1)-pizda(2,2)
7615         vv(2)=pizda(1,2)+pizda(2,1)
7616         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7617      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7618      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7619 C Cartesian gradient
7620         do iii=1,2
7621           do kkk=1,5
7622             do lll=1,3
7623               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7624      &          pizda(1,1))
7625               vv(1)=pizda(1,1)-pizda(2,2)
7626               vv(2)=pizda(1,2)+pizda(2,1)
7627               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7628      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7629      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7630             enddo
7631           enddo
7632         enddo
7633 cd        goto 1112
7634 C Contribution from graph IV
7635 cd1110    continue
7636         call transpose2(EE(1,1,itl),auxmat(1,1))
7637         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7638         vv(1)=pizda(1,1)+pizda(2,2)
7639         vv(2)=pizda(2,1)-pizda(1,2)
7640         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7641      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7642 C Explicit gradient in virtual-dihedral angles.
7643         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7644      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7645         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7646         vv(1)=pizda(1,1)+pizda(2,2)
7647         vv(2)=pizda(2,1)-pizda(1,2)
7648         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7649      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7650      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7651 C Cartesian gradient
7652         do iii=1,2
7653           do kkk=1,5
7654             do lll=1,3
7655               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7656      &          pizda(1,1))
7657               vv(1)=pizda(1,1)+pizda(2,2)
7658               vv(2)=pizda(2,1)-pizda(1,2)
7659               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7660      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7661      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7662             enddo
7663           enddo
7664         enddo
7665       else
7666 C Antiparallel orientation
7667 C Contribution from graph III
7668 c        goto 1110
7669         call transpose2(EUg(1,1,j),auxmat(1,1))
7670         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7671         vv(1)=pizda(1,1)-pizda(2,2)
7672         vv(2)=pizda(1,2)+pizda(2,1)
7673         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7674      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7675 C Explicit gradient in virtual-dihedral angles.
7676         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7677      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7678      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7679         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7680         vv(1)=pizda(1,1)-pizda(2,2)
7681         vv(2)=pizda(1,2)+pizda(2,1)
7682         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7683      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7684      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7685         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7686         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7687         vv(1)=pizda(1,1)-pizda(2,2)
7688         vv(2)=pizda(1,2)+pizda(2,1)
7689         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7690      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7691      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7692 C Cartesian gradient
7693         do iii=1,2
7694           do kkk=1,5
7695             do lll=1,3
7696               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7697      &          pizda(1,1))
7698               vv(1)=pizda(1,1)-pizda(2,2)
7699               vv(2)=pizda(1,2)+pizda(2,1)
7700               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7701      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7702      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7703             enddo
7704           enddo
7705         enddo
7706 cd        goto 1112
7707 C Contribution from graph IV
7708 1110    continue
7709         call transpose2(EE(1,1,itj),auxmat(1,1))
7710         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7711         vv(1)=pizda(1,1)+pizda(2,2)
7712         vv(2)=pizda(2,1)-pizda(1,2)
7713         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7714      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7715 C Explicit gradient in virtual-dihedral angles.
7716         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7717      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7718         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7719         vv(1)=pizda(1,1)+pizda(2,2)
7720         vv(2)=pizda(2,1)-pizda(1,2)
7721         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7722      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7723      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7724 C Cartesian gradient
7725         do iii=1,2
7726           do kkk=1,5
7727             do lll=1,3
7728               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7729      &          pizda(1,1))
7730               vv(1)=pizda(1,1)+pizda(2,2)
7731               vv(2)=pizda(2,1)-pizda(1,2)
7732               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7733      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7734      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7735             enddo
7736           enddo
7737         enddo
7738       endif
7739 1112  continue
7740       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7741 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7742 cd        write (2,*) 'ijkl',i,j,k,l
7743 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7744 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7745 cd      endif
7746 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7747 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7748 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7749 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7750       if (j.lt.nres-1) then
7751         j1=j+1
7752         j2=j-1
7753       else
7754         j1=j-1
7755         j2=j-2
7756       endif
7757       if (l.lt.nres-1) then
7758         l1=l+1
7759         l2=l-1
7760       else
7761         l1=l-1
7762         l2=l-2
7763       endif
7764 cd      eij=1.0d0
7765 cd      ekl=1.0d0
7766 cd      ekont=1.0d0
7767 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7768 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7769 C        summed up outside the subrouine as for the other subroutines 
7770 C        handling long-range interactions. The old code is commented out
7771 C        with "cgrad" to keep track of changes.
7772       do ll=1,3
7773 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7774 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7775         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7776         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7777 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7778 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7779 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7780 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7781 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7782 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7783 c     &   gradcorr5ij,
7784 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7785 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7786 cgrad        ghalf=0.5d0*ggg1(ll)
7787 cd        ghalf=0.0d0
7788         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7789         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7790         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7791         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7792         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7793         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7794 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7795 cgrad        ghalf=0.5d0*ggg2(ll)
7796 cd        ghalf=0.0d0
7797         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7798         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7799         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7800         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7801         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7802         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7803       enddo
7804 cd      goto 1112
7805 cgrad      do m=i+1,j-1
7806 cgrad        do ll=1,3
7807 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7808 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7809 cgrad        enddo
7810 cgrad      enddo
7811 cgrad      do m=k+1,l-1
7812 cgrad        do ll=1,3
7813 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7814 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7815 cgrad        enddo
7816 cgrad      enddo
7817 c1112  continue
7818 cgrad      do m=i+2,j2
7819 cgrad        do ll=1,3
7820 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7821 cgrad        enddo
7822 cgrad      enddo
7823 cgrad      do m=k+2,l2
7824 cgrad        do ll=1,3
7825 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7826 cgrad        enddo
7827 cgrad      enddo 
7828 cd      do iii=1,nres-3
7829 cd        write (2,*) iii,g_corr5_loc(iii)
7830 cd      enddo
7831       eello5=ekont*eel5
7832 cd      write (2,*) 'ekont',ekont
7833 cd      write (iout,*) 'eello5',ekont*eel5
7834       return
7835       end
7836 c--------------------------------------------------------------------------
7837       double precision function eello6(i,j,k,l,jj,kk)
7838       implicit real*8 (a-h,o-z)
7839       include 'DIMENSIONS'
7840       include 'COMMON.IOUNITS'
7841       include 'COMMON.CHAIN'
7842       include 'COMMON.DERIV'
7843       include 'COMMON.INTERACT'
7844       include 'COMMON.CONTACTS'
7845       include 'COMMON.TORSION'
7846       include 'COMMON.VAR'
7847       include 'COMMON.GEO'
7848       include 'COMMON.FFIELD'
7849       double precision ggg1(3),ggg2(3)
7850 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7851 cd        eello6=0.0d0
7852 cd        return
7853 cd      endif
7854 cd      write (iout,*)
7855 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7856 cd     &   ' and',k,l
7857       eello6_1=0.0d0
7858       eello6_2=0.0d0
7859       eello6_3=0.0d0
7860       eello6_4=0.0d0
7861       eello6_5=0.0d0
7862       eello6_6=0.0d0
7863 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7864 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7865       do iii=1,2
7866         do kkk=1,5
7867           do lll=1,3
7868             derx(lll,kkk,iii)=0.0d0
7869           enddo
7870         enddo
7871       enddo
7872 cd      eij=facont_hb(jj,i)
7873 cd      ekl=facont_hb(kk,k)
7874 cd      ekont=eij*ekl
7875 cd      eij=1.0d0
7876 cd      ekl=1.0d0
7877 cd      ekont=1.0d0
7878       if (l.eq.j+1) then
7879         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7880         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
7881         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
7882         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7883         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
7884         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
7885       else
7886         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7887         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
7888         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
7889         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7890         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
7891           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7892         else
7893           eello6_5=0.0d0
7894         endif
7895         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
7896       endif
7897 C If turn contributions are considered, they will be handled separately.
7898       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
7899 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
7900 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
7901 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
7902 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
7903 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
7904 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
7905 cd      goto 1112
7906       if (j.lt.nres-1) then
7907         j1=j+1
7908         j2=j-1
7909       else
7910         j1=j-1
7911         j2=j-2
7912       endif
7913       if (l.lt.nres-1) then
7914         l1=l+1
7915         l2=l-1
7916       else
7917         l1=l-1
7918         l2=l-2
7919       endif
7920       do ll=1,3
7921 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
7922 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
7923 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
7924 cgrad        ghalf=0.5d0*ggg1(ll)
7925 cd        ghalf=0.0d0
7926         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
7927         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
7928         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
7929         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
7930         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
7931         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
7932         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
7933         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
7934 cgrad        ghalf=0.5d0*ggg2(ll)
7935 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
7936 cd        ghalf=0.0d0
7937         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
7938         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
7939         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
7940         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
7941         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
7942         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
7943       enddo
7944 cd      goto 1112
7945 cgrad      do m=i+1,j-1
7946 cgrad        do ll=1,3
7947 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
7948 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
7949 cgrad        enddo
7950 cgrad      enddo
7951 cgrad      do m=k+1,l-1
7952 cgrad        do ll=1,3
7953 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
7954 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
7955 cgrad        enddo
7956 cgrad      enddo
7957 cgrad1112  continue
7958 cgrad      do m=i+2,j2
7959 cgrad        do ll=1,3
7960 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
7961 cgrad        enddo
7962 cgrad      enddo
7963 cgrad      do m=k+2,l2
7964 cgrad        do ll=1,3
7965 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
7966 cgrad        enddo
7967 cgrad      enddo 
7968 cd      do iii=1,nres-3
7969 cd        write (2,*) iii,g_corr6_loc(iii)
7970 cd      enddo
7971       eello6=ekont*eel6
7972 cd      write (2,*) 'ekont',ekont
7973 cd      write (iout,*) 'eello6',ekont*eel6
7974       return
7975       end
7976 c--------------------------------------------------------------------------
7977       double precision function eello6_graph1(i,j,k,l,imat,swap)
7978       implicit real*8 (a-h,o-z)
7979       include 'DIMENSIONS'
7980       include 'COMMON.IOUNITS'
7981       include 'COMMON.CHAIN'
7982       include 'COMMON.DERIV'
7983       include 'COMMON.INTERACT'
7984       include 'COMMON.CONTACTS'
7985       include 'COMMON.TORSION'
7986       include 'COMMON.VAR'
7987       include 'COMMON.GEO'
7988       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
7989       logical swap
7990       logical lprn
7991       common /kutas/ lprn
7992 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7993 C                                              
7994 C      Parallel       Antiparallel
7995 C                                             
7996 C          o             o         
7997 C         /l\           /j\       
7998 C        /   \         /   \      
7999 C       /| o |         | o |\     
8000 C     \ j|/k\|  /   \  |/k\|l /   
8001 C      \ /   \ /     \ /   \ /    
8002 C       o     o       o     o                
8003 C       i             i                     
8004 C
8005 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8006       itk=itortyp(itype(k))
8007       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8008       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8009       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8010       call transpose2(EUgC(1,1,k),auxmat(1,1))
8011       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8012       vv1(1)=pizda1(1,1)-pizda1(2,2)
8013       vv1(2)=pizda1(1,2)+pizda1(2,1)
8014       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8015       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8016       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8017       s5=scalar2(vv(1),Dtobr2(1,i))
8018 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8019       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8020       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8021      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8022      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8023      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8024      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8025      & +scalar2(vv(1),Dtobr2der(1,i)))
8026       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8027       vv1(1)=pizda1(1,1)-pizda1(2,2)
8028       vv1(2)=pizda1(1,2)+pizda1(2,1)
8029       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8030       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8031       if (l.eq.j+1) then
8032         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8033      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8034      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8035      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8036      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8037       else
8038         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8039      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8040      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8041      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8042      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8043       endif
8044       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8045       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8046       vv1(1)=pizda1(1,1)-pizda1(2,2)
8047       vv1(2)=pizda1(1,2)+pizda1(2,1)
8048       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8049      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8050      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8051      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8052       do iii=1,2
8053         if (swap) then
8054           ind=3-iii
8055         else
8056           ind=iii
8057         endif
8058         do kkk=1,5
8059           do lll=1,3
8060             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8061             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8062             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8063             call transpose2(EUgC(1,1,k),auxmat(1,1))
8064             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8065      &        pizda1(1,1))
8066             vv1(1)=pizda1(1,1)-pizda1(2,2)
8067             vv1(2)=pizda1(1,2)+pizda1(2,1)
8068             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8069             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8070      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8071             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8072      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8073             s5=scalar2(vv(1),Dtobr2(1,i))
8074             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8075           enddo
8076         enddo
8077       enddo
8078       return
8079       end
8080 c----------------------------------------------------------------------------
8081       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8082       implicit real*8 (a-h,o-z)
8083       include 'DIMENSIONS'
8084       include 'COMMON.IOUNITS'
8085       include 'COMMON.CHAIN'
8086       include 'COMMON.DERIV'
8087       include 'COMMON.INTERACT'
8088       include 'COMMON.CONTACTS'
8089       include 'COMMON.TORSION'
8090       include 'COMMON.VAR'
8091       include 'COMMON.GEO'
8092       logical swap
8093       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8094      & auxvec1(2),auxvec2(1),auxmat1(2,2)
8095       logical lprn
8096       common /kutas/ lprn
8097 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8098 C                                              
8099 C      Parallel       Antiparallel
8100 C                                             
8101 C          o             o         
8102 C     \   /l\           /j\   /   
8103 C      \ /   \         /   \ /    
8104 C       o| o |         | o |o     
8105 C     \ j|/k\|      \  |/k\|l     
8106 C      \ /   \       \ /   \      
8107 C       o             o                      
8108 C       i             i                     
8109 C
8110 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8111 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8112 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8113 C           but not in a cluster cumulant
8114 #ifdef MOMENT
8115       s1=dip(1,jj,i)*dip(1,kk,k)
8116 #endif
8117       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8118       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8119       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8120       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8121       call transpose2(EUg(1,1,k),auxmat(1,1))
8122       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8123       vv(1)=pizda(1,1)-pizda(2,2)
8124       vv(2)=pizda(1,2)+pizda(2,1)
8125       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8126 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8127 #ifdef MOMENT
8128       eello6_graph2=-(s1+s2+s3+s4)
8129 #else
8130       eello6_graph2=-(s2+s3+s4)
8131 #endif
8132 c      eello6_graph2=-s3
8133 C Derivatives in gamma(i-1)
8134       if (i.gt.1) then
8135 #ifdef MOMENT
8136         s1=dipderg(1,jj,i)*dip(1,kk,k)
8137 #endif
8138         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8139         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8140         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8141         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8142 #ifdef MOMENT
8143         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8144 #else
8145         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8146 #endif
8147 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8148       endif
8149 C Derivatives in gamma(k-1)
8150 #ifdef MOMENT
8151       s1=dip(1,jj,i)*dipderg(1,kk,k)
8152 #endif
8153       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8154       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8155       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8156       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8157       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8158       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8159       vv(1)=pizda(1,1)-pizda(2,2)
8160       vv(2)=pizda(1,2)+pizda(2,1)
8161       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8162 #ifdef MOMENT
8163       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8164 #else
8165       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8166 #endif
8167 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8168 C Derivatives in gamma(j-1) or gamma(l-1)
8169       if (j.gt.1) then
8170 #ifdef MOMENT
8171         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8172 #endif
8173         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8174         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8175         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8176         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8177         vv(1)=pizda(1,1)-pizda(2,2)
8178         vv(2)=pizda(1,2)+pizda(2,1)
8179         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8180 #ifdef MOMENT
8181         if (swap) then
8182           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8183         else
8184           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8185         endif
8186 #endif
8187         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8188 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8189       endif
8190 C Derivatives in gamma(l-1) or gamma(j-1)
8191       if (l.gt.1) then 
8192 #ifdef MOMENT
8193         s1=dip(1,jj,i)*dipderg(3,kk,k)
8194 #endif
8195         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8196         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8197         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8198         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8199         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8200         vv(1)=pizda(1,1)-pizda(2,2)
8201         vv(2)=pizda(1,2)+pizda(2,1)
8202         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8203 #ifdef MOMENT
8204         if (swap) then
8205           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8206         else
8207           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8208         endif
8209 #endif
8210         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8211 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8212       endif
8213 C Cartesian derivatives.
8214       if (lprn) then
8215         write (2,*) 'In eello6_graph2'
8216         do iii=1,2
8217           write (2,*) 'iii=',iii
8218           do kkk=1,5
8219             write (2,*) 'kkk=',kkk
8220             do jjj=1,2
8221               write (2,'(3(2f10.5),5x)') 
8222      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8223             enddo
8224           enddo
8225         enddo
8226       endif
8227       do iii=1,2
8228         do kkk=1,5
8229           do lll=1,3
8230 #ifdef MOMENT
8231             if (iii.eq.1) then
8232               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8233             else
8234               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8235             endif
8236 #endif
8237             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8238      &        auxvec(1))
8239             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8240             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8241      &        auxvec(1))
8242             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8243             call transpose2(EUg(1,1,k),auxmat(1,1))
8244             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8245      &        pizda(1,1))
8246             vv(1)=pizda(1,1)-pizda(2,2)
8247             vv(2)=pizda(1,2)+pizda(2,1)
8248             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8249 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8250 #ifdef MOMENT
8251             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8252 #else
8253             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8254 #endif
8255             if (swap) then
8256               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8257             else
8258               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8259             endif
8260           enddo
8261         enddo
8262       enddo
8263       return
8264       end
8265 c----------------------------------------------------------------------------
8266       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8267       implicit real*8 (a-h,o-z)
8268       include 'DIMENSIONS'
8269       include 'COMMON.IOUNITS'
8270       include 'COMMON.CHAIN'
8271       include 'COMMON.DERIV'
8272       include 'COMMON.INTERACT'
8273       include 'COMMON.CONTACTS'
8274       include 'COMMON.TORSION'
8275       include 'COMMON.VAR'
8276       include 'COMMON.GEO'
8277       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8278       logical swap
8279 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8280 C                                              
8281 C      Parallel       Antiparallel
8282 C                                             
8283 C          o             o         
8284 C         /l\   /   \   /j\       
8285 C        /   \ /     \ /   \      
8286 C       /| o |o       o| o |\     
8287 C       j|/k\|  /      |/k\|l /   
8288 C        /   \ /       /   \ /    
8289 C       /     o       /     o                
8290 C       i             i                     
8291 C
8292 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8293 C
8294 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8295 C           energy moment and not to the cluster cumulant.
8296       iti=itortyp(itype(i))
8297       if (j.lt.nres-1) then
8298         itj1=itortyp(itype(j+1))
8299       else
8300         itj1=ntortyp+1
8301       endif
8302       itk=itortyp(itype(k))
8303       itk1=itortyp(itype(k+1))
8304       if (l.lt.nres-1) then
8305         itl1=itortyp(itype(l+1))
8306       else
8307         itl1=ntortyp+1
8308       endif
8309 #ifdef MOMENT
8310       s1=dip(4,jj,i)*dip(4,kk,k)
8311 #endif
8312       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8313       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8314       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8315       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8316       call transpose2(EE(1,1,itk),auxmat(1,1))
8317       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8318       vv(1)=pizda(1,1)+pizda(2,2)
8319       vv(2)=pizda(2,1)-pizda(1,2)
8320       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8321 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8322 cd     & "sum",-(s2+s3+s4)
8323 #ifdef MOMENT
8324       eello6_graph3=-(s1+s2+s3+s4)
8325 #else
8326       eello6_graph3=-(s2+s3+s4)
8327 #endif
8328 c      eello6_graph3=-s4
8329 C Derivatives in gamma(k-1)
8330       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8331       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8332       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8333       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8334 C Derivatives in gamma(l-1)
8335       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8336       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8337       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8338       vv(1)=pizda(1,1)+pizda(2,2)
8339       vv(2)=pizda(2,1)-pizda(1,2)
8340       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8341       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8342 C Cartesian derivatives.
8343       do iii=1,2
8344         do kkk=1,5
8345           do lll=1,3
8346 #ifdef MOMENT
8347             if (iii.eq.1) then
8348               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8349             else
8350               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8351             endif
8352 #endif
8353             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8354      &        auxvec(1))
8355             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8356             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8357      &        auxvec(1))
8358             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8359             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8360      &        pizda(1,1))
8361             vv(1)=pizda(1,1)+pizda(2,2)
8362             vv(2)=pizda(2,1)-pizda(1,2)
8363             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8364 #ifdef MOMENT
8365             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8366 #else
8367             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8368 #endif
8369             if (swap) then
8370               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8371             else
8372               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8373             endif
8374 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8375           enddo
8376         enddo
8377       enddo
8378       return
8379       end
8380 c----------------------------------------------------------------------------
8381       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8382       implicit real*8 (a-h,o-z)
8383       include 'DIMENSIONS'
8384       include 'COMMON.IOUNITS'
8385       include 'COMMON.CHAIN'
8386       include 'COMMON.DERIV'
8387       include 'COMMON.INTERACT'
8388       include 'COMMON.CONTACTS'
8389       include 'COMMON.TORSION'
8390       include 'COMMON.VAR'
8391       include 'COMMON.GEO'
8392       include 'COMMON.FFIELD'
8393       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8394      & auxvec1(2),auxmat1(2,2)
8395       logical swap
8396 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8397 C                                              
8398 C      Parallel       Antiparallel
8399 C                                             
8400 C          o             o         
8401 C         /l\   /   \   /j\       
8402 C        /   \ /     \ /   \      
8403 C       /| o |o       o| o |\     
8404 C     \ j|/k\|      \  |/k\|l     
8405 C      \ /   \       \ /   \      
8406 C       o     \       o     \                
8407 C       i             i                     
8408 C
8409 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8410 C
8411 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8412 C           energy moment and not to the cluster cumulant.
8413 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8414       iti=itortyp(itype(i))
8415       itj=itortyp(itype(j))
8416       if (j.lt.nres-1) then
8417         itj1=itortyp(itype(j+1))
8418       else
8419         itj1=ntortyp+1
8420       endif
8421       itk=itortyp(itype(k))
8422       if (k.lt.nres-1) then
8423         itk1=itortyp(itype(k+1))
8424       else
8425         itk1=ntortyp+1
8426       endif
8427       itl=itortyp(itype(l))
8428       if (l.lt.nres-1) then
8429         itl1=itortyp(itype(l+1))
8430       else
8431         itl1=ntortyp+1
8432       endif
8433 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8434 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8435 cd     & ' itl',itl,' itl1',itl1
8436 #ifdef MOMENT
8437       if (imat.eq.1) then
8438         s1=dip(3,jj,i)*dip(3,kk,k)
8439       else
8440         s1=dip(2,jj,j)*dip(2,kk,l)
8441       endif
8442 #endif
8443       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8444       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8445       if (j.eq.l+1) then
8446         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8447         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8448       else
8449         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8450         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8451       endif
8452       call transpose2(EUg(1,1,k),auxmat(1,1))
8453       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8454       vv(1)=pizda(1,1)-pizda(2,2)
8455       vv(2)=pizda(2,1)+pizda(1,2)
8456       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8457 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8458 #ifdef MOMENT
8459       eello6_graph4=-(s1+s2+s3+s4)
8460 #else
8461       eello6_graph4=-(s2+s3+s4)
8462 #endif
8463 C Derivatives in gamma(i-1)
8464       if (i.gt.1) then
8465 #ifdef MOMENT
8466         if (imat.eq.1) then
8467           s1=dipderg(2,jj,i)*dip(3,kk,k)
8468         else
8469           s1=dipderg(4,jj,j)*dip(2,kk,l)
8470         endif
8471 #endif
8472         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8473         if (j.eq.l+1) then
8474           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8475           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8476         else
8477           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8478           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8479         endif
8480         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8481         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8482 cd          write (2,*) 'turn6 derivatives'
8483 #ifdef MOMENT
8484           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8485 #else
8486           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8487 #endif
8488         else
8489 #ifdef MOMENT
8490           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8491 #else
8492           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8493 #endif
8494         endif
8495       endif
8496 C Derivatives in gamma(k-1)
8497 #ifdef MOMENT
8498       if (imat.eq.1) then
8499         s1=dip(3,jj,i)*dipderg(2,kk,k)
8500       else
8501         s1=dip(2,jj,j)*dipderg(4,kk,l)
8502       endif
8503 #endif
8504       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8505       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8506       if (j.eq.l+1) then
8507         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8508         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8509       else
8510         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8511         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8512       endif
8513       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8514       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8515       vv(1)=pizda(1,1)-pizda(2,2)
8516       vv(2)=pizda(2,1)+pizda(1,2)
8517       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8518       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8519 #ifdef MOMENT
8520         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8521 #else
8522         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8523 #endif
8524       else
8525 #ifdef MOMENT
8526         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8527 #else
8528         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8529 #endif
8530       endif
8531 C Derivatives in gamma(j-1) or gamma(l-1)
8532       if (l.eq.j+1 .and. l.gt.1) then
8533         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8534         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8535         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8536         vv(1)=pizda(1,1)-pizda(2,2)
8537         vv(2)=pizda(2,1)+pizda(1,2)
8538         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8539         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8540       else if (j.gt.1) then
8541         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8542         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8543         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8544         vv(1)=pizda(1,1)-pizda(2,2)
8545         vv(2)=pizda(2,1)+pizda(1,2)
8546         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8547         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8548           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8549         else
8550           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8551         endif
8552       endif
8553 C Cartesian derivatives.
8554       do iii=1,2
8555         do kkk=1,5
8556           do lll=1,3
8557 #ifdef MOMENT
8558             if (iii.eq.1) then
8559               if (imat.eq.1) then
8560                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8561               else
8562                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8563               endif
8564             else
8565               if (imat.eq.1) then
8566                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8567               else
8568                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8569               endif
8570             endif
8571 #endif
8572             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8573      &        auxvec(1))
8574             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8575             if (j.eq.l+1) then
8576               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8577      &          b1(1,itj1),auxvec(1))
8578               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8579             else
8580               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8581      &          b1(1,itl1),auxvec(1))
8582               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8583             endif
8584             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8585      &        pizda(1,1))
8586             vv(1)=pizda(1,1)-pizda(2,2)
8587             vv(2)=pizda(2,1)+pizda(1,2)
8588             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8589             if (swap) then
8590               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8591 #ifdef MOMENT
8592                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8593      &             -(s1+s2+s4)
8594 #else
8595                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8596      &             -(s2+s4)
8597 #endif
8598                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8599               else
8600 #ifdef MOMENT
8601                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8602 #else
8603                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8604 #endif
8605                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8606               endif
8607             else
8608 #ifdef MOMENT
8609               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8610 #else
8611               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8612 #endif
8613               if (l.eq.j+1) then
8614                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8615               else 
8616                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8617               endif
8618             endif 
8619           enddo
8620         enddo
8621       enddo
8622       return
8623       end
8624 c----------------------------------------------------------------------------
8625       double precision function eello_turn6(i,jj,kk)
8626       implicit real*8 (a-h,o-z)
8627       include 'DIMENSIONS'
8628       include 'COMMON.IOUNITS'
8629       include 'COMMON.CHAIN'
8630       include 'COMMON.DERIV'
8631       include 'COMMON.INTERACT'
8632       include 'COMMON.CONTACTS'
8633       include 'COMMON.TORSION'
8634       include 'COMMON.VAR'
8635       include 'COMMON.GEO'
8636       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8637      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8638      &  ggg1(3),ggg2(3)
8639       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8640      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8641 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8642 C           the respective energy moment and not to the cluster cumulant.
8643       s1=0.0d0
8644       s8=0.0d0
8645       s13=0.0d0
8646 c
8647       eello_turn6=0.0d0
8648       j=i+4
8649       k=i+1
8650       l=i+3
8651       iti=itortyp(itype(i))
8652       itk=itortyp(itype(k))
8653       itk1=itortyp(itype(k+1))
8654       itl=itortyp(itype(l))
8655       itj=itortyp(itype(j))
8656 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8657 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8658 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8659 cd        eello6=0.0d0
8660 cd        return
8661 cd      endif
8662 cd      write (iout,*)
8663 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8664 cd     &   ' and',k,l
8665 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8666       do iii=1,2
8667         do kkk=1,5
8668           do lll=1,3
8669             derx_turn(lll,kkk,iii)=0.0d0
8670           enddo
8671         enddo
8672       enddo
8673 cd      eij=1.0d0
8674 cd      ekl=1.0d0
8675 cd      ekont=1.0d0
8676       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8677 cd      eello6_5=0.0d0
8678 cd      write (2,*) 'eello6_5',eello6_5
8679 #ifdef MOMENT
8680       call transpose2(AEA(1,1,1),auxmat(1,1))
8681       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8682       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8683       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8684 #endif
8685       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8686       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8687       s2 = scalar2(b1(1,itk),vtemp1(1))
8688 #ifdef MOMENT
8689       call transpose2(AEA(1,1,2),atemp(1,1))
8690       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8691       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8692       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8693 #endif
8694       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8695       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8696       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8697 #ifdef MOMENT
8698       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8699       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8700       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8701       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8702       ss13 = scalar2(b1(1,itk),vtemp4(1))
8703       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8704 #endif
8705 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8706 c      s1=0.0d0
8707 c      s2=0.0d0
8708 c      s8=0.0d0
8709 c      s12=0.0d0
8710 c      s13=0.0d0
8711       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8712 C Derivatives in gamma(i+2)
8713       s1d =0.0d0
8714       s8d =0.0d0
8715 #ifdef MOMENT
8716       call transpose2(AEA(1,1,1),auxmatd(1,1))
8717       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8718       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8719       call transpose2(AEAderg(1,1,2),atempd(1,1))
8720       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8721       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8722 #endif
8723       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8724       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8725       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8726 c      s1d=0.0d0
8727 c      s2d=0.0d0
8728 c      s8d=0.0d0
8729 c      s12d=0.0d0
8730 c      s13d=0.0d0
8731       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8732 C Derivatives in gamma(i+3)
8733 #ifdef MOMENT
8734       call transpose2(AEA(1,1,1),auxmatd(1,1))
8735       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8736       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8737       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8738 #endif
8739       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8740       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8741       s2d = scalar2(b1(1,itk),vtemp1d(1))
8742 #ifdef MOMENT
8743       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8744       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8745 #endif
8746       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8747 #ifdef MOMENT
8748       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8749       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8750       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8751 #endif
8752 c      s1d=0.0d0
8753 c      s2d=0.0d0
8754 c      s8d=0.0d0
8755 c      s12d=0.0d0
8756 c      s13d=0.0d0
8757 #ifdef MOMENT
8758       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8759      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8760 #else
8761       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8762      &               -0.5d0*ekont*(s2d+s12d)
8763 #endif
8764 C Derivatives in gamma(i+4)
8765       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8766       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8767       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8768 #ifdef MOMENT
8769       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8770       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8771       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8772 #endif
8773 c      s1d=0.0d0
8774 c      s2d=0.0d0
8775 c      s8d=0.0d0
8776 C      s12d=0.0d0
8777 c      s13d=0.0d0
8778 #ifdef MOMENT
8779       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8780 #else
8781       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8782 #endif
8783 C Derivatives in gamma(i+5)
8784 #ifdef MOMENT
8785       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8786       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8787       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8788 #endif
8789       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8790       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8791       s2d = scalar2(b1(1,itk),vtemp1d(1))
8792 #ifdef MOMENT
8793       call transpose2(AEA(1,1,2),atempd(1,1))
8794       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8795       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8796 #endif
8797       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8798       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8799 #ifdef MOMENT
8800       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8801       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8802       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8803 #endif
8804 c      s1d=0.0d0
8805 c      s2d=0.0d0
8806 c      s8d=0.0d0
8807 c      s12d=0.0d0
8808 c      s13d=0.0d0
8809 #ifdef MOMENT
8810       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8811      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8812 #else
8813       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8814      &               -0.5d0*ekont*(s2d+s12d)
8815 #endif
8816 C Cartesian derivatives
8817       do iii=1,2
8818         do kkk=1,5
8819           do lll=1,3
8820 #ifdef MOMENT
8821             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8822             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8823             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8824 #endif
8825             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8826             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8827      &          vtemp1d(1))
8828             s2d = scalar2(b1(1,itk),vtemp1d(1))
8829 #ifdef MOMENT
8830             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8831             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8832             s8d = -(atempd(1,1)+atempd(2,2))*
8833      &           scalar2(cc(1,1,itl),vtemp2(1))
8834 #endif
8835             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8836      &           auxmatd(1,1))
8837             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8838             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8839 c      s1d=0.0d0
8840 c      s2d=0.0d0
8841 c      s8d=0.0d0
8842 c      s12d=0.0d0
8843 c      s13d=0.0d0
8844 #ifdef MOMENT
8845             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8846      &        - 0.5d0*(s1d+s2d)
8847 #else
8848             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8849      &        - 0.5d0*s2d
8850 #endif
8851 #ifdef MOMENT
8852             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8853      &        - 0.5d0*(s8d+s12d)
8854 #else
8855             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8856      &        - 0.5d0*s12d
8857 #endif
8858           enddo
8859         enddo
8860       enddo
8861 #ifdef MOMENT
8862       do kkk=1,5
8863         do lll=1,3
8864           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8865      &      achuj_tempd(1,1))
8866           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8867           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8868           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8869           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8870           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8871      &      vtemp4d(1)) 
8872           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8873           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8874           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8875         enddo
8876       enddo
8877 #endif
8878 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
8879 cd     &  16*eel_turn6_num
8880 cd      goto 1112
8881       if (j.lt.nres-1) then
8882         j1=j+1
8883         j2=j-1
8884       else
8885         j1=j-1
8886         j2=j-2
8887       endif
8888       if (l.lt.nres-1) then
8889         l1=l+1
8890         l2=l-1
8891       else
8892         l1=l-1
8893         l2=l-2
8894       endif
8895       do ll=1,3
8896 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
8897 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
8898 cgrad        ghalf=0.5d0*ggg1(ll)
8899 cd        ghalf=0.0d0
8900         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
8901         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
8902         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
8903      &    +ekont*derx_turn(ll,2,1)
8904         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
8905         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
8906      &    +ekont*derx_turn(ll,4,1)
8907         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
8908         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
8909         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
8910 cgrad        ghalf=0.5d0*ggg2(ll)
8911 cd        ghalf=0.0d0
8912         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
8913      &    +ekont*derx_turn(ll,2,2)
8914         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
8915         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
8916      &    +ekont*derx_turn(ll,4,2)
8917         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
8918         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
8919         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
8920       enddo
8921 cd      goto 1112
8922 cgrad      do m=i+1,j-1
8923 cgrad        do ll=1,3
8924 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
8925 cgrad        enddo
8926 cgrad      enddo
8927 cgrad      do m=k+1,l-1
8928 cgrad        do ll=1,3
8929 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
8930 cgrad        enddo
8931 cgrad      enddo
8932 cgrad1112  continue
8933 cgrad      do m=i+2,j2
8934 cgrad        do ll=1,3
8935 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
8936 cgrad        enddo
8937 cgrad      enddo
8938 cgrad      do m=k+2,l2
8939 cgrad        do ll=1,3
8940 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
8941 cgrad        enddo
8942 cgrad      enddo 
8943 cd      do iii=1,nres-3
8944 cd        write (2,*) iii,g_corr6_loc(iii)
8945 cd      enddo
8946       eello_turn6=ekont*eel_turn6
8947 cd      write (2,*) 'ekont',ekont
8948 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
8949       return
8950       end
8951
8952 C-----------------------------------------------------------------------------
8953       double precision function scalar(u,v)
8954 !DIR$ INLINEALWAYS scalar
8955 #ifndef OSF
8956 cDEC$ ATTRIBUTES FORCEINLINE::scalar
8957 #endif
8958       implicit none
8959       double precision u(3),v(3)
8960 cd      double precision sc
8961 cd      integer i
8962 cd      sc=0.0d0
8963 cd      do i=1,3
8964 cd        sc=sc+u(i)*v(i)
8965 cd      enddo
8966 cd      scalar=sc
8967
8968       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
8969       return
8970       end
8971 crc-------------------------------------------------
8972       SUBROUTINE MATVEC2(A1,V1,V2)
8973 !DIR$ INLINEALWAYS MATVEC2
8974 #ifndef OSF
8975 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
8976 #endif
8977       implicit real*8 (a-h,o-z)
8978       include 'DIMENSIONS'
8979       DIMENSION A1(2,2),V1(2),V2(2)
8980 c      DO 1 I=1,2
8981 c        VI=0.0
8982 c        DO 3 K=1,2
8983 c    3     VI=VI+A1(I,K)*V1(K)
8984 c        Vaux(I)=VI
8985 c    1 CONTINUE
8986
8987       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
8988       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
8989
8990       v2(1)=vaux1
8991       v2(2)=vaux2
8992       END
8993 C---------------------------------------
8994       SUBROUTINE MATMAT2(A1,A2,A3)
8995 #ifndef OSF
8996 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
8997 #endif
8998       implicit real*8 (a-h,o-z)
8999       include 'DIMENSIONS'
9000       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9001 c      DIMENSION AI3(2,2)
9002 c        DO  J=1,2
9003 c          A3IJ=0.0
9004 c          DO K=1,2
9005 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9006 c          enddo
9007 c          A3(I,J)=A3IJ
9008 c       enddo
9009 c      enddo
9010
9011       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9012       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9013       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9014       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9015
9016       A3(1,1)=AI3_11
9017       A3(2,1)=AI3_21
9018       A3(1,2)=AI3_12
9019       A3(2,2)=AI3_22
9020       END
9021
9022 c-------------------------------------------------------------------------
9023       double precision function scalar2(u,v)
9024 !DIR$ INLINEALWAYS scalar2
9025       implicit none
9026       double precision u(2),v(2)
9027       double precision sc
9028       integer i
9029       scalar2=u(1)*v(1)+u(2)*v(2)
9030       return
9031       end
9032
9033 C-----------------------------------------------------------------------------
9034
9035       subroutine transpose2(a,at)
9036 !DIR$ INLINEALWAYS transpose2
9037 #ifndef OSF
9038 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9039 #endif
9040       implicit none
9041       double precision a(2,2),at(2,2)
9042       at(1,1)=a(1,1)
9043       at(1,2)=a(2,1)
9044       at(2,1)=a(1,2)
9045       at(2,2)=a(2,2)
9046       return
9047       end
9048 c--------------------------------------------------------------------------
9049       subroutine transpose(n,a,at)
9050       implicit none
9051       integer n,i,j
9052       double precision a(n,n),at(n,n)
9053       do i=1,n
9054         do j=1,n
9055           at(j,i)=a(i,j)
9056         enddo
9057       enddo
9058       return
9059       end
9060 C---------------------------------------------------------------------------
9061       subroutine prodmat3(a1,a2,kk,transp,prod)
9062 !DIR$ INLINEALWAYS prodmat3
9063 #ifndef OSF
9064 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9065 #endif
9066       implicit none
9067       integer i,j
9068       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9069       logical transp
9070 crc      double precision auxmat(2,2),prod_(2,2)
9071
9072       if (transp) then
9073 crc        call transpose2(kk(1,1),auxmat(1,1))
9074 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9075 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9076         
9077            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9078      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9079            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9080      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9081            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9082      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9083            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9084      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9085
9086       else
9087 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9088 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9089
9090            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9091      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9092            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9093      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9094            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9095      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9096            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9097      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9098
9099       endif
9100 c      call transpose2(a2(1,1),a2t(1,1))
9101
9102 crc      print *,transp
9103 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9104 crc      print *,((prod(i,j),i=1,2),j=1,2)
9105
9106       return
9107       end
9108