EBE change in prerealese-3.2.1 make dummy atom idependent
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=itype(j)
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026         dxi=dc(1,i)
3027         dyi=dc(2,i)
3028         dzi=dc(3,i)
3029         dx_normi=dc_norm(1,i)
3030         dy_normi=dc_norm(2,i)
3031         dz_normi=dc_norm(3,i)
3032         xmedi=c(1,i)+0.5d0*dxi
3033         ymedi=c(2,i)+0.5d0*dyi
3034         zmedi=c(3,i)+0.5d0*dzi
3035         num_conti=0
3036         call eelecij(i,i+2,ees,evdw1,eel_loc)
3037         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3038         num_cont_hb(i)=num_conti
3039       enddo
3040       do i=iturn4_start,iturn4_end
3041         dxi=dc(1,i)
3042         dyi=dc(2,i)
3043         dzi=dc(3,i)
3044         dx_normi=dc_norm(1,i)
3045         dy_normi=dc_norm(2,i)
3046         dz_normi=dc_norm(3,i)
3047         xmedi=c(1,i)+0.5d0*dxi
3048         ymedi=c(2,i)+0.5d0*dyi
3049         zmedi=c(3,i)+0.5d0*dzi
3050         num_conti=num_cont_hb(i)
3051         call eelecij(i,i+3,ees,evdw1,eel_loc)
3052         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3053         num_cont_hb(i)=num_conti
3054       enddo   ! i
3055 c
3056 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3057 c
3058       do i=iatel_s,iatel_e
3059         dxi=dc(1,i)
3060         dyi=dc(2,i)
3061         dzi=dc(3,i)
3062         dx_normi=dc_norm(1,i)
3063         dy_normi=dc_norm(2,i)
3064         dz_normi=dc_norm(3,i)
3065         xmedi=c(1,i)+0.5d0*dxi
3066         ymedi=c(2,i)+0.5d0*dyi
3067         zmedi=c(3,i)+0.5d0*dzi
3068 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3069         num_conti=num_cont_hb(i)
3070         do j=ielstart(i),ielend(i)
3071           call eelecij(i,j,ees,evdw1,eel_loc)
3072         enddo ! j
3073         num_cont_hb(i)=num_conti
3074       enddo   ! i
3075 c      write (iout,*) "Number of loop steps in EELEC:",ind
3076 cd      do i=1,nres
3077 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3078 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3079 cd      enddo
3080 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3081 ccc      eel_loc=eel_loc+eello_turn3
3082 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3083       return
3084       end
3085 C-------------------------------------------------------------------------------
3086       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3087       implicit real*8 (a-h,o-z)
3088       include 'DIMENSIONS'
3089 #ifdef MPI
3090       include "mpif.h"
3091 #endif
3092       include 'COMMON.CONTROL'
3093       include 'COMMON.IOUNITS'
3094       include 'COMMON.GEO'
3095       include 'COMMON.VAR'
3096       include 'COMMON.LOCAL'
3097       include 'COMMON.CHAIN'
3098       include 'COMMON.DERIV'
3099       include 'COMMON.INTERACT'
3100       include 'COMMON.CONTACTS'
3101       include 'COMMON.TORSION'
3102       include 'COMMON.VECTORS'
3103       include 'COMMON.FFIELD'
3104       include 'COMMON.TIME1'
3105       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3106      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3107       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3108      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3109       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3110      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3111      &    num_conti,j1,j2
3112 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3113 #ifdef MOMENT
3114       double precision scal_el /1.0d0/
3115 #else
3116       double precision scal_el /0.5d0/
3117 #endif
3118 C 12/13/98 
3119 C 13-go grudnia roku pamietnego... 
3120       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3121      &                   0.0d0,1.0d0,0.0d0,
3122      &                   0.0d0,0.0d0,1.0d0/
3123 c          time00=MPI_Wtime()
3124 cd      write (iout,*) "eelecij",i,j
3125 c          ind=ind+1
3126           iteli=itel(i)
3127           itelj=itel(j)
3128           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3129           aaa=app(iteli,itelj)
3130           bbb=bpp(iteli,itelj)
3131           ael6i=ael6(iteli,itelj)
3132           ael3i=ael3(iteli,itelj) 
3133           dxj=dc(1,j)
3134           dyj=dc(2,j)
3135           dzj=dc(3,j)
3136           dx_normj=dc_norm(1,j)
3137           dy_normj=dc_norm(2,j)
3138           dz_normj=dc_norm(3,j)
3139           xj=c(1,j)+0.5D0*dxj-xmedi
3140           yj=c(2,j)+0.5D0*dyj-ymedi
3141           zj=c(3,j)+0.5D0*dzj-zmedi
3142           rij=xj*xj+yj*yj+zj*zj
3143           rrmij=1.0D0/rij
3144           rij=dsqrt(rij)
3145           rmij=1.0D0/rij
3146           r3ij=rrmij*rmij
3147           r6ij=r3ij*r3ij  
3148           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3149           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3150           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3151           fac=cosa-3.0D0*cosb*cosg
3152           ev1=aaa*r6ij*r6ij
3153 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3154           if (j.eq.i+2) ev1=scal_el*ev1
3155           ev2=bbb*r6ij
3156           fac3=ael6i*r6ij
3157           fac4=ael3i*r3ij
3158           evdwij=ev1+ev2
3159           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3160           el2=fac4*fac       
3161           eesij=el1+el2
3162 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3163           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3164           ees=ees+eesij
3165           evdw1=evdw1+evdwij
3166 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3167 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3168 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3169 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3170
3171           if (energy_dec) then 
3172               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3173               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3174           endif
3175
3176 C
3177 C Calculate contributions to the Cartesian gradient.
3178 C
3179 #ifdef SPLITELE
3180           facvdw=-6*rrmij*(ev1+evdwij)
3181           facel=-3*rrmij*(el1+eesij)
3182           fac1=fac
3183           erij(1)=xj*rmij
3184           erij(2)=yj*rmij
3185           erij(3)=zj*rmij
3186 *
3187 * Radial derivatives. First process both termini of the fragment (i,j)
3188 *
3189           ggg(1)=facel*xj
3190           ggg(2)=facel*yj
3191           ggg(3)=facel*zj
3192 c          do k=1,3
3193 c            ghalf=0.5D0*ggg(k)
3194 c            gelc(k,i)=gelc(k,i)+ghalf
3195 c            gelc(k,j)=gelc(k,j)+ghalf
3196 c          enddo
3197 c 9/28/08 AL Gradient compotents will be summed only at the end
3198           do k=1,3
3199             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3200             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3201           enddo
3202 *
3203 * Loop over residues i+1 thru j-1.
3204 *
3205 cgrad          do k=i+1,j-1
3206 cgrad            do l=1,3
3207 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3208 cgrad            enddo
3209 cgrad          enddo
3210           ggg(1)=facvdw*xj
3211           ggg(2)=facvdw*yj
3212           ggg(3)=facvdw*zj
3213 c          do k=1,3
3214 c            ghalf=0.5D0*ggg(k)
3215 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3216 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3217 c          enddo
3218 c 9/28/08 AL Gradient compotents will be summed only at the end
3219           do k=1,3
3220             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3221             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3222           enddo
3223 *
3224 * Loop over residues i+1 thru j-1.
3225 *
3226 cgrad          do k=i+1,j-1
3227 cgrad            do l=1,3
3228 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3229 cgrad            enddo
3230 cgrad          enddo
3231 #else
3232           facvdw=ev1+evdwij 
3233           facel=el1+eesij  
3234           fac1=fac
3235           fac=-3*rrmij*(facvdw+facvdw+facel)
3236           erij(1)=xj*rmij
3237           erij(2)=yj*rmij
3238           erij(3)=zj*rmij
3239 *
3240 * Radial derivatives. First process both termini of the fragment (i,j)
3241
3242           ggg(1)=fac*xj
3243           ggg(2)=fac*yj
3244           ggg(3)=fac*zj
3245 c          do k=1,3
3246 c            ghalf=0.5D0*ggg(k)
3247 c            gelc(k,i)=gelc(k,i)+ghalf
3248 c            gelc(k,j)=gelc(k,j)+ghalf
3249 c          enddo
3250 c 9/28/08 AL Gradient compotents will be summed only at the end
3251           do k=1,3
3252             gelc_long(k,j)=gelc(k,j)+ggg(k)
3253             gelc_long(k,i)=gelc(k,i)-ggg(k)
3254           enddo
3255 *
3256 * Loop over residues i+1 thru j-1.
3257 *
3258 cgrad          do k=i+1,j-1
3259 cgrad            do l=1,3
3260 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3261 cgrad            enddo
3262 cgrad          enddo
3263 c 9/28/08 AL Gradient compotents will be summed only at the end
3264           ggg(1)=facvdw*xj
3265           ggg(2)=facvdw*yj
3266           ggg(3)=facvdw*zj
3267           do k=1,3
3268             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3269             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3270           enddo
3271 #endif
3272 *
3273 * Angular part
3274 *          
3275           ecosa=2.0D0*fac3*fac1+fac4
3276           fac4=-3.0D0*fac4
3277           fac3=-6.0D0*fac3
3278           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3279           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3280           do k=1,3
3281             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3282             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3283           enddo
3284 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3285 cd   &          (dcosg(k),k=1,3)
3286           do k=1,3
3287             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3288           enddo
3289 c          do k=1,3
3290 c            ghalf=0.5D0*ggg(k)
3291 c            gelc(k,i)=gelc(k,i)+ghalf
3292 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3293 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3294 c            gelc(k,j)=gelc(k,j)+ghalf
3295 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3296 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3297 c          enddo
3298 cgrad          do k=i+1,j-1
3299 cgrad            do l=1,3
3300 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3301 cgrad            enddo
3302 cgrad          enddo
3303           do k=1,3
3304             gelc(k,i)=gelc(k,i)
3305      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3306      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3307             gelc(k,j)=gelc(k,j)
3308      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3309      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3310             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3311             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3312           enddo
3313           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3314      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3315      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3316 C
3317 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3318 C   energy of a peptide unit is assumed in the form of a second-order 
3319 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3320 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3321 C   are computed for EVERY pair of non-contiguous peptide groups.
3322 C
3323           if (j.lt.nres-1) then
3324             j1=j+1
3325             j2=j-1
3326           else
3327             j1=j-1
3328             j2=j-2
3329           endif
3330           kkk=0
3331           do k=1,2
3332             do l=1,2
3333               kkk=kkk+1
3334               muij(kkk)=mu(k,i)*mu(l,j)
3335             enddo
3336           enddo  
3337 cd         write (iout,*) 'EELEC: i',i,' j',j
3338 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3339 cd          write(iout,*) 'muij',muij
3340           ury=scalar(uy(1,i),erij)
3341           urz=scalar(uz(1,i),erij)
3342           vry=scalar(uy(1,j),erij)
3343           vrz=scalar(uz(1,j),erij)
3344           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3345           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3346           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3347           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3348           fac=dsqrt(-ael6i)*r3ij
3349           a22=a22*fac
3350           a23=a23*fac
3351           a32=a32*fac
3352           a33=a33*fac
3353 cd          write (iout,'(4i5,4f10.5)')
3354 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3355 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3356 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3357 cd     &      uy(:,j),uz(:,j)
3358 cd          write (iout,'(4f10.5)') 
3359 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3360 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3361 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3362 cd           write (iout,'(9f10.5/)') 
3363 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3364 C Derivatives of the elements of A in virtual-bond vectors
3365           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3366           do k=1,3
3367             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3368             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3369             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3370             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3371             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3372             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3373             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3374             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3375             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3376             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3377             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3378             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3379           enddo
3380 C Compute radial contributions to the gradient
3381           facr=-3.0d0*rrmij
3382           a22der=a22*facr
3383           a23der=a23*facr
3384           a32der=a32*facr
3385           a33der=a33*facr
3386           agg(1,1)=a22der*xj
3387           agg(2,1)=a22der*yj
3388           agg(3,1)=a22der*zj
3389           agg(1,2)=a23der*xj
3390           agg(2,2)=a23der*yj
3391           agg(3,2)=a23der*zj
3392           agg(1,3)=a32der*xj
3393           agg(2,3)=a32der*yj
3394           agg(3,3)=a32der*zj
3395           agg(1,4)=a33der*xj
3396           agg(2,4)=a33der*yj
3397           agg(3,4)=a33der*zj
3398 C Add the contributions coming from er
3399           fac3=-3.0d0*fac
3400           do k=1,3
3401             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3402             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3403             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3404             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3405           enddo
3406           do k=1,3
3407 C Derivatives in DC(i) 
3408 cgrad            ghalf1=0.5d0*agg(k,1)
3409 cgrad            ghalf2=0.5d0*agg(k,2)
3410 cgrad            ghalf3=0.5d0*agg(k,3)
3411 cgrad            ghalf4=0.5d0*agg(k,4)
3412             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3413      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3414             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3415      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3416             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3417      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3418             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3419      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3420 C Derivatives in DC(i+1)
3421             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3422      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3423             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3424      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3425             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3426      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3427             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3428      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3429 C Derivatives in DC(j)
3430             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3431      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3432             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3433      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3434             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3435      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3436             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3437      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3438 C Derivatives in DC(j+1) or DC(nres-1)
3439             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3440      &      -3.0d0*vryg(k,3)*ury)
3441             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3442      &      -3.0d0*vrzg(k,3)*ury)
3443             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3444      &      -3.0d0*vryg(k,3)*urz)
3445             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3446      &      -3.0d0*vrzg(k,3)*urz)
3447 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3448 cgrad              do l=1,4
3449 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3450 cgrad              enddo
3451 cgrad            endif
3452           enddo
3453           acipa(1,1)=a22
3454           acipa(1,2)=a23
3455           acipa(2,1)=a32
3456           acipa(2,2)=a33
3457           a22=-a22
3458           a23=-a23
3459           do l=1,2
3460             do k=1,3
3461               agg(k,l)=-agg(k,l)
3462               aggi(k,l)=-aggi(k,l)
3463               aggi1(k,l)=-aggi1(k,l)
3464               aggj(k,l)=-aggj(k,l)
3465               aggj1(k,l)=-aggj1(k,l)
3466             enddo
3467           enddo
3468           if (j.lt.nres-1) then
3469             a22=-a22
3470             a32=-a32
3471             do l=1,3,2
3472               do k=1,3
3473                 agg(k,l)=-agg(k,l)
3474                 aggi(k,l)=-aggi(k,l)
3475                 aggi1(k,l)=-aggi1(k,l)
3476                 aggj(k,l)=-aggj(k,l)
3477                 aggj1(k,l)=-aggj1(k,l)
3478               enddo
3479             enddo
3480           else
3481             a22=-a22
3482             a23=-a23
3483             a32=-a32
3484             a33=-a33
3485             do l=1,4
3486               do k=1,3
3487                 agg(k,l)=-agg(k,l)
3488                 aggi(k,l)=-aggi(k,l)
3489                 aggi1(k,l)=-aggi1(k,l)
3490                 aggj(k,l)=-aggj(k,l)
3491                 aggj1(k,l)=-aggj1(k,l)
3492               enddo
3493             enddo 
3494           endif    
3495           ENDIF ! WCORR
3496           IF (wel_loc.gt.0.0d0) THEN
3497 C Contribution to the local-electrostatic energy coming from the i-j pair
3498           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3499      &     +a33*muij(4)
3500 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3501
3502           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3503      &            'eelloc',i,j,eel_loc_ij
3504
3505           eel_loc=eel_loc+eel_loc_ij
3506 C Partial derivatives in virtual-bond dihedral angles gamma
3507           if (i.gt.1)
3508      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3509      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3510      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3511           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3512      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3513      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3514 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3515           do l=1,3
3516             ggg(l)=agg(l,1)*muij(1)+
3517      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3518             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3519             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3520 cgrad            ghalf=0.5d0*ggg(l)
3521 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3522 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3523           enddo
3524 cgrad          do k=i+1,j2
3525 cgrad            do l=1,3
3526 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3527 cgrad            enddo
3528 cgrad          enddo
3529 C Remaining derivatives of eello
3530           do l=1,3
3531             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3532      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3533             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3534      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3535             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3536      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3537             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3538      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3539           enddo
3540           ENDIF
3541 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3542 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3543           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3544      &       .and. num_conti.le.maxconts) then
3545 c            write (iout,*) i,j," entered corr"
3546 C
3547 C Calculate the contact function. The ith column of the array JCONT will 
3548 C contain the numbers of atoms that make contacts with the atom I (of numbers
3549 C greater than I). The arrays FACONT and GACONT will contain the values of
3550 C the contact function and its derivative.
3551 c           r0ij=1.02D0*rpp(iteli,itelj)
3552 c           r0ij=1.11D0*rpp(iteli,itelj)
3553             r0ij=2.20D0*rpp(iteli,itelj)
3554 c           r0ij=1.55D0*rpp(iteli,itelj)
3555             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3556             if (fcont.gt.0.0D0) then
3557               num_conti=num_conti+1
3558               if (num_conti.gt.maxconts) then
3559                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3560      &                         ' will skip next contacts for this conf.'
3561               else
3562                 jcont_hb(num_conti,i)=j
3563 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3564 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3565                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3566      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3567 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3568 C  terms.
3569                 d_cont(num_conti,i)=rij
3570 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3571 C     --- Electrostatic-interaction matrix --- 
3572                 a_chuj(1,1,num_conti,i)=a22
3573                 a_chuj(1,2,num_conti,i)=a23
3574                 a_chuj(2,1,num_conti,i)=a32
3575                 a_chuj(2,2,num_conti,i)=a33
3576 C     --- Gradient of rij
3577                 do kkk=1,3
3578                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3579                 enddo
3580                 kkll=0
3581                 do k=1,2
3582                   do l=1,2
3583                     kkll=kkll+1
3584                     do m=1,3
3585                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3586                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3587                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3588                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3589                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3590                     enddo
3591                   enddo
3592                 enddo
3593                 ENDIF
3594                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3595 C Calculate contact energies
3596                 cosa4=4.0D0*cosa
3597                 wij=cosa-3.0D0*cosb*cosg
3598                 cosbg1=cosb+cosg
3599                 cosbg2=cosb-cosg
3600 c               fac3=dsqrt(-ael6i)/r0ij**3     
3601                 fac3=dsqrt(-ael6i)*r3ij
3602 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3603                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3604                 if (ees0tmp.gt.0) then
3605                   ees0pij=dsqrt(ees0tmp)
3606                 else
3607                   ees0pij=0
3608                 endif
3609 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3610                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3611                 if (ees0tmp.gt.0) then
3612                   ees0mij=dsqrt(ees0tmp)
3613                 else
3614                   ees0mij=0
3615                 endif
3616 c               ees0mij=0.0D0
3617                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3618                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3619 C Diagnostics. Comment out or remove after debugging!
3620 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3621 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3622 c               ees0m(num_conti,i)=0.0D0
3623 C End diagnostics.
3624 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3625 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3626 C Angular derivatives of the contact function
3627                 ees0pij1=fac3/ees0pij 
3628                 ees0mij1=fac3/ees0mij
3629                 fac3p=-3.0D0*fac3*rrmij
3630                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3631                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3632 c               ees0mij1=0.0D0
3633                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3634                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3635                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3636                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3637                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3638                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3639                 ecosap=ecosa1+ecosa2
3640                 ecosbp=ecosb1+ecosb2
3641                 ecosgp=ecosg1+ecosg2
3642                 ecosam=ecosa1-ecosa2
3643                 ecosbm=ecosb1-ecosb2
3644                 ecosgm=ecosg1-ecosg2
3645 C Diagnostics
3646 c               ecosap=ecosa1
3647 c               ecosbp=ecosb1
3648 c               ecosgp=ecosg1
3649 c               ecosam=0.0D0
3650 c               ecosbm=0.0D0
3651 c               ecosgm=0.0D0
3652 C End diagnostics
3653                 facont_hb(num_conti,i)=fcont
3654                 fprimcont=fprimcont/rij
3655 cd              facont_hb(num_conti,i)=1.0D0
3656 C Following line is for diagnostics.
3657 cd              fprimcont=0.0D0
3658                 do k=1,3
3659                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3660                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3661                 enddo
3662                 do k=1,3
3663                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3664                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3665                 enddo
3666                 gggp(1)=gggp(1)+ees0pijp*xj
3667                 gggp(2)=gggp(2)+ees0pijp*yj
3668                 gggp(3)=gggp(3)+ees0pijp*zj
3669                 gggm(1)=gggm(1)+ees0mijp*xj
3670                 gggm(2)=gggm(2)+ees0mijp*yj
3671                 gggm(3)=gggm(3)+ees0mijp*zj
3672 C Derivatives due to the contact function
3673                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3674                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3675                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3676                 do k=1,3
3677 c
3678 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3679 c          following the change of gradient-summation algorithm.
3680 c
3681 cgrad                  ghalfp=0.5D0*gggp(k)
3682 cgrad                  ghalfm=0.5D0*gggm(k)
3683                   gacontp_hb1(k,num_conti,i)=!ghalfp
3684      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3685      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3686                   gacontp_hb2(k,num_conti,i)=!ghalfp
3687      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3688      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3689                   gacontp_hb3(k,num_conti,i)=gggp(k)
3690                   gacontm_hb1(k,num_conti,i)=!ghalfm
3691      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3692      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3693                   gacontm_hb2(k,num_conti,i)=!ghalfm
3694      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3695      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3696                   gacontm_hb3(k,num_conti,i)=gggm(k)
3697                 enddo
3698 C Diagnostics. Comment out or remove after debugging!
3699 cdiag           do k=1,3
3700 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3701 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3702 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3703 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3704 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3705 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3706 cdiag           enddo
3707               ENDIF ! wcorr
3708               endif  ! num_conti.le.maxconts
3709             endif  ! fcont.gt.0
3710           endif    ! j.gt.i+1
3711           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3712             do k=1,4
3713               do l=1,3
3714                 ghalf=0.5d0*agg(l,k)
3715                 aggi(l,k)=aggi(l,k)+ghalf
3716                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3717                 aggj(l,k)=aggj(l,k)+ghalf
3718               enddo
3719             enddo
3720             if (j.eq.nres-1 .and. i.lt.j-2) then
3721               do k=1,4
3722                 do l=1,3
3723                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3724                 enddo
3725               enddo
3726             endif
3727           endif
3728 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3729       return
3730       end
3731 C-----------------------------------------------------------------------------
3732       subroutine eturn3(i,eello_turn3)
3733 C Third- and fourth-order contributions from turns
3734       implicit real*8 (a-h,o-z)
3735       include 'DIMENSIONS'
3736       include 'COMMON.IOUNITS'
3737       include 'COMMON.GEO'
3738       include 'COMMON.VAR'
3739       include 'COMMON.LOCAL'
3740       include 'COMMON.CHAIN'
3741       include 'COMMON.DERIV'
3742       include 'COMMON.INTERACT'
3743       include 'COMMON.CONTACTS'
3744       include 'COMMON.TORSION'
3745       include 'COMMON.VECTORS'
3746       include 'COMMON.FFIELD'
3747       include 'COMMON.CONTROL'
3748       dimension ggg(3)
3749       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3750      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3751      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3752       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3753      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3754       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3755      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3756      &    num_conti,j1,j2
3757       j=i+2
3758 c      write (iout,*) "eturn3",i,j,j1,j2
3759       a_temp(1,1)=a22
3760       a_temp(1,2)=a23
3761       a_temp(2,1)=a32
3762       a_temp(2,2)=a33
3763 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3764 C
3765 C               Third-order contributions
3766 C        
3767 C                 (i+2)o----(i+3)
3768 C                      | |
3769 C                      | |
3770 C                 (i+1)o----i
3771 C
3772 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3773 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3774         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3775         call transpose2(auxmat(1,1),auxmat1(1,1))
3776         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3777         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3778         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3779      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3780 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3781 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3782 cd     &    ' eello_turn3_num',4*eello_turn3_num
3783 C Derivatives in gamma(i)
3784         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3785         call transpose2(auxmat2(1,1),auxmat3(1,1))
3786         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3787         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3788 C Derivatives in gamma(i+1)
3789         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3790         call transpose2(auxmat2(1,1),auxmat3(1,1))
3791         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3792         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3793      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3794 C Cartesian derivatives
3795         do l=1,3
3796 c            ghalf1=0.5d0*agg(l,1)
3797 c            ghalf2=0.5d0*agg(l,2)
3798 c            ghalf3=0.5d0*agg(l,3)
3799 c            ghalf4=0.5d0*agg(l,4)
3800           a_temp(1,1)=aggi(l,1)!+ghalf1
3801           a_temp(1,2)=aggi(l,2)!+ghalf2
3802           a_temp(2,1)=aggi(l,3)!+ghalf3
3803           a_temp(2,2)=aggi(l,4)!+ghalf4
3804           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3805           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3806      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3807           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3808           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3809           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3810           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3811           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3812           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3813      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3814           a_temp(1,1)=aggj(l,1)!+ghalf1
3815           a_temp(1,2)=aggj(l,2)!+ghalf2
3816           a_temp(2,1)=aggj(l,3)!+ghalf3
3817           a_temp(2,2)=aggj(l,4)!+ghalf4
3818           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3819           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3820      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3821           a_temp(1,1)=aggj1(l,1)
3822           a_temp(1,2)=aggj1(l,2)
3823           a_temp(2,1)=aggj1(l,3)
3824           a_temp(2,2)=aggj1(l,4)
3825           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3826           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3827      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3828         enddo
3829       return
3830       end
3831 C-------------------------------------------------------------------------------
3832       subroutine eturn4(i,eello_turn4)
3833 C Third- and fourth-order contributions from turns
3834       implicit real*8 (a-h,o-z)
3835       include 'DIMENSIONS'
3836       include 'COMMON.IOUNITS'
3837       include 'COMMON.GEO'
3838       include 'COMMON.VAR'
3839       include 'COMMON.LOCAL'
3840       include 'COMMON.CHAIN'
3841       include 'COMMON.DERIV'
3842       include 'COMMON.INTERACT'
3843       include 'COMMON.CONTACTS'
3844       include 'COMMON.TORSION'
3845       include 'COMMON.VECTORS'
3846       include 'COMMON.FFIELD'
3847       include 'COMMON.CONTROL'
3848       dimension ggg(3)
3849       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3850      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3851      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3852       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3853      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3854       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3855      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3856      &    num_conti,j1,j2
3857       j=i+3
3858 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3859 C
3860 C               Fourth-order contributions
3861 C        
3862 C                 (i+3)o----(i+4)
3863 C                     /  |
3864 C               (i+2)o   |
3865 C                     \  |
3866 C                 (i+1)o----i
3867 C
3868 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3869 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3870 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3871         a_temp(1,1)=a22
3872         a_temp(1,2)=a23
3873         a_temp(2,1)=a32
3874         a_temp(2,2)=a33
3875         iti1=itortyp(itype(i+1))
3876         iti2=itortyp(itype(i+2))
3877         iti3=itortyp(itype(i+3))
3878 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3879         call transpose2(EUg(1,1,i+1),e1t(1,1))
3880         call transpose2(Eug(1,1,i+2),e2t(1,1))
3881         call transpose2(Eug(1,1,i+3),e3t(1,1))
3882         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3883         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3884         s1=scalar2(b1(1,iti2),auxvec(1))
3885         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3886         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3887         s2=scalar2(b1(1,iti1),auxvec(1))
3888         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3889         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3890         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3891         eello_turn4=eello_turn4-(s1+s2+s3)
3892         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3893      &      'eturn4',i,j,-(s1+s2+s3)
3894 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3895 cd     &    ' eello_turn4_num',8*eello_turn4_num
3896 C Derivatives in gamma(i)
3897         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3898         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3899         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3900         s1=scalar2(b1(1,iti2),auxvec(1))
3901         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3902         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3904 C Derivatives in gamma(i+1)
3905         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3906         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3907         s2=scalar2(b1(1,iti1),auxvec(1))
3908         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3909         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3910         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3911         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3912 C Derivatives in gamma(i+2)
3913         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3914         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3915         s1=scalar2(b1(1,iti2),auxvec(1))
3916         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3917         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3920         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3923 C Cartesian derivatives
3924 C Derivatives of this turn contributions in DC(i+2)
3925         if (j.lt.nres-1) then
3926           do l=1,3
3927             a_temp(1,1)=agg(l,1)
3928             a_temp(1,2)=agg(l,2)
3929             a_temp(2,1)=agg(l,3)
3930             a_temp(2,2)=agg(l,4)
3931             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3932             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3933             s1=scalar2(b1(1,iti2),auxvec(1))
3934             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3935             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3936             s2=scalar2(b1(1,iti1),auxvec(1))
3937             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3938             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3939             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3940             ggg(l)=-(s1+s2+s3)
3941             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3942           enddo
3943         endif
3944 C Remaining derivatives of this turn contribution
3945         do l=1,3
3946           a_temp(1,1)=aggi(l,1)
3947           a_temp(1,2)=aggi(l,2)
3948           a_temp(2,1)=aggi(l,3)
3949           a_temp(2,2)=aggi(l,4)
3950           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3951           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3952           s1=scalar2(b1(1,iti2),auxvec(1))
3953           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3954           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3955           s2=scalar2(b1(1,iti1),auxvec(1))
3956           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3957           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3958           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3959           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3960           a_temp(1,1)=aggi1(l,1)
3961           a_temp(1,2)=aggi1(l,2)
3962           a_temp(2,1)=aggi1(l,3)
3963           a_temp(2,2)=aggi1(l,4)
3964           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3965           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3966           s1=scalar2(b1(1,iti2),auxvec(1))
3967           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3968           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3969           s2=scalar2(b1(1,iti1),auxvec(1))
3970           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3971           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3972           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3973           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3974           a_temp(1,1)=aggj(l,1)
3975           a_temp(1,2)=aggj(l,2)
3976           a_temp(2,1)=aggj(l,3)
3977           a_temp(2,2)=aggj(l,4)
3978           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3979           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3980           s1=scalar2(b1(1,iti2),auxvec(1))
3981           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3982           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3983           s2=scalar2(b1(1,iti1),auxvec(1))
3984           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3985           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3986           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3987           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3988           a_temp(1,1)=aggj1(l,1)
3989           a_temp(1,2)=aggj1(l,2)
3990           a_temp(2,1)=aggj1(l,3)
3991           a_temp(2,2)=aggj1(l,4)
3992           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3993           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3994           s1=scalar2(b1(1,iti2),auxvec(1))
3995           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3996           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3997           s2=scalar2(b1(1,iti1),auxvec(1))
3998           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3999           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4000           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4001 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4002           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4003         enddo
4004       return
4005       end
4006 C-----------------------------------------------------------------------------
4007       subroutine vecpr(u,v,w)
4008       implicit real*8(a-h,o-z)
4009       dimension u(3),v(3),w(3)
4010       w(1)=u(2)*v(3)-u(3)*v(2)
4011       w(2)=-u(1)*v(3)+u(3)*v(1)
4012       w(3)=u(1)*v(2)-u(2)*v(1)
4013       return
4014       end
4015 C-----------------------------------------------------------------------------
4016       subroutine unormderiv(u,ugrad,unorm,ungrad)
4017 C This subroutine computes the derivatives of a normalized vector u, given
4018 C the derivatives computed without normalization conditions, ugrad. Returns
4019 C ungrad.
4020       implicit none
4021       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4022       double precision vec(3)
4023       double precision scalar
4024       integer i,j
4025 c      write (2,*) 'ugrad',ugrad
4026 c      write (2,*) 'u',u
4027       do i=1,3
4028         vec(i)=scalar(ugrad(1,i),u(1))
4029       enddo
4030 c      write (2,*) 'vec',vec
4031       do i=1,3
4032         do j=1,3
4033           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4034         enddo
4035       enddo
4036 c      write (2,*) 'ungrad',ungrad
4037       return
4038       end
4039 C-----------------------------------------------------------------------------
4040       subroutine escp_soft_sphere(evdw2,evdw2_14)
4041 C
4042 C This subroutine calculates the excluded-volume interaction energy between
4043 C peptide-group centers and side chains and its gradient in virtual-bond and
4044 C side-chain vectors.
4045 C
4046       implicit real*8 (a-h,o-z)
4047       include 'DIMENSIONS'
4048       include 'COMMON.GEO'
4049       include 'COMMON.VAR'
4050       include 'COMMON.LOCAL'
4051       include 'COMMON.CHAIN'
4052       include 'COMMON.DERIV'
4053       include 'COMMON.INTERACT'
4054       include 'COMMON.FFIELD'
4055       include 'COMMON.IOUNITS'
4056       include 'COMMON.CONTROL'
4057       dimension ggg(3)
4058       evdw2=0.0D0
4059       evdw2_14=0.0d0
4060       r0_scp=4.5d0
4061 cd    print '(a)','Enter ESCP'
4062 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4063       do i=iatscp_s,iatscp_e
4064         iteli=itel(i)
4065         xi=0.5D0*(c(1,i)+c(1,i+1))
4066         yi=0.5D0*(c(2,i)+c(2,i+1))
4067         zi=0.5D0*(c(3,i)+c(3,i+1))
4068
4069         do iint=1,nscp_gr(i)
4070
4071         do j=iscpstart(i,iint),iscpend(i,iint)
4072           itypj=itype(j)
4073 C Uncomment following three lines for SC-p interactions
4074 c         xj=c(1,nres+j)-xi
4075 c         yj=c(2,nres+j)-yi
4076 c         zj=c(3,nres+j)-zi
4077 C Uncomment following three lines for Ca-p interactions
4078           xj=c(1,j)-xi
4079           yj=c(2,j)-yi
4080           zj=c(3,j)-zi
4081           rij=xj*xj+yj*yj+zj*zj
4082           r0ij=r0_scp
4083           r0ijsq=r0ij*r0ij
4084           if (rij.lt.r0ijsq) then
4085             evdwij=0.25d0*(rij-r0ijsq)**2
4086             fac=rij-r0ijsq
4087           else
4088             evdwij=0.0d0
4089             fac=0.0d0
4090           endif 
4091           evdw2=evdw2+evdwij
4092 C
4093 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4094 C
4095           ggg(1)=xj*fac
4096           ggg(2)=yj*fac
4097           ggg(3)=zj*fac
4098 cgrad          if (j.lt.i) then
4099 cd          write (iout,*) 'j<i'
4100 C Uncomment following three lines for SC-p interactions
4101 c           do k=1,3
4102 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4103 c           enddo
4104 cgrad          else
4105 cd          write (iout,*) 'j>i'
4106 cgrad            do k=1,3
4107 cgrad              ggg(k)=-ggg(k)
4108 C Uncomment following line for SC-p interactions
4109 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4110 cgrad            enddo
4111 cgrad          endif
4112 cgrad          do k=1,3
4113 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4114 cgrad          enddo
4115 cgrad          kstart=min0(i+1,j)
4116 cgrad          kend=max0(i-1,j-1)
4117 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4118 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4119 cgrad          do k=kstart,kend
4120 cgrad            do l=1,3
4121 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4122 cgrad            enddo
4123 cgrad          enddo
4124           do k=1,3
4125             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4126             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4127           enddo
4128         enddo
4129
4130         enddo ! iint
4131       enddo ! i
4132       return
4133       end
4134 C-----------------------------------------------------------------------------
4135       subroutine escp(evdw2,evdw2_14)
4136 C
4137 C This subroutine calculates the excluded-volume interaction energy between
4138 C peptide-group centers and side chains and its gradient in virtual-bond and
4139 C side-chain vectors.
4140 C
4141       implicit real*8 (a-h,o-z)
4142       include 'DIMENSIONS'
4143       include 'COMMON.GEO'
4144       include 'COMMON.VAR'
4145       include 'COMMON.LOCAL'
4146       include 'COMMON.CHAIN'
4147       include 'COMMON.DERIV'
4148       include 'COMMON.INTERACT'
4149       include 'COMMON.FFIELD'
4150       include 'COMMON.IOUNITS'
4151       include 'COMMON.CONTROL'
4152       dimension ggg(3)
4153       evdw2=0.0D0
4154       evdw2_14=0.0d0
4155 cd    print '(a)','Enter ESCP'
4156 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4157       do i=iatscp_s,iatscp_e
4158         iteli=itel(i)
4159         xi=0.5D0*(c(1,i)+c(1,i+1))
4160         yi=0.5D0*(c(2,i)+c(2,i+1))
4161         zi=0.5D0*(c(3,i)+c(3,i+1))
4162
4163         do iint=1,nscp_gr(i)
4164
4165         do j=iscpstart(i,iint),iscpend(i,iint)
4166           itypj=itype(j)
4167 C Uncomment following three lines for SC-p interactions
4168 c         xj=c(1,nres+j)-xi
4169 c         yj=c(2,nres+j)-yi
4170 c         zj=c(3,nres+j)-zi
4171 C Uncomment following three lines for Ca-p interactions
4172           xj=c(1,j)-xi
4173           yj=c(2,j)-yi
4174           zj=c(3,j)-zi
4175           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4176           fac=rrij**expon2
4177           e1=fac*fac*aad(itypj,iteli)
4178           e2=fac*bad(itypj,iteli)
4179           if (iabs(j-i) .le. 2) then
4180             e1=scal14*e1
4181             e2=scal14*e2
4182             evdw2_14=evdw2_14+e1+e2
4183           endif
4184           evdwij=e1+e2
4185           evdw2=evdw2+evdwij
4186           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4187      &        'evdw2',i,j,evdwij
4188 C
4189 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4190 C
4191           fac=-(evdwij+e1)*rrij
4192           ggg(1)=xj*fac
4193           ggg(2)=yj*fac
4194           ggg(3)=zj*fac
4195 cgrad          if (j.lt.i) then
4196 cd          write (iout,*) 'j<i'
4197 C Uncomment following three lines for SC-p interactions
4198 c           do k=1,3
4199 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4200 c           enddo
4201 cgrad          else
4202 cd          write (iout,*) 'j>i'
4203 cgrad            do k=1,3
4204 cgrad              ggg(k)=-ggg(k)
4205 C Uncomment following line for SC-p interactions
4206 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4207 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4208 cgrad            enddo
4209 cgrad          endif
4210 cgrad          do k=1,3
4211 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4212 cgrad          enddo
4213 cgrad          kstart=min0(i+1,j)
4214 cgrad          kend=max0(i-1,j-1)
4215 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4216 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4217 cgrad          do k=kstart,kend
4218 cgrad            do l=1,3
4219 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4220 cgrad            enddo
4221 cgrad          enddo
4222           do k=1,3
4223             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4224             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4225           enddo
4226         enddo
4227
4228         enddo ! iint
4229       enddo ! i
4230       do i=1,nct
4231         do j=1,3
4232           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4233           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4234           gradx_scp(j,i)=expon*gradx_scp(j,i)
4235         enddo
4236       enddo
4237 C******************************************************************************
4238 C
4239 C                              N O T E !!!
4240 C
4241 C To save time the factor EXPON has been extracted from ALL components
4242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4243 C use!
4244 C
4245 C******************************************************************************
4246       return
4247       end
4248 C--------------------------------------------------------------------------
4249       subroutine edis(ehpb)
4250
4251 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4252 C
4253       implicit real*8 (a-h,o-z)
4254       include 'DIMENSIONS'
4255       include 'COMMON.SBRIDGE'
4256       include 'COMMON.CHAIN'
4257       include 'COMMON.DERIV'
4258       include 'COMMON.VAR'
4259       include 'COMMON.INTERACT'
4260       include 'COMMON.IOUNITS'
4261       dimension ggg(3)
4262       ehpb=0.0D0
4263 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4264 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4265       if (link_end.eq.0) return
4266       do i=link_start,link_end
4267 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4268 C CA-CA distance used in regularization of structure.
4269         ii=ihpb(i)
4270         jj=jhpb(i)
4271 C iii and jjj point to the residues for which the distance is assigned.
4272         if (ii.gt.nres) then
4273           iii=ii-nres
4274           jjj=jj-nres 
4275         else
4276           iii=ii
4277           jjj=jj
4278         endif
4279 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4280 c     &    dhpb(i),dhpb1(i),forcon(i)
4281 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4282 C    distance and angle dependent SS bond potential.
4283 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4284 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4285         if (.not.dyn_ss .and. i.le.nss) then
4286 C 15/02/13 CC dynamic SSbond - additional check
4287          if (ii.gt.nres 
4288      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4289           call ssbond_ene(iii,jjj,eij)
4290           ehpb=ehpb+2*eij
4291          endif
4292 cd          write (iout,*) "eij",eij
4293         else if (ii.gt.nres .and. jj.gt.nres) then
4294 c Restraints from contact prediction
4295           dd=dist(ii,jj)
4296           if (dhpb1(i).gt.0.0d0) then
4297             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4298             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4299 c            write (iout,*) "beta nmr",
4300 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4301           else
4302             dd=dist(ii,jj)
4303             rdis=dd-dhpb(i)
4304 C Get the force constant corresponding to this distance.
4305             waga=forcon(i)
4306 C Calculate the contribution to energy.
4307             ehpb=ehpb+waga*rdis*rdis
4308 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4309 C
4310 C Evaluate gradient.
4311 C
4312             fac=waga*rdis/dd
4313           endif  
4314           do j=1,3
4315             ggg(j)=fac*(c(j,jj)-c(j,ii))
4316           enddo
4317           do j=1,3
4318             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4319             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4320           enddo
4321           do k=1,3
4322             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4323             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4324           enddo
4325         else
4326 C Calculate the distance between the two points and its difference from the
4327 C target distance.
4328           dd=dist(ii,jj)
4329           if (dhpb1(i).gt.0.0d0) then
4330             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4331             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4332 c            write (iout,*) "alph nmr",
4333 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4334           else
4335             rdis=dd-dhpb(i)
4336 C Get the force constant corresponding to this distance.
4337             waga=forcon(i)
4338 C Calculate the contribution to energy.
4339             ehpb=ehpb+waga*rdis*rdis
4340 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4341 C
4342 C Evaluate gradient.
4343 C
4344             fac=waga*rdis/dd
4345           endif
4346 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4347 cd   &   ' waga=',waga,' fac=',fac
4348             do j=1,3
4349               ggg(j)=fac*(c(j,jj)-c(j,ii))
4350             enddo
4351 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4352 C If this is a SC-SC distance, we need to calculate the contributions to the
4353 C Cartesian gradient in the SC vectors (ghpbx).
4354           if (iii.lt.ii) then
4355           do j=1,3
4356             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4357             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4358           enddo
4359           endif
4360 cgrad        do j=iii,jjj-1
4361 cgrad          do k=1,3
4362 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4363 cgrad          enddo
4364 cgrad        enddo
4365           do k=1,3
4366             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4367             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4368           enddo
4369         endif
4370       enddo
4371       ehpb=0.5D0*ehpb
4372       return
4373       end
4374 C--------------------------------------------------------------------------
4375       subroutine ssbond_ene(i,j,eij)
4376
4377 C Calculate the distance and angle dependent SS-bond potential energy
4378 C using a free-energy function derived based on RHF/6-31G** ab initio
4379 C calculations of diethyl disulfide.
4380 C
4381 C A. Liwo and U. Kozlowska, 11/24/03
4382 C
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.SBRIDGE'
4386       include 'COMMON.CHAIN'
4387       include 'COMMON.DERIV'
4388       include 'COMMON.LOCAL'
4389       include 'COMMON.INTERACT'
4390       include 'COMMON.VAR'
4391       include 'COMMON.IOUNITS'
4392       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4393       itypi=itype(i)
4394       xi=c(1,nres+i)
4395       yi=c(2,nres+i)
4396       zi=c(3,nres+i)
4397       dxi=dc_norm(1,nres+i)
4398       dyi=dc_norm(2,nres+i)
4399       dzi=dc_norm(3,nres+i)
4400 c      dsci_inv=dsc_inv(itypi)
4401       dsci_inv=vbld_inv(nres+i)
4402       itypj=itype(j)
4403 c      dscj_inv=dsc_inv(itypj)
4404       dscj_inv=vbld_inv(nres+j)
4405       xj=c(1,nres+j)-xi
4406       yj=c(2,nres+j)-yi
4407       zj=c(3,nres+j)-zi
4408       dxj=dc_norm(1,nres+j)
4409       dyj=dc_norm(2,nres+j)
4410       dzj=dc_norm(3,nres+j)
4411       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4412       rij=dsqrt(rrij)
4413       erij(1)=xj*rij
4414       erij(2)=yj*rij
4415       erij(3)=zj*rij
4416       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4417       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4418       om12=dxi*dxj+dyi*dyj+dzi*dzj
4419       do k=1,3
4420         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4421         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4422       enddo
4423       rij=1.0d0/rij
4424       deltad=rij-d0cm
4425       deltat1=1.0d0-om1
4426       deltat2=1.0d0+om2
4427       deltat12=om2-om1+2.0d0
4428       cosphi=om12-om1*om2
4429       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4430      &  +akct*deltad*deltat12+ebr
4431      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4432 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4433 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4434 c     &  " deltat12",deltat12," eij",eij 
4435       ed=2*akcm*deltad+akct*deltat12
4436       pom1=akct*deltad
4437       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4438       eom1=-2*akth*deltat1-pom1-om2*pom2
4439       eom2= 2*akth*deltat2+pom1-om1*pom2
4440       eom12=pom2
4441       do k=1,3
4442         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4443         ghpbx(k,i)=ghpbx(k,i)-ggk
4444      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4445      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4446         ghpbx(k,j)=ghpbx(k,j)+ggk
4447      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4448      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4449         ghpbc(k,i)=ghpbc(k,i)-ggk
4450         ghpbc(k,j)=ghpbc(k,j)+ggk
4451       enddo
4452 C
4453 C Calculate the components of the gradient in DC and X
4454 C
4455 cgrad      do k=i,j-1
4456 cgrad        do l=1,3
4457 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4458 cgrad        enddo
4459 cgrad      enddo
4460       return
4461       end
4462 C--------------------------------------------------------------------------
4463       subroutine ebond(estr)
4464 c
4465 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4466 c
4467       implicit real*8 (a-h,o-z)
4468       include 'DIMENSIONS'
4469       include 'COMMON.LOCAL'
4470       include 'COMMON.GEO'
4471       include 'COMMON.INTERACT'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.VAR'
4474       include 'COMMON.CHAIN'
4475       include 'COMMON.IOUNITS'
4476       include 'COMMON.NAMES'
4477       include 'COMMON.FFIELD'
4478       include 'COMMON.CONTROL'
4479       include 'COMMON.SETUP'
4480       double precision u(3),ud(3)
4481       estr=0.0d0
4482       do i=ibondp_start,ibondp_end
4483         diff = vbld(i)-vbldp0
4484 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4485         estr=estr+diff*diff
4486         do j=1,3
4487           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4488         enddo
4489 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4490       enddo
4491       estr=0.5d0*AKP*estr
4492 c
4493 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4494 c
4495       do i=ibond_start,ibond_end
4496         iti=itype(i)
4497         if (iti.ne.10) then
4498           nbi=nbondterm(iti)
4499           if (nbi.eq.1) then
4500             diff=vbld(i+nres)-vbldsc0(1,iti)
4501 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4502 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4503             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4504             do j=1,3
4505               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4506             enddo
4507           else
4508             do j=1,nbi
4509               diff=vbld(i+nres)-vbldsc0(j,iti) 
4510               ud(j)=aksc(j,iti)*diff
4511               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4512             enddo
4513             uprod=u(1)
4514             do j=2,nbi
4515               uprod=uprod*u(j)
4516             enddo
4517             usum=0.0d0
4518             usumsqder=0.0d0
4519             do j=1,nbi
4520               uprod1=1.0d0
4521               uprod2=1.0d0
4522               do k=1,nbi
4523                 if (k.ne.j) then
4524                   uprod1=uprod1*u(k)
4525                   uprod2=uprod2*u(k)*u(k)
4526                 endif
4527               enddo
4528               usum=usum+uprod1
4529               usumsqder=usumsqder+ud(j)*uprod2   
4530             enddo
4531             estr=estr+uprod/usum
4532             do j=1,3
4533              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4534             enddo
4535           endif
4536         endif
4537       enddo
4538       return
4539       end 
4540 #ifdef CRYST_THETA
4541 C--------------------------------------------------------------------------
4542       subroutine ebend(etheta)
4543 C
4544 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4545 C angles gamma and its derivatives in consecutive thetas and gammas.
4546 C
4547       implicit real*8 (a-h,o-z)
4548       include 'DIMENSIONS'
4549       include 'COMMON.LOCAL'
4550       include 'COMMON.GEO'
4551       include 'COMMON.INTERACT'
4552       include 'COMMON.DERIV'
4553       include 'COMMON.VAR'
4554       include 'COMMON.CHAIN'
4555       include 'COMMON.IOUNITS'
4556       include 'COMMON.NAMES'
4557       include 'COMMON.FFIELD'
4558       include 'COMMON.CONTROL'
4559       common /calcthet/ term1,term2,termm,diffak,ratak,
4560      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4561      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4562       double precision y(2),z(2)
4563       delta=0.02d0*pi
4564 c      time11=dexp(-2*time)
4565 c      time12=1.0d0
4566       etheta=0.0D0
4567 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4568       do i=ithet_start,ithet_end
4569 C Zero the energy function and its derivative at 0 or pi.
4570         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4571         it=itype(i-1)
4572         if (i.gt.3) then
4573 #ifdef OSF
4574           phii=phi(i)
4575           if (phii.ne.phii) phii=150.0
4576 #else
4577           phii=phi(i)
4578 #endif
4579           y(1)=dcos(phii)
4580           y(2)=dsin(phii)
4581         else 
4582           y(1)=0.0D0
4583           y(2)=0.0D0
4584         endif
4585         if (i.lt.nres) then
4586 #ifdef OSF
4587           phii1=phi(i+1)
4588           if (phii1.ne.phii1) phii1=150.0
4589           phii1=pinorm(phii1)
4590           z(1)=cos(phii1)
4591 #else
4592           phii1=phi(i+1)
4593           z(1)=dcos(phii1)
4594 #endif
4595           z(2)=dsin(phii1)
4596         else
4597           z(1)=0.0D0
4598           z(2)=0.0D0
4599         endif  
4600 C Calculate the "mean" value of theta from the part of the distribution
4601 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4602 C In following comments this theta will be referred to as t_c.
4603         thet_pred_mean=0.0d0
4604         do k=1,2
4605           athetk=athet(k,it)
4606           bthetk=bthet(k,it)
4607           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4608         enddo
4609         dthett=thet_pred_mean*ssd
4610         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4611 C Derivatives of the "mean" values in gamma1 and gamma2.
4612         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4613         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4614         if (theta(i).gt.pi-delta) then
4615           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4616      &         E_tc0)
4617           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4618           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4619           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4620      &        E_theta)
4621           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4622      &        E_tc)
4623         else if (theta(i).lt.delta) then
4624           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4625           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4626           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4627      &        E_theta)
4628           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4630      &        E_tc)
4631         else
4632           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4633      &        E_theta,E_tc)
4634         endif
4635         etheta=etheta+ethetai
4636         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4637      &      'ebend',i,ethetai
4638         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4639         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4640         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4641       enddo
4642 C Ufff.... We've done all this!!! 
4643       return
4644       end
4645 C---------------------------------------------------------------------------
4646       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4647      &     E_tc)
4648       implicit real*8 (a-h,o-z)
4649       include 'DIMENSIONS'
4650       include 'COMMON.LOCAL'
4651       include 'COMMON.IOUNITS'
4652       common /calcthet/ term1,term2,termm,diffak,ratak,
4653      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4654      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4655 C Calculate the contributions to both Gaussian lobes.
4656 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4657 C The "polynomial part" of the "standard deviation" of this part of 
4658 C the distribution.
4659         sig=polthet(3,it)
4660         do j=2,0,-1
4661           sig=sig*thet_pred_mean+polthet(j,it)
4662         enddo
4663 C Derivative of the "interior part" of the "standard deviation of the" 
4664 C gamma-dependent Gaussian lobe in t_c.
4665         sigtc=3*polthet(3,it)
4666         do j=2,1,-1
4667           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4668         enddo
4669         sigtc=sig*sigtc
4670 C Set the parameters of both Gaussian lobes of the distribution.
4671 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4672         fac=sig*sig+sigc0(it)
4673         sigcsq=fac+fac
4674         sigc=1.0D0/sigcsq
4675 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4676         sigsqtc=-4.0D0*sigcsq*sigtc
4677 c       print *,i,sig,sigtc,sigsqtc
4678 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4679         sigtc=-sigtc/(fac*fac)
4680 C Following variable is sigma(t_c)**(-2)
4681         sigcsq=sigcsq*sigcsq
4682         sig0i=sig0(it)
4683         sig0inv=1.0D0/sig0i**2
4684         delthec=thetai-thet_pred_mean
4685         delthe0=thetai-theta0i
4686         term1=-0.5D0*sigcsq*delthec*delthec
4687         term2=-0.5D0*sig0inv*delthe0*delthe0
4688 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4689 C NaNs in taking the logarithm. We extract the largest exponent which is added
4690 C to the energy (this being the log of the distribution) at the end of energy
4691 C term evaluation for this virtual-bond angle.
4692         if (term1.gt.term2) then
4693           termm=term1
4694           term2=dexp(term2-termm)
4695           term1=1.0d0
4696         else
4697           termm=term2
4698           term1=dexp(term1-termm)
4699           term2=1.0d0
4700         endif
4701 C The ratio between the gamma-independent and gamma-dependent lobes of
4702 C the distribution is a Gaussian function of thet_pred_mean too.
4703         diffak=gthet(2,it)-thet_pred_mean
4704         ratak=diffak/gthet(3,it)**2
4705         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4706 C Let's differentiate it in thet_pred_mean NOW.
4707         aktc=ak*ratak
4708 C Now put together the distribution terms to make complete distribution.
4709         termexp=term1+ak*term2
4710         termpre=sigc+ak*sig0i
4711 C Contribution of the bending energy from this theta is just the -log of
4712 C the sum of the contributions from the two lobes and the pre-exponential
4713 C factor. Simple enough, isn't it?
4714         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4715 C NOW the derivatives!!!
4716 C 6/6/97 Take into account the deformation.
4717         E_theta=(delthec*sigcsq*term1
4718      &       +ak*delthe0*sig0inv*term2)/termexp
4719         E_tc=((sigtc+aktc*sig0i)/termpre
4720      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4721      &       aktc*term2)/termexp)
4722       return
4723       end
4724 c-----------------------------------------------------------------------------
4725       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4726       implicit real*8 (a-h,o-z)
4727       include 'DIMENSIONS'
4728       include 'COMMON.LOCAL'
4729       include 'COMMON.IOUNITS'
4730       common /calcthet/ term1,term2,termm,diffak,ratak,
4731      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4732      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4733       delthec=thetai-thet_pred_mean
4734       delthe0=thetai-theta0i
4735 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4736       t3 = thetai-thet_pred_mean
4737       t6 = t3**2
4738       t9 = term1
4739       t12 = t3*sigcsq
4740       t14 = t12+t6*sigsqtc
4741       t16 = 1.0d0
4742       t21 = thetai-theta0i
4743       t23 = t21**2
4744       t26 = term2
4745       t27 = t21*t26
4746       t32 = termexp
4747       t40 = t32**2
4748       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4749      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4750      & *(-t12*t9-ak*sig0inv*t27)
4751       return
4752       end
4753 #else
4754 C--------------------------------------------------------------------------
4755       subroutine ebend(etheta)
4756 C
4757 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4758 C angles gamma and its derivatives in consecutive thetas and gammas.
4759 C ab initio-derived potentials from 
4760 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4761 C
4762       implicit real*8 (a-h,o-z)
4763       include 'DIMENSIONS'
4764       include 'COMMON.LOCAL'
4765       include 'COMMON.GEO'
4766       include 'COMMON.INTERACT'
4767       include 'COMMON.DERIV'
4768       include 'COMMON.VAR'
4769       include 'COMMON.CHAIN'
4770       include 'COMMON.IOUNITS'
4771       include 'COMMON.NAMES'
4772       include 'COMMON.FFIELD'
4773       include 'COMMON.CONTROL'
4774       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4775      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4776      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4777      & sinph1ph2(maxdouble,maxdouble)
4778       logical lprn /.false./, lprn1 /.false./
4779       etheta=0.0D0
4780       do i=ithet_start,ithet_end
4781         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4782      &(itype(i).eq.ntyp1)) cycle
4783         dethetai=0.0d0
4784         dephii=0.0d0
4785         dephii1=0.0d0
4786         theti2=0.5d0*theta(i)
4787         ityp2=ithetyp(itype(i-1))
4788         do k=1,nntheterm
4789           coskt(k)=dcos(k*theti2)
4790           sinkt(k)=dsin(k*theti2)
4791         enddo
4792 C        if (i.gt.3) then
4793          if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4794 #ifdef OSF
4795           phii=phi(i)
4796           if (phii.ne.phii) phii=150.0
4797 #else
4798           phii=phi(i)
4799 #endif
4800           ityp1=ithetyp(itype(i-2))
4801           do k=1,nsingle
4802             cosph1(k)=dcos(k*phii)
4803             sinph1(k)=dsin(k*phii)
4804           enddo
4805         else
4806           phii=0.0d0
4807           ityp1=ithetyp(itype(i-2))
4808           do k=1,nsingle
4809             cosph1(k)=0.0d0
4810             sinph1(k)=0.0d0
4811           enddo 
4812         endif
4813         if ((i.lt.nres).and. itype(i+1).ne.ntyp1) then
4814 #ifdef OSF
4815           phii1=phi(i+1)
4816           if (phii1.ne.phii1) phii1=150.0
4817           phii1=pinorm(phii1)
4818 #else
4819           phii1=phi(i+1)
4820 #endif
4821           ityp3=ithetyp(itype(i))
4822           do k=1,nsingle
4823             cosph2(k)=dcos(k*phii1)
4824             sinph2(k)=dsin(k*phii1)
4825           enddo
4826         else
4827           phii1=0.0d0
4828           ityp3=ithetyp(itype(i))
4829           do k=1,nsingle
4830             cosph2(k)=0.0d0
4831             sinph2(k)=0.0d0
4832           enddo
4833         endif  
4834         ethetai=aa0thet(ityp1,ityp2,ityp3)
4835         do k=1,ndouble
4836           do l=1,k-1
4837             ccl=cosph1(l)*cosph2(k-l)
4838             ssl=sinph1(l)*sinph2(k-l)
4839             scl=sinph1(l)*cosph2(k-l)
4840             csl=cosph1(l)*sinph2(k-l)
4841             cosph1ph2(l,k)=ccl-ssl
4842             cosph1ph2(k,l)=ccl+ssl
4843             sinph1ph2(l,k)=scl+csl
4844             sinph1ph2(k,l)=scl-csl
4845           enddo
4846         enddo
4847         if (lprn) then
4848         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4849      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4850         write (iout,*) "coskt and sinkt"
4851         do k=1,nntheterm
4852           write (iout,*) k,coskt(k),sinkt(k)
4853         enddo
4854         endif
4855         do k=1,ntheterm
4856           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4857           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4858      &      *coskt(k)
4859           if (lprn)
4860      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4861      &     " ethetai",ethetai
4862         enddo
4863         if (lprn) then
4864         write (iout,*) "cosph and sinph"
4865         do k=1,nsingle
4866           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4867         enddo
4868         write (iout,*) "cosph1ph2 and sinph2ph2"
4869         do k=2,ndouble
4870           do l=1,k-1
4871             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4872      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4873           enddo
4874         enddo
4875         write(iout,*) "ethetai",ethetai
4876         endif
4877         do m=1,ntheterm2
4878           do k=1,nsingle
4879             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4880      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4881      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4882      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4883             ethetai=ethetai+sinkt(m)*aux
4884             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4885             dephii=dephii+k*sinkt(m)*(
4886      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4887      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4888             dephii1=dephii1+k*sinkt(m)*(
4889      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4890      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4891             if (lprn)
4892      &      write (iout,*) "m",m," k",k," bbthet",
4893      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4894      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4895      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4896      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4897           enddo
4898         enddo
4899         if (lprn)
4900      &  write(iout,*) "ethetai",ethetai
4901         do m=1,ntheterm3
4902           do k=2,ndouble
4903             do l=1,k-1
4904               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4905      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4906      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4907      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4908               ethetai=ethetai+sinkt(m)*aux
4909               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4910               dephii=dephii+l*sinkt(m)*(
4911      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4912      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4913      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4914      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4915               dephii1=dephii1+(k-l)*sinkt(m)*(
4916      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4917      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4918      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4919      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4920               if (lprn) then
4921               write (iout,*) "m",m," k",k," l",l," ffthet",
4922      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4923      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4924      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4925      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4926               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4927      &            cosph1ph2(k,l)*sinkt(m),
4928      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4929               endif
4930             enddo
4931           enddo
4932         enddo
4933 10      continue
4934 c        lprn1=.true.
4935         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
4936      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
4937      &   phii1*rad2deg,ethetai
4938 c        lprn1=.false.
4939         etheta=etheta+ethetai
4940         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4941         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4942         gloc(nphi+i-2,icg)=wang*dethetai
4943       enddo
4944       return
4945       end
4946 #endif
4947 #ifdef CRYST_SC
4948 c-----------------------------------------------------------------------------
4949       subroutine esc(escloc)
4950 C Calculate the local energy of a side chain and its derivatives in the
4951 C corresponding virtual-bond valence angles THETA and the spherical angles 
4952 C ALPHA and OMEGA.
4953       implicit real*8 (a-h,o-z)
4954       include 'DIMENSIONS'
4955       include 'COMMON.GEO'
4956       include 'COMMON.LOCAL'
4957       include 'COMMON.VAR'
4958       include 'COMMON.INTERACT'
4959       include 'COMMON.DERIV'
4960       include 'COMMON.CHAIN'
4961       include 'COMMON.IOUNITS'
4962       include 'COMMON.NAMES'
4963       include 'COMMON.FFIELD'
4964       include 'COMMON.CONTROL'
4965       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4966      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4967       common /sccalc/ time11,time12,time112,theti,it,nlobit
4968       delta=0.02d0*pi
4969       escloc=0.0D0
4970 c     write (iout,'(a)') 'ESC'
4971       do i=loc_start,loc_end
4972         it=itype(i)
4973         if (it.eq.10) goto 1
4974         nlobit=nlob(it)
4975 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4976 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4977         theti=theta(i+1)-pipol
4978         x(1)=dtan(theti)
4979         x(2)=alph(i)
4980         x(3)=omeg(i)
4981
4982         if (x(2).gt.pi-delta) then
4983           xtemp(1)=x(1)
4984           xtemp(2)=pi-delta
4985           xtemp(3)=x(3)
4986           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4987           xtemp(2)=pi
4988           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4989           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4990      &        escloci,dersc(2))
4991           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4992      &        ddersc0(1),dersc(1))
4993           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4994      &        ddersc0(3),dersc(3))
4995           xtemp(2)=pi-delta
4996           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4997           xtemp(2)=pi
4998           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4999           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5000      &            dersc0(2),esclocbi,dersc02)
5001           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5002      &            dersc12,dersc01)
5003           call splinthet(x(2),0.5d0*delta,ss,ssd)
5004           dersc0(1)=dersc01
5005           dersc0(2)=dersc02
5006           dersc0(3)=0.0d0
5007           do k=1,3
5008             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5009           enddo
5010           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5011 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5012 c    &             esclocbi,ss,ssd
5013           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5014 c         escloci=esclocbi
5015 c         write (iout,*) escloci
5016         else if (x(2).lt.delta) then
5017           xtemp(1)=x(1)
5018           xtemp(2)=delta
5019           xtemp(3)=x(3)
5020           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5021           xtemp(2)=0.0d0
5022           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5023           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5024      &        escloci,dersc(2))
5025           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5026      &        ddersc0(1),dersc(1))
5027           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5028      &        ddersc0(3),dersc(3))
5029           xtemp(2)=delta
5030           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5031           xtemp(2)=0.0d0
5032           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5033           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5034      &            dersc0(2),esclocbi,dersc02)
5035           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5036      &            dersc12,dersc01)
5037           dersc0(1)=dersc01
5038           dersc0(2)=dersc02
5039           dersc0(3)=0.0d0
5040           call splinthet(x(2),0.5d0*delta,ss,ssd)
5041           do k=1,3
5042             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5043           enddo
5044           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5045 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5046 c    &             esclocbi,ss,ssd
5047           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5048 c         write (iout,*) escloci
5049         else
5050           call enesc(x,escloci,dersc,ddummy,.false.)
5051         endif
5052
5053         escloc=escloc+escloci
5054         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5055      &     'escloc',i,escloci
5056 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5057
5058         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5059      &   wscloc*dersc(1)
5060         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5061         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5062     1   continue
5063       enddo
5064       return
5065       end
5066 C---------------------------------------------------------------------------
5067       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5068       implicit real*8 (a-h,o-z)
5069       include 'DIMENSIONS'
5070       include 'COMMON.GEO'
5071       include 'COMMON.LOCAL'
5072       include 'COMMON.IOUNITS'
5073       common /sccalc/ time11,time12,time112,theti,it,nlobit
5074       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5075       double precision contr(maxlob,-1:1)
5076       logical mixed
5077 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5078         escloc_i=0.0D0
5079         do j=1,3
5080           dersc(j)=0.0D0
5081           if (mixed) ddersc(j)=0.0d0
5082         enddo
5083         x3=x(3)
5084
5085 C Because of periodicity of the dependence of the SC energy in omega we have
5086 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5087 C To avoid underflows, first compute & store the exponents.
5088
5089         do iii=-1,1
5090
5091           x(3)=x3+iii*dwapi
5092  
5093           do j=1,nlobit
5094             do k=1,3
5095               z(k)=x(k)-censc(k,j,it)
5096             enddo
5097             do k=1,3
5098               Axk=0.0D0
5099               do l=1,3
5100                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5101               enddo
5102               Ax(k,j,iii)=Axk
5103             enddo 
5104             expfac=0.0D0 
5105             do k=1,3
5106               expfac=expfac+Ax(k,j,iii)*z(k)
5107             enddo
5108             contr(j,iii)=expfac
5109           enddo ! j
5110
5111         enddo ! iii
5112
5113         x(3)=x3
5114 C As in the case of ebend, we want to avoid underflows in exponentiation and
5115 C subsequent NaNs and INFs in energy calculation.
5116 C Find the largest exponent
5117         emin=contr(1,-1)
5118         do iii=-1,1
5119           do j=1,nlobit
5120             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5121           enddo 
5122         enddo
5123         emin=0.5D0*emin
5124 cd      print *,'it=',it,' emin=',emin
5125
5126 C Compute the contribution to SC energy and derivatives
5127         do iii=-1,1
5128
5129           do j=1,nlobit
5130 #ifdef OSF
5131             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5132             if(adexp.ne.adexp) adexp=1.0
5133             expfac=dexp(adexp)
5134 #else
5135             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5136 #endif
5137 cd          print *,'j=',j,' expfac=',expfac
5138             escloc_i=escloc_i+expfac
5139             do k=1,3
5140               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5141             enddo
5142             if (mixed) then
5143               do k=1,3,2
5144                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5145      &            +gaussc(k,2,j,it))*expfac
5146               enddo
5147             endif
5148           enddo
5149
5150         enddo ! iii
5151
5152         dersc(1)=dersc(1)/cos(theti)**2
5153         ddersc(1)=ddersc(1)/cos(theti)**2
5154         ddersc(3)=ddersc(3)
5155
5156         escloci=-(dlog(escloc_i)-emin)
5157         do j=1,3
5158           dersc(j)=dersc(j)/escloc_i
5159         enddo
5160         if (mixed) then
5161           do j=1,3,2
5162             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5163           enddo
5164         endif
5165       return
5166       end
5167 C------------------------------------------------------------------------------
5168       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5169       implicit real*8 (a-h,o-z)
5170       include 'DIMENSIONS'
5171       include 'COMMON.GEO'
5172       include 'COMMON.LOCAL'
5173       include 'COMMON.IOUNITS'
5174       common /sccalc/ time11,time12,time112,theti,it,nlobit
5175       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5176       double precision contr(maxlob)
5177       logical mixed
5178
5179       escloc_i=0.0D0
5180
5181       do j=1,3
5182         dersc(j)=0.0D0
5183       enddo
5184
5185       do j=1,nlobit
5186         do k=1,2
5187           z(k)=x(k)-censc(k,j,it)
5188         enddo
5189         z(3)=dwapi
5190         do k=1,3
5191           Axk=0.0D0
5192           do l=1,3
5193             Axk=Axk+gaussc(l,k,j,it)*z(l)
5194           enddo
5195           Ax(k,j)=Axk
5196         enddo 
5197         expfac=0.0D0 
5198         do k=1,3
5199           expfac=expfac+Ax(k,j)*z(k)
5200         enddo
5201         contr(j)=expfac
5202       enddo ! j
5203
5204 C As in the case of ebend, we want to avoid underflows in exponentiation and
5205 C subsequent NaNs and INFs in energy calculation.
5206 C Find the largest exponent
5207       emin=contr(1)
5208       do j=1,nlobit
5209         if (emin.gt.contr(j)) emin=contr(j)
5210       enddo 
5211       emin=0.5D0*emin
5212  
5213 C Compute the contribution to SC energy and derivatives
5214
5215       dersc12=0.0d0
5216       do j=1,nlobit
5217         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5218         escloc_i=escloc_i+expfac
5219         do k=1,2
5220           dersc(k)=dersc(k)+Ax(k,j)*expfac
5221         enddo
5222         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5223      &            +gaussc(1,2,j,it))*expfac
5224         dersc(3)=0.0d0
5225       enddo
5226
5227       dersc(1)=dersc(1)/cos(theti)**2
5228       dersc12=dersc12/cos(theti)**2
5229       escloci=-(dlog(escloc_i)-emin)
5230       do j=1,2
5231         dersc(j)=dersc(j)/escloc_i
5232       enddo
5233       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5234       return
5235       end
5236 #else
5237 c----------------------------------------------------------------------------------
5238       subroutine esc(escloc)
5239 C Calculate the local energy of a side chain and its derivatives in the
5240 C corresponding virtual-bond valence angles THETA and the spherical angles 
5241 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5242 C added by Urszula Kozlowska. 07/11/2007
5243 C
5244       implicit real*8 (a-h,o-z)
5245       include 'DIMENSIONS'
5246       include 'COMMON.GEO'
5247       include 'COMMON.LOCAL'
5248       include 'COMMON.VAR'
5249       include 'COMMON.SCROT'
5250       include 'COMMON.INTERACT'
5251       include 'COMMON.DERIV'
5252       include 'COMMON.CHAIN'
5253       include 'COMMON.IOUNITS'
5254       include 'COMMON.NAMES'
5255       include 'COMMON.FFIELD'
5256       include 'COMMON.CONTROL'
5257       include 'COMMON.VECTORS'
5258       double precision x_prime(3),y_prime(3),z_prime(3)
5259      &    , sumene,dsc_i,dp2_i,x(65),
5260      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5261      &    de_dxx,de_dyy,de_dzz,de_dt
5262       double precision s1_t,s1_6_t,s2_t,s2_6_t
5263       double precision 
5264      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5265      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5266      & dt_dCi(3),dt_dCi1(3)
5267       common /sccalc/ time11,time12,time112,theti,it,nlobit
5268       delta=0.02d0*pi
5269       escloc=0.0D0
5270       do i=loc_start,loc_end
5271         costtab(i+1) =dcos(theta(i+1))
5272         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5273         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5274         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5275         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5276         cosfac=dsqrt(cosfac2)
5277         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5278         sinfac=dsqrt(sinfac2)
5279         it=itype(i)
5280         if (it.eq.10) goto 1
5281 c
5282 C  Compute the axes of tghe local cartesian coordinates system; store in
5283 c   x_prime, y_prime and z_prime 
5284 c
5285         do j=1,3
5286           x_prime(j) = 0.00
5287           y_prime(j) = 0.00
5288           z_prime(j) = 0.00
5289         enddo
5290 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5291 C     &   dc_norm(3,i+nres)
5292         do j = 1,3
5293           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5294           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5295         enddo
5296         do j = 1,3
5297           z_prime(j) = -uz(j,i-1)
5298         enddo     
5299 c       write (2,*) "i",i
5300 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5301 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5302 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5303 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5304 c      & " xy",scalar(x_prime(1),y_prime(1)),
5305 c      & " xz",scalar(x_prime(1),z_prime(1)),
5306 c      & " yy",scalar(y_prime(1),y_prime(1)),
5307 c      & " yz",scalar(y_prime(1),z_prime(1)),
5308 c      & " zz",scalar(z_prime(1),z_prime(1))
5309 c
5310 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5311 C to local coordinate system. Store in xx, yy, zz.
5312 c
5313         xx=0.0d0
5314         yy=0.0d0
5315         zz=0.0d0
5316         do j = 1,3
5317           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5318           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5319           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5320         enddo
5321
5322         xxtab(i)=xx
5323         yytab(i)=yy
5324         zztab(i)=zz
5325 C
5326 C Compute the energy of the ith side cbain
5327 C
5328 c        write (2,*) "xx",xx," yy",yy," zz",zz
5329         it=itype(i)
5330         do j = 1,65
5331           x(j) = sc_parmin(j,it) 
5332         enddo
5333 #ifdef CHECK_COORD
5334 Cc diagnostics - remove later
5335         xx1 = dcos(alph(2))
5336         yy1 = dsin(alph(2))*dcos(omeg(2))
5337         zz1 = -dsin(alph(2))*dsin(omeg(2))
5338         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5339      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5340      &    xx1,yy1,zz1
5341 C,"  --- ", xx_w,yy_w,zz_w
5342 c end diagnostics
5343 #endif
5344         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5345      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5346      &   + x(10)*yy*zz
5347         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5348      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5349      & + x(20)*yy*zz
5350         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5351      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5352      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5353      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5354      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5355      &  +x(40)*xx*yy*zz
5356         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5357      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5358      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5359      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5360      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5361      &  +x(60)*xx*yy*zz
5362         dsc_i   = 0.743d0+x(61)
5363         dp2_i   = 1.9d0+x(62)
5364         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5365      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5366         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5367      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5368         s1=(1+x(63))/(0.1d0 + dscp1)
5369         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5370         s2=(1+x(65))/(0.1d0 + dscp2)
5371         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5372         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5373      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5374 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5375 c     &   sumene4,
5376 c     &   dscp1,dscp2,sumene
5377 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5378         escloc = escloc + sumene
5379 c        write (2,*) "i",i," escloc",sumene,escloc
5380 #ifdef DEBUG
5381 C
5382 C This section to check the numerical derivatives of the energy of ith side
5383 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5384 C #define DEBUG in the code to turn it on.
5385 C
5386         write (2,*) "sumene               =",sumene
5387         aincr=1.0d-7
5388         xxsave=xx
5389         xx=xx+aincr
5390         write (2,*) xx,yy,zz
5391         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5392         de_dxx_num=(sumenep-sumene)/aincr
5393         xx=xxsave
5394         write (2,*) "xx+ sumene from enesc=",sumenep
5395         yysave=yy
5396         yy=yy+aincr
5397         write (2,*) xx,yy,zz
5398         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5399         de_dyy_num=(sumenep-sumene)/aincr
5400         yy=yysave
5401         write (2,*) "yy+ sumene from enesc=",sumenep
5402         zzsave=zz
5403         zz=zz+aincr
5404         write (2,*) xx,yy,zz
5405         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5406         de_dzz_num=(sumenep-sumene)/aincr
5407         zz=zzsave
5408         write (2,*) "zz+ sumene from enesc=",sumenep
5409         costsave=cost2tab(i+1)
5410         sintsave=sint2tab(i+1)
5411         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5412         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5413         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5414         de_dt_num=(sumenep-sumene)/aincr
5415         write (2,*) " t+ sumene from enesc=",sumenep
5416         cost2tab(i+1)=costsave
5417         sint2tab(i+1)=sintsave
5418 C End of diagnostics section.
5419 #endif
5420 C        
5421 C Compute the gradient of esc
5422 C
5423         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5424         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5425         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5426         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5427         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5428         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5429         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5430         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5431         pom1=(sumene3*sint2tab(i+1)+sumene1)
5432      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5433         pom2=(sumene4*cost2tab(i+1)+sumene2)
5434      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5435         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5436         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5437      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5438      &  +x(40)*yy*zz
5439         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5440         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5441      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5442      &  +x(60)*yy*zz
5443         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5444      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5445      &        +(pom1+pom2)*pom_dx
5446 #ifdef DEBUG
5447         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5448 #endif
5449 C
5450         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5451         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5452      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5453      &  +x(40)*xx*zz
5454         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5455         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5456      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5457      &  +x(59)*zz**2 +x(60)*xx*zz
5458         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5459      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5460      &        +(pom1-pom2)*pom_dy
5461 #ifdef DEBUG
5462         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5463 #endif
5464 C
5465         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5466      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5467      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5468      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5469      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5470      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5471      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5472      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5473 #ifdef DEBUG
5474         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5475 #endif
5476 C
5477         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5478      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5479      &  +pom1*pom_dt1+pom2*pom_dt2
5480 #ifdef DEBUG
5481         write(2,*), "de_dt = ", de_dt,de_dt_num
5482 #endif
5483
5484 C
5485        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5486        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5487        cosfac2xx=cosfac2*xx
5488        sinfac2yy=sinfac2*yy
5489        do k = 1,3
5490          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5491      &      vbld_inv(i+1)
5492          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5493      &      vbld_inv(i)
5494          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5495          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5496 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5497 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5498 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5499 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5500          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5501          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5502          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5503          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5504          dZZ_Ci1(k)=0.0d0
5505          dZZ_Ci(k)=0.0d0
5506          do j=1,3
5507            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5508            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5509          enddo
5510           
5511          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5512          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5513          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5514 c
5515          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5516          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5517        enddo
5518
5519        do k=1,3
5520          dXX_Ctab(k,i)=dXX_Ci(k)
5521          dXX_C1tab(k,i)=dXX_Ci1(k)
5522          dYY_Ctab(k,i)=dYY_Ci(k)
5523          dYY_C1tab(k,i)=dYY_Ci1(k)
5524          dZZ_Ctab(k,i)=dZZ_Ci(k)
5525          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5526          dXX_XYZtab(k,i)=dXX_XYZ(k)
5527          dYY_XYZtab(k,i)=dYY_XYZ(k)
5528          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5529        enddo
5530
5531        do k = 1,3
5532 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5533 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5534 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5535 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5536 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5537 c     &    dt_dci(k)
5538 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5539 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5540          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5541      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5542          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5543      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5544          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5545      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5546        enddo
5547 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5548 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5549
5550 C to check gradient call subroutine check_grad
5551
5552     1 continue
5553       enddo
5554       return
5555       end
5556 c------------------------------------------------------------------------------
5557       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5558       implicit none
5559       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5560      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5561       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5562      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5563      &   + x(10)*yy*zz
5564       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5565      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5566      & + x(20)*yy*zz
5567       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5568      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5569      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5570      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5571      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5572      &  +x(40)*xx*yy*zz
5573       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5574      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5575      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5576      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5577      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5578      &  +x(60)*xx*yy*zz
5579       dsc_i   = 0.743d0+x(61)
5580       dp2_i   = 1.9d0+x(62)
5581       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5582      &          *(xx*cost2+yy*sint2))
5583       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5584      &          *(xx*cost2-yy*sint2))
5585       s1=(1+x(63))/(0.1d0 + dscp1)
5586       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5587       s2=(1+x(65))/(0.1d0 + dscp2)
5588       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5589       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5590      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5591       enesc=sumene
5592       return
5593       end
5594 #endif
5595 c------------------------------------------------------------------------------
5596       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5597 C
5598 C This procedure calculates two-body contact function g(rij) and its derivative:
5599 C
5600 C           eps0ij                                     !       x < -1
5601 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5602 C            0                                         !       x > 1
5603 C
5604 C where x=(rij-r0ij)/delta
5605 C
5606 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5607 C
5608       implicit none
5609       double precision rij,r0ij,eps0ij,fcont,fprimcont
5610       double precision x,x2,x4,delta
5611 c     delta=0.02D0*r0ij
5612 c      delta=0.2D0*r0ij
5613       x=(rij-r0ij)/delta
5614       if (x.lt.-1.0D0) then
5615         fcont=eps0ij
5616         fprimcont=0.0D0
5617       else if (x.le.1.0D0) then  
5618         x2=x*x
5619         x4=x2*x2
5620         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5621         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5622       else
5623         fcont=0.0D0
5624         fprimcont=0.0D0
5625       endif
5626       return
5627       end
5628 c------------------------------------------------------------------------------
5629       subroutine splinthet(theti,delta,ss,ssder)
5630       implicit real*8 (a-h,o-z)
5631       include 'DIMENSIONS'
5632       include 'COMMON.VAR'
5633       include 'COMMON.GEO'
5634       thetup=pi-delta
5635       thetlow=delta
5636       if (theti.gt.pipol) then
5637         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5638       else
5639         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5640         ssder=-ssder
5641       endif
5642       return
5643       end
5644 c------------------------------------------------------------------------------
5645       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5646       implicit none
5647       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5648       double precision ksi,ksi2,ksi3,a1,a2,a3
5649       a1=fprim0*delta/(f1-f0)
5650       a2=3.0d0-2.0d0*a1
5651       a3=a1-2.0d0
5652       ksi=(x-x0)/delta
5653       ksi2=ksi*ksi
5654       ksi3=ksi2*ksi  
5655       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5656       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5657       return
5658       end
5659 c------------------------------------------------------------------------------
5660       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5661       implicit none
5662       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5663       double precision ksi,ksi2,ksi3,a1,a2,a3
5664       ksi=(x-x0)/delta  
5665       ksi2=ksi*ksi
5666       ksi3=ksi2*ksi
5667       a1=fprim0x*delta
5668       a2=3*(f1x-f0x)-2*fprim0x*delta
5669       a3=fprim0x*delta-2*(f1x-f0x)
5670       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5671       return
5672       end
5673 C-----------------------------------------------------------------------------
5674 #ifdef CRYST_TOR
5675 C-----------------------------------------------------------------------------
5676       subroutine etor(etors,edihcnstr)
5677       implicit real*8 (a-h,o-z)
5678       include 'DIMENSIONS'
5679       include 'COMMON.VAR'
5680       include 'COMMON.GEO'
5681       include 'COMMON.LOCAL'
5682       include 'COMMON.TORSION'
5683       include 'COMMON.INTERACT'
5684       include 'COMMON.DERIV'
5685       include 'COMMON.CHAIN'
5686       include 'COMMON.NAMES'
5687       include 'COMMON.IOUNITS'
5688       include 'COMMON.FFIELD'
5689       include 'COMMON.TORCNSTR'
5690       include 'COMMON.CONTROL'
5691       logical lprn
5692 C Set lprn=.true. for debugging
5693       lprn=.false.
5694 c      lprn=.true.
5695       etors=0.0D0
5696       do i=iphi_start,iphi_end
5697       etors_ii=0.0D0
5698         itori=itortyp(itype(i-2))
5699         itori1=itortyp(itype(i-1))
5700         phii=phi(i)
5701         gloci=0.0D0
5702 C Proline-Proline pair is a special case...
5703         if (itori.eq.3 .and. itori1.eq.3) then
5704           if (phii.gt.-dwapi3) then
5705             cosphi=dcos(3*phii)
5706             fac=1.0D0/(1.0D0-cosphi)
5707             etorsi=v1(1,3,3)*fac
5708             etorsi=etorsi+etorsi
5709             etors=etors+etorsi-v1(1,3,3)
5710             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5711             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5712           endif
5713           do j=1,3
5714             v1ij=v1(j+1,itori,itori1)
5715             v2ij=v2(j+1,itori,itori1)
5716             cosphi=dcos(j*phii)
5717             sinphi=dsin(j*phii)
5718             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5719             if (energy_dec) etors_ii=etors_ii+
5720      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5721             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5722           enddo
5723         else 
5724           do j=1,nterm_old
5725             v1ij=v1(j,itori,itori1)
5726             v2ij=v2(j,itori,itori1)
5727             cosphi=dcos(j*phii)
5728             sinphi=dsin(j*phii)
5729             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5730             if (energy_dec) etors_ii=etors_ii+
5731      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5732             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5733           enddo
5734         endif
5735         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5736      &        'etor',i,etors_ii
5737         if (lprn)
5738      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5739      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5740      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5741         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5742         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5743       enddo
5744 ! 6/20/98 - dihedral angle constraints
5745       edihcnstr=0.0d0
5746       do i=1,ndih_constr
5747         itori=idih_constr(i)
5748         phii=phi(itori)
5749         difi=phii-phi0(i)
5750         if (difi.gt.drange(i)) then
5751           difi=difi-drange(i)
5752           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5753           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5754         else if (difi.lt.-drange(i)) then
5755           difi=difi+drange(i)
5756           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5757           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5758         endif
5759 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5760 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5761       enddo
5762 !      write (iout,*) 'edihcnstr',edihcnstr
5763       return
5764       end
5765 c------------------------------------------------------------------------------
5766       subroutine etor_d(etors_d)
5767       etors_d=0.0d0
5768       return
5769       end
5770 c----------------------------------------------------------------------------
5771 #else
5772       subroutine etor(etors,edihcnstr)
5773       implicit real*8 (a-h,o-z)
5774       include 'DIMENSIONS'
5775       include 'COMMON.VAR'
5776       include 'COMMON.GEO'
5777       include 'COMMON.LOCAL'
5778       include 'COMMON.TORSION'
5779       include 'COMMON.INTERACT'
5780       include 'COMMON.DERIV'
5781       include 'COMMON.CHAIN'
5782       include 'COMMON.NAMES'
5783       include 'COMMON.IOUNITS'
5784       include 'COMMON.FFIELD'
5785       include 'COMMON.TORCNSTR'
5786       include 'COMMON.CONTROL'
5787       logical lprn
5788 C Set lprn=.true. for debugging
5789       lprn=.false.
5790 c     lprn=.true.
5791       etors=0.0D0
5792       do i=iphi_start,iphi_end
5793       etors_ii=0.0D0
5794         itori=itortyp(itype(i-2))
5795         itori1=itortyp(itype(i-1))
5796         phii=phi(i)
5797         gloci=0.0D0
5798 C Regular cosine and sine terms
5799         do j=1,nterm(itori,itori1)
5800           v1ij=v1(j,itori,itori1)
5801           v2ij=v2(j,itori,itori1)
5802           cosphi=dcos(j*phii)
5803           sinphi=dsin(j*phii)
5804           etors=etors+v1ij*cosphi+v2ij*sinphi
5805           if (energy_dec) etors_ii=etors_ii+
5806      &                v1ij*cosphi+v2ij*sinphi
5807           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5808         enddo
5809 C Lorentz terms
5810 C                         v1
5811 C  E = SUM ----------------------------------- - v1
5812 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5813 C
5814         cosphi=dcos(0.5d0*phii)
5815         sinphi=dsin(0.5d0*phii)
5816         do j=1,nlor(itori,itori1)
5817           vl1ij=vlor1(j,itori,itori1)
5818           vl2ij=vlor2(j,itori,itori1)
5819           vl3ij=vlor3(j,itori,itori1)
5820           pom=vl2ij*cosphi+vl3ij*sinphi
5821           pom1=1.0d0/(pom*pom+1.0d0)
5822           etors=etors+vl1ij*pom1
5823           if (energy_dec) etors_ii=etors_ii+
5824      &                vl1ij*pom1
5825           pom=-pom*pom1*pom1
5826           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5827         enddo
5828 C Subtract the constant term
5829         etors=etors-v0(itori,itori1)
5830           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5831      &         'etor',i,etors_ii-v0(itori,itori1)
5832         if (lprn)
5833      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5834      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5835      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5836         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5837 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5838       enddo
5839 ! 6/20/98 - dihedral angle constraints
5840       edihcnstr=0.0d0
5841 c      do i=1,ndih_constr
5842       do i=idihconstr_start,idihconstr_end
5843         itori=idih_constr(i)
5844         phii=phi(itori)
5845         difi=pinorm(phii-phi0(i))
5846         if (difi.gt.drange(i)) then
5847           difi=difi-drange(i)
5848           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5849           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5850         else if (difi.lt.-drange(i)) then
5851           difi=difi+drange(i)
5852           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5853           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5854         else
5855           difi=0.0
5856         endif
5857 c        write (iout,*) "gloci", gloc(i-3,icg)
5858 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5859 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5860 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5861       enddo
5862 cd       write (iout,*) 'edihcnstr',edihcnstr
5863       return
5864       end
5865 c----------------------------------------------------------------------------
5866       subroutine etor_d(etors_d)
5867 C 6/23/01 Compute double torsional energy
5868       implicit real*8 (a-h,o-z)
5869       include 'DIMENSIONS'
5870       include 'COMMON.VAR'
5871       include 'COMMON.GEO'
5872       include 'COMMON.LOCAL'
5873       include 'COMMON.TORSION'
5874       include 'COMMON.INTERACT'
5875       include 'COMMON.DERIV'
5876       include 'COMMON.CHAIN'
5877       include 'COMMON.NAMES'
5878       include 'COMMON.IOUNITS'
5879       include 'COMMON.FFIELD'
5880       include 'COMMON.TORCNSTR'
5881       logical lprn
5882 C Set lprn=.true. for debugging
5883       lprn=.false.
5884 c     lprn=.true.
5885       etors_d=0.0D0
5886       do i=iphid_start,iphid_end
5887         itori=itortyp(itype(i-2))
5888         itori1=itortyp(itype(i-1))
5889         itori2=itortyp(itype(i))
5890         phii=phi(i)
5891         phii1=phi(i+1)
5892         gloci1=0.0D0
5893         gloci2=0.0D0
5894         do j=1,ntermd_1(itori,itori1,itori2)
5895           v1cij=v1c(1,j,itori,itori1,itori2)
5896           v1sij=v1s(1,j,itori,itori1,itori2)
5897           v2cij=v1c(2,j,itori,itori1,itori2)
5898           v2sij=v1s(2,j,itori,itori1,itori2)
5899           cosphi1=dcos(j*phii)
5900           sinphi1=dsin(j*phii)
5901           cosphi2=dcos(j*phii1)
5902           sinphi2=dsin(j*phii1)
5903           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5904      &     v2cij*cosphi2+v2sij*sinphi2
5905           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5906           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5907         enddo
5908         do k=2,ntermd_2(itori,itori1,itori2)
5909           do l=1,k-1
5910             v1cdij = v2c(k,l,itori,itori1,itori2)
5911             v2cdij = v2c(l,k,itori,itori1,itori2)
5912             v1sdij = v2s(k,l,itori,itori1,itori2)
5913             v2sdij = v2s(l,k,itori,itori1,itori2)
5914             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5915             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5916             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5917             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5918             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5919      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5920             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5921      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5922             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5923      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5924           enddo
5925         enddo
5926         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5927         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5928 c        write (iout,*) "gloci", gloc(i-3,icg)
5929       enddo
5930       return
5931       end
5932 #endif
5933 c------------------------------------------------------------------------------
5934       subroutine eback_sc_corr(esccor)
5935 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5936 c        conformational states; temporarily implemented as differences
5937 c        between UNRES torsional potentials (dependent on three types of
5938 c        residues) and the torsional potentials dependent on all 20 types
5939 c        of residues computed from AM1  energy surfaces of terminally-blocked
5940 c        amino-acid residues.
5941       implicit real*8 (a-h,o-z)
5942       include 'DIMENSIONS'
5943       include 'COMMON.VAR'
5944       include 'COMMON.GEO'
5945       include 'COMMON.LOCAL'
5946       include 'COMMON.TORSION'
5947       include 'COMMON.SCCOR'
5948       include 'COMMON.INTERACT'
5949       include 'COMMON.DERIV'
5950       include 'COMMON.CHAIN'
5951       include 'COMMON.NAMES'
5952       include 'COMMON.IOUNITS'
5953       include 'COMMON.FFIELD'
5954       include 'COMMON.CONTROL'
5955       logical lprn
5956 C Set lprn=.true. for debugging
5957       lprn=.false.
5958 c      lprn=.true.
5959 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5960       esccor=0.0D0
5961       do i=itau_start,itau_end
5962         esccor_ii=0.0D0
5963         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5964         isccori=isccortyp(itype(i-2))
5965         isccori1=isccortyp(itype(i-1))
5966         phii=phi(i)
5967 cccc  Added 9 May 2012
5968 cc Tauangle is torsional engle depending on the value of first digit 
5969 c(see comment below)
5970 cc Omicron is flat angle depending on the value of first digit 
5971 c(see comment below)
5972
5973         
5974         do intertyp=1,3 !intertyp
5975 cc Added 09 May 2012 (Adasko)
5976 cc  Intertyp means interaction type of backbone mainchain correlation: 
5977 c   1 = SC...Ca...Ca...Ca
5978 c   2 = Ca...Ca...Ca...SC
5979 c   3 = SC...Ca...Ca...SCi
5980         gloci=0.0D0
5981         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5982      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
5983      &      (itype(i-1).eq.21)))
5984      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5985      &     .or.(itype(i-2).eq.21)))
5986      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5987      &      (itype(i-1).eq.21)))) cycle  
5988         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
5989         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
5990      & cycle
5991         do j=1,nterm_sccor(isccori,isccori1)
5992           v1ij=v1sccor(j,intertyp,isccori,isccori1)
5993           v2ij=v2sccor(j,intertyp,isccori,isccori1)
5994           cosphi=dcos(j*tauangle(intertyp,i))
5995           sinphi=dsin(j*tauangle(intertyp,i))
5996           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5997           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5998         enddo
5999         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6000 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6001 c     &gloc_sc(intertyp,i-3,icg)
6002         if (lprn)
6003      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6004      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6005      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6006      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6007         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6008        enddo !intertyp
6009       enddo
6010 c        do i=1,nres
6011 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6012 c        enddo
6013       return
6014       end
6015 c----------------------------------------------------------------------------
6016       subroutine multibody(ecorr)
6017 C This subroutine calculates multi-body contributions to energy following
6018 C the idea of Skolnick et al. If side chains I and J make a contact and
6019 C at the same time side chains I+1 and J+1 make a contact, an extra 
6020 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6021       implicit real*8 (a-h,o-z)
6022       include 'DIMENSIONS'
6023       include 'COMMON.IOUNITS'
6024       include 'COMMON.DERIV'
6025       include 'COMMON.INTERACT'
6026       include 'COMMON.CONTACTS'
6027       double precision gx(3),gx1(3)
6028       logical lprn
6029
6030 C Set lprn=.true. for debugging
6031       lprn=.false.
6032
6033       if (lprn) then
6034         write (iout,'(a)') 'Contact function values:'
6035         do i=nnt,nct-2
6036           write (iout,'(i2,20(1x,i2,f10.5))') 
6037      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6038         enddo
6039       endif
6040       ecorr=0.0D0
6041       do i=nnt,nct
6042         do j=1,3
6043           gradcorr(j,i)=0.0D0
6044           gradxorr(j,i)=0.0D0
6045         enddo
6046       enddo
6047       do i=nnt,nct-2
6048
6049         DO ISHIFT = 3,4
6050
6051         i1=i+ishift
6052         num_conti=num_cont(i)
6053         num_conti1=num_cont(i1)
6054         do jj=1,num_conti
6055           j=jcont(jj,i)
6056           do kk=1,num_conti1
6057             j1=jcont(kk,i1)
6058             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6059 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6060 cd   &                   ' ishift=',ishift
6061 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6062 C The system gains extra energy.
6063               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6064             endif   ! j1==j+-ishift
6065           enddo     ! kk  
6066         enddo       ! jj
6067
6068         ENDDO ! ISHIFT
6069
6070       enddo         ! i
6071       return
6072       end
6073 c------------------------------------------------------------------------------
6074       double precision function esccorr(i,j,k,l,jj,kk)
6075       implicit real*8 (a-h,o-z)
6076       include 'DIMENSIONS'
6077       include 'COMMON.IOUNITS'
6078       include 'COMMON.DERIV'
6079       include 'COMMON.INTERACT'
6080       include 'COMMON.CONTACTS'
6081       double precision gx(3),gx1(3)
6082       logical lprn
6083       lprn=.false.
6084       eij=facont(jj,i)
6085       ekl=facont(kk,k)
6086 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6087 C Calculate the multi-body contribution to energy.
6088 C Calculate multi-body contributions to the gradient.
6089 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6090 cd   & k,l,(gacont(m,kk,k),m=1,3)
6091       do m=1,3
6092         gx(m) =ekl*gacont(m,jj,i)
6093         gx1(m)=eij*gacont(m,kk,k)
6094         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6095         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6096         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6097         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6098       enddo
6099       do m=i,j-1
6100         do ll=1,3
6101           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6102         enddo
6103       enddo
6104       do m=k,l-1
6105         do ll=1,3
6106           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6107         enddo
6108       enddo 
6109       esccorr=-eij*ekl
6110       return
6111       end
6112 c------------------------------------------------------------------------------
6113       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6114 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6115       implicit real*8 (a-h,o-z)
6116       include 'DIMENSIONS'
6117       include 'COMMON.IOUNITS'
6118 #ifdef MPI
6119       include "mpif.h"
6120       parameter (max_cont=maxconts)
6121       parameter (max_dim=26)
6122       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6123       double precision zapas(max_dim,maxconts,max_fg_procs),
6124      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6125       common /przechowalnia/ zapas
6126       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6127      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6128 #endif
6129       include 'COMMON.SETUP'
6130       include 'COMMON.FFIELD'
6131       include 'COMMON.DERIV'
6132       include 'COMMON.INTERACT'
6133       include 'COMMON.CONTACTS'
6134       include 'COMMON.CONTROL'
6135       include 'COMMON.LOCAL'
6136       double precision gx(3),gx1(3),time00
6137       logical lprn,ldone
6138
6139 C Set lprn=.true. for debugging
6140       lprn=.false.
6141 #ifdef MPI
6142       n_corr=0
6143       n_corr1=0
6144       if (nfgtasks.le.1) goto 30
6145       if (lprn) then
6146         write (iout,'(a)') 'Contact function values before RECEIVE:'
6147         do i=nnt,nct-2
6148           write (iout,'(2i3,50(1x,i2,f5.2))') 
6149      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6150      &    j=1,num_cont_hb(i))
6151         enddo
6152       endif
6153       call flush(iout)
6154       do i=1,ntask_cont_from
6155         ncont_recv(i)=0
6156       enddo
6157       do i=1,ntask_cont_to
6158         ncont_sent(i)=0
6159       enddo
6160 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6161 c     & ntask_cont_to
6162 C Make the list of contacts to send to send to other procesors
6163 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6164 c      call flush(iout)
6165       do i=iturn3_start,iturn3_end
6166 c        write (iout,*) "make contact list turn3",i," num_cont",
6167 c     &    num_cont_hb(i)
6168         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6169       enddo
6170       do i=iturn4_start,iturn4_end
6171 c        write (iout,*) "make contact list turn4",i," num_cont",
6172 c     &   num_cont_hb(i)
6173         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6174       enddo
6175       do ii=1,nat_sent
6176         i=iat_sent(ii)
6177 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6178 c     &    num_cont_hb(i)
6179         do j=1,num_cont_hb(i)
6180         do k=1,4
6181           jjc=jcont_hb(j,i)
6182           iproc=iint_sent_local(k,jjc,ii)
6183 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6184           if (iproc.gt.0) then
6185             ncont_sent(iproc)=ncont_sent(iproc)+1
6186             nn=ncont_sent(iproc)
6187             zapas(1,nn,iproc)=i
6188             zapas(2,nn,iproc)=jjc
6189             zapas(3,nn,iproc)=facont_hb(j,i)
6190             zapas(4,nn,iproc)=ees0p(j,i)
6191             zapas(5,nn,iproc)=ees0m(j,i)
6192             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6193             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6194             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6195             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6196             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6197             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6198             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6199             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6200             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6201             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6202             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6203             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6204             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6205             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6206             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6207             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6208             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6209             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6210             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6211             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6212             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6213           endif
6214         enddo
6215         enddo
6216       enddo
6217       if (lprn) then
6218       write (iout,*) 
6219      &  "Numbers of contacts to be sent to other processors",
6220      &  (ncont_sent(i),i=1,ntask_cont_to)
6221       write (iout,*) "Contacts sent"
6222       do ii=1,ntask_cont_to
6223         nn=ncont_sent(ii)
6224         iproc=itask_cont_to(ii)
6225         write (iout,*) nn," contacts to processor",iproc,
6226      &   " of CONT_TO_COMM group"
6227         do i=1,nn
6228           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6229         enddo
6230       enddo
6231       call flush(iout)
6232       endif
6233       CorrelType=477
6234       CorrelID=fg_rank+1
6235       CorrelType1=478
6236       CorrelID1=nfgtasks+fg_rank+1
6237       ireq=0
6238 C Receive the numbers of needed contacts from other processors 
6239       do ii=1,ntask_cont_from
6240         iproc=itask_cont_from(ii)
6241         ireq=ireq+1
6242         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6243      &    FG_COMM,req(ireq),IERR)
6244       enddo
6245 c      write (iout,*) "IRECV ended"
6246 c      call flush(iout)
6247 C Send the number of contacts needed by other processors
6248       do ii=1,ntask_cont_to
6249         iproc=itask_cont_to(ii)
6250         ireq=ireq+1
6251         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6252      &    FG_COMM,req(ireq),IERR)
6253       enddo
6254 c      write (iout,*) "ISEND ended"
6255 c      write (iout,*) "number of requests (nn)",ireq
6256       call flush(iout)
6257       if (ireq.gt.0) 
6258      &  call MPI_Waitall(ireq,req,status_array,ierr)
6259 c      write (iout,*) 
6260 c     &  "Numbers of contacts to be received from other processors",
6261 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6262 c      call flush(iout)
6263 C Receive contacts
6264       ireq=0
6265       do ii=1,ntask_cont_from
6266         iproc=itask_cont_from(ii)
6267         nn=ncont_recv(ii)
6268 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6269 c     &   " of CONT_TO_COMM group"
6270         call flush(iout)
6271         if (nn.gt.0) then
6272           ireq=ireq+1
6273           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6274      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6275 c          write (iout,*) "ireq,req",ireq,req(ireq)
6276         endif
6277       enddo
6278 C Send the contacts to processors that need them
6279       do ii=1,ntask_cont_to
6280         iproc=itask_cont_to(ii)
6281         nn=ncont_sent(ii)
6282 c        write (iout,*) nn," contacts to processor",iproc,
6283 c     &   " of CONT_TO_COMM group"
6284         if (nn.gt.0) then
6285           ireq=ireq+1 
6286           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6287      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6288 c          write (iout,*) "ireq,req",ireq,req(ireq)
6289 c          do i=1,nn
6290 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6291 c          enddo
6292         endif  
6293       enddo
6294 c      write (iout,*) "number of requests (contacts)",ireq
6295 c      write (iout,*) "req",(req(i),i=1,4)
6296 c      call flush(iout)
6297       if (ireq.gt.0) 
6298      & call MPI_Waitall(ireq,req,status_array,ierr)
6299       do iii=1,ntask_cont_from
6300         iproc=itask_cont_from(iii)
6301         nn=ncont_recv(iii)
6302         if (lprn) then
6303         write (iout,*) "Received",nn," contacts from processor",iproc,
6304      &   " of CONT_FROM_COMM group"
6305         call flush(iout)
6306         do i=1,nn
6307           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6308         enddo
6309         call flush(iout)
6310         endif
6311         do i=1,nn
6312           ii=zapas_recv(1,i,iii)
6313 c Flag the received contacts to prevent double-counting
6314           jj=-zapas_recv(2,i,iii)
6315 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6316 c          call flush(iout)
6317           nnn=num_cont_hb(ii)+1
6318           num_cont_hb(ii)=nnn
6319           jcont_hb(nnn,ii)=jj
6320           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6321           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6322           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6323           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6324           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6325           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6326           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6327           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6328           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6329           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6330           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6331           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6332           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6333           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6334           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6335           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6336           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6337           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6338           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6339           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6340           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6341           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6342           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6343           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6344         enddo
6345       enddo
6346       call flush(iout)
6347       if (lprn) then
6348         write (iout,'(a)') 'Contact function values after receive:'
6349         do i=nnt,nct-2
6350           write (iout,'(2i3,50(1x,i3,f5.2))') 
6351      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6352      &    j=1,num_cont_hb(i))
6353         enddo
6354         call flush(iout)
6355       endif
6356    30 continue
6357 #endif
6358       if (lprn) then
6359         write (iout,'(a)') 'Contact function values:'
6360         do i=nnt,nct-2
6361           write (iout,'(2i3,50(1x,i3,f5.2))') 
6362      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6363      &    j=1,num_cont_hb(i))
6364         enddo
6365       endif
6366       ecorr=0.0D0
6367 C Remove the loop below after debugging !!!
6368       do i=nnt,nct
6369         do j=1,3
6370           gradcorr(j,i)=0.0D0
6371           gradxorr(j,i)=0.0D0
6372         enddo
6373       enddo
6374 C Calculate the local-electrostatic correlation terms
6375       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6376         i1=i+1
6377         num_conti=num_cont_hb(i)
6378         num_conti1=num_cont_hb(i+1)
6379         do jj=1,num_conti
6380           j=jcont_hb(jj,i)
6381           jp=iabs(j)
6382           do kk=1,num_conti1
6383             j1=jcont_hb(kk,i1)
6384             jp1=iabs(j1)
6385 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6386 c     &         ' jj=',jj,' kk=',kk
6387             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6388      &          .or. j.lt.0 .and. j1.gt.0) .and.
6389      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6390 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6391 C The system gains extra energy.
6392               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6393               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6394      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6395               n_corr=n_corr+1
6396             else if (j1.eq.j) then
6397 C Contacts I-J and I-(J+1) occur simultaneously. 
6398 C The system loses extra energy.
6399 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6400             endif
6401           enddo ! kk
6402           do kk=1,num_conti
6403             j1=jcont_hb(kk,i)
6404 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6405 c    &         ' jj=',jj,' kk=',kk
6406             if (j1.eq.j+1) then
6407 C Contacts I-J and (I+1)-J occur simultaneously. 
6408 C The system loses extra energy.
6409 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6410             endif ! j1==j+1
6411           enddo ! kk
6412         enddo ! jj
6413       enddo ! i
6414       return
6415       end
6416 c------------------------------------------------------------------------------
6417       subroutine add_hb_contact(ii,jj,itask)
6418       implicit real*8 (a-h,o-z)
6419       include "DIMENSIONS"
6420       include "COMMON.IOUNITS"
6421       integer max_cont
6422       integer max_dim
6423       parameter (max_cont=maxconts)
6424       parameter (max_dim=26)
6425       include "COMMON.CONTACTS"
6426       double precision zapas(max_dim,maxconts,max_fg_procs),
6427      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6428       common /przechowalnia/ zapas
6429       integer i,j,ii,jj,iproc,itask(4),nn
6430 c      write (iout,*) "itask",itask
6431       do i=1,2
6432         iproc=itask(i)
6433         if (iproc.gt.0) then
6434           do j=1,num_cont_hb(ii)
6435             jjc=jcont_hb(j,ii)
6436 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6437             if (jjc.eq.jj) then
6438               ncont_sent(iproc)=ncont_sent(iproc)+1
6439               nn=ncont_sent(iproc)
6440               zapas(1,nn,iproc)=ii
6441               zapas(2,nn,iproc)=jjc
6442               zapas(3,nn,iproc)=facont_hb(j,ii)
6443               zapas(4,nn,iproc)=ees0p(j,ii)
6444               zapas(5,nn,iproc)=ees0m(j,ii)
6445               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6446               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6447               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6448               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6449               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6450               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6451               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6452               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6453               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6454               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6455               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6456               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6457               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6458               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6459               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6460               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6461               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6462               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6463               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6464               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6465               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6466               exit
6467             endif
6468           enddo
6469         endif
6470       enddo
6471       return
6472       end
6473 c------------------------------------------------------------------------------
6474       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6475      &  n_corr1)
6476 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6477       implicit real*8 (a-h,o-z)
6478       include 'DIMENSIONS'
6479       include 'COMMON.IOUNITS'
6480 #ifdef MPI
6481       include "mpif.h"
6482       parameter (max_cont=maxconts)
6483       parameter (max_dim=70)
6484       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6485       double precision zapas(max_dim,maxconts,max_fg_procs),
6486      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6487       common /przechowalnia/ zapas
6488       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6489      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6490 #endif
6491       include 'COMMON.SETUP'
6492       include 'COMMON.FFIELD'
6493       include 'COMMON.DERIV'
6494       include 'COMMON.LOCAL'
6495       include 'COMMON.INTERACT'
6496       include 'COMMON.CONTACTS'
6497       include 'COMMON.CHAIN'
6498       include 'COMMON.CONTROL'
6499       double precision gx(3),gx1(3)
6500       integer num_cont_hb_old(maxres)
6501       logical lprn,ldone
6502       double precision eello4,eello5,eelo6,eello_turn6
6503       external eello4,eello5,eello6,eello_turn6
6504 C Set lprn=.true. for debugging
6505       lprn=.false.
6506       eturn6=0.0d0
6507 #ifdef MPI
6508       do i=1,nres
6509         num_cont_hb_old(i)=num_cont_hb(i)
6510       enddo
6511       n_corr=0
6512       n_corr1=0
6513       if (nfgtasks.le.1) goto 30
6514       if (lprn) then
6515         write (iout,'(a)') 'Contact function values before RECEIVE:'
6516         do i=nnt,nct-2
6517           write (iout,'(2i3,50(1x,i2,f5.2))') 
6518      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6519      &    j=1,num_cont_hb(i))
6520         enddo
6521       endif
6522       call flush(iout)
6523       do i=1,ntask_cont_from
6524         ncont_recv(i)=0
6525       enddo
6526       do i=1,ntask_cont_to
6527         ncont_sent(i)=0
6528       enddo
6529 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6530 c     & ntask_cont_to
6531 C Make the list of contacts to send to send to other procesors
6532       do i=iturn3_start,iturn3_end
6533 c        write (iout,*) "make contact list turn3",i," num_cont",
6534 c     &    num_cont_hb(i)
6535         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6536       enddo
6537       do i=iturn4_start,iturn4_end
6538 c        write (iout,*) "make contact list turn4",i," num_cont",
6539 c     &   num_cont_hb(i)
6540         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6541       enddo
6542       do ii=1,nat_sent
6543         i=iat_sent(ii)
6544 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6545 c     &    num_cont_hb(i)
6546         do j=1,num_cont_hb(i)
6547         do k=1,4
6548           jjc=jcont_hb(j,i)
6549           iproc=iint_sent_local(k,jjc,ii)
6550 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6551           if (iproc.ne.0) then
6552             ncont_sent(iproc)=ncont_sent(iproc)+1
6553             nn=ncont_sent(iproc)
6554             zapas(1,nn,iproc)=i
6555             zapas(2,nn,iproc)=jjc
6556             zapas(3,nn,iproc)=d_cont(j,i)
6557             ind=3
6558             do kk=1,3
6559               ind=ind+1
6560               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6561             enddo
6562             do kk=1,2
6563               do ll=1,2
6564                 ind=ind+1
6565                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6566               enddo
6567             enddo
6568             do jj=1,5
6569               do kk=1,3
6570                 do ll=1,2
6571                   do mm=1,2
6572                     ind=ind+1
6573                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6574                   enddo
6575                 enddo
6576               enddo
6577             enddo
6578           endif
6579         enddo
6580         enddo
6581       enddo
6582       if (lprn) then
6583       write (iout,*) 
6584      &  "Numbers of contacts to be sent to other processors",
6585      &  (ncont_sent(i),i=1,ntask_cont_to)
6586       write (iout,*) "Contacts sent"
6587       do ii=1,ntask_cont_to
6588         nn=ncont_sent(ii)
6589         iproc=itask_cont_to(ii)
6590         write (iout,*) nn," contacts to processor",iproc,
6591      &   " of CONT_TO_COMM group"
6592         do i=1,nn
6593           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6594         enddo
6595       enddo
6596       call flush(iout)
6597       endif
6598       CorrelType=477
6599       CorrelID=fg_rank+1
6600       CorrelType1=478
6601       CorrelID1=nfgtasks+fg_rank+1
6602       ireq=0
6603 C Receive the numbers of needed contacts from other processors 
6604       do ii=1,ntask_cont_from
6605         iproc=itask_cont_from(ii)
6606         ireq=ireq+1
6607         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6608      &    FG_COMM,req(ireq),IERR)
6609       enddo
6610 c      write (iout,*) "IRECV ended"
6611 c      call flush(iout)
6612 C Send the number of contacts needed by other processors
6613       do ii=1,ntask_cont_to
6614         iproc=itask_cont_to(ii)
6615         ireq=ireq+1
6616         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6617      &    FG_COMM,req(ireq),IERR)
6618       enddo
6619 c      write (iout,*) "ISEND ended"
6620 c      write (iout,*) "number of requests (nn)",ireq
6621       call flush(iout)
6622       if (ireq.gt.0) 
6623      &  call MPI_Waitall(ireq,req,status_array,ierr)
6624 c      write (iout,*) 
6625 c     &  "Numbers of contacts to be received from other processors",
6626 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6627 c      call flush(iout)
6628 C Receive contacts
6629       ireq=0
6630       do ii=1,ntask_cont_from
6631         iproc=itask_cont_from(ii)
6632         nn=ncont_recv(ii)
6633 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6634 c     &   " of CONT_TO_COMM group"
6635         call flush(iout)
6636         if (nn.gt.0) then
6637           ireq=ireq+1
6638           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6639      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6640 c          write (iout,*) "ireq,req",ireq,req(ireq)
6641         endif
6642       enddo
6643 C Send the contacts to processors that need them
6644       do ii=1,ntask_cont_to
6645         iproc=itask_cont_to(ii)
6646         nn=ncont_sent(ii)
6647 c        write (iout,*) nn," contacts to processor",iproc,
6648 c     &   " of CONT_TO_COMM group"
6649         if (nn.gt.0) then
6650           ireq=ireq+1 
6651           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6652      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6653 c          write (iout,*) "ireq,req",ireq,req(ireq)
6654 c          do i=1,nn
6655 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6656 c          enddo
6657         endif  
6658       enddo
6659 c      write (iout,*) "number of requests (contacts)",ireq
6660 c      write (iout,*) "req",(req(i),i=1,4)
6661 c      call flush(iout)
6662       if (ireq.gt.0) 
6663      & call MPI_Waitall(ireq,req,status_array,ierr)
6664       do iii=1,ntask_cont_from
6665         iproc=itask_cont_from(iii)
6666         nn=ncont_recv(iii)
6667         if (lprn) then
6668         write (iout,*) "Received",nn," contacts from processor",iproc,
6669      &   " of CONT_FROM_COMM group"
6670         call flush(iout)
6671         do i=1,nn
6672           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6673         enddo
6674         call flush(iout)
6675         endif
6676         do i=1,nn
6677           ii=zapas_recv(1,i,iii)
6678 c Flag the received contacts to prevent double-counting
6679           jj=-zapas_recv(2,i,iii)
6680 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6681 c          call flush(iout)
6682           nnn=num_cont_hb(ii)+1
6683           num_cont_hb(ii)=nnn
6684           jcont_hb(nnn,ii)=jj
6685           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6686           ind=3
6687           do kk=1,3
6688             ind=ind+1
6689             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6690           enddo
6691           do kk=1,2
6692             do ll=1,2
6693               ind=ind+1
6694               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6695             enddo
6696           enddo
6697           do jj=1,5
6698             do kk=1,3
6699               do ll=1,2
6700                 do mm=1,2
6701                   ind=ind+1
6702                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6703                 enddo
6704               enddo
6705             enddo
6706           enddo
6707         enddo
6708       enddo
6709       call flush(iout)
6710       if (lprn) then
6711         write (iout,'(a)') 'Contact function values after receive:'
6712         do i=nnt,nct-2
6713           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6714      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6715      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6716         enddo
6717         call flush(iout)
6718       endif
6719    30 continue
6720 #endif
6721       if (lprn) then
6722         write (iout,'(a)') 'Contact function values:'
6723         do i=nnt,nct-2
6724           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6725      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6726      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6727         enddo
6728       endif
6729       ecorr=0.0D0
6730       ecorr5=0.0d0
6731       ecorr6=0.0d0
6732 C Remove the loop below after debugging !!!
6733       do i=nnt,nct
6734         do j=1,3
6735           gradcorr(j,i)=0.0D0
6736           gradxorr(j,i)=0.0D0
6737         enddo
6738       enddo
6739 C Calculate the dipole-dipole interaction energies
6740       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6741       do i=iatel_s,iatel_e+1
6742         num_conti=num_cont_hb(i)
6743         do jj=1,num_conti
6744           j=jcont_hb(jj,i)
6745 #ifdef MOMENT
6746           call dipole(i,j,jj)
6747 #endif
6748         enddo
6749       enddo
6750       endif
6751 C Calculate the local-electrostatic correlation terms
6752 c                write (iout,*) "gradcorr5 in eello5 before loop"
6753 c                do iii=1,nres
6754 c                  write (iout,'(i5,3f10.5)') 
6755 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6756 c                enddo
6757       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6758 c        write (iout,*) "corr loop i",i
6759         i1=i+1
6760         num_conti=num_cont_hb(i)
6761         num_conti1=num_cont_hb(i+1)
6762         do jj=1,num_conti
6763           j=jcont_hb(jj,i)
6764           jp=iabs(j)
6765           do kk=1,num_conti1
6766             j1=jcont_hb(kk,i1)
6767             jp1=iabs(j1)
6768 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6769 c     &         ' jj=',jj,' kk=',kk
6770 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6771             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6772      &          .or. j.lt.0 .and. j1.gt.0) .and.
6773      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6774 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6775 C The system gains extra energy.
6776               n_corr=n_corr+1
6777               sqd1=dsqrt(d_cont(jj,i))
6778               sqd2=dsqrt(d_cont(kk,i1))
6779               sred_geom = sqd1*sqd2
6780               IF (sred_geom.lt.cutoff_corr) THEN
6781                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6782      &            ekont,fprimcont)
6783 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6784 cd     &         ' jj=',jj,' kk=',kk
6785                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6786                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6787                 do l=1,3
6788                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6789                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6790                 enddo
6791                 n_corr1=n_corr1+1
6792 cd               write (iout,*) 'sred_geom=',sred_geom,
6793 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6794 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6795 cd               write (iout,*) "g_contij",g_contij
6796 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6797 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6798                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6799                 if (wcorr4.gt.0.0d0) 
6800      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6801                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6802      1                 write (iout,'(a6,4i5,0pf7.3)')
6803      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6804 c                write (iout,*) "gradcorr5 before eello5"
6805 c                do iii=1,nres
6806 c                  write (iout,'(i5,3f10.5)') 
6807 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6808 c                enddo
6809                 if (wcorr5.gt.0.0d0)
6810      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6811 c                write (iout,*) "gradcorr5 after eello5"
6812 c                do iii=1,nres
6813 c                  write (iout,'(i5,3f10.5)') 
6814 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6815 c                enddo
6816                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6817      1                 write (iout,'(a6,4i5,0pf7.3)')
6818      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6819 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6820 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6821                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6822      &               .or. wturn6.eq.0.0d0))then
6823 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6824                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6825                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6826      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6827 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6828 cd     &            'ecorr6=',ecorr6
6829 cd                write (iout,'(4e15.5)') sred_geom,
6830 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6831 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6832 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6833                 else if (wturn6.gt.0.0d0
6834      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6835 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6836                   eturn6=eturn6+eello_turn6(i,jj,kk)
6837                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6838      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6839 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6840                 endif
6841               ENDIF
6842 1111          continue
6843             endif
6844           enddo ! kk
6845         enddo ! jj
6846       enddo ! i
6847       do i=1,nres
6848         num_cont_hb(i)=num_cont_hb_old(i)
6849       enddo
6850 c                write (iout,*) "gradcorr5 in eello5"
6851 c                do iii=1,nres
6852 c                  write (iout,'(i5,3f10.5)') 
6853 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6854 c                enddo
6855       return
6856       end
6857 c------------------------------------------------------------------------------
6858       subroutine add_hb_contact_eello(ii,jj,itask)
6859       implicit real*8 (a-h,o-z)
6860       include "DIMENSIONS"
6861       include "COMMON.IOUNITS"
6862       integer max_cont
6863       integer max_dim
6864       parameter (max_cont=maxconts)
6865       parameter (max_dim=70)
6866       include "COMMON.CONTACTS"
6867       double precision zapas(max_dim,maxconts,max_fg_procs),
6868      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6869       common /przechowalnia/ zapas
6870       integer i,j,ii,jj,iproc,itask(4),nn
6871 c      write (iout,*) "itask",itask
6872       do i=1,2
6873         iproc=itask(i)
6874         if (iproc.gt.0) then
6875           do j=1,num_cont_hb(ii)
6876             jjc=jcont_hb(j,ii)
6877 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6878             if (jjc.eq.jj) then
6879               ncont_sent(iproc)=ncont_sent(iproc)+1
6880               nn=ncont_sent(iproc)
6881               zapas(1,nn,iproc)=ii
6882               zapas(2,nn,iproc)=jjc
6883               zapas(3,nn,iproc)=d_cont(j,ii)
6884               ind=3
6885               do kk=1,3
6886                 ind=ind+1
6887                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6888               enddo
6889               do kk=1,2
6890                 do ll=1,2
6891                   ind=ind+1
6892                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6893                 enddo
6894               enddo
6895               do jj=1,5
6896                 do kk=1,3
6897                   do ll=1,2
6898                     do mm=1,2
6899                       ind=ind+1
6900                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6901                     enddo
6902                   enddo
6903                 enddo
6904               enddo
6905               exit
6906             endif
6907           enddo
6908         endif
6909       enddo
6910       return
6911       end
6912 c------------------------------------------------------------------------------
6913       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6914       implicit real*8 (a-h,o-z)
6915       include 'DIMENSIONS'
6916       include 'COMMON.IOUNITS'
6917       include 'COMMON.DERIV'
6918       include 'COMMON.INTERACT'
6919       include 'COMMON.CONTACTS'
6920       double precision gx(3),gx1(3)
6921       logical lprn
6922       lprn=.false.
6923       eij=facont_hb(jj,i)
6924       ekl=facont_hb(kk,k)
6925       ees0pij=ees0p(jj,i)
6926       ees0pkl=ees0p(kk,k)
6927       ees0mij=ees0m(jj,i)
6928       ees0mkl=ees0m(kk,k)
6929       ekont=eij*ekl
6930       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6931 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6932 C Following 4 lines for diagnostics.
6933 cd    ees0pkl=0.0D0
6934 cd    ees0pij=1.0D0
6935 cd    ees0mkl=0.0D0
6936 cd    ees0mij=1.0D0
6937 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6938 c     & 'Contacts ',i,j,
6939 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6940 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6941 c     & 'gradcorr_long'
6942 C Calculate the multi-body contribution to energy.
6943 c      ecorr=ecorr+ekont*ees
6944 C Calculate multi-body contributions to the gradient.
6945       coeffpees0pij=coeffp*ees0pij
6946       coeffmees0mij=coeffm*ees0mij
6947       coeffpees0pkl=coeffp*ees0pkl
6948       coeffmees0mkl=coeffm*ees0mkl
6949       do ll=1,3
6950 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6951         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6952      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6953      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6954         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6955      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6956      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6957 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6958         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6959      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6960      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6961         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6962      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6963      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6964         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6965      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6966      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6967         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6968         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6969         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6970      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6971      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6972         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6973         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6974 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6975       enddo
6976 c      write (iout,*)
6977 cgrad      do m=i+1,j-1
6978 cgrad        do ll=1,3
6979 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6980 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6981 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6982 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6983 cgrad        enddo
6984 cgrad      enddo
6985 cgrad      do m=k+1,l-1
6986 cgrad        do ll=1,3
6987 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6988 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6989 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6990 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6991 cgrad        enddo
6992 cgrad      enddo 
6993 c      write (iout,*) "ehbcorr",ekont*ees
6994       ehbcorr=ekont*ees
6995       return
6996       end
6997 #ifdef MOMENT
6998 C---------------------------------------------------------------------------
6999       subroutine dipole(i,j,jj)
7000       implicit real*8 (a-h,o-z)
7001       include 'DIMENSIONS'
7002       include 'COMMON.IOUNITS'
7003       include 'COMMON.CHAIN'
7004       include 'COMMON.FFIELD'
7005       include 'COMMON.DERIV'
7006       include 'COMMON.INTERACT'
7007       include 'COMMON.CONTACTS'
7008       include 'COMMON.TORSION'
7009       include 'COMMON.VAR'
7010       include 'COMMON.GEO'
7011       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7012      &  auxmat(2,2)
7013       iti1 = itortyp(itype(i+1))
7014       if (j.lt.nres-1) then
7015         itj1 = itortyp(itype(j+1))
7016       else
7017         itj1=ntortyp+1
7018       endif
7019       do iii=1,2
7020         dipi(iii,1)=Ub2(iii,i)
7021         dipderi(iii)=Ub2der(iii,i)
7022         dipi(iii,2)=b1(iii,iti1)
7023         dipj(iii,1)=Ub2(iii,j)
7024         dipderj(iii)=Ub2der(iii,j)
7025         dipj(iii,2)=b1(iii,itj1)
7026       enddo
7027       kkk=0
7028       do iii=1,2
7029         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7030         do jjj=1,2
7031           kkk=kkk+1
7032           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7033         enddo
7034       enddo
7035       do kkk=1,5
7036         do lll=1,3
7037           mmm=0
7038           do iii=1,2
7039             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7040      &        auxvec(1))
7041             do jjj=1,2
7042               mmm=mmm+1
7043               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7044             enddo
7045           enddo
7046         enddo
7047       enddo
7048       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7049       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7050       do iii=1,2
7051         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7052       enddo
7053       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7054       do iii=1,2
7055         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7056       enddo
7057       return
7058       end
7059 #endif
7060 C---------------------------------------------------------------------------
7061       subroutine calc_eello(i,j,k,l,jj,kk)
7062
7063 C This subroutine computes matrices and vectors needed to calculate 
7064 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7065 C
7066       implicit real*8 (a-h,o-z)
7067       include 'DIMENSIONS'
7068       include 'COMMON.IOUNITS'
7069       include 'COMMON.CHAIN'
7070       include 'COMMON.DERIV'
7071       include 'COMMON.INTERACT'
7072       include 'COMMON.CONTACTS'
7073       include 'COMMON.TORSION'
7074       include 'COMMON.VAR'
7075       include 'COMMON.GEO'
7076       include 'COMMON.FFIELD'
7077       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7078      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7079       logical lprn
7080       common /kutas/ lprn
7081 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7082 cd     & ' jj=',jj,' kk=',kk
7083 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7084 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7085 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7086       do iii=1,2
7087         do jjj=1,2
7088           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7089           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7090         enddo
7091       enddo
7092       call transpose2(aa1(1,1),aa1t(1,1))
7093       call transpose2(aa2(1,1),aa2t(1,1))
7094       do kkk=1,5
7095         do lll=1,3
7096           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7097      &      aa1tder(1,1,lll,kkk))
7098           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7099      &      aa2tder(1,1,lll,kkk))
7100         enddo
7101       enddo 
7102       if (l.eq.j+1) then
7103 C parallel orientation of the two CA-CA-CA frames.
7104         if (i.gt.1) then
7105           iti=itortyp(itype(i))
7106         else
7107           iti=ntortyp+1
7108         endif
7109         itk1=itortyp(itype(k+1))
7110         itj=itortyp(itype(j))
7111         if (l.lt.nres-1) then
7112           itl1=itortyp(itype(l+1))
7113         else
7114           itl1=ntortyp+1
7115         endif
7116 C A1 kernel(j+1) A2T
7117 cd        do iii=1,2
7118 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7119 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7120 cd        enddo
7121         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7122      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7123      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7124 C Following matrices are needed only for 6-th order cumulants
7125         IF (wcorr6.gt.0.0d0) THEN
7126         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7127      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7128      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7129         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7130      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7131      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7132      &   ADtEAderx(1,1,1,1,1,1))
7133         lprn=.false.
7134         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7135      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7136      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7137      &   ADtEA1derx(1,1,1,1,1,1))
7138         ENDIF
7139 C End 6-th order cumulants
7140 cd        lprn=.false.
7141 cd        if (lprn) then
7142 cd        write (2,*) 'In calc_eello6'
7143 cd        do iii=1,2
7144 cd          write (2,*) 'iii=',iii
7145 cd          do kkk=1,5
7146 cd            write (2,*) 'kkk=',kkk
7147 cd            do jjj=1,2
7148 cd              write (2,'(3(2f10.5),5x)') 
7149 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7150 cd            enddo
7151 cd          enddo
7152 cd        enddo
7153 cd        endif
7154         call transpose2(EUgder(1,1,k),auxmat(1,1))
7155         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7156         call transpose2(EUg(1,1,k),auxmat(1,1))
7157         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7158         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7159         do iii=1,2
7160           do kkk=1,5
7161             do lll=1,3
7162               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7163      &          EAEAderx(1,1,lll,kkk,iii,1))
7164             enddo
7165           enddo
7166         enddo
7167 C A1T kernel(i+1) A2
7168         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7169      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7170      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7171 C Following matrices are needed only for 6-th order cumulants
7172         IF (wcorr6.gt.0.0d0) THEN
7173         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7174      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7175      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7176         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7177      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7178      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7179      &   ADtEAderx(1,1,1,1,1,2))
7180         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7181      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7182      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7183      &   ADtEA1derx(1,1,1,1,1,2))
7184         ENDIF
7185 C End 6-th order cumulants
7186         call transpose2(EUgder(1,1,l),auxmat(1,1))
7187         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7188         call transpose2(EUg(1,1,l),auxmat(1,1))
7189         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7190         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7191         do iii=1,2
7192           do kkk=1,5
7193             do lll=1,3
7194               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7195      &          EAEAderx(1,1,lll,kkk,iii,2))
7196             enddo
7197           enddo
7198         enddo
7199 C AEAb1 and AEAb2
7200 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7201 C They are needed only when the fifth- or the sixth-order cumulants are
7202 C indluded.
7203         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7204         call transpose2(AEA(1,1,1),auxmat(1,1))
7205         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7206         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7207         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7208         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7209         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7210         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7211         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7212         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7213         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7214         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7215         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7216         call transpose2(AEA(1,1,2),auxmat(1,1))
7217         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7218         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7219         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7220         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7221         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7222         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7223         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7224         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7225         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7226         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7227         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7228 C Calculate the Cartesian derivatives of the vectors.
7229         do iii=1,2
7230           do kkk=1,5
7231             do lll=1,3
7232               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7233               call matvec2(auxmat(1,1),b1(1,iti),
7234      &          AEAb1derx(1,lll,kkk,iii,1,1))
7235               call matvec2(auxmat(1,1),Ub2(1,i),
7236      &          AEAb2derx(1,lll,kkk,iii,1,1))
7237               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7238      &          AEAb1derx(1,lll,kkk,iii,2,1))
7239               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7240      &          AEAb2derx(1,lll,kkk,iii,2,1))
7241               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7242               call matvec2(auxmat(1,1),b1(1,itj),
7243      &          AEAb1derx(1,lll,kkk,iii,1,2))
7244               call matvec2(auxmat(1,1),Ub2(1,j),
7245      &          AEAb2derx(1,lll,kkk,iii,1,2))
7246               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7247      &          AEAb1derx(1,lll,kkk,iii,2,2))
7248               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7249      &          AEAb2derx(1,lll,kkk,iii,2,2))
7250             enddo
7251           enddo
7252         enddo
7253         ENDIF
7254 C End vectors
7255       else
7256 C Antiparallel orientation of the two CA-CA-CA frames.
7257         if (i.gt.1) then
7258           iti=itortyp(itype(i))
7259         else
7260           iti=ntortyp+1
7261         endif
7262         itk1=itortyp(itype(k+1))
7263         itl=itortyp(itype(l))
7264         itj=itortyp(itype(j))
7265         if (j.lt.nres-1) then
7266           itj1=itortyp(itype(j+1))
7267         else 
7268           itj1=ntortyp+1
7269         endif
7270 C A2 kernel(j-1)T A1T
7271         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7272      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7273      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7274 C Following matrices are needed only for 6-th order cumulants
7275         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7276      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7277         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7278      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7279      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7280         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7281      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7282      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7283      &   ADtEAderx(1,1,1,1,1,1))
7284         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7285      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7286      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7287      &   ADtEA1derx(1,1,1,1,1,1))
7288         ENDIF
7289 C End 6-th order cumulants
7290         call transpose2(EUgder(1,1,k),auxmat(1,1))
7291         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7292         call transpose2(EUg(1,1,k),auxmat(1,1))
7293         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7294         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7295         do iii=1,2
7296           do kkk=1,5
7297             do lll=1,3
7298               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7299      &          EAEAderx(1,1,lll,kkk,iii,1))
7300             enddo
7301           enddo
7302         enddo
7303 C A2T kernel(i+1)T A1
7304         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7305      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7306      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7307 C Following matrices are needed only for 6-th order cumulants
7308         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7309      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7310         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7311      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7312      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7313         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7314      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7315      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7316      &   ADtEAderx(1,1,1,1,1,2))
7317         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7318      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7319      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7320      &   ADtEA1derx(1,1,1,1,1,2))
7321         ENDIF
7322 C End 6-th order cumulants
7323         call transpose2(EUgder(1,1,j),auxmat(1,1))
7324         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7325         call transpose2(EUg(1,1,j),auxmat(1,1))
7326         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7327         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7328         do iii=1,2
7329           do kkk=1,5
7330             do lll=1,3
7331               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7332      &          EAEAderx(1,1,lll,kkk,iii,2))
7333             enddo
7334           enddo
7335         enddo
7336 C AEAb1 and AEAb2
7337 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7338 C They are needed only when the fifth- or the sixth-order cumulants are
7339 C indluded.
7340         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7341      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7342         call transpose2(AEA(1,1,1),auxmat(1,1))
7343         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7344         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7345         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7346         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7347         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7348         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7349         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7350         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7351         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7352         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7353         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7354         call transpose2(AEA(1,1,2),auxmat(1,1))
7355         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7356         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7357         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7358         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7359         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7360         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7361         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7362         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7363         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7364         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7365         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7366 C Calculate the Cartesian derivatives of the vectors.
7367         do iii=1,2
7368           do kkk=1,5
7369             do lll=1,3
7370               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7371               call matvec2(auxmat(1,1),b1(1,iti),
7372      &          AEAb1derx(1,lll,kkk,iii,1,1))
7373               call matvec2(auxmat(1,1),Ub2(1,i),
7374      &          AEAb2derx(1,lll,kkk,iii,1,1))
7375               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7376      &          AEAb1derx(1,lll,kkk,iii,2,1))
7377               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7378      &          AEAb2derx(1,lll,kkk,iii,2,1))
7379               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7380               call matvec2(auxmat(1,1),b1(1,itl),
7381      &          AEAb1derx(1,lll,kkk,iii,1,2))
7382               call matvec2(auxmat(1,1),Ub2(1,l),
7383      &          AEAb2derx(1,lll,kkk,iii,1,2))
7384               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7385      &          AEAb1derx(1,lll,kkk,iii,2,2))
7386               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7387      &          AEAb2derx(1,lll,kkk,iii,2,2))
7388             enddo
7389           enddo
7390         enddo
7391         ENDIF
7392 C End vectors
7393       endif
7394       return
7395       end
7396 C---------------------------------------------------------------------------
7397       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7398      &  KK,KKderg,AKA,AKAderg,AKAderx)
7399       implicit none
7400       integer nderg
7401       logical transp
7402       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7403      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7404      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7405       integer iii,kkk,lll
7406       integer jjj,mmm
7407       logical lprn
7408       common /kutas/ lprn
7409       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7410       do iii=1,nderg 
7411         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7412      &    AKAderg(1,1,iii))
7413       enddo
7414 cd      if (lprn) write (2,*) 'In kernel'
7415       do kkk=1,5
7416 cd        if (lprn) write (2,*) 'kkk=',kkk
7417         do lll=1,3
7418           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7419      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7420 cd          if (lprn) then
7421 cd            write (2,*) 'lll=',lll
7422 cd            write (2,*) 'iii=1'
7423 cd            do jjj=1,2
7424 cd              write (2,'(3(2f10.5),5x)') 
7425 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7426 cd            enddo
7427 cd          endif
7428           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7429      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7430 cd          if (lprn) then
7431 cd            write (2,*) 'lll=',lll
7432 cd            write (2,*) 'iii=2'
7433 cd            do jjj=1,2
7434 cd              write (2,'(3(2f10.5),5x)') 
7435 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7436 cd            enddo
7437 cd          endif
7438         enddo
7439       enddo
7440       return
7441       end
7442 C---------------------------------------------------------------------------
7443       double precision function eello4(i,j,k,l,jj,kk)
7444       implicit real*8 (a-h,o-z)
7445       include 'DIMENSIONS'
7446       include 'COMMON.IOUNITS'
7447       include 'COMMON.CHAIN'
7448       include 'COMMON.DERIV'
7449       include 'COMMON.INTERACT'
7450       include 'COMMON.CONTACTS'
7451       include 'COMMON.TORSION'
7452       include 'COMMON.VAR'
7453       include 'COMMON.GEO'
7454       double precision pizda(2,2),ggg1(3),ggg2(3)
7455 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7456 cd        eello4=0.0d0
7457 cd        return
7458 cd      endif
7459 cd      print *,'eello4:',i,j,k,l,jj,kk
7460 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7461 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7462 cold      eij=facont_hb(jj,i)
7463 cold      ekl=facont_hb(kk,k)
7464 cold      ekont=eij*ekl
7465       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7466 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7467       gcorr_loc(k-1)=gcorr_loc(k-1)
7468      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7469       if (l.eq.j+1) then
7470         gcorr_loc(l-1)=gcorr_loc(l-1)
7471      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7472       else
7473         gcorr_loc(j-1)=gcorr_loc(j-1)
7474      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7475       endif
7476       do iii=1,2
7477         do kkk=1,5
7478           do lll=1,3
7479             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7480      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7481 cd            derx(lll,kkk,iii)=0.0d0
7482           enddo
7483         enddo
7484       enddo
7485 cd      gcorr_loc(l-1)=0.0d0
7486 cd      gcorr_loc(j-1)=0.0d0
7487 cd      gcorr_loc(k-1)=0.0d0
7488 cd      eel4=1.0d0
7489 cd      write (iout,*)'Contacts have occurred for peptide groups',
7490 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7491 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7492       if (j.lt.nres-1) then
7493         j1=j+1
7494         j2=j-1
7495       else
7496         j1=j-1
7497         j2=j-2
7498       endif
7499       if (l.lt.nres-1) then
7500         l1=l+1
7501         l2=l-1
7502       else
7503         l1=l-1
7504         l2=l-2
7505       endif
7506       do ll=1,3
7507 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7508 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7509         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7510         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7511 cgrad        ghalf=0.5d0*ggg1(ll)
7512         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7513         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7514         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7515         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7516         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7517         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7518 cgrad        ghalf=0.5d0*ggg2(ll)
7519         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7520         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7521         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7522         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7523         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7524         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7525       enddo
7526 cgrad      do m=i+1,j-1
7527 cgrad        do ll=1,3
7528 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7529 cgrad        enddo
7530 cgrad      enddo
7531 cgrad      do m=k+1,l-1
7532 cgrad        do ll=1,3
7533 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7534 cgrad        enddo
7535 cgrad      enddo
7536 cgrad      do m=i+2,j2
7537 cgrad        do ll=1,3
7538 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7539 cgrad        enddo
7540 cgrad      enddo
7541 cgrad      do m=k+2,l2
7542 cgrad        do ll=1,3
7543 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7544 cgrad        enddo
7545 cgrad      enddo 
7546 cd      do iii=1,nres-3
7547 cd        write (2,*) iii,gcorr_loc(iii)
7548 cd      enddo
7549       eello4=ekont*eel4
7550 cd      write (2,*) 'ekont',ekont
7551 cd      write (iout,*) 'eello4',ekont*eel4
7552       return
7553       end
7554 C---------------------------------------------------------------------------
7555       double precision function eello5(i,j,k,l,jj,kk)
7556       implicit real*8 (a-h,o-z)
7557       include 'DIMENSIONS'
7558       include 'COMMON.IOUNITS'
7559       include 'COMMON.CHAIN'
7560       include 'COMMON.DERIV'
7561       include 'COMMON.INTERACT'
7562       include 'COMMON.CONTACTS'
7563       include 'COMMON.TORSION'
7564       include 'COMMON.VAR'
7565       include 'COMMON.GEO'
7566       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7567       double precision ggg1(3),ggg2(3)
7568 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7569 C                                                                              C
7570 C                            Parallel chains                                   C
7571 C                                                                              C
7572 C          o             o                   o             o                   C
7573 C         /l\           / \             \   / \           / \   /              C
7574 C        /   \         /   \             \ /   \         /   \ /               C
7575 C       j| o |l1       | o |              o| o |         | o |o                C
7576 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7577 C      \i/   \         /   \ /             /   \         /   \                 C
7578 C       o    k1             o                                                  C
7579 C         (I)          (II)                (III)          (IV)                 C
7580 C                                                                              C
7581 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7582 C                                                                              C
7583 C                            Antiparallel chains                               C
7584 C                                                                              C
7585 C          o             o                   o             o                   C
7586 C         /j\           / \             \   / \           / \   /              C
7587 C        /   \         /   \             \ /   \         /   \ /               C
7588 C      j1| o |l        | o |              o| o |         | o |o                C
7589 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7590 C      \i/   \         /   \ /             /   \         /   \                 C
7591 C       o     k1            o                                                  C
7592 C         (I)          (II)                (III)          (IV)                 C
7593 C                                                                              C
7594 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7595 C                                                                              C
7596 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7597 C                                                                              C
7598 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7599 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7600 cd        eello5=0.0d0
7601 cd        return
7602 cd      endif
7603 cd      write (iout,*)
7604 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7605 cd     &   ' and',k,l
7606       itk=itortyp(itype(k))
7607       itl=itortyp(itype(l))
7608       itj=itortyp(itype(j))
7609       eello5_1=0.0d0
7610       eello5_2=0.0d0
7611       eello5_3=0.0d0
7612       eello5_4=0.0d0
7613 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7614 cd     &   eel5_3_num,eel5_4_num)
7615       do iii=1,2
7616         do kkk=1,5
7617           do lll=1,3
7618             derx(lll,kkk,iii)=0.0d0
7619           enddo
7620         enddo
7621       enddo
7622 cd      eij=facont_hb(jj,i)
7623 cd      ekl=facont_hb(kk,k)
7624 cd      ekont=eij*ekl
7625 cd      write (iout,*)'Contacts have occurred for peptide groups',
7626 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7627 cd      goto 1111
7628 C Contribution from the graph I.
7629 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7630 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7631       call transpose2(EUg(1,1,k),auxmat(1,1))
7632       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7633       vv(1)=pizda(1,1)-pizda(2,2)
7634       vv(2)=pizda(1,2)+pizda(2,1)
7635       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7636      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7637 C Explicit gradient in virtual-dihedral angles.
7638       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7639      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7640      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7641       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7642       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7643       vv(1)=pizda(1,1)-pizda(2,2)
7644       vv(2)=pizda(1,2)+pizda(2,1)
7645       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7646      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7647      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7648       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7649       vv(1)=pizda(1,1)-pizda(2,2)
7650       vv(2)=pizda(1,2)+pizda(2,1)
7651       if (l.eq.j+1) then
7652         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7653      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7654      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7655       else
7656         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7657      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7658      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7659       endif 
7660 C Cartesian gradient
7661       do iii=1,2
7662         do kkk=1,5
7663           do lll=1,3
7664             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7665      &        pizda(1,1))
7666             vv(1)=pizda(1,1)-pizda(2,2)
7667             vv(2)=pizda(1,2)+pizda(2,1)
7668             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7669      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7670      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7671           enddo
7672         enddo
7673       enddo
7674 c      goto 1112
7675 c1111  continue
7676 C Contribution from graph II 
7677       call transpose2(EE(1,1,itk),auxmat(1,1))
7678       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7679       vv(1)=pizda(1,1)+pizda(2,2)
7680       vv(2)=pizda(2,1)-pizda(1,2)
7681       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7682      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7683 C Explicit gradient in virtual-dihedral angles.
7684       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7685      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7686       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7687       vv(1)=pizda(1,1)+pizda(2,2)
7688       vv(2)=pizda(2,1)-pizda(1,2)
7689       if (l.eq.j+1) then
7690         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7691      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7692      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7693       else
7694         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7695      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7696      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7697       endif
7698 C Cartesian gradient
7699       do iii=1,2
7700         do kkk=1,5
7701           do lll=1,3
7702             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7703      &        pizda(1,1))
7704             vv(1)=pizda(1,1)+pizda(2,2)
7705             vv(2)=pizda(2,1)-pizda(1,2)
7706             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7707      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7708      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7709           enddo
7710         enddo
7711       enddo
7712 cd      goto 1112
7713 cd1111  continue
7714       if (l.eq.j+1) then
7715 cd        goto 1110
7716 C Parallel orientation
7717 C Contribution from graph III
7718         call transpose2(EUg(1,1,l),auxmat(1,1))
7719         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7720         vv(1)=pizda(1,1)-pizda(2,2)
7721         vv(2)=pizda(1,2)+pizda(2,1)
7722         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7723      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7724 C Explicit gradient in virtual-dihedral angles.
7725         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7726      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7727      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7728         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7729         vv(1)=pizda(1,1)-pizda(2,2)
7730         vv(2)=pizda(1,2)+pizda(2,1)
7731         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7732      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7733      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7734         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7735         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7736         vv(1)=pizda(1,1)-pizda(2,2)
7737         vv(2)=pizda(1,2)+pizda(2,1)
7738         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7739      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7740      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7741 C Cartesian gradient
7742         do iii=1,2
7743           do kkk=1,5
7744             do lll=1,3
7745               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7746      &          pizda(1,1))
7747               vv(1)=pizda(1,1)-pizda(2,2)
7748               vv(2)=pizda(1,2)+pizda(2,1)
7749               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7750      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7751      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7752             enddo
7753           enddo
7754         enddo
7755 cd        goto 1112
7756 C Contribution from graph IV
7757 cd1110    continue
7758         call transpose2(EE(1,1,itl),auxmat(1,1))
7759         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7760         vv(1)=pizda(1,1)+pizda(2,2)
7761         vv(2)=pizda(2,1)-pizda(1,2)
7762         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7763      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7764 C Explicit gradient in virtual-dihedral angles.
7765         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7766      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7767         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7768         vv(1)=pizda(1,1)+pizda(2,2)
7769         vv(2)=pizda(2,1)-pizda(1,2)
7770         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7771      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7772      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7773 C Cartesian gradient
7774         do iii=1,2
7775           do kkk=1,5
7776             do lll=1,3
7777               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7778      &          pizda(1,1))
7779               vv(1)=pizda(1,1)+pizda(2,2)
7780               vv(2)=pizda(2,1)-pizda(1,2)
7781               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7782      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7783      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7784             enddo
7785           enddo
7786         enddo
7787       else
7788 C Antiparallel orientation
7789 C Contribution from graph III
7790 c        goto 1110
7791         call transpose2(EUg(1,1,j),auxmat(1,1))
7792         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7793         vv(1)=pizda(1,1)-pizda(2,2)
7794         vv(2)=pizda(1,2)+pizda(2,1)
7795         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7796      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7797 C Explicit gradient in virtual-dihedral angles.
7798         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7799      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7800      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7801         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7802         vv(1)=pizda(1,1)-pizda(2,2)
7803         vv(2)=pizda(1,2)+pizda(2,1)
7804         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7805      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7806      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7807         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7808         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7809         vv(1)=pizda(1,1)-pizda(2,2)
7810         vv(2)=pizda(1,2)+pizda(2,1)
7811         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7812      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7813      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7814 C Cartesian gradient
7815         do iii=1,2
7816           do kkk=1,5
7817             do lll=1,3
7818               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7819      &          pizda(1,1))
7820               vv(1)=pizda(1,1)-pizda(2,2)
7821               vv(2)=pizda(1,2)+pizda(2,1)
7822               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7823      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7824      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7825             enddo
7826           enddo
7827         enddo
7828 cd        goto 1112
7829 C Contribution from graph IV
7830 1110    continue
7831         call transpose2(EE(1,1,itj),auxmat(1,1))
7832         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7833         vv(1)=pizda(1,1)+pizda(2,2)
7834         vv(2)=pizda(2,1)-pizda(1,2)
7835         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7836      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7837 C Explicit gradient in virtual-dihedral angles.
7838         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7839      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7840         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7841         vv(1)=pizda(1,1)+pizda(2,2)
7842         vv(2)=pizda(2,1)-pizda(1,2)
7843         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7844      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7845      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7846 C Cartesian gradient
7847         do iii=1,2
7848           do kkk=1,5
7849             do lll=1,3
7850               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7851      &          pizda(1,1))
7852               vv(1)=pizda(1,1)+pizda(2,2)
7853               vv(2)=pizda(2,1)-pizda(1,2)
7854               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7855      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7856      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7857             enddo
7858           enddo
7859         enddo
7860       endif
7861 1112  continue
7862       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7863 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7864 cd        write (2,*) 'ijkl',i,j,k,l
7865 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7866 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7867 cd      endif
7868 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7869 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7870 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7871 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7872       if (j.lt.nres-1) then
7873         j1=j+1
7874         j2=j-1
7875       else
7876         j1=j-1
7877         j2=j-2
7878       endif
7879       if (l.lt.nres-1) then
7880         l1=l+1
7881         l2=l-1
7882       else
7883         l1=l-1
7884         l2=l-2
7885       endif
7886 cd      eij=1.0d0
7887 cd      ekl=1.0d0
7888 cd      ekont=1.0d0
7889 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7890 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7891 C        summed up outside the subrouine as for the other subroutines 
7892 C        handling long-range interactions. The old code is commented out
7893 C        with "cgrad" to keep track of changes.
7894       do ll=1,3
7895 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7896 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7897         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7898         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7899 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7900 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7901 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7902 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7903 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7904 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7905 c     &   gradcorr5ij,
7906 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7907 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7908 cgrad        ghalf=0.5d0*ggg1(ll)
7909 cd        ghalf=0.0d0
7910         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7911         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7912         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7913         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7914         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7915         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7916 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7917 cgrad        ghalf=0.5d0*ggg2(ll)
7918 cd        ghalf=0.0d0
7919         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7920         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7921         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7922         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7923         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7924         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7925       enddo
7926 cd      goto 1112
7927 cgrad      do m=i+1,j-1
7928 cgrad        do ll=1,3
7929 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7930 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7931 cgrad        enddo
7932 cgrad      enddo
7933 cgrad      do m=k+1,l-1
7934 cgrad        do ll=1,3
7935 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7936 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7937 cgrad        enddo
7938 cgrad      enddo
7939 c1112  continue
7940 cgrad      do m=i+2,j2
7941 cgrad        do ll=1,3
7942 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7943 cgrad        enddo
7944 cgrad      enddo
7945 cgrad      do m=k+2,l2
7946 cgrad        do ll=1,3
7947 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7948 cgrad        enddo
7949 cgrad      enddo 
7950 cd      do iii=1,nres-3
7951 cd        write (2,*) iii,g_corr5_loc(iii)
7952 cd      enddo
7953       eello5=ekont*eel5
7954 cd      write (2,*) 'ekont',ekont
7955 cd      write (iout,*) 'eello5',ekont*eel5
7956       return
7957       end
7958 c--------------------------------------------------------------------------
7959       double precision function eello6(i,j,k,l,jj,kk)
7960       implicit real*8 (a-h,o-z)
7961       include 'DIMENSIONS'
7962       include 'COMMON.IOUNITS'
7963       include 'COMMON.CHAIN'
7964       include 'COMMON.DERIV'
7965       include 'COMMON.INTERACT'
7966       include 'COMMON.CONTACTS'
7967       include 'COMMON.TORSION'
7968       include 'COMMON.VAR'
7969       include 'COMMON.GEO'
7970       include 'COMMON.FFIELD'
7971       double precision ggg1(3),ggg2(3)
7972 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7973 cd        eello6=0.0d0
7974 cd        return
7975 cd      endif
7976 cd      write (iout,*)
7977 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7978 cd     &   ' and',k,l
7979       eello6_1=0.0d0
7980       eello6_2=0.0d0
7981       eello6_3=0.0d0
7982       eello6_4=0.0d0
7983       eello6_5=0.0d0
7984       eello6_6=0.0d0
7985 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7986 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7987       do iii=1,2
7988         do kkk=1,5
7989           do lll=1,3
7990             derx(lll,kkk,iii)=0.0d0
7991           enddo
7992         enddo
7993       enddo
7994 cd      eij=facont_hb(jj,i)
7995 cd      ekl=facont_hb(kk,k)
7996 cd      ekont=eij*ekl
7997 cd      eij=1.0d0
7998 cd      ekl=1.0d0
7999 cd      ekont=1.0d0
8000       if (l.eq.j+1) then
8001         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8002         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8003         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8004         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8005         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8006         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8007       else
8008         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8009         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8010         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8011         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8012         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8013           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8014         else
8015           eello6_5=0.0d0
8016         endif
8017         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8018       endif
8019 C If turn contributions are considered, they will be handled separately.
8020       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8021 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8022 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8023 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8024 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8025 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8026 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8027 cd      goto 1112
8028       if (j.lt.nres-1) then
8029         j1=j+1
8030         j2=j-1
8031       else
8032         j1=j-1
8033         j2=j-2
8034       endif
8035       if (l.lt.nres-1) then
8036         l1=l+1
8037         l2=l-1
8038       else
8039         l1=l-1
8040         l2=l-2
8041       endif
8042       do ll=1,3
8043 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8044 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8045 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8046 cgrad        ghalf=0.5d0*ggg1(ll)
8047 cd        ghalf=0.0d0
8048         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8049         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8050         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8051         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8052         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8053         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8054         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8055         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8056 cgrad        ghalf=0.5d0*ggg2(ll)
8057 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8058 cd        ghalf=0.0d0
8059         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8060         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8061         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8062         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8063         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8064         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8065       enddo
8066 cd      goto 1112
8067 cgrad      do m=i+1,j-1
8068 cgrad        do ll=1,3
8069 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8070 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8071 cgrad        enddo
8072 cgrad      enddo
8073 cgrad      do m=k+1,l-1
8074 cgrad        do ll=1,3
8075 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8076 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8077 cgrad        enddo
8078 cgrad      enddo
8079 cgrad1112  continue
8080 cgrad      do m=i+2,j2
8081 cgrad        do ll=1,3
8082 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8083 cgrad        enddo
8084 cgrad      enddo
8085 cgrad      do m=k+2,l2
8086 cgrad        do ll=1,3
8087 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8088 cgrad        enddo
8089 cgrad      enddo 
8090 cd      do iii=1,nres-3
8091 cd        write (2,*) iii,g_corr6_loc(iii)
8092 cd      enddo
8093       eello6=ekont*eel6
8094 cd      write (2,*) 'ekont',ekont
8095 cd      write (iout,*) 'eello6',ekont*eel6
8096       return
8097       end
8098 c--------------------------------------------------------------------------
8099       double precision function eello6_graph1(i,j,k,l,imat,swap)
8100       implicit real*8 (a-h,o-z)
8101       include 'DIMENSIONS'
8102       include 'COMMON.IOUNITS'
8103       include 'COMMON.CHAIN'
8104       include 'COMMON.DERIV'
8105       include 'COMMON.INTERACT'
8106       include 'COMMON.CONTACTS'
8107       include 'COMMON.TORSION'
8108       include 'COMMON.VAR'
8109       include 'COMMON.GEO'
8110       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8111       logical swap
8112       logical lprn
8113       common /kutas/ lprn
8114 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8115 C                                              
8116 C      Parallel       Antiparallel
8117 C                                             
8118 C          o             o         
8119 C         /l\           /j\
8120 C        /   \         /   \
8121 C       /| o |         | o |\
8122 C     \ j|/k\|  /   \  |/k\|l /   
8123 C      \ /   \ /     \ /   \ /    
8124 C       o     o       o     o                
8125 C       i             i                     
8126 C
8127 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8128       itk=itortyp(itype(k))
8129       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8130       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8131       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8132       call transpose2(EUgC(1,1,k),auxmat(1,1))
8133       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8134       vv1(1)=pizda1(1,1)-pizda1(2,2)
8135       vv1(2)=pizda1(1,2)+pizda1(2,1)
8136       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8137       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8138       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8139       s5=scalar2(vv(1),Dtobr2(1,i))
8140 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8141       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8142       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8143      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8144      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8145      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8146      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8147      & +scalar2(vv(1),Dtobr2der(1,i)))
8148       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8149       vv1(1)=pizda1(1,1)-pizda1(2,2)
8150       vv1(2)=pizda1(1,2)+pizda1(2,1)
8151       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8152       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8153       if (l.eq.j+1) then
8154         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8155      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8156      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8157      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8158      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8159       else
8160         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8161      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8162      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8163      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8164      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8165       endif
8166       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8167       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8168       vv1(1)=pizda1(1,1)-pizda1(2,2)
8169       vv1(2)=pizda1(1,2)+pizda1(2,1)
8170       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8171      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8172      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8173      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8174       do iii=1,2
8175         if (swap) then
8176           ind=3-iii
8177         else
8178           ind=iii
8179         endif
8180         do kkk=1,5
8181           do lll=1,3
8182             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8183             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8184             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8185             call transpose2(EUgC(1,1,k),auxmat(1,1))
8186             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8187      &        pizda1(1,1))
8188             vv1(1)=pizda1(1,1)-pizda1(2,2)
8189             vv1(2)=pizda1(1,2)+pizda1(2,1)
8190             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8191             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8192      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8193             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8194      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8195             s5=scalar2(vv(1),Dtobr2(1,i))
8196             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8197           enddo
8198         enddo
8199       enddo
8200       return
8201       end
8202 c----------------------------------------------------------------------------
8203       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8204       implicit real*8 (a-h,o-z)
8205       include 'DIMENSIONS'
8206       include 'COMMON.IOUNITS'
8207       include 'COMMON.CHAIN'
8208       include 'COMMON.DERIV'
8209       include 'COMMON.INTERACT'
8210       include 'COMMON.CONTACTS'
8211       include 'COMMON.TORSION'
8212       include 'COMMON.VAR'
8213       include 'COMMON.GEO'
8214       logical swap
8215       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8216      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8217       logical lprn
8218       common /kutas/ lprn
8219 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8220 C                                                                              C
8221 C      Parallel       Antiparallel                                             C
8222 C                                                                              C
8223 C          o             o                                                     C
8224 C     \   /l\           /j\   /                                                C
8225 C      \ /   \         /   \ /                                                 C
8226 C       o| o |         | o |o                                                  C                
8227 C     \ j|/k\|      \  |/k\|l                                                  C
8228 C      \ /   \       \ /   \                                                   C
8229 C       o             o                                                        C
8230 C       i             i                                                        C 
8231 C                                                                              C           
8232 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8233 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8234 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8235 C           but not in a cluster cumulant
8236 #ifdef MOMENT
8237       s1=dip(1,jj,i)*dip(1,kk,k)
8238 #endif
8239       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8240       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8241       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8242       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8243       call transpose2(EUg(1,1,k),auxmat(1,1))
8244       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8245       vv(1)=pizda(1,1)-pizda(2,2)
8246       vv(2)=pizda(1,2)+pizda(2,1)
8247       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8248 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8249 #ifdef MOMENT
8250       eello6_graph2=-(s1+s2+s3+s4)
8251 #else
8252       eello6_graph2=-(s2+s3+s4)
8253 #endif
8254 c      eello6_graph2=-s3
8255 C Derivatives in gamma(i-1)
8256       if (i.gt.1) then
8257 #ifdef MOMENT
8258         s1=dipderg(1,jj,i)*dip(1,kk,k)
8259 #endif
8260         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8261         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8262         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8263         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8264 #ifdef MOMENT
8265         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8266 #else
8267         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8268 #endif
8269 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8270       endif
8271 C Derivatives in gamma(k-1)
8272 #ifdef MOMENT
8273       s1=dip(1,jj,i)*dipderg(1,kk,k)
8274 #endif
8275       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8276       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8277       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8278       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8279       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8280       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8281       vv(1)=pizda(1,1)-pizda(2,2)
8282       vv(2)=pizda(1,2)+pizda(2,1)
8283       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8284 #ifdef MOMENT
8285       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8286 #else
8287       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8288 #endif
8289 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8290 C Derivatives in gamma(j-1) or gamma(l-1)
8291       if (j.gt.1) then
8292 #ifdef MOMENT
8293         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8294 #endif
8295         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8296         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8297         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8298         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8299         vv(1)=pizda(1,1)-pizda(2,2)
8300         vv(2)=pizda(1,2)+pizda(2,1)
8301         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8302 #ifdef MOMENT
8303         if (swap) then
8304           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8305         else
8306           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8307         endif
8308 #endif
8309         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8310 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8311       endif
8312 C Derivatives in gamma(l-1) or gamma(j-1)
8313       if (l.gt.1) then 
8314 #ifdef MOMENT
8315         s1=dip(1,jj,i)*dipderg(3,kk,k)
8316 #endif
8317         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8318         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8319         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8320         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8321         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8322         vv(1)=pizda(1,1)-pizda(2,2)
8323         vv(2)=pizda(1,2)+pizda(2,1)
8324         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8325 #ifdef MOMENT
8326         if (swap) then
8327           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8328         else
8329           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8330         endif
8331 #endif
8332         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8333 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8334       endif
8335 C Cartesian derivatives.
8336       if (lprn) then
8337         write (2,*) 'In eello6_graph2'
8338         do iii=1,2
8339           write (2,*) 'iii=',iii
8340           do kkk=1,5
8341             write (2,*) 'kkk=',kkk
8342             do jjj=1,2
8343               write (2,'(3(2f10.5),5x)') 
8344      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8345             enddo
8346           enddo
8347         enddo
8348       endif
8349       do iii=1,2
8350         do kkk=1,5
8351           do lll=1,3
8352 #ifdef MOMENT
8353             if (iii.eq.1) then
8354               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8355             else
8356               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8357             endif
8358 #endif
8359             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8360      &        auxvec(1))
8361             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8362             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8363      &        auxvec(1))
8364             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8365             call transpose2(EUg(1,1,k),auxmat(1,1))
8366             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8367      &        pizda(1,1))
8368             vv(1)=pizda(1,1)-pizda(2,2)
8369             vv(2)=pizda(1,2)+pizda(2,1)
8370             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8371 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8372 #ifdef MOMENT
8373             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8374 #else
8375             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8376 #endif
8377             if (swap) then
8378               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8379             else
8380               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8381             endif
8382           enddo
8383         enddo
8384       enddo
8385       return
8386       end
8387 c----------------------------------------------------------------------------
8388       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8389       implicit real*8 (a-h,o-z)
8390       include 'DIMENSIONS'
8391       include 'COMMON.IOUNITS'
8392       include 'COMMON.CHAIN'
8393       include 'COMMON.DERIV'
8394       include 'COMMON.INTERACT'
8395       include 'COMMON.CONTACTS'
8396       include 'COMMON.TORSION'
8397       include 'COMMON.VAR'
8398       include 'COMMON.GEO'
8399       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8400       logical swap
8401 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8402 C                                                                              C 
8403 C      Parallel       Antiparallel                                             C
8404 C                                                                              C
8405 C          o             o                                                     C 
8406 C         /l\   /   \   /j\                                                    C 
8407 C        /   \ /     \ /   \                                                   C
8408 C       /| o |o       o| o |\                                                  C
8409 C       j|/k\|  /      |/k\|l /                                                C
8410 C        /   \ /       /   \ /                                                 C
8411 C       /     o       /     o                                                  C
8412 C       i             i                                                        C
8413 C                                                                              C
8414 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8415 C
8416 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8417 C           energy moment and not to the cluster cumulant.
8418       iti=itortyp(itype(i))
8419       if (j.lt.nres-1) then
8420         itj1=itortyp(itype(j+1))
8421       else
8422         itj1=ntortyp+1
8423       endif
8424       itk=itortyp(itype(k))
8425       itk1=itortyp(itype(k+1))
8426       if (l.lt.nres-1) then
8427         itl1=itortyp(itype(l+1))
8428       else
8429         itl1=ntortyp+1
8430       endif
8431 #ifdef MOMENT
8432       s1=dip(4,jj,i)*dip(4,kk,k)
8433 #endif
8434       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8435       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8436       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8437       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8438       call transpose2(EE(1,1,itk),auxmat(1,1))
8439       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8440       vv(1)=pizda(1,1)+pizda(2,2)
8441       vv(2)=pizda(2,1)-pizda(1,2)
8442       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8443 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8444 cd     & "sum",-(s2+s3+s4)
8445 #ifdef MOMENT
8446       eello6_graph3=-(s1+s2+s3+s4)
8447 #else
8448       eello6_graph3=-(s2+s3+s4)
8449 #endif
8450 c      eello6_graph3=-s4
8451 C Derivatives in gamma(k-1)
8452       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8453       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8454       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8455       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8456 C Derivatives in gamma(l-1)
8457       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8458       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8459       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8460       vv(1)=pizda(1,1)+pizda(2,2)
8461       vv(2)=pizda(2,1)-pizda(1,2)
8462       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8463       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8464 C Cartesian derivatives.
8465       do iii=1,2
8466         do kkk=1,5
8467           do lll=1,3
8468 #ifdef MOMENT
8469             if (iii.eq.1) then
8470               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8471             else
8472               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8473             endif
8474 #endif
8475             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8476      &        auxvec(1))
8477             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8478             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8479      &        auxvec(1))
8480             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8481             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8482      &        pizda(1,1))
8483             vv(1)=pizda(1,1)+pizda(2,2)
8484             vv(2)=pizda(2,1)-pizda(1,2)
8485             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8486 #ifdef MOMENT
8487             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8488 #else
8489             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8490 #endif
8491             if (swap) then
8492               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8493             else
8494               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8495             endif
8496 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8497           enddo
8498         enddo
8499       enddo
8500       return
8501       end
8502 c----------------------------------------------------------------------------
8503       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8504       implicit real*8 (a-h,o-z)
8505       include 'DIMENSIONS'
8506       include 'COMMON.IOUNITS'
8507       include 'COMMON.CHAIN'
8508       include 'COMMON.DERIV'
8509       include 'COMMON.INTERACT'
8510       include 'COMMON.CONTACTS'
8511       include 'COMMON.TORSION'
8512       include 'COMMON.VAR'
8513       include 'COMMON.GEO'
8514       include 'COMMON.FFIELD'
8515       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8516      & auxvec1(2),auxmat1(2,2)
8517       logical swap
8518 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8519 C                                                                              C                       
8520 C      Parallel       Antiparallel                                             C
8521 C                                                                              C
8522 C          o             o                                                     C
8523 C         /l\   /   \   /j\                                                    C
8524 C        /   \ /     \ /   \                                                   C
8525 C       /| o |o       o| o |\                                                  C
8526 C     \ j|/k\|      \  |/k\|l                                                  C
8527 C      \ /   \       \ /   \                                                   C 
8528 C       o     \       o     \                                                  C
8529 C       i             i                                                        C
8530 C                                                                              C 
8531 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8532 C
8533 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8534 C           energy moment and not to the cluster cumulant.
8535 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8536       iti=itortyp(itype(i))
8537       itj=itortyp(itype(j))
8538       if (j.lt.nres-1) then
8539         itj1=itortyp(itype(j+1))
8540       else
8541         itj1=ntortyp+1
8542       endif
8543       itk=itortyp(itype(k))
8544       if (k.lt.nres-1) then
8545         itk1=itortyp(itype(k+1))
8546       else
8547         itk1=ntortyp+1
8548       endif
8549       itl=itortyp(itype(l))
8550       if (l.lt.nres-1) then
8551         itl1=itortyp(itype(l+1))
8552       else
8553         itl1=ntortyp+1
8554       endif
8555 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8556 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8557 cd     & ' itl',itl,' itl1',itl1
8558 #ifdef MOMENT
8559       if (imat.eq.1) then
8560         s1=dip(3,jj,i)*dip(3,kk,k)
8561       else
8562         s1=dip(2,jj,j)*dip(2,kk,l)
8563       endif
8564 #endif
8565       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8566       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8567       if (j.eq.l+1) then
8568         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8569         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8570       else
8571         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8572         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8573       endif
8574       call transpose2(EUg(1,1,k),auxmat(1,1))
8575       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8576       vv(1)=pizda(1,1)-pizda(2,2)
8577       vv(2)=pizda(2,1)+pizda(1,2)
8578       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8579 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8580 #ifdef MOMENT
8581       eello6_graph4=-(s1+s2+s3+s4)
8582 #else
8583       eello6_graph4=-(s2+s3+s4)
8584 #endif
8585 C Derivatives in gamma(i-1)
8586       if (i.gt.1) then
8587 #ifdef MOMENT
8588         if (imat.eq.1) then
8589           s1=dipderg(2,jj,i)*dip(3,kk,k)
8590         else
8591           s1=dipderg(4,jj,j)*dip(2,kk,l)
8592         endif
8593 #endif
8594         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8595         if (j.eq.l+1) then
8596           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8597           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8598         else
8599           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8600           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8601         endif
8602         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8603         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8604 cd          write (2,*) 'turn6 derivatives'
8605 #ifdef MOMENT
8606           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8607 #else
8608           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8609 #endif
8610         else
8611 #ifdef MOMENT
8612           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8613 #else
8614           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8615 #endif
8616         endif
8617       endif
8618 C Derivatives in gamma(k-1)
8619 #ifdef MOMENT
8620       if (imat.eq.1) then
8621         s1=dip(3,jj,i)*dipderg(2,kk,k)
8622       else
8623         s1=dip(2,jj,j)*dipderg(4,kk,l)
8624       endif
8625 #endif
8626       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8627       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8628       if (j.eq.l+1) then
8629         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8630         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8631       else
8632         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8633         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8634       endif
8635       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8636       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8637       vv(1)=pizda(1,1)-pizda(2,2)
8638       vv(2)=pizda(2,1)+pizda(1,2)
8639       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8640       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8641 #ifdef MOMENT
8642         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8643 #else
8644         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8645 #endif
8646       else
8647 #ifdef MOMENT
8648         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8649 #else
8650         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8651 #endif
8652       endif
8653 C Derivatives in gamma(j-1) or gamma(l-1)
8654       if (l.eq.j+1 .and. l.gt.1) then
8655         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8656         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8657         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8658         vv(1)=pizda(1,1)-pizda(2,2)
8659         vv(2)=pizda(2,1)+pizda(1,2)
8660         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8661         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8662       else if (j.gt.1) then
8663         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8664         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8665         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8666         vv(1)=pizda(1,1)-pizda(2,2)
8667         vv(2)=pizda(2,1)+pizda(1,2)
8668         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8669         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8670           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8671         else
8672           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8673         endif
8674       endif
8675 C Cartesian derivatives.
8676       do iii=1,2
8677         do kkk=1,5
8678           do lll=1,3
8679 #ifdef MOMENT
8680             if (iii.eq.1) then
8681               if (imat.eq.1) then
8682                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8683               else
8684                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8685               endif
8686             else
8687               if (imat.eq.1) then
8688                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8689               else
8690                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8691               endif
8692             endif
8693 #endif
8694             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8695      &        auxvec(1))
8696             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8697             if (j.eq.l+1) then
8698               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8699      &          b1(1,itj1),auxvec(1))
8700               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8701             else
8702               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8703      &          b1(1,itl1),auxvec(1))
8704               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8705             endif
8706             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8707      &        pizda(1,1))
8708             vv(1)=pizda(1,1)-pizda(2,2)
8709             vv(2)=pizda(2,1)+pizda(1,2)
8710             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8711             if (swap) then
8712               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8713 #ifdef MOMENT
8714                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8715      &             -(s1+s2+s4)
8716 #else
8717                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8718      &             -(s2+s4)
8719 #endif
8720                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8721               else
8722 #ifdef MOMENT
8723                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8724 #else
8725                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8726 #endif
8727                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8728               endif
8729             else
8730 #ifdef MOMENT
8731               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8732 #else
8733               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8734 #endif
8735               if (l.eq.j+1) then
8736                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8737               else 
8738                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8739               endif
8740             endif 
8741           enddo
8742         enddo
8743       enddo
8744       return
8745       end
8746 c----------------------------------------------------------------------------
8747       double precision function eello_turn6(i,jj,kk)
8748       implicit real*8 (a-h,o-z)
8749       include 'DIMENSIONS'
8750       include 'COMMON.IOUNITS'
8751       include 'COMMON.CHAIN'
8752       include 'COMMON.DERIV'
8753       include 'COMMON.INTERACT'
8754       include 'COMMON.CONTACTS'
8755       include 'COMMON.TORSION'
8756       include 'COMMON.VAR'
8757       include 'COMMON.GEO'
8758       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8759      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8760      &  ggg1(3),ggg2(3)
8761       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8762      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8763 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8764 C           the respective energy moment and not to the cluster cumulant.
8765       s1=0.0d0
8766       s8=0.0d0
8767       s13=0.0d0
8768 c
8769       eello_turn6=0.0d0
8770       j=i+4
8771       k=i+1
8772       l=i+3
8773       iti=itortyp(itype(i))
8774       itk=itortyp(itype(k))
8775       itk1=itortyp(itype(k+1))
8776       itl=itortyp(itype(l))
8777       itj=itortyp(itype(j))
8778 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8779 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8780 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8781 cd        eello6=0.0d0
8782 cd        return
8783 cd      endif
8784 cd      write (iout,*)
8785 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8786 cd     &   ' and',k,l
8787 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8788       do iii=1,2
8789         do kkk=1,5
8790           do lll=1,3
8791             derx_turn(lll,kkk,iii)=0.0d0
8792           enddo
8793         enddo
8794       enddo
8795 cd      eij=1.0d0
8796 cd      ekl=1.0d0
8797 cd      ekont=1.0d0
8798       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8799 cd      eello6_5=0.0d0
8800 cd      write (2,*) 'eello6_5',eello6_5
8801 #ifdef MOMENT
8802       call transpose2(AEA(1,1,1),auxmat(1,1))
8803       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8804       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8805       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8806 #endif
8807       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8808       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8809       s2 = scalar2(b1(1,itk),vtemp1(1))
8810 #ifdef MOMENT
8811       call transpose2(AEA(1,1,2),atemp(1,1))
8812       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8813       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8814       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8815 #endif
8816       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8817       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8818       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8819 #ifdef MOMENT
8820       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8821       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8822       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8823       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8824       ss13 = scalar2(b1(1,itk),vtemp4(1))
8825       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8826 #endif
8827 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8828 c      s1=0.0d0
8829 c      s2=0.0d0
8830 c      s8=0.0d0
8831 c      s12=0.0d0
8832 c      s13=0.0d0
8833       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8834 C Derivatives in gamma(i+2)
8835       s1d =0.0d0
8836       s8d =0.0d0
8837 #ifdef MOMENT
8838       call transpose2(AEA(1,1,1),auxmatd(1,1))
8839       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8840       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8841       call transpose2(AEAderg(1,1,2),atempd(1,1))
8842       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8843       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8844 #endif
8845       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8846       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8847       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8848 c      s1d=0.0d0
8849 c      s2d=0.0d0
8850 c      s8d=0.0d0
8851 c      s12d=0.0d0
8852 c      s13d=0.0d0
8853       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8854 C Derivatives in gamma(i+3)
8855 #ifdef MOMENT
8856       call transpose2(AEA(1,1,1),auxmatd(1,1))
8857       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8858       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8859       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8860 #endif
8861       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8862       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8863       s2d = scalar2(b1(1,itk),vtemp1d(1))
8864 #ifdef MOMENT
8865       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8866       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8867 #endif
8868       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8869 #ifdef MOMENT
8870       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8871       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8872       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8873 #endif
8874 c      s1d=0.0d0
8875 c      s2d=0.0d0
8876 c      s8d=0.0d0
8877 c      s12d=0.0d0
8878 c      s13d=0.0d0
8879 #ifdef MOMENT
8880       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8881      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8882 #else
8883       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8884      &               -0.5d0*ekont*(s2d+s12d)
8885 #endif
8886 C Derivatives in gamma(i+4)
8887       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8888       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8889       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8890 #ifdef MOMENT
8891       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8892       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8893       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8894 #endif
8895 c      s1d=0.0d0
8896 c      s2d=0.0d0
8897 c      s8d=0.0d0
8898 C      s12d=0.0d0
8899 c      s13d=0.0d0
8900 #ifdef MOMENT
8901       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8902 #else
8903       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8904 #endif
8905 C Derivatives in gamma(i+5)
8906 #ifdef MOMENT
8907       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8908       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8909       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8910 #endif
8911       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8912       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8913       s2d = scalar2(b1(1,itk),vtemp1d(1))
8914 #ifdef MOMENT
8915       call transpose2(AEA(1,1,2),atempd(1,1))
8916       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8917       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8918 #endif
8919       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8920       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8921 #ifdef MOMENT
8922       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8923       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8924       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8925 #endif
8926 c      s1d=0.0d0
8927 c      s2d=0.0d0
8928 c      s8d=0.0d0
8929 c      s12d=0.0d0
8930 c      s13d=0.0d0
8931 #ifdef MOMENT
8932       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8933      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8934 #else
8935       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8936      &               -0.5d0*ekont*(s2d+s12d)
8937 #endif
8938 C Cartesian derivatives
8939       do iii=1,2
8940         do kkk=1,5
8941           do lll=1,3
8942 #ifdef MOMENT
8943             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8944             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8945             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8946 #endif
8947             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8948             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8949      &          vtemp1d(1))
8950             s2d = scalar2(b1(1,itk),vtemp1d(1))
8951 #ifdef MOMENT
8952             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8953             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8954             s8d = -(atempd(1,1)+atempd(2,2))*
8955      &           scalar2(cc(1,1,itl),vtemp2(1))
8956 #endif
8957             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8958      &           auxmatd(1,1))
8959             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8960             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8961 c      s1d=0.0d0
8962 c      s2d=0.0d0
8963 c      s8d=0.0d0
8964 c      s12d=0.0d0
8965 c      s13d=0.0d0
8966 #ifdef MOMENT
8967             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8968      &        - 0.5d0*(s1d+s2d)
8969 #else
8970             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8971      &        - 0.5d0*s2d
8972 #endif
8973 #ifdef MOMENT
8974             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8975      &        - 0.5d0*(s8d+s12d)
8976 #else
8977             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8978      &        - 0.5d0*s12d
8979 #endif
8980           enddo
8981         enddo
8982       enddo
8983 #ifdef MOMENT
8984       do kkk=1,5
8985         do lll=1,3
8986           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8987      &      achuj_tempd(1,1))
8988           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8989           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8990           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8991           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8992           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8993      &      vtemp4d(1)) 
8994           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8995           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8996           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8997         enddo
8998       enddo
8999 #endif
9000 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9001 cd     &  16*eel_turn6_num
9002 cd      goto 1112
9003       if (j.lt.nres-1) then
9004         j1=j+1
9005         j2=j-1
9006       else
9007         j1=j-1
9008         j2=j-2
9009       endif
9010       if (l.lt.nres-1) then
9011         l1=l+1
9012         l2=l-1
9013       else
9014         l1=l-1
9015         l2=l-2
9016       endif
9017       do ll=1,3
9018 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9019 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9020 cgrad        ghalf=0.5d0*ggg1(ll)
9021 cd        ghalf=0.0d0
9022         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9023         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9024         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9025      &    +ekont*derx_turn(ll,2,1)
9026         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9027         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9028      &    +ekont*derx_turn(ll,4,1)
9029         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9030         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9031         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9032 cgrad        ghalf=0.5d0*ggg2(ll)
9033 cd        ghalf=0.0d0
9034         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9035      &    +ekont*derx_turn(ll,2,2)
9036         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9037         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9038      &    +ekont*derx_turn(ll,4,2)
9039         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9040         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9041         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9042       enddo
9043 cd      goto 1112
9044 cgrad      do m=i+1,j-1
9045 cgrad        do ll=1,3
9046 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9047 cgrad        enddo
9048 cgrad      enddo
9049 cgrad      do m=k+1,l-1
9050 cgrad        do ll=1,3
9051 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9052 cgrad        enddo
9053 cgrad      enddo
9054 cgrad1112  continue
9055 cgrad      do m=i+2,j2
9056 cgrad        do ll=1,3
9057 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9058 cgrad        enddo
9059 cgrad      enddo
9060 cgrad      do m=k+2,l2
9061 cgrad        do ll=1,3
9062 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9063 cgrad        enddo
9064 cgrad      enddo 
9065 cd      do iii=1,nres-3
9066 cd        write (2,*) iii,g_corr6_loc(iii)
9067 cd      enddo
9068       eello_turn6=ekont*eel_turn6
9069 cd      write (2,*) 'ekont',ekont
9070 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9071       return
9072       end
9073
9074 C-----------------------------------------------------------------------------
9075       double precision function scalar(u,v)
9076 !DIR$ INLINEALWAYS scalar
9077 #ifndef OSF
9078 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9079 #endif
9080       implicit none
9081       double precision u(3),v(3)
9082 cd      double precision sc
9083 cd      integer i
9084 cd      sc=0.0d0
9085 cd      do i=1,3
9086 cd        sc=sc+u(i)*v(i)
9087 cd      enddo
9088 cd      scalar=sc
9089
9090       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9091       return
9092       end
9093 crc-------------------------------------------------
9094       SUBROUTINE MATVEC2(A1,V1,V2)
9095 !DIR$ INLINEALWAYS MATVEC2
9096 #ifndef OSF
9097 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9098 #endif
9099       implicit real*8 (a-h,o-z)
9100       include 'DIMENSIONS'
9101       DIMENSION A1(2,2),V1(2),V2(2)
9102 c      DO 1 I=1,2
9103 c        VI=0.0
9104 c        DO 3 K=1,2
9105 c    3     VI=VI+A1(I,K)*V1(K)
9106 c        Vaux(I)=VI
9107 c    1 CONTINUE
9108
9109       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9110       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9111
9112       v2(1)=vaux1
9113       v2(2)=vaux2
9114       END
9115 C---------------------------------------
9116       SUBROUTINE MATMAT2(A1,A2,A3)
9117 #ifndef OSF
9118 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9119 #endif
9120       implicit real*8 (a-h,o-z)
9121       include 'DIMENSIONS'
9122       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9123 c      DIMENSION AI3(2,2)
9124 c        DO  J=1,2
9125 c          A3IJ=0.0
9126 c          DO K=1,2
9127 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9128 c          enddo
9129 c          A3(I,J)=A3IJ
9130 c       enddo
9131 c      enddo
9132
9133       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9134       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9135       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9136       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9137
9138       A3(1,1)=AI3_11
9139       A3(2,1)=AI3_21
9140       A3(1,2)=AI3_12
9141       A3(2,2)=AI3_22
9142       END
9143
9144 c-------------------------------------------------------------------------
9145       double precision function scalar2(u,v)
9146 !DIR$ INLINEALWAYS scalar2
9147       implicit none
9148       double precision u(2),v(2)
9149       double precision sc
9150       integer i
9151       scalar2=u(1)*v(1)+u(2)*v(2)
9152       return
9153       end
9154
9155 C-----------------------------------------------------------------------------
9156
9157       subroutine transpose2(a,at)
9158 !DIR$ INLINEALWAYS transpose2
9159 #ifndef OSF
9160 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9161 #endif
9162       implicit none
9163       double precision a(2,2),at(2,2)
9164       at(1,1)=a(1,1)
9165       at(1,2)=a(2,1)
9166       at(2,1)=a(1,2)
9167       at(2,2)=a(2,2)
9168       return
9169       end
9170 c--------------------------------------------------------------------------
9171       subroutine transpose(n,a,at)
9172       implicit none
9173       integer n,i,j
9174       double precision a(n,n),at(n,n)
9175       do i=1,n
9176         do j=1,n
9177           at(j,i)=a(i,j)
9178         enddo
9179       enddo
9180       return
9181       end
9182 C---------------------------------------------------------------------------
9183       subroutine prodmat3(a1,a2,kk,transp,prod)
9184 !DIR$ INLINEALWAYS prodmat3
9185 #ifndef OSF
9186 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9187 #endif
9188       implicit none
9189       integer i,j
9190       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9191       logical transp
9192 crc      double precision auxmat(2,2),prod_(2,2)
9193
9194       if (transp) then
9195 crc        call transpose2(kk(1,1),auxmat(1,1))
9196 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9197 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9198         
9199            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9200      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9201            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9202      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9203            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9204      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9205            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9206      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9207
9208       else
9209 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9210 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9211
9212            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9213      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9214            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9215      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9216            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9217      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9218            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9219      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9220
9221       endif
9222 c      call transpose2(a2(1,1),a2t(1,1))
9223
9224 crc      print *,transp
9225 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9226 crc      print *,((prod(i,j),i=1,2),j=1,2)
9227
9228       return
9229       end
9230