Debug part 4
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=iabs(itype(j))
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026         dxi=dc(1,i)
3027         dyi=dc(2,i)
3028         dzi=dc(3,i)
3029         dx_normi=dc_norm(1,i)
3030         dy_normi=dc_norm(2,i)
3031         dz_normi=dc_norm(3,i)
3032         xmedi=c(1,i)+0.5d0*dxi
3033         ymedi=c(2,i)+0.5d0*dyi
3034         zmedi=c(3,i)+0.5d0*dzi
3035         num_conti=0
3036         call eelecij(i,i+2,ees,evdw1,eel_loc)
3037         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3038         num_cont_hb(i)=num_conti
3039       enddo
3040       do i=iturn4_start,iturn4_end
3041         dxi=dc(1,i)
3042         dyi=dc(2,i)
3043         dzi=dc(3,i)
3044         dx_normi=dc_norm(1,i)
3045         dy_normi=dc_norm(2,i)
3046         dz_normi=dc_norm(3,i)
3047         xmedi=c(1,i)+0.5d0*dxi
3048         ymedi=c(2,i)+0.5d0*dyi
3049         zmedi=c(3,i)+0.5d0*dzi
3050         num_conti=num_cont_hb(i)
3051         call eelecij(i,i+3,ees,evdw1,eel_loc)
3052         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3053         num_cont_hb(i)=num_conti
3054       enddo   ! i
3055 c
3056 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3057 c
3058       do i=iatel_s,iatel_e
3059         dxi=dc(1,i)
3060         dyi=dc(2,i)
3061         dzi=dc(3,i)
3062         dx_normi=dc_norm(1,i)
3063         dy_normi=dc_norm(2,i)
3064         dz_normi=dc_norm(3,i)
3065         xmedi=c(1,i)+0.5d0*dxi
3066         ymedi=c(2,i)+0.5d0*dyi
3067         zmedi=c(3,i)+0.5d0*dzi
3068 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3069         num_conti=num_cont_hb(i)
3070         do j=ielstart(i),ielend(i)
3071           call eelecij(i,j,ees,evdw1,eel_loc)
3072         enddo ! j
3073         num_cont_hb(i)=num_conti
3074       enddo   ! i
3075 c      write (iout,*) "Number of loop steps in EELEC:",ind
3076 cd      do i=1,nres
3077 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3078 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3079 cd      enddo
3080 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3081 ccc      eel_loc=eel_loc+eello_turn3
3082 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3083       return
3084       end
3085 C-------------------------------------------------------------------------------
3086       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3087       implicit real*8 (a-h,o-z)
3088       include 'DIMENSIONS'
3089 #ifdef MPI
3090       include "mpif.h"
3091 #endif
3092       include 'COMMON.CONTROL'
3093       include 'COMMON.IOUNITS'
3094       include 'COMMON.GEO'
3095       include 'COMMON.VAR'
3096       include 'COMMON.LOCAL'
3097       include 'COMMON.CHAIN'
3098       include 'COMMON.DERIV'
3099       include 'COMMON.INTERACT'
3100       include 'COMMON.CONTACTS'
3101       include 'COMMON.TORSION'
3102       include 'COMMON.VECTORS'
3103       include 'COMMON.FFIELD'
3104       include 'COMMON.TIME1'
3105       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3106      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3107       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3108      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3109       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3110      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3111      &    num_conti,j1,j2
3112 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3113 #ifdef MOMENT
3114       double precision scal_el /1.0d0/
3115 #else
3116       double precision scal_el /0.5d0/
3117 #endif
3118 C 12/13/98 
3119 C 13-go grudnia roku pamietnego... 
3120       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3121      &                   0.0d0,1.0d0,0.0d0,
3122      &                   0.0d0,0.0d0,1.0d0/
3123 c          time00=MPI_Wtime()
3124 cd      write (iout,*) "eelecij",i,j
3125 c          ind=ind+1
3126           iteli=itel(i)
3127           itelj=itel(j)
3128           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3129           aaa=app(iteli,itelj)
3130           bbb=bpp(iteli,itelj)
3131           ael6i=ael6(iteli,itelj)
3132           ael3i=ael3(iteli,itelj) 
3133           dxj=dc(1,j)
3134           dyj=dc(2,j)
3135           dzj=dc(3,j)
3136           dx_normj=dc_norm(1,j)
3137           dy_normj=dc_norm(2,j)
3138           dz_normj=dc_norm(3,j)
3139           xj=c(1,j)+0.5D0*dxj-xmedi
3140           yj=c(2,j)+0.5D0*dyj-ymedi
3141           zj=c(3,j)+0.5D0*dzj-zmedi
3142           rij=xj*xj+yj*yj+zj*zj
3143           rrmij=1.0D0/rij
3144           rij=dsqrt(rij)
3145           rmij=1.0D0/rij
3146           r3ij=rrmij*rmij
3147           r6ij=r3ij*r3ij  
3148           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3149           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3150           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3151           fac=cosa-3.0D0*cosb*cosg
3152           ev1=aaa*r6ij*r6ij
3153 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3154           if (j.eq.i+2) ev1=scal_el*ev1
3155           ev2=bbb*r6ij
3156           fac3=ael6i*r6ij
3157           fac4=ael3i*r3ij
3158           evdwij=ev1+ev2
3159           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3160           el2=fac4*fac       
3161           eesij=el1+el2
3162 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3163           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3164           ees=ees+eesij
3165           evdw1=evdw1+evdwij
3166 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3167 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3168 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3169 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3170
3171           if (energy_dec) then 
3172               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3173               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3174           endif
3175
3176 C
3177 C Calculate contributions to the Cartesian gradient.
3178 C
3179 #ifdef SPLITELE
3180           facvdw=-6*rrmij*(ev1+evdwij)
3181           facel=-3*rrmij*(el1+eesij)
3182           fac1=fac
3183           erij(1)=xj*rmij
3184           erij(2)=yj*rmij
3185           erij(3)=zj*rmij
3186 *
3187 * Radial derivatives. First process both termini of the fragment (i,j)
3188 *
3189           ggg(1)=facel*xj
3190           ggg(2)=facel*yj
3191           ggg(3)=facel*zj
3192 c          do k=1,3
3193 c            ghalf=0.5D0*ggg(k)
3194 c            gelc(k,i)=gelc(k,i)+ghalf
3195 c            gelc(k,j)=gelc(k,j)+ghalf
3196 c          enddo
3197 c 9/28/08 AL Gradient compotents will be summed only at the end
3198           do k=1,3
3199             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3200             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3201           enddo
3202 *
3203 * Loop over residues i+1 thru j-1.
3204 *
3205 cgrad          do k=i+1,j-1
3206 cgrad            do l=1,3
3207 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3208 cgrad            enddo
3209 cgrad          enddo
3210           ggg(1)=facvdw*xj
3211           ggg(2)=facvdw*yj
3212           ggg(3)=facvdw*zj
3213 c          do k=1,3
3214 c            ghalf=0.5D0*ggg(k)
3215 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3216 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3217 c          enddo
3218 c 9/28/08 AL Gradient compotents will be summed only at the end
3219           do k=1,3
3220             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3221             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3222           enddo
3223 *
3224 * Loop over residues i+1 thru j-1.
3225 *
3226 cgrad          do k=i+1,j-1
3227 cgrad            do l=1,3
3228 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3229 cgrad            enddo
3230 cgrad          enddo
3231 #else
3232           facvdw=ev1+evdwij 
3233           facel=el1+eesij  
3234           fac1=fac
3235           fac=-3*rrmij*(facvdw+facvdw+facel)
3236           erij(1)=xj*rmij
3237           erij(2)=yj*rmij
3238           erij(3)=zj*rmij
3239 *
3240 * Radial derivatives. First process both termini of the fragment (i,j)
3241
3242           ggg(1)=fac*xj
3243           ggg(2)=fac*yj
3244           ggg(3)=fac*zj
3245 c          do k=1,3
3246 c            ghalf=0.5D0*ggg(k)
3247 c            gelc(k,i)=gelc(k,i)+ghalf
3248 c            gelc(k,j)=gelc(k,j)+ghalf
3249 c          enddo
3250 c 9/28/08 AL Gradient compotents will be summed only at the end
3251           do k=1,3
3252             gelc_long(k,j)=gelc(k,j)+ggg(k)
3253             gelc_long(k,i)=gelc(k,i)-ggg(k)
3254           enddo
3255 *
3256 * Loop over residues i+1 thru j-1.
3257 *
3258 cgrad          do k=i+1,j-1
3259 cgrad            do l=1,3
3260 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3261 cgrad            enddo
3262 cgrad          enddo
3263 c 9/28/08 AL Gradient compotents will be summed only at the end
3264           ggg(1)=facvdw*xj
3265           ggg(2)=facvdw*yj
3266           ggg(3)=facvdw*zj
3267           do k=1,3
3268             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3269             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3270           enddo
3271 #endif
3272 *
3273 * Angular part
3274 *          
3275           ecosa=2.0D0*fac3*fac1+fac4
3276           fac4=-3.0D0*fac4
3277           fac3=-6.0D0*fac3
3278           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3279           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3280           do k=1,3
3281             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3282             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3283           enddo
3284 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3285 cd   &          (dcosg(k),k=1,3)
3286           do k=1,3
3287             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3288           enddo
3289 c          do k=1,3
3290 c            ghalf=0.5D0*ggg(k)
3291 c            gelc(k,i)=gelc(k,i)+ghalf
3292 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3293 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3294 c            gelc(k,j)=gelc(k,j)+ghalf
3295 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3296 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3297 c          enddo
3298 cgrad          do k=i+1,j-1
3299 cgrad            do l=1,3
3300 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3301 cgrad            enddo
3302 cgrad          enddo
3303           do k=1,3
3304             gelc(k,i)=gelc(k,i)
3305      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3306      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3307             gelc(k,j)=gelc(k,j)
3308      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3309      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3310             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3311             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3312           enddo
3313           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3314      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3315      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3316 C
3317 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3318 C   energy of a peptide unit is assumed in the form of a second-order 
3319 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3320 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3321 C   are computed for EVERY pair of non-contiguous peptide groups.
3322 C
3323           if (j.lt.nres-1) then
3324             j1=j+1
3325             j2=j-1
3326           else
3327             j1=j-1
3328             j2=j-2
3329           endif
3330           kkk=0
3331           do k=1,2
3332             do l=1,2
3333               kkk=kkk+1
3334               muij(kkk)=mu(k,i)*mu(l,j)
3335             enddo
3336           enddo  
3337 cd         write (iout,*) 'EELEC: i',i,' j',j
3338 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3339 cd          write(iout,*) 'muij',muij
3340           ury=scalar(uy(1,i),erij)
3341           urz=scalar(uz(1,i),erij)
3342           vry=scalar(uy(1,j),erij)
3343           vrz=scalar(uz(1,j),erij)
3344           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3345           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3346           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3347           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3348           fac=dsqrt(-ael6i)*r3ij
3349           a22=a22*fac
3350           a23=a23*fac
3351           a32=a32*fac
3352           a33=a33*fac
3353 cd          write (iout,'(4i5,4f10.5)')
3354 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3355 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3356 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3357 cd     &      uy(:,j),uz(:,j)
3358 cd          write (iout,'(4f10.5)') 
3359 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3360 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3361 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3362 cd           write (iout,'(9f10.5/)') 
3363 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3364 C Derivatives of the elements of A in virtual-bond vectors
3365           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3366           do k=1,3
3367             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3368             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3369             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3370             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3371             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3372             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3373             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3374             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3375             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3376             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3377             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3378             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3379           enddo
3380 C Compute radial contributions to the gradient
3381           facr=-3.0d0*rrmij
3382           a22der=a22*facr
3383           a23der=a23*facr
3384           a32der=a32*facr
3385           a33der=a33*facr
3386           agg(1,1)=a22der*xj
3387           agg(2,1)=a22der*yj
3388           agg(3,1)=a22der*zj
3389           agg(1,2)=a23der*xj
3390           agg(2,2)=a23der*yj
3391           agg(3,2)=a23der*zj
3392           agg(1,3)=a32der*xj
3393           agg(2,3)=a32der*yj
3394           agg(3,3)=a32der*zj
3395           agg(1,4)=a33der*xj
3396           agg(2,4)=a33der*yj
3397           agg(3,4)=a33der*zj
3398 C Add the contributions coming from er
3399           fac3=-3.0d0*fac
3400           do k=1,3
3401             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3402             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3403             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3404             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3405           enddo
3406           do k=1,3
3407 C Derivatives in DC(i) 
3408 cgrad            ghalf1=0.5d0*agg(k,1)
3409 cgrad            ghalf2=0.5d0*agg(k,2)
3410 cgrad            ghalf3=0.5d0*agg(k,3)
3411 cgrad            ghalf4=0.5d0*agg(k,4)
3412             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3413      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3414             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3415      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3416             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3417      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3418             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3419      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3420 C Derivatives in DC(i+1)
3421             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3422      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3423             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3424      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3425             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3426      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3427             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3428      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3429 C Derivatives in DC(j)
3430             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3431      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3432             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3433      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3434             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3435      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3436             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3437      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3438 C Derivatives in DC(j+1) or DC(nres-1)
3439             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3440      &      -3.0d0*vryg(k,3)*ury)
3441             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3442      &      -3.0d0*vrzg(k,3)*ury)
3443             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3444      &      -3.0d0*vryg(k,3)*urz)
3445             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3446      &      -3.0d0*vrzg(k,3)*urz)
3447 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3448 cgrad              do l=1,4
3449 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3450 cgrad              enddo
3451 cgrad            endif
3452           enddo
3453           acipa(1,1)=a22
3454           acipa(1,2)=a23
3455           acipa(2,1)=a32
3456           acipa(2,2)=a33
3457           a22=-a22
3458           a23=-a23
3459           do l=1,2
3460             do k=1,3
3461               agg(k,l)=-agg(k,l)
3462               aggi(k,l)=-aggi(k,l)
3463               aggi1(k,l)=-aggi1(k,l)
3464               aggj(k,l)=-aggj(k,l)
3465               aggj1(k,l)=-aggj1(k,l)
3466             enddo
3467           enddo
3468           if (j.lt.nres-1) then
3469             a22=-a22
3470             a32=-a32
3471             do l=1,3,2
3472               do k=1,3
3473                 agg(k,l)=-agg(k,l)
3474                 aggi(k,l)=-aggi(k,l)
3475                 aggi1(k,l)=-aggi1(k,l)
3476                 aggj(k,l)=-aggj(k,l)
3477                 aggj1(k,l)=-aggj1(k,l)
3478               enddo
3479             enddo
3480           else
3481             a22=-a22
3482             a23=-a23
3483             a32=-a32
3484             a33=-a33
3485             do l=1,4
3486               do k=1,3
3487                 agg(k,l)=-agg(k,l)
3488                 aggi(k,l)=-aggi(k,l)
3489                 aggi1(k,l)=-aggi1(k,l)
3490                 aggj(k,l)=-aggj(k,l)
3491                 aggj1(k,l)=-aggj1(k,l)
3492               enddo
3493             enddo 
3494           endif    
3495           ENDIF ! WCORR
3496           IF (wel_loc.gt.0.0d0) THEN
3497 C Contribution to the local-electrostatic energy coming from the i-j pair
3498           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3499      &     +a33*muij(4)
3500 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3501
3502           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3503      &            'eelloc',i,j,eel_loc_ij
3504
3505           eel_loc=eel_loc+eel_loc_ij
3506 C Partial derivatives in virtual-bond dihedral angles gamma
3507           if (i.gt.1)
3508      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3509      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3510      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3511           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3512      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3513      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3514 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3515           do l=1,3
3516             ggg(l)=agg(l,1)*muij(1)+
3517      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3518             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3519             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3520 cgrad            ghalf=0.5d0*ggg(l)
3521 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3522 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3523           enddo
3524 cgrad          do k=i+1,j2
3525 cgrad            do l=1,3
3526 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3527 cgrad            enddo
3528 cgrad          enddo
3529 C Remaining derivatives of eello
3530           do l=1,3
3531             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3532      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3533             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3534      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3535             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3536      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3537             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3538      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3539           enddo
3540           ENDIF
3541 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3542 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3543           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3544      &       .and. num_conti.le.maxconts) then
3545 c            write (iout,*) i,j," entered corr"
3546 C
3547 C Calculate the contact function. The ith column of the array JCONT will 
3548 C contain the numbers of atoms that make contacts with the atom I (of numbers
3549 C greater than I). The arrays FACONT and GACONT will contain the values of
3550 C the contact function and its derivative.
3551 c           r0ij=1.02D0*rpp(iteli,itelj)
3552 c           r0ij=1.11D0*rpp(iteli,itelj)
3553             r0ij=2.20D0*rpp(iteli,itelj)
3554 c           r0ij=1.55D0*rpp(iteli,itelj)
3555             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3556             if (fcont.gt.0.0D0) then
3557               num_conti=num_conti+1
3558               if (num_conti.gt.maxconts) then
3559                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3560      &                         ' will skip next contacts for this conf.'
3561               else
3562                 jcont_hb(num_conti,i)=j
3563 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3564 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3565                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3566      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3567 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3568 C  terms.
3569                 d_cont(num_conti,i)=rij
3570 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3571 C     --- Electrostatic-interaction matrix --- 
3572                 a_chuj(1,1,num_conti,i)=a22
3573                 a_chuj(1,2,num_conti,i)=a23
3574                 a_chuj(2,1,num_conti,i)=a32
3575                 a_chuj(2,2,num_conti,i)=a33
3576 C     --- Gradient of rij
3577                 do kkk=1,3
3578                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3579                 enddo
3580                 kkll=0
3581                 do k=1,2
3582                   do l=1,2
3583                     kkll=kkll+1
3584                     do m=1,3
3585                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3586                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3587                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3588                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3589                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3590                     enddo
3591                   enddo
3592                 enddo
3593                 ENDIF
3594                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3595 C Calculate contact energies
3596                 cosa4=4.0D0*cosa
3597                 wij=cosa-3.0D0*cosb*cosg
3598                 cosbg1=cosb+cosg
3599                 cosbg2=cosb-cosg
3600 c               fac3=dsqrt(-ael6i)/r0ij**3     
3601                 fac3=dsqrt(-ael6i)*r3ij
3602 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3603                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3604                 if (ees0tmp.gt.0) then
3605                   ees0pij=dsqrt(ees0tmp)
3606                 else
3607                   ees0pij=0
3608                 endif
3609 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3610                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3611                 if (ees0tmp.gt.0) then
3612                   ees0mij=dsqrt(ees0tmp)
3613                 else
3614                   ees0mij=0
3615                 endif
3616 c               ees0mij=0.0D0
3617                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3618                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3619 C Diagnostics. Comment out or remove after debugging!
3620 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3621 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3622 c               ees0m(num_conti,i)=0.0D0
3623 C End diagnostics.
3624 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3625 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3626 C Angular derivatives of the contact function
3627                 ees0pij1=fac3/ees0pij 
3628                 ees0mij1=fac3/ees0mij
3629                 fac3p=-3.0D0*fac3*rrmij
3630                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3631                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3632 c               ees0mij1=0.0D0
3633                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3634                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3635                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3636                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3637                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3638                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3639                 ecosap=ecosa1+ecosa2
3640                 ecosbp=ecosb1+ecosb2
3641                 ecosgp=ecosg1+ecosg2
3642                 ecosam=ecosa1-ecosa2
3643                 ecosbm=ecosb1-ecosb2
3644                 ecosgm=ecosg1-ecosg2
3645 C Diagnostics
3646 c               ecosap=ecosa1
3647 c               ecosbp=ecosb1
3648 c               ecosgp=ecosg1
3649 c               ecosam=0.0D0
3650 c               ecosbm=0.0D0
3651 c               ecosgm=0.0D0
3652 C End diagnostics
3653                 facont_hb(num_conti,i)=fcont
3654                 fprimcont=fprimcont/rij
3655 cd              facont_hb(num_conti,i)=1.0D0
3656 C Following line is for diagnostics.
3657 cd              fprimcont=0.0D0
3658                 do k=1,3
3659                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3660                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3661                 enddo
3662                 do k=1,3
3663                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3664                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3665                 enddo
3666                 gggp(1)=gggp(1)+ees0pijp*xj
3667                 gggp(2)=gggp(2)+ees0pijp*yj
3668                 gggp(3)=gggp(3)+ees0pijp*zj
3669                 gggm(1)=gggm(1)+ees0mijp*xj
3670                 gggm(2)=gggm(2)+ees0mijp*yj
3671                 gggm(3)=gggm(3)+ees0mijp*zj
3672 C Derivatives due to the contact function
3673                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3674                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3675                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3676                 do k=1,3
3677 c
3678 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3679 c          following the change of gradient-summation algorithm.
3680 c
3681 cgrad                  ghalfp=0.5D0*gggp(k)
3682 cgrad                  ghalfm=0.5D0*gggm(k)
3683                   gacontp_hb1(k,num_conti,i)=!ghalfp
3684      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3685      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3686                   gacontp_hb2(k,num_conti,i)=!ghalfp
3687      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3688      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3689                   gacontp_hb3(k,num_conti,i)=gggp(k)
3690                   gacontm_hb1(k,num_conti,i)=!ghalfm
3691      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3692      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3693                   gacontm_hb2(k,num_conti,i)=!ghalfm
3694      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3695      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3696                   gacontm_hb3(k,num_conti,i)=gggm(k)
3697                 enddo
3698 C Diagnostics. Comment out or remove after debugging!
3699 cdiag           do k=1,3
3700 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3701 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3702 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3703 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3704 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3705 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3706 cdiag           enddo
3707               ENDIF ! wcorr
3708               endif  ! num_conti.le.maxconts
3709             endif  ! fcont.gt.0
3710           endif    ! j.gt.i+1
3711           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3712             do k=1,4
3713               do l=1,3
3714                 ghalf=0.5d0*agg(l,k)
3715                 aggi(l,k)=aggi(l,k)+ghalf
3716                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3717                 aggj(l,k)=aggj(l,k)+ghalf
3718               enddo
3719             enddo
3720             if (j.eq.nres-1 .and. i.lt.j-2) then
3721               do k=1,4
3722                 do l=1,3
3723                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3724                 enddo
3725               enddo
3726             endif
3727           endif
3728 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3729       return
3730       end
3731 C-----------------------------------------------------------------------------
3732       subroutine eturn3(i,eello_turn3)
3733 C Third- and fourth-order contributions from turns
3734       implicit real*8 (a-h,o-z)
3735       include 'DIMENSIONS'
3736       include 'COMMON.IOUNITS'
3737       include 'COMMON.GEO'
3738       include 'COMMON.VAR'
3739       include 'COMMON.LOCAL'
3740       include 'COMMON.CHAIN'
3741       include 'COMMON.DERIV'
3742       include 'COMMON.INTERACT'
3743       include 'COMMON.CONTACTS'
3744       include 'COMMON.TORSION'
3745       include 'COMMON.VECTORS'
3746       include 'COMMON.FFIELD'
3747       include 'COMMON.CONTROL'
3748       dimension ggg(3)
3749       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3750      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3751      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3752       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3753      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3754       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3755      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3756      &    num_conti,j1,j2
3757       j=i+2
3758 c      write (iout,*) "eturn3",i,j,j1,j2
3759       a_temp(1,1)=a22
3760       a_temp(1,2)=a23
3761       a_temp(2,1)=a32
3762       a_temp(2,2)=a33
3763 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3764 C
3765 C               Third-order contributions
3766 C        
3767 C                 (i+2)o----(i+3)
3768 C                      | |
3769 C                      | |
3770 C                 (i+1)o----i
3771 C
3772 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3773 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3774         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3775         call transpose2(auxmat(1,1),auxmat1(1,1))
3776         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3777         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3778         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3779      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3780 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3781 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3782 cd     &    ' eello_turn3_num',4*eello_turn3_num
3783 C Derivatives in gamma(i)
3784         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3785         call transpose2(auxmat2(1,1),auxmat3(1,1))
3786         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3787         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3788 C Derivatives in gamma(i+1)
3789         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3790         call transpose2(auxmat2(1,1),auxmat3(1,1))
3791         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3792         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3793      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3794 C Cartesian derivatives
3795         do l=1,3
3796 c            ghalf1=0.5d0*agg(l,1)
3797 c            ghalf2=0.5d0*agg(l,2)
3798 c            ghalf3=0.5d0*agg(l,3)
3799 c            ghalf4=0.5d0*agg(l,4)
3800           a_temp(1,1)=aggi(l,1)!+ghalf1
3801           a_temp(1,2)=aggi(l,2)!+ghalf2
3802           a_temp(2,1)=aggi(l,3)!+ghalf3
3803           a_temp(2,2)=aggi(l,4)!+ghalf4
3804           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3805           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3806      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3807           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3808           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3809           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3810           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3811           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3812           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3813      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3814           a_temp(1,1)=aggj(l,1)!+ghalf1
3815           a_temp(1,2)=aggj(l,2)!+ghalf2
3816           a_temp(2,1)=aggj(l,3)!+ghalf3
3817           a_temp(2,2)=aggj(l,4)!+ghalf4
3818           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3819           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3820      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3821           a_temp(1,1)=aggj1(l,1)
3822           a_temp(1,2)=aggj1(l,2)
3823           a_temp(2,1)=aggj1(l,3)
3824           a_temp(2,2)=aggj1(l,4)
3825           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3826           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3827      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3828         enddo
3829       return
3830       end
3831 C-------------------------------------------------------------------------------
3832       subroutine eturn4(i,eello_turn4)
3833 C Third- and fourth-order contributions from turns
3834       implicit real*8 (a-h,o-z)
3835       include 'DIMENSIONS'
3836       include 'COMMON.IOUNITS'
3837       include 'COMMON.GEO'
3838       include 'COMMON.VAR'
3839       include 'COMMON.LOCAL'
3840       include 'COMMON.CHAIN'
3841       include 'COMMON.DERIV'
3842       include 'COMMON.INTERACT'
3843       include 'COMMON.CONTACTS'
3844       include 'COMMON.TORSION'
3845       include 'COMMON.VECTORS'
3846       include 'COMMON.FFIELD'
3847       include 'COMMON.CONTROL'
3848       dimension ggg(3)
3849       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3850      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3851      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3852       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3853      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3854       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3855      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3856      &    num_conti,j1,j2
3857       j=i+3
3858 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3859 C
3860 C               Fourth-order contributions
3861 C        
3862 C                 (i+3)o----(i+4)
3863 C                     /  |
3864 C               (i+2)o   |
3865 C                     \  |
3866 C                 (i+1)o----i
3867 C
3868 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3869 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3870 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3871         a_temp(1,1)=a22
3872         a_temp(1,2)=a23
3873         a_temp(2,1)=a32
3874         a_temp(2,2)=a33
3875         iti1=itortyp(itype(i+1))
3876         iti2=itortyp(itype(i+2))
3877         iti3=itortyp(itype(i+3))
3878 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3879         call transpose2(EUg(1,1,i+1),e1t(1,1))
3880         call transpose2(Eug(1,1,i+2),e2t(1,1))
3881         call transpose2(Eug(1,1,i+3),e3t(1,1))
3882         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3883         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3884         s1=scalar2(b1(1,iti2),auxvec(1))
3885         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3886         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3887         s2=scalar2(b1(1,iti1),auxvec(1))
3888         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3889         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3890         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3891         eello_turn4=eello_turn4-(s1+s2+s3)
3892         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3893      &      'eturn4',i,j,-(s1+s2+s3)
3894 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3895 cd     &    ' eello_turn4_num',8*eello_turn4_num
3896 C Derivatives in gamma(i)
3897         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3898         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3899         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3900         s1=scalar2(b1(1,iti2),auxvec(1))
3901         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3902         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3904 C Derivatives in gamma(i+1)
3905         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3906         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3907         s2=scalar2(b1(1,iti1),auxvec(1))
3908         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3909         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3910         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3911         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3912 C Derivatives in gamma(i+2)
3913         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3914         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3915         s1=scalar2(b1(1,iti2),auxvec(1))
3916         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3917         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3920         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3923 C Cartesian derivatives
3924 C Derivatives of this turn contributions in DC(i+2)
3925         if (j.lt.nres-1) then
3926           do l=1,3
3927             a_temp(1,1)=agg(l,1)
3928             a_temp(1,2)=agg(l,2)
3929             a_temp(2,1)=agg(l,3)
3930             a_temp(2,2)=agg(l,4)
3931             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3932             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3933             s1=scalar2(b1(1,iti2),auxvec(1))
3934             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3935             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3936             s2=scalar2(b1(1,iti1),auxvec(1))
3937             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3938             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3939             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3940             ggg(l)=-(s1+s2+s3)
3941             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3942           enddo
3943         endif
3944 C Remaining derivatives of this turn contribution
3945         do l=1,3
3946           a_temp(1,1)=aggi(l,1)
3947           a_temp(1,2)=aggi(l,2)
3948           a_temp(2,1)=aggi(l,3)
3949           a_temp(2,2)=aggi(l,4)
3950           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3951           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3952           s1=scalar2(b1(1,iti2),auxvec(1))
3953           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3954           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3955           s2=scalar2(b1(1,iti1),auxvec(1))
3956           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3957           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3958           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3959           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3960           a_temp(1,1)=aggi1(l,1)
3961           a_temp(1,2)=aggi1(l,2)
3962           a_temp(2,1)=aggi1(l,3)
3963           a_temp(2,2)=aggi1(l,4)
3964           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3965           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3966           s1=scalar2(b1(1,iti2),auxvec(1))
3967           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3968           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3969           s2=scalar2(b1(1,iti1),auxvec(1))
3970           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3971           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3972           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3973           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3974           a_temp(1,1)=aggj(l,1)
3975           a_temp(1,2)=aggj(l,2)
3976           a_temp(2,1)=aggj(l,3)
3977           a_temp(2,2)=aggj(l,4)
3978           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3979           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3980           s1=scalar2(b1(1,iti2),auxvec(1))
3981           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3982           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3983           s2=scalar2(b1(1,iti1),auxvec(1))
3984           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3985           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3986           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3987           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3988           a_temp(1,1)=aggj1(l,1)
3989           a_temp(1,2)=aggj1(l,2)
3990           a_temp(2,1)=aggj1(l,3)
3991           a_temp(2,2)=aggj1(l,4)
3992           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3993           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3994           s1=scalar2(b1(1,iti2),auxvec(1))
3995           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3996           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3997           s2=scalar2(b1(1,iti1),auxvec(1))
3998           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3999           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4000           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4001 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4002           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4003         enddo
4004       return
4005       end
4006 C-----------------------------------------------------------------------------
4007       subroutine vecpr(u,v,w)
4008       implicit real*8(a-h,o-z)
4009       dimension u(3),v(3),w(3)
4010       w(1)=u(2)*v(3)-u(3)*v(2)
4011       w(2)=-u(1)*v(3)+u(3)*v(1)
4012       w(3)=u(1)*v(2)-u(2)*v(1)
4013       return
4014       end
4015 C-----------------------------------------------------------------------------
4016       subroutine unormderiv(u,ugrad,unorm,ungrad)
4017 C This subroutine computes the derivatives of a normalized vector u, given
4018 C the derivatives computed without normalization conditions, ugrad. Returns
4019 C ungrad.
4020       implicit none
4021       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4022       double precision vec(3)
4023       double precision scalar
4024       integer i,j
4025 c      write (2,*) 'ugrad',ugrad
4026 c      write (2,*) 'u',u
4027       do i=1,3
4028         vec(i)=scalar(ugrad(1,i),u(1))
4029       enddo
4030 c      write (2,*) 'vec',vec
4031       do i=1,3
4032         do j=1,3
4033           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4034         enddo
4035       enddo
4036 c      write (2,*) 'ungrad',ungrad
4037       return
4038       end
4039 C-----------------------------------------------------------------------------
4040       subroutine escp_soft_sphere(evdw2,evdw2_14)
4041 C
4042 C This subroutine calculates the excluded-volume interaction energy between
4043 C peptide-group centers and side chains and its gradient in virtual-bond and
4044 C side-chain vectors.
4045 C
4046       implicit real*8 (a-h,o-z)
4047       include 'DIMENSIONS'
4048       include 'COMMON.GEO'
4049       include 'COMMON.VAR'
4050       include 'COMMON.LOCAL'
4051       include 'COMMON.CHAIN'
4052       include 'COMMON.DERIV'
4053       include 'COMMON.INTERACT'
4054       include 'COMMON.FFIELD'
4055       include 'COMMON.IOUNITS'
4056       include 'COMMON.CONTROL'
4057       dimension ggg(3)
4058       evdw2=0.0D0
4059       evdw2_14=0.0d0
4060       r0_scp=4.5d0
4061 cd    print '(a)','Enter ESCP'
4062 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4063       do i=iatscp_s,iatscp_e
4064         iteli=itel(i)
4065         xi=0.5D0*(c(1,i)+c(1,i+1))
4066         yi=0.5D0*(c(2,i)+c(2,i+1))
4067         zi=0.5D0*(c(3,i)+c(3,i+1))
4068
4069         do iint=1,nscp_gr(i)
4070
4071         do j=iscpstart(i,iint),iscpend(i,iint)
4072           itypj=itype(j)
4073 C Uncomment following three lines for SC-p interactions
4074 c         xj=c(1,nres+j)-xi
4075 c         yj=c(2,nres+j)-yi
4076 c         zj=c(3,nres+j)-zi
4077 C Uncomment following three lines for Ca-p interactions
4078           xj=c(1,j)-xi
4079           yj=c(2,j)-yi
4080           zj=c(3,j)-zi
4081           rij=xj*xj+yj*yj+zj*zj
4082           r0ij=r0_scp
4083           r0ijsq=r0ij*r0ij
4084           if (rij.lt.r0ijsq) then
4085             evdwij=0.25d0*(rij-r0ijsq)**2
4086             fac=rij-r0ijsq
4087           else
4088             evdwij=0.0d0
4089             fac=0.0d0
4090           endif 
4091           evdw2=evdw2+evdwij
4092 C
4093 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4094 C
4095           ggg(1)=xj*fac
4096           ggg(2)=yj*fac
4097           ggg(3)=zj*fac
4098 cgrad          if (j.lt.i) then
4099 cd          write (iout,*) 'j<i'
4100 C Uncomment following three lines for SC-p interactions
4101 c           do k=1,3
4102 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4103 c           enddo
4104 cgrad          else
4105 cd          write (iout,*) 'j>i'
4106 cgrad            do k=1,3
4107 cgrad              ggg(k)=-ggg(k)
4108 C Uncomment following line for SC-p interactions
4109 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4110 cgrad            enddo
4111 cgrad          endif
4112 cgrad          do k=1,3
4113 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4114 cgrad          enddo
4115 cgrad          kstart=min0(i+1,j)
4116 cgrad          kend=max0(i-1,j-1)
4117 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4118 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4119 cgrad          do k=kstart,kend
4120 cgrad            do l=1,3
4121 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4122 cgrad            enddo
4123 cgrad          enddo
4124           do k=1,3
4125             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4126             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4127           enddo
4128         enddo
4129
4130         enddo ! iint
4131       enddo ! i
4132       return
4133       end
4134 C-----------------------------------------------------------------------------
4135       subroutine escp(evdw2,evdw2_14)
4136 C
4137 C This subroutine calculates the excluded-volume interaction energy between
4138 C peptide-group centers and side chains and its gradient in virtual-bond and
4139 C side-chain vectors.
4140 C
4141       implicit real*8 (a-h,o-z)
4142       include 'DIMENSIONS'
4143       include 'COMMON.GEO'
4144       include 'COMMON.VAR'
4145       include 'COMMON.LOCAL'
4146       include 'COMMON.CHAIN'
4147       include 'COMMON.DERIV'
4148       include 'COMMON.INTERACT'
4149       include 'COMMON.FFIELD'
4150       include 'COMMON.IOUNITS'
4151       include 'COMMON.CONTROL'
4152       dimension ggg(3)
4153       evdw2=0.0D0
4154       evdw2_14=0.0d0
4155 cd    print '(a)','Enter ESCP'
4156 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4157       do i=iatscp_s,iatscp_e
4158         iteli=itel(i)
4159         xi=0.5D0*(c(1,i)+c(1,i+1))
4160         yi=0.5D0*(c(2,i)+c(2,i+1))
4161         zi=0.5D0*(c(3,i)+c(3,i+1))
4162
4163         do iint=1,nscp_gr(i)
4164
4165         do j=iscpstart(i,iint),iscpend(i,iint)
4166           itypj=itype(j)
4167 C Uncomment following three lines for SC-p interactions
4168 c         xj=c(1,nres+j)-xi
4169 c         yj=c(2,nres+j)-yi
4170 c         zj=c(3,nres+j)-zi
4171 C Uncomment following three lines for Ca-p interactions
4172           xj=c(1,j)-xi
4173           yj=c(2,j)-yi
4174           zj=c(3,j)-zi
4175           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4176           fac=rrij**expon2
4177           e1=fac*fac*aad(itypj,iteli)
4178           e2=fac*bad(itypj,iteli)
4179           if (iabs(j-i) .le. 2) then
4180             e1=scal14*e1
4181             e2=scal14*e2
4182             evdw2_14=evdw2_14+e1+e2
4183           endif
4184           evdwij=e1+e2
4185           evdw2=evdw2+evdwij
4186           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4187      &        'evdw2',i,j,evdwij
4188 C
4189 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4190 C
4191           fac=-(evdwij+e1)*rrij
4192           ggg(1)=xj*fac
4193           ggg(2)=yj*fac
4194           ggg(3)=zj*fac
4195 cgrad          if (j.lt.i) then
4196 cd          write (iout,*) 'j<i'
4197 C Uncomment following three lines for SC-p interactions
4198 c           do k=1,3
4199 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4200 c           enddo
4201 cgrad          else
4202 cd          write (iout,*) 'j>i'
4203 cgrad            do k=1,3
4204 cgrad              ggg(k)=-ggg(k)
4205 C Uncomment following line for SC-p interactions
4206 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4207 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4208 cgrad            enddo
4209 cgrad          endif
4210 cgrad          do k=1,3
4211 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4212 cgrad          enddo
4213 cgrad          kstart=min0(i+1,j)
4214 cgrad          kend=max0(i-1,j-1)
4215 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4216 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4217 cgrad          do k=kstart,kend
4218 cgrad            do l=1,3
4219 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4220 cgrad            enddo
4221 cgrad          enddo
4222           do k=1,3
4223             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4224             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4225           enddo
4226         enddo
4227
4228         enddo ! iint
4229       enddo ! i
4230       do i=1,nct
4231         do j=1,3
4232           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4233           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4234           gradx_scp(j,i)=expon*gradx_scp(j,i)
4235         enddo
4236       enddo
4237 C******************************************************************************
4238 C
4239 C                              N O T E !!!
4240 C
4241 C To save time the factor EXPON has been extracted from ALL components
4242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4243 C use!
4244 C
4245 C******************************************************************************
4246       return
4247       end
4248 C--------------------------------------------------------------------------
4249       subroutine edis(ehpb)
4250
4251 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4252 C
4253       implicit real*8 (a-h,o-z)
4254       include 'DIMENSIONS'
4255       include 'COMMON.SBRIDGE'
4256       include 'COMMON.CHAIN'
4257       include 'COMMON.DERIV'
4258       include 'COMMON.VAR'
4259       include 'COMMON.INTERACT'
4260       include 'COMMON.IOUNITS'
4261       dimension ggg(3)
4262       ehpb=0.0D0
4263 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4264 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4265       if (link_end.eq.0) return
4266       do i=link_start,link_end
4267 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4268 C CA-CA distance used in regularization of structure.
4269         ii=ihpb(i)
4270         jj=jhpb(i)
4271 C iii and jjj point to the residues for which the distance is assigned.
4272         if (ii.gt.nres) then
4273           iii=ii-nres
4274           jjj=jj-nres 
4275         else
4276           iii=ii
4277           jjj=jj
4278         endif
4279 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4280 c     &    dhpb(i),dhpb1(i),forcon(i)
4281 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4282 C    distance and angle dependent SS bond potential.
4283 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4284 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4285         if (.not.dyn_ss .and. i.le.nss) then
4286 C 15/02/13 CC dynamic SSbond - additional check
4287          if (ii.gt.nres 
4288      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4289           call ssbond_ene(iii,jjj,eij)
4290           ehpb=ehpb+2*eij
4291          endif
4292 cd          write (iout,*) "eij",eij
4293         else if (ii.gt.nres .and. jj.gt.nres) then
4294 c Restraints from contact prediction
4295           dd=dist(ii,jj)
4296           if (dhpb1(i).gt.0.0d0) then
4297             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4298             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4299 c            write (iout,*) "beta nmr",
4300 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4301           else
4302             dd=dist(ii,jj)
4303             rdis=dd-dhpb(i)
4304 C Get the force constant corresponding to this distance.
4305             waga=forcon(i)
4306 C Calculate the contribution to energy.
4307             ehpb=ehpb+waga*rdis*rdis
4308 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4309 C
4310 C Evaluate gradient.
4311 C
4312             fac=waga*rdis/dd
4313           endif  
4314           do j=1,3
4315             ggg(j)=fac*(c(j,jj)-c(j,ii))
4316           enddo
4317           do j=1,3
4318             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4319             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4320           enddo
4321           do k=1,3
4322             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4323             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4324           enddo
4325         else
4326 C Calculate the distance between the two points and its difference from the
4327 C target distance.
4328           dd=dist(ii,jj)
4329           if (dhpb1(i).gt.0.0d0) then
4330             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4331             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4332 c            write (iout,*) "alph nmr",
4333 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4334           else
4335             rdis=dd-dhpb(i)
4336 C Get the force constant corresponding to this distance.
4337             waga=forcon(i)
4338 C Calculate the contribution to energy.
4339             ehpb=ehpb+waga*rdis*rdis
4340 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4341 C
4342 C Evaluate gradient.
4343 C
4344             fac=waga*rdis/dd
4345           endif
4346 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4347 cd   &   ' waga=',waga,' fac=',fac
4348             do j=1,3
4349               ggg(j)=fac*(c(j,jj)-c(j,ii))
4350             enddo
4351 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4352 C If this is a SC-SC distance, we need to calculate the contributions to the
4353 C Cartesian gradient in the SC vectors (ghpbx).
4354           if (iii.lt.ii) then
4355           do j=1,3
4356             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4357             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4358           enddo
4359           endif
4360 cgrad        do j=iii,jjj-1
4361 cgrad          do k=1,3
4362 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4363 cgrad          enddo
4364 cgrad        enddo
4365           do k=1,3
4366             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4367             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4368           enddo
4369         endif
4370       enddo
4371       ehpb=0.5D0*ehpb
4372       return
4373       end
4374 C--------------------------------------------------------------------------
4375       subroutine ssbond_ene(i,j,eij)
4376
4377 C Calculate the distance and angle dependent SS-bond potential energy
4378 C using a free-energy function derived based on RHF/6-31G** ab initio
4379 C calculations of diethyl disulfide.
4380 C
4381 C A. Liwo and U. Kozlowska, 11/24/03
4382 C
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.SBRIDGE'
4386       include 'COMMON.CHAIN'
4387       include 'COMMON.DERIV'
4388       include 'COMMON.LOCAL'
4389       include 'COMMON.INTERACT'
4390       include 'COMMON.VAR'
4391       include 'COMMON.IOUNITS'
4392       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4393       itypi=itype(i)
4394       xi=c(1,nres+i)
4395       yi=c(2,nres+i)
4396       zi=c(3,nres+i)
4397       dxi=dc_norm(1,nres+i)
4398       dyi=dc_norm(2,nres+i)
4399       dzi=dc_norm(3,nres+i)
4400 c      dsci_inv=dsc_inv(itypi)
4401       dsci_inv=vbld_inv(nres+i)
4402       itypj=itype(j)
4403 c      dscj_inv=dsc_inv(itypj)
4404       dscj_inv=vbld_inv(nres+j)
4405       xj=c(1,nres+j)-xi
4406       yj=c(2,nres+j)-yi
4407       zj=c(3,nres+j)-zi
4408       dxj=dc_norm(1,nres+j)
4409       dyj=dc_norm(2,nres+j)
4410       dzj=dc_norm(3,nres+j)
4411       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4412       rij=dsqrt(rrij)
4413       erij(1)=xj*rij
4414       erij(2)=yj*rij
4415       erij(3)=zj*rij
4416       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4417       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4418       om12=dxi*dxj+dyi*dyj+dzi*dzj
4419       do k=1,3
4420         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4421         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4422       enddo
4423       rij=1.0d0/rij
4424       deltad=rij-d0cm
4425       deltat1=1.0d0-om1
4426       deltat2=1.0d0+om2
4427       deltat12=om2-om1+2.0d0
4428       cosphi=om12-om1*om2
4429       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4430      &  +akct*deltad*deltat12+ebr
4431      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4432 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4433 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4434 c     &  " deltat12",deltat12," eij",eij 
4435       ed=2*akcm*deltad+akct*deltat12
4436       pom1=akct*deltad
4437       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4438       eom1=-2*akth*deltat1-pom1-om2*pom2
4439       eom2= 2*akth*deltat2+pom1-om1*pom2
4440       eom12=pom2
4441       do k=1,3
4442         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4443         ghpbx(k,i)=ghpbx(k,i)-ggk
4444      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4445      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4446         ghpbx(k,j)=ghpbx(k,j)+ggk
4447      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4448      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4449         ghpbc(k,i)=ghpbc(k,i)-ggk
4450         ghpbc(k,j)=ghpbc(k,j)+ggk
4451       enddo
4452 C
4453 C Calculate the components of the gradient in DC and X
4454 C
4455 cgrad      do k=i,j-1
4456 cgrad        do l=1,3
4457 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4458 cgrad        enddo
4459 cgrad      enddo
4460       return
4461       end
4462 C--------------------------------------------------------------------------
4463       subroutine ebond(estr)
4464 c
4465 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4466 c
4467       implicit real*8 (a-h,o-z)
4468       include 'DIMENSIONS'
4469       include 'COMMON.LOCAL'
4470       include 'COMMON.GEO'
4471       include 'COMMON.INTERACT'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.VAR'
4474       include 'COMMON.CHAIN'
4475       include 'COMMON.IOUNITS'
4476       include 'COMMON.NAMES'
4477       include 'COMMON.FFIELD'
4478       include 'COMMON.CONTROL'
4479       include 'COMMON.SETUP'
4480       double precision u(3),ud(3)
4481       estr=0.0d0
4482       do i=ibondp_start,ibondp_end
4483         diff = vbld(i)-vbldp0
4484 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4485         estr=estr+diff*diff
4486         do j=1,3
4487           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4488         enddo
4489 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4490       enddo
4491       estr=0.5d0*AKP*estr
4492 c
4493 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4494 c
4495       do i=ibond_start,ibond_end
4496         iti=itype(i)
4497         if (iti.ne.10) then
4498           nbi=nbondterm(iti)
4499           if (nbi.eq.1) then
4500             diff=vbld(i+nres)-vbldsc0(1,iti)
4501 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4502 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4503             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4504             do j=1,3
4505               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4506             enddo
4507           else
4508             do j=1,nbi
4509               diff=vbld(i+nres)-vbldsc0(j,iti) 
4510               ud(j)=aksc(j,iti)*diff
4511               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4512             enddo
4513             uprod=u(1)
4514             do j=2,nbi
4515               uprod=uprod*u(j)
4516             enddo
4517             usum=0.0d0
4518             usumsqder=0.0d0
4519             do j=1,nbi
4520               uprod1=1.0d0
4521               uprod2=1.0d0
4522               do k=1,nbi
4523                 if (k.ne.j) then
4524                   uprod1=uprod1*u(k)
4525                   uprod2=uprod2*u(k)*u(k)
4526                 endif
4527               enddo
4528               usum=usum+uprod1
4529               usumsqder=usumsqder+ud(j)*uprod2   
4530             enddo
4531             estr=estr+uprod/usum
4532             do j=1,3
4533              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4534             enddo
4535           endif
4536         endif
4537       enddo
4538       return
4539       end 
4540 #ifdef CRYST_THETA
4541 C--------------------------------------------------------------------------
4542       subroutine ebend(etheta)
4543 C
4544 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4545 C angles gamma and its derivatives in consecutive thetas and gammas.
4546 C
4547       implicit real*8 (a-h,o-z)
4548       include 'DIMENSIONS'
4549       include 'COMMON.LOCAL'
4550       include 'COMMON.GEO'
4551       include 'COMMON.INTERACT'
4552       include 'COMMON.DERIV'
4553       include 'COMMON.VAR'
4554       include 'COMMON.CHAIN'
4555       include 'COMMON.IOUNITS'
4556       include 'COMMON.NAMES'
4557       include 'COMMON.FFIELD'
4558       include 'COMMON.CONTROL'
4559       common /calcthet/ term1,term2,termm,diffak,ratak,
4560      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4561      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4562       double precision y(2),z(2)
4563       delta=0.02d0*pi
4564 c      time11=dexp(-2*time)
4565 c      time12=1.0d0
4566       etheta=0.0D0
4567 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4568       do i=ithet_start,ithet_end
4569 C Zero the energy function and its derivative at 0 or pi.
4570         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4571         it=itype(i-1)
4572         ichir1=isign(1,itype(i-2))
4573         ichir2=isign(1,itype(i))
4574          if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1))
4575          if (itype(i).eq.10) ichir2=isign(1,itype(i-1))
4576          if (itype(i-1).eq.10) then
4577           itype1=isign(10,itype(i-2))
4578           ichir11=isign(1,itype(i-2))
4579           ichir12=isign(1,itype(i-2))
4580           itype2=isign(10,itype(i))
4581           ichir21=isign(1,itype(i))
4582           ichir22=isign(1,itype(i))
4583          endif
4584         if (i.gt.3) then
4585 #ifdef OSF
4586           phii=phi(i)
4587           if (phii.ne.phii) phii=150.0
4588 #else
4589           phii=phi(i)
4590 #endif
4591           y(1)=dcos(phii)
4592           y(2)=dsin(phii)
4593         else 
4594           y(1)=0.0D0
4595           y(2)=0.0D0
4596         endif
4597         if (i.lt.nres) then
4598 #ifdef OSF
4599           phii1=phi(i+1)
4600           if (phii1.ne.phii1) phii1=150.0
4601           phii1=pinorm(phii1)
4602           z(1)=cos(phii1)
4603 #else
4604           phii1=phi(i+1)
4605           z(1)=dcos(phii1)
4606 #endif
4607           z(2)=dsin(phii1)
4608         else
4609           z(1)=0.0D0
4610           z(2)=0.0D0
4611         endif  
4612 C Calculate the "mean" value of theta from the part of the distribution
4613 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4614 C In following comments this theta will be referred to as t_c.
4615         thet_pred_mean=0.0d0
4616         do k=1,2
4617             athetk=athet(k,it,ichir1,ichir2)
4618             bthetk=bthet(k,it,ichir1,ichir2)
4619           if (it.eq.10) then
4620              athetk=athet(k,itype1,ichir11,ichir12)
4621              bthetk=bthet(k,itype2,ichir21,ichir22)
4622           endif
4623           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4624         enddo
4625         dthett=thet_pred_mean*ssd
4626         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4627 C Derivatives of the "mean" values in gamma1 and gamma2.
4628         dthetg1=(-athet(1,it,ichir1,ichir2)*y(2)
4629      &+athet(2,it,ichir1,ichir2)*y(1))*ss
4630          dthetg2=(-bthet(1,it,ichir1,ichir2)*z(2)
4631      &          +bthet(2,it,ichir1,ichir2)*z(1))*ss
4632          if (it.eq.10) then
4633       dthetg1=(-athet(1,itype1,ichir11,ichir12)*y(2)
4634      &+athet(2,itype1,ichir11,ichir12)*y(1))*ss
4635         dthetg2=(-bthet(1,itype2,ichir21,ichir22)*z(2)
4636      &         +bthet(2,itype2,ichir21,ichir22)*z(1))*ss
4637          endif
4638         if (theta(i).gt.pi-delta) then
4639           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4640      &         E_tc0)
4641           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4642           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4643           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4644      &        E_theta)
4645           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4646      &        E_tc)
4647         else if (theta(i).lt.delta) then
4648           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4649           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4650           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4651      &        E_theta)
4652           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4653           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4654      &        E_tc)
4655         else
4656           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4657      &        E_theta,E_tc)
4658         endif
4659         etheta=etheta+ethetai
4660         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4661      &      'ebend',i,ethetai
4662         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4663         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4664         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4665       enddo
4666 C Ufff.... We've done all this!!! 
4667       return
4668       end
4669 C---------------------------------------------------------------------------
4670       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4671      &     E_tc)
4672       implicit real*8 (a-h,o-z)
4673       include 'DIMENSIONS'
4674       include 'COMMON.LOCAL'
4675       include 'COMMON.IOUNITS'
4676       common /calcthet/ term1,term2,termm,diffak,ratak,
4677      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4678      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4679 C Calculate the contributions to both Gaussian lobes.
4680 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4681 C The "polynomial part" of the "standard deviation" of this part of 
4682 C the distribution.
4683         sig=polthet(3,it)
4684         do j=2,0,-1
4685           sig=sig*thet_pred_mean+polthet(j,it)
4686         enddo
4687 C Derivative of the "interior part" of the "standard deviation of the" 
4688 C gamma-dependent Gaussian lobe in t_c.
4689         sigtc=3*polthet(3,it)
4690         do j=2,1,-1
4691           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4692         enddo
4693         sigtc=sig*sigtc
4694 C Set the parameters of both Gaussian lobes of the distribution.
4695 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4696         fac=sig*sig+sigc0(it)
4697         sigcsq=fac+fac
4698         sigc=1.0D0/sigcsq
4699 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4700         sigsqtc=-4.0D0*sigcsq*sigtc
4701 c       print *,i,sig,sigtc,sigsqtc
4702 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4703         sigtc=-sigtc/(fac*fac)
4704 C Following variable is sigma(t_c)**(-2)
4705         sigcsq=sigcsq*sigcsq
4706         sig0i=sig0(it)
4707         sig0inv=1.0D0/sig0i**2
4708         delthec=thetai-thet_pred_mean
4709         delthe0=thetai-theta0i
4710         term1=-0.5D0*sigcsq*delthec*delthec
4711         term2=-0.5D0*sig0inv*delthe0*delthe0
4712 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4713 C NaNs in taking the logarithm. We extract the largest exponent which is added
4714 C to the energy (this being the log of the distribution) at the end of energy
4715 C term evaluation for this virtual-bond angle.
4716         if (term1.gt.term2) then
4717           termm=term1
4718           term2=dexp(term2-termm)
4719           term1=1.0d0
4720         else
4721           termm=term2
4722           term1=dexp(term1-termm)
4723           term2=1.0d0
4724         endif
4725 C The ratio between the gamma-independent and gamma-dependent lobes of
4726 C the distribution is a Gaussian function of thet_pred_mean too.
4727         diffak=gthet(2,it)-thet_pred_mean
4728         ratak=diffak/gthet(3,it)**2
4729         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4730 C Let's differentiate it in thet_pred_mean NOW.
4731         aktc=ak*ratak
4732 C Now put together the distribution terms to make complete distribution.
4733         termexp=term1+ak*term2
4734         termpre=sigc+ak*sig0i
4735 C Contribution of the bending energy from this theta is just the -log of
4736 C the sum of the contributions from the two lobes and the pre-exponential
4737 C factor. Simple enough, isn't it?
4738         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4739 C NOW the derivatives!!!
4740 C 6/6/97 Take into account the deformation.
4741         E_theta=(delthec*sigcsq*term1
4742      &       +ak*delthe0*sig0inv*term2)/termexp
4743         E_tc=((sigtc+aktc*sig0i)/termpre
4744      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4745      &       aktc*term2)/termexp)
4746       return
4747       end
4748 c-----------------------------------------------------------------------------
4749       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4750       implicit real*8 (a-h,o-z)
4751       include 'DIMENSIONS'
4752       include 'COMMON.LOCAL'
4753       include 'COMMON.IOUNITS'
4754       common /calcthet/ term1,term2,termm,diffak,ratak,
4755      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4756      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4757       delthec=thetai-thet_pred_mean
4758       delthe0=thetai-theta0i
4759 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4760       t3 = thetai-thet_pred_mean
4761       t6 = t3**2
4762       t9 = term1
4763       t12 = t3*sigcsq
4764       t14 = t12+t6*sigsqtc
4765       t16 = 1.0d0
4766       t21 = thetai-theta0i
4767       t23 = t21**2
4768       t26 = term2
4769       t27 = t21*t26
4770       t32 = termexp
4771       t40 = t32**2
4772       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4773      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4774      & *(-t12*t9-ak*sig0inv*t27)
4775       return
4776       end
4777 #else
4778 C--------------------------------------------------------------------------
4779       subroutine ebend(etheta)
4780 C
4781 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4782 C angles gamma and its derivatives in consecutive thetas and gammas.
4783 C ab initio-derived potentials from 
4784 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4785 C
4786       implicit real*8 (a-h,o-z)
4787       include 'DIMENSIONS'
4788       include 'COMMON.LOCAL'
4789       include 'COMMON.GEO'
4790       include 'COMMON.INTERACT'
4791       include 'COMMON.DERIV'
4792       include 'COMMON.VAR'
4793       include 'COMMON.CHAIN'
4794       include 'COMMON.IOUNITS'
4795       include 'COMMON.NAMES'
4796       include 'COMMON.FFIELD'
4797       include 'COMMON.CONTROL'
4798       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4799      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4800      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4801      & sinph1ph2(maxdouble,maxdouble)
4802       logical lprn /.false./, lprn1 /.false./
4803       etheta=0.0D0
4804       do i=ithet_start,ithet_end
4805         dethetai=0.0d0
4806         dephii=0.0d0
4807         dephii1=0.0d0
4808         theti2=0.5d0*theta(i)
4809         ityp2=ithetyp(itype(i-1))
4810         do k=1,nntheterm
4811           coskt(k)=dcos(k*theti2)
4812           sinkt(k)=dsin(k*theti2)
4813         enddo
4814         if (i.gt.3) then
4815 #ifdef OSF
4816           phii=phi(i)
4817           if (phii.ne.phii) phii=150.0
4818 #else
4819           phii=phi(i)
4820 #endif
4821           ityp1=ithetyp(itype(i-2))
4822           do k=1,nsingle
4823             cosph1(k)=dcos(k*phii)
4824             sinph1(k)=dsin(k*phii)
4825           enddo
4826         else
4827           phii=0.0d0
4828           ityp1=nthetyp+1
4829           do k=1,nsingle
4830             cosph1(k)=0.0d0
4831             sinph1(k)=0.0d0
4832           enddo 
4833         endif
4834         if (i.lt.nres) then
4835
4836         if (iabs(itype(i+1)).eq.20) iblock=2
4837         if (iabs(itype(i+1)).ne.20) iblock=1
4838 #ifdef OSF
4839           phii1=phi(i+1)
4840           if (phii1.ne.phii1) phii1=150.0
4841           phii1=pinorm(phii1)
4842 #else
4843           phii1=phi(i+1)
4844 #endif
4845           ityp3=ithetyp(itype(i))
4846           do k=1,nsingle
4847             cosph2(k)=dcos(k*phii1)
4848             sinph2(k)=dsin(k*phii1)
4849           enddo
4850         else
4851           phii1=0.0d0
4852           ityp3=nthetyp+1
4853           do k=1,nsingle
4854             cosph2(k)=0.0d0
4855             sinph2(k)=0.0d0
4856           enddo
4857         endif  
4858          ethetai=aa0thet(ityp1,ityp2,ityp3,iblock)
4859         do k=1,ndouble
4860           do l=1,k-1
4861             ccl=cosph1(l)*cosph2(k-l)
4862             ssl=sinph1(l)*sinph2(k-l)
4863             scl=sinph1(l)*cosph2(k-l)
4864             csl=cosph1(l)*sinph2(k-l)
4865             cosph1ph2(l,k)=ccl-ssl
4866             cosph1ph2(k,l)=ccl+ssl
4867             sinph1ph2(l,k)=scl+csl
4868             sinph1ph2(k,l)=scl-csl
4869           enddo
4870         enddo
4871         if (lprn) then
4872         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4873      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4874         write (iout,*) "coskt and sinkt"
4875         do k=1,nntheterm
4876           write (iout,*) k,coskt(k),sinkt(k)
4877         enddo
4878         endif
4879         do k=1,ntheterm
4880           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3,iblock)*sinkt(k)
4881           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3,iblock)
4882      &      *coskt(k)
4883           if (lprn)
4884      &    write (iout,*) "k",k,
4885      &    "aathet",aathet(k,ityp1,ityp2,ityp3,iblock),
4886      &     " ethetai",ethetai
4887         enddo
4888         if (lprn) then
4889         write (iout,*) "cosph and sinph"
4890         do k=1,nsingle
4891           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4892         enddo
4893         write (iout,*) "cosph1ph2 and sinph2ph2"
4894         do k=2,ndouble
4895           do l=1,k-1
4896             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4897      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4898           enddo
4899         enddo
4900         write(iout,*) "ethetai",ethetai
4901         endif
4902         do m=1,ntheterm2
4903           do k=1,nsingle
4904             aux=bbthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)
4905      &         +ccthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k)
4906      &         +ddthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)
4907      &         +eethet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k)
4908             ethetai=ethetai+sinkt(m)*aux
4909             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4910             dephii=dephii+k*sinkt(m)*(
4911      &          ccthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)-
4912      &          bbthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k))
4913             dephii1=dephii1+k*sinkt(m)*(
4914      &          eethet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)-
4915      &          ddthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k))
4916             if (lprn)
4917      &      write (iout,*) "m",m," k",k," bbthet",
4918      &         bbthet(k,m,ityp1,ityp2,ityp3,iblock)," ccthet",
4919      &         ccthet(k,m,ityp1,ityp2,ityp3,iblock)," ddthet",
4920      &         ddthet(k,m,ityp1,ityp2,ityp3,iblock)," eethet",
4921      &         eethet(k,m,ityp1,ityp2,ityp3,iblock)," ethetai",ethetai
4922           enddo
4923         enddo
4924         if (lprn)
4925      &  write(iout,*) "ethetai",ethetai
4926         do m=1,ntheterm3
4927           do k=2,ndouble
4928             do l=1,k-1
4929        aux=ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+
4930      & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)+
4931      & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+
4932      & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)
4933
4934               ethetai=ethetai+sinkt(m)*aux
4935               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4936               dephii=dephii+l*sinkt(m)*(
4937      & -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)-
4938      &  ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+
4939      &  ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+
4940      &  ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l))
4941
4942               dephii1=dephii1+(k-l)*sinkt(m)*(
4943      &-ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+
4944      & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+
4945      & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)-
4946      & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l))
4947
4948               if (lprn) then
4949               write (iout,*) "m",m," k",k," l",l," ffthet",
4950      &            ffthet(l,k,m,ityp1,ityp2,ityp3,iblock),
4951      &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)," ggthet",
4952      &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock),
4953      &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock),
4954      &            " ethetai",ethetai
4955
4956               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4957      &            cosph1ph2(k,l)*sinkt(m),
4958      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4959               endif
4960             enddo
4961           enddo
4962         enddo
4963 10      continue
4964         if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
4965      &   i,theta(i)*rad2deg,phii*rad2deg,
4966      &   phii1*rad2deg,ethetai
4967         etheta=etheta+ethetai
4968         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4969         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4970         gloc(nphi+i-2,icg)=wang*dethetai
4971       enddo
4972       return
4973       end
4974 #endif
4975 #ifdef CRYST_SC
4976 c-----------------------------------------------------------------------------
4977       subroutine esc(escloc)
4978 C Calculate the local energy of a side chain and its derivatives in the
4979 C corresponding virtual-bond valence angles THETA and the spherical angles 
4980 C ALPHA and OMEGA.
4981       implicit real*8 (a-h,o-z)
4982       include 'DIMENSIONS'
4983       include 'COMMON.GEO'
4984       include 'COMMON.LOCAL'
4985       include 'COMMON.VAR'
4986       include 'COMMON.INTERACT'
4987       include 'COMMON.DERIV'
4988       include 'COMMON.CHAIN'
4989       include 'COMMON.IOUNITS'
4990       include 'COMMON.NAMES'
4991       include 'COMMON.FFIELD'
4992       include 'COMMON.CONTROL'
4993       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4994      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4995       common /sccalc/ time11,time12,time112,theti,it,nlobit
4996       delta=0.02d0*pi
4997       escloc=0.0D0
4998 c     write (iout,'(a)') 'ESC'
4999       do i=loc_start,loc_end
5000         it=itype(i)
5001         if (it.eq.10) goto 1
5002         nlobit=nlob(it)
5003 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
5004 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
5005         theti=theta(i+1)-pipol
5006         x(1)=dtan(theti)
5007         x(2)=alph(i)
5008         x(3)=omeg(i)
5009
5010         if (x(2).gt.pi-delta) then
5011           xtemp(1)=x(1)
5012           xtemp(2)=pi-delta
5013           xtemp(3)=x(3)
5014           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5015           xtemp(2)=pi
5016           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5017           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
5018      &        escloci,dersc(2))
5019           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5020      &        ddersc0(1),dersc(1))
5021           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5022      &        ddersc0(3),dersc(3))
5023           xtemp(2)=pi-delta
5024           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5025           xtemp(2)=pi
5026           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5027           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5028      &            dersc0(2),esclocbi,dersc02)
5029           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5030      &            dersc12,dersc01)
5031           call splinthet(x(2),0.5d0*delta,ss,ssd)
5032           dersc0(1)=dersc01
5033           dersc0(2)=dersc02
5034           dersc0(3)=0.0d0
5035           do k=1,3
5036             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5037           enddo
5038           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5039 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5040 c    &             esclocbi,ss,ssd
5041           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5042 c         escloci=esclocbi
5043 c         write (iout,*) escloci
5044         else if (x(2).lt.delta) then
5045           xtemp(1)=x(1)
5046           xtemp(2)=delta
5047           xtemp(3)=x(3)
5048           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5049           xtemp(2)=0.0d0
5050           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5051           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5052      &        escloci,dersc(2))
5053           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5054      &        ddersc0(1),dersc(1))
5055           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5056      &        ddersc0(3),dersc(3))
5057           xtemp(2)=delta
5058           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5059           xtemp(2)=0.0d0
5060           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5061           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5062      &            dersc0(2),esclocbi,dersc02)
5063           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5064      &            dersc12,dersc01)
5065           dersc0(1)=dersc01
5066           dersc0(2)=dersc02
5067           dersc0(3)=0.0d0
5068           call splinthet(x(2),0.5d0*delta,ss,ssd)
5069           do k=1,3
5070             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5071           enddo
5072           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5073 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5074 c    &             esclocbi,ss,ssd
5075           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5076 c         write (iout,*) escloci
5077         else
5078           call enesc(x,escloci,dersc,ddummy,.false.)
5079         endif
5080
5081         escloc=escloc+escloci
5082         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5083      &     'escloc',i,escloci
5084 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5085
5086         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5087      &   wscloc*dersc(1)
5088         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5089         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5090     1   continue
5091       enddo
5092       return
5093       end
5094 C---------------------------------------------------------------------------
5095       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5096       implicit real*8 (a-h,o-z)
5097       include 'DIMENSIONS'
5098       include 'COMMON.GEO'
5099       include 'COMMON.LOCAL'
5100       include 'COMMON.IOUNITS'
5101       common /sccalc/ time11,time12,time112,theti,it,nlobit
5102       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5103       double precision contr(maxlob,-1:1)
5104       logical mixed
5105 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5106         escloc_i=0.0D0
5107         do j=1,3
5108           dersc(j)=0.0D0
5109           if (mixed) ddersc(j)=0.0d0
5110         enddo
5111         x3=x(3)
5112
5113 C Because of periodicity of the dependence of the SC energy in omega we have
5114 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5115 C To avoid underflows, first compute & store the exponents.
5116
5117         do iii=-1,1
5118
5119           x(3)=x3+iii*dwapi
5120  
5121           do j=1,nlobit
5122             do k=1,3
5123               z(k)=x(k)-censc(k,j,it)
5124             enddo
5125             do k=1,3
5126               Axk=0.0D0
5127               do l=1,3
5128                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5129               enddo
5130               Ax(k,j,iii)=Axk
5131             enddo 
5132             expfac=0.0D0 
5133             do k=1,3
5134               expfac=expfac+Ax(k,j,iii)*z(k)
5135             enddo
5136             contr(j,iii)=expfac
5137           enddo ! j
5138
5139         enddo ! iii
5140
5141         x(3)=x3
5142 C As in the case of ebend, we want to avoid underflows in exponentiation and
5143 C subsequent NaNs and INFs in energy calculation.
5144 C Find the largest exponent
5145         emin=contr(1,-1)
5146         do iii=-1,1
5147           do j=1,nlobit
5148             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5149           enddo 
5150         enddo
5151         emin=0.5D0*emin
5152 cd      print *,'it=',it,' emin=',emin
5153
5154 C Compute the contribution to SC energy and derivatives
5155         do iii=-1,1
5156
5157           do j=1,nlobit
5158 #ifdef OSF
5159             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5160             if(adexp.ne.adexp) adexp=1.0
5161             expfac=dexp(adexp)
5162 #else
5163             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5164 #endif
5165 cd          print *,'j=',j,' expfac=',expfac
5166             escloc_i=escloc_i+expfac
5167             do k=1,3
5168               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5169             enddo
5170             if (mixed) then
5171               do k=1,3,2
5172                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5173      &            +gaussc(k,2,j,it))*expfac
5174               enddo
5175             endif
5176           enddo
5177
5178         enddo ! iii
5179
5180         dersc(1)=dersc(1)/cos(theti)**2
5181         ddersc(1)=ddersc(1)/cos(theti)**2
5182         ddersc(3)=ddersc(3)
5183
5184         escloci=-(dlog(escloc_i)-emin)
5185         do j=1,3
5186           dersc(j)=dersc(j)/escloc_i
5187         enddo
5188         if (mixed) then
5189           do j=1,3,2
5190             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5191           enddo
5192         endif
5193       return
5194       end
5195 C------------------------------------------------------------------------------
5196       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5197       implicit real*8 (a-h,o-z)
5198       include 'DIMENSIONS'
5199       include 'COMMON.GEO'
5200       include 'COMMON.LOCAL'
5201       include 'COMMON.IOUNITS'
5202       common /sccalc/ time11,time12,time112,theti,it,nlobit
5203       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5204       double precision contr(maxlob)
5205       logical mixed
5206
5207       escloc_i=0.0D0
5208
5209       do j=1,3
5210         dersc(j)=0.0D0
5211       enddo
5212
5213       do j=1,nlobit
5214         do k=1,2
5215           z(k)=x(k)-censc(k,j,it)
5216         enddo
5217         z(3)=dwapi
5218         do k=1,3
5219           Axk=0.0D0
5220           do l=1,3
5221             Axk=Axk+gaussc(l,k,j,it)*z(l)
5222           enddo
5223           Ax(k,j)=Axk
5224         enddo 
5225         expfac=0.0D0 
5226         do k=1,3
5227           expfac=expfac+Ax(k,j)*z(k)
5228         enddo
5229         contr(j)=expfac
5230       enddo ! j
5231
5232 C As in the case of ebend, we want to avoid underflows in exponentiation and
5233 C subsequent NaNs and INFs in energy calculation.
5234 C Find the largest exponent
5235       emin=contr(1)
5236       do j=1,nlobit
5237         if (emin.gt.contr(j)) emin=contr(j)
5238       enddo 
5239       emin=0.5D0*emin
5240  
5241 C Compute the contribution to SC energy and derivatives
5242
5243       dersc12=0.0d0
5244       do j=1,nlobit
5245         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5246         escloc_i=escloc_i+expfac
5247         do k=1,2
5248           dersc(k)=dersc(k)+Ax(k,j)*expfac
5249         enddo
5250         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5251      &            +gaussc(1,2,j,it))*expfac
5252         dersc(3)=0.0d0
5253       enddo
5254
5255       dersc(1)=dersc(1)/cos(theti)**2
5256       dersc12=dersc12/cos(theti)**2
5257       escloci=-(dlog(escloc_i)-emin)
5258       do j=1,2
5259         dersc(j)=dersc(j)/escloc_i
5260       enddo
5261       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5262       return
5263       end
5264 #else
5265 c----------------------------------------------------------------------------------
5266       subroutine esc(escloc)
5267 C Calculate the local energy of a side chain and its derivatives in the
5268 C corresponding virtual-bond valence angles THETA and the spherical angles 
5269 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5270 C added by Urszula Kozlowska. 07/11/2007
5271 C
5272       implicit real*8 (a-h,o-z)
5273       include 'DIMENSIONS'
5274       include 'COMMON.GEO'
5275       include 'COMMON.LOCAL'
5276       include 'COMMON.VAR'
5277       include 'COMMON.SCROT'
5278       include 'COMMON.INTERACT'
5279       include 'COMMON.DERIV'
5280       include 'COMMON.CHAIN'
5281       include 'COMMON.IOUNITS'
5282       include 'COMMON.NAMES'
5283       include 'COMMON.FFIELD'
5284       include 'COMMON.CONTROL'
5285       include 'COMMON.VECTORS'
5286       double precision x_prime(3),y_prime(3),z_prime(3)
5287      &    , sumene,dsc_i,dp2_i,x(65),
5288      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5289      &    de_dxx,de_dyy,de_dzz,de_dt
5290       double precision s1_t,s1_6_t,s2_t,s2_6_t
5291       double precision 
5292      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5293      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5294      & dt_dCi(3),dt_dCi1(3)
5295       common /sccalc/ time11,time12,time112,theti,it,nlobit
5296       delta=0.02d0*pi
5297       escloc=0.0D0
5298       do i=loc_start,loc_end
5299         costtab(i+1) =dcos(theta(i+1))
5300         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5301         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5302         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5303         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5304         cosfac=dsqrt(cosfac2)
5305         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5306         sinfac=dsqrt(sinfac2)
5307         it=iabs(itype(i))
5308         if (it.eq.10) goto 1
5309 c
5310 C  Compute the axes of tghe local cartesian coordinates system; store in
5311 c   x_prime, y_prime and z_prime 
5312 c
5313         do j=1,3
5314           x_prime(j) = 0.00
5315           y_prime(j) = 0.00
5316           z_prime(j) = 0.00
5317         enddo
5318 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5319 C     &   dc_norm(3,i+nres)
5320         do j = 1,3
5321           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5322           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5323         enddo
5324         do j = 1,3
5325           z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i)))
5326         enddo     
5327 c       write (2,*) "i",i
5328 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5329 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5330 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5331 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5332 c      & " xy",scalar(x_prime(1),y_prime(1)),
5333 c      & " xz",scalar(x_prime(1),z_prime(1)),
5334 c      & " yy",scalar(y_prime(1),y_prime(1)),
5335 c      & " yz",scalar(y_prime(1),z_prime(1)),
5336 c      & " zz",scalar(z_prime(1),z_prime(1))
5337 c
5338 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5339 C to local coordinate system. Store in xx, yy, zz.
5340 c
5341         xx=0.0d0
5342         yy=0.0d0
5343         zz=0.0d0
5344         do j = 1,3
5345           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5346           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5347           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5348         enddo
5349
5350         xxtab(i)=xx
5351         yytab(i)=yy
5352         zztab(i)=zz
5353 C
5354 C Compute the energy of the ith side cbain
5355 C
5356 c        write (2,*) "xx",xx," yy",yy," zz",zz
5357         it=iabs(itype(i))
5358         do j = 1,65
5359           x(j) = sc_parmin(j,it) 
5360         enddo
5361 #ifdef CHECK_COORD
5362 Cc diagnostics - remove later
5363         xx1 = dcos(alph(2))
5364         yy1 = dsin(alph(2))*dcos(omeg(2))
5365         zz1 = -dsign(1.0, dfloat(itype(i)))*dsin(alph(2))*dsin(omeg(2))
5366         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5367      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5368      &    xx1,yy1,zz1
5369 C,"  --- ", xx_w,yy_w,zz_w
5370 c end diagnostics
5371 #endif
5372         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5373      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5374      &   + x(10)*yy*zz
5375         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5376      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5377      & + x(20)*yy*zz
5378         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5379      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5380      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5381      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5382      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5383      &  +x(40)*xx*yy*zz
5384         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5385      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5386      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5387      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5388      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5389      &  +x(60)*xx*yy*zz
5390         dsc_i   = 0.743d0+x(61)
5391         dp2_i   = 1.9d0+x(62)
5392         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5393      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5394         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5395      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5396         s1=(1+x(63))/(0.1d0 + dscp1)
5397         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5398         s2=(1+x(65))/(0.1d0 + dscp2)
5399         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5400         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5401      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5402 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5403 c     &   sumene4,
5404 c     &   dscp1,dscp2,sumene
5405 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5406         escloc = escloc + sumene
5407 c        write (2,*) "i",i," escloc",sumene,escloc
5408 #ifdef DEBUG
5409 C
5410 C This section to check the numerical derivatives of the energy of ith side
5411 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5412 C #define DEBUG in the code to turn it on.
5413 C
5414         write (2,*) "sumene               =",sumene
5415         aincr=1.0d-7
5416         xxsave=xx
5417         xx=xx+aincr
5418         write (2,*) xx,yy,zz
5419         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5420         de_dxx_num=(sumenep-sumene)/aincr
5421         xx=xxsave
5422         write (2,*) "xx+ sumene from enesc=",sumenep
5423         yysave=yy
5424         yy=yy+aincr
5425         write (2,*) xx,yy,zz
5426         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5427         de_dyy_num=(sumenep-sumene)/aincr
5428         yy=yysave
5429         write (2,*) "yy+ sumene from enesc=",sumenep
5430         zzsave=zz
5431         zz=zz+aincr
5432         write (2,*) xx,yy,zz
5433         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5434         de_dzz_num=(sumenep-sumene)/aincr
5435         zz=zzsave
5436         write (2,*) "zz+ sumene from enesc=",sumenep
5437         costsave=cost2tab(i+1)
5438         sintsave=sint2tab(i+1)
5439         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5440         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5441         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5442         de_dt_num=(sumenep-sumene)/aincr
5443         write (2,*) " t+ sumene from enesc=",sumenep
5444         cost2tab(i+1)=costsave
5445         sint2tab(i+1)=sintsave
5446 C End of diagnostics section.
5447 #endif
5448 C        
5449 C Compute the gradient of esc
5450 C
5451         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5452         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5453         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5454         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5455         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5456         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5457         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5458         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5459         pom1=(sumene3*sint2tab(i+1)+sumene1)
5460      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5461         pom2=(sumene4*cost2tab(i+1)+sumene2)
5462      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5463         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5464         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5465      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5466      &  +x(40)*yy*zz
5467         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5468         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5469      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5470      &  +x(60)*yy*zz
5471         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5472      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5473      &        +(pom1+pom2)*pom_dx
5474 #ifdef DEBUG
5475         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5476 #endif
5477 C
5478         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5479         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5480      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5481      &  +x(40)*xx*zz
5482         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5483         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5484      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5485      &  +x(59)*zz**2 +x(60)*xx*zz
5486         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5487      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5488      &        +(pom1-pom2)*pom_dy
5489 #ifdef DEBUG
5490         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5491 #endif
5492 C
5493         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5494      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5495      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5496      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5497      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5498      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5499      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5500      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5501 #ifdef DEBUG
5502         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5503 #endif
5504 C
5505         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5506      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5507      &  +pom1*pom_dt1+pom2*pom_dt2
5508 #ifdef DEBUG
5509         write(2,*), "de_dt = ", de_dt,de_dt_num
5510 #endif
5511
5512 C
5513        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5514        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5515        cosfac2xx=cosfac2*xx
5516        sinfac2yy=sinfac2*yy
5517        do k = 1,3
5518          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5519      &      vbld_inv(i+1)
5520          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5521      &      vbld_inv(i)
5522          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5523          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5524 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5525 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5526 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5527 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5528          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5529          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5530          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5531          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5532          dZZ_Ci1(k)=0.0d0
5533          dZZ_Ci(k)=0.0d0
5534          do j=1,3
5535            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)
5536      &     *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres)
5537            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)
5538      &     *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres)
5539          enddo
5540           
5541          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5542          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5543          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5544 c
5545          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5546          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5547        enddo
5548
5549        do k=1,3
5550          dXX_Ctab(k,i)=dXX_Ci(k)
5551          dXX_C1tab(k,i)=dXX_Ci1(k)
5552          dYY_Ctab(k,i)=dYY_Ci(k)
5553          dYY_C1tab(k,i)=dYY_Ci1(k)
5554          dZZ_Ctab(k,i)=dZZ_Ci(k)
5555          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5556          dXX_XYZtab(k,i)=dXX_XYZ(k)
5557          dYY_XYZtab(k,i)=dYY_XYZ(k)
5558          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5559        enddo
5560
5561        do k = 1,3
5562 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5563 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5564 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5565 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5566 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5567 c     &    dt_dci(k)
5568 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5569 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5570          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5571      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5572          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5573      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5574          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5575      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5576        enddo
5577 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5578 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5579
5580 C to check gradient call subroutine check_grad
5581
5582     1 continue
5583       enddo
5584       return
5585       end
5586 c------------------------------------------------------------------------------
5587       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5588       implicit none
5589       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5590      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5591       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5592      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5593      &   + x(10)*yy*zz
5594       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5595      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5596      & + x(20)*yy*zz
5597       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5598      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5599      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5600      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5601      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5602      &  +x(40)*xx*yy*zz
5603       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5604      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5605      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5606      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5607      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5608      &  +x(60)*xx*yy*zz
5609       dsc_i   = 0.743d0+x(61)
5610       dp2_i   = 1.9d0+x(62)
5611       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5612      &          *(xx*cost2+yy*sint2))
5613       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5614      &          *(xx*cost2-yy*sint2))
5615       s1=(1+x(63))/(0.1d0 + dscp1)
5616       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5617       s2=(1+x(65))/(0.1d0 + dscp2)
5618       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5619       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5620      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5621       enesc=sumene
5622       return
5623       end
5624 #endif
5625 c------------------------------------------------------------------------------
5626       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5627 C
5628 C This procedure calculates two-body contact function g(rij) and its derivative:
5629 C
5630 C           eps0ij                                     !       x < -1
5631 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5632 C            0                                         !       x > 1
5633 C
5634 C where x=(rij-r0ij)/delta
5635 C
5636 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5637 C
5638       implicit none
5639       double precision rij,r0ij,eps0ij,fcont,fprimcont
5640       double precision x,x2,x4,delta
5641 c     delta=0.02D0*r0ij
5642 c      delta=0.2D0*r0ij
5643       x=(rij-r0ij)/delta
5644       if (x.lt.-1.0D0) then
5645         fcont=eps0ij
5646         fprimcont=0.0D0
5647       else if (x.le.1.0D0) then  
5648         x2=x*x
5649         x4=x2*x2
5650         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5651         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5652       else
5653         fcont=0.0D0
5654         fprimcont=0.0D0
5655       endif
5656       return
5657       end
5658 c------------------------------------------------------------------------------
5659       subroutine splinthet(theti,delta,ss,ssder)
5660       implicit real*8 (a-h,o-z)
5661       include 'DIMENSIONS'
5662       include 'COMMON.VAR'
5663       include 'COMMON.GEO'
5664       thetup=pi-delta
5665       thetlow=delta
5666       if (theti.gt.pipol) then
5667         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5668       else
5669         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5670         ssder=-ssder
5671       endif
5672       return
5673       end
5674 c------------------------------------------------------------------------------
5675       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5676       implicit none
5677       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5678       double precision ksi,ksi2,ksi3,a1,a2,a3
5679       a1=fprim0*delta/(f1-f0)
5680       a2=3.0d0-2.0d0*a1
5681       a3=a1-2.0d0
5682       ksi=(x-x0)/delta
5683       ksi2=ksi*ksi
5684       ksi3=ksi2*ksi  
5685       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5686       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5687       return
5688       end
5689 c------------------------------------------------------------------------------
5690       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5691       implicit none
5692       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5693       double precision ksi,ksi2,ksi3,a1,a2,a3
5694       ksi=(x-x0)/delta  
5695       ksi2=ksi*ksi
5696       ksi3=ksi2*ksi
5697       a1=fprim0x*delta
5698       a2=3*(f1x-f0x)-2*fprim0x*delta
5699       a3=fprim0x*delta-2*(f1x-f0x)
5700       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5701       return
5702       end
5703 C-----------------------------------------------------------------------------
5704 #ifdef CRYST_TOR
5705 C-----------------------------------------------------------------------------
5706       subroutine etor(etors,edihcnstr)
5707       implicit real*8 (a-h,o-z)
5708       include 'DIMENSIONS'
5709       include 'COMMON.VAR'
5710       include 'COMMON.GEO'
5711       include 'COMMON.LOCAL'
5712       include 'COMMON.TORSION'
5713       include 'COMMON.INTERACT'
5714       include 'COMMON.DERIV'
5715       include 'COMMON.CHAIN'
5716       include 'COMMON.NAMES'
5717       include 'COMMON.IOUNITS'
5718       include 'COMMON.FFIELD'
5719       include 'COMMON.TORCNSTR'
5720       include 'COMMON.CONTROL'
5721       logical lprn
5722 C Set lprn=.true. for debugging
5723       lprn=.false.
5724 c      lprn=.true.
5725       etors=0.0D0
5726       do i=iphi_start,iphi_end
5727       etors_ii=0.0D0
5728         itori=itortyp(itype(i-2))
5729         itori1=itortyp(itype(i-1))
5730         phii=phi(i)
5731         gloci=0.0D0
5732 C Proline-Proline pair is a special case...
5733         if (itori.eq.3 .and. itori1.eq.3) then
5734           if (phii.gt.-dwapi3) then
5735             cosphi=dcos(3*phii)
5736             fac=1.0D0/(1.0D0-cosphi)
5737             etorsi=v1(1,3,3)*fac
5738             etorsi=etorsi+etorsi
5739             etors=etors+etorsi-v1(1,3,3)
5740             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5741             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5742           endif
5743           do j=1,3
5744             v1ij=v1(j+1,itori,itori1)
5745             v2ij=v2(j+1,itori,itori1)
5746             cosphi=dcos(j*phii)
5747             sinphi=dsin(j*phii)
5748             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5749             if (energy_dec) etors_ii=etors_ii+
5750      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5751             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5752           enddo
5753         else 
5754           do j=1,nterm_old
5755             v1ij=v1(j,itori,itori1)
5756             v2ij=v2(j,itori,itori1)
5757             cosphi=dcos(j*phii)
5758             sinphi=dsin(j*phii)
5759             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5760             if (energy_dec) etors_ii=etors_ii+
5761      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5762             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5763           enddo
5764         endif
5765         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5766      &        'etor',i,etors_ii
5767         if (lprn)
5768      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5769      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5770      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5771         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5772         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5773       enddo
5774 ! 6/20/98 - dihedral angle constraints
5775       edihcnstr=0.0d0
5776       do i=1,ndih_constr
5777         itori=idih_constr(i)
5778         phii=phi(itori)
5779         difi=phii-phi0(i)
5780         if (difi.gt.drange(i)) then
5781           difi=difi-drange(i)
5782           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5783           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5784         else if (difi.lt.-drange(i)) then
5785           difi=difi+drange(i)
5786           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5787           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5788         endif
5789 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5790 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5791       enddo
5792 !      write (iout,*) 'edihcnstr',edihcnstr
5793       return
5794       end
5795 c------------------------------------------------------------------------------
5796       subroutine etor_d(etors_d)
5797       etors_d=0.0d0
5798       return
5799       end
5800 c----------------------------------------------------------------------------
5801 #else
5802       subroutine etor(etors,edihcnstr)
5803       implicit real*8 (a-h,o-z)
5804       include 'DIMENSIONS'
5805       include 'COMMON.VAR'
5806       include 'COMMON.GEO'
5807       include 'COMMON.LOCAL'
5808       include 'COMMON.TORSION'
5809       include 'COMMON.INTERACT'
5810       include 'COMMON.DERIV'
5811       include 'COMMON.CHAIN'
5812       include 'COMMON.NAMES'
5813       include 'COMMON.IOUNITS'
5814       include 'COMMON.FFIELD'
5815       include 'COMMON.TORCNSTR'
5816       include 'COMMON.CONTROL'
5817       logical lprn
5818 C Set lprn=.true. for debugging
5819       lprn=.false.
5820 c     lprn=.true.
5821       etors=0.0D0
5822       do i=iphi_start,iphi_end
5823       etors_ii=0.0D0
5824 c        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
5825 c     &      .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
5826         itori=itortyp(itype(i-2))
5827         itori1=itortyp(itype(i-1))
5828         phii=phi(i)
5829         gloci=0.0D0
5830 C Regular cosine and sine terms
5831         do j=1,nterm(itori,itori1)
5832           v1ij=v1(j,itori,itori1)
5833           v2ij=v2(j,itori,itori1)
5834           cosphi=dcos(j*phii)
5835           sinphi=dsin(j*phii)
5836           etors=etors+v1ij*cosphi+v2ij*sinphi
5837           if (energy_dec) etors_ii=etors_ii+
5838      &                v1ij*cosphi+v2ij*sinphi
5839           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5840         enddo
5841 C Lorentz terms
5842 C                         v1
5843 C  E = SUM ----------------------------------- - v1
5844 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5845 C
5846         cosphi=dcos(0.5d0*phii)
5847         sinphi=dsin(0.5d0*phii)
5848         do j=1,nlor(itori,itori1)
5849           vl1ij=vlor1(j,itori,itori1)
5850           vl2ij=vlor2(j,itori,itori1)
5851           vl3ij=vlor3(j,itori,itori1)
5852           pom=vl2ij*cosphi+vl3ij*sinphi
5853           pom1=1.0d0/(pom*pom+1.0d0)
5854           etors=etors+vl1ij*pom1
5855           if (energy_dec) etors_ii=etors_ii+
5856      &                vl1ij*pom1
5857           pom=-pom*pom1*pom1
5858           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5859         enddo
5860 C Subtract the constant term
5861         etors=etors-v0(itori,itori1)
5862           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5863      &         'etor',i,etors_ii-v0(itori,itori1)
5864         if (lprn)
5865      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5866      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5867      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5868         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5869 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5870       enddo
5871 ! 6/20/98 - dihedral angle constraints
5872       edihcnstr=0.0d0
5873 c      do i=1,ndih_constr
5874       do i=idihconstr_start,idihconstr_end
5875         itori=idih_constr(i)
5876         phii=phi(itori)
5877         difi=pinorm(phii-phi0(i))
5878         if (difi.gt.drange(i)) then
5879           difi=difi-drange(i)
5880           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5881           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5882         else if (difi.lt.-drange(i)) then
5883           difi=difi+drange(i)
5884           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5885           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5886         else
5887           difi=0.0
5888         endif
5889 c        write (iout,*) "gloci", gloc(i-3,icg)
5890 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5891 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5892 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5893       enddo
5894 cd       write (iout,*) 'edihcnstr',edihcnstr
5895       return
5896       end
5897 c----------------------------------------------------------------------------
5898       subroutine etor_d(etors_d)
5899 C 6/23/01 Compute double torsional energy
5900       implicit real*8 (a-h,o-z)
5901       include 'DIMENSIONS'
5902       include 'COMMON.VAR'
5903       include 'COMMON.GEO'
5904       include 'COMMON.LOCAL'
5905       include 'COMMON.TORSION'
5906       include 'COMMON.INTERACT'
5907       include 'COMMON.DERIV'
5908       include 'COMMON.CHAIN'
5909       include 'COMMON.NAMES'
5910       include 'COMMON.IOUNITS'
5911       include 'COMMON.FFIELD'
5912       include 'COMMON.TORCNSTR'
5913       logical lprn
5914 C Set lprn=.true. for debugging
5915       lprn=.false.
5916 c     lprn=.true.
5917       etors_d=0.0D0
5918       do i=iphid_start,iphid_end
5919 c        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
5920 c     &      .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
5921         itori=itortyp(itype(i-2))
5922         itori1=itortyp(itype(i-1))
5923         itori2=itortyp(itype(i))
5924         phii=phi(i)
5925         phii1=phi(i+1)
5926         gloci1=0.0D0
5927         gloci2=0.0D0
5928         do j=1,ntermd_1(itori,itori1,itori2)
5929           v1cij=v1c(1,j,itori,itori1,itori2)
5930           v1sij=v1s(1,j,itori,itori1,itori2)
5931           v2cij=v1c(2,j,itori,itori1,itori2)
5932           v2sij=v1s(2,j,itori,itori1,itori2)
5933           cosphi1=dcos(j*phii)
5934           sinphi1=dsin(j*phii)
5935           cosphi2=dcos(j*phii1)
5936           sinphi2=dsin(j*phii1)
5937           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5938      &     v2cij*cosphi2+v2sij*sinphi2
5939           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5940           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5941         enddo
5942         do k=2,ntermd_2(itori,itori1,itori2)
5943           do l=1,k-1
5944             v1cdij = v2c(k,l,itori,itori1,itori2)
5945             v2cdij = v2c(l,k,itori,itori1,itori2)
5946             v1sdij = v2s(k,l,itori,itori1,itori2)
5947             v2sdij = v2s(l,k,itori,itori1,itori2)
5948             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5949             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5950             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5951             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5952             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5953      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5954             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5955      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5956             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5957      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5958           enddo
5959         enddo
5960         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5961         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5962 c        write (iout,*) "gloci", gloc(i-3,icg)
5963       enddo
5964       return
5965       end
5966 #endif
5967 c------------------------------------------------------------------------------
5968       subroutine eback_sc_corr(esccor)
5969 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5970 c        conformational states; temporarily implemented as differences
5971 c        between UNRES torsional potentials (dependent on three types of
5972 c        residues) and the torsional potentials dependent on all 20 types
5973 c        of residues computed from AM1  energy surfaces of terminally-blocked
5974 c        amino-acid residues.
5975       implicit real*8 (a-h,o-z)
5976       include 'DIMENSIONS'
5977       include 'COMMON.VAR'
5978       include 'COMMON.GEO'
5979       include 'COMMON.LOCAL'
5980       include 'COMMON.TORSION'
5981       include 'COMMON.SCCOR'
5982       include 'COMMON.INTERACT'
5983       include 'COMMON.DERIV'
5984       include 'COMMON.CHAIN'
5985       include 'COMMON.NAMES'
5986       include 'COMMON.IOUNITS'
5987       include 'COMMON.FFIELD'
5988       include 'COMMON.CONTROL'
5989       logical lprn
5990 C Set lprn=.true. for debugging
5991       lprn=.false.
5992 c      lprn=.true.
5993 c     write (iout,*) "EBACK_SC_COR",itau_start,itau_end
5994       esccor=0.0D0
5995       do i=itau_start,itau_end
5996         esccor_ii=0.0D0
5997         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5998         isccori=isccortyp(itype(i-2))
5999         isccori1=isccortyp(itype(i-1))
6000         phii=phi(i)
6001 cccc  Added 9 May 2012
6002 cc Tauangle is torsional engle depending on the value of first digit 
6003 c(see comment below)
6004 cc Omicron is flat angle depending on the value of first digit 
6005 c(see comment below)
6006
6007         
6008         do intertyp=1,3 !intertyp
6009 cc Added 09 May 2012 (Adasko)
6010 cc  Intertyp means interaction type of backbone mainchain correlation: 
6011 c   1 = SC...Ca...Ca...Ca
6012 c   2 = Ca...Ca...Ca...SC
6013 c   3 = SC...Ca...Ca...SCi
6014         gloci=0.0D0
6015         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
6016      &      (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or.
6017      &      (itype(i-1).eq.ntyp1)))
6018      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
6019      &     .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)
6020      &     .or.(itype(i).eq.ntyp1)))
6021      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
6022      &      (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
6023      &      (itype(i-3).eq.ntyp1)))) cycle
6024         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle
6025         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1))
6026      & cycle
6027         do j=1,nterm_sccor(isccori,isccori1)
6028           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6029           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6030           cosphi=dcos(j*tauangle(intertyp,i))
6031           sinphi=dsin(j*tauangle(intertyp,i))
6032           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6033           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6034         enddo
6035         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6036 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6037 c     &gloc_sc(intertyp,i-3,icg)
6038         if (lprn)
6039      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6040      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,isccori,isccori1,
6041      &  (v1sccor(j,intertyp,isccori,isccori1),j=1,6)
6042      & ,(v2sccor(j,intertyp,isccori,isccori1),j=1,6)
6043         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6044        enddo !intertyp
6045       enddo
6046 c        do i=1,nres
6047 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6048 c        enddo
6049       return
6050       end
6051 c----------------------------------------------------------------------------
6052       subroutine multibody(ecorr)
6053 C This subroutine calculates multi-body contributions to energy following
6054 C the idea of Skolnick et al. If side chains I and J make a contact and
6055 C at the same time side chains I+1 and J+1 make a contact, an extra 
6056 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6057       implicit real*8 (a-h,o-z)
6058       include 'DIMENSIONS'
6059       include 'COMMON.IOUNITS'
6060       include 'COMMON.DERIV'
6061       include 'COMMON.INTERACT'
6062       include 'COMMON.CONTACTS'
6063       double precision gx(3),gx1(3)
6064       logical lprn
6065
6066 C Set lprn=.true. for debugging
6067       lprn=.false.
6068
6069       if (lprn) then
6070         write (iout,'(a)') 'Contact function values:'
6071         do i=nnt,nct-2
6072           write (iout,'(i2,20(1x,i2,f10.5))') 
6073      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6074         enddo
6075       endif
6076       ecorr=0.0D0
6077       do i=nnt,nct
6078         do j=1,3
6079           gradcorr(j,i)=0.0D0
6080           gradxorr(j,i)=0.0D0
6081         enddo
6082       enddo
6083       do i=nnt,nct-2
6084
6085         DO ISHIFT = 3,4
6086
6087         i1=i+ishift
6088         num_conti=num_cont(i)
6089         num_conti1=num_cont(i1)
6090         do jj=1,num_conti
6091           j=jcont(jj,i)
6092           do kk=1,num_conti1
6093             j1=jcont(kk,i1)
6094             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6095 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6096 cd   &                   ' ishift=',ishift
6097 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6098 C The system gains extra energy.
6099               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6100             endif   ! j1==j+-ishift
6101           enddo     ! kk  
6102         enddo       ! jj
6103
6104         ENDDO ! ISHIFT
6105
6106       enddo         ! i
6107       return
6108       end
6109 c------------------------------------------------------------------------------
6110       double precision function esccorr(i,j,k,l,jj,kk)
6111       implicit real*8 (a-h,o-z)
6112       include 'DIMENSIONS'
6113       include 'COMMON.IOUNITS'
6114       include 'COMMON.DERIV'
6115       include 'COMMON.INTERACT'
6116       include 'COMMON.CONTACTS'
6117       double precision gx(3),gx1(3)
6118       logical lprn
6119       lprn=.false.
6120       eij=facont(jj,i)
6121       ekl=facont(kk,k)
6122 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6123 C Calculate the multi-body contribution to energy.
6124 C Calculate multi-body contributions to the gradient.
6125 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6126 cd   & k,l,(gacont(m,kk,k),m=1,3)
6127       do m=1,3
6128         gx(m) =ekl*gacont(m,jj,i)
6129         gx1(m)=eij*gacont(m,kk,k)
6130         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6131         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6132         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6133         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6134       enddo
6135       do m=i,j-1
6136         do ll=1,3
6137           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6138         enddo
6139       enddo
6140       do m=k,l-1
6141         do ll=1,3
6142           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6143         enddo
6144       enddo 
6145       esccorr=-eij*ekl
6146       return
6147       end
6148 c------------------------------------------------------------------------------
6149       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6150 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6151       implicit real*8 (a-h,o-z)
6152       include 'DIMENSIONS'
6153       include 'COMMON.IOUNITS'
6154 #ifdef MPI
6155       include "mpif.h"
6156       parameter (max_cont=maxconts)
6157       parameter (max_dim=26)
6158       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6159       double precision zapas(max_dim,maxconts,max_fg_procs),
6160      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6161       common /przechowalnia/ zapas
6162       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6163      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6164 #endif
6165       include 'COMMON.SETUP'
6166       include 'COMMON.FFIELD'
6167       include 'COMMON.DERIV'
6168       include 'COMMON.INTERACT'
6169       include 'COMMON.CONTACTS'
6170       include 'COMMON.CONTROL'
6171       include 'COMMON.LOCAL'
6172       double precision gx(3),gx1(3),time00
6173       logical lprn,ldone
6174
6175 C Set lprn=.true. for debugging
6176       lprn=.false.
6177 #ifdef MPI
6178       n_corr=0
6179       n_corr1=0
6180       if (nfgtasks.le.1) goto 30
6181       if (lprn) then
6182         write (iout,'(a)') 'Contact function values before RECEIVE:'
6183         do i=nnt,nct-2
6184           write (iout,'(2i3,50(1x,i2,f5.2))') 
6185      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6186      &    j=1,num_cont_hb(i))
6187         enddo
6188       endif
6189       call flush(iout)
6190       do i=1,ntask_cont_from
6191         ncont_recv(i)=0
6192       enddo
6193       do i=1,ntask_cont_to
6194         ncont_sent(i)=0
6195       enddo
6196 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6197 c     & ntask_cont_to
6198 C Make the list of contacts to send to send to other procesors
6199 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6200 c      call flush(iout)
6201       do i=iturn3_start,iturn3_end
6202 c        write (iout,*) "make contact list turn3",i," num_cont",
6203 c     &    num_cont_hb(i)
6204         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6205       enddo
6206       do i=iturn4_start,iturn4_end
6207 c        write (iout,*) "make contact list turn4",i," num_cont",
6208 c     &   num_cont_hb(i)
6209         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6210       enddo
6211       do ii=1,nat_sent
6212         i=iat_sent(ii)
6213 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6214 c     &    num_cont_hb(i)
6215         do j=1,num_cont_hb(i)
6216         do k=1,4
6217           jjc=jcont_hb(j,i)
6218           iproc=iint_sent_local(k,jjc,ii)
6219 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6220           if (iproc.gt.0) then
6221             ncont_sent(iproc)=ncont_sent(iproc)+1
6222             nn=ncont_sent(iproc)
6223             zapas(1,nn,iproc)=i
6224             zapas(2,nn,iproc)=jjc
6225             zapas(3,nn,iproc)=facont_hb(j,i)
6226             zapas(4,nn,iproc)=ees0p(j,i)
6227             zapas(5,nn,iproc)=ees0m(j,i)
6228             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6229             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6230             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6231             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6232             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6233             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6234             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6235             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6236             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6237             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6238             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6239             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6240             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6241             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6242             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6243             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6244             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6245             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6246             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6247             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6248             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6249           endif
6250         enddo
6251         enddo
6252       enddo
6253       if (lprn) then
6254       write (iout,*) 
6255      &  "Numbers of contacts to be sent to other processors",
6256      &  (ncont_sent(i),i=1,ntask_cont_to)
6257       write (iout,*) "Contacts sent"
6258       do ii=1,ntask_cont_to
6259         nn=ncont_sent(ii)
6260         iproc=itask_cont_to(ii)
6261         write (iout,*) nn," contacts to processor",iproc,
6262      &   " of CONT_TO_COMM group"
6263         do i=1,nn
6264           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6265         enddo
6266       enddo
6267       call flush(iout)
6268       endif
6269       CorrelType=477
6270       CorrelID=fg_rank+1
6271       CorrelType1=478
6272       CorrelID1=nfgtasks+fg_rank+1
6273       ireq=0
6274 C Receive the numbers of needed contacts from other processors 
6275       do ii=1,ntask_cont_from
6276         iproc=itask_cont_from(ii)
6277         ireq=ireq+1
6278         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6279      &    FG_COMM,req(ireq),IERR)
6280       enddo
6281 c      write (iout,*) "IRECV ended"
6282 c      call flush(iout)
6283 C Send the number of contacts needed by other processors
6284       do ii=1,ntask_cont_to
6285         iproc=itask_cont_to(ii)
6286         ireq=ireq+1
6287         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6288      &    FG_COMM,req(ireq),IERR)
6289       enddo
6290 c      write (iout,*) "ISEND ended"
6291 c      write (iout,*) "number of requests (nn)",ireq
6292       call flush(iout)
6293       if (ireq.gt.0) 
6294      &  call MPI_Waitall(ireq,req,status_array,ierr)
6295 c      write (iout,*) 
6296 c     &  "Numbers of contacts to be received from other processors",
6297 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6298 c      call flush(iout)
6299 C Receive contacts
6300       ireq=0
6301       do ii=1,ntask_cont_from
6302         iproc=itask_cont_from(ii)
6303         nn=ncont_recv(ii)
6304 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6305 c     &   " of CONT_TO_COMM group"
6306         call flush(iout)
6307         if (nn.gt.0) then
6308           ireq=ireq+1
6309           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6310      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6311 c          write (iout,*) "ireq,req",ireq,req(ireq)
6312         endif
6313       enddo
6314 C Send the contacts to processors that need them
6315       do ii=1,ntask_cont_to
6316         iproc=itask_cont_to(ii)
6317         nn=ncont_sent(ii)
6318 c        write (iout,*) nn," contacts to processor",iproc,
6319 c     &   " of CONT_TO_COMM group"
6320         if (nn.gt.0) then
6321           ireq=ireq+1 
6322           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6323      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6324 c          write (iout,*) "ireq,req",ireq,req(ireq)
6325 c          do i=1,nn
6326 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6327 c          enddo
6328         endif  
6329       enddo
6330 c      write (iout,*) "number of requests (contacts)",ireq
6331 c      write (iout,*) "req",(req(i),i=1,4)
6332 c      call flush(iout)
6333       if (ireq.gt.0) 
6334      & call MPI_Waitall(ireq,req,status_array,ierr)
6335       do iii=1,ntask_cont_from
6336         iproc=itask_cont_from(iii)
6337         nn=ncont_recv(iii)
6338         if (lprn) then
6339         write (iout,*) "Received",nn," contacts from processor",iproc,
6340      &   " of CONT_FROM_COMM group"
6341         call flush(iout)
6342         do i=1,nn
6343           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6344         enddo
6345         call flush(iout)
6346         endif
6347         do i=1,nn
6348           ii=zapas_recv(1,i,iii)
6349 c Flag the received contacts to prevent double-counting
6350           jj=-zapas_recv(2,i,iii)
6351 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6352 c          call flush(iout)
6353           nnn=num_cont_hb(ii)+1
6354           num_cont_hb(ii)=nnn
6355           jcont_hb(nnn,ii)=jj
6356           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6357           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6358           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6359           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6360           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6361           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6362           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6363           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6364           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6365           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6366           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6367           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6368           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6369           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6370           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6371           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6372           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6373           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6374           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6375           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6376           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6377           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6378           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6379           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6380         enddo
6381       enddo
6382       call flush(iout)
6383       if (lprn) then
6384         write (iout,'(a)') 'Contact function values after receive:'
6385         do i=nnt,nct-2
6386           write (iout,'(2i3,50(1x,i3,f5.2))') 
6387      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6388      &    j=1,num_cont_hb(i))
6389         enddo
6390         call flush(iout)
6391       endif
6392    30 continue
6393 #endif
6394       if (lprn) then
6395         write (iout,'(a)') 'Contact function values:'
6396         do i=nnt,nct-2
6397           write (iout,'(2i3,50(1x,i3,f5.2))') 
6398      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6399      &    j=1,num_cont_hb(i))
6400         enddo
6401       endif
6402       ecorr=0.0D0
6403 C Remove the loop below after debugging !!!
6404       do i=nnt,nct
6405         do j=1,3
6406           gradcorr(j,i)=0.0D0
6407           gradxorr(j,i)=0.0D0
6408         enddo
6409       enddo
6410 C Calculate the local-electrostatic correlation terms
6411       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6412         i1=i+1
6413         num_conti=num_cont_hb(i)
6414         num_conti1=num_cont_hb(i+1)
6415         do jj=1,num_conti
6416           j=jcont_hb(jj,i)
6417           jp=iabs(j)
6418           do kk=1,num_conti1
6419             j1=jcont_hb(kk,i1)
6420             jp1=iabs(j1)
6421 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6422 c     &         ' jj=',jj,' kk=',kk
6423             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6424      &          .or. j.lt.0 .and. j1.gt.0) .and.
6425      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6426 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6427 C The system gains extra energy.
6428               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6429               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6430      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6431               n_corr=n_corr+1
6432             else if (j1.eq.j) then
6433 C Contacts I-J and I-(J+1) occur simultaneously. 
6434 C The system loses extra energy.
6435 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6436             endif
6437           enddo ! kk
6438           do kk=1,num_conti
6439             j1=jcont_hb(kk,i)
6440 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6441 c    &         ' jj=',jj,' kk=',kk
6442             if (j1.eq.j+1) then
6443 C Contacts I-J and (I+1)-J occur simultaneously. 
6444 C The system loses extra energy.
6445 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6446             endif ! j1==j+1
6447           enddo ! kk
6448         enddo ! jj
6449       enddo ! i
6450       return
6451       end
6452 c------------------------------------------------------------------------------
6453       subroutine add_hb_contact(ii,jj,itask)
6454       implicit real*8 (a-h,o-z)
6455       include "DIMENSIONS"
6456       include "COMMON.IOUNITS"
6457       integer max_cont
6458       integer max_dim
6459       parameter (max_cont=maxconts)
6460       parameter (max_dim=26)
6461       include "COMMON.CONTACTS"
6462       double precision zapas(max_dim,maxconts,max_fg_procs),
6463      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6464       common /przechowalnia/ zapas
6465       integer i,j,ii,jj,iproc,itask(4),nn
6466 c      write (iout,*) "itask",itask
6467       do i=1,2
6468         iproc=itask(i)
6469         if (iproc.gt.0) then
6470           do j=1,num_cont_hb(ii)
6471             jjc=jcont_hb(j,ii)
6472 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6473             if (jjc.eq.jj) then
6474               ncont_sent(iproc)=ncont_sent(iproc)+1
6475               nn=ncont_sent(iproc)
6476               zapas(1,nn,iproc)=ii
6477               zapas(2,nn,iproc)=jjc
6478               zapas(3,nn,iproc)=facont_hb(j,ii)
6479               zapas(4,nn,iproc)=ees0p(j,ii)
6480               zapas(5,nn,iproc)=ees0m(j,ii)
6481               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6482               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6483               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6484               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6485               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6486               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6487               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6488               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6489               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6490               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6491               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6492               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6493               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6494               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6495               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6496               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6497               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6498               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6499               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6500               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6501               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6502               exit
6503             endif
6504           enddo
6505         endif
6506       enddo
6507       return
6508       end
6509 c------------------------------------------------------------------------------
6510       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6511      &  n_corr1)
6512 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6513       implicit real*8 (a-h,o-z)
6514       include 'DIMENSIONS'
6515       include 'COMMON.IOUNITS'
6516 #ifdef MPI
6517       include "mpif.h"
6518       parameter (max_cont=maxconts)
6519       parameter (max_dim=70)
6520       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6521       double precision zapas(max_dim,maxconts,max_fg_procs),
6522      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6523       common /przechowalnia/ zapas
6524       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6525      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6526 #endif
6527       include 'COMMON.SETUP'
6528       include 'COMMON.FFIELD'
6529       include 'COMMON.DERIV'
6530       include 'COMMON.LOCAL'
6531       include 'COMMON.INTERACT'
6532       include 'COMMON.CONTACTS'
6533       include 'COMMON.CHAIN'
6534       include 'COMMON.CONTROL'
6535       double precision gx(3),gx1(3)
6536       integer num_cont_hb_old(maxres)
6537       logical lprn,ldone
6538       double precision eello4,eello5,eelo6,eello_turn6
6539       external eello4,eello5,eello6,eello_turn6
6540 C Set lprn=.true. for debugging
6541       lprn=.false.
6542       eturn6=0.0d0
6543 #ifdef MPI
6544       do i=1,nres
6545         num_cont_hb_old(i)=num_cont_hb(i)
6546       enddo
6547       n_corr=0
6548       n_corr1=0
6549       if (nfgtasks.le.1) goto 30
6550       if (lprn) then
6551         write (iout,'(a)') 'Contact function values before RECEIVE:'
6552         do i=nnt,nct-2
6553           write (iout,'(2i3,50(1x,i2,f5.2))') 
6554      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6555      &    j=1,num_cont_hb(i))
6556         enddo
6557       endif
6558       call flush(iout)
6559       do i=1,ntask_cont_from
6560         ncont_recv(i)=0
6561       enddo
6562       do i=1,ntask_cont_to
6563         ncont_sent(i)=0
6564       enddo
6565 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6566 c     & ntask_cont_to
6567 C Make the list of contacts to send to send to other procesors
6568       do i=iturn3_start,iturn3_end
6569 c        write (iout,*) "make contact list turn3",i," num_cont",
6570 c     &    num_cont_hb(i)
6571         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6572       enddo
6573       do i=iturn4_start,iturn4_end
6574 c        write (iout,*) "make contact list turn4",i," num_cont",
6575 c     &   num_cont_hb(i)
6576         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6577       enddo
6578       do ii=1,nat_sent
6579         i=iat_sent(ii)
6580 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6581 c     &    num_cont_hb(i)
6582         do j=1,num_cont_hb(i)
6583         do k=1,4
6584           jjc=jcont_hb(j,i)
6585           iproc=iint_sent_local(k,jjc,ii)
6586 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6587           if (iproc.ne.0) then
6588             ncont_sent(iproc)=ncont_sent(iproc)+1
6589             nn=ncont_sent(iproc)
6590             zapas(1,nn,iproc)=i
6591             zapas(2,nn,iproc)=jjc
6592             zapas(3,nn,iproc)=d_cont(j,i)
6593             ind=3
6594             do kk=1,3
6595               ind=ind+1
6596               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6597             enddo
6598             do kk=1,2
6599               do ll=1,2
6600                 ind=ind+1
6601                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6602               enddo
6603             enddo
6604             do jj=1,5
6605               do kk=1,3
6606                 do ll=1,2
6607                   do mm=1,2
6608                     ind=ind+1
6609                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6610                   enddo
6611                 enddo
6612               enddo
6613             enddo
6614           endif
6615         enddo
6616         enddo
6617       enddo
6618       if (lprn) then
6619       write (iout,*) 
6620      &  "Numbers of contacts to be sent to other processors",
6621      &  (ncont_sent(i),i=1,ntask_cont_to)
6622       write (iout,*) "Contacts sent"
6623       do ii=1,ntask_cont_to
6624         nn=ncont_sent(ii)
6625         iproc=itask_cont_to(ii)
6626         write (iout,*) nn," contacts to processor",iproc,
6627      &   " of CONT_TO_COMM group"
6628         do i=1,nn
6629           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6630         enddo
6631       enddo
6632       call flush(iout)
6633       endif
6634       CorrelType=477
6635       CorrelID=fg_rank+1
6636       CorrelType1=478
6637       CorrelID1=nfgtasks+fg_rank+1
6638       ireq=0
6639 C Receive the numbers of needed contacts from other processors 
6640       do ii=1,ntask_cont_from
6641         iproc=itask_cont_from(ii)
6642         ireq=ireq+1
6643         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6644      &    FG_COMM,req(ireq),IERR)
6645       enddo
6646 c      write (iout,*) "IRECV ended"
6647 c      call flush(iout)
6648 C Send the number of contacts needed by other processors
6649       do ii=1,ntask_cont_to
6650         iproc=itask_cont_to(ii)
6651         ireq=ireq+1
6652         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6653      &    FG_COMM,req(ireq),IERR)
6654       enddo
6655 c      write (iout,*) "ISEND ended"
6656 c      write (iout,*) "number of requests (nn)",ireq
6657       call flush(iout)
6658       if (ireq.gt.0) 
6659      &  call MPI_Waitall(ireq,req,status_array,ierr)
6660 c      write (iout,*) 
6661 c     &  "Numbers of contacts to be received from other processors",
6662 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6663 c      call flush(iout)
6664 C Receive contacts
6665       ireq=0
6666       do ii=1,ntask_cont_from
6667         iproc=itask_cont_from(ii)
6668         nn=ncont_recv(ii)
6669 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6670 c     &   " of CONT_TO_COMM group"
6671         call flush(iout)
6672         if (nn.gt.0) then
6673           ireq=ireq+1
6674           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6675      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6676 c          write (iout,*) "ireq,req",ireq,req(ireq)
6677         endif
6678       enddo
6679 C Send the contacts to processors that need them
6680       do ii=1,ntask_cont_to
6681         iproc=itask_cont_to(ii)
6682         nn=ncont_sent(ii)
6683 c        write (iout,*) nn," contacts to processor",iproc,
6684 c     &   " of CONT_TO_COMM group"
6685         if (nn.gt.0) then
6686           ireq=ireq+1 
6687           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6688      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6689 c          write (iout,*) "ireq,req",ireq,req(ireq)
6690 c          do i=1,nn
6691 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6692 c          enddo
6693         endif  
6694       enddo
6695 c      write (iout,*) "number of requests (contacts)",ireq
6696 c      write (iout,*) "req",(req(i),i=1,4)
6697 c      call flush(iout)
6698       if (ireq.gt.0) 
6699      & call MPI_Waitall(ireq,req,status_array,ierr)
6700       do iii=1,ntask_cont_from
6701         iproc=itask_cont_from(iii)
6702         nn=ncont_recv(iii)
6703         if (lprn) then
6704         write (iout,*) "Received",nn," contacts from processor",iproc,
6705      &   " of CONT_FROM_COMM group"
6706         call flush(iout)
6707         do i=1,nn
6708           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6709         enddo
6710         call flush(iout)
6711         endif
6712         do i=1,nn
6713           ii=zapas_recv(1,i,iii)
6714 c Flag the received contacts to prevent double-counting
6715           jj=-zapas_recv(2,i,iii)
6716 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6717 c          call flush(iout)
6718           nnn=num_cont_hb(ii)+1
6719           num_cont_hb(ii)=nnn
6720           jcont_hb(nnn,ii)=jj
6721           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6722           ind=3
6723           do kk=1,3
6724             ind=ind+1
6725             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6726           enddo
6727           do kk=1,2
6728             do ll=1,2
6729               ind=ind+1
6730               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6731             enddo
6732           enddo
6733           do jj=1,5
6734             do kk=1,3
6735               do ll=1,2
6736                 do mm=1,2
6737                   ind=ind+1
6738                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6739                 enddo
6740               enddo
6741             enddo
6742           enddo
6743         enddo
6744       enddo
6745       call flush(iout)
6746       if (lprn) then
6747         write (iout,'(a)') 'Contact function values after receive:'
6748         do i=nnt,nct-2
6749           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6750      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6751      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6752         enddo
6753         call flush(iout)
6754       endif
6755    30 continue
6756 #endif
6757       if (lprn) then
6758         write (iout,'(a)') 'Contact function values:'
6759         do i=nnt,nct-2
6760           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6761      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6762      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6763         enddo
6764       endif
6765       ecorr=0.0D0
6766       ecorr5=0.0d0
6767       ecorr6=0.0d0
6768 C Remove the loop below after debugging !!!
6769       do i=nnt,nct
6770         do j=1,3
6771           gradcorr(j,i)=0.0D0
6772           gradxorr(j,i)=0.0D0
6773         enddo
6774       enddo
6775 C Calculate the dipole-dipole interaction energies
6776       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6777       do i=iatel_s,iatel_e+1
6778         num_conti=num_cont_hb(i)
6779         do jj=1,num_conti
6780           j=jcont_hb(jj,i)
6781 #ifdef MOMENT
6782           call dipole(i,j,jj)
6783 #endif
6784         enddo
6785       enddo
6786       endif
6787 C Calculate the local-electrostatic correlation terms
6788 c                write (iout,*) "gradcorr5 in eello5 before loop"
6789 c                do iii=1,nres
6790 c                  write (iout,'(i5,3f10.5)') 
6791 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6792 c                enddo
6793       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6794 c        write (iout,*) "corr loop i",i
6795         i1=i+1
6796         num_conti=num_cont_hb(i)
6797         num_conti1=num_cont_hb(i+1)
6798         do jj=1,num_conti
6799           j=jcont_hb(jj,i)
6800           jp=iabs(j)
6801           do kk=1,num_conti1
6802             j1=jcont_hb(kk,i1)
6803             jp1=iabs(j1)
6804 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6805 c     &         ' jj=',jj,' kk=',kk
6806 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6807             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6808      &          .or. j.lt.0 .and. j1.gt.0) .and.
6809      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6810 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6811 C The system gains extra energy.
6812               n_corr=n_corr+1
6813               sqd1=dsqrt(d_cont(jj,i))
6814               sqd2=dsqrt(d_cont(kk,i1))
6815               sred_geom = sqd1*sqd2
6816               IF (sred_geom.lt.cutoff_corr) THEN
6817                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6818      &            ekont,fprimcont)
6819 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6820 cd     &         ' jj=',jj,' kk=',kk
6821                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6822                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6823                 do l=1,3
6824                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6825                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6826                 enddo
6827                 n_corr1=n_corr1+1
6828 cd               write (iout,*) 'sred_geom=',sred_geom,
6829 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6830 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6831 cd               write (iout,*) "g_contij",g_contij
6832 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6833 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6834                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6835                 if (wcorr4.gt.0.0d0) 
6836      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6837                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6838      1                 write (iout,'(a6,4i5,0pf7.3)')
6839      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6840 c                write (iout,*) "gradcorr5 before eello5"
6841 c                do iii=1,nres
6842 c                  write (iout,'(i5,3f10.5)') 
6843 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6844 c                enddo
6845                 if (wcorr5.gt.0.0d0)
6846      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6847 c                write (iout,*) "gradcorr5 after eello5"
6848 c                do iii=1,nres
6849 c                  write (iout,'(i5,3f10.5)') 
6850 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6851 c                enddo
6852                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6853      1                 write (iout,'(a6,4i5,0pf7.3)')
6854      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6855 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6856 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6857                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6858      &               .or. wturn6.eq.0.0d0))then
6859 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6860                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6861                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6862      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6863 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6864 cd     &            'ecorr6=',ecorr6
6865 cd                write (iout,'(4e15.5)') sred_geom,
6866 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6867 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6868 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6869                 else if (wturn6.gt.0.0d0
6870      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6871 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6872                   eturn6=eturn6+eello_turn6(i,jj,kk)
6873                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6874      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6875 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6876                 endif
6877               ENDIF
6878 1111          continue
6879             endif
6880           enddo ! kk
6881         enddo ! jj
6882       enddo ! i
6883       do i=1,nres
6884         num_cont_hb(i)=num_cont_hb_old(i)
6885       enddo
6886 c                write (iout,*) "gradcorr5 in eello5"
6887 c                do iii=1,nres
6888 c                  write (iout,'(i5,3f10.5)') 
6889 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6890 c                enddo
6891       return
6892       end
6893 c------------------------------------------------------------------------------
6894       subroutine add_hb_contact_eello(ii,jj,itask)
6895       implicit real*8 (a-h,o-z)
6896       include "DIMENSIONS"
6897       include "COMMON.IOUNITS"
6898       integer max_cont
6899       integer max_dim
6900       parameter (max_cont=maxconts)
6901       parameter (max_dim=70)
6902       include "COMMON.CONTACTS"
6903       double precision zapas(max_dim,maxconts,max_fg_procs),
6904      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6905       common /przechowalnia/ zapas
6906       integer i,j,ii,jj,iproc,itask(4),nn
6907 c      write (iout,*) "itask",itask
6908       do i=1,2
6909         iproc=itask(i)
6910         if (iproc.gt.0) then
6911           do j=1,num_cont_hb(ii)
6912             jjc=jcont_hb(j,ii)
6913 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6914             if (jjc.eq.jj) then
6915               ncont_sent(iproc)=ncont_sent(iproc)+1
6916               nn=ncont_sent(iproc)
6917               zapas(1,nn,iproc)=ii
6918               zapas(2,nn,iproc)=jjc
6919               zapas(3,nn,iproc)=d_cont(j,ii)
6920               ind=3
6921               do kk=1,3
6922                 ind=ind+1
6923                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6924               enddo
6925               do kk=1,2
6926                 do ll=1,2
6927                   ind=ind+1
6928                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6929                 enddo
6930               enddo
6931               do jj=1,5
6932                 do kk=1,3
6933                   do ll=1,2
6934                     do mm=1,2
6935                       ind=ind+1
6936                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6937                     enddo
6938                   enddo
6939                 enddo
6940               enddo
6941               exit
6942             endif
6943           enddo
6944         endif
6945       enddo
6946       return
6947       end
6948 c------------------------------------------------------------------------------
6949       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6950       implicit real*8 (a-h,o-z)
6951       include 'DIMENSIONS'
6952       include 'COMMON.IOUNITS'
6953       include 'COMMON.DERIV'
6954       include 'COMMON.INTERACT'
6955       include 'COMMON.CONTACTS'
6956       double precision gx(3),gx1(3)
6957       logical lprn
6958       lprn=.false.
6959       eij=facont_hb(jj,i)
6960       ekl=facont_hb(kk,k)
6961       ees0pij=ees0p(jj,i)
6962       ees0pkl=ees0p(kk,k)
6963       ees0mij=ees0m(jj,i)
6964       ees0mkl=ees0m(kk,k)
6965       ekont=eij*ekl
6966       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6967 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6968 C Following 4 lines for diagnostics.
6969 cd    ees0pkl=0.0D0
6970 cd    ees0pij=1.0D0
6971 cd    ees0mkl=0.0D0
6972 cd    ees0mij=1.0D0
6973 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6974 c     & 'Contacts ',i,j,
6975 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6976 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6977 c     & 'gradcorr_long'
6978 C Calculate the multi-body contribution to energy.
6979 c      ecorr=ecorr+ekont*ees
6980 C Calculate multi-body contributions to the gradient.
6981       coeffpees0pij=coeffp*ees0pij
6982       coeffmees0mij=coeffm*ees0mij
6983       coeffpees0pkl=coeffp*ees0pkl
6984       coeffmees0mkl=coeffm*ees0mkl
6985       do ll=1,3
6986 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6987         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6988      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6989      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6990         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6991      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6992      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6993 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6994         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6995      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6996      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6997         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6998      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6999      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
7000         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
7001      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
7002      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
7003         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
7004         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
7005         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
7006      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
7007      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
7008         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
7009         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
7010 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
7011       enddo
7012 c      write (iout,*)
7013 cgrad      do m=i+1,j-1
7014 cgrad        do ll=1,3
7015 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7016 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
7017 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
7018 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
7019 cgrad        enddo
7020 cgrad      enddo
7021 cgrad      do m=k+1,l-1
7022 cgrad        do ll=1,3
7023 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7024 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7025 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7026 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7027 cgrad        enddo
7028 cgrad      enddo 
7029 c      write (iout,*) "ehbcorr",ekont*ees
7030       ehbcorr=ekont*ees
7031       return
7032       end
7033 #ifdef MOMENT
7034 C---------------------------------------------------------------------------
7035       subroutine dipole(i,j,jj)
7036       implicit real*8 (a-h,o-z)
7037       include 'DIMENSIONS'
7038       include 'COMMON.IOUNITS'
7039       include 'COMMON.CHAIN'
7040       include 'COMMON.FFIELD'
7041       include 'COMMON.DERIV'
7042       include 'COMMON.INTERACT'
7043       include 'COMMON.CONTACTS'
7044       include 'COMMON.TORSION'
7045       include 'COMMON.VAR'
7046       include 'COMMON.GEO'
7047       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7048      &  auxmat(2,2)
7049       iti1 = itortyp(itype(i+1))
7050       if (j.lt.nres-1) then
7051         itj1 = itortyp(itype(j+1))
7052       else
7053         itj1=ntortyp+1
7054       endif
7055       do iii=1,2
7056         dipi(iii,1)=Ub2(iii,i)
7057         dipderi(iii)=Ub2der(iii,i)
7058         dipi(iii,2)=b1(iii,iti1)
7059         dipj(iii,1)=Ub2(iii,j)
7060         dipderj(iii)=Ub2der(iii,j)
7061         dipj(iii,2)=b1(iii,itj1)
7062       enddo
7063       kkk=0
7064       do iii=1,2
7065         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7066         do jjj=1,2
7067           kkk=kkk+1
7068           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7069         enddo
7070       enddo
7071       do kkk=1,5
7072         do lll=1,3
7073           mmm=0
7074           do iii=1,2
7075             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7076      &        auxvec(1))
7077             do jjj=1,2
7078               mmm=mmm+1
7079               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7080             enddo
7081           enddo
7082         enddo
7083       enddo
7084       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7085       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7086       do iii=1,2
7087         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7088       enddo
7089       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7090       do iii=1,2
7091         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7092       enddo
7093       return
7094       end
7095 #endif
7096 C---------------------------------------------------------------------------
7097       subroutine calc_eello(i,j,k,l,jj,kk)
7098
7099 C This subroutine computes matrices and vectors needed to calculate 
7100 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7101 C
7102       implicit real*8 (a-h,o-z)
7103       include 'DIMENSIONS'
7104       include 'COMMON.IOUNITS'
7105       include 'COMMON.CHAIN'
7106       include 'COMMON.DERIV'
7107       include 'COMMON.INTERACT'
7108       include 'COMMON.CONTACTS'
7109       include 'COMMON.TORSION'
7110       include 'COMMON.VAR'
7111       include 'COMMON.GEO'
7112       include 'COMMON.FFIELD'
7113       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7114      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7115       logical lprn
7116       common /kutas/ lprn
7117 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7118 cd     & ' jj=',jj,' kk=',kk
7119 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7120 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7121 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7122       do iii=1,2
7123         do jjj=1,2
7124           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7125           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7126         enddo
7127       enddo
7128       call transpose2(aa1(1,1),aa1t(1,1))
7129       call transpose2(aa2(1,1),aa2t(1,1))
7130       do kkk=1,5
7131         do lll=1,3
7132           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7133      &      aa1tder(1,1,lll,kkk))
7134           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7135      &      aa2tder(1,1,lll,kkk))
7136         enddo
7137       enddo 
7138       if (l.eq.j+1) then
7139 C parallel orientation of the two CA-CA-CA frames.
7140         if (i.gt.1) then
7141           iti=itortyp(itype(i))
7142         else
7143           iti=ntortyp+1
7144         endif
7145         itk1=itortyp(itype(k+1))
7146         itj=itortyp(itype(j))
7147         if (l.lt.nres-1) then
7148           itl1=itortyp(itype(l+1))
7149         else
7150           itl1=ntortyp+1
7151         endif
7152 C A1 kernel(j+1) A2T
7153 cd        do iii=1,2
7154 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7155 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7156 cd        enddo
7157         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7158      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7159      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7160 C Following matrices are needed only for 6-th order cumulants
7161         IF (wcorr6.gt.0.0d0) THEN
7162         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7163      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7164      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7165         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7166      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7167      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7168      &   ADtEAderx(1,1,1,1,1,1))
7169         lprn=.false.
7170         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7171      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7172      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7173      &   ADtEA1derx(1,1,1,1,1,1))
7174         ENDIF
7175 C End 6-th order cumulants
7176 cd        lprn=.false.
7177 cd        if (lprn) then
7178 cd        write (2,*) 'In calc_eello6'
7179 cd        do iii=1,2
7180 cd          write (2,*) 'iii=',iii
7181 cd          do kkk=1,5
7182 cd            write (2,*) 'kkk=',kkk
7183 cd            do jjj=1,2
7184 cd              write (2,'(3(2f10.5),5x)') 
7185 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7186 cd            enddo
7187 cd          enddo
7188 cd        enddo
7189 cd        endif
7190         call transpose2(EUgder(1,1,k),auxmat(1,1))
7191         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7192         call transpose2(EUg(1,1,k),auxmat(1,1))
7193         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7194         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7195         do iii=1,2
7196           do kkk=1,5
7197             do lll=1,3
7198               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7199      &          EAEAderx(1,1,lll,kkk,iii,1))
7200             enddo
7201           enddo
7202         enddo
7203 C A1T kernel(i+1) A2
7204         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7205      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7206      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7207 C Following matrices are needed only for 6-th order cumulants
7208         IF (wcorr6.gt.0.0d0) THEN
7209         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7210      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7211      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7212         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7213      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7214      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7215      &   ADtEAderx(1,1,1,1,1,2))
7216         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7217      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7218      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7219      &   ADtEA1derx(1,1,1,1,1,2))
7220         ENDIF
7221 C End 6-th order cumulants
7222         call transpose2(EUgder(1,1,l),auxmat(1,1))
7223         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7224         call transpose2(EUg(1,1,l),auxmat(1,1))
7225         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7226         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7227         do iii=1,2
7228           do kkk=1,5
7229             do lll=1,3
7230               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7231      &          EAEAderx(1,1,lll,kkk,iii,2))
7232             enddo
7233           enddo
7234         enddo
7235 C AEAb1 and AEAb2
7236 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7237 C They are needed only when the fifth- or the sixth-order cumulants are
7238 C indluded.
7239         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7240         call transpose2(AEA(1,1,1),auxmat(1,1))
7241         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7242         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7243         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7244         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7245         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7246         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7247         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7248         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7249         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7250         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7251         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7252         call transpose2(AEA(1,1,2),auxmat(1,1))
7253         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7254         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7255         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7256         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7257         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7258         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7259         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7260         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7261         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7262         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7263         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7264 C Calculate the Cartesian derivatives of the vectors.
7265         do iii=1,2
7266           do kkk=1,5
7267             do lll=1,3
7268               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7269               call matvec2(auxmat(1,1),b1(1,iti),
7270      &          AEAb1derx(1,lll,kkk,iii,1,1))
7271               call matvec2(auxmat(1,1),Ub2(1,i),
7272      &          AEAb2derx(1,lll,kkk,iii,1,1))
7273               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7274      &          AEAb1derx(1,lll,kkk,iii,2,1))
7275               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7276      &          AEAb2derx(1,lll,kkk,iii,2,1))
7277               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7278               call matvec2(auxmat(1,1),b1(1,itj),
7279      &          AEAb1derx(1,lll,kkk,iii,1,2))
7280               call matvec2(auxmat(1,1),Ub2(1,j),
7281      &          AEAb2derx(1,lll,kkk,iii,1,2))
7282               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7283      &          AEAb1derx(1,lll,kkk,iii,2,2))
7284               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7285      &          AEAb2derx(1,lll,kkk,iii,2,2))
7286             enddo
7287           enddo
7288         enddo
7289         ENDIF
7290 C End vectors
7291       else
7292 C Antiparallel orientation of the two CA-CA-CA frames.
7293         if (i.gt.1) then
7294           iti=itortyp(itype(i))
7295         else
7296           iti=ntortyp+1
7297         endif
7298         itk1=itortyp(itype(k+1))
7299         itl=itortyp(itype(l))
7300         itj=itortyp(itype(j))
7301         if (j.lt.nres-1) then
7302           itj1=itortyp(itype(j+1))
7303         else 
7304           itj1=ntortyp+1
7305         endif
7306 C A2 kernel(j-1)T A1T
7307         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7308      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7309      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7310 C Following matrices are needed only for 6-th order cumulants
7311         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7312      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7313         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7314      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7315      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7316         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7317      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7318      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7319      &   ADtEAderx(1,1,1,1,1,1))
7320         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7321      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7322      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7323      &   ADtEA1derx(1,1,1,1,1,1))
7324         ENDIF
7325 C End 6-th order cumulants
7326         call transpose2(EUgder(1,1,k),auxmat(1,1))
7327         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7328         call transpose2(EUg(1,1,k),auxmat(1,1))
7329         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7330         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7331         do iii=1,2
7332           do kkk=1,5
7333             do lll=1,3
7334               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7335      &          EAEAderx(1,1,lll,kkk,iii,1))
7336             enddo
7337           enddo
7338         enddo
7339 C A2T kernel(i+1)T A1
7340         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7341      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7342      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7343 C Following matrices are needed only for 6-th order cumulants
7344         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7345      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7346         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7347      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7348      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7349         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7350      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7351      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7352      &   ADtEAderx(1,1,1,1,1,2))
7353         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7354      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7355      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7356      &   ADtEA1derx(1,1,1,1,1,2))
7357         ENDIF
7358 C End 6-th order cumulants
7359         call transpose2(EUgder(1,1,j),auxmat(1,1))
7360         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7361         call transpose2(EUg(1,1,j),auxmat(1,1))
7362         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7363         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7364         do iii=1,2
7365           do kkk=1,5
7366             do lll=1,3
7367               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7368      &          EAEAderx(1,1,lll,kkk,iii,2))
7369             enddo
7370           enddo
7371         enddo
7372 C AEAb1 and AEAb2
7373 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7374 C They are needed only when the fifth- or the sixth-order cumulants are
7375 C indluded.
7376         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7377      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7378         call transpose2(AEA(1,1,1),auxmat(1,1))
7379         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7380         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7381         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7382         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7383         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7384         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7385         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7386         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7387         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7388         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7389         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7390         call transpose2(AEA(1,1,2),auxmat(1,1))
7391         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7392         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7393         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7394         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7395         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7396         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7397         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7398         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7399         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7400         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7401         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7402 C Calculate the Cartesian derivatives of the vectors.
7403         do iii=1,2
7404           do kkk=1,5
7405             do lll=1,3
7406               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7407               call matvec2(auxmat(1,1),b1(1,iti),
7408      &          AEAb1derx(1,lll,kkk,iii,1,1))
7409               call matvec2(auxmat(1,1),Ub2(1,i),
7410      &          AEAb2derx(1,lll,kkk,iii,1,1))
7411               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7412      &          AEAb1derx(1,lll,kkk,iii,2,1))
7413               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7414      &          AEAb2derx(1,lll,kkk,iii,2,1))
7415               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7416               call matvec2(auxmat(1,1),b1(1,itl),
7417      &          AEAb1derx(1,lll,kkk,iii,1,2))
7418               call matvec2(auxmat(1,1),Ub2(1,l),
7419      &          AEAb2derx(1,lll,kkk,iii,1,2))
7420               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7421      &          AEAb1derx(1,lll,kkk,iii,2,2))
7422               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7423      &          AEAb2derx(1,lll,kkk,iii,2,2))
7424             enddo
7425           enddo
7426         enddo
7427         ENDIF
7428 C End vectors
7429       endif
7430       return
7431       end
7432 C---------------------------------------------------------------------------
7433       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7434      &  KK,KKderg,AKA,AKAderg,AKAderx)
7435       implicit none
7436       integer nderg
7437       logical transp
7438       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7439      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7440      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7441       integer iii,kkk,lll
7442       integer jjj,mmm
7443       logical lprn
7444       common /kutas/ lprn
7445       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7446       do iii=1,nderg 
7447         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7448      &    AKAderg(1,1,iii))
7449       enddo
7450 cd      if (lprn) write (2,*) 'In kernel'
7451       do kkk=1,5
7452 cd        if (lprn) write (2,*) 'kkk=',kkk
7453         do lll=1,3
7454           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7455      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7456 cd          if (lprn) then
7457 cd            write (2,*) 'lll=',lll
7458 cd            write (2,*) 'iii=1'
7459 cd            do jjj=1,2
7460 cd              write (2,'(3(2f10.5),5x)') 
7461 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7462 cd            enddo
7463 cd          endif
7464           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7465      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7466 cd          if (lprn) then
7467 cd            write (2,*) 'lll=',lll
7468 cd            write (2,*) 'iii=2'
7469 cd            do jjj=1,2
7470 cd              write (2,'(3(2f10.5),5x)') 
7471 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7472 cd            enddo
7473 cd          endif
7474         enddo
7475       enddo
7476       return
7477       end
7478 C---------------------------------------------------------------------------
7479       double precision function eello4(i,j,k,l,jj,kk)
7480       implicit real*8 (a-h,o-z)
7481       include 'DIMENSIONS'
7482       include 'COMMON.IOUNITS'
7483       include 'COMMON.CHAIN'
7484       include 'COMMON.DERIV'
7485       include 'COMMON.INTERACT'
7486       include 'COMMON.CONTACTS'
7487       include 'COMMON.TORSION'
7488       include 'COMMON.VAR'
7489       include 'COMMON.GEO'
7490       double precision pizda(2,2),ggg1(3),ggg2(3)
7491 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7492 cd        eello4=0.0d0
7493 cd        return
7494 cd      endif
7495 cd      print *,'eello4:',i,j,k,l,jj,kk
7496 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7497 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7498 cold      eij=facont_hb(jj,i)
7499 cold      ekl=facont_hb(kk,k)
7500 cold      ekont=eij*ekl
7501       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7502 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7503       gcorr_loc(k-1)=gcorr_loc(k-1)
7504      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7505       if (l.eq.j+1) then
7506         gcorr_loc(l-1)=gcorr_loc(l-1)
7507      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7508       else
7509         gcorr_loc(j-1)=gcorr_loc(j-1)
7510      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7511       endif
7512       do iii=1,2
7513         do kkk=1,5
7514           do lll=1,3
7515             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7516      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7517 cd            derx(lll,kkk,iii)=0.0d0
7518           enddo
7519         enddo
7520       enddo
7521 cd      gcorr_loc(l-1)=0.0d0
7522 cd      gcorr_loc(j-1)=0.0d0
7523 cd      gcorr_loc(k-1)=0.0d0
7524 cd      eel4=1.0d0
7525 cd      write (iout,*)'Contacts have occurred for peptide groups',
7526 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7527 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7528       if (j.lt.nres-1) then
7529         j1=j+1
7530         j2=j-1
7531       else
7532         j1=j-1
7533         j2=j-2
7534       endif
7535       if (l.lt.nres-1) then
7536         l1=l+1
7537         l2=l-1
7538       else
7539         l1=l-1
7540         l2=l-2
7541       endif
7542       do ll=1,3
7543 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7544 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7545         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7546         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7547 cgrad        ghalf=0.5d0*ggg1(ll)
7548         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7549         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7550         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7551         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7552         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7553         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7554 cgrad        ghalf=0.5d0*ggg2(ll)
7555         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7556         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7557         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7558         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7559         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7560         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7561       enddo
7562 cgrad      do m=i+1,j-1
7563 cgrad        do ll=1,3
7564 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7565 cgrad        enddo
7566 cgrad      enddo
7567 cgrad      do m=k+1,l-1
7568 cgrad        do ll=1,3
7569 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7570 cgrad        enddo
7571 cgrad      enddo
7572 cgrad      do m=i+2,j2
7573 cgrad        do ll=1,3
7574 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7575 cgrad        enddo
7576 cgrad      enddo
7577 cgrad      do m=k+2,l2
7578 cgrad        do ll=1,3
7579 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7580 cgrad        enddo
7581 cgrad      enddo 
7582 cd      do iii=1,nres-3
7583 cd        write (2,*) iii,gcorr_loc(iii)
7584 cd      enddo
7585       eello4=ekont*eel4
7586 cd      write (2,*) 'ekont',ekont
7587 cd      write (iout,*) 'eello4',ekont*eel4
7588       return
7589       end
7590 C---------------------------------------------------------------------------
7591       double precision function eello5(i,j,k,l,jj,kk)
7592       implicit real*8 (a-h,o-z)
7593       include 'DIMENSIONS'
7594       include 'COMMON.IOUNITS'
7595       include 'COMMON.CHAIN'
7596       include 'COMMON.DERIV'
7597       include 'COMMON.INTERACT'
7598       include 'COMMON.CONTACTS'
7599       include 'COMMON.TORSION'
7600       include 'COMMON.VAR'
7601       include 'COMMON.GEO'
7602       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7603       double precision ggg1(3),ggg2(3)
7604 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7605 C                                                                              C
7606 C                            Parallel chains                                   C
7607 C                                                                              C
7608 C          o             o                   o             o                   C
7609 C         /l\           / \             \   / \           / \   /              C
7610 C        /   \         /   \             \ /   \         /   \ /               C
7611 C       j| o |l1       | o |              o| o |         | o |o                C
7612 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7613 C      \i/   \         /   \ /             /   \         /   \                 C
7614 C       o    k1             o                                                  C
7615 C         (I)          (II)                (III)          (IV)                 C
7616 C                                                                              C
7617 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7618 C                                                                              C
7619 C                            Antiparallel chains                               C
7620 C                                                                              C
7621 C          o             o                   o             o                   C
7622 C         /j\           / \             \   / \           / \   /              C
7623 C        /   \         /   \             \ /   \         /   \ /               C
7624 C      j1| o |l        | o |              o| o |         | o |o                C
7625 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7626 C      \i/   \         /   \ /             /   \         /   \                 C
7627 C       o     k1            o                                                  C
7628 C         (I)          (II)                (III)          (IV)                 C
7629 C                                                                              C
7630 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7631 C                                                                              C
7632 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7633 C                                                                              C
7634 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7635 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7636 cd        eello5=0.0d0
7637 cd        return
7638 cd      endif
7639 cd      write (iout,*)
7640 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7641 cd     &   ' and',k,l
7642       itk=itortyp(itype(k))
7643       itl=itortyp(itype(l))
7644       itj=itortyp(itype(j))
7645       eello5_1=0.0d0
7646       eello5_2=0.0d0
7647       eello5_3=0.0d0
7648       eello5_4=0.0d0
7649 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7650 cd     &   eel5_3_num,eel5_4_num)
7651       do iii=1,2
7652         do kkk=1,5
7653           do lll=1,3
7654             derx(lll,kkk,iii)=0.0d0
7655           enddo
7656         enddo
7657       enddo
7658 cd      eij=facont_hb(jj,i)
7659 cd      ekl=facont_hb(kk,k)
7660 cd      ekont=eij*ekl
7661 cd      write (iout,*)'Contacts have occurred for peptide groups',
7662 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7663 cd      goto 1111
7664 C Contribution from the graph I.
7665 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7666 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7667       call transpose2(EUg(1,1,k),auxmat(1,1))
7668       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7669       vv(1)=pizda(1,1)-pizda(2,2)
7670       vv(2)=pizda(1,2)+pizda(2,1)
7671       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7672      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7673 C Explicit gradient in virtual-dihedral angles.
7674       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7675      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7676      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7677       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7678       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7679       vv(1)=pizda(1,1)-pizda(2,2)
7680       vv(2)=pizda(1,2)+pizda(2,1)
7681       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7682      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7683      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7684       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7685       vv(1)=pizda(1,1)-pizda(2,2)
7686       vv(2)=pizda(1,2)+pizda(2,1)
7687       if (l.eq.j+1) then
7688         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7689      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7690      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7691       else
7692         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7693      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7694      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7695       endif 
7696 C Cartesian gradient
7697       do iii=1,2
7698         do kkk=1,5
7699           do lll=1,3
7700             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7701      &        pizda(1,1))
7702             vv(1)=pizda(1,1)-pizda(2,2)
7703             vv(2)=pizda(1,2)+pizda(2,1)
7704             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7705      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7706      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7707           enddo
7708         enddo
7709       enddo
7710 c      goto 1112
7711 c1111  continue
7712 C Contribution from graph II 
7713       call transpose2(EE(1,1,itk),auxmat(1,1))
7714       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7715       vv(1)=pizda(1,1)+pizda(2,2)
7716       vv(2)=pizda(2,1)-pizda(1,2)
7717       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7718      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7719 C Explicit gradient in virtual-dihedral angles.
7720       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7721      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7722       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7723       vv(1)=pizda(1,1)+pizda(2,2)
7724       vv(2)=pizda(2,1)-pizda(1,2)
7725       if (l.eq.j+1) then
7726         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7727      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7728      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7729       else
7730         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7731      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7732      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7733       endif
7734 C Cartesian gradient
7735       do iii=1,2
7736         do kkk=1,5
7737           do lll=1,3
7738             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7739      &        pizda(1,1))
7740             vv(1)=pizda(1,1)+pizda(2,2)
7741             vv(2)=pizda(2,1)-pizda(1,2)
7742             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7743      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7744      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7745           enddo
7746         enddo
7747       enddo
7748 cd      goto 1112
7749 cd1111  continue
7750       if (l.eq.j+1) then
7751 cd        goto 1110
7752 C Parallel orientation
7753 C Contribution from graph III
7754         call transpose2(EUg(1,1,l),auxmat(1,1))
7755         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7756         vv(1)=pizda(1,1)-pizda(2,2)
7757         vv(2)=pizda(1,2)+pizda(2,1)
7758         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7759      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7760 C Explicit gradient in virtual-dihedral angles.
7761         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7762      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7763      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7764         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7765         vv(1)=pizda(1,1)-pizda(2,2)
7766         vv(2)=pizda(1,2)+pizda(2,1)
7767         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7768      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7769      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7770         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7771         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7772         vv(1)=pizda(1,1)-pizda(2,2)
7773         vv(2)=pizda(1,2)+pizda(2,1)
7774         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7775      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7776      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7777 C Cartesian gradient
7778         do iii=1,2
7779           do kkk=1,5
7780             do lll=1,3
7781               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7782      &          pizda(1,1))
7783               vv(1)=pizda(1,1)-pizda(2,2)
7784               vv(2)=pizda(1,2)+pizda(2,1)
7785               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7786      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7787      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7788             enddo
7789           enddo
7790         enddo
7791 cd        goto 1112
7792 C Contribution from graph IV
7793 cd1110    continue
7794         call transpose2(EE(1,1,itl),auxmat(1,1))
7795         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7796         vv(1)=pizda(1,1)+pizda(2,2)
7797         vv(2)=pizda(2,1)-pizda(1,2)
7798         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7799      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7800 C Explicit gradient in virtual-dihedral angles.
7801         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7802      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7803         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7804         vv(1)=pizda(1,1)+pizda(2,2)
7805         vv(2)=pizda(2,1)-pizda(1,2)
7806         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7807      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7808      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7809 C Cartesian gradient
7810         do iii=1,2
7811           do kkk=1,5
7812             do lll=1,3
7813               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7814      &          pizda(1,1))
7815               vv(1)=pizda(1,1)+pizda(2,2)
7816               vv(2)=pizda(2,1)-pizda(1,2)
7817               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7818      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7819      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7820             enddo
7821           enddo
7822         enddo
7823       else
7824 C Antiparallel orientation
7825 C Contribution from graph III
7826 c        goto 1110
7827         call transpose2(EUg(1,1,j),auxmat(1,1))
7828         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7829         vv(1)=pizda(1,1)-pizda(2,2)
7830         vv(2)=pizda(1,2)+pizda(2,1)
7831         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7832      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7833 C Explicit gradient in virtual-dihedral angles.
7834         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7835      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7836      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7837         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7838         vv(1)=pizda(1,1)-pizda(2,2)
7839         vv(2)=pizda(1,2)+pizda(2,1)
7840         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7841      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7842      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7843         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7844         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7845         vv(1)=pizda(1,1)-pizda(2,2)
7846         vv(2)=pizda(1,2)+pizda(2,1)
7847         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7848      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7849      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7850 C Cartesian gradient
7851         do iii=1,2
7852           do kkk=1,5
7853             do lll=1,3
7854               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7855      &          pizda(1,1))
7856               vv(1)=pizda(1,1)-pizda(2,2)
7857               vv(2)=pizda(1,2)+pizda(2,1)
7858               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7859      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7860      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7861             enddo
7862           enddo
7863         enddo
7864 cd        goto 1112
7865 C Contribution from graph IV
7866 1110    continue
7867         call transpose2(EE(1,1,itj),auxmat(1,1))
7868         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7869         vv(1)=pizda(1,1)+pizda(2,2)
7870         vv(2)=pizda(2,1)-pizda(1,2)
7871         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7872      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7873 C Explicit gradient in virtual-dihedral angles.
7874         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7875      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7876         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7877         vv(1)=pizda(1,1)+pizda(2,2)
7878         vv(2)=pizda(2,1)-pizda(1,2)
7879         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7880      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7881      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7882 C Cartesian gradient
7883         do iii=1,2
7884           do kkk=1,5
7885             do lll=1,3
7886               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7887      &          pizda(1,1))
7888               vv(1)=pizda(1,1)+pizda(2,2)
7889               vv(2)=pizda(2,1)-pizda(1,2)
7890               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7891      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7892      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7893             enddo
7894           enddo
7895         enddo
7896       endif
7897 1112  continue
7898       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7899 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7900 cd        write (2,*) 'ijkl',i,j,k,l
7901 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7902 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7903 cd      endif
7904 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7905 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7906 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7907 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7908       if (j.lt.nres-1) then
7909         j1=j+1
7910         j2=j-1
7911       else
7912         j1=j-1
7913         j2=j-2
7914       endif
7915       if (l.lt.nres-1) then
7916         l1=l+1
7917         l2=l-1
7918       else
7919         l1=l-1
7920         l2=l-2
7921       endif
7922 cd      eij=1.0d0
7923 cd      ekl=1.0d0
7924 cd      ekont=1.0d0
7925 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7926 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7927 C        summed up outside the subrouine as for the other subroutines 
7928 C        handling long-range interactions. The old code is commented out
7929 C        with "cgrad" to keep track of changes.
7930       do ll=1,3
7931 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7932 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7933         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7934         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7935 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7936 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7937 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7938 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7939 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7940 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7941 c     &   gradcorr5ij,
7942 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7943 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7944 cgrad        ghalf=0.5d0*ggg1(ll)
7945 cd        ghalf=0.0d0
7946         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7947         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7948         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7949         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7950         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7951         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7952 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7953 cgrad        ghalf=0.5d0*ggg2(ll)
7954 cd        ghalf=0.0d0
7955         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7956         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7957         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7958         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7959         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7960         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7961       enddo
7962 cd      goto 1112
7963 cgrad      do m=i+1,j-1
7964 cgrad        do ll=1,3
7965 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7966 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7967 cgrad        enddo
7968 cgrad      enddo
7969 cgrad      do m=k+1,l-1
7970 cgrad        do ll=1,3
7971 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7972 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7973 cgrad        enddo
7974 cgrad      enddo
7975 c1112  continue
7976 cgrad      do m=i+2,j2
7977 cgrad        do ll=1,3
7978 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7979 cgrad        enddo
7980 cgrad      enddo
7981 cgrad      do m=k+2,l2
7982 cgrad        do ll=1,3
7983 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7984 cgrad        enddo
7985 cgrad      enddo 
7986 cd      do iii=1,nres-3
7987 cd        write (2,*) iii,g_corr5_loc(iii)
7988 cd      enddo
7989       eello5=ekont*eel5
7990 cd      write (2,*) 'ekont',ekont
7991 cd      write (iout,*) 'eello5',ekont*eel5
7992       return
7993       end
7994 c--------------------------------------------------------------------------
7995       double precision function eello6(i,j,k,l,jj,kk)
7996       implicit real*8 (a-h,o-z)
7997       include 'DIMENSIONS'
7998       include 'COMMON.IOUNITS'
7999       include 'COMMON.CHAIN'
8000       include 'COMMON.DERIV'
8001       include 'COMMON.INTERACT'
8002       include 'COMMON.CONTACTS'
8003       include 'COMMON.TORSION'
8004       include 'COMMON.VAR'
8005       include 'COMMON.GEO'
8006       include 'COMMON.FFIELD'
8007       double precision ggg1(3),ggg2(3)
8008 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8009 cd        eello6=0.0d0
8010 cd        return
8011 cd      endif
8012 cd      write (iout,*)
8013 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8014 cd     &   ' and',k,l
8015       eello6_1=0.0d0
8016       eello6_2=0.0d0
8017       eello6_3=0.0d0
8018       eello6_4=0.0d0
8019       eello6_5=0.0d0
8020       eello6_6=0.0d0
8021 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8022 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8023       do iii=1,2
8024         do kkk=1,5
8025           do lll=1,3
8026             derx(lll,kkk,iii)=0.0d0
8027           enddo
8028         enddo
8029       enddo
8030 cd      eij=facont_hb(jj,i)
8031 cd      ekl=facont_hb(kk,k)
8032 cd      ekont=eij*ekl
8033 cd      eij=1.0d0
8034 cd      ekl=1.0d0
8035 cd      ekont=1.0d0
8036       if (l.eq.j+1) then
8037         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8038         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8039         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8040         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8041         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8042         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8043       else
8044         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8045         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8046         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8047         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8048         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8049           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8050         else
8051           eello6_5=0.0d0
8052         endif
8053         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8054       endif
8055 C If turn contributions are considered, they will be handled separately.
8056       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8057 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8058 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8059 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8060 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8061 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8062 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8063 cd      goto 1112
8064       if (j.lt.nres-1) then
8065         j1=j+1
8066         j2=j-1
8067       else
8068         j1=j-1
8069         j2=j-2
8070       endif
8071       if (l.lt.nres-1) then
8072         l1=l+1
8073         l2=l-1
8074       else
8075         l1=l-1
8076         l2=l-2
8077       endif
8078       do ll=1,3
8079 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8080 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8081 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8082 cgrad        ghalf=0.5d0*ggg1(ll)
8083 cd        ghalf=0.0d0
8084         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8085         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8086         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8087         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8088         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8089         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8090         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8091         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8092 cgrad        ghalf=0.5d0*ggg2(ll)
8093 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8094 cd        ghalf=0.0d0
8095         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8096         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8097         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8098         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8099         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8100         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8101       enddo
8102 cd      goto 1112
8103 cgrad      do m=i+1,j-1
8104 cgrad        do ll=1,3
8105 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8106 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8107 cgrad        enddo
8108 cgrad      enddo
8109 cgrad      do m=k+1,l-1
8110 cgrad        do ll=1,3
8111 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8112 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8113 cgrad        enddo
8114 cgrad      enddo
8115 cgrad1112  continue
8116 cgrad      do m=i+2,j2
8117 cgrad        do ll=1,3
8118 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8119 cgrad        enddo
8120 cgrad      enddo
8121 cgrad      do m=k+2,l2
8122 cgrad        do ll=1,3
8123 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8124 cgrad        enddo
8125 cgrad      enddo 
8126 cd      do iii=1,nres-3
8127 cd        write (2,*) iii,g_corr6_loc(iii)
8128 cd      enddo
8129       eello6=ekont*eel6
8130 cd      write (2,*) 'ekont',ekont
8131 cd      write (iout,*) 'eello6',ekont*eel6
8132       return
8133       end
8134 c--------------------------------------------------------------------------
8135       double precision function eello6_graph1(i,j,k,l,imat,swap)
8136       implicit real*8 (a-h,o-z)
8137       include 'DIMENSIONS'
8138       include 'COMMON.IOUNITS'
8139       include 'COMMON.CHAIN'
8140       include 'COMMON.DERIV'
8141       include 'COMMON.INTERACT'
8142       include 'COMMON.CONTACTS'
8143       include 'COMMON.TORSION'
8144       include 'COMMON.VAR'
8145       include 'COMMON.GEO'
8146       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8147       logical swap
8148       logical lprn
8149       common /kutas/ lprn
8150 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8151 C                                              
8152 C      Parallel       Antiparallel
8153 C                                             
8154 C          o             o         
8155 C         /l\           /j\
8156 C        /   \         /   \
8157 C       /| o |         | o |\
8158 C     \ j|/k\|  /   \  |/k\|l /   
8159 C      \ /   \ /     \ /   \ /    
8160 C       o     o       o     o                
8161 C       i             i                     
8162 C
8163 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8164       itk=itortyp(itype(k))
8165       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8166       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8167       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8168       call transpose2(EUgC(1,1,k),auxmat(1,1))
8169       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8170       vv1(1)=pizda1(1,1)-pizda1(2,2)
8171       vv1(2)=pizda1(1,2)+pizda1(2,1)
8172       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8173       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8174       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8175       s5=scalar2(vv(1),Dtobr2(1,i))
8176 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8177       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8178       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8179      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8180      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8181      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8182      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8183      & +scalar2(vv(1),Dtobr2der(1,i)))
8184       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8185       vv1(1)=pizda1(1,1)-pizda1(2,2)
8186       vv1(2)=pizda1(1,2)+pizda1(2,1)
8187       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8188       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8189       if (l.eq.j+1) then
8190         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8191      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8192      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8193      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8194      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8195       else
8196         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8197      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8198      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8199      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8200      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8201       endif
8202       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8203       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8204       vv1(1)=pizda1(1,1)-pizda1(2,2)
8205       vv1(2)=pizda1(1,2)+pizda1(2,1)
8206       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8207      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8208      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8209      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8210       do iii=1,2
8211         if (swap) then
8212           ind=3-iii
8213         else
8214           ind=iii
8215         endif
8216         do kkk=1,5
8217           do lll=1,3
8218             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8219             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8220             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8221             call transpose2(EUgC(1,1,k),auxmat(1,1))
8222             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8223      &        pizda1(1,1))
8224             vv1(1)=pizda1(1,1)-pizda1(2,2)
8225             vv1(2)=pizda1(1,2)+pizda1(2,1)
8226             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8227             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8228      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8229             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8230      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8231             s5=scalar2(vv(1),Dtobr2(1,i))
8232             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8233           enddo
8234         enddo
8235       enddo
8236       return
8237       end
8238 c----------------------------------------------------------------------------
8239       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8240       implicit real*8 (a-h,o-z)
8241       include 'DIMENSIONS'
8242       include 'COMMON.IOUNITS'
8243       include 'COMMON.CHAIN'
8244       include 'COMMON.DERIV'
8245       include 'COMMON.INTERACT'
8246       include 'COMMON.CONTACTS'
8247       include 'COMMON.TORSION'
8248       include 'COMMON.VAR'
8249       include 'COMMON.GEO'
8250       logical swap
8251       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8252      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8253       logical lprn
8254       common /kutas/ lprn
8255 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8256 C                                                                              C
8257 C      Parallel       Antiparallel                                             C
8258 C                                                                              C
8259 C          o             o                                                     C
8260 C     \   /l\           /j\   /                                                C
8261 C      \ /   \         /   \ /                                                 C
8262 C       o| o |         | o |o                                                  C                
8263 C     \ j|/k\|      \  |/k\|l                                                  C
8264 C      \ /   \       \ /   \                                                   C
8265 C       o             o                                                        C
8266 C       i             i                                                        C 
8267 C                                                                              C           
8268 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8269 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8270 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8271 C           but not in a cluster cumulant
8272 #ifdef MOMENT
8273       s1=dip(1,jj,i)*dip(1,kk,k)
8274 #endif
8275       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8276       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8277       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8278       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8279       call transpose2(EUg(1,1,k),auxmat(1,1))
8280       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8281       vv(1)=pizda(1,1)-pizda(2,2)
8282       vv(2)=pizda(1,2)+pizda(2,1)
8283       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8284 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8285 #ifdef MOMENT
8286       eello6_graph2=-(s1+s2+s3+s4)
8287 #else
8288       eello6_graph2=-(s2+s3+s4)
8289 #endif
8290 c      eello6_graph2=-s3
8291 C Derivatives in gamma(i-1)
8292       if (i.gt.1) then
8293 #ifdef MOMENT
8294         s1=dipderg(1,jj,i)*dip(1,kk,k)
8295 #endif
8296         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8297         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8298         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8299         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8300 #ifdef MOMENT
8301         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8302 #else
8303         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8304 #endif
8305 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8306       endif
8307 C Derivatives in gamma(k-1)
8308 #ifdef MOMENT
8309       s1=dip(1,jj,i)*dipderg(1,kk,k)
8310 #endif
8311       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8312       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8313       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8314       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8315       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8316       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8317       vv(1)=pizda(1,1)-pizda(2,2)
8318       vv(2)=pizda(1,2)+pizda(2,1)
8319       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8320 #ifdef MOMENT
8321       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8322 #else
8323       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8324 #endif
8325 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8326 C Derivatives in gamma(j-1) or gamma(l-1)
8327       if (j.gt.1) then
8328 #ifdef MOMENT
8329         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8330 #endif
8331         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8332         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8333         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8334         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8335         vv(1)=pizda(1,1)-pizda(2,2)
8336         vv(2)=pizda(1,2)+pizda(2,1)
8337         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8338 #ifdef MOMENT
8339         if (swap) then
8340           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8341         else
8342           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8343         endif
8344 #endif
8345         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8346 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8347       endif
8348 C Derivatives in gamma(l-1) or gamma(j-1)
8349       if (l.gt.1) then 
8350 #ifdef MOMENT
8351         s1=dip(1,jj,i)*dipderg(3,kk,k)
8352 #endif
8353         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8354         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8355         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8356         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8357         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8358         vv(1)=pizda(1,1)-pizda(2,2)
8359         vv(2)=pizda(1,2)+pizda(2,1)
8360         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8361 #ifdef MOMENT
8362         if (swap) then
8363           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8364         else
8365           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8366         endif
8367 #endif
8368         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8369 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8370       endif
8371 C Cartesian derivatives.
8372       if (lprn) then
8373         write (2,*) 'In eello6_graph2'
8374         do iii=1,2
8375           write (2,*) 'iii=',iii
8376           do kkk=1,5
8377             write (2,*) 'kkk=',kkk
8378             do jjj=1,2
8379               write (2,'(3(2f10.5),5x)') 
8380      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8381             enddo
8382           enddo
8383         enddo
8384       endif
8385       do iii=1,2
8386         do kkk=1,5
8387           do lll=1,3
8388 #ifdef MOMENT
8389             if (iii.eq.1) then
8390               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8391             else
8392               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8393             endif
8394 #endif
8395             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8396      &        auxvec(1))
8397             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8398             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8399      &        auxvec(1))
8400             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8401             call transpose2(EUg(1,1,k),auxmat(1,1))
8402             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8403      &        pizda(1,1))
8404             vv(1)=pizda(1,1)-pizda(2,2)
8405             vv(2)=pizda(1,2)+pizda(2,1)
8406             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8407 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8408 #ifdef MOMENT
8409             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8410 #else
8411             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8412 #endif
8413             if (swap) then
8414               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8415             else
8416               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8417             endif
8418           enddo
8419         enddo
8420       enddo
8421       return
8422       end
8423 c----------------------------------------------------------------------------
8424       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8425       implicit real*8 (a-h,o-z)
8426       include 'DIMENSIONS'
8427       include 'COMMON.IOUNITS'
8428       include 'COMMON.CHAIN'
8429       include 'COMMON.DERIV'
8430       include 'COMMON.INTERACT'
8431       include 'COMMON.CONTACTS'
8432       include 'COMMON.TORSION'
8433       include 'COMMON.VAR'
8434       include 'COMMON.GEO'
8435       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8436       logical swap
8437 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8438 C                                                                              C 
8439 C      Parallel       Antiparallel                                             C
8440 C                                                                              C
8441 C          o             o                                                     C 
8442 C         /l\   /   \   /j\                                                    C 
8443 C        /   \ /     \ /   \                                                   C
8444 C       /| o |o       o| o |\                                                  C
8445 C       j|/k\|  /      |/k\|l /                                                C
8446 C        /   \ /       /   \ /                                                 C
8447 C       /     o       /     o                                                  C
8448 C       i             i                                                        C
8449 C                                                                              C
8450 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8451 C
8452 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8453 C           energy moment and not to the cluster cumulant.
8454       iti=itortyp(itype(i))
8455       if (j.lt.nres-1) then
8456         itj1=itortyp(itype(j+1))
8457       else
8458         itj1=ntortyp+1
8459       endif
8460       itk=itortyp(itype(k))
8461       itk1=itortyp(itype(k+1))
8462       if (l.lt.nres-1) then
8463         itl1=itortyp(itype(l+1))
8464       else
8465         itl1=ntortyp+1
8466       endif
8467 #ifdef MOMENT
8468       s1=dip(4,jj,i)*dip(4,kk,k)
8469 #endif
8470       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8471       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8472       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8473       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8474       call transpose2(EE(1,1,itk),auxmat(1,1))
8475       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8476       vv(1)=pizda(1,1)+pizda(2,2)
8477       vv(2)=pizda(2,1)-pizda(1,2)
8478       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8479 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8480 cd     & "sum",-(s2+s3+s4)
8481 #ifdef MOMENT
8482       eello6_graph3=-(s1+s2+s3+s4)
8483 #else
8484       eello6_graph3=-(s2+s3+s4)
8485 #endif
8486 c      eello6_graph3=-s4
8487 C Derivatives in gamma(k-1)
8488       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8489       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8490       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8491       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8492 C Derivatives in gamma(l-1)
8493       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8494       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8495       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8496       vv(1)=pizda(1,1)+pizda(2,2)
8497       vv(2)=pizda(2,1)-pizda(1,2)
8498       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8499       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8500 C Cartesian derivatives.
8501       do iii=1,2
8502         do kkk=1,5
8503           do lll=1,3
8504 #ifdef MOMENT
8505             if (iii.eq.1) then
8506               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8507             else
8508               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8509             endif
8510 #endif
8511             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8512      &        auxvec(1))
8513             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8514             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8515      &        auxvec(1))
8516             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8517             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8518      &        pizda(1,1))
8519             vv(1)=pizda(1,1)+pizda(2,2)
8520             vv(2)=pizda(2,1)-pizda(1,2)
8521             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8522 #ifdef MOMENT
8523             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8524 #else
8525             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8526 #endif
8527             if (swap) then
8528               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8529             else
8530               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8531             endif
8532 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8533           enddo
8534         enddo
8535       enddo
8536       return
8537       end
8538 c----------------------------------------------------------------------------
8539       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8540       implicit real*8 (a-h,o-z)
8541       include 'DIMENSIONS'
8542       include 'COMMON.IOUNITS'
8543       include 'COMMON.CHAIN'
8544       include 'COMMON.DERIV'
8545       include 'COMMON.INTERACT'
8546       include 'COMMON.CONTACTS'
8547       include 'COMMON.TORSION'
8548       include 'COMMON.VAR'
8549       include 'COMMON.GEO'
8550       include 'COMMON.FFIELD'
8551       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8552      & auxvec1(2),auxmat1(2,2)
8553       logical swap
8554 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8555 C                                                                              C                       
8556 C      Parallel       Antiparallel                                             C
8557 C                                                                              C
8558 C          o             o                                                     C
8559 C         /l\   /   \   /j\                                                    C
8560 C        /   \ /     \ /   \                                                   C
8561 C       /| o |o       o| o |\                                                  C
8562 C     \ j|/k\|      \  |/k\|l                                                  C
8563 C      \ /   \       \ /   \                                                   C 
8564 C       o     \       o     \                                                  C
8565 C       i             i                                                        C
8566 C                                                                              C 
8567 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8568 C
8569 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8570 C           energy moment and not to the cluster cumulant.
8571 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8572       iti=itortyp(itype(i))
8573       itj=itortyp(itype(j))
8574       if (j.lt.nres-1) then
8575         itj1=itortyp(itype(j+1))
8576       else
8577         itj1=ntortyp+1
8578       endif
8579       itk=itortyp(itype(k))
8580       if (k.lt.nres-1) then
8581         itk1=itortyp(itype(k+1))
8582       else
8583         itk1=ntortyp+1
8584       endif
8585       itl=itortyp(itype(l))
8586       if (l.lt.nres-1) then
8587         itl1=itortyp(itype(l+1))
8588       else
8589         itl1=ntortyp+1
8590       endif
8591 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8592 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8593 cd     & ' itl',itl,' itl1',itl1
8594 #ifdef MOMENT
8595       if (imat.eq.1) then
8596         s1=dip(3,jj,i)*dip(3,kk,k)
8597       else
8598         s1=dip(2,jj,j)*dip(2,kk,l)
8599       endif
8600 #endif
8601       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8602       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8603       if (j.eq.l+1) then
8604         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8605         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8606       else
8607         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8608         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8609       endif
8610       call transpose2(EUg(1,1,k),auxmat(1,1))
8611       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8612       vv(1)=pizda(1,1)-pizda(2,2)
8613       vv(2)=pizda(2,1)+pizda(1,2)
8614       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8615 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8616 #ifdef MOMENT
8617       eello6_graph4=-(s1+s2+s3+s4)
8618 #else
8619       eello6_graph4=-(s2+s3+s4)
8620 #endif
8621 C Derivatives in gamma(i-1)
8622       if (i.gt.1) then
8623 #ifdef MOMENT
8624         if (imat.eq.1) then
8625           s1=dipderg(2,jj,i)*dip(3,kk,k)
8626         else
8627           s1=dipderg(4,jj,j)*dip(2,kk,l)
8628         endif
8629 #endif
8630         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8631         if (j.eq.l+1) then
8632           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8633           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8634         else
8635           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8636           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8637         endif
8638         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8639         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8640 cd          write (2,*) 'turn6 derivatives'
8641 #ifdef MOMENT
8642           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8643 #else
8644           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8645 #endif
8646         else
8647 #ifdef MOMENT
8648           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8649 #else
8650           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8651 #endif
8652         endif
8653       endif
8654 C Derivatives in gamma(k-1)
8655 #ifdef MOMENT
8656       if (imat.eq.1) then
8657         s1=dip(3,jj,i)*dipderg(2,kk,k)
8658       else
8659         s1=dip(2,jj,j)*dipderg(4,kk,l)
8660       endif
8661 #endif
8662       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8663       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8664       if (j.eq.l+1) then
8665         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8666         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8667       else
8668         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8669         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8670       endif
8671       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8672       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8673       vv(1)=pizda(1,1)-pizda(2,2)
8674       vv(2)=pizda(2,1)+pizda(1,2)
8675       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8676       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8677 #ifdef MOMENT
8678         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8679 #else
8680         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8681 #endif
8682       else
8683 #ifdef MOMENT
8684         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8685 #else
8686         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8687 #endif
8688       endif
8689 C Derivatives in gamma(j-1) or gamma(l-1)
8690       if (l.eq.j+1 .and. l.gt.1) then
8691         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8692         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8693         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8694         vv(1)=pizda(1,1)-pizda(2,2)
8695         vv(2)=pizda(2,1)+pizda(1,2)
8696         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8697         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8698       else if (j.gt.1) then
8699         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8700         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8701         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8702         vv(1)=pizda(1,1)-pizda(2,2)
8703         vv(2)=pizda(2,1)+pizda(1,2)
8704         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8705         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8706           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8707         else
8708           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8709         endif
8710       endif
8711 C Cartesian derivatives.
8712       do iii=1,2
8713         do kkk=1,5
8714           do lll=1,3
8715 #ifdef MOMENT
8716             if (iii.eq.1) then
8717               if (imat.eq.1) then
8718                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8719               else
8720                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8721               endif
8722             else
8723               if (imat.eq.1) then
8724                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8725               else
8726                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8727               endif
8728             endif
8729 #endif
8730             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8731      &        auxvec(1))
8732             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8733             if (j.eq.l+1) then
8734               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8735      &          b1(1,itj1),auxvec(1))
8736               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8737             else
8738               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8739      &          b1(1,itl1),auxvec(1))
8740               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8741             endif
8742             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8743      &        pizda(1,1))
8744             vv(1)=pizda(1,1)-pizda(2,2)
8745             vv(2)=pizda(2,1)+pizda(1,2)
8746             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8747             if (swap) then
8748               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8749 #ifdef MOMENT
8750                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8751      &             -(s1+s2+s4)
8752 #else
8753                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8754      &             -(s2+s4)
8755 #endif
8756                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8757               else
8758 #ifdef MOMENT
8759                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8760 #else
8761                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8762 #endif
8763                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8764               endif
8765             else
8766 #ifdef MOMENT
8767               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8768 #else
8769               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8770 #endif
8771               if (l.eq.j+1) then
8772                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8773               else 
8774                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8775               endif
8776             endif 
8777           enddo
8778         enddo
8779       enddo
8780       return
8781       end
8782 c----------------------------------------------------------------------------
8783       double precision function eello_turn6(i,jj,kk)
8784       implicit real*8 (a-h,o-z)
8785       include 'DIMENSIONS'
8786       include 'COMMON.IOUNITS'
8787       include 'COMMON.CHAIN'
8788       include 'COMMON.DERIV'
8789       include 'COMMON.INTERACT'
8790       include 'COMMON.CONTACTS'
8791       include 'COMMON.TORSION'
8792       include 'COMMON.VAR'
8793       include 'COMMON.GEO'
8794       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8795      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8796      &  ggg1(3),ggg2(3)
8797       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8798      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8799 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8800 C           the respective energy moment and not to the cluster cumulant.
8801       s1=0.0d0
8802       s8=0.0d0
8803       s13=0.0d0
8804 c
8805       eello_turn6=0.0d0
8806       j=i+4
8807       k=i+1
8808       l=i+3
8809       iti=itortyp(itype(i))
8810       itk=itortyp(itype(k))
8811       itk1=itortyp(itype(k+1))
8812       itl=itortyp(itype(l))
8813       itj=itortyp(itype(j))
8814 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8815 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8816 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8817 cd        eello6=0.0d0
8818 cd        return
8819 cd      endif
8820 cd      write (iout,*)
8821 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8822 cd     &   ' and',k,l
8823 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8824       do iii=1,2
8825         do kkk=1,5
8826           do lll=1,3
8827             derx_turn(lll,kkk,iii)=0.0d0
8828           enddo
8829         enddo
8830       enddo
8831 cd      eij=1.0d0
8832 cd      ekl=1.0d0
8833 cd      ekont=1.0d0
8834       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8835 cd      eello6_5=0.0d0
8836 cd      write (2,*) 'eello6_5',eello6_5
8837 #ifdef MOMENT
8838       call transpose2(AEA(1,1,1),auxmat(1,1))
8839       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8840       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8841       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8842 #endif
8843       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8844       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8845       s2 = scalar2(b1(1,itk),vtemp1(1))
8846 #ifdef MOMENT
8847       call transpose2(AEA(1,1,2),atemp(1,1))
8848       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8849       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8850       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8851 #endif
8852       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8853       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8854       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8855 #ifdef MOMENT
8856       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8857       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8858       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8859       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8860       ss13 = scalar2(b1(1,itk),vtemp4(1))
8861       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8862 #endif
8863 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8864 c      s1=0.0d0
8865 c      s2=0.0d0
8866 c      s8=0.0d0
8867 c      s12=0.0d0
8868 c      s13=0.0d0
8869       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8870 C Derivatives in gamma(i+2)
8871       s1d =0.0d0
8872       s8d =0.0d0
8873 #ifdef MOMENT
8874       call transpose2(AEA(1,1,1),auxmatd(1,1))
8875       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8876       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8877       call transpose2(AEAderg(1,1,2),atempd(1,1))
8878       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8879       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8880 #endif
8881       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8882       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8883       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8884 c      s1d=0.0d0
8885 c      s2d=0.0d0
8886 c      s8d=0.0d0
8887 c      s12d=0.0d0
8888 c      s13d=0.0d0
8889       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8890 C Derivatives in gamma(i+3)
8891 #ifdef MOMENT
8892       call transpose2(AEA(1,1,1),auxmatd(1,1))
8893       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8894       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8895       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8896 #endif
8897       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8898       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8899       s2d = scalar2(b1(1,itk),vtemp1d(1))
8900 #ifdef MOMENT
8901       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8902       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8903 #endif
8904       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8905 #ifdef MOMENT
8906       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8907       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8908       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8909 #endif
8910 c      s1d=0.0d0
8911 c      s2d=0.0d0
8912 c      s8d=0.0d0
8913 c      s12d=0.0d0
8914 c      s13d=0.0d0
8915 #ifdef MOMENT
8916       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8917      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8918 #else
8919       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8920      &               -0.5d0*ekont*(s2d+s12d)
8921 #endif
8922 C Derivatives in gamma(i+4)
8923       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8924       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8925       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8926 #ifdef MOMENT
8927       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8928       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8929       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8930 #endif
8931 c      s1d=0.0d0
8932 c      s2d=0.0d0
8933 c      s8d=0.0d0
8934 C      s12d=0.0d0
8935 c      s13d=0.0d0
8936 #ifdef MOMENT
8937       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8938 #else
8939       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8940 #endif
8941 C Derivatives in gamma(i+5)
8942 #ifdef MOMENT
8943       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8944       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8945       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8946 #endif
8947       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8948       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8949       s2d = scalar2(b1(1,itk),vtemp1d(1))
8950 #ifdef MOMENT
8951       call transpose2(AEA(1,1,2),atempd(1,1))
8952       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8953       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8954 #endif
8955       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8956       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8957 #ifdef MOMENT
8958       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8959       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8960       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8961 #endif
8962 c      s1d=0.0d0
8963 c      s2d=0.0d0
8964 c      s8d=0.0d0
8965 c      s12d=0.0d0
8966 c      s13d=0.0d0
8967 #ifdef MOMENT
8968       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8969      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8970 #else
8971       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8972      &               -0.5d0*ekont*(s2d+s12d)
8973 #endif
8974 C Cartesian derivatives
8975       do iii=1,2
8976         do kkk=1,5
8977           do lll=1,3
8978 #ifdef MOMENT
8979             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8980             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8981             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8982 #endif
8983             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8984             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8985      &          vtemp1d(1))
8986             s2d = scalar2(b1(1,itk),vtemp1d(1))
8987 #ifdef MOMENT
8988             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8989             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8990             s8d = -(atempd(1,1)+atempd(2,2))*
8991      &           scalar2(cc(1,1,itl),vtemp2(1))
8992 #endif
8993             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8994      &           auxmatd(1,1))
8995             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8996             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8997 c      s1d=0.0d0
8998 c      s2d=0.0d0
8999 c      s8d=0.0d0
9000 c      s12d=0.0d0
9001 c      s13d=0.0d0
9002 #ifdef MOMENT
9003             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9004      &        - 0.5d0*(s1d+s2d)
9005 #else
9006             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9007      &        - 0.5d0*s2d
9008 #endif
9009 #ifdef MOMENT
9010             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9011      &        - 0.5d0*(s8d+s12d)
9012 #else
9013             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9014      &        - 0.5d0*s12d
9015 #endif
9016           enddo
9017         enddo
9018       enddo
9019 #ifdef MOMENT
9020       do kkk=1,5
9021         do lll=1,3
9022           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9023      &      achuj_tempd(1,1))
9024           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9025           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9026           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9027           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9028           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9029      &      vtemp4d(1)) 
9030           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9031           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9032           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9033         enddo
9034       enddo
9035 #endif
9036 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9037 cd     &  16*eel_turn6_num
9038 cd      goto 1112
9039       if (j.lt.nres-1) then
9040         j1=j+1
9041         j2=j-1
9042       else
9043         j1=j-1
9044         j2=j-2
9045       endif
9046       if (l.lt.nres-1) then
9047         l1=l+1
9048         l2=l-1
9049       else
9050         l1=l-1
9051         l2=l-2
9052       endif
9053       do ll=1,3
9054 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9055 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9056 cgrad        ghalf=0.5d0*ggg1(ll)
9057 cd        ghalf=0.0d0
9058         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9059         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9060         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9061      &    +ekont*derx_turn(ll,2,1)
9062         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9063         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9064      &    +ekont*derx_turn(ll,4,1)
9065         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9066         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9067         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9068 cgrad        ghalf=0.5d0*ggg2(ll)
9069 cd        ghalf=0.0d0
9070         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9071      &    +ekont*derx_turn(ll,2,2)
9072         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9073         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9074      &    +ekont*derx_turn(ll,4,2)
9075         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9076         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9077         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9078       enddo
9079 cd      goto 1112
9080 cgrad      do m=i+1,j-1
9081 cgrad        do ll=1,3
9082 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9083 cgrad        enddo
9084 cgrad      enddo
9085 cgrad      do m=k+1,l-1
9086 cgrad        do ll=1,3
9087 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9088 cgrad        enddo
9089 cgrad      enddo
9090 cgrad1112  continue
9091 cgrad      do m=i+2,j2
9092 cgrad        do ll=1,3
9093 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9094 cgrad        enddo
9095 cgrad      enddo
9096 cgrad      do m=k+2,l2
9097 cgrad        do ll=1,3
9098 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9099 cgrad        enddo
9100 cgrad      enddo 
9101 cd      do iii=1,nres-3
9102 cd        write (2,*) iii,g_corr6_loc(iii)
9103 cd      enddo
9104       eello_turn6=ekont*eel_turn6
9105 cd      write (2,*) 'ekont',ekont
9106 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9107       return
9108       end
9109
9110 C-----------------------------------------------------------------------------
9111       double precision function scalar(u,v)
9112 !DIR$ INLINEALWAYS scalar
9113 #ifndef OSF
9114 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9115 #endif
9116       implicit none
9117       double precision u(3),v(3)
9118 cd      double precision sc
9119 cd      integer i
9120 cd      sc=0.0d0
9121 cd      do i=1,3
9122 cd        sc=sc+u(i)*v(i)
9123 cd      enddo
9124 cd      scalar=sc
9125
9126       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9127       return
9128       end
9129 crc-------------------------------------------------
9130       SUBROUTINE MATVEC2(A1,V1,V2)
9131 !DIR$ INLINEALWAYS MATVEC2
9132 #ifndef OSF
9133 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9134 #endif
9135       implicit real*8 (a-h,o-z)
9136       include 'DIMENSIONS'
9137       DIMENSION A1(2,2),V1(2),V2(2)
9138 c      DO 1 I=1,2
9139 c        VI=0.0
9140 c        DO 3 K=1,2
9141 c    3     VI=VI+A1(I,K)*V1(K)
9142 c        Vaux(I)=VI
9143 c    1 CONTINUE
9144
9145       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9146       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9147
9148       v2(1)=vaux1
9149       v2(2)=vaux2
9150       END
9151 C---------------------------------------
9152       SUBROUTINE MATMAT2(A1,A2,A3)
9153 #ifndef OSF
9154 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9155 #endif
9156       implicit real*8 (a-h,o-z)
9157       include 'DIMENSIONS'
9158       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9159 c      DIMENSION AI3(2,2)
9160 c        DO  J=1,2
9161 c          A3IJ=0.0
9162 c          DO K=1,2
9163 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9164 c          enddo
9165 c          A3(I,J)=A3IJ
9166 c       enddo
9167 c      enddo
9168
9169       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9170       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9171       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9172       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9173
9174       A3(1,1)=AI3_11
9175       A3(2,1)=AI3_21
9176       A3(1,2)=AI3_12
9177       A3(2,2)=AI3_22
9178       END
9179
9180 c-------------------------------------------------------------------------
9181       double precision function scalar2(u,v)
9182 !DIR$ INLINEALWAYS scalar2
9183       implicit none
9184       double precision u(2),v(2)
9185       double precision sc
9186       integer i
9187       scalar2=u(1)*v(1)+u(2)*v(2)
9188       return
9189       end
9190
9191 C-----------------------------------------------------------------------------
9192
9193       subroutine transpose2(a,at)
9194 !DIR$ INLINEALWAYS transpose2
9195 #ifndef OSF
9196 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9197 #endif
9198       implicit none
9199       double precision a(2,2),at(2,2)
9200       at(1,1)=a(1,1)
9201       at(1,2)=a(2,1)
9202       at(2,1)=a(1,2)
9203       at(2,2)=a(2,2)
9204       return
9205       end
9206 c--------------------------------------------------------------------------
9207       subroutine transpose(n,a,at)
9208       implicit none
9209       integer n,i,j
9210       double precision a(n,n),at(n,n)
9211       do i=1,n
9212         do j=1,n
9213           at(j,i)=a(i,j)
9214         enddo
9215       enddo
9216       return
9217       end
9218 C---------------------------------------------------------------------------
9219       subroutine prodmat3(a1,a2,kk,transp,prod)
9220 !DIR$ INLINEALWAYS prodmat3
9221 #ifndef OSF
9222 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9223 #endif
9224       implicit none
9225       integer i,j
9226       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9227       logical transp
9228 crc      double precision auxmat(2,2),prod_(2,2)
9229
9230       if (transp) then
9231 crc        call transpose2(kk(1,1),auxmat(1,1))
9232 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9233 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9234         
9235            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9236      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9237            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9238      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9239            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9240      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9241            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9242      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9243
9244       else
9245 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9246 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9247
9248            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9249      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9250            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9251      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9252            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9253      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9254            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9255      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9256
9257       endif
9258 c      call transpose2(a2(1,1),a2t(1,1))
9259
9260 crc      print *,transp
9261 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9262 crc      print *,((prod(i,j),i=1,2),j=1,2)
9263
9264       return
9265       end
9266