pierwsza proba merga devela do adasko
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=iabs(itype(j))
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026         dxi=dc(1,i)
3027         dyi=dc(2,i)
3028         dzi=dc(3,i)
3029         dx_normi=dc_norm(1,i)
3030         dy_normi=dc_norm(2,i)
3031         dz_normi=dc_norm(3,i)
3032         xmedi=c(1,i)+0.5d0*dxi
3033         ymedi=c(2,i)+0.5d0*dyi
3034         zmedi=c(3,i)+0.5d0*dzi
3035         num_conti=0
3036         call eelecij(i,i+2,ees,evdw1,eel_loc)
3037         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3038         num_cont_hb(i)=num_conti
3039       enddo
3040       do i=iturn4_start,iturn4_end
3041         dxi=dc(1,i)
3042         dyi=dc(2,i)
3043         dzi=dc(3,i)
3044         dx_normi=dc_norm(1,i)
3045         dy_normi=dc_norm(2,i)
3046         dz_normi=dc_norm(3,i)
3047         xmedi=c(1,i)+0.5d0*dxi
3048         ymedi=c(2,i)+0.5d0*dyi
3049         zmedi=c(3,i)+0.5d0*dzi
3050         num_conti=num_cont_hb(i)
3051         call eelecij(i,i+3,ees,evdw1,eel_loc)
3052         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3053         num_cont_hb(i)=num_conti
3054       enddo   ! i
3055 c
3056 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3057 c
3058       do i=iatel_s,iatel_e
3059         dxi=dc(1,i)
3060         dyi=dc(2,i)
3061         dzi=dc(3,i)
3062         dx_normi=dc_norm(1,i)
3063         dy_normi=dc_norm(2,i)
3064         dz_normi=dc_norm(3,i)
3065         xmedi=c(1,i)+0.5d0*dxi
3066         ymedi=c(2,i)+0.5d0*dyi
3067         zmedi=c(3,i)+0.5d0*dzi
3068 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3069         num_conti=num_cont_hb(i)
3070         do j=ielstart(i),ielend(i)
3071           call eelecij(i,j,ees,evdw1,eel_loc)
3072         enddo ! j
3073         num_cont_hb(i)=num_conti
3074       enddo   ! i
3075 c      write (iout,*) "Number of loop steps in EELEC:",ind
3076 cd      do i=1,nres
3077 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3078 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3079 cd      enddo
3080 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3081 ccc      eel_loc=eel_loc+eello_turn3
3082 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3083       return
3084       end
3085 C-------------------------------------------------------------------------------
3086       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3087       implicit real*8 (a-h,o-z)
3088       include 'DIMENSIONS'
3089 #ifdef MPI
3090       include "mpif.h"
3091 #endif
3092       include 'COMMON.CONTROL'
3093       include 'COMMON.IOUNITS'
3094       include 'COMMON.GEO'
3095       include 'COMMON.VAR'
3096       include 'COMMON.LOCAL'
3097       include 'COMMON.CHAIN'
3098       include 'COMMON.DERIV'
3099       include 'COMMON.INTERACT'
3100       include 'COMMON.CONTACTS'
3101       include 'COMMON.TORSION'
3102       include 'COMMON.VECTORS'
3103       include 'COMMON.FFIELD'
3104       include 'COMMON.TIME1'
3105       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3106      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3107       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3108      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3109       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3110      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3111      &    num_conti,j1,j2
3112 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3113 #ifdef MOMENT
3114       double precision scal_el /1.0d0/
3115 #else
3116       double precision scal_el /0.5d0/
3117 #endif
3118 C 12/13/98 
3119 C 13-go grudnia roku pamietnego... 
3120       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3121      &                   0.0d0,1.0d0,0.0d0,
3122      &                   0.0d0,0.0d0,1.0d0/
3123 c          time00=MPI_Wtime()
3124 cd      write (iout,*) "eelecij",i,j
3125 c          ind=ind+1
3126           iteli=itel(i)
3127           itelj=itel(j)
3128           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3129           aaa=app(iteli,itelj)
3130           bbb=bpp(iteli,itelj)
3131           ael6i=ael6(iteli,itelj)
3132           ael3i=ael3(iteli,itelj) 
3133           dxj=dc(1,j)
3134           dyj=dc(2,j)
3135           dzj=dc(3,j)
3136           dx_normj=dc_norm(1,j)
3137           dy_normj=dc_norm(2,j)
3138           dz_normj=dc_norm(3,j)
3139           xj=c(1,j)+0.5D0*dxj-xmedi
3140           yj=c(2,j)+0.5D0*dyj-ymedi
3141           zj=c(3,j)+0.5D0*dzj-zmedi
3142           rij=xj*xj+yj*yj+zj*zj
3143           rrmij=1.0D0/rij
3144           rij=dsqrt(rij)
3145           rmij=1.0D0/rij
3146           r3ij=rrmij*rmij
3147           r6ij=r3ij*r3ij  
3148           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3149           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3150           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3151           fac=cosa-3.0D0*cosb*cosg
3152           ev1=aaa*r6ij*r6ij
3153 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3154           if (j.eq.i+2) ev1=scal_el*ev1
3155           ev2=bbb*r6ij
3156           fac3=ael6i*r6ij
3157           fac4=ael3i*r3ij
3158           evdwij=ev1+ev2
3159           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3160           el2=fac4*fac       
3161           eesij=el1+el2
3162 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3163           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3164           ees=ees+eesij
3165           evdw1=evdw1+evdwij
3166 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3167 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3168 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3169 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3170
3171           if (energy_dec) then 
3172               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3173               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3174           endif
3175
3176 C
3177 C Calculate contributions to the Cartesian gradient.
3178 C
3179 #ifdef SPLITELE
3180           facvdw=-6*rrmij*(ev1+evdwij)
3181           facel=-3*rrmij*(el1+eesij)
3182           fac1=fac
3183           erij(1)=xj*rmij
3184           erij(2)=yj*rmij
3185           erij(3)=zj*rmij
3186 *
3187 * Radial derivatives. First process both termini of the fragment (i,j)
3188 *
3189           ggg(1)=facel*xj
3190           ggg(2)=facel*yj
3191           ggg(3)=facel*zj
3192 c          do k=1,3
3193 c            ghalf=0.5D0*ggg(k)
3194 c            gelc(k,i)=gelc(k,i)+ghalf
3195 c            gelc(k,j)=gelc(k,j)+ghalf
3196 c          enddo
3197 c 9/28/08 AL Gradient compotents will be summed only at the end
3198           do k=1,3
3199             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3200             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3201           enddo
3202 *
3203 * Loop over residues i+1 thru j-1.
3204 *
3205 cgrad          do k=i+1,j-1
3206 cgrad            do l=1,3
3207 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3208 cgrad            enddo
3209 cgrad          enddo
3210           ggg(1)=facvdw*xj
3211           ggg(2)=facvdw*yj
3212           ggg(3)=facvdw*zj
3213 c          do k=1,3
3214 c            ghalf=0.5D0*ggg(k)
3215 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3216 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3217 c          enddo
3218 c 9/28/08 AL Gradient compotents will be summed only at the end
3219           do k=1,3
3220             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3221             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3222           enddo
3223 *
3224 * Loop over residues i+1 thru j-1.
3225 *
3226 cgrad          do k=i+1,j-1
3227 cgrad            do l=1,3
3228 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3229 cgrad            enddo
3230 cgrad          enddo
3231 #else
3232           facvdw=ev1+evdwij 
3233           facel=el1+eesij  
3234           fac1=fac
3235           fac=-3*rrmij*(facvdw+facvdw+facel)
3236           erij(1)=xj*rmij
3237           erij(2)=yj*rmij
3238           erij(3)=zj*rmij
3239 *
3240 * Radial derivatives. First process both termini of the fragment (i,j)
3241
3242           ggg(1)=fac*xj
3243           ggg(2)=fac*yj
3244           ggg(3)=fac*zj
3245 c          do k=1,3
3246 c            ghalf=0.5D0*ggg(k)
3247 c            gelc(k,i)=gelc(k,i)+ghalf
3248 c            gelc(k,j)=gelc(k,j)+ghalf
3249 c          enddo
3250 c 9/28/08 AL Gradient compotents will be summed only at the end
3251           do k=1,3
3252             gelc_long(k,j)=gelc(k,j)+ggg(k)
3253             gelc_long(k,i)=gelc(k,i)-ggg(k)
3254           enddo
3255 *
3256 * Loop over residues i+1 thru j-1.
3257 *
3258 cgrad          do k=i+1,j-1
3259 cgrad            do l=1,3
3260 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3261 cgrad            enddo
3262 cgrad          enddo
3263 c 9/28/08 AL Gradient compotents will be summed only at the end
3264           ggg(1)=facvdw*xj
3265           ggg(2)=facvdw*yj
3266           ggg(3)=facvdw*zj
3267           do k=1,3
3268             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3269             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3270           enddo
3271 #endif
3272 *
3273 * Angular part
3274 *          
3275           ecosa=2.0D0*fac3*fac1+fac4
3276           fac4=-3.0D0*fac4
3277           fac3=-6.0D0*fac3
3278           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3279           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3280           do k=1,3
3281             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3282             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3283           enddo
3284 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3285 cd   &          (dcosg(k),k=1,3)
3286           do k=1,3
3287             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3288           enddo
3289 c          do k=1,3
3290 c            ghalf=0.5D0*ggg(k)
3291 c            gelc(k,i)=gelc(k,i)+ghalf
3292 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3293 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3294 c            gelc(k,j)=gelc(k,j)+ghalf
3295 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3296 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3297 c          enddo
3298 cgrad          do k=i+1,j-1
3299 cgrad            do l=1,3
3300 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3301 cgrad            enddo
3302 cgrad          enddo
3303           do k=1,3
3304             gelc(k,i)=gelc(k,i)
3305      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3306      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3307             gelc(k,j)=gelc(k,j)
3308      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3309      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3310             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3311             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3312           enddo
3313           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3314      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3315      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3316 C
3317 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3318 C   energy of a peptide unit is assumed in the form of a second-order 
3319 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3320 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3321 C   are computed for EVERY pair of non-contiguous peptide groups.
3322 C
3323           if (j.lt.nres-1) then
3324             j1=j+1
3325             j2=j-1
3326           else
3327             j1=j-1
3328             j2=j-2
3329           endif
3330           kkk=0
3331           do k=1,2
3332             do l=1,2
3333               kkk=kkk+1
3334               muij(kkk)=mu(k,i)*mu(l,j)
3335             enddo
3336           enddo  
3337 cd         write (iout,*) 'EELEC: i',i,' j',j
3338 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3339 cd          write(iout,*) 'muij',muij
3340           ury=scalar(uy(1,i),erij)
3341           urz=scalar(uz(1,i),erij)
3342           vry=scalar(uy(1,j),erij)
3343           vrz=scalar(uz(1,j),erij)
3344           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3345           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3346           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3347           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3348           fac=dsqrt(-ael6i)*r3ij
3349           a22=a22*fac
3350           a23=a23*fac
3351           a32=a32*fac
3352           a33=a33*fac
3353 cd          write (iout,'(4i5,4f10.5)')
3354 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3355 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3356 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3357 cd     &      uy(:,j),uz(:,j)
3358 cd          write (iout,'(4f10.5)') 
3359 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3360 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3361 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3362 cd           write (iout,'(9f10.5/)') 
3363 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3364 C Derivatives of the elements of A in virtual-bond vectors
3365           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3366           do k=1,3
3367             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3368             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3369             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3370             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3371             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3372             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3373             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3374             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3375             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3376             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3377             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3378             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3379           enddo
3380 C Compute radial contributions to the gradient
3381           facr=-3.0d0*rrmij
3382           a22der=a22*facr
3383           a23der=a23*facr
3384           a32der=a32*facr
3385           a33der=a33*facr
3386           agg(1,1)=a22der*xj
3387           agg(2,1)=a22der*yj
3388           agg(3,1)=a22der*zj
3389           agg(1,2)=a23der*xj
3390           agg(2,2)=a23der*yj
3391           agg(3,2)=a23der*zj
3392           agg(1,3)=a32der*xj
3393           agg(2,3)=a32der*yj
3394           agg(3,3)=a32der*zj
3395           agg(1,4)=a33der*xj
3396           agg(2,4)=a33der*yj
3397           agg(3,4)=a33der*zj
3398 C Add the contributions coming from er
3399           fac3=-3.0d0*fac
3400           do k=1,3
3401             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3402             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3403             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3404             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3405           enddo
3406           do k=1,3
3407 C Derivatives in DC(i) 
3408 cgrad            ghalf1=0.5d0*agg(k,1)
3409 cgrad            ghalf2=0.5d0*agg(k,2)
3410 cgrad            ghalf3=0.5d0*agg(k,3)
3411 cgrad            ghalf4=0.5d0*agg(k,4)
3412             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3413      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3414             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3415      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3416             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3417      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3418             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3419      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3420 C Derivatives in DC(i+1)
3421             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3422      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3423             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3424      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3425             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3426      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3427             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3428      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3429 C Derivatives in DC(j)
3430             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3431      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3432             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3433      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3434             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3435      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3436             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3437      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3438 C Derivatives in DC(j+1) or DC(nres-1)
3439             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3440      &      -3.0d0*vryg(k,3)*ury)
3441             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3442      &      -3.0d0*vrzg(k,3)*ury)
3443             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3444      &      -3.0d0*vryg(k,3)*urz)
3445             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3446      &      -3.0d0*vrzg(k,3)*urz)
3447 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3448 cgrad              do l=1,4
3449 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3450 cgrad              enddo
3451 cgrad            endif
3452           enddo
3453           acipa(1,1)=a22
3454           acipa(1,2)=a23
3455           acipa(2,1)=a32
3456           acipa(2,2)=a33
3457           a22=-a22
3458           a23=-a23
3459           do l=1,2
3460             do k=1,3
3461               agg(k,l)=-agg(k,l)
3462               aggi(k,l)=-aggi(k,l)
3463               aggi1(k,l)=-aggi1(k,l)
3464               aggj(k,l)=-aggj(k,l)
3465               aggj1(k,l)=-aggj1(k,l)
3466             enddo
3467           enddo
3468           if (j.lt.nres-1) then
3469             a22=-a22
3470             a32=-a32
3471             do l=1,3,2
3472               do k=1,3
3473                 agg(k,l)=-agg(k,l)
3474                 aggi(k,l)=-aggi(k,l)
3475                 aggi1(k,l)=-aggi1(k,l)
3476                 aggj(k,l)=-aggj(k,l)
3477                 aggj1(k,l)=-aggj1(k,l)
3478               enddo
3479             enddo
3480           else
3481             a22=-a22
3482             a23=-a23
3483             a32=-a32
3484             a33=-a33
3485             do l=1,4
3486               do k=1,3
3487                 agg(k,l)=-agg(k,l)
3488                 aggi(k,l)=-aggi(k,l)
3489                 aggi1(k,l)=-aggi1(k,l)
3490                 aggj(k,l)=-aggj(k,l)
3491                 aggj1(k,l)=-aggj1(k,l)
3492               enddo
3493             enddo 
3494           endif    
3495           ENDIF ! WCORR
3496           IF (wel_loc.gt.0.0d0) THEN
3497 C Contribution to the local-electrostatic energy coming from the i-j pair
3498           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3499      &     +a33*muij(4)
3500 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3501
3502           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3503      &            'eelloc',i,j,eel_loc_ij
3504
3505           eel_loc=eel_loc+eel_loc_ij
3506 C Partial derivatives in virtual-bond dihedral angles gamma
3507           if (i.gt.1)
3508      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3509      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3510      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3511           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3512      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3513      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3514 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3515           do l=1,3
3516             ggg(l)=agg(l,1)*muij(1)+
3517      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3518             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3519             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3520 cgrad            ghalf=0.5d0*ggg(l)
3521 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3522 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3523           enddo
3524 cgrad          do k=i+1,j2
3525 cgrad            do l=1,3
3526 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3527 cgrad            enddo
3528 cgrad          enddo
3529 C Remaining derivatives of eello
3530           do l=1,3
3531             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3532      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3533             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3534      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3535             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3536      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3537             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3538      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3539           enddo
3540           ENDIF
3541 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3542 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3543           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3544      &       .and. num_conti.le.maxconts) then
3545 c            write (iout,*) i,j," entered corr"
3546 C
3547 C Calculate the contact function. The ith column of the array JCONT will 
3548 C contain the numbers of atoms that make contacts with the atom I (of numbers
3549 C greater than I). The arrays FACONT and GACONT will contain the values of
3550 C the contact function and its derivative.
3551 c           r0ij=1.02D0*rpp(iteli,itelj)
3552 c           r0ij=1.11D0*rpp(iteli,itelj)
3553             r0ij=2.20D0*rpp(iteli,itelj)
3554 c           r0ij=1.55D0*rpp(iteli,itelj)
3555             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3556             if (fcont.gt.0.0D0) then
3557               num_conti=num_conti+1
3558               if (num_conti.gt.maxconts) then
3559                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3560      &                         ' will skip next contacts for this conf.'
3561               else
3562                 jcont_hb(num_conti,i)=j
3563 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3564 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3565                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3566      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3567 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3568 C  terms.
3569                 d_cont(num_conti,i)=rij
3570 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3571 C     --- Electrostatic-interaction matrix --- 
3572                 a_chuj(1,1,num_conti,i)=a22
3573                 a_chuj(1,2,num_conti,i)=a23
3574                 a_chuj(2,1,num_conti,i)=a32
3575                 a_chuj(2,2,num_conti,i)=a33
3576 C     --- Gradient of rij
3577                 do kkk=1,3
3578                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3579                 enddo
3580                 kkll=0
3581                 do k=1,2
3582                   do l=1,2
3583                     kkll=kkll+1
3584                     do m=1,3
3585                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3586                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3587                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3588                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3589                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3590                     enddo
3591                   enddo
3592                 enddo
3593                 ENDIF
3594                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3595 C Calculate contact energies
3596                 cosa4=4.0D0*cosa
3597                 wij=cosa-3.0D0*cosb*cosg
3598                 cosbg1=cosb+cosg
3599                 cosbg2=cosb-cosg
3600 c               fac3=dsqrt(-ael6i)/r0ij**3     
3601                 fac3=dsqrt(-ael6i)*r3ij
3602 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3603                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3604                 if (ees0tmp.gt.0) then
3605                   ees0pij=dsqrt(ees0tmp)
3606                 else
3607                   ees0pij=0
3608                 endif
3609 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3610                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3611                 if (ees0tmp.gt.0) then
3612                   ees0mij=dsqrt(ees0tmp)
3613                 else
3614                   ees0mij=0
3615                 endif
3616 c               ees0mij=0.0D0
3617                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3618                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3619 C Diagnostics. Comment out or remove after debugging!
3620 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3621 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3622 c               ees0m(num_conti,i)=0.0D0
3623 C End diagnostics.
3624 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3625 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3626 C Angular derivatives of the contact function
3627                 ees0pij1=fac3/ees0pij 
3628                 ees0mij1=fac3/ees0mij
3629                 fac3p=-3.0D0*fac3*rrmij
3630                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3631                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3632 c               ees0mij1=0.0D0
3633                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3634                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3635                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3636                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3637                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3638                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3639                 ecosap=ecosa1+ecosa2
3640                 ecosbp=ecosb1+ecosb2
3641                 ecosgp=ecosg1+ecosg2
3642                 ecosam=ecosa1-ecosa2
3643                 ecosbm=ecosb1-ecosb2
3644                 ecosgm=ecosg1-ecosg2
3645 C Diagnostics
3646 c               ecosap=ecosa1
3647 c               ecosbp=ecosb1
3648 c               ecosgp=ecosg1
3649 c               ecosam=0.0D0
3650 c               ecosbm=0.0D0
3651 c               ecosgm=0.0D0
3652 C End diagnostics
3653                 facont_hb(num_conti,i)=fcont
3654                 fprimcont=fprimcont/rij
3655 cd              facont_hb(num_conti,i)=1.0D0
3656 C Following line is for diagnostics.
3657 cd              fprimcont=0.0D0
3658                 do k=1,3
3659                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3660                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3661                 enddo
3662                 do k=1,3
3663                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3664                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3665                 enddo
3666                 gggp(1)=gggp(1)+ees0pijp*xj
3667                 gggp(2)=gggp(2)+ees0pijp*yj
3668                 gggp(3)=gggp(3)+ees0pijp*zj
3669                 gggm(1)=gggm(1)+ees0mijp*xj
3670                 gggm(2)=gggm(2)+ees0mijp*yj
3671                 gggm(3)=gggm(3)+ees0mijp*zj
3672 C Derivatives due to the contact function
3673                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3674                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3675                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3676                 do k=1,3
3677 c
3678 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3679 c          following the change of gradient-summation algorithm.
3680 c
3681 cgrad                  ghalfp=0.5D0*gggp(k)
3682 cgrad                  ghalfm=0.5D0*gggm(k)
3683                   gacontp_hb1(k,num_conti,i)=!ghalfp
3684      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3685      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3686                   gacontp_hb2(k,num_conti,i)=!ghalfp
3687      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3688      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3689                   gacontp_hb3(k,num_conti,i)=gggp(k)
3690                   gacontm_hb1(k,num_conti,i)=!ghalfm
3691      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3692      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3693                   gacontm_hb2(k,num_conti,i)=!ghalfm
3694      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3695      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3696                   gacontm_hb3(k,num_conti,i)=gggm(k)
3697                 enddo
3698 C Diagnostics. Comment out or remove after debugging!
3699 cdiag           do k=1,3
3700 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3701 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3702 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3703 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3704 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3705 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3706 cdiag           enddo
3707               ENDIF ! wcorr
3708               endif  ! num_conti.le.maxconts
3709             endif  ! fcont.gt.0
3710           endif    ! j.gt.i+1
3711           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3712             do k=1,4
3713               do l=1,3
3714                 ghalf=0.5d0*agg(l,k)
3715                 aggi(l,k)=aggi(l,k)+ghalf
3716                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3717                 aggj(l,k)=aggj(l,k)+ghalf
3718               enddo
3719             enddo
3720             if (j.eq.nres-1 .and. i.lt.j-2) then
3721               do k=1,4
3722                 do l=1,3
3723                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3724                 enddo
3725               enddo
3726             endif
3727           endif
3728 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3729       return
3730       end
3731 C-----------------------------------------------------------------------------
3732       subroutine eturn3(i,eello_turn3)
3733 C Third- and fourth-order contributions from turns
3734       implicit real*8 (a-h,o-z)
3735       include 'DIMENSIONS'
3736       include 'COMMON.IOUNITS'
3737       include 'COMMON.GEO'
3738       include 'COMMON.VAR'
3739       include 'COMMON.LOCAL'
3740       include 'COMMON.CHAIN'
3741       include 'COMMON.DERIV'
3742       include 'COMMON.INTERACT'
3743       include 'COMMON.CONTACTS'
3744       include 'COMMON.TORSION'
3745       include 'COMMON.VECTORS'
3746       include 'COMMON.FFIELD'
3747       include 'COMMON.CONTROL'
3748       dimension ggg(3)
3749       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3750      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3751      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3752       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3753      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3754       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3755      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3756      &    num_conti,j1,j2
3757       j=i+2
3758 c      write (iout,*) "eturn3",i,j,j1,j2
3759       a_temp(1,1)=a22
3760       a_temp(1,2)=a23
3761       a_temp(2,1)=a32
3762       a_temp(2,2)=a33
3763 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3764 C
3765 C               Third-order contributions
3766 C        
3767 C                 (i+2)o----(i+3)
3768 C                      | |
3769 C                      | |
3770 C                 (i+1)o----i
3771 C
3772 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3773 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3774         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3775         call transpose2(auxmat(1,1),auxmat1(1,1))
3776         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3777         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3778         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3779      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3780 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3781 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3782 cd     &    ' eello_turn3_num',4*eello_turn3_num
3783 C Derivatives in gamma(i)
3784         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3785         call transpose2(auxmat2(1,1),auxmat3(1,1))
3786         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3787         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3788 C Derivatives in gamma(i+1)
3789         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3790         call transpose2(auxmat2(1,1),auxmat3(1,1))
3791         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3792         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3793      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3794 C Cartesian derivatives
3795         do l=1,3
3796 c            ghalf1=0.5d0*agg(l,1)
3797 c            ghalf2=0.5d0*agg(l,2)
3798 c            ghalf3=0.5d0*agg(l,3)
3799 c            ghalf4=0.5d0*agg(l,4)
3800           a_temp(1,1)=aggi(l,1)!+ghalf1
3801           a_temp(1,2)=aggi(l,2)!+ghalf2
3802           a_temp(2,1)=aggi(l,3)!+ghalf3
3803           a_temp(2,2)=aggi(l,4)!+ghalf4
3804           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3805           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3806      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3807           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3808           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3809           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3810           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3811           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3812           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3813      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3814           a_temp(1,1)=aggj(l,1)!+ghalf1
3815           a_temp(1,2)=aggj(l,2)!+ghalf2
3816           a_temp(2,1)=aggj(l,3)!+ghalf3
3817           a_temp(2,2)=aggj(l,4)!+ghalf4
3818           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3819           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3820      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3821           a_temp(1,1)=aggj1(l,1)
3822           a_temp(1,2)=aggj1(l,2)
3823           a_temp(2,1)=aggj1(l,3)
3824           a_temp(2,2)=aggj1(l,4)
3825           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3826           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3827      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3828         enddo
3829       return
3830       end
3831 C-------------------------------------------------------------------------------
3832       subroutine eturn4(i,eello_turn4)
3833 C Third- and fourth-order contributions from turns
3834       implicit real*8 (a-h,o-z)
3835       include 'DIMENSIONS'
3836       include 'COMMON.IOUNITS'
3837       include 'COMMON.GEO'
3838       include 'COMMON.VAR'
3839       include 'COMMON.LOCAL'
3840       include 'COMMON.CHAIN'
3841       include 'COMMON.DERIV'
3842       include 'COMMON.INTERACT'
3843       include 'COMMON.CONTACTS'
3844       include 'COMMON.TORSION'
3845       include 'COMMON.VECTORS'
3846       include 'COMMON.FFIELD'
3847       include 'COMMON.CONTROL'
3848       dimension ggg(3)
3849       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3850      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3851      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3852       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3853      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3854       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3855      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3856      &    num_conti,j1,j2
3857       j=i+3
3858 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3859 C
3860 C               Fourth-order contributions
3861 C        
3862 C                 (i+3)o----(i+4)
3863 C                     /  |
3864 C               (i+2)o   |
3865 C                     \  |
3866 C                 (i+1)o----i
3867 C
3868 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3869 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3870 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3871         a_temp(1,1)=a22
3872         a_temp(1,2)=a23
3873         a_temp(2,1)=a32
3874         a_temp(2,2)=a33
3875         iti1=itortyp(itype(i+1))
3876         iti2=itortyp(itype(i+2))
3877         iti3=itortyp(itype(i+3))
3878 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3879         call transpose2(EUg(1,1,i+1),e1t(1,1))
3880         call transpose2(Eug(1,1,i+2),e2t(1,1))
3881         call transpose2(Eug(1,1,i+3),e3t(1,1))
3882         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3883         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3884         s1=scalar2(b1(1,iti2),auxvec(1))
3885         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3886         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3887         s2=scalar2(b1(1,iti1),auxvec(1))
3888         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3889         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3890         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3891         eello_turn4=eello_turn4-(s1+s2+s3)
3892         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3893      &      'eturn4',i,j,-(s1+s2+s3)
3894 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3895 cd     &    ' eello_turn4_num',8*eello_turn4_num
3896 C Derivatives in gamma(i)
3897         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3898         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3899         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3900         s1=scalar2(b1(1,iti2),auxvec(1))
3901         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3902         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3904 C Derivatives in gamma(i+1)
3905         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3906         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3907         s2=scalar2(b1(1,iti1),auxvec(1))
3908         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3909         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3910         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3911         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3912 C Derivatives in gamma(i+2)
3913         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3914         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3915         s1=scalar2(b1(1,iti2),auxvec(1))
3916         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3917         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3920         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3923 C Cartesian derivatives
3924 C Derivatives of this turn contributions in DC(i+2)
3925         if (j.lt.nres-1) then
3926           do l=1,3
3927             a_temp(1,1)=agg(l,1)
3928             a_temp(1,2)=agg(l,2)
3929             a_temp(2,1)=agg(l,3)
3930             a_temp(2,2)=agg(l,4)
3931             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3932             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3933             s1=scalar2(b1(1,iti2),auxvec(1))
3934             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3935             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3936             s2=scalar2(b1(1,iti1),auxvec(1))
3937             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3938             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3939             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3940             ggg(l)=-(s1+s2+s3)
3941             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3942           enddo
3943         endif
3944 C Remaining derivatives of this turn contribution
3945         do l=1,3
3946           a_temp(1,1)=aggi(l,1)
3947           a_temp(1,2)=aggi(l,2)
3948           a_temp(2,1)=aggi(l,3)
3949           a_temp(2,2)=aggi(l,4)
3950           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3951           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3952           s1=scalar2(b1(1,iti2),auxvec(1))
3953           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3954           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3955           s2=scalar2(b1(1,iti1),auxvec(1))
3956           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3957           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3958           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3959           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3960           a_temp(1,1)=aggi1(l,1)
3961           a_temp(1,2)=aggi1(l,2)
3962           a_temp(2,1)=aggi1(l,3)
3963           a_temp(2,2)=aggi1(l,4)
3964           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3965           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3966           s1=scalar2(b1(1,iti2),auxvec(1))
3967           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3968           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3969           s2=scalar2(b1(1,iti1),auxvec(1))
3970           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3971           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3972           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3973           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3974           a_temp(1,1)=aggj(l,1)
3975           a_temp(1,2)=aggj(l,2)
3976           a_temp(2,1)=aggj(l,3)
3977           a_temp(2,2)=aggj(l,4)
3978           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3979           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3980           s1=scalar2(b1(1,iti2),auxvec(1))
3981           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3982           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3983           s2=scalar2(b1(1,iti1),auxvec(1))
3984           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3985           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3986           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3987           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3988           a_temp(1,1)=aggj1(l,1)
3989           a_temp(1,2)=aggj1(l,2)
3990           a_temp(2,1)=aggj1(l,3)
3991           a_temp(2,2)=aggj1(l,4)
3992           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3993           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3994           s1=scalar2(b1(1,iti2),auxvec(1))
3995           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3996           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3997           s2=scalar2(b1(1,iti1),auxvec(1))
3998           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3999           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4000           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4001 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4002           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4003         enddo
4004       return
4005       end
4006 C-----------------------------------------------------------------------------
4007       subroutine vecpr(u,v,w)
4008       implicit real*8(a-h,o-z)
4009       dimension u(3),v(3),w(3)
4010       w(1)=u(2)*v(3)-u(3)*v(2)
4011       w(2)=-u(1)*v(3)+u(3)*v(1)
4012       w(3)=u(1)*v(2)-u(2)*v(1)
4013       return
4014       end
4015 C-----------------------------------------------------------------------------
4016       subroutine unormderiv(u,ugrad,unorm,ungrad)
4017 C This subroutine computes the derivatives of a normalized vector u, given
4018 C the derivatives computed without normalization conditions, ugrad. Returns
4019 C ungrad.
4020       implicit none
4021       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4022       double precision vec(3)
4023       double precision scalar
4024       integer i,j
4025 c      write (2,*) 'ugrad',ugrad
4026 c      write (2,*) 'u',u
4027       do i=1,3
4028         vec(i)=scalar(ugrad(1,i),u(1))
4029       enddo
4030 c      write (2,*) 'vec',vec
4031       do i=1,3
4032         do j=1,3
4033           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4034         enddo
4035       enddo
4036 c      write (2,*) 'ungrad',ungrad
4037       return
4038       end
4039 C-----------------------------------------------------------------------------
4040       subroutine escp_soft_sphere(evdw2,evdw2_14)
4041 C
4042 C This subroutine calculates the excluded-volume interaction energy between
4043 C peptide-group centers and side chains and its gradient in virtual-bond and
4044 C side-chain vectors.
4045 C
4046       implicit real*8 (a-h,o-z)
4047       include 'DIMENSIONS'
4048       include 'COMMON.GEO'
4049       include 'COMMON.VAR'
4050       include 'COMMON.LOCAL'
4051       include 'COMMON.CHAIN'
4052       include 'COMMON.DERIV'
4053       include 'COMMON.INTERACT'
4054       include 'COMMON.FFIELD'
4055       include 'COMMON.IOUNITS'
4056       include 'COMMON.CONTROL'
4057       dimension ggg(3)
4058       evdw2=0.0D0
4059       evdw2_14=0.0d0
4060       r0_scp=4.5d0
4061 cd    print '(a)','Enter ESCP'
4062 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4063       do i=iatscp_s,iatscp_e
4064         iteli=itel(i)
4065         xi=0.5D0*(c(1,i)+c(1,i+1))
4066         yi=0.5D0*(c(2,i)+c(2,i+1))
4067         zi=0.5D0*(c(3,i)+c(3,i+1))
4068
4069         do iint=1,nscp_gr(i)
4070
4071         do j=iscpstart(i,iint),iscpend(i,iint)
4072           itypj=itype(j)
4073 C Uncomment following three lines for SC-p interactions
4074 c         xj=c(1,nres+j)-xi
4075 c         yj=c(2,nres+j)-yi
4076 c         zj=c(3,nres+j)-zi
4077 C Uncomment following three lines for Ca-p interactions
4078           xj=c(1,j)-xi
4079           yj=c(2,j)-yi
4080           zj=c(3,j)-zi
4081           rij=xj*xj+yj*yj+zj*zj
4082           r0ij=r0_scp
4083           r0ijsq=r0ij*r0ij
4084           if (rij.lt.r0ijsq) then
4085             evdwij=0.25d0*(rij-r0ijsq)**2
4086             fac=rij-r0ijsq
4087           else
4088             evdwij=0.0d0
4089             fac=0.0d0
4090           endif 
4091           evdw2=evdw2+evdwij
4092 C
4093 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4094 C
4095           ggg(1)=xj*fac
4096           ggg(2)=yj*fac
4097           ggg(3)=zj*fac
4098 cgrad          if (j.lt.i) then
4099 cd          write (iout,*) 'j<i'
4100 C Uncomment following three lines for SC-p interactions
4101 c           do k=1,3
4102 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4103 c           enddo
4104 cgrad          else
4105 cd          write (iout,*) 'j>i'
4106 cgrad            do k=1,3
4107 cgrad              ggg(k)=-ggg(k)
4108 C Uncomment following line for SC-p interactions
4109 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4110 cgrad            enddo
4111 cgrad          endif
4112 cgrad          do k=1,3
4113 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4114 cgrad          enddo
4115 cgrad          kstart=min0(i+1,j)
4116 cgrad          kend=max0(i-1,j-1)
4117 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4118 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4119 cgrad          do k=kstart,kend
4120 cgrad            do l=1,3
4121 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4122 cgrad            enddo
4123 cgrad          enddo
4124           do k=1,3
4125             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4126             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4127           enddo
4128         enddo
4129
4130         enddo ! iint
4131       enddo ! i
4132       return
4133       end
4134 C-----------------------------------------------------------------------------
4135       subroutine escp(evdw2,evdw2_14)
4136 C
4137 C This subroutine calculates the excluded-volume interaction energy between
4138 C peptide-group centers and side chains and its gradient in virtual-bond and
4139 C side-chain vectors.
4140 C
4141       implicit real*8 (a-h,o-z)
4142       include 'DIMENSIONS'
4143       include 'COMMON.GEO'
4144       include 'COMMON.VAR'
4145       include 'COMMON.LOCAL'
4146       include 'COMMON.CHAIN'
4147       include 'COMMON.DERIV'
4148       include 'COMMON.INTERACT'
4149       include 'COMMON.FFIELD'
4150       include 'COMMON.IOUNITS'
4151       include 'COMMON.CONTROL'
4152       dimension ggg(3)
4153       evdw2=0.0D0
4154       evdw2_14=0.0d0
4155 cd    print '(a)','Enter ESCP'
4156 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4157       do i=iatscp_s,iatscp_e
4158         iteli=itel(i)
4159         xi=0.5D0*(c(1,i)+c(1,i+1))
4160         yi=0.5D0*(c(2,i)+c(2,i+1))
4161         zi=0.5D0*(c(3,i)+c(3,i+1))
4162
4163         do iint=1,nscp_gr(i)
4164
4165         do j=iscpstart(i,iint),iscpend(i,iint)
4166           itypj=itype(j)
4167 C Uncomment following three lines for SC-p interactions
4168 c         xj=c(1,nres+j)-xi
4169 c         yj=c(2,nres+j)-yi
4170 c         zj=c(3,nres+j)-zi
4171 C Uncomment following three lines for Ca-p interactions
4172           xj=c(1,j)-xi
4173           yj=c(2,j)-yi
4174           zj=c(3,j)-zi
4175           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4176           fac=rrij**expon2
4177           e1=fac*fac*aad(itypj,iteli)
4178           e2=fac*bad(itypj,iteli)
4179           if (iabs(j-i) .le. 2) then
4180             e1=scal14*e1
4181             e2=scal14*e2
4182             evdw2_14=evdw2_14+e1+e2
4183           endif
4184           evdwij=e1+e2
4185           evdw2=evdw2+evdwij
4186           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4187      &        'evdw2',i,j,evdwij
4188 C
4189 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4190 C
4191           fac=-(evdwij+e1)*rrij
4192           ggg(1)=xj*fac
4193           ggg(2)=yj*fac
4194           ggg(3)=zj*fac
4195 cgrad          if (j.lt.i) then
4196 cd          write (iout,*) 'j<i'
4197 C Uncomment following three lines for SC-p interactions
4198 c           do k=1,3
4199 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4200 c           enddo
4201 cgrad          else
4202 cd          write (iout,*) 'j>i'
4203 cgrad            do k=1,3
4204 cgrad              ggg(k)=-ggg(k)
4205 C Uncomment following line for SC-p interactions
4206 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4207 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4208 cgrad            enddo
4209 cgrad          endif
4210 cgrad          do k=1,3
4211 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4212 cgrad          enddo
4213 cgrad          kstart=min0(i+1,j)
4214 cgrad          kend=max0(i-1,j-1)
4215 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4216 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4217 cgrad          do k=kstart,kend
4218 cgrad            do l=1,3
4219 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4220 cgrad            enddo
4221 cgrad          enddo
4222           do k=1,3
4223             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4224             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4225           enddo
4226         enddo
4227
4228         enddo ! iint
4229       enddo ! i
4230       do i=1,nct
4231         do j=1,3
4232           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4233           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4234           gradx_scp(j,i)=expon*gradx_scp(j,i)
4235         enddo
4236       enddo
4237 C******************************************************************************
4238 C
4239 C                              N O T E !!!
4240 C
4241 C To save time the factor EXPON has been extracted from ALL components
4242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4243 C use!
4244 C
4245 C******************************************************************************
4246       return
4247       end
4248 C--------------------------------------------------------------------------
4249       subroutine edis(ehpb)
4250
4251 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4252 C
4253       implicit real*8 (a-h,o-z)
4254       include 'DIMENSIONS'
4255       include 'COMMON.SBRIDGE'
4256       include 'COMMON.CHAIN'
4257       include 'COMMON.DERIV'
4258       include 'COMMON.VAR'
4259       include 'COMMON.INTERACT'
4260       include 'COMMON.IOUNITS'
4261       dimension ggg(3)
4262       ehpb=0.0D0
4263 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4264 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4265       if (link_end.eq.0) return
4266       do i=link_start,link_end
4267 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4268 C CA-CA distance used in regularization of structure.
4269         ii=ihpb(i)
4270         jj=jhpb(i)
4271 C iii and jjj point to the residues for which the distance is assigned.
4272         if (ii.gt.nres) then
4273           iii=ii-nres
4274           jjj=jj-nres 
4275         else
4276           iii=ii
4277           jjj=jj
4278         endif
4279 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4280 c     &    dhpb(i),dhpb1(i),forcon(i)
4281 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4282 C    distance and angle dependent SS bond potential.
4283 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4284 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4285         if (.not.dyn_ss .and. i.le.nss) then
4286 C 15/02/13 CC dynamic SSbond - additional check
4287          if (ii.gt.nres 
4288      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4289           call ssbond_ene(iii,jjj,eij)
4290           ehpb=ehpb+2*eij
4291          endif
4292 cd          write (iout,*) "eij",eij
4293         else if (ii.gt.nres .and. jj.gt.nres) then
4294 c Restraints from contact prediction
4295           dd=dist(ii,jj)
4296           if (dhpb1(i).gt.0.0d0) then
4297             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4298             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4299 c            write (iout,*) "beta nmr",
4300 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4301           else
4302             dd=dist(ii,jj)
4303             rdis=dd-dhpb(i)
4304 C Get the force constant corresponding to this distance.
4305             waga=forcon(i)
4306 C Calculate the contribution to energy.
4307             ehpb=ehpb+waga*rdis*rdis
4308 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4309 C
4310 C Evaluate gradient.
4311 C
4312             fac=waga*rdis/dd
4313           endif  
4314           do j=1,3
4315             ggg(j)=fac*(c(j,jj)-c(j,ii))
4316           enddo
4317           do j=1,3
4318             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4319             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4320           enddo
4321           do k=1,3
4322             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4323             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4324           enddo
4325         else
4326 C Calculate the distance between the two points and its difference from the
4327 C target distance.
4328           dd=dist(ii,jj)
4329           if (dhpb1(i).gt.0.0d0) then
4330             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4331             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4332 c            write (iout,*) "alph nmr",
4333 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4334           else
4335             rdis=dd-dhpb(i)
4336 C Get the force constant corresponding to this distance.
4337             waga=forcon(i)
4338 C Calculate the contribution to energy.
4339             ehpb=ehpb+waga*rdis*rdis
4340 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4341 C
4342 C Evaluate gradient.
4343 C
4344             fac=waga*rdis/dd
4345           endif
4346 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4347 cd   &   ' waga=',waga,' fac=',fac
4348             do j=1,3
4349               ggg(j)=fac*(c(j,jj)-c(j,ii))
4350             enddo
4351 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4352 C If this is a SC-SC distance, we need to calculate the contributions to the
4353 C Cartesian gradient in the SC vectors (ghpbx).
4354           if (iii.lt.ii) then
4355           do j=1,3
4356             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4357             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4358           enddo
4359           endif
4360 cgrad        do j=iii,jjj-1
4361 cgrad          do k=1,3
4362 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4363 cgrad          enddo
4364 cgrad        enddo
4365           do k=1,3
4366             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4367             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4368           enddo
4369         endif
4370       enddo
4371       ehpb=0.5D0*ehpb
4372       return
4373       end
4374 C--------------------------------------------------------------------------
4375       subroutine ssbond_ene(i,j,eij)
4376
4377 C Calculate the distance and angle dependent SS-bond potential energy
4378 C using a free-energy function derived based on RHF/6-31G** ab initio
4379 C calculations of diethyl disulfide.
4380 C
4381 C A. Liwo and U. Kozlowska, 11/24/03
4382 C
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.SBRIDGE'
4386       include 'COMMON.CHAIN'
4387       include 'COMMON.DERIV'
4388       include 'COMMON.LOCAL'
4389       include 'COMMON.INTERACT'
4390       include 'COMMON.VAR'
4391       include 'COMMON.IOUNITS'
4392       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4393       itypi=itype(i)
4394       xi=c(1,nres+i)
4395       yi=c(2,nres+i)
4396       zi=c(3,nres+i)
4397       dxi=dc_norm(1,nres+i)
4398       dyi=dc_norm(2,nres+i)
4399       dzi=dc_norm(3,nres+i)
4400 c      dsci_inv=dsc_inv(itypi)
4401       dsci_inv=vbld_inv(nres+i)
4402       itypj=itype(j)
4403 c      dscj_inv=dsc_inv(itypj)
4404       dscj_inv=vbld_inv(nres+j)
4405       xj=c(1,nres+j)-xi
4406       yj=c(2,nres+j)-yi
4407       zj=c(3,nres+j)-zi
4408       dxj=dc_norm(1,nres+j)
4409       dyj=dc_norm(2,nres+j)
4410       dzj=dc_norm(3,nres+j)
4411       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4412       rij=dsqrt(rrij)
4413       erij(1)=xj*rij
4414       erij(2)=yj*rij
4415       erij(3)=zj*rij
4416       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4417       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4418       om12=dxi*dxj+dyi*dyj+dzi*dzj
4419       do k=1,3
4420         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4421         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4422       enddo
4423       rij=1.0d0/rij
4424       deltad=rij-d0cm
4425       deltat1=1.0d0-om1
4426       deltat2=1.0d0+om2
4427       deltat12=om2-om1+2.0d0
4428       cosphi=om12-om1*om2
4429       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4430      &  +akct*deltad*deltat12+ebr
4431      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4432 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4433 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4434 c     &  " deltat12",deltat12," eij",eij 
4435       ed=2*akcm*deltad+akct*deltat12
4436       pom1=akct*deltad
4437       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4438       eom1=-2*akth*deltat1-pom1-om2*pom2
4439       eom2= 2*akth*deltat2+pom1-om1*pom2
4440       eom12=pom2
4441       do k=1,3
4442         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4443         ghpbx(k,i)=ghpbx(k,i)-ggk
4444      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4445      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4446         ghpbx(k,j)=ghpbx(k,j)+ggk
4447      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4448      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4449         ghpbc(k,i)=ghpbc(k,i)-ggk
4450         ghpbc(k,j)=ghpbc(k,j)+ggk
4451       enddo
4452 C
4453 C Calculate the components of the gradient in DC and X
4454 C
4455 cgrad      do k=i,j-1
4456 cgrad        do l=1,3
4457 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4458 cgrad        enddo
4459 cgrad      enddo
4460       return
4461       end
4462 C--------------------------------------------------------------------------
4463       subroutine ebond(estr)
4464 c
4465 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4466 c
4467       implicit real*8 (a-h,o-z)
4468       include 'DIMENSIONS'
4469       include 'COMMON.LOCAL'
4470       include 'COMMON.GEO'
4471       include 'COMMON.INTERACT'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.VAR'
4474       include 'COMMON.CHAIN'
4475       include 'COMMON.IOUNITS'
4476       include 'COMMON.NAMES'
4477       include 'COMMON.FFIELD'
4478       include 'COMMON.CONTROL'
4479       include 'COMMON.SETUP'
4480       double precision u(3),ud(3)
4481       estr=0.0d0
4482       do i=ibondp_start,ibondp_end
4483         diff = vbld(i)-vbldp0
4484 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4485         estr=estr+diff*diff
4486         do j=1,3
4487           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4488         enddo
4489 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4490       enddo
4491       estr=0.5d0*AKP*estr
4492 c
4493 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4494 c
4495       do i=ibond_start,ibond_end
4496         iti=itype(i)
4497         if (iti.ne.10) then
4498           nbi=nbondterm(iti)
4499           if (nbi.eq.1) then
4500             diff=vbld(i+nres)-vbldsc0(1,iti)
4501 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4502 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4503             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4504             do j=1,3
4505               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4506             enddo
4507           else
4508             do j=1,nbi
4509               diff=vbld(i+nres)-vbldsc0(j,iti) 
4510               ud(j)=aksc(j,iti)*diff
4511               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4512             enddo
4513             uprod=u(1)
4514             do j=2,nbi
4515               uprod=uprod*u(j)
4516             enddo
4517             usum=0.0d0
4518             usumsqder=0.0d0
4519             do j=1,nbi
4520               uprod1=1.0d0
4521               uprod2=1.0d0
4522               do k=1,nbi
4523                 if (k.ne.j) then
4524                   uprod1=uprod1*u(k)
4525                   uprod2=uprod2*u(k)*u(k)
4526                 endif
4527               enddo
4528               usum=usum+uprod1
4529               usumsqder=usumsqder+ud(j)*uprod2   
4530             enddo
4531             estr=estr+uprod/usum
4532             do j=1,3
4533              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4534             enddo
4535           endif
4536         endif
4537       enddo
4538       return
4539       end 
4540 #ifdef CRYST_THETA
4541 C--------------------------------------------------------------------------
4542       subroutine ebend(etheta)
4543 C
4544 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4545 C angles gamma and its derivatives in consecutive thetas and gammas.
4546 C
4547       implicit real*8 (a-h,o-z)
4548       include 'DIMENSIONS'
4549       include 'COMMON.LOCAL'
4550       include 'COMMON.GEO'
4551       include 'COMMON.INTERACT'
4552       include 'COMMON.DERIV'
4553       include 'COMMON.VAR'
4554       include 'COMMON.CHAIN'
4555       include 'COMMON.IOUNITS'
4556       include 'COMMON.NAMES'
4557       include 'COMMON.FFIELD'
4558       include 'COMMON.CONTROL'
4559       common /calcthet/ term1,term2,termm,diffak,ratak,
4560      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4561      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4562       double precision y(2),z(2)
4563       delta=0.02d0*pi
4564 c      time11=dexp(-2*time)
4565 c      time12=1.0d0
4566       etheta=0.0D0
4567 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4568       do i=ithet_start,ithet_end
4569 C Zero the energy function and its derivative at 0 or pi.
4570         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4571         it=itype(i-1)
4572         if (i.gt.3) then
4573 #ifdef OSF
4574           phii=phi(i)
4575           if (phii.ne.phii) phii=150.0
4576 #else
4577           phii=phi(i)
4578 #endif
4579           y(1)=dcos(phii)
4580           y(2)=dsin(phii)
4581         else 
4582           y(1)=0.0D0
4583           y(2)=0.0D0
4584         endif
4585         if (i.lt.nres) then
4586 #ifdef OSF
4587           phii1=phi(i+1)
4588           if (phii1.ne.phii1) phii1=150.0
4589           phii1=pinorm(phii1)
4590           z(1)=cos(phii1)
4591 #else
4592           phii1=phi(i+1)
4593           z(1)=dcos(phii1)
4594 #endif
4595           z(2)=dsin(phii1)
4596         else
4597           z(1)=0.0D0
4598           z(2)=0.0D0
4599         endif  
4600 C Calculate the "mean" value of theta from the part of the distribution
4601 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4602 C In following comments this theta will be referred to as t_c.
4603         thet_pred_mean=0.0d0
4604         do k=1,2
4605           athetk=athet(k,it)
4606           bthetk=bthet(k,it)
4607           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4608         enddo
4609         dthett=thet_pred_mean*ssd
4610         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4611 C Derivatives of the "mean" values in gamma1 and gamma2.
4612         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4613         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4614         if (theta(i).gt.pi-delta) then
4615           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4616      &         E_tc0)
4617           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4618           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4619           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4620      &        E_theta)
4621           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4622      &        E_tc)
4623         else if (theta(i).lt.delta) then
4624           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4625           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4626           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4627      &        E_theta)
4628           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4630      &        E_tc)
4631         else
4632           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4633      &        E_theta,E_tc)
4634         endif
4635         etheta=etheta+ethetai
4636         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4637      &      'ebend',i,ethetai
4638         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4639         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4640         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4641       enddo
4642 C Ufff.... We've done all this!!! 
4643       return
4644       end
4645 C---------------------------------------------------------------------------
4646       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4647      &     E_tc)
4648       implicit real*8 (a-h,o-z)
4649       include 'DIMENSIONS'
4650       include 'COMMON.LOCAL'
4651       include 'COMMON.IOUNITS'
4652       common /calcthet/ term1,term2,termm,diffak,ratak,
4653      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4654      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4655 C Calculate the contributions to both Gaussian lobes.
4656 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4657 C The "polynomial part" of the "standard deviation" of this part of 
4658 C the distribution.
4659         sig=polthet(3,it)
4660         do j=2,0,-1
4661           sig=sig*thet_pred_mean+polthet(j,it)
4662         enddo
4663 C Derivative of the "interior part" of the "standard deviation of the" 
4664 C gamma-dependent Gaussian lobe in t_c.
4665         sigtc=3*polthet(3,it)
4666         do j=2,1,-1
4667           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4668         enddo
4669         sigtc=sig*sigtc
4670 C Set the parameters of both Gaussian lobes of the distribution.
4671 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4672         fac=sig*sig+sigc0(it)
4673         sigcsq=fac+fac
4674         sigc=1.0D0/sigcsq
4675 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4676         sigsqtc=-4.0D0*sigcsq*sigtc
4677 c       print *,i,sig,sigtc,sigsqtc
4678 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4679         sigtc=-sigtc/(fac*fac)
4680 C Following variable is sigma(t_c)**(-2)
4681         sigcsq=sigcsq*sigcsq
4682         sig0i=sig0(it)
4683         sig0inv=1.0D0/sig0i**2
4684         delthec=thetai-thet_pred_mean
4685         delthe0=thetai-theta0i
4686         term1=-0.5D0*sigcsq*delthec*delthec
4687         term2=-0.5D0*sig0inv*delthe0*delthe0
4688 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4689 C NaNs in taking the logarithm. We extract the largest exponent which is added
4690 C to the energy (this being the log of the distribution) at the end of energy
4691 C term evaluation for this virtual-bond angle.
4692         if (term1.gt.term2) then
4693           termm=term1
4694           term2=dexp(term2-termm)
4695           term1=1.0d0
4696         else
4697           termm=term2
4698           term1=dexp(term1-termm)
4699           term2=1.0d0
4700         endif
4701 C The ratio between the gamma-independent and gamma-dependent lobes of
4702 C the distribution is a Gaussian function of thet_pred_mean too.
4703         diffak=gthet(2,it)-thet_pred_mean
4704         ratak=diffak/gthet(3,it)**2
4705         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4706 C Let's differentiate it in thet_pred_mean NOW.
4707         aktc=ak*ratak
4708 C Now put together the distribution terms to make complete distribution.
4709         termexp=term1+ak*term2
4710         termpre=sigc+ak*sig0i
4711 C Contribution of the bending energy from this theta is just the -log of
4712 C the sum of the contributions from the two lobes and the pre-exponential
4713 C factor. Simple enough, isn't it?
4714         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4715 C NOW the derivatives!!!
4716 C 6/6/97 Take into account the deformation.
4717         E_theta=(delthec*sigcsq*term1
4718      &       +ak*delthe0*sig0inv*term2)/termexp
4719         E_tc=((sigtc+aktc*sig0i)/termpre
4720      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4721      &       aktc*term2)/termexp)
4722       return
4723       end
4724 c-----------------------------------------------------------------------------
4725       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4726       implicit real*8 (a-h,o-z)
4727       include 'DIMENSIONS'
4728       include 'COMMON.LOCAL'
4729       include 'COMMON.IOUNITS'
4730       common /calcthet/ term1,term2,termm,diffak,ratak,
4731      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4732      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4733       delthec=thetai-thet_pred_mean
4734       delthe0=thetai-theta0i
4735 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4736       t3 = thetai-thet_pred_mean
4737       t6 = t3**2
4738       t9 = term1
4739       t12 = t3*sigcsq
4740       t14 = t12+t6*sigsqtc
4741       t16 = 1.0d0
4742       t21 = thetai-theta0i
4743       t23 = t21**2
4744       t26 = term2
4745       t27 = t21*t26
4746       t32 = termexp
4747       t40 = t32**2
4748       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4749      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4750      & *(-t12*t9-ak*sig0inv*t27)
4751       return
4752       end
4753 #else
4754 C--------------------------------------------------------------------------
4755       subroutine ebend(etheta)
4756 C
4757 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4758 C angles gamma and its derivatives in consecutive thetas and gammas.
4759 C ab initio-derived potentials from 
4760 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4761 C
4762       implicit real*8 (a-h,o-z)
4763       include 'DIMENSIONS'
4764       include 'COMMON.LOCAL'
4765       include 'COMMON.GEO'
4766       include 'COMMON.INTERACT'
4767       include 'COMMON.DERIV'
4768       include 'COMMON.VAR'
4769       include 'COMMON.CHAIN'
4770       include 'COMMON.IOUNITS'
4771       include 'COMMON.NAMES'
4772       include 'COMMON.FFIELD'
4773       include 'COMMON.CONTROL'
4774       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4775      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4776      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4777      & sinph1ph2(maxdouble,maxdouble)
4778       logical lprn /.false./, lprn1 /.false./
4779       etheta=0.0D0
4780       do i=ithet_start,ithet_end
4781         dethetai=0.0d0
4782         dephii=0.0d0
4783         dephii1=0.0d0
4784         theti2=0.5d0*theta(i)
4785         ityp2=ithetyp(itype(i-1))
4786         do k=1,nntheterm
4787           coskt(k)=dcos(k*theti2)
4788           sinkt(k)=dsin(k*theti2)
4789         enddo
4790         if (i.gt.3) then
4791 #ifdef OSF
4792           phii=phi(i)
4793           if (phii.ne.phii) phii=150.0
4794 #else
4795           phii=phi(i)
4796 #endif
4797           ityp1=ithetyp(itype(i-2))
4798           do k=1,nsingle
4799             cosph1(k)=dcos(k*phii)
4800             sinph1(k)=dsin(k*phii)
4801           enddo
4802         else
4803           phii=0.0d0
4804           ityp1=nthetyp+1
4805           do k=1,nsingle
4806             cosph1(k)=0.0d0
4807             sinph1(k)=0.0d0
4808           enddo 
4809         endif
4810         if (i.lt.nres) then
4811
4812         if (iabs(itype(i+1)).eq.20) iblock=2
4813         if (iabs(itype(i+1)).ne.20) iblock=1
4814 #ifdef OSF
4815           phii1=phi(i+1)
4816           if (phii1.ne.phii1) phii1=150.0
4817           phii1=pinorm(phii1)
4818 #else
4819           phii1=phi(i+1)
4820 #endif
4821           ityp3=ithetyp(itype(i))
4822           do k=1,nsingle
4823             cosph2(k)=dcos(k*phii1)
4824             sinph2(k)=dsin(k*phii1)
4825           enddo
4826         else
4827           phii1=0.0d0
4828           ityp3=nthetyp+1
4829           do k=1,nsingle
4830             cosph2(k)=0.0d0
4831             sinph2(k)=0.0d0
4832           enddo
4833         endif  
4834          ethetai=aa0thet(ityp1,ityp2,ityp3,iblock)
4835         do k=1,ndouble
4836           do l=1,k-1
4837             ccl=cosph1(l)*cosph2(k-l)
4838             ssl=sinph1(l)*sinph2(k-l)
4839             scl=sinph1(l)*cosph2(k-l)
4840             csl=cosph1(l)*sinph2(k-l)
4841             cosph1ph2(l,k)=ccl-ssl
4842             cosph1ph2(k,l)=ccl+ssl
4843             sinph1ph2(l,k)=scl+csl
4844             sinph1ph2(k,l)=scl-csl
4845           enddo
4846         enddo
4847         if (lprn) then
4848         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4849      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4850         write (iout,*) "coskt and sinkt"
4851         do k=1,nntheterm
4852           write (iout,*) k,coskt(k),sinkt(k)
4853         enddo
4854         endif
4855         do k=1,ntheterm
4856           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3,iblock)*sinkt(k)
4857           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3,iblock)
4858      &      *coskt(k)
4859           if (lprn)
4860      &    write (iout,*) "k",k,
4861      &    "aathet",aathet(k,ityp1,ityp2,ityp3,iblock),
4862      &     " ethetai",ethetai
4863         enddo
4864         if (lprn) then
4865         write (iout,*) "cosph and sinph"
4866         do k=1,nsingle
4867           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4868         enddo
4869         write (iout,*) "cosph1ph2 and sinph2ph2"
4870         do k=2,ndouble
4871           do l=1,k-1
4872             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4873      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4874           enddo
4875         enddo
4876         write(iout,*) "ethetai",ethetai
4877         endif
4878         do m=1,ntheterm2
4879           do k=1,nsingle
4880             aux=bbthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)
4881      &         +ccthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k)
4882      &         +ddthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)
4883      &         +eethet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k)
4884             ethetai=ethetai+sinkt(m)*aux
4885             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4886             dephii=dephii+k*sinkt(m)*(
4887      &          ccthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)-
4888      &          bbthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k))
4889             dephii1=dephii1+k*sinkt(m)*(
4890      &          eethet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)-
4891      &          ddthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k))
4892             if (lprn)
4893      &      write (iout,*) "m",m," k",k," bbthet",
4894      &         bbthet(k,m,ityp1,ityp2,ityp3,iblock)," ccthet",
4895      &         ccthet(k,m,ityp1,ityp2,ityp3,iblock)," ddthet",
4896      &         ddthet(k,m,ityp1,ityp2,ityp3,iblock)," eethet",
4897      &         eethet(k,m,ityp1,ityp2,ityp3,iblock)," ethetai",ethetai
4898           enddo
4899         enddo
4900         if (lprn)
4901      &  write(iout,*) "ethetai",ethetai
4902         do m=1,ntheterm3
4903           do k=2,ndouble
4904             do l=1,k-1
4905        aux=ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+
4906      & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)+
4907      & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+
4908      & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)
4909
4910               ethetai=ethetai+sinkt(m)*aux
4911               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4912               dephii=dephii+l*sinkt(m)*(
4913      & -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)-
4914      &  ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+
4915      &  ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+
4916      &  ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l))
4917
4918               dephii1=dephii1+(k-l)*sinkt(m)*(
4919      &-ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+
4920      & ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+
4921      & ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)-
4922      & ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l))
4923
4924               if (lprn) then
4925               write (iout,*) "m",m," k",k," l",l," ffthet",
4926      &            ffthet(l,k,m,ityp1,ityp2,ityp3,iblock),
4927      &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)," ggthet",
4928      &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock),
4929      &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock),
4930      &            " ethetai",ethetai
4931
4932               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4933      &            cosph1ph2(k,l)*sinkt(m),
4934      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4935               endif
4936             enddo
4937           enddo
4938         enddo
4939 10      continue
4940         if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
4941      &   i,theta(i)*rad2deg,phii*rad2deg,
4942      &   phii1*rad2deg,ethetai
4943         etheta=etheta+ethetai
4944         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4945         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4946         gloc(nphi+i-2,icg)=wang*dethetai
4947       enddo
4948       return
4949       end
4950 #endif
4951 #ifdef CRYST_SC
4952 c-----------------------------------------------------------------------------
4953       subroutine esc(escloc)
4954 C Calculate the local energy of a side chain and its derivatives in the
4955 C corresponding virtual-bond valence angles THETA and the spherical angles 
4956 C ALPHA and OMEGA.
4957       implicit real*8 (a-h,o-z)
4958       include 'DIMENSIONS'
4959       include 'COMMON.GEO'
4960       include 'COMMON.LOCAL'
4961       include 'COMMON.VAR'
4962       include 'COMMON.INTERACT'
4963       include 'COMMON.DERIV'
4964       include 'COMMON.CHAIN'
4965       include 'COMMON.IOUNITS'
4966       include 'COMMON.NAMES'
4967       include 'COMMON.FFIELD'
4968       include 'COMMON.CONTROL'
4969       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4970      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4971       common /sccalc/ time11,time12,time112,theti,it,nlobit
4972       delta=0.02d0*pi
4973       escloc=0.0D0
4974 c     write (iout,'(a)') 'ESC'
4975       do i=loc_start,loc_end
4976         it=itype(i)
4977         if (it.eq.10) goto 1
4978         nlobit=nlob(it)
4979 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4980 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4981         theti=theta(i+1)-pipol
4982         x(1)=dtan(theti)
4983         x(2)=alph(i)
4984         x(3)=omeg(i)
4985
4986         if (x(2).gt.pi-delta) then
4987           xtemp(1)=x(1)
4988           xtemp(2)=pi-delta
4989           xtemp(3)=x(3)
4990           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4991           xtemp(2)=pi
4992           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4993           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4994      &        escloci,dersc(2))
4995           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4996      &        ddersc0(1),dersc(1))
4997           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4998      &        ddersc0(3),dersc(3))
4999           xtemp(2)=pi-delta
5000           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5001           xtemp(2)=pi
5002           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5003           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5004      &            dersc0(2),esclocbi,dersc02)
5005           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5006      &            dersc12,dersc01)
5007           call splinthet(x(2),0.5d0*delta,ss,ssd)
5008           dersc0(1)=dersc01
5009           dersc0(2)=dersc02
5010           dersc0(3)=0.0d0
5011           do k=1,3
5012             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5013           enddo
5014           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5015 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5016 c    &             esclocbi,ss,ssd
5017           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5018 c         escloci=esclocbi
5019 c         write (iout,*) escloci
5020         else if (x(2).lt.delta) then
5021           xtemp(1)=x(1)
5022           xtemp(2)=delta
5023           xtemp(3)=x(3)
5024           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5025           xtemp(2)=0.0d0
5026           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5027           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5028      &        escloci,dersc(2))
5029           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5030      &        ddersc0(1),dersc(1))
5031           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5032      &        ddersc0(3),dersc(3))
5033           xtemp(2)=delta
5034           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5035           xtemp(2)=0.0d0
5036           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5037           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5038      &            dersc0(2),esclocbi,dersc02)
5039           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5040      &            dersc12,dersc01)
5041           dersc0(1)=dersc01
5042           dersc0(2)=dersc02
5043           dersc0(3)=0.0d0
5044           call splinthet(x(2),0.5d0*delta,ss,ssd)
5045           do k=1,3
5046             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5047           enddo
5048           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5049 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5050 c    &             esclocbi,ss,ssd
5051           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5052 c         write (iout,*) escloci
5053         else
5054           call enesc(x,escloci,dersc,ddummy,.false.)
5055         endif
5056
5057         escloc=escloc+escloci
5058         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5059      &     'escloc',i,escloci
5060 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5061
5062         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5063      &   wscloc*dersc(1)
5064         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5065         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5066     1   continue
5067       enddo
5068       return
5069       end
5070 C---------------------------------------------------------------------------
5071       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5072       implicit real*8 (a-h,o-z)
5073       include 'DIMENSIONS'
5074       include 'COMMON.GEO'
5075       include 'COMMON.LOCAL'
5076       include 'COMMON.IOUNITS'
5077       common /sccalc/ time11,time12,time112,theti,it,nlobit
5078       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5079       double precision contr(maxlob,-1:1)
5080       logical mixed
5081 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5082         escloc_i=0.0D0
5083         do j=1,3
5084           dersc(j)=0.0D0
5085           if (mixed) ddersc(j)=0.0d0
5086         enddo
5087         x3=x(3)
5088
5089 C Because of periodicity of the dependence of the SC energy in omega we have
5090 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5091 C To avoid underflows, first compute & store the exponents.
5092
5093         do iii=-1,1
5094
5095           x(3)=x3+iii*dwapi
5096  
5097           do j=1,nlobit
5098             do k=1,3
5099               z(k)=x(k)-censc(k,j,it)
5100             enddo
5101             do k=1,3
5102               Axk=0.0D0
5103               do l=1,3
5104                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5105               enddo
5106               Ax(k,j,iii)=Axk
5107             enddo 
5108             expfac=0.0D0 
5109             do k=1,3
5110               expfac=expfac+Ax(k,j,iii)*z(k)
5111             enddo
5112             contr(j,iii)=expfac
5113           enddo ! j
5114
5115         enddo ! iii
5116
5117         x(3)=x3
5118 C As in the case of ebend, we want to avoid underflows in exponentiation and
5119 C subsequent NaNs and INFs in energy calculation.
5120 C Find the largest exponent
5121         emin=contr(1,-1)
5122         do iii=-1,1
5123           do j=1,nlobit
5124             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5125           enddo 
5126         enddo
5127         emin=0.5D0*emin
5128 cd      print *,'it=',it,' emin=',emin
5129
5130 C Compute the contribution to SC energy and derivatives
5131         do iii=-1,1
5132
5133           do j=1,nlobit
5134 #ifdef OSF
5135             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5136             if(adexp.ne.adexp) adexp=1.0
5137             expfac=dexp(adexp)
5138 #else
5139             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5140 #endif
5141 cd          print *,'j=',j,' expfac=',expfac
5142             escloc_i=escloc_i+expfac
5143             do k=1,3
5144               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5145             enddo
5146             if (mixed) then
5147               do k=1,3,2
5148                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5149      &            +gaussc(k,2,j,it))*expfac
5150               enddo
5151             endif
5152           enddo
5153
5154         enddo ! iii
5155
5156         dersc(1)=dersc(1)/cos(theti)**2
5157         ddersc(1)=ddersc(1)/cos(theti)**2
5158         ddersc(3)=ddersc(3)
5159
5160         escloci=-(dlog(escloc_i)-emin)
5161         do j=1,3
5162           dersc(j)=dersc(j)/escloc_i
5163         enddo
5164         if (mixed) then
5165           do j=1,3,2
5166             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5167           enddo
5168         endif
5169       return
5170       end
5171 C------------------------------------------------------------------------------
5172       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5173       implicit real*8 (a-h,o-z)
5174       include 'DIMENSIONS'
5175       include 'COMMON.GEO'
5176       include 'COMMON.LOCAL'
5177       include 'COMMON.IOUNITS'
5178       common /sccalc/ time11,time12,time112,theti,it,nlobit
5179       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5180       double precision contr(maxlob)
5181       logical mixed
5182
5183       escloc_i=0.0D0
5184
5185       do j=1,3
5186         dersc(j)=0.0D0
5187       enddo
5188
5189       do j=1,nlobit
5190         do k=1,2
5191           z(k)=x(k)-censc(k,j,it)
5192         enddo
5193         z(3)=dwapi
5194         do k=1,3
5195           Axk=0.0D0
5196           do l=1,3
5197             Axk=Axk+gaussc(l,k,j,it)*z(l)
5198           enddo
5199           Ax(k,j)=Axk
5200         enddo 
5201         expfac=0.0D0 
5202         do k=1,3
5203           expfac=expfac+Ax(k,j)*z(k)
5204         enddo
5205         contr(j)=expfac
5206       enddo ! j
5207
5208 C As in the case of ebend, we want to avoid underflows in exponentiation and
5209 C subsequent NaNs and INFs in energy calculation.
5210 C Find the largest exponent
5211       emin=contr(1)
5212       do j=1,nlobit
5213         if (emin.gt.contr(j)) emin=contr(j)
5214       enddo 
5215       emin=0.5D0*emin
5216  
5217 C Compute the contribution to SC energy and derivatives
5218
5219       dersc12=0.0d0
5220       do j=1,nlobit
5221         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5222         escloc_i=escloc_i+expfac
5223         do k=1,2
5224           dersc(k)=dersc(k)+Ax(k,j)*expfac
5225         enddo
5226         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5227      &            +gaussc(1,2,j,it))*expfac
5228         dersc(3)=0.0d0
5229       enddo
5230
5231       dersc(1)=dersc(1)/cos(theti)**2
5232       dersc12=dersc12/cos(theti)**2
5233       escloci=-(dlog(escloc_i)-emin)
5234       do j=1,2
5235         dersc(j)=dersc(j)/escloc_i
5236       enddo
5237       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5238       return
5239       end
5240 #else
5241 c----------------------------------------------------------------------------------
5242       subroutine esc(escloc)
5243 C Calculate the local energy of a side chain and its derivatives in the
5244 C corresponding virtual-bond valence angles THETA and the spherical angles 
5245 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5246 C added by Urszula Kozlowska. 07/11/2007
5247 C
5248       implicit real*8 (a-h,o-z)
5249       include 'DIMENSIONS'
5250       include 'COMMON.GEO'
5251       include 'COMMON.LOCAL'
5252       include 'COMMON.VAR'
5253       include 'COMMON.SCROT'
5254       include 'COMMON.INTERACT'
5255       include 'COMMON.DERIV'
5256       include 'COMMON.CHAIN'
5257       include 'COMMON.IOUNITS'
5258       include 'COMMON.NAMES'
5259       include 'COMMON.FFIELD'
5260       include 'COMMON.CONTROL'
5261       include 'COMMON.VECTORS'
5262       double precision x_prime(3),y_prime(3),z_prime(3)
5263      &    , sumene,dsc_i,dp2_i,x(65),
5264      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5265      &    de_dxx,de_dyy,de_dzz,de_dt
5266       double precision s1_t,s1_6_t,s2_t,s2_6_t
5267       double precision 
5268      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5269      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5270      & dt_dCi(3),dt_dCi1(3)
5271       common /sccalc/ time11,time12,time112,theti,it,nlobit
5272       delta=0.02d0*pi
5273       escloc=0.0D0
5274       do i=loc_start,loc_end
5275         costtab(i+1) =dcos(theta(i+1))
5276         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5277         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5278         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5279         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5280         cosfac=dsqrt(cosfac2)
5281         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5282         sinfac=dsqrt(sinfac2)
5283         it=iabs(itype(i))
5284         if (it.eq.10) goto 1
5285 c
5286 C  Compute the axes of tghe local cartesian coordinates system; store in
5287 c   x_prime, y_prime and z_prime 
5288 c
5289         do j=1,3
5290           x_prime(j) = 0.00
5291           y_prime(j) = 0.00
5292           z_prime(j) = 0.00
5293         enddo
5294 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5295 C     &   dc_norm(3,i+nres)
5296         do j = 1,3
5297           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5298           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5299         enddo
5300         do j = 1,3
5301           z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i)))
5302         enddo     
5303 c       write (2,*) "i",i
5304 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5305 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5306 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5307 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5308 c      & " xy",scalar(x_prime(1),y_prime(1)),
5309 c      & " xz",scalar(x_prime(1),z_prime(1)),
5310 c      & " yy",scalar(y_prime(1),y_prime(1)),
5311 c      & " yz",scalar(y_prime(1),z_prime(1)),
5312 c      & " zz",scalar(z_prime(1),z_prime(1))
5313 c
5314 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5315 C to local coordinate system. Store in xx, yy, zz.
5316 c
5317         xx=0.0d0
5318         yy=0.0d0
5319         zz=0.0d0
5320         do j = 1,3
5321           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5322           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5323           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5324         enddo
5325
5326         xxtab(i)=xx
5327         yytab(i)=yy
5328         zztab(i)=zz
5329 C
5330 C Compute the energy of the ith side cbain
5331 C
5332 c        write (2,*) "xx",xx," yy",yy," zz",zz
5333         it=iabs(itype(i))
5334         do j = 1,65
5335           x(j) = sc_parmin(j,it) 
5336         enddo
5337 #ifdef CHECK_COORD
5338 Cc diagnostics - remove later
5339         xx1 = dcos(alph(2))
5340         yy1 = dsin(alph(2))*dcos(omeg(2))
5341         zz1 = -dsign(1.0, dfloat(itype(i)))*dsin(alph(2))*dsin(omeg(2))
5342         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5343      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5344      &    xx1,yy1,zz1
5345 C,"  --- ", xx_w,yy_w,zz_w
5346 c end diagnostics
5347 #endif
5348         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5349      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5350      &   + x(10)*yy*zz
5351         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5352      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5353      & + x(20)*yy*zz
5354         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5355      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5356      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5357      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5358      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5359      &  +x(40)*xx*yy*zz
5360         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5361      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5362      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5363      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5364      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5365      &  +x(60)*xx*yy*zz
5366         dsc_i   = 0.743d0+x(61)
5367         dp2_i   = 1.9d0+x(62)
5368         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5369      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5370         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5371      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5372         s1=(1+x(63))/(0.1d0 + dscp1)
5373         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5374         s2=(1+x(65))/(0.1d0 + dscp2)
5375         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5376         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5377      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5378 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5379 c     &   sumene4,
5380 c     &   dscp1,dscp2,sumene
5381 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5382         escloc = escloc + sumene
5383 c        write (2,*) "i",i," escloc",sumene,escloc
5384 #ifdef DEBUG
5385 C
5386 C This section to check the numerical derivatives of the energy of ith side
5387 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5388 C #define DEBUG in the code to turn it on.
5389 C
5390         write (2,*) "sumene               =",sumene
5391         aincr=1.0d-7
5392         xxsave=xx
5393         xx=xx+aincr
5394         write (2,*) xx,yy,zz
5395         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5396         de_dxx_num=(sumenep-sumene)/aincr
5397         xx=xxsave
5398         write (2,*) "xx+ sumene from enesc=",sumenep
5399         yysave=yy
5400         yy=yy+aincr
5401         write (2,*) xx,yy,zz
5402         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5403         de_dyy_num=(sumenep-sumene)/aincr
5404         yy=yysave
5405         write (2,*) "yy+ sumene from enesc=",sumenep
5406         zzsave=zz
5407         zz=zz+aincr
5408         write (2,*) xx,yy,zz
5409         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5410         de_dzz_num=(sumenep-sumene)/aincr
5411         zz=zzsave
5412         write (2,*) "zz+ sumene from enesc=",sumenep
5413         costsave=cost2tab(i+1)
5414         sintsave=sint2tab(i+1)
5415         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5416         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5417         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5418         de_dt_num=(sumenep-sumene)/aincr
5419         write (2,*) " t+ sumene from enesc=",sumenep
5420         cost2tab(i+1)=costsave
5421         sint2tab(i+1)=sintsave
5422 C End of diagnostics section.
5423 #endif
5424 C        
5425 C Compute the gradient of esc
5426 C
5427         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5428         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5429         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5430         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5431         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5432         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5433         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5434         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5435         pom1=(sumene3*sint2tab(i+1)+sumene1)
5436      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5437         pom2=(sumene4*cost2tab(i+1)+sumene2)
5438      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5439         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5440         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5441      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5442      &  +x(40)*yy*zz
5443         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5444         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5445      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5446      &  +x(60)*yy*zz
5447         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5448      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5449      &        +(pom1+pom2)*pom_dx
5450 #ifdef DEBUG
5451         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5452 #endif
5453 C
5454         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5455         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5456      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5457      &  +x(40)*xx*zz
5458         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5459         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5460      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5461      &  +x(59)*zz**2 +x(60)*xx*zz
5462         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5463      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5464      &        +(pom1-pom2)*pom_dy
5465 #ifdef DEBUG
5466         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5467 #endif
5468 C
5469         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5470      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5471      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5472      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5473      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5474      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5475      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5476      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5477 #ifdef DEBUG
5478         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5479 #endif
5480 C
5481         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5482      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5483      &  +pom1*pom_dt1+pom2*pom_dt2
5484 #ifdef DEBUG
5485         write(2,*), "de_dt = ", de_dt,de_dt_num
5486 #endif
5487
5488 C
5489        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5490        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5491        cosfac2xx=cosfac2*xx
5492        sinfac2yy=sinfac2*yy
5493        do k = 1,3
5494          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5495      &      vbld_inv(i+1)
5496          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5497      &      vbld_inv(i)
5498          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5499          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5500 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5501 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5502 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5503 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5504          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5505          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5506          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5507          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5508          dZZ_Ci1(k)=0.0d0
5509          dZZ_Ci(k)=0.0d0
5510          do j=1,3
5511            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)
5512      &     *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres)
5513            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)
5514      &     *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres)
5515          enddo
5516           
5517          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5518          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5519          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5520 c
5521          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5522          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5523        enddo
5524
5525        do k=1,3
5526          dXX_Ctab(k,i)=dXX_Ci(k)
5527          dXX_C1tab(k,i)=dXX_Ci1(k)
5528          dYY_Ctab(k,i)=dYY_Ci(k)
5529          dYY_C1tab(k,i)=dYY_Ci1(k)
5530          dZZ_Ctab(k,i)=dZZ_Ci(k)
5531          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5532          dXX_XYZtab(k,i)=dXX_XYZ(k)
5533          dYY_XYZtab(k,i)=dYY_XYZ(k)
5534          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5535        enddo
5536
5537        do k = 1,3
5538 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5539 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5540 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5541 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5542 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5543 c     &    dt_dci(k)
5544 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5545 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5546          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5547      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5548          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5549      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5550          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5551      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5552        enddo
5553 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5554 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5555
5556 C to check gradient call subroutine check_grad
5557
5558     1 continue
5559       enddo
5560       return
5561       end
5562 c------------------------------------------------------------------------------
5563       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5564       implicit none
5565       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5566      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5567       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5568      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5569      &   + x(10)*yy*zz
5570       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5571      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5572      & + x(20)*yy*zz
5573       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5574      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5575      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5576      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5577      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5578      &  +x(40)*xx*yy*zz
5579       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5580      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5581      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5582      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5583      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5584      &  +x(60)*xx*yy*zz
5585       dsc_i   = 0.743d0+x(61)
5586       dp2_i   = 1.9d0+x(62)
5587       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5588      &          *(xx*cost2+yy*sint2))
5589       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5590      &          *(xx*cost2-yy*sint2))
5591       s1=(1+x(63))/(0.1d0 + dscp1)
5592       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5593       s2=(1+x(65))/(0.1d0 + dscp2)
5594       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5595       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5596      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5597       enesc=sumene
5598       return
5599       end
5600 #endif
5601 c------------------------------------------------------------------------------
5602       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5603 C
5604 C This procedure calculates two-body contact function g(rij) and its derivative:
5605 C
5606 C           eps0ij                                     !       x < -1
5607 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5608 C            0                                         !       x > 1
5609 C
5610 C where x=(rij-r0ij)/delta
5611 C
5612 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5613 C
5614       implicit none
5615       double precision rij,r0ij,eps0ij,fcont,fprimcont
5616       double precision x,x2,x4,delta
5617 c     delta=0.02D0*r0ij
5618 c      delta=0.2D0*r0ij
5619       x=(rij-r0ij)/delta
5620       if (x.lt.-1.0D0) then
5621         fcont=eps0ij
5622         fprimcont=0.0D0
5623       else if (x.le.1.0D0) then  
5624         x2=x*x
5625         x4=x2*x2
5626         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5627         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5628       else
5629         fcont=0.0D0
5630         fprimcont=0.0D0
5631       endif
5632       return
5633       end
5634 c------------------------------------------------------------------------------
5635       subroutine splinthet(theti,delta,ss,ssder)
5636       implicit real*8 (a-h,o-z)
5637       include 'DIMENSIONS'
5638       include 'COMMON.VAR'
5639       include 'COMMON.GEO'
5640       thetup=pi-delta
5641       thetlow=delta
5642       if (theti.gt.pipol) then
5643         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5644       else
5645         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5646         ssder=-ssder
5647       endif
5648       return
5649       end
5650 c------------------------------------------------------------------------------
5651       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5652       implicit none
5653       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5654       double precision ksi,ksi2,ksi3,a1,a2,a3
5655       a1=fprim0*delta/(f1-f0)
5656       a2=3.0d0-2.0d0*a1
5657       a3=a1-2.0d0
5658       ksi=(x-x0)/delta
5659       ksi2=ksi*ksi
5660       ksi3=ksi2*ksi  
5661       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5662       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5663       return
5664       end
5665 c------------------------------------------------------------------------------
5666       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5667       implicit none
5668       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5669       double precision ksi,ksi2,ksi3,a1,a2,a3
5670       ksi=(x-x0)/delta  
5671       ksi2=ksi*ksi
5672       ksi3=ksi2*ksi
5673       a1=fprim0x*delta
5674       a2=3*(f1x-f0x)-2*fprim0x*delta
5675       a3=fprim0x*delta-2*(f1x-f0x)
5676       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5677       return
5678       end
5679 C-----------------------------------------------------------------------------
5680 #ifdef CRYST_TOR
5681 C-----------------------------------------------------------------------------
5682       subroutine etor(etors,edihcnstr)
5683       implicit real*8 (a-h,o-z)
5684       include 'DIMENSIONS'
5685       include 'COMMON.VAR'
5686       include 'COMMON.GEO'
5687       include 'COMMON.LOCAL'
5688       include 'COMMON.TORSION'
5689       include 'COMMON.INTERACT'
5690       include 'COMMON.DERIV'
5691       include 'COMMON.CHAIN'
5692       include 'COMMON.NAMES'
5693       include 'COMMON.IOUNITS'
5694       include 'COMMON.FFIELD'
5695       include 'COMMON.TORCNSTR'
5696       include 'COMMON.CONTROL'
5697       logical lprn
5698 C Set lprn=.true. for debugging
5699       lprn=.false.
5700 c      lprn=.true.
5701       etors=0.0D0
5702       do i=iphi_start,iphi_end
5703       etors_ii=0.0D0
5704         itori=itortyp(itype(i-2))
5705         itori1=itortyp(itype(i-1))
5706         phii=phi(i)
5707         gloci=0.0D0
5708 C Proline-Proline pair is a special case...
5709         if (itori.eq.3 .and. itori1.eq.3) then
5710           if (phii.gt.-dwapi3) then
5711             cosphi=dcos(3*phii)
5712             fac=1.0D0/(1.0D0-cosphi)
5713             etorsi=v1(1,3,3)*fac
5714             etorsi=etorsi+etorsi
5715             etors=etors+etorsi-v1(1,3,3)
5716             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5717             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5718           endif
5719           do j=1,3
5720             v1ij=v1(j+1,itori,itori1)
5721             v2ij=v2(j+1,itori,itori1)
5722             cosphi=dcos(j*phii)
5723             sinphi=dsin(j*phii)
5724             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5725             if (energy_dec) etors_ii=etors_ii+
5726      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5727             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5728           enddo
5729         else 
5730           do j=1,nterm_old
5731             v1ij=v1(j,itori,itori1)
5732             v2ij=v2(j,itori,itori1)
5733             cosphi=dcos(j*phii)
5734             sinphi=dsin(j*phii)
5735             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5736             if (energy_dec) etors_ii=etors_ii+
5737      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5738             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5739           enddo
5740         endif
5741         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5742      &        'etor',i,etors_ii
5743         if (lprn)
5744      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5745      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5746      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5747         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5748         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5749       enddo
5750 ! 6/20/98 - dihedral angle constraints
5751       edihcnstr=0.0d0
5752       do i=1,ndih_constr
5753         itori=idih_constr(i)
5754         phii=phi(itori)
5755         difi=phii-phi0(i)
5756         if (difi.gt.drange(i)) then
5757           difi=difi-drange(i)
5758           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5759           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5760         else if (difi.lt.-drange(i)) then
5761           difi=difi+drange(i)
5762           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5763           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5764         endif
5765 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5766 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5767       enddo
5768 !      write (iout,*) 'edihcnstr',edihcnstr
5769       return
5770       end
5771 c------------------------------------------------------------------------------
5772       subroutine etor_d(etors_d)
5773       etors_d=0.0d0
5774       return
5775       end
5776 c----------------------------------------------------------------------------
5777 #else
5778       subroutine etor(etors,edihcnstr)
5779       implicit real*8 (a-h,o-z)
5780       include 'DIMENSIONS'
5781       include 'COMMON.VAR'
5782       include 'COMMON.GEO'
5783       include 'COMMON.LOCAL'
5784       include 'COMMON.TORSION'
5785       include 'COMMON.INTERACT'
5786       include 'COMMON.DERIV'
5787       include 'COMMON.CHAIN'
5788       include 'COMMON.NAMES'
5789       include 'COMMON.IOUNITS'
5790       include 'COMMON.FFIELD'
5791       include 'COMMON.TORCNSTR'
5792       include 'COMMON.CONTROL'
5793       logical lprn
5794 C Set lprn=.true. for debugging
5795       lprn=.false.
5796 c     lprn=.true.
5797       etors=0.0D0
5798       do i=iphi_start,iphi_end
5799       etors_ii=0.0D0
5800 c        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
5801 c     &      .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
5802         itori=itortyp(itype(i-2))
5803         itori1=itortyp(itype(i-1))
5804         phii=phi(i)
5805         gloci=0.0D0
5806 C Regular cosine and sine terms
5807         do j=1,nterm(itori,itori1)
5808           v1ij=v1(j,itori,itori1)
5809           v2ij=v2(j,itori,itori1)
5810           cosphi=dcos(j*phii)
5811           sinphi=dsin(j*phii)
5812           etors=etors+v1ij*cosphi+v2ij*sinphi
5813           if (energy_dec) etors_ii=etors_ii+
5814      &                v1ij*cosphi+v2ij*sinphi
5815           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5816         enddo
5817 C Lorentz terms
5818 C                         v1
5819 C  E = SUM ----------------------------------- - v1
5820 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5821 C
5822         cosphi=dcos(0.5d0*phii)
5823         sinphi=dsin(0.5d0*phii)
5824         do j=1,nlor(itori,itori1)
5825           vl1ij=vlor1(j,itori,itori1)
5826           vl2ij=vlor2(j,itori,itori1)
5827           vl3ij=vlor3(j,itori,itori1)
5828           pom=vl2ij*cosphi+vl3ij*sinphi
5829           pom1=1.0d0/(pom*pom+1.0d0)
5830           etors=etors+vl1ij*pom1
5831           if (energy_dec) etors_ii=etors_ii+
5832      &                vl1ij*pom1
5833           pom=-pom*pom1*pom1
5834           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5835         enddo
5836 C Subtract the constant term
5837         etors=etors-v0(itori,itori1)
5838           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5839      &         'etor',i,etors_ii-v0(itori,itori1)
5840         if (lprn)
5841      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5842      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5843      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5844         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5845 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5846       enddo
5847 ! 6/20/98 - dihedral angle constraints
5848       edihcnstr=0.0d0
5849 c      do i=1,ndih_constr
5850       do i=idihconstr_start,idihconstr_end
5851         itori=idih_constr(i)
5852         phii=phi(itori)
5853         difi=pinorm(phii-phi0(i))
5854         if (difi.gt.drange(i)) then
5855           difi=difi-drange(i)
5856           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5857           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5858         else if (difi.lt.-drange(i)) then
5859           difi=difi+drange(i)
5860           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5861           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5862         else
5863           difi=0.0
5864         endif
5865 c        write (iout,*) "gloci", gloc(i-3,icg)
5866 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5867 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5868 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5869       enddo
5870 cd       write (iout,*) 'edihcnstr',edihcnstr
5871       return
5872       end
5873 c----------------------------------------------------------------------------
5874       subroutine etor_d(etors_d)
5875 C 6/23/01 Compute double torsional energy
5876       implicit real*8 (a-h,o-z)
5877       include 'DIMENSIONS'
5878       include 'COMMON.VAR'
5879       include 'COMMON.GEO'
5880       include 'COMMON.LOCAL'
5881       include 'COMMON.TORSION'
5882       include 'COMMON.INTERACT'
5883       include 'COMMON.DERIV'
5884       include 'COMMON.CHAIN'
5885       include 'COMMON.NAMES'
5886       include 'COMMON.IOUNITS'
5887       include 'COMMON.FFIELD'
5888       include 'COMMON.TORCNSTR'
5889       logical lprn
5890 C Set lprn=.true. for debugging
5891       lprn=.false.
5892 c     lprn=.true.
5893       etors_d=0.0D0
5894       do i=iphid_start,iphid_end
5895 c        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
5896 c     &      .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
5897         itori=itortyp(itype(i-2))
5898         itori1=itortyp(itype(i-1))
5899         itori2=itortyp(itype(i))
5900         phii=phi(i)
5901         phii1=phi(i+1)
5902         gloci1=0.0D0
5903         gloci2=0.0D0
5904         do j=1,ntermd_1(itori,itori1,itori2)
5905           v1cij=v1c(1,j,itori,itori1,itori2)
5906           v1sij=v1s(1,j,itori,itori1,itori2)
5907           v2cij=v1c(2,j,itori,itori1,itori2)
5908           v2sij=v1s(2,j,itori,itori1,itori2)
5909           cosphi1=dcos(j*phii)
5910           sinphi1=dsin(j*phii)
5911           cosphi2=dcos(j*phii1)
5912           sinphi2=dsin(j*phii1)
5913           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5914      &     v2cij*cosphi2+v2sij*sinphi2
5915           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5916           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5917         enddo
5918         do k=2,ntermd_2(itori,itori1,itori2)
5919           do l=1,k-1
5920             v1cdij = v2c(k,l,itori,itori1,itori2)
5921             v2cdij = v2c(l,k,itori,itori1,itori2)
5922             v1sdij = v2s(k,l,itori,itori1,itori2)
5923             v2sdij = v2s(l,k,itori,itori1,itori2)
5924             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5925             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5926             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5927             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5928             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5929      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5930             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5931      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5932             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5933      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5934           enddo
5935         enddo
5936         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5937         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5938 c        write (iout,*) "gloci", gloc(i-3,icg)
5939       enddo
5940       return
5941       end
5942 #endif
5943 c------------------------------------------------------------------------------
5944       subroutine eback_sc_corr(esccor)
5945 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5946 c        conformational states; temporarily implemented as differences
5947 c        between UNRES torsional potentials (dependent on three types of
5948 c        residues) and the torsional potentials dependent on all 20 types
5949 c        of residues computed from AM1  energy surfaces of terminally-blocked
5950 c        amino-acid residues.
5951       implicit real*8 (a-h,o-z)
5952       include 'DIMENSIONS'
5953       include 'COMMON.VAR'
5954       include 'COMMON.GEO'
5955       include 'COMMON.LOCAL'
5956       include 'COMMON.TORSION'
5957       include 'COMMON.SCCOR'
5958       include 'COMMON.INTERACT'
5959       include 'COMMON.DERIV'
5960       include 'COMMON.CHAIN'
5961       include 'COMMON.NAMES'
5962       include 'COMMON.IOUNITS'
5963       include 'COMMON.FFIELD'
5964       include 'COMMON.CONTROL'
5965       logical lprn
5966 C Set lprn=.true. for debugging
5967       lprn=.false.
5968 c      lprn=.true.
5969 c     write (iout,*) "EBACK_SC_COR",itau_start,itau_end
5970       esccor=0.0D0
5971       do i=itau_start,itau_end
5972         esccor_ii=0.0D0
5973         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5974         isccori=isccortyp(itype(i-2))
5975         isccori1=isccortyp(itype(i-1))
5976         phii=phi(i)
5977 cccc  Added 9 May 2012
5978 cc Tauangle is torsional engle depending on the value of first digit 
5979 c(see comment below)
5980 cc Omicron is flat angle depending on the value of first digit 
5981 c(see comment below)
5982
5983         
5984         do intertyp=1,3 !intertyp
5985 cc Added 09 May 2012 (Adasko)
5986 cc  Intertyp means interaction type of backbone mainchain correlation: 
5987 c   1 = SC...Ca...Ca...Ca
5988 c   2 = Ca...Ca...Ca...SC
5989 c   3 = SC...Ca...Ca...SCi
5990         gloci=0.0D0
5991         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5992      &      (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or.
5993      &      (itype(i-1).eq.ntyp1)))
5994      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5995      &     .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)
5996      &     .or.(itype(i).eq.ntyp1)))
5997      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5998      &      (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
5999      &      (itype(i-3).eq.ntyp1)))) cycle
6000         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle
6001         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1))
6002      & cycle
6003         do j=1,nterm_sccor(isccori,isccori1)
6004           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6005           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6006           cosphi=dcos(j*tauangle(intertyp,i))
6007           sinphi=dsin(j*tauangle(intertyp,i))
6008           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6009           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6010         enddo
6011         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6012 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6013 c     &gloc_sc(intertyp,i-3,icg)
6014         if (lprn)
6015      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6016      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,isccori,isccori1,
6017      &  (v1sccor(j,intertyp,isccori,isccori1),j=1,6)
6018      & ,(v2sccor(j,intertyp,isccori,isccori1),j=1,6)
6019         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6020        enddo !intertyp
6021       enddo
6022 c        do i=1,nres
6023 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6024 c        enddo
6025       return
6026       end
6027 c----------------------------------------------------------------------------
6028       subroutine multibody(ecorr)
6029 C This subroutine calculates multi-body contributions to energy following
6030 C the idea of Skolnick et al. If side chains I and J make a contact and
6031 C at the same time side chains I+1 and J+1 make a contact, an extra 
6032 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6033       implicit real*8 (a-h,o-z)
6034       include 'DIMENSIONS'
6035       include 'COMMON.IOUNITS'
6036       include 'COMMON.DERIV'
6037       include 'COMMON.INTERACT'
6038       include 'COMMON.CONTACTS'
6039       double precision gx(3),gx1(3)
6040       logical lprn
6041
6042 C Set lprn=.true. for debugging
6043       lprn=.false.
6044
6045       if (lprn) then
6046         write (iout,'(a)') 'Contact function values:'
6047         do i=nnt,nct-2
6048           write (iout,'(i2,20(1x,i2,f10.5))') 
6049      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6050         enddo
6051       endif
6052       ecorr=0.0D0
6053       do i=nnt,nct
6054         do j=1,3
6055           gradcorr(j,i)=0.0D0
6056           gradxorr(j,i)=0.0D0
6057         enddo
6058       enddo
6059       do i=nnt,nct-2
6060
6061         DO ISHIFT = 3,4
6062
6063         i1=i+ishift
6064         num_conti=num_cont(i)
6065         num_conti1=num_cont(i1)
6066         do jj=1,num_conti
6067           j=jcont(jj,i)
6068           do kk=1,num_conti1
6069             j1=jcont(kk,i1)
6070             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6071 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6072 cd   &                   ' ishift=',ishift
6073 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6074 C The system gains extra energy.
6075               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6076             endif   ! j1==j+-ishift
6077           enddo     ! kk  
6078         enddo       ! jj
6079
6080         ENDDO ! ISHIFT
6081
6082       enddo         ! i
6083       return
6084       end
6085 c------------------------------------------------------------------------------
6086       double precision function esccorr(i,j,k,l,jj,kk)
6087       implicit real*8 (a-h,o-z)
6088       include 'DIMENSIONS'
6089       include 'COMMON.IOUNITS'
6090       include 'COMMON.DERIV'
6091       include 'COMMON.INTERACT'
6092       include 'COMMON.CONTACTS'
6093       double precision gx(3),gx1(3)
6094       logical lprn
6095       lprn=.false.
6096       eij=facont(jj,i)
6097       ekl=facont(kk,k)
6098 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6099 C Calculate the multi-body contribution to energy.
6100 C Calculate multi-body contributions to the gradient.
6101 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6102 cd   & k,l,(gacont(m,kk,k),m=1,3)
6103       do m=1,3
6104         gx(m) =ekl*gacont(m,jj,i)
6105         gx1(m)=eij*gacont(m,kk,k)
6106         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6107         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6108         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6109         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6110       enddo
6111       do m=i,j-1
6112         do ll=1,3
6113           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6114         enddo
6115       enddo
6116       do m=k,l-1
6117         do ll=1,3
6118           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6119         enddo
6120       enddo 
6121       esccorr=-eij*ekl
6122       return
6123       end
6124 c------------------------------------------------------------------------------
6125       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6126 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6127       implicit real*8 (a-h,o-z)
6128       include 'DIMENSIONS'
6129       include 'COMMON.IOUNITS'
6130 #ifdef MPI
6131       include "mpif.h"
6132       parameter (max_cont=maxconts)
6133       parameter (max_dim=26)
6134       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6135       double precision zapas(max_dim,maxconts,max_fg_procs),
6136      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6137       common /przechowalnia/ zapas
6138       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6139      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6140 #endif
6141       include 'COMMON.SETUP'
6142       include 'COMMON.FFIELD'
6143       include 'COMMON.DERIV'
6144       include 'COMMON.INTERACT'
6145       include 'COMMON.CONTACTS'
6146       include 'COMMON.CONTROL'
6147       include 'COMMON.LOCAL'
6148       double precision gx(3),gx1(3),time00
6149       logical lprn,ldone
6150
6151 C Set lprn=.true. for debugging
6152       lprn=.false.
6153 #ifdef MPI
6154       n_corr=0
6155       n_corr1=0
6156       if (nfgtasks.le.1) goto 30
6157       if (lprn) then
6158         write (iout,'(a)') 'Contact function values before RECEIVE:'
6159         do i=nnt,nct-2
6160           write (iout,'(2i3,50(1x,i2,f5.2))') 
6161      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6162      &    j=1,num_cont_hb(i))
6163         enddo
6164       endif
6165       call flush(iout)
6166       do i=1,ntask_cont_from
6167         ncont_recv(i)=0
6168       enddo
6169       do i=1,ntask_cont_to
6170         ncont_sent(i)=0
6171       enddo
6172 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6173 c     & ntask_cont_to
6174 C Make the list of contacts to send to send to other procesors
6175 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6176 c      call flush(iout)
6177       do i=iturn3_start,iturn3_end
6178 c        write (iout,*) "make contact list turn3",i," num_cont",
6179 c     &    num_cont_hb(i)
6180         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6181       enddo
6182       do i=iturn4_start,iturn4_end
6183 c        write (iout,*) "make contact list turn4",i," num_cont",
6184 c     &   num_cont_hb(i)
6185         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6186       enddo
6187       do ii=1,nat_sent
6188         i=iat_sent(ii)
6189 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6190 c     &    num_cont_hb(i)
6191         do j=1,num_cont_hb(i)
6192         do k=1,4
6193           jjc=jcont_hb(j,i)
6194           iproc=iint_sent_local(k,jjc,ii)
6195 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6196           if (iproc.gt.0) then
6197             ncont_sent(iproc)=ncont_sent(iproc)+1
6198             nn=ncont_sent(iproc)
6199             zapas(1,nn,iproc)=i
6200             zapas(2,nn,iproc)=jjc
6201             zapas(3,nn,iproc)=facont_hb(j,i)
6202             zapas(4,nn,iproc)=ees0p(j,i)
6203             zapas(5,nn,iproc)=ees0m(j,i)
6204             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6205             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6206             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6207             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6208             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6209             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6210             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6211             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6212             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6213             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6214             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6215             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6216             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6217             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6218             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6219             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6220             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6221             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6222             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6223             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6224             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6225           endif
6226         enddo
6227         enddo
6228       enddo
6229       if (lprn) then
6230       write (iout,*) 
6231      &  "Numbers of contacts to be sent to other processors",
6232      &  (ncont_sent(i),i=1,ntask_cont_to)
6233       write (iout,*) "Contacts sent"
6234       do ii=1,ntask_cont_to
6235         nn=ncont_sent(ii)
6236         iproc=itask_cont_to(ii)
6237         write (iout,*) nn," contacts to processor",iproc,
6238      &   " of CONT_TO_COMM group"
6239         do i=1,nn
6240           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6241         enddo
6242       enddo
6243       call flush(iout)
6244       endif
6245       CorrelType=477
6246       CorrelID=fg_rank+1
6247       CorrelType1=478
6248       CorrelID1=nfgtasks+fg_rank+1
6249       ireq=0
6250 C Receive the numbers of needed contacts from other processors 
6251       do ii=1,ntask_cont_from
6252         iproc=itask_cont_from(ii)
6253         ireq=ireq+1
6254         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6255      &    FG_COMM,req(ireq),IERR)
6256       enddo
6257 c      write (iout,*) "IRECV ended"
6258 c      call flush(iout)
6259 C Send the number of contacts needed by other processors
6260       do ii=1,ntask_cont_to
6261         iproc=itask_cont_to(ii)
6262         ireq=ireq+1
6263         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6264      &    FG_COMM,req(ireq),IERR)
6265       enddo
6266 c      write (iout,*) "ISEND ended"
6267 c      write (iout,*) "number of requests (nn)",ireq
6268       call flush(iout)
6269       if (ireq.gt.0) 
6270      &  call MPI_Waitall(ireq,req,status_array,ierr)
6271 c      write (iout,*) 
6272 c     &  "Numbers of contacts to be received from other processors",
6273 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6274 c      call flush(iout)
6275 C Receive contacts
6276       ireq=0
6277       do ii=1,ntask_cont_from
6278         iproc=itask_cont_from(ii)
6279         nn=ncont_recv(ii)
6280 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6281 c     &   " of CONT_TO_COMM group"
6282         call flush(iout)
6283         if (nn.gt.0) then
6284           ireq=ireq+1
6285           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6286      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6287 c          write (iout,*) "ireq,req",ireq,req(ireq)
6288         endif
6289       enddo
6290 C Send the contacts to processors that need them
6291       do ii=1,ntask_cont_to
6292         iproc=itask_cont_to(ii)
6293         nn=ncont_sent(ii)
6294 c        write (iout,*) nn," contacts to processor",iproc,
6295 c     &   " of CONT_TO_COMM group"
6296         if (nn.gt.0) then
6297           ireq=ireq+1 
6298           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6299      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6300 c          write (iout,*) "ireq,req",ireq,req(ireq)
6301 c          do i=1,nn
6302 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6303 c          enddo
6304         endif  
6305       enddo
6306 c      write (iout,*) "number of requests (contacts)",ireq
6307 c      write (iout,*) "req",(req(i),i=1,4)
6308 c      call flush(iout)
6309       if (ireq.gt.0) 
6310      & call MPI_Waitall(ireq,req,status_array,ierr)
6311       do iii=1,ntask_cont_from
6312         iproc=itask_cont_from(iii)
6313         nn=ncont_recv(iii)
6314         if (lprn) then
6315         write (iout,*) "Received",nn," contacts from processor",iproc,
6316      &   " of CONT_FROM_COMM group"
6317         call flush(iout)
6318         do i=1,nn
6319           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6320         enddo
6321         call flush(iout)
6322         endif
6323         do i=1,nn
6324           ii=zapas_recv(1,i,iii)
6325 c Flag the received contacts to prevent double-counting
6326           jj=-zapas_recv(2,i,iii)
6327 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6328 c          call flush(iout)
6329           nnn=num_cont_hb(ii)+1
6330           num_cont_hb(ii)=nnn
6331           jcont_hb(nnn,ii)=jj
6332           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6333           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6334           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6335           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6336           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6337           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6338           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6339           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6340           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6341           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6342           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6343           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6344           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6345           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6346           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6347           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6348           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6349           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6350           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6351           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6352           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6353           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6354           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6355           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6356         enddo
6357       enddo
6358       call flush(iout)
6359       if (lprn) then
6360         write (iout,'(a)') 'Contact function values after receive:'
6361         do i=nnt,nct-2
6362           write (iout,'(2i3,50(1x,i3,f5.2))') 
6363      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6364      &    j=1,num_cont_hb(i))
6365         enddo
6366         call flush(iout)
6367       endif
6368    30 continue
6369 #endif
6370       if (lprn) then
6371         write (iout,'(a)') 'Contact function values:'
6372         do i=nnt,nct-2
6373           write (iout,'(2i3,50(1x,i3,f5.2))') 
6374      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6375      &    j=1,num_cont_hb(i))
6376         enddo
6377       endif
6378       ecorr=0.0D0
6379 C Remove the loop below after debugging !!!
6380       do i=nnt,nct
6381         do j=1,3
6382           gradcorr(j,i)=0.0D0
6383           gradxorr(j,i)=0.0D0
6384         enddo
6385       enddo
6386 C Calculate the local-electrostatic correlation terms
6387       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6388         i1=i+1
6389         num_conti=num_cont_hb(i)
6390         num_conti1=num_cont_hb(i+1)
6391         do jj=1,num_conti
6392           j=jcont_hb(jj,i)
6393           jp=iabs(j)
6394           do kk=1,num_conti1
6395             j1=jcont_hb(kk,i1)
6396             jp1=iabs(j1)
6397 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6398 c     &         ' jj=',jj,' kk=',kk
6399             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6400      &          .or. j.lt.0 .and. j1.gt.0) .and.
6401      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6402 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6403 C The system gains extra energy.
6404               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6405               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6406      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6407               n_corr=n_corr+1
6408             else if (j1.eq.j) then
6409 C Contacts I-J and I-(J+1) occur simultaneously. 
6410 C The system loses extra energy.
6411 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6412             endif
6413           enddo ! kk
6414           do kk=1,num_conti
6415             j1=jcont_hb(kk,i)
6416 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6417 c    &         ' jj=',jj,' kk=',kk
6418             if (j1.eq.j+1) then
6419 C Contacts I-J and (I+1)-J occur simultaneously. 
6420 C The system loses extra energy.
6421 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6422             endif ! j1==j+1
6423           enddo ! kk
6424         enddo ! jj
6425       enddo ! i
6426       return
6427       end
6428 c------------------------------------------------------------------------------
6429       subroutine add_hb_contact(ii,jj,itask)
6430       implicit real*8 (a-h,o-z)
6431       include "DIMENSIONS"
6432       include "COMMON.IOUNITS"
6433       integer max_cont
6434       integer max_dim
6435       parameter (max_cont=maxconts)
6436       parameter (max_dim=26)
6437       include "COMMON.CONTACTS"
6438       double precision zapas(max_dim,maxconts,max_fg_procs),
6439      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6440       common /przechowalnia/ zapas
6441       integer i,j,ii,jj,iproc,itask(4),nn
6442 c      write (iout,*) "itask",itask
6443       do i=1,2
6444         iproc=itask(i)
6445         if (iproc.gt.0) then
6446           do j=1,num_cont_hb(ii)
6447             jjc=jcont_hb(j,ii)
6448 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6449             if (jjc.eq.jj) then
6450               ncont_sent(iproc)=ncont_sent(iproc)+1
6451               nn=ncont_sent(iproc)
6452               zapas(1,nn,iproc)=ii
6453               zapas(2,nn,iproc)=jjc
6454               zapas(3,nn,iproc)=facont_hb(j,ii)
6455               zapas(4,nn,iproc)=ees0p(j,ii)
6456               zapas(5,nn,iproc)=ees0m(j,ii)
6457               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6458               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6459               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6460               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6461               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6462               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6463               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6464               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6465               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6466               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6467               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6468               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6469               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6470               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6471               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6472               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6473               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6474               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6475               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6476               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6477               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6478               exit
6479             endif
6480           enddo
6481         endif
6482       enddo
6483       return
6484       end
6485 c------------------------------------------------------------------------------
6486       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6487      &  n_corr1)
6488 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6489       implicit real*8 (a-h,o-z)
6490       include 'DIMENSIONS'
6491       include 'COMMON.IOUNITS'
6492 #ifdef MPI
6493       include "mpif.h"
6494       parameter (max_cont=maxconts)
6495       parameter (max_dim=70)
6496       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6497       double precision zapas(max_dim,maxconts,max_fg_procs),
6498      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6499       common /przechowalnia/ zapas
6500       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6501      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6502 #endif
6503       include 'COMMON.SETUP'
6504       include 'COMMON.FFIELD'
6505       include 'COMMON.DERIV'
6506       include 'COMMON.LOCAL'
6507       include 'COMMON.INTERACT'
6508       include 'COMMON.CONTACTS'
6509       include 'COMMON.CHAIN'
6510       include 'COMMON.CONTROL'
6511       double precision gx(3),gx1(3)
6512       integer num_cont_hb_old(maxres)
6513       logical lprn,ldone
6514       double precision eello4,eello5,eelo6,eello_turn6
6515       external eello4,eello5,eello6,eello_turn6
6516 C Set lprn=.true. for debugging
6517       lprn=.false.
6518       eturn6=0.0d0
6519 #ifdef MPI
6520       do i=1,nres
6521         num_cont_hb_old(i)=num_cont_hb(i)
6522       enddo
6523       n_corr=0
6524       n_corr1=0
6525       if (nfgtasks.le.1) goto 30
6526       if (lprn) then
6527         write (iout,'(a)') 'Contact function values before RECEIVE:'
6528         do i=nnt,nct-2
6529           write (iout,'(2i3,50(1x,i2,f5.2))') 
6530      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6531      &    j=1,num_cont_hb(i))
6532         enddo
6533       endif
6534       call flush(iout)
6535       do i=1,ntask_cont_from
6536         ncont_recv(i)=0
6537       enddo
6538       do i=1,ntask_cont_to
6539         ncont_sent(i)=0
6540       enddo
6541 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6542 c     & ntask_cont_to
6543 C Make the list of contacts to send to send to other procesors
6544       do i=iturn3_start,iturn3_end
6545 c        write (iout,*) "make contact list turn3",i," num_cont",
6546 c     &    num_cont_hb(i)
6547         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6548       enddo
6549       do i=iturn4_start,iturn4_end
6550 c        write (iout,*) "make contact list turn4",i," num_cont",
6551 c     &   num_cont_hb(i)
6552         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6553       enddo
6554       do ii=1,nat_sent
6555         i=iat_sent(ii)
6556 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6557 c     &    num_cont_hb(i)
6558         do j=1,num_cont_hb(i)
6559         do k=1,4
6560           jjc=jcont_hb(j,i)
6561           iproc=iint_sent_local(k,jjc,ii)
6562 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6563           if (iproc.ne.0) then
6564             ncont_sent(iproc)=ncont_sent(iproc)+1
6565             nn=ncont_sent(iproc)
6566             zapas(1,nn,iproc)=i
6567             zapas(2,nn,iproc)=jjc
6568             zapas(3,nn,iproc)=d_cont(j,i)
6569             ind=3
6570             do kk=1,3
6571               ind=ind+1
6572               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6573             enddo
6574             do kk=1,2
6575               do ll=1,2
6576                 ind=ind+1
6577                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6578               enddo
6579             enddo
6580             do jj=1,5
6581               do kk=1,3
6582                 do ll=1,2
6583                   do mm=1,2
6584                     ind=ind+1
6585                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6586                   enddo
6587                 enddo
6588               enddo
6589             enddo
6590           endif
6591         enddo
6592         enddo
6593       enddo
6594       if (lprn) then
6595       write (iout,*) 
6596      &  "Numbers of contacts to be sent to other processors",
6597      &  (ncont_sent(i),i=1,ntask_cont_to)
6598       write (iout,*) "Contacts sent"
6599       do ii=1,ntask_cont_to
6600         nn=ncont_sent(ii)
6601         iproc=itask_cont_to(ii)
6602         write (iout,*) nn," contacts to processor",iproc,
6603      &   " of CONT_TO_COMM group"
6604         do i=1,nn
6605           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6606         enddo
6607       enddo
6608       call flush(iout)
6609       endif
6610       CorrelType=477
6611       CorrelID=fg_rank+1
6612       CorrelType1=478
6613       CorrelID1=nfgtasks+fg_rank+1
6614       ireq=0
6615 C Receive the numbers of needed contacts from other processors 
6616       do ii=1,ntask_cont_from
6617         iproc=itask_cont_from(ii)
6618         ireq=ireq+1
6619         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6620      &    FG_COMM,req(ireq),IERR)
6621       enddo
6622 c      write (iout,*) "IRECV ended"
6623 c      call flush(iout)
6624 C Send the number of contacts needed by other processors
6625       do ii=1,ntask_cont_to
6626         iproc=itask_cont_to(ii)
6627         ireq=ireq+1
6628         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6629      &    FG_COMM,req(ireq),IERR)
6630       enddo
6631 c      write (iout,*) "ISEND ended"
6632 c      write (iout,*) "number of requests (nn)",ireq
6633       call flush(iout)
6634       if (ireq.gt.0) 
6635      &  call MPI_Waitall(ireq,req,status_array,ierr)
6636 c      write (iout,*) 
6637 c     &  "Numbers of contacts to be received from other processors",
6638 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6639 c      call flush(iout)
6640 C Receive contacts
6641       ireq=0
6642       do ii=1,ntask_cont_from
6643         iproc=itask_cont_from(ii)
6644         nn=ncont_recv(ii)
6645 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6646 c     &   " of CONT_TO_COMM group"
6647         call flush(iout)
6648         if (nn.gt.0) then
6649           ireq=ireq+1
6650           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6651      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6652 c          write (iout,*) "ireq,req",ireq,req(ireq)
6653         endif
6654       enddo
6655 C Send the contacts to processors that need them
6656       do ii=1,ntask_cont_to
6657         iproc=itask_cont_to(ii)
6658         nn=ncont_sent(ii)
6659 c        write (iout,*) nn," contacts to processor",iproc,
6660 c     &   " of CONT_TO_COMM group"
6661         if (nn.gt.0) then
6662           ireq=ireq+1 
6663           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6664      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6665 c          write (iout,*) "ireq,req",ireq,req(ireq)
6666 c          do i=1,nn
6667 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6668 c          enddo
6669         endif  
6670       enddo
6671 c      write (iout,*) "number of requests (contacts)",ireq
6672 c      write (iout,*) "req",(req(i),i=1,4)
6673 c      call flush(iout)
6674       if (ireq.gt.0) 
6675      & call MPI_Waitall(ireq,req,status_array,ierr)
6676       do iii=1,ntask_cont_from
6677         iproc=itask_cont_from(iii)
6678         nn=ncont_recv(iii)
6679         if (lprn) then
6680         write (iout,*) "Received",nn," contacts from processor",iproc,
6681      &   " of CONT_FROM_COMM group"
6682         call flush(iout)
6683         do i=1,nn
6684           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6685         enddo
6686         call flush(iout)
6687         endif
6688         do i=1,nn
6689           ii=zapas_recv(1,i,iii)
6690 c Flag the received contacts to prevent double-counting
6691           jj=-zapas_recv(2,i,iii)
6692 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6693 c          call flush(iout)
6694           nnn=num_cont_hb(ii)+1
6695           num_cont_hb(ii)=nnn
6696           jcont_hb(nnn,ii)=jj
6697           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6698           ind=3
6699           do kk=1,3
6700             ind=ind+1
6701             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6702           enddo
6703           do kk=1,2
6704             do ll=1,2
6705               ind=ind+1
6706               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6707             enddo
6708           enddo
6709           do jj=1,5
6710             do kk=1,3
6711               do ll=1,2
6712                 do mm=1,2
6713                   ind=ind+1
6714                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6715                 enddo
6716               enddo
6717             enddo
6718           enddo
6719         enddo
6720       enddo
6721       call flush(iout)
6722       if (lprn) then
6723         write (iout,'(a)') 'Contact function values after receive:'
6724         do i=nnt,nct-2
6725           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6726      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6727      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6728         enddo
6729         call flush(iout)
6730       endif
6731    30 continue
6732 #endif
6733       if (lprn) then
6734         write (iout,'(a)') 'Contact function values:'
6735         do i=nnt,nct-2
6736           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6737      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6738      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6739         enddo
6740       endif
6741       ecorr=0.0D0
6742       ecorr5=0.0d0
6743       ecorr6=0.0d0
6744 C Remove the loop below after debugging !!!
6745       do i=nnt,nct
6746         do j=1,3
6747           gradcorr(j,i)=0.0D0
6748           gradxorr(j,i)=0.0D0
6749         enddo
6750       enddo
6751 C Calculate the dipole-dipole interaction energies
6752       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6753       do i=iatel_s,iatel_e+1
6754         num_conti=num_cont_hb(i)
6755         do jj=1,num_conti
6756           j=jcont_hb(jj,i)
6757 #ifdef MOMENT
6758           call dipole(i,j,jj)
6759 #endif
6760         enddo
6761       enddo
6762       endif
6763 C Calculate the local-electrostatic correlation terms
6764 c                write (iout,*) "gradcorr5 in eello5 before loop"
6765 c                do iii=1,nres
6766 c                  write (iout,'(i5,3f10.5)') 
6767 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6768 c                enddo
6769       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6770 c        write (iout,*) "corr loop i",i
6771         i1=i+1
6772         num_conti=num_cont_hb(i)
6773         num_conti1=num_cont_hb(i+1)
6774         do jj=1,num_conti
6775           j=jcont_hb(jj,i)
6776           jp=iabs(j)
6777           do kk=1,num_conti1
6778             j1=jcont_hb(kk,i1)
6779             jp1=iabs(j1)
6780 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6781 c     &         ' jj=',jj,' kk=',kk
6782 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6783             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6784      &          .or. j.lt.0 .and. j1.gt.0) .and.
6785      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6786 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6787 C The system gains extra energy.
6788               n_corr=n_corr+1
6789               sqd1=dsqrt(d_cont(jj,i))
6790               sqd2=dsqrt(d_cont(kk,i1))
6791               sred_geom = sqd1*sqd2
6792               IF (sred_geom.lt.cutoff_corr) THEN
6793                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6794      &            ekont,fprimcont)
6795 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6796 cd     &         ' jj=',jj,' kk=',kk
6797                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6798                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6799                 do l=1,3
6800                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6801                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6802                 enddo
6803                 n_corr1=n_corr1+1
6804 cd               write (iout,*) 'sred_geom=',sred_geom,
6805 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6806 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6807 cd               write (iout,*) "g_contij",g_contij
6808 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6809 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6810                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6811                 if (wcorr4.gt.0.0d0) 
6812      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6813                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6814      1                 write (iout,'(a6,4i5,0pf7.3)')
6815      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6816 c                write (iout,*) "gradcorr5 before eello5"
6817 c                do iii=1,nres
6818 c                  write (iout,'(i5,3f10.5)') 
6819 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6820 c                enddo
6821                 if (wcorr5.gt.0.0d0)
6822      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6823 c                write (iout,*) "gradcorr5 after eello5"
6824 c                do iii=1,nres
6825 c                  write (iout,'(i5,3f10.5)') 
6826 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6827 c                enddo
6828                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6829      1                 write (iout,'(a6,4i5,0pf7.3)')
6830      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6831 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6832 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6833                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6834      &               .or. wturn6.eq.0.0d0))then
6835 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6836                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6837                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6838      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6839 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6840 cd     &            'ecorr6=',ecorr6
6841 cd                write (iout,'(4e15.5)') sred_geom,
6842 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6843 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6844 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6845                 else if (wturn6.gt.0.0d0
6846      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6847 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6848                   eturn6=eturn6+eello_turn6(i,jj,kk)
6849                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6850      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6851 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6852                 endif
6853               ENDIF
6854 1111          continue
6855             endif
6856           enddo ! kk
6857         enddo ! jj
6858       enddo ! i
6859       do i=1,nres
6860         num_cont_hb(i)=num_cont_hb_old(i)
6861       enddo
6862 c                write (iout,*) "gradcorr5 in eello5"
6863 c                do iii=1,nres
6864 c                  write (iout,'(i5,3f10.5)') 
6865 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6866 c                enddo
6867       return
6868       end
6869 c------------------------------------------------------------------------------
6870       subroutine add_hb_contact_eello(ii,jj,itask)
6871       implicit real*8 (a-h,o-z)
6872       include "DIMENSIONS"
6873       include "COMMON.IOUNITS"
6874       integer max_cont
6875       integer max_dim
6876       parameter (max_cont=maxconts)
6877       parameter (max_dim=70)
6878       include "COMMON.CONTACTS"
6879       double precision zapas(max_dim,maxconts,max_fg_procs),
6880      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6881       common /przechowalnia/ zapas
6882       integer i,j,ii,jj,iproc,itask(4),nn
6883 c      write (iout,*) "itask",itask
6884       do i=1,2
6885         iproc=itask(i)
6886         if (iproc.gt.0) then
6887           do j=1,num_cont_hb(ii)
6888             jjc=jcont_hb(j,ii)
6889 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6890             if (jjc.eq.jj) then
6891               ncont_sent(iproc)=ncont_sent(iproc)+1
6892               nn=ncont_sent(iproc)
6893               zapas(1,nn,iproc)=ii
6894               zapas(2,nn,iproc)=jjc
6895               zapas(3,nn,iproc)=d_cont(j,ii)
6896               ind=3
6897               do kk=1,3
6898                 ind=ind+1
6899                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6900               enddo
6901               do kk=1,2
6902                 do ll=1,2
6903                   ind=ind+1
6904                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6905                 enddo
6906               enddo
6907               do jj=1,5
6908                 do kk=1,3
6909                   do ll=1,2
6910                     do mm=1,2
6911                       ind=ind+1
6912                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6913                     enddo
6914                   enddo
6915                 enddo
6916               enddo
6917               exit
6918             endif
6919           enddo
6920         endif
6921       enddo
6922       return
6923       end
6924 c------------------------------------------------------------------------------
6925       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6926       implicit real*8 (a-h,o-z)
6927       include 'DIMENSIONS'
6928       include 'COMMON.IOUNITS'
6929       include 'COMMON.DERIV'
6930       include 'COMMON.INTERACT'
6931       include 'COMMON.CONTACTS'
6932       double precision gx(3),gx1(3)
6933       logical lprn
6934       lprn=.false.
6935       eij=facont_hb(jj,i)
6936       ekl=facont_hb(kk,k)
6937       ees0pij=ees0p(jj,i)
6938       ees0pkl=ees0p(kk,k)
6939       ees0mij=ees0m(jj,i)
6940       ees0mkl=ees0m(kk,k)
6941       ekont=eij*ekl
6942       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6943 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6944 C Following 4 lines for diagnostics.
6945 cd    ees0pkl=0.0D0
6946 cd    ees0pij=1.0D0
6947 cd    ees0mkl=0.0D0
6948 cd    ees0mij=1.0D0
6949 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6950 c     & 'Contacts ',i,j,
6951 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6952 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6953 c     & 'gradcorr_long'
6954 C Calculate the multi-body contribution to energy.
6955 c      ecorr=ecorr+ekont*ees
6956 C Calculate multi-body contributions to the gradient.
6957       coeffpees0pij=coeffp*ees0pij
6958       coeffmees0mij=coeffm*ees0mij
6959       coeffpees0pkl=coeffp*ees0pkl
6960       coeffmees0mkl=coeffm*ees0mkl
6961       do ll=1,3
6962 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6963         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6964      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6965      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6966         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6967      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6968      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6969 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6970         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6971      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6972      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6973         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6974      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6975      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6976         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6977      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6978      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6979         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6980         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6981         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6982      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6983      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6984         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6985         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6986 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6987       enddo
6988 c      write (iout,*)
6989 cgrad      do m=i+1,j-1
6990 cgrad        do ll=1,3
6991 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6992 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6993 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6994 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6995 cgrad        enddo
6996 cgrad      enddo
6997 cgrad      do m=k+1,l-1
6998 cgrad        do ll=1,3
6999 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7000 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7001 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7002 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7003 cgrad        enddo
7004 cgrad      enddo 
7005 c      write (iout,*) "ehbcorr",ekont*ees
7006       ehbcorr=ekont*ees
7007       return
7008       end
7009 #ifdef MOMENT
7010 C---------------------------------------------------------------------------
7011       subroutine dipole(i,j,jj)
7012       implicit real*8 (a-h,o-z)
7013       include 'DIMENSIONS'
7014       include 'COMMON.IOUNITS'
7015       include 'COMMON.CHAIN'
7016       include 'COMMON.FFIELD'
7017       include 'COMMON.DERIV'
7018       include 'COMMON.INTERACT'
7019       include 'COMMON.CONTACTS'
7020       include 'COMMON.TORSION'
7021       include 'COMMON.VAR'
7022       include 'COMMON.GEO'
7023       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7024      &  auxmat(2,2)
7025       iti1 = itortyp(itype(i+1))
7026       if (j.lt.nres-1) then
7027         itj1 = itortyp(itype(j+1))
7028       else
7029         itj1=ntortyp+1
7030       endif
7031       do iii=1,2
7032         dipi(iii,1)=Ub2(iii,i)
7033         dipderi(iii)=Ub2der(iii,i)
7034         dipi(iii,2)=b1(iii,iti1)
7035         dipj(iii,1)=Ub2(iii,j)
7036         dipderj(iii)=Ub2der(iii,j)
7037         dipj(iii,2)=b1(iii,itj1)
7038       enddo
7039       kkk=0
7040       do iii=1,2
7041         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7042         do jjj=1,2
7043           kkk=kkk+1
7044           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7045         enddo
7046       enddo
7047       do kkk=1,5
7048         do lll=1,3
7049           mmm=0
7050           do iii=1,2
7051             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7052      &        auxvec(1))
7053             do jjj=1,2
7054               mmm=mmm+1
7055               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7056             enddo
7057           enddo
7058         enddo
7059       enddo
7060       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7061       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7062       do iii=1,2
7063         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7064       enddo
7065       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7066       do iii=1,2
7067         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7068       enddo
7069       return
7070       end
7071 #endif
7072 C---------------------------------------------------------------------------
7073       subroutine calc_eello(i,j,k,l,jj,kk)
7074
7075 C This subroutine computes matrices and vectors needed to calculate 
7076 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7077 C
7078       implicit real*8 (a-h,o-z)
7079       include 'DIMENSIONS'
7080       include 'COMMON.IOUNITS'
7081       include 'COMMON.CHAIN'
7082       include 'COMMON.DERIV'
7083       include 'COMMON.INTERACT'
7084       include 'COMMON.CONTACTS'
7085       include 'COMMON.TORSION'
7086       include 'COMMON.VAR'
7087       include 'COMMON.GEO'
7088       include 'COMMON.FFIELD'
7089       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7090      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7091       logical lprn
7092       common /kutas/ lprn
7093 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7094 cd     & ' jj=',jj,' kk=',kk
7095 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7096 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7097 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7098       do iii=1,2
7099         do jjj=1,2
7100           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7101           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7102         enddo
7103       enddo
7104       call transpose2(aa1(1,1),aa1t(1,1))
7105       call transpose2(aa2(1,1),aa2t(1,1))
7106       do kkk=1,5
7107         do lll=1,3
7108           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7109      &      aa1tder(1,1,lll,kkk))
7110           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7111      &      aa2tder(1,1,lll,kkk))
7112         enddo
7113       enddo 
7114       if (l.eq.j+1) then
7115 C parallel orientation of the two CA-CA-CA frames.
7116         if (i.gt.1) then
7117           iti=itortyp(itype(i))
7118         else
7119           iti=ntortyp+1
7120         endif
7121         itk1=itortyp(itype(k+1))
7122         itj=itortyp(itype(j))
7123         if (l.lt.nres-1) then
7124           itl1=itortyp(itype(l+1))
7125         else
7126           itl1=ntortyp+1
7127         endif
7128 C A1 kernel(j+1) A2T
7129 cd        do iii=1,2
7130 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7131 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7132 cd        enddo
7133         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7134      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7135      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7136 C Following matrices are needed only for 6-th order cumulants
7137         IF (wcorr6.gt.0.0d0) THEN
7138         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7139      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7140      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7141         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7142      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7143      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7144      &   ADtEAderx(1,1,1,1,1,1))
7145         lprn=.false.
7146         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7147      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7148      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7149      &   ADtEA1derx(1,1,1,1,1,1))
7150         ENDIF
7151 C End 6-th order cumulants
7152 cd        lprn=.false.
7153 cd        if (lprn) then
7154 cd        write (2,*) 'In calc_eello6'
7155 cd        do iii=1,2
7156 cd          write (2,*) 'iii=',iii
7157 cd          do kkk=1,5
7158 cd            write (2,*) 'kkk=',kkk
7159 cd            do jjj=1,2
7160 cd              write (2,'(3(2f10.5),5x)') 
7161 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7162 cd            enddo
7163 cd          enddo
7164 cd        enddo
7165 cd        endif
7166         call transpose2(EUgder(1,1,k),auxmat(1,1))
7167         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7168         call transpose2(EUg(1,1,k),auxmat(1,1))
7169         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7170         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7171         do iii=1,2
7172           do kkk=1,5
7173             do lll=1,3
7174               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7175      &          EAEAderx(1,1,lll,kkk,iii,1))
7176             enddo
7177           enddo
7178         enddo
7179 C A1T kernel(i+1) A2
7180         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7181      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7182      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7183 C Following matrices are needed only for 6-th order cumulants
7184         IF (wcorr6.gt.0.0d0) THEN
7185         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7186      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7187      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7188         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7189      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7190      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7191      &   ADtEAderx(1,1,1,1,1,2))
7192         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7193      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7194      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7195      &   ADtEA1derx(1,1,1,1,1,2))
7196         ENDIF
7197 C End 6-th order cumulants
7198         call transpose2(EUgder(1,1,l),auxmat(1,1))
7199         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7200         call transpose2(EUg(1,1,l),auxmat(1,1))
7201         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7202         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7203         do iii=1,2
7204           do kkk=1,5
7205             do lll=1,3
7206               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7207      &          EAEAderx(1,1,lll,kkk,iii,2))
7208             enddo
7209           enddo
7210         enddo
7211 C AEAb1 and AEAb2
7212 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7213 C They are needed only when the fifth- or the sixth-order cumulants are
7214 C indluded.
7215         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7216         call transpose2(AEA(1,1,1),auxmat(1,1))
7217         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7218         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7219         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7220         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7221         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7222         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7223         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7224         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7225         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7226         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7227         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7228         call transpose2(AEA(1,1,2),auxmat(1,1))
7229         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7230         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7231         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7232         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7233         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7234         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7235         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7236         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7237         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7238         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7239         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7240 C Calculate the Cartesian derivatives of the vectors.
7241         do iii=1,2
7242           do kkk=1,5
7243             do lll=1,3
7244               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7245               call matvec2(auxmat(1,1),b1(1,iti),
7246      &          AEAb1derx(1,lll,kkk,iii,1,1))
7247               call matvec2(auxmat(1,1),Ub2(1,i),
7248      &          AEAb2derx(1,lll,kkk,iii,1,1))
7249               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7250      &          AEAb1derx(1,lll,kkk,iii,2,1))
7251               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7252      &          AEAb2derx(1,lll,kkk,iii,2,1))
7253               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7254               call matvec2(auxmat(1,1),b1(1,itj),
7255      &          AEAb1derx(1,lll,kkk,iii,1,2))
7256               call matvec2(auxmat(1,1),Ub2(1,j),
7257      &          AEAb2derx(1,lll,kkk,iii,1,2))
7258               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7259      &          AEAb1derx(1,lll,kkk,iii,2,2))
7260               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7261      &          AEAb2derx(1,lll,kkk,iii,2,2))
7262             enddo
7263           enddo
7264         enddo
7265         ENDIF
7266 C End vectors
7267       else
7268 C Antiparallel orientation of the two CA-CA-CA frames.
7269         if (i.gt.1) then
7270           iti=itortyp(itype(i))
7271         else
7272           iti=ntortyp+1
7273         endif
7274         itk1=itortyp(itype(k+1))
7275         itl=itortyp(itype(l))
7276         itj=itortyp(itype(j))
7277         if (j.lt.nres-1) then
7278           itj1=itortyp(itype(j+1))
7279         else 
7280           itj1=ntortyp+1
7281         endif
7282 C A2 kernel(j-1)T A1T
7283         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7284      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7285      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7286 C Following matrices are needed only for 6-th order cumulants
7287         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7288      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7289         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7290      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7291      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7292         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7293      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7294      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7295      &   ADtEAderx(1,1,1,1,1,1))
7296         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7297      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7298      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7299      &   ADtEA1derx(1,1,1,1,1,1))
7300         ENDIF
7301 C End 6-th order cumulants
7302         call transpose2(EUgder(1,1,k),auxmat(1,1))
7303         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7304         call transpose2(EUg(1,1,k),auxmat(1,1))
7305         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7306         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7307         do iii=1,2
7308           do kkk=1,5
7309             do lll=1,3
7310               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7311      &          EAEAderx(1,1,lll,kkk,iii,1))
7312             enddo
7313           enddo
7314         enddo
7315 C A2T kernel(i+1)T A1
7316         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7317      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7318      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7319 C Following matrices are needed only for 6-th order cumulants
7320         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7321      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7322         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7323      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7324      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7325         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7326      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7327      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7328      &   ADtEAderx(1,1,1,1,1,2))
7329         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7330      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7331      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7332      &   ADtEA1derx(1,1,1,1,1,2))
7333         ENDIF
7334 C End 6-th order cumulants
7335         call transpose2(EUgder(1,1,j),auxmat(1,1))
7336         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7337         call transpose2(EUg(1,1,j),auxmat(1,1))
7338         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7339         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7340         do iii=1,2
7341           do kkk=1,5
7342             do lll=1,3
7343               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7344      &          EAEAderx(1,1,lll,kkk,iii,2))
7345             enddo
7346           enddo
7347         enddo
7348 C AEAb1 and AEAb2
7349 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7350 C They are needed only when the fifth- or the sixth-order cumulants are
7351 C indluded.
7352         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7353      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7354         call transpose2(AEA(1,1,1),auxmat(1,1))
7355         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7356         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7357         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7358         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7359         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7360         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7361         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7362         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7363         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7364         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7365         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7366         call transpose2(AEA(1,1,2),auxmat(1,1))
7367         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7368         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7369         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7370         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7371         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7372         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7373         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7374         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7375         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7376         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7377         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7378 C Calculate the Cartesian derivatives of the vectors.
7379         do iii=1,2
7380           do kkk=1,5
7381             do lll=1,3
7382               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7383               call matvec2(auxmat(1,1),b1(1,iti),
7384      &          AEAb1derx(1,lll,kkk,iii,1,1))
7385               call matvec2(auxmat(1,1),Ub2(1,i),
7386      &          AEAb2derx(1,lll,kkk,iii,1,1))
7387               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7388      &          AEAb1derx(1,lll,kkk,iii,2,1))
7389               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7390      &          AEAb2derx(1,lll,kkk,iii,2,1))
7391               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7392               call matvec2(auxmat(1,1),b1(1,itl),
7393      &          AEAb1derx(1,lll,kkk,iii,1,2))
7394               call matvec2(auxmat(1,1),Ub2(1,l),
7395      &          AEAb2derx(1,lll,kkk,iii,1,2))
7396               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7397      &          AEAb1derx(1,lll,kkk,iii,2,2))
7398               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7399      &          AEAb2derx(1,lll,kkk,iii,2,2))
7400             enddo
7401           enddo
7402         enddo
7403         ENDIF
7404 C End vectors
7405       endif
7406       return
7407       end
7408 C---------------------------------------------------------------------------
7409       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7410      &  KK,KKderg,AKA,AKAderg,AKAderx)
7411       implicit none
7412       integer nderg
7413       logical transp
7414       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7415      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7416      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7417       integer iii,kkk,lll
7418       integer jjj,mmm
7419       logical lprn
7420       common /kutas/ lprn
7421       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7422       do iii=1,nderg 
7423         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7424      &    AKAderg(1,1,iii))
7425       enddo
7426 cd      if (lprn) write (2,*) 'In kernel'
7427       do kkk=1,5
7428 cd        if (lprn) write (2,*) 'kkk=',kkk
7429         do lll=1,3
7430           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7431      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7432 cd          if (lprn) then
7433 cd            write (2,*) 'lll=',lll
7434 cd            write (2,*) 'iii=1'
7435 cd            do jjj=1,2
7436 cd              write (2,'(3(2f10.5),5x)') 
7437 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7438 cd            enddo
7439 cd          endif
7440           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7441      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7442 cd          if (lprn) then
7443 cd            write (2,*) 'lll=',lll
7444 cd            write (2,*) 'iii=2'
7445 cd            do jjj=1,2
7446 cd              write (2,'(3(2f10.5),5x)') 
7447 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7448 cd            enddo
7449 cd          endif
7450         enddo
7451       enddo
7452       return
7453       end
7454 C---------------------------------------------------------------------------
7455       double precision function eello4(i,j,k,l,jj,kk)
7456       implicit real*8 (a-h,o-z)
7457       include 'DIMENSIONS'
7458       include 'COMMON.IOUNITS'
7459       include 'COMMON.CHAIN'
7460       include 'COMMON.DERIV'
7461       include 'COMMON.INTERACT'
7462       include 'COMMON.CONTACTS'
7463       include 'COMMON.TORSION'
7464       include 'COMMON.VAR'
7465       include 'COMMON.GEO'
7466       double precision pizda(2,2),ggg1(3),ggg2(3)
7467 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7468 cd        eello4=0.0d0
7469 cd        return
7470 cd      endif
7471 cd      print *,'eello4:',i,j,k,l,jj,kk
7472 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7473 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7474 cold      eij=facont_hb(jj,i)
7475 cold      ekl=facont_hb(kk,k)
7476 cold      ekont=eij*ekl
7477       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7478 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7479       gcorr_loc(k-1)=gcorr_loc(k-1)
7480      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7481       if (l.eq.j+1) then
7482         gcorr_loc(l-1)=gcorr_loc(l-1)
7483      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7484       else
7485         gcorr_loc(j-1)=gcorr_loc(j-1)
7486      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7487       endif
7488       do iii=1,2
7489         do kkk=1,5
7490           do lll=1,3
7491             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7492      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7493 cd            derx(lll,kkk,iii)=0.0d0
7494           enddo
7495         enddo
7496       enddo
7497 cd      gcorr_loc(l-1)=0.0d0
7498 cd      gcorr_loc(j-1)=0.0d0
7499 cd      gcorr_loc(k-1)=0.0d0
7500 cd      eel4=1.0d0
7501 cd      write (iout,*)'Contacts have occurred for peptide groups',
7502 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7503 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7504       if (j.lt.nres-1) then
7505         j1=j+1
7506         j2=j-1
7507       else
7508         j1=j-1
7509         j2=j-2
7510       endif
7511       if (l.lt.nres-1) then
7512         l1=l+1
7513         l2=l-1
7514       else
7515         l1=l-1
7516         l2=l-2
7517       endif
7518       do ll=1,3
7519 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7520 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7521         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7522         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7523 cgrad        ghalf=0.5d0*ggg1(ll)
7524         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7525         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7526         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7527         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7528         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7529         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7530 cgrad        ghalf=0.5d0*ggg2(ll)
7531         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7532         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7533         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7534         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7535         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7536         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7537       enddo
7538 cgrad      do m=i+1,j-1
7539 cgrad        do ll=1,3
7540 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7541 cgrad        enddo
7542 cgrad      enddo
7543 cgrad      do m=k+1,l-1
7544 cgrad        do ll=1,3
7545 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7546 cgrad        enddo
7547 cgrad      enddo
7548 cgrad      do m=i+2,j2
7549 cgrad        do ll=1,3
7550 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7551 cgrad        enddo
7552 cgrad      enddo
7553 cgrad      do m=k+2,l2
7554 cgrad        do ll=1,3
7555 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7556 cgrad        enddo
7557 cgrad      enddo 
7558 cd      do iii=1,nres-3
7559 cd        write (2,*) iii,gcorr_loc(iii)
7560 cd      enddo
7561       eello4=ekont*eel4
7562 cd      write (2,*) 'ekont',ekont
7563 cd      write (iout,*) 'eello4',ekont*eel4
7564       return
7565       end
7566 C---------------------------------------------------------------------------
7567       double precision function eello5(i,j,k,l,jj,kk)
7568       implicit real*8 (a-h,o-z)
7569       include 'DIMENSIONS'
7570       include 'COMMON.IOUNITS'
7571       include 'COMMON.CHAIN'
7572       include 'COMMON.DERIV'
7573       include 'COMMON.INTERACT'
7574       include 'COMMON.CONTACTS'
7575       include 'COMMON.TORSION'
7576       include 'COMMON.VAR'
7577       include 'COMMON.GEO'
7578       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7579       double precision ggg1(3),ggg2(3)
7580 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7581 C                                                                              C
7582 C                            Parallel chains                                   C
7583 C                                                                              C
7584 C          o             o                   o             o                   C
7585 C         /l\           / \             \   / \           / \   /              C
7586 C        /   \         /   \             \ /   \         /   \ /               C
7587 C       j| o |l1       | o |              o| o |         | o |o                C
7588 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7589 C      \i/   \         /   \ /             /   \         /   \                 C
7590 C       o    k1             o                                                  C
7591 C         (I)          (II)                (III)          (IV)                 C
7592 C                                                                              C
7593 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7594 C                                                                              C
7595 C                            Antiparallel chains                               C
7596 C                                                                              C
7597 C          o             o                   o             o                   C
7598 C         /j\           / \             \   / \           / \   /              C
7599 C        /   \         /   \             \ /   \         /   \ /               C
7600 C      j1| o |l        | o |              o| o |         | o |o                C
7601 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7602 C      \i/   \         /   \ /             /   \         /   \                 C
7603 C       o     k1            o                                                  C
7604 C         (I)          (II)                (III)          (IV)                 C
7605 C                                                                              C
7606 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7607 C                                                                              C
7608 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7609 C                                                                              C
7610 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7611 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7612 cd        eello5=0.0d0
7613 cd        return
7614 cd      endif
7615 cd      write (iout,*)
7616 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7617 cd     &   ' and',k,l
7618       itk=itortyp(itype(k))
7619       itl=itortyp(itype(l))
7620       itj=itortyp(itype(j))
7621       eello5_1=0.0d0
7622       eello5_2=0.0d0
7623       eello5_3=0.0d0
7624       eello5_4=0.0d0
7625 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7626 cd     &   eel5_3_num,eel5_4_num)
7627       do iii=1,2
7628         do kkk=1,5
7629           do lll=1,3
7630             derx(lll,kkk,iii)=0.0d0
7631           enddo
7632         enddo
7633       enddo
7634 cd      eij=facont_hb(jj,i)
7635 cd      ekl=facont_hb(kk,k)
7636 cd      ekont=eij*ekl
7637 cd      write (iout,*)'Contacts have occurred for peptide groups',
7638 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7639 cd      goto 1111
7640 C Contribution from the graph I.
7641 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7642 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7643       call transpose2(EUg(1,1,k),auxmat(1,1))
7644       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7645       vv(1)=pizda(1,1)-pizda(2,2)
7646       vv(2)=pizda(1,2)+pizda(2,1)
7647       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7648      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7649 C Explicit gradient in virtual-dihedral angles.
7650       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7651      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7652      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7653       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7654       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7655       vv(1)=pizda(1,1)-pizda(2,2)
7656       vv(2)=pizda(1,2)+pizda(2,1)
7657       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7658      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7659      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7660       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7661       vv(1)=pizda(1,1)-pizda(2,2)
7662       vv(2)=pizda(1,2)+pizda(2,1)
7663       if (l.eq.j+1) then
7664         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7665      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7666      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7667       else
7668         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7669      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7670      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7671       endif 
7672 C Cartesian gradient
7673       do iii=1,2
7674         do kkk=1,5
7675           do lll=1,3
7676             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7677      &        pizda(1,1))
7678             vv(1)=pizda(1,1)-pizda(2,2)
7679             vv(2)=pizda(1,2)+pizda(2,1)
7680             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7681      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7682      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7683           enddo
7684         enddo
7685       enddo
7686 c      goto 1112
7687 c1111  continue
7688 C Contribution from graph II 
7689       call transpose2(EE(1,1,itk),auxmat(1,1))
7690       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7691       vv(1)=pizda(1,1)+pizda(2,2)
7692       vv(2)=pizda(2,1)-pizda(1,2)
7693       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7694      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7695 C Explicit gradient in virtual-dihedral angles.
7696       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7697      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7698       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7699       vv(1)=pizda(1,1)+pizda(2,2)
7700       vv(2)=pizda(2,1)-pizda(1,2)
7701       if (l.eq.j+1) then
7702         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7703      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7704      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7705       else
7706         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7707      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7708      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7709       endif
7710 C Cartesian gradient
7711       do iii=1,2
7712         do kkk=1,5
7713           do lll=1,3
7714             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7715      &        pizda(1,1))
7716             vv(1)=pizda(1,1)+pizda(2,2)
7717             vv(2)=pizda(2,1)-pizda(1,2)
7718             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7719      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7720      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7721           enddo
7722         enddo
7723       enddo
7724 cd      goto 1112
7725 cd1111  continue
7726       if (l.eq.j+1) then
7727 cd        goto 1110
7728 C Parallel orientation
7729 C Contribution from graph III
7730         call transpose2(EUg(1,1,l),auxmat(1,1))
7731         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7732         vv(1)=pizda(1,1)-pizda(2,2)
7733         vv(2)=pizda(1,2)+pizda(2,1)
7734         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7735      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7736 C Explicit gradient in virtual-dihedral angles.
7737         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7738      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7739      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7740         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7741         vv(1)=pizda(1,1)-pizda(2,2)
7742         vv(2)=pizda(1,2)+pizda(2,1)
7743         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7744      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7745      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7746         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7747         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7748         vv(1)=pizda(1,1)-pizda(2,2)
7749         vv(2)=pizda(1,2)+pizda(2,1)
7750         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7751      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7752      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7753 C Cartesian gradient
7754         do iii=1,2
7755           do kkk=1,5
7756             do lll=1,3
7757               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7758      &          pizda(1,1))
7759               vv(1)=pizda(1,1)-pizda(2,2)
7760               vv(2)=pizda(1,2)+pizda(2,1)
7761               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7762      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7763      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7764             enddo
7765           enddo
7766         enddo
7767 cd        goto 1112
7768 C Contribution from graph IV
7769 cd1110    continue
7770         call transpose2(EE(1,1,itl),auxmat(1,1))
7771         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7772         vv(1)=pizda(1,1)+pizda(2,2)
7773         vv(2)=pizda(2,1)-pizda(1,2)
7774         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7775      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7776 C Explicit gradient in virtual-dihedral angles.
7777         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7778      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7779         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7780         vv(1)=pizda(1,1)+pizda(2,2)
7781         vv(2)=pizda(2,1)-pizda(1,2)
7782         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7783      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7784      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7785 C Cartesian gradient
7786         do iii=1,2
7787           do kkk=1,5
7788             do lll=1,3
7789               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7790      &          pizda(1,1))
7791               vv(1)=pizda(1,1)+pizda(2,2)
7792               vv(2)=pizda(2,1)-pizda(1,2)
7793               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7794      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7795      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7796             enddo
7797           enddo
7798         enddo
7799       else
7800 C Antiparallel orientation
7801 C Contribution from graph III
7802 c        goto 1110
7803         call transpose2(EUg(1,1,j),auxmat(1,1))
7804         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7805         vv(1)=pizda(1,1)-pizda(2,2)
7806         vv(2)=pizda(1,2)+pizda(2,1)
7807         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7808      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7809 C Explicit gradient in virtual-dihedral angles.
7810         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7811      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7812      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7813         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7814         vv(1)=pizda(1,1)-pizda(2,2)
7815         vv(2)=pizda(1,2)+pizda(2,1)
7816         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7817      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7818      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7819         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7820         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7821         vv(1)=pizda(1,1)-pizda(2,2)
7822         vv(2)=pizda(1,2)+pizda(2,1)
7823         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7824      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7825      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7826 C Cartesian gradient
7827         do iii=1,2
7828           do kkk=1,5
7829             do lll=1,3
7830               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7831      &          pizda(1,1))
7832               vv(1)=pizda(1,1)-pizda(2,2)
7833               vv(2)=pizda(1,2)+pizda(2,1)
7834               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7835      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7836      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7837             enddo
7838           enddo
7839         enddo
7840 cd        goto 1112
7841 C Contribution from graph IV
7842 1110    continue
7843         call transpose2(EE(1,1,itj),auxmat(1,1))
7844         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7845         vv(1)=pizda(1,1)+pizda(2,2)
7846         vv(2)=pizda(2,1)-pizda(1,2)
7847         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7848      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7849 C Explicit gradient in virtual-dihedral angles.
7850         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7851      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7852         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7853         vv(1)=pizda(1,1)+pizda(2,2)
7854         vv(2)=pizda(2,1)-pizda(1,2)
7855         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7856      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7857      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7858 C Cartesian gradient
7859         do iii=1,2
7860           do kkk=1,5
7861             do lll=1,3
7862               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7863      &          pizda(1,1))
7864               vv(1)=pizda(1,1)+pizda(2,2)
7865               vv(2)=pizda(2,1)-pizda(1,2)
7866               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7867      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7868      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7869             enddo
7870           enddo
7871         enddo
7872       endif
7873 1112  continue
7874       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7875 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7876 cd        write (2,*) 'ijkl',i,j,k,l
7877 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7878 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7879 cd      endif
7880 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7881 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7882 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7883 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7884       if (j.lt.nres-1) then
7885         j1=j+1
7886         j2=j-1
7887       else
7888         j1=j-1
7889         j2=j-2
7890       endif
7891       if (l.lt.nres-1) then
7892         l1=l+1
7893         l2=l-1
7894       else
7895         l1=l-1
7896         l2=l-2
7897       endif
7898 cd      eij=1.0d0
7899 cd      ekl=1.0d0
7900 cd      ekont=1.0d0
7901 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7902 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7903 C        summed up outside the subrouine as for the other subroutines 
7904 C        handling long-range interactions. The old code is commented out
7905 C        with "cgrad" to keep track of changes.
7906       do ll=1,3
7907 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7908 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7909         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7910         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7911 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7912 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7913 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7914 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7915 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7916 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7917 c     &   gradcorr5ij,
7918 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7919 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7920 cgrad        ghalf=0.5d0*ggg1(ll)
7921 cd        ghalf=0.0d0
7922         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7923         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7924         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7925         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7926         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7927         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7928 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7929 cgrad        ghalf=0.5d0*ggg2(ll)
7930 cd        ghalf=0.0d0
7931         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7932         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7933         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7934         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7935         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7936         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7937       enddo
7938 cd      goto 1112
7939 cgrad      do m=i+1,j-1
7940 cgrad        do ll=1,3
7941 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7942 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7943 cgrad        enddo
7944 cgrad      enddo
7945 cgrad      do m=k+1,l-1
7946 cgrad        do ll=1,3
7947 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7948 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7949 cgrad        enddo
7950 cgrad      enddo
7951 c1112  continue
7952 cgrad      do m=i+2,j2
7953 cgrad        do ll=1,3
7954 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7955 cgrad        enddo
7956 cgrad      enddo
7957 cgrad      do m=k+2,l2
7958 cgrad        do ll=1,3
7959 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7960 cgrad        enddo
7961 cgrad      enddo 
7962 cd      do iii=1,nres-3
7963 cd        write (2,*) iii,g_corr5_loc(iii)
7964 cd      enddo
7965       eello5=ekont*eel5
7966 cd      write (2,*) 'ekont',ekont
7967 cd      write (iout,*) 'eello5',ekont*eel5
7968       return
7969       end
7970 c--------------------------------------------------------------------------
7971       double precision function eello6(i,j,k,l,jj,kk)
7972       implicit real*8 (a-h,o-z)
7973       include 'DIMENSIONS'
7974       include 'COMMON.IOUNITS'
7975       include 'COMMON.CHAIN'
7976       include 'COMMON.DERIV'
7977       include 'COMMON.INTERACT'
7978       include 'COMMON.CONTACTS'
7979       include 'COMMON.TORSION'
7980       include 'COMMON.VAR'
7981       include 'COMMON.GEO'
7982       include 'COMMON.FFIELD'
7983       double precision ggg1(3),ggg2(3)
7984 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7985 cd        eello6=0.0d0
7986 cd        return
7987 cd      endif
7988 cd      write (iout,*)
7989 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7990 cd     &   ' and',k,l
7991       eello6_1=0.0d0
7992       eello6_2=0.0d0
7993       eello6_3=0.0d0
7994       eello6_4=0.0d0
7995       eello6_5=0.0d0
7996       eello6_6=0.0d0
7997 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7998 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7999       do iii=1,2
8000         do kkk=1,5
8001           do lll=1,3
8002             derx(lll,kkk,iii)=0.0d0
8003           enddo
8004         enddo
8005       enddo
8006 cd      eij=facont_hb(jj,i)
8007 cd      ekl=facont_hb(kk,k)
8008 cd      ekont=eij*ekl
8009 cd      eij=1.0d0
8010 cd      ekl=1.0d0
8011 cd      ekont=1.0d0
8012       if (l.eq.j+1) then
8013         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8014         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8015         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8016         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8017         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8018         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8019       else
8020         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8021         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8022         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8023         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8024         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8025           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8026         else
8027           eello6_5=0.0d0
8028         endif
8029         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8030       endif
8031 C If turn contributions are considered, they will be handled separately.
8032       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8033 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8034 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8035 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8036 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8037 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8038 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8039 cd      goto 1112
8040       if (j.lt.nres-1) then
8041         j1=j+1
8042         j2=j-1
8043       else
8044         j1=j-1
8045         j2=j-2
8046       endif
8047       if (l.lt.nres-1) then
8048         l1=l+1
8049         l2=l-1
8050       else
8051         l1=l-1
8052         l2=l-2
8053       endif
8054       do ll=1,3
8055 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8056 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8057 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8058 cgrad        ghalf=0.5d0*ggg1(ll)
8059 cd        ghalf=0.0d0
8060         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8061         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8062         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8063         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8064         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8065         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8066         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8067         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8068 cgrad        ghalf=0.5d0*ggg2(ll)
8069 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8070 cd        ghalf=0.0d0
8071         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8072         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8073         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8074         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8075         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8076         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8077       enddo
8078 cd      goto 1112
8079 cgrad      do m=i+1,j-1
8080 cgrad        do ll=1,3
8081 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8082 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8083 cgrad        enddo
8084 cgrad      enddo
8085 cgrad      do m=k+1,l-1
8086 cgrad        do ll=1,3
8087 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8088 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8089 cgrad        enddo
8090 cgrad      enddo
8091 cgrad1112  continue
8092 cgrad      do m=i+2,j2
8093 cgrad        do ll=1,3
8094 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8095 cgrad        enddo
8096 cgrad      enddo
8097 cgrad      do m=k+2,l2
8098 cgrad        do ll=1,3
8099 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8100 cgrad        enddo
8101 cgrad      enddo 
8102 cd      do iii=1,nres-3
8103 cd        write (2,*) iii,g_corr6_loc(iii)
8104 cd      enddo
8105       eello6=ekont*eel6
8106 cd      write (2,*) 'ekont',ekont
8107 cd      write (iout,*) 'eello6',ekont*eel6
8108       return
8109       end
8110 c--------------------------------------------------------------------------
8111       double precision function eello6_graph1(i,j,k,l,imat,swap)
8112       implicit real*8 (a-h,o-z)
8113       include 'DIMENSIONS'
8114       include 'COMMON.IOUNITS'
8115       include 'COMMON.CHAIN'
8116       include 'COMMON.DERIV'
8117       include 'COMMON.INTERACT'
8118       include 'COMMON.CONTACTS'
8119       include 'COMMON.TORSION'
8120       include 'COMMON.VAR'
8121       include 'COMMON.GEO'
8122       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8123       logical swap
8124       logical lprn
8125       common /kutas/ lprn
8126 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8127 C                                              
8128 C      Parallel       Antiparallel
8129 C                                             
8130 C          o             o         
8131 C         /l\           /j\
8132 C        /   \         /   \
8133 C       /| o |         | o |\
8134 C     \ j|/k\|  /   \  |/k\|l /   
8135 C      \ /   \ /     \ /   \ /    
8136 C       o     o       o     o                
8137 C       i             i                     
8138 C
8139 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8140       itk=itortyp(itype(k))
8141       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8142       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8143       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8144       call transpose2(EUgC(1,1,k),auxmat(1,1))
8145       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8146       vv1(1)=pizda1(1,1)-pizda1(2,2)
8147       vv1(2)=pizda1(1,2)+pizda1(2,1)
8148       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8149       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8150       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8151       s5=scalar2(vv(1),Dtobr2(1,i))
8152 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8153       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8154       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8155      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8156      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8157      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8158      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8159      & +scalar2(vv(1),Dtobr2der(1,i)))
8160       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8161       vv1(1)=pizda1(1,1)-pizda1(2,2)
8162       vv1(2)=pizda1(1,2)+pizda1(2,1)
8163       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8164       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8165       if (l.eq.j+1) then
8166         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8167      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8168      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8169      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8170      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8171       else
8172         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8173      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8174      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8175      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8176      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8177       endif
8178       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8179       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8180       vv1(1)=pizda1(1,1)-pizda1(2,2)
8181       vv1(2)=pizda1(1,2)+pizda1(2,1)
8182       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8183      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8184      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8185      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8186       do iii=1,2
8187         if (swap) then
8188           ind=3-iii
8189         else
8190           ind=iii
8191         endif
8192         do kkk=1,5
8193           do lll=1,3
8194             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8195             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8196             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8197             call transpose2(EUgC(1,1,k),auxmat(1,1))
8198             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8199      &        pizda1(1,1))
8200             vv1(1)=pizda1(1,1)-pizda1(2,2)
8201             vv1(2)=pizda1(1,2)+pizda1(2,1)
8202             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8203             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8204      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8205             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8206      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8207             s5=scalar2(vv(1),Dtobr2(1,i))
8208             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8209           enddo
8210         enddo
8211       enddo
8212       return
8213       end
8214 c----------------------------------------------------------------------------
8215       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8216       implicit real*8 (a-h,o-z)
8217       include 'DIMENSIONS'
8218       include 'COMMON.IOUNITS'
8219       include 'COMMON.CHAIN'
8220       include 'COMMON.DERIV'
8221       include 'COMMON.INTERACT'
8222       include 'COMMON.CONTACTS'
8223       include 'COMMON.TORSION'
8224       include 'COMMON.VAR'
8225       include 'COMMON.GEO'
8226       logical swap
8227       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8228      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8229       logical lprn
8230       common /kutas/ lprn
8231 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8232 C                                                                              C
8233 C      Parallel       Antiparallel                                             C
8234 C                                                                              C
8235 C          o             o                                                     C
8236 C     \   /l\           /j\   /                                                C
8237 C      \ /   \         /   \ /                                                 C
8238 C       o| o |         | o |o                                                  C                
8239 C     \ j|/k\|      \  |/k\|l                                                  C
8240 C      \ /   \       \ /   \                                                   C
8241 C       o             o                                                        C
8242 C       i             i                                                        C 
8243 C                                                                              C           
8244 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8245 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8246 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8247 C           but not in a cluster cumulant
8248 #ifdef MOMENT
8249       s1=dip(1,jj,i)*dip(1,kk,k)
8250 #endif
8251       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8252       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8253       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8254       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8255       call transpose2(EUg(1,1,k),auxmat(1,1))
8256       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8257       vv(1)=pizda(1,1)-pizda(2,2)
8258       vv(2)=pizda(1,2)+pizda(2,1)
8259       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8260 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8261 #ifdef MOMENT
8262       eello6_graph2=-(s1+s2+s3+s4)
8263 #else
8264       eello6_graph2=-(s2+s3+s4)
8265 #endif
8266 c      eello6_graph2=-s3
8267 C Derivatives in gamma(i-1)
8268       if (i.gt.1) then
8269 #ifdef MOMENT
8270         s1=dipderg(1,jj,i)*dip(1,kk,k)
8271 #endif
8272         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8273         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8274         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8275         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8276 #ifdef MOMENT
8277         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8278 #else
8279         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8280 #endif
8281 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8282       endif
8283 C Derivatives in gamma(k-1)
8284 #ifdef MOMENT
8285       s1=dip(1,jj,i)*dipderg(1,kk,k)
8286 #endif
8287       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8288       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8289       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8290       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8291       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8292       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8293       vv(1)=pizda(1,1)-pizda(2,2)
8294       vv(2)=pizda(1,2)+pizda(2,1)
8295       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8296 #ifdef MOMENT
8297       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8298 #else
8299       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8300 #endif
8301 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8302 C Derivatives in gamma(j-1) or gamma(l-1)
8303       if (j.gt.1) then
8304 #ifdef MOMENT
8305         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8306 #endif
8307         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8308         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8309         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8310         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8311         vv(1)=pizda(1,1)-pizda(2,2)
8312         vv(2)=pizda(1,2)+pizda(2,1)
8313         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8314 #ifdef MOMENT
8315         if (swap) then
8316           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8317         else
8318           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8319         endif
8320 #endif
8321         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8322 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8323       endif
8324 C Derivatives in gamma(l-1) or gamma(j-1)
8325       if (l.gt.1) then 
8326 #ifdef MOMENT
8327         s1=dip(1,jj,i)*dipderg(3,kk,k)
8328 #endif
8329         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8330         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8331         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8332         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8333         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8334         vv(1)=pizda(1,1)-pizda(2,2)
8335         vv(2)=pizda(1,2)+pizda(2,1)
8336         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8337 #ifdef MOMENT
8338         if (swap) then
8339           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8340         else
8341           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8342         endif
8343 #endif
8344         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8345 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8346       endif
8347 C Cartesian derivatives.
8348       if (lprn) then
8349         write (2,*) 'In eello6_graph2'
8350         do iii=1,2
8351           write (2,*) 'iii=',iii
8352           do kkk=1,5
8353             write (2,*) 'kkk=',kkk
8354             do jjj=1,2
8355               write (2,'(3(2f10.5),5x)') 
8356      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8357             enddo
8358           enddo
8359         enddo
8360       endif
8361       do iii=1,2
8362         do kkk=1,5
8363           do lll=1,3
8364 #ifdef MOMENT
8365             if (iii.eq.1) then
8366               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8367             else
8368               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8369             endif
8370 #endif
8371             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8372      &        auxvec(1))
8373             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8374             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8375      &        auxvec(1))
8376             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8377             call transpose2(EUg(1,1,k),auxmat(1,1))
8378             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8379      &        pizda(1,1))
8380             vv(1)=pizda(1,1)-pizda(2,2)
8381             vv(2)=pizda(1,2)+pizda(2,1)
8382             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8383 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8384 #ifdef MOMENT
8385             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8386 #else
8387             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8388 #endif
8389             if (swap) then
8390               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8391             else
8392               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8393             endif
8394           enddo
8395         enddo
8396       enddo
8397       return
8398       end
8399 c----------------------------------------------------------------------------
8400       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8401       implicit real*8 (a-h,o-z)
8402       include 'DIMENSIONS'
8403       include 'COMMON.IOUNITS'
8404       include 'COMMON.CHAIN'
8405       include 'COMMON.DERIV'
8406       include 'COMMON.INTERACT'
8407       include 'COMMON.CONTACTS'
8408       include 'COMMON.TORSION'
8409       include 'COMMON.VAR'
8410       include 'COMMON.GEO'
8411       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8412       logical swap
8413 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8414 C                                                                              C 
8415 C      Parallel       Antiparallel                                             C
8416 C                                                                              C
8417 C          o             o                                                     C 
8418 C         /l\   /   \   /j\                                                    C 
8419 C        /   \ /     \ /   \                                                   C
8420 C       /| o |o       o| o |\                                                  C
8421 C       j|/k\|  /      |/k\|l /                                                C
8422 C        /   \ /       /   \ /                                                 C
8423 C       /     o       /     o                                                  C
8424 C       i             i                                                        C
8425 C                                                                              C
8426 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8427 C
8428 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8429 C           energy moment and not to the cluster cumulant.
8430       iti=itortyp(itype(i))
8431       if (j.lt.nres-1) then
8432         itj1=itortyp(itype(j+1))
8433       else
8434         itj1=ntortyp+1
8435       endif
8436       itk=itortyp(itype(k))
8437       itk1=itortyp(itype(k+1))
8438       if (l.lt.nres-1) then
8439         itl1=itortyp(itype(l+1))
8440       else
8441         itl1=ntortyp+1
8442       endif
8443 #ifdef MOMENT
8444       s1=dip(4,jj,i)*dip(4,kk,k)
8445 #endif
8446       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8447       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8448       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8449       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8450       call transpose2(EE(1,1,itk),auxmat(1,1))
8451       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8452       vv(1)=pizda(1,1)+pizda(2,2)
8453       vv(2)=pizda(2,1)-pizda(1,2)
8454       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8455 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8456 cd     & "sum",-(s2+s3+s4)
8457 #ifdef MOMENT
8458       eello6_graph3=-(s1+s2+s3+s4)
8459 #else
8460       eello6_graph3=-(s2+s3+s4)
8461 #endif
8462 c      eello6_graph3=-s4
8463 C Derivatives in gamma(k-1)
8464       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8465       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8466       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8467       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8468 C Derivatives in gamma(l-1)
8469       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8470       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8471       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8472       vv(1)=pizda(1,1)+pizda(2,2)
8473       vv(2)=pizda(2,1)-pizda(1,2)
8474       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8475       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8476 C Cartesian derivatives.
8477       do iii=1,2
8478         do kkk=1,5
8479           do lll=1,3
8480 #ifdef MOMENT
8481             if (iii.eq.1) then
8482               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8483             else
8484               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8485             endif
8486 #endif
8487             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8488      &        auxvec(1))
8489             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8490             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8491      &        auxvec(1))
8492             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8493             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8494      &        pizda(1,1))
8495             vv(1)=pizda(1,1)+pizda(2,2)
8496             vv(2)=pizda(2,1)-pizda(1,2)
8497             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8498 #ifdef MOMENT
8499             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8500 #else
8501             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8502 #endif
8503             if (swap) then
8504               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8505             else
8506               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8507             endif
8508 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8509           enddo
8510         enddo
8511       enddo
8512       return
8513       end
8514 c----------------------------------------------------------------------------
8515       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8516       implicit real*8 (a-h,o-z)
8517       include 'DIMENSIONS'
8518       include 'COMMON.IOUNITS'
8519       include 'COMMON.CHAIN'
8520       include 'COMMON.DERIV'
8521       include 'COMMON.INTERACT'
8522       include 'COMMON.CONTACTS'
8523       include 'COMMON.TORSION'
8524       include 'COMMON.VAR'
8525       include 'COMMON.GEO'
8526       include 'COMMON.FFIELD'
8527       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8528      & auxvec1(2),auxmat1(2,2)
8529       logical swap
8530 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8531 C                                                                              C                       
8532 C      Parallel       Antiparallel                                             C
8533 C                                                                              C
8534 C          o             o                                                     C
8535 C         /l\   /   \   /j\                                                    C
8536 C        /   \ /     \ /   \                                                   C
8537 C       /| o |o       o| o |\                                                  C
8538 C     \ j|/k\|      \  |/k\|l                                                  C
8539 C      \ /   \       \ /   \                                                   C 
8540 C       o     \       o     \                                                  C
8541 C       i             i                                                        C
8542 C                                                                              C 
8543 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8544 C
8545 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8546 C           energy moment and not to the cluster cumulant.
8547 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8548       iti=itortyp(itype(i))
8549       itj=itortyp(itype(j))
8550       if (j.lt.nres-1) then
8551         itj1=itortyp(itype(j+1))
8552       else
8553         itj1=ntortyp+1
8554       endif
8555       itk=itortyp(itype(k))
8556       if (k.lt.nres-1) then
8557         itk1=itortyp(itype(k+1))
8558       else
8559         itk1=ntortyp+1
8560       endif
8561       itl=itortyp(itype(l))
8562       if (l.lt.nres-1) then
8563         itl1=itortyp(itype(l+1))
8564       else
8565         itl1=ntortyp+1
8566       endif
8567 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8568 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8569 cd     & ' itl',itl,' itl1',itl1
8570 #ifdef MOMENT
8571       if (imat.eq.1) then
8572         s1=dip(3,jj,i)*dip(3,kk,k)
8573       else
8574         s1=dip(2,jj,j)*dip(2,kk,l)
8575       endif
8576 #endif
8577       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8578       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8579       if (j.eq.l+1) then
8580         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8581         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8582       else
8583         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8584         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8585       endif
8586       call transpose2(EUg(1,1,k),auxmat(1,1))
8587       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8588       vv(1)=pizda(1,1)-pizda(2,2)
8589       vv(2)=pizda(2,1)+pizda(1,2)
8590       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8591 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8592 #ifdef MOMENT
8593       eello6_graph4=-(s1+s2+s3+s4)
8594 #else
8595       eello6_graph4=-(s2+s3+s4)
8596 #endif
8597 C Derivatives in gamma(i-1)
8598       if (i.gt.1) then
8599 #ifdef MOMENT
8600         if (imat.eq.1) then
8601           s1=dipderg(2,jj,i)*dip(3,kk,k)
8602         else
8603           s1=dipderg(4,jj,j)*dip(2,kk,l)
8604         endif
8605 #endif
8606         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8607         if (j.eq.l+1) then
8608           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8609           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8610         else
8611           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8612           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8613         endif
8614         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8615         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8616 cd          write (2,*) 'turn6 derivatives'
8617 #ifdef MOMENT
8618           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8619 #else
8620           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8621 #endif
8622         else
8623 #ifdef MOMENT
8624           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8625 #else
8626           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8627 #endif
8628         endif
8629       endif
8630 C Derivatives in gamma(k-1)
8631 #ifdef MOMENT
8632       if (imat.eq.1) then
8633         s1=dip(3,jj,i)*dipderg(2,kk,k)
8634       else
8635         s1=dip(2,jj,j)*dipderg(4,kk,l)
8636       endif
8637 #endif
8638       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8639       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8640       if (j.eq.l+1) then
8641         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8642         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8643       else
8644         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8645         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8646       endif
8647       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8648       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8649       vv(1)=pizda(1,1)-pizda(2,2)
8650       vv(2)=pizda(2,1)+pizda(1,2)
8651       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8652       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8653 #ifdef MOMENT
8654         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8655 #else
8656         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8657 #endif
8658       else
8659 #ifdef MOMENT
8660         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8661 #else
8662         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8663 #endif
8664       endif
8665 C Derivatives in gamma(j-1) or gamma(l-1)
8666       if (l.eq.j+1 .and. l.gt.1) then
8667         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8668         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8669         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8670         vv(1)=pizda(1,1)-pizda(2,2)
8671         vv(2)=pizda(2,1)+pizda(1,2)
8672         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8673         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8674       else if (j.gt.1) then
8675         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8676         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8677         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8678         vv(1)=pizda(1,1)-pizda(2,2)
8679         vv(2)=pizda(2,1)+pizda(1,2)
8680         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8681         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8682           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8683         else
8684           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8685         endif
8686       endif
8687 C Cartesian derivatives.
8688       do iii=1,2
8689         do kkk=1,5
8690           do lll=1,3
8691 #ifdef MOMENT
8692             if (iii.eq.1) then
8693               if (imat.eq.1) then
8694                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8695               else
8696                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8697               endif
8698             else
8699               if (imat.eq.1) then
8700                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8701               else
8702                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8703               endif
8704             endif
8705 #endif
8706             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8707      &        auxvec(1))
8708             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8709             if (j.eq.l+1) then
8710               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8711      &          b1(1,itj1),auxvec(1))
8712               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8713             else
8714               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8715      &          b1(1,itl1),auxvec(1))
8716               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8717             endif
8718             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8719      &        pizda(1,1))
8720             vv(1)=pizda(1,1)-pizda(2,2)
8721             vv(2)=pizda(2,1)+pizda(1,2)
8722             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8723             if (swap) then
8724               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8725 #ifdef MOMENT
8726                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8727      &             -(s1+s2+s4)
8728 #else
8729                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8730      &             -(s2+s4)
8731 #endif
8732                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8733               else
8734 #ifdef MOMENT
8735                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8736 #else
8737                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8738 #endif
8739                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8740               endif
8741             else
8742 #ifdef MOMENT
8743               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8744 #else
8745               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8746 #endif
8747               if (l.eq.j+1) then
8748                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8749               else 
8750                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8751               endif
8752             endif 
8753           enddo
8754         enddo
8755       enddo
8756       return
8757       end
8758 c----------------------------------------------------------------------------
8759       double precision function eello_turn6(i,jj,kk)
8760       implicit real*8 (a-h,o-z)
8761       include 'DIMENSIONS'
8762       include 'COMMON.IOUNITS'
8763       include 'COMMON.CHAIN'
8764       include 'COMMON.DERIV'
8765       include 'COMMON.INTERACT'
8766       include 'COMMON.CONTACTS'
8767       include 'COMMON.TORSION'
8768       include 'COMMON.VAR'
8769       include 'COMMON.GEO'
8770       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8771      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8772      &  ggg1(3),ggg2(3)
8773       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8774      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8775 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8776 C           the respective energy moment and not to the cluster cumulant.
8777       s1=0.0d0
8778       s8=0.0d0
8779       s13=0.0d0
8780 c
8781       eello_turn6=0.0d0
8782       j=i+4
8783       k=i+1
8784       l=i+3
8785       iti=itortyp(itype(i))
8786       itk=itortyp(itype(k))
8787       itk1=itortyp(itype(k+1))
8788       itl=itortyp(itype(l))
8789       itj=itortyp(itype(j))
8790 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8791 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8792 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8793 cd        eello6=0.0d0
8794 cd        return
8795 cd      endif
8796 cd      write (iout,*)
8797 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8798 cd     &   ' and',k,l
8799 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8800       do iii=1,2
8801         do kkk=1,5
8802           do lll=1,3
8803             derx_turn(lll,kkk,iii)=0.0d0
8804           enddo
8805         enddo
8806       enddo
8807 cd      eij=1.0d0
8808 cd      ekl=1.0d0
8809 cd      ekont=1.0d0
8810       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8811 cd      eello6_5=0.0d0
8812 cd      write (2,*) 'eello6_5',eello6_5
8813 #ifdef MOMENT
8814       call transpose2(AEA(1,1,1),auxmat(1,1))
8815       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8816       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8817       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8818 #endif
8819       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8820       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8821       s2 = scalar2(b1(1,itk),vtemp1(1))
8822 #ifdef MOMENT
8823       call transpose2(AEA(1,1,2),atemp(1,1))
8824       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8825       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8826       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8827 #endif
8828       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8829       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8830       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8831 #ifdef MOMENT
8832       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8833       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8834       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8835       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8836       ss13 = scalar2(b1(1,itk),vtemp4(1))
8837       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8838 #endif
8839 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8840 c      s1=0.0d0
8841 c      s2=0.0d0
8842 c      s8=0.0d0
8843 c      s12=0.0d0
8844 c      s13=0.0d0
8845       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8846 C Derivatives in gamma(i+2)
8847       s1d =0.0d0
8848       s8d =0.0d0
8849 #ifdef MOMENT
8850       call transpose2(AEA(1,1,1),auxmatd(1,1))
8851       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8852       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8853       call transpose2(AEAderg(1,1,2),atempd(1,1))
8854       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8855       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8856 #endif
8857       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8858       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8859       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8860 c      s1d=0.0d0
8861 c      s2d=0.0d0
8862 c      s8d=0.0d0
8863 c      s12d=0.0d0
8864 c      s13d=0.0d0
8865       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8866 C Derivatives in gamma(i+3)
8867 #ifdef MOMENT
8868       call transpose2(AEA(1,1,1),auxmatd(1,1))
8869       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8870       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8871       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8872 #endif
8873       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8874       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8875       s2d = scalar2(b1(1,itk),vtemp1d(1))
8876 #ifdef MOMENT
8877       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8878       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8879 #endif
8880       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8881 #ifdef MOMENT
8882       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8883       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8884       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8885 #endif
8886 c      s1d=0.0d0
8887 c      s2d=0.0d0
8888 c      s8d=0.0d0
8889 c      s12d=0.0d0
8890 c      s13d=0.0d0
8891 #ifdef MOMENT
8892       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8893      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8894 #else
8895       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8896      &               -0.5d0*ekont*(s2d+s12d)
8897 #endif
8898 C Derivatives in gamma(i+4)
8899       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8900       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8901       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8902 #ifdef MOMENT
8903       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8904       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8905       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8906 #endif
8907 c      s1d=0.0d0
8908 c      s2d=0.0d0
8909 c      s8d=0.0d0
8910 C      s12d=0.0d0
8911 c      s13d=0.0d0
8912 #ifdef MOMENT
8913       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8914 #else
8915       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8916 #endif
8917 C Derivatives in gamma(i+5)
8918 #ifdef MOMENT
8919       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8920       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8921       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8922 #endif
8923       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8924       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8925       s2d = scalar2(b1(1,itk),vtemp1d(1))
8926 #ifdef MOMENT
8927       call transpose2(AEA(1,1,2),atempd(1,1))
8928       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8929       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8930 #endif
8931       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8932       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8933 #ifdef MOMENT
8934       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8935       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8936       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8937 #endif
8938 c      s1d=0.0d0
8939 c      s2d=0.0d0
8940 c      s8d=0.0d0
8941 c      s12d=0.0d0
8942 c      s13d=0.0d0
8943 #ifdef MOMENT
8944       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8945      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8946 #else
8947       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8948      &               -0.5d0*ekont*(s2d+s12d)
8949 #endif
8950 C Cartesian derivatives
8951       do iii=1,2
8952         do kkk=1,5
8953           do lll=1,3
8954 #ifdef MOMENT
8955             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8956             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8957             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8958 #endif
8959             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8960             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8961      &          vtemp1d(1))
8962             s2d = scalar2(b1(1,itk),vtemp1d(1))
8963 #ifdef MOMENT
8964             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8965             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8966             s8d = -(atempd(1,1)+atempd(2,2))*
8967      &           scalar2(cc(1,1,itl),vtemp2(1))
8968 #endif
8969             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8970      &           auxmatd(1,1))
8971             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8972             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8973 c      s1d=0.0d0
8974 c      s2d=0.0d0
8975 c      s8d=0.0d0
8976 c      s12d=0.0d0
8977 c      s13d=0.0d0
8978 #ifdef MOMENT
8979             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8980      &        - 0.5d0*(s1d+s2d)
8981 #else
8982             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8983      &        - 0.5d0*s2d
8984 #endif
8985 #ifdef MOMENT
8986             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8987      &        - 0.5d0*(s8d+s12d)
8988 #else
8989             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8990      &        - 0.5d0*s12d
8991 #endif
8992           enddo
8993         enddo
8994       enddo
8995 #ifdef MOMENT
8996       do kkk=1,5
8997         do lll=1,3
8998           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8999      &      achuj_tempd(1,1))
9000           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9001           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9002           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9003           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9004           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9005      &      vtemp4d(1)) 
9006           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9007           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9008           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9009         enddo
9010       enddo
9011 #endif
9012 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9013 cd     &  16*eel_turn6_num
9014 cd      goto 1112
9015       if (j.lt.nres-1) then
9016         j1=j+1
9017         j2=j-1
9018       else
9019         j1=j-1
9020         j2=j-2
9021       endif
9022       if (l.lt.nres-1) then
9023         l1=l+1
9024         l2=l-1
9025       else
9026         l1=l-1
9027         l2=l-2
9028       endif
9029       do ll=1,3
9030 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9031 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9032 cgrad        ghalf=0.5d0*ggg1(ll)
9033 cd        ghalf=0.0d0
9034         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9035         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9036         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9037      &    +ekont*derx_turn(ll,2,1)
9038         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9039         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9040      &    +ekont*derx_turn(ll,4,1)
9041         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9042         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9043         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9044 cgrad        ghalf=0.5d0*ggg2(ll)
9045 cd        ghalf=0.0d0
9046         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9047      &    +ekont*derx_turn(ll,2,2)
9048         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9049         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9050      &    +ekont*derx_turn(ll,4,2)
9051         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9052         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9053         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9054       enddo
9055 cd      goto 1112
9056 cgrad      do m=i+1,j-1
9057 cgrad        do ll=1,3
9058 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9059 cgrad        enddo
9060 cgrad      enddo
9061 cgrad      do m=k+1,l-1
9062 cgrad        do ll=1,3
9063 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9064 cgrad        enddo
9065 cgrad      enddo
9066 cgrad1112  continue
9067 cgrad      do m=i+2,j2
9068 cgrad        do ll=1,3
9069 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9070 cgrad        enddo
9071 cgrad      enddo
9072 cgrad      do m=k+2,l2
9073 cgrad        do ll=1,3
9074 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9075 cgrad        enddo
9076 cgrad      enddo 
9077 cd      do iii=1,nres-3
9078 cd        write (2,*) iii,g_corr6_loc(iii)
9079 cd      enddo
9080       eello_turn6=ekont*eel_turn6
9081 cd      write (2,*) 'ekont',ekont
9082 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9083       return
9084       end
9085
9086 C-----------------------------------------------------------------------------
9087       double precision function scalar(u,v)
9088 !DIR$ INLINEALWAYS scalar
9089 #ifndef OSF
9090 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9091 #endif
9092       implicit none
9093       double precision u(3),v(3)
9094 cd      double precision sc
9095 cd      integer i
9096 cd      sc=0.0d0
9097 cd      do i=1,3
9098 cd        sc=sc+u(i)*v(i)
9099 cd      enddo
9100 cd      scalar=sc
9101
9102       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9103       return
9104       end
9105 crc-------------------------------------------------
9106       SUBROUTINE MATVEC2(A1,V1,V2)
9107 !DIR$ INLINEALWAYS MATVEC2
9108 #ifndef OSF
9109 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9110 #endif
9111       implicit real*8 (a-h,o-z)
9112       include 'DIMENSIONS'
9113       DIMENSION A1(2,2),V1(2),V2(2)
9114 c      DO 1 I=1,2
9115 c        VI=0.0
9116 c        DO 3 K=1,2
9117 c    3     VI=VI+A1(I,K)*V1(K)
9118 c        Vaux(I)=VI
9119 c    1 CONTINUE
9120
9121       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9122       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9123
9124       v2(1)=vaux1
9125       v2(2)=vaux2
9126       END
9127 C---------------------------------------
9128       SUBROUTINE MATMAT2(A1,A2,A3)
9129 #ifndef OSF
9130 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9131 #endif
9132       implicit real*8 (a-h,o-z)
9133       include 'DIMENSIONS'
9134       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9135 c      DIMENSION AI3(2,2)
9136 c        DO  J=1,2
9137 c          A3IJ=0.0
9138 c          DO K=1,2
9139 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9140 c          enddo
9141 c          A3(I,J)=A3IJ
9142 c       enddo
9143 c      enddo
9144
9145       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9146       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9147       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9148       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9149
9150       A3(1,1)=AI3_11
9151       A3(2,1)=AI3_21
9152       A3(1,2)=AI3_12
9153       A3(2,2)=AI3_22
9154       END
9155
9156 c-------------------------------------------------------------------------
9157       double precision function scalar2(u,v)
9158 !DIR$ INLINEALWAYS scalar2
9159       implicit none
9160       double precision u(2),v(2)
9161       double precision sc
9162       integer i
9163       scalar2=u(1)*v(1)+u(2)*v(2)
9164       return
9165       end
9166
9167 C-----------------------------------------------------------------------------
9168
9169       subroutine transpose2(a,at)
9170 !DIR$ INLINEALWAYS transpose2
9171 #ifndef OSF
9172 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9173 #endif
9174       implicit none
9175       double precision a(2,2),at(2,2)
9176       at(1,1)=a(1,1)
9177       at(1,2)=a(2,1)
9178       at(2,1)=a(1,2)
9179       at(2,2)=a(2,2)
9180       return
9181       end
9182 c--------------------------------------------------------------------------
9183       subroutine transpose(n,a,at)
9184       implicit none
9185       integer n,i,j
9186       double precision a(n,n),at(n,n)
9187       do i=1,n
9188         do j=1,n
9189           at(j,i)=a(i,j)
9190         enddo
9191       enddo
9192       return
9193       end
9194 C---------------------------------------------------------------------------
9195       subroutine prodmat3(a1,a2,kk,transp,prod)
9196 !DIR$ INLINEALWAYS prodmat3
9197 #ifndef OSF
9198 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9199 #endif
9200       implicit none
9201       integer i,j
9202       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9203       logical transp
9204 crc      double precision auxmat(2,2),prod_(2,2)
9205
9206       if (transp) then
9207 crc        call transpose2(kk(1,1),auxmat(1,1))
9208 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9209 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9210         
9211            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9212      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9213            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9214      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9215            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9216      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9217            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9218      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9219
9220       else
9221 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9222 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9223
9224            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9225      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9226            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9227      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9228            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9229      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9230            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9231      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9232
9233       endif
9234 c      call transpose2(a2(1,1),a2t(1,1))
9235
9236 crc      print *,transp
9237 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9238 crc      print *,((prod(i,j),i=1,2),j=1,2)
9239
9240       return
9241       end
9242