ENERGY_DEC printout works for ebend in E0LL2Y forcefield
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=itype(j)
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026 C        if (itype(i).eq.21 .or. itype(i+1).eq.21
3027 C     &  .or. itype(i+2).eq.21 .or. itype(i+3).eq.21.or.itype(i+4).eq.21)
3028 C     &  cycle
3029         dxi=dc(1,i)
3030         dyi=dc(2,i)
3031         dzi=dc(3,i)
3032         dx_normi=dc_norm(1,i)
3033         dy_normi=dc_norm(2,i)
3034         dz_normi=dc_norm(3,i)
3035         xmedi=c(1,i)+0.5d0*dxi
3036         ymedi=c(2,i)+0.5d0*dyi
3037         zmedi=c(3,i)+0.5d0*dzi
3038         num_conti=0
3039         call eelecij(i,i+2,ees,evdw1,eel_loc)
3040         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3041         num_cont_hb(i)=num_conti
3042       enddo
3043       do i=iturn4_start,iturn4_end
3044 C        if (itype(i).eq.21 .or. itype(i+1).eq.21
3045 C     &  .or. itype(i+2).eq.21 .or. itype(i+3).eq.21.or.itype(i+4).eq.21
3046 C     &  .or. itype(i+5).eq.21)
3047 C     & cycle
3048         dxi=dc(1,i)
3049         dyi=dc(2,i)
3050         dzi=dc(3,i)
3051         dx_normi=dc_norm(1,i)
3052         dy_normi=dc_norm(2,i)
3053         dz_normi=dc_norm(3,i)
3054         xmedi=c(1,i)+0.5d0*dxi
3055         ymedi=c(2,i)+0.5d0*dyi
3056         zmedi=c(3,i)+0.5d0*dzi
3057         num_conti=num_cont_hb(i)
3058         call eelecij(i,i+3,ees,evdw1,eel_loc)
3059         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3060         num_cont_hb(i)=num_conti
3061       enddo   ! i
3062 c
3063 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3064 c
3065       do i=iatel_s,iatel_e
3066 C          if (itype(i).eq.21 .or. itype(i+1).eq.21
3067 C     &.or.itype(i+2)) cycle
3068         dxi=dc(1,i)
3069         dyi=dc(2,i)
3070         dzi=dc(3,i)
3071         dx_normi=dc_norm(1,i)
3072         dy_normi=dc_norm(2,i)
3073         dz_normi=dc_norm(3,i)
3074         xmedi=c(1,i)+0.5d0*dxi
3075         ymedi=c(2,i)+0.5d0*dyi
3076         zmedi=c(3,i)+0.5d0*dzi
3077 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3078         num_conti=num_cont_hb(i)
3079         do j=ielstart(i),ielend(i)
3080 C          if (itype(j).eq.21 .or. itype(j+1).eq.21
3081 C     &.or.itype(j+2)) cycle
3082           call eelecij(i,j,ees,evdw1,eel_loc)
3083         enddo ! j
3084         num_cont_hb(i)=num_conti
3085       enddo   ! i
3086 c      write (iout,*) "Number of loop steps in EELEC:",ind
3087 cd      do i=1,nres
3088 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3089 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3090 cd      enddo
3091 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3092 ccc      eel_loc=eel_loc+eello_turn3
3093 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3094       return
3095       end
3096 C-------------------------------------------------------------------------------
3097       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3098       implicit real*8 (a-h,o-z)
3099       include 'DIMENSIONS'
3100 #ifdef MPI
3101       include "mpif.h"
3102 #endif
3103       include 'COMMON.CONTROL'
3104       include 'COMMON.IOUNITS'
3105       include 'COMMON.GEO'
3106       include 'COMMON.VAR'
3107       include 'COMMON.LOCAL'
3108       include 'COMMON.CHAIN'
3109       include 'COMMON.DERIV'
3110       include 'COMMON.INTERACT'
3111       include 'COMMON.CONTACTS'
3112       include 'COMMON.TORSION'
3113       include 'COMMON.VECTORS'
3114       include 'COMMON.FFIELD'
3115       include 'COMMON.TIME1'
3116       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3117      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3118       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3119      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3120       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3121      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3122      &    num_conti,j1,j2
3123 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3124 #ifdef MOMENT
3125       double precision scal_el /1.0d0/
3126 #else
3127       double precision scal_el /0.5d0/
3128 #endif
3129 C 12/13/98 
3130 C 13-go grudnia roku pamietnego... 
3131       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3132      &                   0.0d0,1.0d0,0.0d0,
3133      &                   0.0d0,0.0d0,1.0d0/
3134 c          time00=MPI_Wtime()
3135 cd      write (iout,*) "eelecij",i,j
3136 c          ind=ind+1
3137           iteli=itel(i)
3138           itelj=itel(j)
3139           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3140           aaa=app(iteli,itelj)
3141           bbb=bpp(iteli,itelj)
3142           ael6i=ael6(iteli,itelj)
3143           ael3i=ael3(iteli,itelj) 
3144           dxj=dc(1,j)
3145           dyj=dc(2,j)
3146           dzj=dc(3,j)
3147           dx_normj=dc_norm(1,j)
3148           dy_normj=dc_norm(2,j)
3149           dz_normj=dc_norm(3,j)
3150           xj=c(1,j)+0.5D0*dxj-xmedi
3151           yj=c(2,j)+0.5D0*dyj-ymedi
3152           zj=c(3,j)+0.5D0*dzj-zmedi
3153           rij=xj*xj+yj*yj+zj*zj
3154           rrmij=1.0D0/rij
3155           rij=dsqrt(rij)
3156           rmij=1.0D0/rij
3157           r3ij=rrmij*rmij
3158           r6ij=r3ij*r3ij  
3159           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3160           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3161           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3162           fac=cosa-3.0D0*cosb*cosg
3163           ev1=aaa*r6ij*r6ij
3164 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3165           if (j.eq.i+2) ev1=scal_el*ev1
3166           ev2=bbb*r6ij
3167           fac3=ael6i*r6ij
3168           fac4=ael3i*r3ij
3169           evdwij=ev1+ev2
3170           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3171           el2=fac4*fac       
3172           eesij=el1+el2
3173 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3174           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3175           ees=ees+eesij
3176           evdw1=evdw1+evdwij
3177 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3178 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3179 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3180 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3181
3182           if (energy_dec) then 
3183               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3184               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3185           endif
3186
3187 C
3188 C Calculate contributions to the Cartesian gradient.
3189 C
3190 #ifdef SPLITELE
3191           facvdw=-6*rrmij*(ev1+evdwij)
3192           facel=-3*rrmij*(el1+eesij)
3193           fac1=fac
3194           erij(1)=xj*rmij
3195           erij(2)=yj*rmij
3196           erij(3)=zj*rmij
3197 *
3198 * Radial derivatives. First process both termini of the fragment (i,j)
3199 *
3200           ggg(1)=facel*xj
3201           ggg(2)=facel*yj
3202           ggg(3)=facel*zj
3203 c          do k=1,3
3204 c            ghalf=0.5D0*ggg(k)
3205 c            gelc(k,i)=gelc(k,i)+ghalf
3206 c            gelc(k,j)=gelc(k,j)+ghalf
3207 c          enddo
3208 c 9/28/08 AL Gradient compotents will be summed only at the end
3209           do k=1,3
3210             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3211             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3212           enddo
3213 *
3214 * Loop over residues i+1 thru j-1.
3215 *
3216 cgrad          do k=i+1,j-1
3217 cgrad            do l=1,3
3218 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3219 cgrad            enddo
3220 cgrad          enddo
3221           ggg(1)=facvdw*xj
3222           ggg(2)=facvdw*yj
3223           ggg(3)=facvdw*zj
3224 c          do k=1,3
3225 c            ghalf=0.5D0*ggg(k)
3226 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3227 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3228 c          enddo
3229 c 9/28/08 AL Gradient compotents will be summed only at the end
3230           do k=1,3
3231             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3232             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3233           enddo
3234 *
3235 * Loop over residues i+1 thru j-1.
3236 *
3237 cgrad          do k=i+1,j-1
3238 cgrad            do l=1,3
3239 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3240 cgrad            enddo
3241 cgrad          enddo
3242 #else
3243           facvdw=ev1+evdwij 
3244           facel=el1+eesij  
3245           fac1=fac
3246           fac=-3*rrmij*(facvdw+facvdw+facel)
3247           erij(1)=xj*rmij
3248           erij(2)=yj*rmij
3249           erij(3)=zj*rmij
3250 *
3251 * Radial derivatives. First process both termini of the fragment (i,j)
3252
3253           ggg(1)=fac*xj
3254           ggg(2)=fac*yj
3255           ggg(3)=fac*zj
3256 c          do k=1,3
3257 c            ghalf=0.5D0*ggg(k)
3258 c            gelc(k,i)=gelc(k,i)+ghalf
3259 c            gelc(k,j)=gelc(k,j)+ghalf
3260 c          enddo
3261 c 9/28/08 AL Gradient compotents will be summed only at the end
3262           do k=1,3
3263             gelc_long(k,j)=gelc(k,j)+ggg(k)
3264             gelc_long(k,i)=gelc(k,i)-ggg(k)
3265           enddo
3266 *
3267 * Loop over residues i+1 thru j-1.
3268 *
3269 cgrad          do k=i+1,j-1
3270 cgrad            do l=1,3
3271 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3272 cgrad            enddo
3273 cgrad          enddo
3274 c 9/28/08 AL Gradient compotents will be summed only at the end
3275           ggg(1)=facvdw*xj
3276           ggg(2)=facvdw*yj
3277           ggg(3)=facvdw*zj
3278           do k=1,3
3279             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3280             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3281           enddo
3282 #endif
3283 *
3284 * Angular part
3285 *          
3286           ecosa=2.0D0*fac3*fac1+fac4
3287           fac4=-3.0D0*fac4
3288           fac3=-6.0D0*fac3
3289           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3290           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3291           do k=1,3
3292             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3293             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3294           enddo
3295 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3296 cd   &          (dcosg(k),k=1,3)
3297           do k=1,3
3298             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3299           enddo
3300 c          do k=1,3
3301 c            ghalf=0.5D0*ggg(k)
3302 c            gelc(k,i)=gelc(k,i)+ghalf
3303 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3304 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3305 c            gelc(k,j)=gelc(k,j)+ghalf
3306 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3307 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3308 c          enddo
3309 cgrad          do k=i+1,j-1
3310 cgrad            do l=1,3
3311 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3312 cgrad            enddo
3313 cgrad          enddo
3314           do k=1,3
3315             gelc(k,i)=gelc(k,i)
3316      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3317      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3318             gelc(k,j)=gelc(k,j)
3319      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3320      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3321             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3322             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3323           enddo
3324           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3325      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3326      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3327 C
3328 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3329 C   energy of a peptide unit is assumed in the form of a second-order 
3330 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3331 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3332 C   are computed for EVERY pair of non-contiguous peptide groups.
3333 C
3334           if (j.lt.nres-1) then
3335             j1=j+1
3336             j2=j-1
3337           else
3338             j1=j-1
3339             j2=j-2
3340           endif
3341           kkk=0
3342           do k=1,2
3343             do l=1,2
3344               kkk=kkk+1
3345               muij(kkk)=mu(k,i)*mu(l,j)
3346             enddo
3347           enddo  
3348 cd         write (iout,*) 'EELEC: i',i,' j',j
3349 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3350 cd          write(iout,*) 'muij',muij
3351           ury=scalar(uy(1,i),erij)
3352           urz=scalar(uz(1,i),erij)
3353           vry=scalar(uy(1,j),erij)
3354           vrz=scalar(uz(1,j),erij)
3355           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3356           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3357           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3358           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3359           fac=dsqrt(-ael6i)*r3ij
3360           a22=a22*fac
3361           a23=a23*fac
3362           a32=a32*fac
3363           a33=a33*fac
3364 cd          write (iout,'(4i5,4f10.5)')
3365 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3366 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3367 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3368 cd     &      uy(:,j),uz(:,j)
3369 cd          write (iout,'(4f10.5)') 
3370 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3371 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3372 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3373 cd           write (iout,'(9f10.5/)') 
3374 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3375 C Derivatives of the elements of A in virtual-bond vectors
3376           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3377           do k=1,3
3378             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3379             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3380             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3381             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3382             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3383             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3384             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3385             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3386             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3387             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3388             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3389             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3390           enddo
3391 C Compute radial contributions to the gradient
3392           facr=-3.0d0*rrmij
3393           a22der=a22*facr
3394           a23der=a23*facr
3395           a32der=a32*facr
3396           a33der=a33*facr
3397           agg(1,1)=a22der*xj
3398           agg(2,1)=a22der*yj
3399           agg(3,1)=a22der*zj
3400           agg(1,2)=a23der*xj
3401           agg(2,2)=a23der*yj
3402           agg(3,2)=a23der*zj
3403           agg(1,3)=a32der*xj
3404           agg(2,3)=a32der*yj
3405           agg(3,3)=a32der*zj
3406           agg(1,4)=a33der*xj
3407           agg(2,4)=a33der*yj
3408           agg(3,4)=a33der*zj
3409 C Add the contributions coming from er
3410           fac3=-3.0d0*fac
3411           do k=1,3
3412             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3413             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3414             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3415             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3416           enddo
3417           do k=1,3
3418 C Derivatives in DC(i) 
3419 cgrad            ghalf1=0.5d0*agg(k,1)
3420 cgrad            ghalf2=0.5d0*agg(k,2)
3421 cgrad            ghalf3=0.5d0*agg(k,3)
3422 cgrad            ghalf4=0.5d0*agg(k,4)
3423             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3424      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3425             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3426      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3427             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3428      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3429             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3430      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3431 C Derivatives in DC(i+1)
3432             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3433      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3434             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3435      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3436             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3437      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3438             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3439      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3440 C Derivatives in DC(j)
3441             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3442      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3443             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3444      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3445             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3446      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3447             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3448      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3449 C Derivatives in DC(j+1) or DC(nres-1)
3450             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3451      &      -3.0d0*vryg(k,3)*ury)
3452             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3453      &      -3.0d0*vrzg(k,3)*ury)
3454             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3455      &      -3.0d0*vryg(k,3)*urz)
3456             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3457      &      -3.0d0*vrzg(k,3)*urz)
3458 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3459 cgrad              do l=1,4
3460 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3461 cgrad              enddo
3462 cgrad            endif
3463           enddo
3464           acipa(1,1)=a22
3465           acipa(1,2)=a23
3466           acipa(2,1)=a32
3467           acipa(2,2)=a33
3468           a22=-a22
3469           a23=-a23
3470           do l=1,2
3471             do k=1,3
3472               agg(k,l)=-agg(k,l)
3473               aggi(k,l)=-aggi(k,l)
3474               aggi1(k,l)=-aggi1(k,l)
3475               aggj(k,l)=-aggj(k,l)
3476               aggj1(k,l)=-aggj1(k,l)
3477             enddo
3478           enddo
3479           if (j.lt.nres-1) then
3480             a22=-a22
3481             a32=-a32
3482             do l=1,3,2
3483               do k=1,3
3484                 agg(k,l)=-agg(k,l)
3485                 aggi(k,l)=-aggi(k,l)
3486                 aggi1(k,l)=-aggi1(k,l)
3487                 aggj(k,l)=-aggj(k,l)
3488                 aggj1(k,l)=-aggj1(k,l)
3489               enddo
3490             enddo
3491           else
3492             a22=-a22
3493             a23=-a23
3494             a32=-a32
3495             a33=-a33
3496             do l=1,4
3497               do k=1,3
3498                 agg(k,l)=-agg(k,l)
3499                 aggi(k,l)=-aggi(k,l)
3500                 aggi1(k,l)=-aggi1(k,l)
3501                 aggj(k,l)=-aggj(k,l)
3502                 aggj1(k,l)=-aggj1(k,l)
3503               enddo
3504             enddo 
3505           endif    
3506           ENDIF ! WCORR
3507           IF (wel_loc.gt.0.0d0) THEN
3508 C Contribution to the local-electrostatic energy coming from the i-j pair
3509           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3510      &     +a33*muij(4)
3511 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3512
3513           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3514      &            'eelloc',i,j,eel_loc_ij
3515
3516           eel_loc=eel_loc+eel_loc_ij
3517 C Partial derivatives in virtual-bond dihedral angles gamma
3518           if (i.gt.1)
3519      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3520      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3521      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3522           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3523      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3524      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3525 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3526           do l=1,3
3527             ggg(l)=agg(l,1)*muij(1)+
3528      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3529             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3530             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3531 cgrad            ghalf=0.5d0*ggg(l)
3532 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3533 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3534           enddo
3535 cgrad          do k=i+1,j2
3536 cgrad            do l=1,3
3537 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3538 cgrad            enddo
3539 cgrad          enddo
3540 C Remaining derivatives of eello
3541           do l=1,3
3542             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3543      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3544             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3545      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3546             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3547      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3548             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3549      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3550           enddo
3551           ENDIF
3552 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3553 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3554           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3555      &       .and. num_conti.le.maxconts) then
3556 c            write (iout,*) i,j," entered corr"
3557 C
3558 C Calculate the contact function. The ith column of the array JCONT will 
3559 C contain the numbers of atoms that make contacts with the atom I (of numbers
3560 C greater than I). The arrays FACONT and GACONT will contain the values of
3561 C the contact function and its derivative.
3562 c           r0ij=1.02D0*rpp(iteli,itelj)
3563 c           r0ij=1.11D0*rpp(iteli,itelj)
3564             r0ij=2.20D0*rpp(iteli,itelj)
3565 c           r0ij=1.55D0*rpp(iteli,itelj)
3566             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3567             if (fcont.gt.0.0D0) then
3568               num_conti=num_conti+1
3569               if (num_conti.gt.maxconts) then
3570                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3571      &                         ' will skip next contacts for this conf.'
3572               else
3573                 jcont_hb(num_conti,i)=j
3574 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3575 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3576                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3577      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3578 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3579 C  terms.
3580                 d_cont(num_conti,i)=rij
3581 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3582 C     --- Electrostatic-interaction matrix --- 
3583                 a_chuj(1,1,num_conti,i)=a22
3584                 a_chuj(1,2,num_conti,i)=a23
3585                 a_chuj(2,1,num_conti,i)=a32
3586                 a_chuj(2,2,num_conti,i)=a33
3587 C     --- Gradient of rij
3588                 do kkk=1,3
3589                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3590                 enddo
3591                 kkll=0
3592                 do k=1,2
3593                   do l=1,2
3594                     kkll=kkll+1
3595                     do m=1,3
3596                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3597                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3598                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3599                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3600                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3601                     enddo
3602                   enddo
3603                 enddo
3604                 ENDIF
3605                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3606 C Calculate contact energies
3607                 cosa4=4.0D0*cosa
3608                 wij=cosa-3.0D0*cosb*cosg
3609                 cosbg1=cosb+cosg
3610                 cosbg2=cosb-cosg
3611 c               fac3=dsqrt(-ael6i)/r0ij**3     
3612                 fac3=dsqrt(-ael6i)*r3ij
3613 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3614                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3615                 if (ees0tmp.gt.0) then
3616                   ees0pij=dsqrt(ees0tmp)
3617                 else
3618                   ees0pij=0
3619                 endif
3620 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3621                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3622                 if (ees0tmp.gt.0) then
3623                   ees0mij=dsqrt(ees0tmp)
3624                 else
3625                   ees0mij=0
3626                 endif
3627 c               ees0mij=0.0D0
3628                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3629                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3630 C Diagnostics. Comment out or remove after debugging!
3631 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3632 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3633 c               ees0m(num_conti,i)=0.0D0
3634 C End diagnostics.
3635 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3636 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3637 C Angular derivatives of the contact function
3638                 ees0pij1=fac3/ees0pij 
3639                 ees0mij1=fac3/ees0mij
3640                 fac3p=-3.0D0*fac3*rrmij
3641                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3642                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3643 c               ees0mij1=0.0D0
3644                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3645                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3646                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3647                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3648                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3649                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3650                 ecosap=ecosa1+ecosa2
3651                 ecosbp=ecosb1+ecosb2
3652                 ecosgp=ecosg1+ecosg2
3653                 ecosam=ecosa1-ecosa2
3654                 ecosbm=ecosb1-ecosb2
3655                 ecosgm=ecosg1-ecosg2
3656 C Diagnostics
3657 c               ecosap=ecosa1
3658 c               ecosbp=ecosb1
3659 c               ecosgp=ecosg1
3660 c               ecosam=0.0D0
3661 c               ecosbm=0.0D0
3662 c               ecosgm=0.0D0
3663 C End diagnostics
3664                 facont_hb(num_conti,i)=fcont
3665                 fprimcont=fprimcont/rij
3666 cd              facont_hb(num_conti,i)=1.0D0
3667 C Following line is for diagnostics.
3668 cd              fprimcont=0.0D0
3669                 do k=1,3
3670                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3671                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3672                 enddo
3673                 do k=1,3
3674                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3675                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3676                 enddo
3677                 gggp(1)=gggp(1)+ees0pijp*xj
3678                 gggp(2)=gggp(2)+ees0pijp*yj
3679                 gggp(3)=gggp(3)+ees0pijp*zj
3680                 gggm(1)=gggm(1)+ees0mijp*xj
3681                 gggm(2)=gggm(2)+ees0mijp*yj
3682                 gggm(3)=gggm(3)+ees0mijp*zj
3683 C Derivatives due to the contact function
3684                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3685                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3686                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3687                 do k=1,3
3688 c
3689 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3690 c          following the change of gradient-summation algorithm.
3691 c
3692 cgrad                  ghalfp=0.5D0*gggp(k)
3693 cgrad                  ghalfm=0.5D0*gggm(k)
3694                   gacontp_hb1(k,num_conti,i)=!ghalfp
3695      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3696      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3697                   gacontp_hb2(k,num_conti,i)=!ghalfp
3698      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3699      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3700                   gacontp_hb3(k,num_conti,i)=gggp(k)
3701                   gacontm_hb1(k,num_conti,i)=!ghalfm
3702      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3703      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3704                   gacontm_hb2(k,num_conti,i)=!ghalfm
3705      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3706      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3707                   gacontm_hb3(k,num_conti,i)=gggm(k)
3708                 enddo
3709 C Diagnostics. Comment out or remove after debugging!
3710 cdiag           do k=1,3
3711 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3712 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3713 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3714 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3715 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3716 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3717 cdiag           enddo
3718               ENDIF ! wcorr
3719               endif  ! num_conti.le.maxconts
3720             endif  ! fcont.gt.0
3721           endif    ! j.gt.i+1
3722           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3723             do k=1,4
3724               do l=1,3
3725                 ghalf=0.5d0*agg(l,k)
3726                 aggi(l,k)=aggi(l,k)+ghalf
3727                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3728                 aggj(l,k)=aggj(l,k)+ghalf
3729               enddo
3730             enddo
3731             if (j.eq.nres-1 .and. i.lt.j-2) then
3732               do k=1,4
3733                 do l=1,3
3734                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3735                 enddo
3736               enddo
3737             endif
3738           endif
3739 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3740       return
3741       end
3742 C-----------------------------------------------------------------------------
3743       subroutine eturn3(i,eello_turn3)
3744 C Third- and fourth-order contributions from turns
3745       implicit real*8 (a-h,o-z)
3746       include 'DIMENSIONS'
3747       include 'COMMON.IOUNITS'
3748       include 'COMMON.GEO'
3749       include 'COMMON.VAR'
3750       include 'COMMON.LOCAL'
3751       include 'COMMON.CHAIN'
3752       include 'COMMON.DERIV'
3753       include 'COMMON.INTERACT'
3754       include 'COMMON.CONTACTS'
3755       include 'COMMON.TORSION'
3756       include 'COMMON.VECTORS'
3757       include 'COMMON.FFIELD'
3758       include 'COMMON.CONTROL'
3759       dimension ggg(3)
3760       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3761      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3762      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3763       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3764      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3765       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3766      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3767      &    num_conti,j1,j2
3768       j=i+2
3769 c      write (iout,*) "eturn3",i,j,j1,j2
3770       a_temp(1,1)=a22
3771       a_temp(1,2)=a23
3772       a_temp(2,1)=a32
3773       a_temp(2,2)=a33
3774 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3775 C
3776 C               Third-order contributions
3777 C        
3778 C                 (i+2)o----(i+3)
3779 C                      | |
3780 C                      | |
3781 C                 (i+1)o----i
3782 C
3783 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3784 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3785         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3786         call transpose2(auxmat(1,1),auxmat1(1,1))
3787         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3788         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3789         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3790      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3791 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3792 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3793 cd     &    ' eello_turn3_num',4*eello_turn3_num
3794 C Derivatives in gamma(i)
3795         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3796         call transpose2(auxmat2(1,1),auxmat3(1,1))
3797         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3798         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3799 C Derivatives in gamma(i+1)
3800         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3801         call transpose2(auxmat2(1,1),auxmat3(1,1))
3802         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3803         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3804      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3805 C Cartesian derivatives
3806         do l=1,3
3807 c            ghalf1=0.5d0*agg(l,1)
3808 c            ghalf2=0.5d0*agg(l,2)
3809 c            ghalf3=0.5d0*agg(l,3)
3810 c            ghalf4=0.5d0*agg(l,4)
3811           a_temp(1,1)=aggi(l,1)!+ghalf1
3812           a_temp(1,2)=aggi(l,2)!+ghalf2
3813           a_temp(2,1)=aggi(l,3)!+ghalf3
3814           a_temp(2,2)=aggi(l,4)!+ghalf4
3815           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3816           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3817      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3818           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3819           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3820           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3821           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3822           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3823           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3824      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3825           a_temp(1,1)=aggj(l,1)!+ghalf1
3826           a_temp(1,2)=aggj(l,2)!+ghalf2
3827           a_temp(2,1)=aggj(l,3)!+ghalf3
3828           a_temp(2,2)=aggj(l,4)!+ghalf4
3829           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3830           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3831      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3832           a_temp(1,1)=aggj1(l,1)
3833           a_temp(1,2)=aggj1(l,2)
3834           a_temp(2,1)=aggj1(l,3)
3835           a_temp(2,2)=aggj1(l,4)
3836           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3837           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3838      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3839         enddo
3840       return
3841       end
3842 C-------------------------------------------------------------------------------
3843       subroutine eturn4(i,eello_turn4)
3844 C Third- and fourth-order contributions from turns
3845       implicit real*8 (a-h,o-z)
3846       include 'DIMENSIONS'
3847       include 'COMMON.IOUNITS'
3848       include 'COMMON.GEO'
3849       include 'COMMON.VAR'
3850       include 'COMMON.LOCAL'
3851       include 'COMMON.CHAIN'
3852       include 'COMMON.DERIV'
3853       include 'COMMON.INTERACT'
3854       include 'COMMON.CONTACTS'
3855       include 'COMMON.TORSION'
3856       include 'COMMON.VECTORS'
3857       include 'COMMON.FFIELD'
3858       include 'COMMON.CONTROL'
3859       dimension ggg(3)
3860       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3861      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3862      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3863       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3864      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3865       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3866      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3867      &    num_conti,j1,j2
3868       j=i+3
3869 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3870 C
3871 C               Fourth-order contributions
3872 C        
3873 C                 (i+3)o----(i+4)
3874 C                     /  |
3875 C               (i+2)o   |
3876 C                     \  |
3877 C                 (i+1)o----i
3878 C
3879 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3880 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3881 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3882         a_temp(1,1)=a22
3883         a_temp(1,2)=a23
3884         a_temp(2,1)=a32
3885         a_temp(2,2)=a33
3886         iti1=itortyp(itype(i+1))
3887         iti2=itortyp(itype(i+2))
3888         iti3=itortyp(itype(i+3))
3889 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3890         call transpose2(EUg(1,1,i+1),e1t(1,1))
3891         call transpose2(Eug(1,1,i+2),e2t(1,1))
3892         call transpose2(Eug(1,1,i+3),e3t(1,1))
3893         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3894         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3895         s1=scalar2(b1(1,iti2),auxvec(1))
3896         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3897         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3898         s2=scalar2(b1(1,iti1),auxvec(1))
3899         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3900         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3901         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3902         eello_turn4=eello_turn4-(s1+s2+s3)
3903         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3904      &      'eturn4',i,j,-(s1+s2+s3)
3905 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3906 cd     &    ' eello_turn4_num',8*eello_turn4_num
3907 C Derivatives in gamma(i)
3908         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3909         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3910         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3911         s1=scalar2(b1(1,iti2),auxvec(1))
3912         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3913         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3914         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3915 C Derivatives in gamma(i+1)
3916         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3917         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3920         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3923 C Derivatives in gamma(i+2)
3924         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3925         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3926         s1=scalar2(b1(1,iti2),auxvec(1))
3927         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3928         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3929         s2=scalar2(b1(1,iti1),auxvec(1))
3930         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3931         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3932         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3933         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3934 C Cartesian derivatives
3935 C Derivatives of this turn contributions in DC(i+2)
3936         if (j.lt.nres-1) then
3937           do l=1,3
3938             a_temp(1,1)=agg(l,1)
3939             a_temp(1,2)=agg(l,2)
3940             a_temp(2,1)=agg(l,3)
3941             a_temp(2,2)=agg(l,4)
3942             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3943             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3944             s1=scalar2(b1(1,iti2),auxvec(1))
3945             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3946             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3947             s2=scalar2(b1(1,iti1),auxvec(1))
3948             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3949             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3950             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3951             ggg(l)=-(s1+s2+s3)
3952             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3953           enddo
3954         endif
3955 C Remaining derivatives of this turn contribution
3956         do l=1,3
3957           a_temp(1,1)=aggi(l,1)
3958           a_temp(1,2)=aggi(l,2)
3959           a_temp(2,1)=aggi(l,3)
3960           a_temp(2,2)=aggi(l,4)
3961           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3962           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3963           s1=scalar2(b1(1,iti2),auxvec(1))
3964           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3965           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3966           s2=scalar2(b1(1,iti1),auxvec(1))
3967           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3968           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3969           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3970           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3971           a_temp(1,1)=aggi1(l,1)
3972           a_temp(1,2)=aggi1(l,2)
3973           a_temp(2,1)=aggi1(l,3)
3974           a_temp(2,2)=aggi1(l,4)
3975           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3976           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3977           s1=scalar2(b1(1,iti2),auxvec(1))
3978           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3979           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3980           s2=scalar2(b1(1,iti1),auxvec(1))
3981           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3982           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3983           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3984           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3985           a_temp(1,1)=aggj(l,1)
3986           a_temp(1,2)=aggj(l,2)
3987           a_temp(2,1)=aggj(l,3)
3988           a_temp(2,2)=aggj(l,4)
3989           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3990           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3991           s1=scalar2(b1(1,iti2),auxvec(1))
3992           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3993           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3994           s2=scalar2(b1(1,iti1),auxvec(1))
3995           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3996           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3997           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3998           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3999           a_temp(1,1)=aggj1(l,1)
4000           a_temp(1,2)=aggj1(l,2)
4001           a_temp(2,1)=aggj1(l,3)
4002           a_temp(2,2)=aggj1(l,4)
4003           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4004           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4005           s1=scalar2(b1(1,iti2),auxvec(1))
4006           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4007           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4008           s2=scalar2(b1(1,iti1),auxvec(1))
4009           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4010           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4011           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4012 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4013           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4014         enddo
4015       return
4016       end
4017 C-----------------------------------------------------------------------------
4018       subroutine vecpr(u,v,w)
4019       implicit real*8(a-h,o-z)
4020       dimension u(3),v(3),w(3)
4021       w(1)=u(2)*v(3)-u(3)*v(2)
4022       w(2)=-u(1)*v(3)+u(3)*v(1)
4023       w(3)=u(1)*v(2)-u(2)*v(1)
4024       return
4025       end
4026 C-----------------------------------------------------------------------------
4027       subroutine unormderiv(u,ugrad,unorm,ungrad)
4028 C This subroutine computes the derivatives of a normalized vector u, given
4029 C the derivatives computed without normalization conditions, ugrad. Returns
4030 C ungrad.
4031       implicit none
4032       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4033       double precision vec(3)
4034       double precision scalar
4035       integer i,j
4036 c      write (2,*) 'ugrad',ugrad
4037 c      write (2,*) 'u',u
4038       do i=1,3
4039         vec(i)=scalar(ugrad(1,i),u(1))
4040       enddo
4041 c      write (2,*) 'vec',vec
4042       do i=1,3
4043         do j=1,3
4044           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4045         enddo
4046       enddo
4047 c      write (2,*) 'ungrad',ungrad
4048       return
4049       end
4050 C-----------------------------------------------------------------------------
4051       subroutine escp_soft_sphere(evdw2,evdw2_14)
4052 C
4053 C This subroutine calculates the excluded-volume interaction energy between
4054 C peptide-group centers and side chains and its gradient in virtual-bond and
4055 C side-chain vectors.
4056 C
4057       implicit real*8 (a-h,o-z)
4058       include 'DIMENSIONS'
4059       include 'COMMON.GEO'
4060       include 'COMMON.VAR'
4061       include 'COMMON.LOCAL'
4062       include 'COMMON.CHAIN'
4063       include 'COMMON.DERIV'
4064       include 'COMMON.INTERACT'
4065       include 'COMMON.FFIELD'
4066       include 'COMMON.IOUNITS'
4067       include 'COMMON.CONTROL'
4068       dimension ggg(3)
4069       evdw2=0.0D0
4070       evdw2_14=0.0d0
4071       r0_scp=4.5d0
4072 cd    print '(a)','Enter ESCP'
4073 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4074       do i=iatscp_s,iatscp_e
4075         iteli=itel(i)
4076         xi=0.5D0*(c(1,i)+c(1,i+1))
4077         yi=0.5D0*(c(2,i)+c(2,i+1))
4078         zi=0.5D0*(c(3,i)+c(3,i+1))
4079
4080         do iint=1,nscp_gr(i)
4081
4082         do j=iscpstart(i,iint),iscpend(i,iint)
4083           itypj=itype(j)
4084 C Uncomment following three lines for SC-p interactions
4085 c         xj=c(1,nres+j)-xi
4086 c         yj=c(2,nres+j)-yi
4087 c         zj=c(3,nres+j)-zi
4088 C Uncomment following three lines for Ca-p interactions
4089           xj=c(1,j)-xi
4090           yj=c(2,j)-yi
4091           zj=c(3,j)-zi
4092           rij=xj*xj+yj*yj+zj*zj
4093           r0ij=r0_scp
4094           r0ijsq=r0ij*r0ij
4095           if (rij.lt.r0ijsq) then
4096             evdwij=0.25d0*(rij-r0ijsq)**2
4097             fac=rij-r0ijsq
4098           else
4099             evdwij=0.0d0
4100             fac=0.0d0
4101           endif 
4102           evdw2=evdw2+evdwij
4103 C
4104 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4105 C
4106           ggg(1)=xj*fac
4107           ggg(2)=yj*fac
4108           ggg(3)=zj*fac
4109 cgrad          if (j.lt.i) then
4110 cd          write (iout,*) 'j<i'
4111 C Uncomment following three lines for SC-p interactions
4112 c           do k=1,3
4113 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4114 c           enddo
4115 cgrad          else
4116 cd          write (iout,*) 'j>i'
4117 cgrad            do k=1,3
4118 cgrad              ggg(k)=-ggg(k)
4119 C Uncomment following line for SC-p interactions
4120 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4121 cgrad            enddo
4122 cgrad          endif
4123 cgrad          do k=1,3
4124 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4125 cgrad          enddo
4126 cgrad          kstart=min0(i+1,j)
4127 cgrad          kend=max0(i-1,j-1)
4128 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4129 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4130 cgrad          do k=kstart,kend
4131 cgrad            do l=1,3
4132 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4133 cgrad            enddo
4134 cgrad          enddo
4135           do k=1,3
4136             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4137             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4138           enddo
4139         enddo
4140
4141         enddo ! iint
4142       enddo ! i
4143       return
4144       end
4145 C-----------------------------------------------------------------------------
4146       subroutine escp(evdw2,evdw2_14)
4147 C
4148 C This subroutine calculates the excluded-volume interaction energy between
4149 C peptide-group centers and side chains and its gradient in virtual-bond and
4150 C side-chain vectors.
4151 C
4152       implicit real*8 (a-h,o-z)
4153       include 'DIMENSIONS'
4154       include 'COMMON.GEO'
4155       include 'COMMON.VAR'
4156       include 'COMMON.LOCAL'
4157       include 'COMMON.CHAIN'
4158       include 'COMMON.DERIV'
4159       include 'COMMON.INTERACT'
4160       include 'COMMON.FFIELD'
4161       include 'COMMON.IOUNITS'
4162       include 'COMMON.CONTROL'
4163       dimension ggg(3)
4164       evdw2=0.0D0
4165       evdw2_14=0.0d0
4166 cd    print '(a)','Enter ESCP'
4167 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4168       do i=iatscp_s,iatscp_e
4169         iteli=itel(i)
4170         xi=0.5D0*(c(1,i)+c(1,i+1))
4171         yi=0.5D0*(c(2,i)+c(2,i+1))
4172         zi=0.5D0*(c(3,i)+c(3,i+1))
4173
4174         do iint=1,nscp_gr(i)
4175
4176         do j=iscpstart(i,iint),iscpend(i,iint)
4177           itypj=itype(j)
4178 C Uncomment following three lines for SC-p interactions
4179 c         xj=c(1,nres+j)-xi
4180 c         yj=c(2,nres+j)-yi
4181 c         zj=c(3,nres+j)-zi
4182 C Uncomment following three lines for Ca-p interactions
4183           xj=c(1,j)-xi
4184           yj=c(2,j)-yi
4185           zj=c(3,j)-zi
4186           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4187           fac=rrij**expon2
4188           e1=fac*fac*aad(itypj,iteli)
4189           e2=fac*bad(itypj,iteli)
4190           if (iabs(j-i) .le. 2) then
4191             e1=scal14*e1
4192             e2=scal14*e2
4193             evdw2_14=evdw2_14+e1+e2
4194           endif
4195           evdwij=e1+e2
4196           evdw2=evdw2+evdwij
4197           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4198      &        'evdw2',i,j,evdwij
4199 C
4200 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4201 C
4202           fac=-(evdwij+e1)*rrij
4203           ggg(1)=xj*fac
4204           ggg(2)=yj*fac
4205           ggg(3)=zj*fac
4206 cgrad          if (j.lt.i) then
4207 cd          write (iout,*) 'j<i'
4208 C Uncomment following three lines for SC-p interactions
4209 c           do k=1,3
4210 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4211 c           enddo
4212 cgrad          else
4213 cd          write (iout,*) 'j>i'
4214 cgrad            do k=1,3
4215 cgrad              ggg(k)=-ggg(k)
4216 C Uncomment following line for SC-p interactions
4217 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4218 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4219 cgrad            enddo
4220 cgrad          endif
4221 cgrad          do k=1,3
4222 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4223 cgrad          enddo
4224 cgrad          kstart=min0(i+1,j)
4225 cgrad          kend=max0(i-1,j-1)
4226 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4227 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4228 cgrad          do k=kstart,kend
4229 cgrad            do l=1,3
4230 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4231 cgrad            enddo
4232 cgrad          enddo
4233           do k=1,3
4234             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4235             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4236           enddo
4237         enddo
4238
4239         enddo ! iint
4240       enddo ! i
4241       do i=1,nct
4242         do j=1,3
4243           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4244           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4245           gradx_scp(j,i)=expon*gradx_scp(j,i)
4246         enddo
4247       enddo
4248 C******************************************************************************
4249 C
4250 C                              N O T E !!!
4251 C
4252 C To save time the factor EXPON has been extracted from ALL components
4253 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4254 C use!
4255 C
4256 C******************************************************************************
4257       return
4258       end
4259 C--------------------------------------------------------------------------
4260       subroutine edis(ehpb)
4261
4262 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4263 C
4264       implicit real*8 (a-h,o-z)
4265       include 'DIMENSIONS'
4266       include 'COMMON.SBRIDGE'
4267       include 'COMMON.CHAIN'
4268       include 'COMMON.DERIV'
4269       include 'COMMON.VAR'
4270       include 'COMMON.INTERACT'
4271       include 'COMMON.IOUNITS'
4272       dimension ggg(3)
4273       ehpb=0.0D0
4274 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4275 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4276       if (link_end.eq.0) return
4277       do i=link_start,link_end
4278 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4279 C CA-CA distance used in regularization of structure.
4280         ii=ihpb(i)
4281         jj=jhpb(i)
4282 C iii and jjj point to the residues for which the distance is assigned.
4283         if (ii.gt.nres) then
4284           iii=ii-nres
4285           jjj=jj-nres 
4286         else
4287           iii=ii
4288           jjj=jj
4289         endif
4290 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4291 c     &    dhpb(i),dhpb1(i),forcon(i)
4292 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4293 C    distance and angle dependent SS bond potential.
4294 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4295 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4296         if (.not.dyn_ss .and. i.le.nss) then
4297 C 15/02/13 CC dynamic SSbond - additional check
4298          if (ii.gt.nres 
4299      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4300           call ssbond_ene(iii,jjj,eij)
4301           ehpb=ehpb+2*eij
4302          endif
4303 cd          write (iout,*) "eij",eij
4304         else if (ii.gt.nres .and. jj.gt.nres) then
4305 c Restraints from contact prediction
4306           dd=dist(ii,jj)
4307           if (dhpb1(i).gt.0.0d0) then
4308             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4309             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4310 c            write (iout,*) "beta nmr",
4311 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4312           else
4313             dd=dist(ii,jj)
4314             rdis=dd-dhpb(i)
4315 C Get the force constant corresponding to this distance.
4316             waga=forcon(i)
4317 C Calculate the contribution to energy.
4318             ehpb=ehpb+waga*rdis*rdis
4319 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4320 C
4321 C Evaluate gradient.
4322 C
4323             fac=waga*rdis/dd
4324           endif  
4325           do j=1,3
4326             ggg(j)=fac*(c(j,jj)-c(j,ii))
4327           enddo
4328           do j=1,3
4329             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4330             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4331           enddo
4332           do k=1,3
4333             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4334             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4335           enddo
4336         else
4337 C Calculate the distance between the two points and its difference from the
4338 C target distance.
4339           dd=dist(ii,jj)
4340           if (dhpb1(i).gt.0.0d0) then
4341             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4342             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4343 c            write (iout,*) "alph nmr",
4344 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4345           else
4346             rdis=dd-dhpb(i)
4347 C Get the force constant corresponding to this distance.
4348             waga=forcon(i)
4349 C Calculate the contribution to energy.
4350             ehpb=ehpb+waga*rdis*rdis
4351 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4352 C
4353 C Evaluate gradient.
4354 C
4355             fac=waga*rdis/dd
4356           endif
4357 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4358 cd   &   ' waga=',waga,' fac=',fac
4359             do j=1,3
4360               ggg(j)=fac*(c(j,jj)-c(j,ii))
4361             enddo
4362 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4363 C If this is a SC-SC distance, we need to calculate the contributions to the
4364 C Cartesian gradient in the SC vectors (ghpbx).
4365           if (iii.lt.ii) then
4366           do j=1,3
4367             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4368             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4369           enddo
4370           endif
4371 cgrad        do j=iii,jjj-1
4372 cgrad          do k=1,3
4373 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4374 cgrad          enddo
4375 cgrad        enddo
4376           do k=1,3
4377             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4378             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4379           enddo
4380         endif
4381       enddo
4382       ehpb=0.5D0*ehpb
4383       return
4384       end
4385 C--------------------------------------------------------------------------
4386       subroutine ssbond_ene(i,j,eij)
4387
4388 C Calculate the distance and angle dependent SS-bond potential energy
4389 C using a free-energy function derived based on RHF/6-31G** ab initio
4390 C calculations of diethyl disulfide.
4391 C
4392 C A. Liwo and U. Kozlowska, 11/24/03
4393 C
4394       implicit real*8 (a-h,o-z)
4395       include 'DIMENSIONS'
4396       include 'COMMON.SBRIDGE'
4397       include 'COMMON.CHAIN'
4398       include 'COMMON.DERIV'
4399       include 'COMMON.LOCAL'
4400       include 'COMMON.INTERACT'
4401       include 'COMMON.VAR'
4402       include 'COMMON.IOUNITS'
4403       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4404       itypi=itype(i)
4405       xi=c(1,nres+i)
4406       yi=c(2,nres+i)
4407       zi=c(3,nres+i)
4408       dxi=dc_norm(1,nres+i)
4409       dyi=dc_norm(2,nres+i)
4410       dzi=dc_norm(3,nres+i)
4411 c      dsci_inv=dsc_inv(itypi)
4412       dsci_inv=vbld_inv(nres+i)
4413       itypj=itype(j)
4414 c      dscj_inv=dsc_inv(itypj)
4415       dscj_inv=vbld_inv(nres+j)
4416       xj=c(1,nres+j)-xi
4417       yj=c(2,nres+j)-yi
4418       zj=c(3,nres+j)-zi
4419       dxj=dc_norm(1,nres+j)
4420       dyj=dc_norm(2,nres+j)
4421       dzj=dc_norm(3,nres+j)
4422       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4423       rij=dsqrt(rrij)
4424       erij(1)=xj*rij
4425       erij(2)=yj*rij
4426       erij(3)=zj*rij
4427       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4428       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4429       om12=dxi*dxj+dyi*dyj+dzi*dzj
4430       do k=1,3
4431         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4432         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4433       enddo
4434       rij=1.0d0/rij
4435       deltad=rij-d0cm
4436       deltat1=1.0d0-om1
4437       deltat2=1.0d0+om2
4438       deltat12=om2-om1+2.0d0
4439       cosphi=om12-om1*om2
4440       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4441      &  +akct*deltad*deltat12+ebr
4442      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4443 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4444 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4445 c     &  " deltat12",deltat12," eij",eij 
4446       ed=2*akcm*deltad+akct*deltat12
4447       pom1=akct*deltad
4448       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4449       eom1=-2*akth*deltat1-pom1-om2*pom2
4450       eom2= 2*akth*deltat2+pom1-om1*pom2
4451       eom12=pom2
4452       do k=1,3
4453         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4454         ghpbx(k,i)=ghpbx(k,i)-ggk
4455      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4456      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4457         ghpbx(k,j)=ghpbx(k,j)+ggk
4458      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4459      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4460         ghpbc(k,i)=ghpbc(k,i)-ggk
4461         ghpbc(k,j)=ghpbc(k,j)+ggk
4462       enddo
4463 C
4464 C Calculate the components of the gradient in DC and X
4465 C
4466 cgrad      do k=i,j-1
4467 cgrad        do l=1,3
4468 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4469 cgrad        enddo
4470 cgrad      enddo
4471       return
4472       end
4473 C--------------------------------------------------------------------------
4474       subroutine ebond(estr)
4475 c
4476 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4477 c
4478       implicit real*8 (a-h,o-z)
4479       include 'DIMENSIONS'
4480       include 'COMMON.LOCAL'
4481       include 'COMMON.GEO'
4482       include 'COMMON.INTERACT'
4483       include 'COMMON.DERIV'
4484       include 'COMMON.VAR'
4485       include 'COMMON.CHAIN'
4486       include 'COMMON.IOUNITS'
4487       include 'COMMON.NAMES'
4488       include 'COMMON.FFIELD'
4489       include 'COMMON.CONTROL'
4490       include 'COMMON.SETUP'
4491       double precision u(3),ud(3)
4492       estr=0.0d0
4493       do i=ibondp_start,ibondp_end
4494         diff = vbld(i)-vbldp0
4495 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4496         estr=estr+diff*diff
4497         do j=1,3
4498           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4499         enddo
4500 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4501       enddo
4502       estr=0.5d0*AKP*estr
4503 c
4504 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4505 c
4506       do i=ibond_start,ibond_end
4507         iti=itype(i)
4508         if (iti.ne.10) then
4509           nbi=nbondterm(iti)
4510           if (nbi.eq.1) then
4511             diff=vbld(i+nres)-vbldsc0(1,iti)
4512 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4513 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4514             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4515             do j=1,3
4516               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4517             enddo
4518           else
4519             do j=1,nbi
4520               diff=vbld(i+nres)-vbldsc0(j,iti) 
4521               ud(j)=aksc(j,iti)*diff
4522               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4523             enddo
4524             uprod=u(1)
4525             do j=2,nbi
4526               uprod=uprod*u(j)
4527             enddo
4528             usum=0.0d0
4529             usumsqder=0.0d0
4530             do j=1,nbi
4531               uprod1=1.0d0
4532               uprod2=1.0d0
4533               do k=1,nbi
4534                 if (k.ne.j) then
4535                   uprod1=uprod1*u(k)
4536                   uprod2=uprod2*u(k)*u(k)
4537                 endif
4538               enddo
4539               usum=usum+uprod1
4540               usumsqder=usumsqder+ud(j)*uprod2   
4541             enddo
4542             estr=estr+uprod/usum
4543             do j=1,3
4544              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4545             enddo
4546           endif
4547         endif
4548       enddo
4549       return
4550       end 
4551 #ifdef CRYST_THETA
4552 C--------------------------------------------------------------------------
4553       subroutine ebend(etheta)
4554 C
4555 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4556 C angles gamma and its derivatives in consecutive thetas and gammas.
4557 C
4558       implicit real*8 (a-h,o-z)
4559       include 'DIMENSIONS'
4560       include 'COMMON.LOCAL'
4561       include 'COMMON.GEO'
4562       include 'COMMON.INTERACT'
4563       include 'COMMON.DERIV'
4564       include 'COMMON.VAR'
4565       include 'COMMON.CHAIN'
4566       include 'COMMON.IOUNITS'
4567       include 'COMMON.NAMES'
4568       include 'COMMON.FFIELD'
4569       include 'COMMON.CONTROL'
4570       common /calcthet/ term1,term2,termm,diffak,ratak,
4571      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4572      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4573       double precision y(2),z(2)
4574       delta=0.02d0*pi
4575 c      time11=dexp(-2*time)
4576 c      time12=1.0d0
4577       etheta=0.0D0
4578 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4579       do i=ithet_start,ithet_end
4580 C Zero the energy function and its derivative at 0 or pi.
4581         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4582         it=itype(i-1)
4583         if (i.gt.3) then
4584 #ifdef OSF
4585           phii=phi(i)
4586           if (phii.ne.phii) phii=150.0
4587 #else
4588           phii=phi(i)
4589 #endif
4590           y(1)=dcos(phii)
4591           y(2)=dsin(phii)
4592         else 
4593           y(1)=0.0D0
4594           y(2)=0.0D0
4595         endif
4596         if (i.lt.nres) then
4597 #ifdef OSF
4598           phii1=phi(i+1)
4599           if (phii1.ne.phii1) phii1=150.0
4600           phii1=pinorm(phii1)
4601           z(1)=cos(phii1)
4602 #else
4603           phii1=phi(i+1)
4604           z(1)=dcos(phii1)
4605 #endif
4606           z(2)=dsin(phii1)
4607         else
4608           z(1)=0.0D0
4609           z(2)=0.0D0
4610         endif  
4611 C Calculate the "mean" value of theta from the part of the distribution
4612 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4613 C In following comments this theta will be referred to as t_c.
4614         thet_pred_mean=0.0d0
4615         do k=1,2
4616           athetk=athet(k,it)
4617           bthetk=bthet(k,it)
4618           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4619         enddo
4620         dthett=thet_pred_mean*ssd
4621         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4622 C Derivatives of the "mean" values in gamma1 and gamma2.
4623         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4624         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4625         if (theta(i).gt.pi-delta) then
4626           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4627      &         E_tc0)
4628           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4630           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4631      &        E_theta)
4632           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4633      &        E_tc)
4634         else if (theta(i).lt.delta) then
4635           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4636           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4637           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4638      &        E_theta)
4639           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4640           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4641      &        E_tc)
4642         else
4643           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4644      &        E_theta,E_tc)
4645         endif
4646         etheta=etheta+ethetai
4647         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4648      &      'ebend',i,ethetai
4649         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4650         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4651         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4652       enddo
4653 C Ufff.... We've done all this!!! 
4654       return
4655       end
4656 C---------------------------------------------------------------------------
4657       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4658      &     E_tc)
4659       implicit real*8 (a-h,o-z)
4660       include 'DIMENSIONS'
4661       include 'COMMON.LOCAL'
4662       include 'COMMON.IOUNITS'
4663       common /calcthet/ term1,term2,termm,diffak,ratak,
4664      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4665      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4666 C Calculate the contributions to both Gaussian lobes.
4667 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4668 C The "polynomial part" of the "standard deviation" of this part of 
4669 C the distribution.
4670         sig=polthet(3,it)
4671         do j=2,0,-1
4672           sig=sig*thet_pred_mean+polthet(j,it)
4673         enddo
4674 C Derivative of the "interior part" of the "standard deviation of the" 
4675 C gamma-dependent Gaussian lobe in t_c.
4676         sigtc=3*polthet(3,it)
4677         do j=2,1,-1
4678           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4679         enddo
4680         sigtc=sig*sigtc
4681 C Set the parameters of both Gaussian lobes of the distribution.
4682 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4683         fac=sig*sig+sigc0(it)
4684         sigcsq=fac+fac
4685         sigc=1.0D0/sigcsq
4686 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4687         sigsqtc=-4.0D0*sigcsq*sigtc
4688 c       print *,i,sig,sigtc,sigsqtc
4689 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4690         sigtc=-sigtc/(fac*fac)
4691 C Following variable is sigma(t_c)**(-2)
4692         sigcsq=sigcsq*sigcsq
4693         sig0i=sig0(it)
4694         sig0inv=1.0D0/sig0i**2
4695         delthec=thetai-thet_pred_mean
4696         delthe0=thetai-theta0i
4697         term1=-0.5D0*sigcsq*delthec*delthec
4698         term2=-0.5D0*sig0inv*delthe0*delthe0
4699 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4700 C NaNs in taking the logarithm. We extract the largest exponent which is added
4701 C to the energy (this being the log of the distribution) at the end of energy
4702 C term evaluation for this virtual-bond angle.
4703         if (term1.gt.term2) then
4704           termm=term1
4705           term2=dexp(term2-termm)
4706           term1=1.0d0
4707         else
4708           termm=term2
4709           term1=dexp(term1-termm)
4710           term2=1.0d0
4711         endif
4712 C The ratio between the gamma-independent and gamma-dependent lobes of
4713 C the distribution is a Gaussian function of thet_pred_mean too.
4714         diffak=gthet(2,it)-thet_pred_mean
4715         ratak=diffak/gthet(3,it)**2
4716         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4717 C Let's differentiate it in thet_pred_mean NOW.
4718         aktc=ak*ratak
4719 C Now put together the distribution terms to make complete distribution.
4720         termexp=term1+ak*term2
4721         termpre=sigc+ak*sig0i
4722 C Contribution of the bending energy from this theta is just the -log of
4723 C the sum of the contributions from the two lobes and the pre-exponential
4724 C factor. Simple enough, isn't it?
4725         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4726 C NOW the derivatives!!!
4727 C 6/6/97 Take into account the deformation.
4728         E_theta=(delthec*sigcsq*term1
4729      &       +ak*delthe0*sig0inv*term2)/termexp
4730         E_tc=((sigtc+aktc*sig0i)/termpre
4731      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4732      &       aktc*term2)/termexp)
4733       return
4734       end
4735 c-----------------------------------------------------------------------------
4736       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4737       implicit real*8 (a-h,o-z)
4738       include 'DIMENSIONS'
4739       include 'COMMON.LOCAL'
4740       include 'COMMON.IOUNITS'
4741       common /calcthet/ term1,term2,termm,diffak,ratak,
4742      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4743      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4744       delthec=thetai-thet_pred_mean
4745       delthe0=thetai-theta0i
4746 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4747       t3 = thetai-thet_pred_mean
4748       t6 = t3**2
4749       t9 = term1
4750       t12 = t3*sigcsq
4751       t14 = t12+t6*sigsqtc
4752       t16 = 1.0d0
4753       t21 = thetai-theta0i
4754       t23 = t21**2
4755       t26 = term2
4756       t27 = t21*t26
4757       t32 = termexp
4758       t40 = t32**2
4759       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4760      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4761      & *(-t12*t9-ak*sig0inv*t27)
4762       return
4763       end
4764 #else
4765 C--------------------------------------------------------------------------
4766       subroutine ebend(etheta)
4767 C
4768 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4769 C angles gamma and its derivatives in consecutive thetas and gammas.
4770 C ab initio-derived potentials from 
4771 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4772 C
4773       implicit real*8 (a-h,o-z)
4774       include 'DIMENSIONS'
4775       include 'COMMON.LOCAL'
4776       include 'COMMON.GEO'
4777       include 'COMMON.INTERACT'
4778       include 'COMMON.DERIV'
4779       include 'COMMON.VAR'
4780       include 'COMMON.CHAIN'
4781       include 'COMMON.IOUNITS'
4782       include 'COMMON.NAMES'
4783       include 'COMMON.FFIELD'
4784       include 'COMMON.CONTROL'
4785       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4786      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4787      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4788      & sinph1ph2(maxdouble,maxdouble)
4789       logical lprn /.false./, lprn1 /.false./
4790       etheta=0.0D0
4791       do i=ithet_start,ithet_end
4792         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4793      &(itype(i).eq.ntyp1)) cycle
4794         dethetai=0.0d0
4795         dephii=0.0d0
4796         dephii1=0.0d0
4797         theti2=0.5d0*theta(i)
4798         ityp2=ithetyp(itype(i-1))
4799         do k=1,nntheterm
4800           coskt(k)=dcos(k*theti2)
4801           sinkt(k)=dsin(k*theti2)
4802         enddo
4803 C        if (i.gt.3) then
4804          if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4805 #ifdef OSF
4806           phii=phi(i)
4807           if (phii.ne.phii) phii=150.0
4808 #else
4809           phii=phi(i)
4810 #endif
4811           ityp1=ithetyp(itype(i-2))
4812           do k=1,nsingle
4813             cosph1(k)=dcos(k*phii)
4814             sinph1(k)=dsin(k*phii)
4815           enddo
4816         else
4817           phii=0.0d0
4818           ityp1=ithetyp(itype(i-2))
4819           do k=1,nsingle
4820             cosph1(k)=0.0d0
4821             sinph1(k)=0.0d0
4822           enddo 
4823         endif
4824         if ((i.lt.nres).and. itype(i+1).ne.ntyp1) then
4825 #ifdef OSF
4826           phii1=phi(i+1)
4827           if (phii1.ne.phii1) phii1=150.0
4828           phii1=pinorm(phii1)
4829 #else
4830           phii1=phi(i+1)
4831 #endif
4832           ityp3=ithetyp(itype(i))
4833           do k=1,nsingle
4834             cosph2(k)=dcos(k*phii1)
4835             sinph2(k)=dsin(k*phii1)
4836           enddo
4837         else
4838           phii1=0.0d0
4839           ityp3=ithetyp(itype(i))
4840           do k=1,nsingle
4841             cosph2(k)=0.0d0
4842             sinph2(k)=0.0d0
4843           enddo
4844         endif  
4845         ethetai=aa0thet(ityp1,ityp2,ityp3)
4846         do k=1,ndouble
4847           do l=1,k-1
4848             ccl=cosph1(l)*cosph2(k-l)
4849             ssl=sinph1(l)*sinph2(k-l)
4850             scl=sinph1(l)*cosph2(k-l)
4851             csl=cosph1(l)*sinph2(k-l)
4852             cosph1ph2(l,k)=ccl-ssl
4853             cosph1ph2(k,l)=ccl+ssl
4854             sinph1ph2(l,k)=scl+csl
4855             sinph1ph2(k,l)=scl-csl
4856           enddo
4857         enddo
4858         if (lprn) then
4859         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4860      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4861         write (iout,*) "coskt and sinkt"
4862         do k=1,nntheterm
4863           write (iout,*) k,coskt(k),sinkt(k)
4864         enddo
4865         endif
4866         do k=1,ntheterm
4867           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4868           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4869      &      *coskt(k)
4870           if (lprn)
4871      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4872      &     " ethetai",ethetai
4873         enddo
4874         if (lprn) then
4875         write (iout,*) "cosph and sinph"
4876         do k=1,nsingle
4877           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4878         enddo
4879         write (iout,*) "cosph1ph2 and sinph2ph2"
4880         do k=2,ndouble
4881           do l=1,k-1
4882             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4883      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4884           enddo
4885         enddo
4886         write(iout,*) "ethetai",ethetai
4887         endif
4888         do m=1,ntheterm2
4889           do k=1,nsingle
4890             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4891      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4892      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4893      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4894             ethetai=ethetai+sinkt(m)*aux
4895             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4896             dephii=dephii+k*sinkt(m)*(
4897      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4898      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4899             dephii1=dephii1+k*sinkt(m)*(
4900      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4901      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4902             if (lprn)
4903      &      write (iout,*) "m",m," k",k," bbthet",
4904      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4905      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4906      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4907      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4908           enddo
4909         enddo
4910         if (lprn)
4911      &  write(iout,*) "ethetai",ethetai
4912         do m=1,ntheterm3
4913           do k=2,ndouble
4914             do l=1,k-1
4915               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4916      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4917      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4918      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4919               ethetai=ethetai+sinkt(m)*aux
4920               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4921               dephii=dephii+l*sinkt(m)*(
4922      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4923      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4924      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4925      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4926               dephii1=dephii1+(k-l)*sinkt(m)*(
4927      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4928      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4929      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4930      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4931               if (lprn) then
4932               write (iout,*) "m",m," k",k," l",l," ffthet",
4933      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4934      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4935      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4936      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4937               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4938      &            cosph1ph2(k,l)*sinkt(m),
4939      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4940               endif
4941             enddo
4942           enddo
4943         enddo
4944 10      continue
4945         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
4946      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
4947      &   phii1*rad2deg,ethetai
4948         etheta=etheta+ethetai
4949         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4950      &      'ebend',i,ethetai
4951         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4952         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4953         gloc(nphi+i-2,icg)=wang*dethetai
4954       enddo
4955       return
4956       end
4957 #endif
4958 #ifdef CRYST_SC
4959 c-----------------------------------------------------------------------------
4960       subroutine esc(escloc)
4961 C Calculate the local energy of a side chain and its derivatives in the
4962 C corresponding virtual-bond valence angles THETA and the spherical angles 
4963 C ALPHA and OMEGA.
4964       implicit real*8 (a-h,o-z)
4965       include 'DIMENSIONS'
4966       include 'COMMON.GEO'
4967       include 'COMMON.LOCAL'
4968       include 'COMMON.VAR'
4969       include 'COMMON.INTERACT'
4970       include 'COMMON.DERIV'
4971       include 'COMMON.CHAIN'
4972       include 'COMMON.IOUNITS'
4973       include 'COMMON.NAMES'
4974       include 'COMMON.FFIELD'
4975       include 'COMMON.CONTROL'
4976       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4977      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4978       common /sccalc/ time11,time12,time112,theti,it,nlobit
4979       delta=0.02d0*pi
4980       escloc=0.0D0
4981 c     write (iout,'(a)') 'ESC'
4982       do i=loc_start,loc_end
4983         it=itype(i)
4984         if (it.eq.10) goto 1
4985         nlobit=nlob(it)
4986 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4987 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4988         theti=theta(i+1)-pipol
4989         x(1)=dtan(theti)
4990         x(2)=alph(i)
4991         x(3)=omeg(i)
4992
4993         if (x(2).gt.pi-delta) then
4994           xtemp(1)=x(1)
4995           xtemp(2)=pi-delta
4996           xtemp(3)=x(3)
4997           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4998           xtemp(2)=pi
4999           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5000           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
5001      &        escloci,dersc(2))
5002           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5003      &        ddersc0(1),dersc(1))
5004           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5005      &        ddersc0(3),dersc(3))
5006           xtemp(2)=pi-delta
5007           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5008           xtemp(2)=pi
5009           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5010           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5011      &            dersc0(2),esclocbi,dersc02)
5012           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5013      &            dersc12,dersc01)
5014           call splinthet(x(2),0.5d0*delta,ss,ssd)
5015           dersc0(1)=dersc01
5016           dersc0(2)=dersc02
5017           dersc0(3)=0.0d0
5018           do k=1,3
5019             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5020           enddo
5021           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5022 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5023 c    &             esclocbi,ss,ssd
5024           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5025 c         escloci=esclocbi
5026 c         write (iout,*) escloci
5027         else if (x(2).lt.delta) then
5028           xtemp(1)=x(1)
5029           xtemp(2)=delta
5030           xtemp(3)=x(3)
5031           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5032           xtemp(2)=0.0d0
5033           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5034           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5035      &        escloci,dersc(2))
5036           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5037      &        ddersc0(1),dersc(1))
5038           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5039      &        ddersc0(3),dersc(3))
5040           xtemp(2)=delta
5041           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5042           xtemp(2)=0.0d0
5043           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5044           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5045      &            dersc0(2),esclocbi,dersc02)
5046           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5047      &            dersc12,dersc01)
5048           dersc0(1)=dersc01
5049           dersc0(2)=dersc02
5050           dersc0(3)=0.0d0
5051           call splinthet(x(2),0.5d0*delta,ss,ssd)
5052           do k=1,3
5053             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5054           enddo
5055           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5056 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5057 c    &             esclocbi,ss,ssd
5058           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5059 c         write (iout,*) escloci
5060         else
5061           call enesc(x,escloci,dersc,ddummy,.false.)
5062         endif
5063
5064         escloc=escloc+escloci
5065         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5066      &     'escloc',i,escloci
5067 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5068
5069         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5070      &   wscloc*dersc(1)
5071         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5072         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5073     1   continue
5074       enddo
5075       return
5076       end
5077 C---------------------------------------------------------------------------
5078       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5079       implicit real*8 (a-h,o-z)
5080       include 'DIMENSIONS'
5081       include 'COMMON.GEO'
5082       include 'COMMON.LOCAL'
5083       include 'COMMON.IOUNITS'
5084       common /sccalc/ time11,time12,time112,theti,it,nlobit
5085       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5086       double precision contr(maxlob,-1:1)
5087       logical mixed
5088 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5089         escloc_i=0.0D0
5090         do j=1,3
5091           dersc(j)=0.0D0
5092           if (mixed) ddersc(j)=0.0d0
5093         enddo
5094         x3=x(3)
5095
5096 C Because of periodicity of the dependence of the SC energy in omega we have
5097 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5098 C To avoid underflows, first compute & store the exponents.
5099
5100         do iii=-1,1
5101
5102           x(3)=x3+iii*dwapi
5103  
5104           do j=1,nlobit
5105             do k=1,3
5106               z(k)=x(k)-censc(k,j,it)
5107             enddo
5108             do k=1,3
5109               Axk=0.0D0
5110               do l=1,3
5111                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5112               enddo
5113               Ax(k,j,iii)=Axk
5114             enddo 
5115             expfac=0.0D0 
5116             do k=1,3
5117               expfac=expfac+Ax(k,j,iii)*z(k)
5118             enddo
5119             contr(j,iii)=expfac
5120           enddo ! j
5121
5122         enddo ! iii
5123
5124         x(3)=x3
5125 C As in the case of ebend, we want to avoid underflows in exponentiation and
5126 C subsequent NaNs and INFs in energy calculation.
5127 C Find the largest exponent
5128         emin=contr(1,-1)
5129         do iii=-1,1
5130           do j=1,nlobit
5131             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5132           enddo 
5133         enddo
5134         emin=0.5D0*emin
5135 cd      print *,'it=',it,' emin=',emin
5136
5137 C Compute the contribution to SC energy and derivatives
5138         do iii=-1,1
5139
5140           do j=1,nlobit
5141 #ifdef OSF
5142             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5143             if(adexp.ne.adexp) adexp=1.0
5144             expfac=dexp(adexp)
5145 #else
5146             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5147 #endif
5148 cd          print *,'j=',j,' expfac=',expfac
5149             escloc_i=escloc_i+expfac
5150             do k=1,3
5151               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5152             enddo
5153             if (mixed) then
5154               do k=1,3,2
5155                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5156      &            +gaussc(k,2,j,it))*expfac
5157               enddo
5158             endif
5159           enddo
5160
5161         enddo ! iii
5162
5163         dersc(1)=dersc(1)/cos(theti)**2
5164         ddersc(1)=ddersc(1)/cos(theti)**2
5165         ddersc(3)=ddersc(3)
5166
5167         escloci=-(dlog(escloc_i)-emin)
5168         do j=1,3
5169           dersc(j)=dersc(j)/escloc_i
5170         enddo
5171         if (mixed) then
5172           do j=1,3,2
5173             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5174           enddo
5175         endif
5176       return
5177       end
5178 C------------------------------------------------------------------------------
5179       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5180       implicit real*8 (a-h,o-z)
5181       include 'DIMENSIONS'
5182       include 'COMMON.GEO'
5183       include 'COMMON.LOCAL'
5184       include 'COMMON.IOUNITS'
5185       common /sccalc/ time11,time12,time112,theti,it,nlobit
5186       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5187       double precision contr(maxlob)
5188       logical mixed
5189
5190       escloc_i=0.0D0
5191
5192       do j=1,3
5193         dersc(j)=0.0D0
5194       enddo
5195
5196       do j=1,nlobit
5197         do k=1,2
5198           z(k)=x(k)-censc(k,j,it)
5199         enddo
5200         z(3)=dwapi
5201         do k=1,3
5202           Axk=0.0D0
5203           do l=1,3
5204             Axk=Axk+gaussc(l,k,j,it)*z(l)
5205           enddo
5206           Ax(k,j)=Axk
5207         enddo 
5208         expfac=0.0D0 
5209         do k=1,3
5210           expfac=expfac+Ax(k,j)*z(k)
5211         enddo
5212         contr(j)=expfac
5213       enddo ! j
5214
5215 C As in the case of ebend, we want to avoid underflows in exponentiation and
5216 C subsequent NaNs and INFs in energy calculation.
5217 C Find the largest exponent
5218       emin=contr(1)
5219       do j=1,nlobit
5220         if (emin.gt.contr(j)) emin=contr(j)
5221       enddo 
5222       emin=0.5D0*emin
5223  
5224 C Compute the contribution to SC energy and derivatives
5225
5226       dersc12=0.0d0
5227       do j=1,nlobit
5228         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5229         escloc_i=escloc_i+expfac
5230         do k=1,2
5231           dersc(k)=dersc(k)+Ax(k,j)*expfac
5232         enddo
5233         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5234      &            +gaussc(1,2,j,it))*expfac
5235         dersc(3)=0.0d0
5236       enddo
5237
5238       dersc(1)=dersc(1)/cos(theti)**2
5239       dersc12=dersc12/cos(theti)**2
5240       escloci=-(dlog(escloc_i)-emin)
5241       do j=1,2
5242         dersc(j)=dersc(j)/escloc_i
5243       enddo
5244       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5245       return
5246       end
5247 #else
5248 c----------------------------------------------------------------------------------
5249       subroutine esc(escloc)
5250 C Calculate the local energy of a side chain and its derivatives in the
5251 C corresponding virtual-bond valence angles THETA and the spherical angles 
5252 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5253 C added by Urszula Kozlowska. 07/11/2007
5254 C
5255       implicit real*8 (a-h,o-z)
5256       include 'DIMENSIONS'
5257       include 'COMMON.GEO'
5258       include 'COMMON.LOCAL'
5259       include 'COMMON.VAR'
5260       include 'COMMON.SCROT'
5261       include 'COMMON.INTERACT'
5262       include 'COMMON.DERIV'
5263       include 'COMMON.CHAIN'
5264       include 'COMMON.IOUNITS'
5265       include 'COMMON.NAMES'
5266       include 'COMMON.FFIELD'
5267       include 'COMMON.CONTROL'
5268       include 'COMMON.VECTORS'
5269       double precision x_prime(3),y_prime(3),z_prime(3)
5270      &    , sumene,dsc_i,dp2_i,x(65),
5271      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5272      &    de_dxx,de_dyy,de_dzz,de_dt
5273       double precision s1_t,s1_6_t,s2_t,s2_6_t
5274       double precision 
5275      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5276      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5277      & dt_dCi(3),dt_dCi1(3)
5278       common /sccalc/ time11,time12,time112,theti,it,nlobit
5279       delta=0.02d0*pi
5280       escloc=0.0D0
5281       do i=loc_start,loc_end
5282         costtab(i+1) =dcos(theta(i+1))
5283         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5284         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5285         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5286         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5287         cosfac=dsqrt(cosfac2)
5288         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5289         sinfac=dsqrt(sinfac2)
5290         it=itype(i)
5291         if (it.eq.10) goto 1
5292 c
5293 C  Compute the axes of tghe local cartesian coordinates system; store in
5294 c   x_prime, y_prime and z_prime 
5295 c
5296         do j=1,3
5297           x_prime(j) = 0.00
5298           y_prime(j) = 0.00
5299           z_prime(j) = 0.00
5300         enddo
5301 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5302 C     &   dc_norm(3,i+nres)
5303         do j = 1,3
5304           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5305           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5306         enddo
5307         do j = 1,3
5308           z_prime(j) = -uz(j,i-1)
5309         enddo     
5310 c       write (2,*) "i",i
5311 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5312 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5313 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5314 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5315 c      & " xy",scalar(x_prime(1),y_prime(1)),
5316 c      & " xz",scalar(x_prime(1),z_prime(1)),
5317 c      & " yy",scalar(y_prime(1),y_prime(1)),
5318 c      & " yz",scalar(y_prime(1),z_prime(1)),
5319 c      & " zz",scalar(z_prime(1),z_prime(1))
5320 c
5321 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5322 C to local coordinate system. Store in xx, yy, zz.
5323 c
5324         xx=0.0d0
5325         yy=0.0d0
5326         zz=0.0d0
5327         do j = 1,3
5328           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5329           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5330           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5331         enddo
5332
5333         xxtab(i)=xx
5334         yytab(i)=yy
5335         zztab(i)=zz
5336 C
5337 C Compute the energy of the ith side cbain
5338 C
5339 c        write (2,*) "xx",xx," yy",yy," zz",zz
5340         it=itype(i)
5341         do j = 1,65
5342           x(j) = sc_parmin(j,it) 
5343         enddo
5344 #ifdef CHECK_COORD
5345 Cc diagnostics - remove later
5346         xx1 = dcos(alph(2))
5347         yy1 = dsin(alph(2))*dcos(omeg(2))
5348         zz1 = -dsin(alph(2))*dsin(omeg(2))
5349         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5350      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5351      &    xx1,yy1,zz1
5352 C,"  --- ", xx_w,yy_w,zz_w
5353 c end diagnostics
5354 #endif
5355         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5356      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5357      &   + x(10)*yy*zz
5358         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5359      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5360      & + x(20)*yy*zz
5361         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5362      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5363      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5364      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5365      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5366      &  +x(40)*xx*yy*zz
5367         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5368      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5369      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5370      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5371      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5372      &  +x(60)*xx*yy*zz
5373         dsc_i   = 0.743d0+x(61)
5374         dp2_i   = 1.9d0+x(62)
5375         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5376      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5377         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5378      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5379         s1=(1+x(63))/(0.1d0 + dscp1)
5380         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5381         s2=(1+x(65))/(0.1d0 + dscp2)
5382         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5383         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5384      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5385 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5386 c     &   sumene4,
5387 c     &   dscp1,dscp2,sumene
5388 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5389         escloc = escloc + sumene
5390 c        write (2,*) "i",i," escloc",sumene,escloc
5391 #ifdef DEBUG
5392 C
5393 C This section to check the numerical derivatives of the energy of ith side
5394 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5395 C #define DEBUG in the code to turn it on.
5396 C
5397         write (2,*) "sumene               =",sumene
5398         aincr=1.0d-7
5399         xxsave=xx
5400         xx=xx+aincr
5401         write (2,*) xx,yy,zz
5402         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5403         de_dxx_num=(sumenep-sumene)/aincr
5404         xx=xxsave
5405         write (2,*) "xx+ sumene from enesc=",sumenep
5406         yysave=yy
5407         yy=yy+aincr
5408         write (2,*) xx,yy,zz
5409         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5410         de_dyy_num=(sumenep-sumene)/aincr
5411         yy=yysave
5412         write (2,*) "yy+ sumene from enesc=",sumenep
5413         zzsave=zz
5414         zz=zz+aincr
5415         write (2,*) xx,yy,zz
5416         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5417         de_dzz_num=(sumenep-sumene)/aincr
5418         zz=zzsave
5419         write (2,*) "zz+ sumene from enesc=",sumenep
5420         costsave=cost2tab(i+1)
5421         sintsave=sint2tab(i+1)
5422         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5423         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5424         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5425         de_dt_num=(sumenep-sumene)/aincr
5426         write (2,*) " t+ sumene from enesc=",sumenep
5427         cost2tab(i+1)=costsave
5428         sint2tab(i+1)=sintsave
5429 C End of diagnostics section.
5430 #endif
5431 C        
5432 C Compute the gradient of esc
5433 C
5434         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5435         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5436         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5437         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5438         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5439         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5440         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5441         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5442         pom1=(sumene3*sint2tab(i+1)+sumene1)
5443      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5444         pom2=(sumene4*cost2tab(i+1)+sumene2)
5445      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5446         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5447         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5448      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5449      &  +x(40)*yy*zz
5450         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5451         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5452      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5453      &  +x(60)*yy*zz
5454         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5455      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5456      &        +(pom1+pom2)*pom_dx
5457 #ifdef DEBUG
5458         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5459 #endif
5460 C
5461         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5462         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5463      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5464      &  +x(40)*xx*zz
5465         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5466         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5467      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5468      &  +x(59)*zz**2 +x(60)*xx*zz
5469         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5470      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5471      &        +(pom1-pom2)*pom_dy
5472 #ifdef DEBUG
5473         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5474 #endif
5475 C
5476         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5477      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5478      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5479      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5480      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5481      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5482      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5483      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5484 #ifdef DEBUG
5485         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5486 #endif
5487 C
5488         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5489      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5490      &  +pom1*pom_dt1+pom2*pom_dt2
5491 #ifdef DEBUG
5492         write(2,*), "de_dt = ", de_dt,de_dt_num
5493 #endif
5494
5495 C
5496        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5497        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5498        cosfac2xx=cosfac2*xx
5499        sinfac2yy=sinfac2*yy
5500        do k = 1,3
5501          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5502      &      vbld_inv(i+1)
5503          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5504      &      vbld_inv(i)
5505          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5506          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5507 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5508 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5509 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5510 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5511          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5512          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5513          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5514          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5515          dZZ_Ci1(k)=0.0d0
5516          dZZ_Ci(k)=0.0d0
5517          do j=1,3
5518            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5519            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5520          enddo
5521           
5522          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5523          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5524          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5525 c
5526          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5527          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5528        enddo
5529
5530        do k=1,3
5531          dXX_Ctab(k,i)=dXX_Ci(k)
5532          dXX_C1tab(k,i)=dXX_Ci1(k)
5533          dYY_Ctab(k,i)=dYY_Ci(k)
5534          dYY_C1tab(k,i)=dYY_Ci1(k)
5535          dZZ_Ctab(k,i)=dZZ_Ci(k)
5536          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5537          dXX_XYZtab(k,i)=dXX_XYZ(k)
5538          dYY_XYZtab(k,i)=dYY_XYZ(k)
5539          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5540        enddo
5541
5542        do k = 1,3
5543 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5544 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5545 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5546 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5547 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5548 c     &    dt_dci(k)
5549 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5550 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5551          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5552      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5553          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5554      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5555          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5556      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5557        enddo
5558 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5559 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5560
5561 C to check gradient call subroutine check_grad
5562
5563     1 continue
5564       enddo
5565       return
5566       end
5567 c------------------------------------------------------------------------------
5568       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5569       implicit none
5570       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5571      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5572       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5573      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5574      &   + x(10)*yy*zz
5575       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5576      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5577      & + x(20)*yy*zz
5578       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5579      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5580      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5581      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5582      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5583      &  +x(40)*xx*yy*zz
5584       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5585      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5586      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5587      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5588      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5589      &  +x(60)*xx*yy*zz
5590       dsc_i   = 0.743d0+x(61)
5591       dp2_i   = 1.9d0+x(62)
5592       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5593      &          *(xx*cost2+yy*sint2))
5594       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5595      &          *(xx*cost2-yy*sint2))
5596       s1=(1+x(63))/(0.1d0 + dscp1)
5597       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5598       s2=(1+x(65))/(0.1d0 + dscp2)
5599       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5600       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5601      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5602       enesc=sumene
5603       return
5604       end
5605 #endif
5606 c------------------------------------------------------------------------------
5607       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5608 C
5609 C This procedure calculates two-body contact function g(rij) and its derivative:
5610 C
5611 C           eps0ij                                     !       x < -1
5612 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5613 C            0                                         !       x > 1
5614 C
5615 C where x=(rij-r0ij)/delta
5616 C
5617 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5618 C
5619       implicit none
5620       double precision rij,r0ij,eps0ij,fcont,fprimcont
5621       double precision x,x2,x4,delta
5622 c     delta=0.02D0*r0ij
5623 c      delta=0.2D0*r0ij
5624       x=(rij-r0ij)/delta
5625       if (x.lt.-1.0D0) then
5626         fcont=eps0ij
5627         fprimcont=0.0D0
5628       else if (x.le.1.0D0) then  
5629         x2=x*x
5630         x4=x2*x2
5631         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5632         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5633       else
5634         fcont=0.0D0
5635         fprimcont=0.0D0
5636       endif
5637       return
5638       end
5639 c------------------------------------------------------------------------------
5640       subroutine splinthet(theti,delta,ss,ssder)
5641       implicit real*8 (a-h,o-z)
5642       include 'DIMENSIONS'
5643       include 'COMMON.VAR'
5644       include 'COMMON.GEO'
5645       thetup=pi-delta
5646       thetlow=delta
5647       if (theti.gt.pipol) then
5648         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5649       else
5650         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5651         ssder=-ssder
5652       endif
5653       return
5654       end
5655 c------------------------------------------------------------------------------
5656       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5657       implicit none
5658       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5659       double precision ksi,ksi2,ksi3,a1,a2,a3
5660       a1=fprim0*delta/(f1-f0)
5661       a2=3.0d0-2.0d0*a1
5662       a3=a1-2.0d0
5663       ksi=(x-x0)/delta
5664       ksi2=ksi*ksi
5665       ksi3=ksi2*ksi  
5666       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5667       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5668       return
5669       end
5670 c------------------------------------------------------------------------------
5671       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5672       implicit none
5673       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5674       double precision ksi,ksi2,ksi3,a1,a2,a3
5675       ksi=(x-x0)/delta  
5676       ksi2=ksi*ksi
5677       ksi3=ksi2*ksi
5678       a1=fprim0x*delta
5679       a2=3*(f1x-f0x)-2*fprim0x*delta
5680       a3=fprim0x*delta-2*(f1x-f0x)
5681       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5682       return
5683       end
5684 C-----------------------------------------------------------------------------
5685 #ifdef CRYST_TOR
5686 C-----------------------------------------------------------------------------
5687       subroutine etor(etors,edihcnstr)
5688       implicit real*8 (a-h,o-z)
5689       include 'DIMENSIONS'
5690       include 'COMMON.VAR'
5691       include 'COMMON.GEO'
5692       include 'COMMON.LOCAL'
5693       include 'COMMON.TORSION'
5694       include 'COMMON.INTERACT'
5695       include 'COMMON.DERIV'
5696       include 'COMMON.CHAIN'
5697       include 'COMMON.NAMES'
5698       include 'COMMON.IOUNITS'
5699       include 'COMMON.FFIELD'
5700       include 'COMMON.TORCNSTR'
5701       include 'COMMON.CONTROL'
5702       logical lprn
5703 C Set lprn=.true. for debugging
5704       lprn=.false.
5705 c      lprn=.true.
5706       etors=0.0D0
5707       do i=iphi_start,iphi_end
5708       etors_ii=0.0D0
5709         itori=itortyp(itype(i-2))
5710         itori1=itortyp(itype(i-1))
5711         phii=phi(i)
5712         gloci=0.0D0
5713 C Proline-Proline pair is a special case...
5714         if (itori.eq.3 .and. itori1.eq.3) then
5715           if (phii.gt.-dwapi3) then
5716             cosphi=dcos(3*phii)
5717             fac=1.0D0/(1.0D0-cosphi)
5718             etorsi=v1(1,3,3)*fac
5719             etorsi=etorsi+etorsi
5720             etors=etors+etorsi-v1(1,3,3)
5721             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5722             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5723           endif
5724           do j=1,3
5725             v1ij=v1(j+1,itori,itori1)
5726             v2ij=v2(j+1,itori,itori1)
5727             cosphi=dcos(j*phii)
5728             sinphi=dsin(j*phii)
5729             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5730             if (energy_dec) etors_ii=etors_ii+
5731      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5732             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5733           enddo
5734         else 
5735           do j=1,nterm_old
5736             v1ij=v1(j,itori,itori1)
5737             v2ij=v2(j,itori,itori1)
5738             cosphi=dcos(j*phii)
5739             sinphi=dsin(j*phii)
5740             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5741             if (energy_dec) etors_ii=etors_ii+
5742      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5743             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5744           enddo
5745         endif
5746         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5747      &        'etor',i,etors_ii
5748         if (lprn)
5749      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5750      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5751      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5752         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5753         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5754       enddo
5755 ! 6/20/98 - dihedral angle constraints
5756       edihcnstr=0.0d0
5757       do i=1,ndih_constr
5758         itori=idih_constr(i)
5759         phii=phi(itori)
5760         difi=phii-phi0(i)
5761         if (difi.gt.drange(i)) then
5762           difi=difi-drange(i)
5763           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5764           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5765         else if (difi.lt.-drange(i)) then
5766           difi=difi+drange(i)
5767           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5768           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5769         endif
5770 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5771 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5772       enddo
5773 !      write (iout,*) 'edihcnstr',edihcnstr
5774       return
5775       end
5776 c------------------------------------------------------------------------------
5777       subroutine etor_d(etors_d)
5778       etors_d=0.0d0
5779       return
5780       end
5781 c----------------------------------------------------------------------------
5782 #else
5783       subroutine etor(etors,edihcnstr)
5784       implicit real*8 (a-h,o-z)
5785       include 'DIMENSIONS'
5786       include 'COMMON.VAR'
5787       include 'COMMON.GEO'
5788       include 'COMMON.LOCAL'
5789       include 'COMMON.TORSION'
5790       include 'COMMON.INTERACT'
5791       include 'COMMON.DERIV'
5792       include 'COMMON.CHAIN'
5793       include 'COMMON.NAMES'
5794       include 'COMMON.IOUNITS'
5795       include 'COMMON.FFIELD'
5796       include 'COMMON.TORCNSTR'
5797       include 'COMMON.CONTROL'
5798       logical lprn
5799 C Set lprn=.true. for debugging
5800       lprn=.false.
5801 c     lprn=.true.
5802       etors=0.0D0
5803       do i=iphi_start,iphi_end
5804       etors_ii=0.0D0
5805         itori=itortyp(itype(i-2))
5806         itori1=itortyp(itype(i-1))
5807         phii=phi(i)
5808         gloci=0.0D0
5809 C Regular cosine and sine terms
5810         do j=1,nterm(itori,itori1)
5811           v1ij=v1(j,itori,itori1)
5812           v2ij=v2(j,itori,itori1)
5813           cosphi=dcos(j*phii)
5814           sinphi=dsin(j*phii)
5815           etors=etors+v1ij*cosphi+v2ij*sinphi
5816           if (energy_dec) etors_ii=etors_ii+
5817      &                v1ij*cosphi+v2ij*sinphi
5818           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5819         enddo
5820 C Lorentz terms
5821 C                         v1
5822 C  E = SUM ----------------------------------- - v1
5823 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5824 C
5825         cosphi=dcos(0.5d0*phii)
5826         sinphi=dsin(0.5d0*phii)
5827         do j=1,nlor(itori,itori1)
5828           vl1ij=vlor1(j,itori,itori1)
5829           vl2ij=vlor2(j,itori,itori1)
5830           vl3ij=vlor3(j,itori,itori1)
5831           pom=vl2ij*cosphi+vl3ij*sinphi
5832           pom1=1.0d0/(pom*pom+1.0d0)
5833           etors=etors+vl1ij*pom1
5834           if (energy_dec) etors_ii=etors_ii+
5835      &                vl1ij*pom1
5836           pom=-pom*pom1*pom1
5837           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5838         enddo
5839 C Subtract the constant term
5840         etors=etors-v0(itori,itori1)
5841           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5842      &         'etor',i,etors_ii-v0(itori,itori1)
5843         if (lprn)
5844      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5845      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5846      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5847         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5848 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5849       enddo
5850 ! 6/20/98 - dihedral angle constraints
5851       edihcnstr=0.0d0
5852 c      do i=1,ndih_constr
5853       do i=idihconstr_start,idihconstr_end
5854         itori=idih_constr(i)
5855         phii=phi(itori)
5856         difi=pinorm(phii-phi0(i))
5857         if (difi.gt.drange(i)) then
5858           difi=difi-drange(i)
5859           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5860           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5861         else if (difi.lt.-drange(i)) then
5862           difi=difi+drange(i)
5863           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5864           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5865         else
5866           difi=0.0
5867         endif
5868 c        write (iout,*) "gloci", gloc(i-3,icg)
5869 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5870 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5871 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5872       enddo
5873 cd       write (iout,*) 'edihcnstr',edihcnstr
5874       return
5875       end
5876 c----------------------------------------------------------------------------
5877       subroutine etor_d(etors_d)
5878 C 6/23/01 Compute double torsional energy
5879       implicit real*8 (a-h,o-z)
5880       include 'DIMENSIONS'
5881       include 'COMMON.VAR'
5882       include 'COMMON.GEO'
5883       include 'COMMON.LOCAL'
5884       include 'COMMON.TORSION'
5885       include 'COMMON.INTERACT'
5886       include 'COMMON.DERIV'
5887       include 'COMMON.CHAIN'
5888       include 'COMMON.NAMES'
5889       include 'COMMON.IOUNITS'
5890       include 'COMMON.FFIELD'
5891       include 'COMMON.TORCNSTR'
5892       include 'COMMON.CONTROL'
5893       logical lprn
5894 C Set lprn=.true. for debugging
5895       lprn=.false.
5896 c     lprn=.true.
5897       etors_d=0.0D0
5898       do i=iphid_start,iphid_end
5899         etors_d_ii=0.0D0
5900         itori=itortyp(itype(i-2))
5901         itori1=itortyp(itype(i-1))
5902         itori2=itortyp(itype(i))
5903         phii=phi(i)
5904         phii1=phi(i+1)
5905         gloci1=0.0D0
5906         gloci2=0.0D0
5907         do j=1,ntermd_1(itori,itori1,itori2)
5908           v1cij=v1c(1,j,itori,itori1,itori2)
5909           v1sij=v1s(1,j,itori,itori1,itori2)
5910           v2cij=v1c(2,j,itori,itori1,itori2)
5911           v2sij=v1s(2,j,itori,itori1,itori2)
5912           cosphi1=dcos(j*phii)
5913           sinphi1=dsin(j*phii)
5914           cosphi2=dcos(j*phii1)
5915           sinphi2=dsin(j*phii1)
5916           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5917      &     v2cij*cosphi2+v2sij*sinphi2
5918           if (energy_dec) etors_d_ii=etors_d_ii+
5919      &     v1cij*cosphi1+v1sij*sinphi1+v2cij*cosphi2+v2sij*sinphi2
5920           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5921           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5922         enddo
5923         do k=2,ntermd_2(itori,itori1,itori2)
5924           do l=1,k-1
5925             v1cdij = v2c(k,l,itori,itori1,itori2)
5926             v2cdij = v2c(l,k,itori,itori1,itori2)
5927             v1sdij = v2s(k,l,itori,itori1,itori2)
5928             v2sdij = v2s(l,k,itori,itori1,itori2)
5929             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5930             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5931             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5932             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5933             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5934      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5935             if (energy_dec) etors_d_ii=etors_d_ii+
5936      &        v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5937      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5938             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5939      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5940             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5941      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5942           enddo
5943         enddo
5944         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5945      &        'etor_d',i,etors_d_ii
5946         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5947         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5948 c        write (iout,*) "gloci", gloc(i-3,icg)
5949       enddo
5950       return
5951       end
5952 #endif
5953 c------------------------------------------------------------------------------
5954       subroutine eback_sc_corr(esccor)
5955 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5956 c        conformational states; temporarily implemented as differences
5957 c        between UNRES torsional potentials (dependent on three types of
5958 c        residues) and the torsional potentials dependent on all 20 types
5959 c        of residues computed from AM1  energy surfaces of terminally-blocked
5960 c        amino-acid residues.
5961       implicit real*8 (a-h,o-z)
5962       include 'DIMENSIONS'
5963       include 'COMMON.VAR'
5964       include 'COMMON.GEO'
5965       include 'COMMON.LOCAL'
5966       include 'COMMON.TORSION'
5967       include 'COMMON.SCCOR'
5968       include 'COMMON.INTERACT'
5969       include 'COMMON.DERIV'
5970       include 'COMMON.CHAIN'
5971       include 'COMMON.NAMES'
5972       include 'COMMON.IOUNITS'
5973       include 'COMMON.FFIELD'
5974       include 'COMMON.CONTROL'
5975       logical lprn
5976 C Set lprn=.true. for debugging
5977       lprn=.false.
5978 c      lprn=.true.
5979 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5980       esccor=0.0D0
5981       do i=itau_start,itau_end
5982 C        do i=42,42
5983         esccor_ii=0.0D0
5984         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5985         isccori=isccortyp(itype(i-2))
5986         isccori1=isccortyp(itype(i-1))
5987         phii=phi(i)
5988
5989 cccc  Added 9 May 2012
5990 cc Tauangle is torsional engle depending on the value of first digit 
5991 c(see comment below)
5992 cc Omicron is flat angle depending on the value of first digit 
5993 c(see comment below)
5994 C        print *,i,tauangle(1,i)
5995         
5996 c        do intertyp=1,3 !intertyp
5997         do intertyp=2,2 !intertyp
5998 cc Added 09 May 2012 (Adasko)
5999 cc  Intertyp means interaction type of backbone mainchain correlation: 
6000 c   1 = SC...Ca...Ca...Ca
6001 c   2 = Ca...Ca...Ca...SC
6002 c   3 = SC...Ca...Ca...SCi
6003         gloci=0.0D0
6004         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
6005      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
6006      &      (itype(i-1).eq.21)))
6007      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
6008      &     .or.(itype(i-2).eq.21)))
6009      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
6010      &      (itype(i-1).eq.21)))) cycle  
6011         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
6012         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
6013      & cycle
6014         do j=1,nterm_sccor(isccori,isccori1)
6015           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6016           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6017           cosphi=dcos(j*tauangle(intertyp,i))
6018           sinphi=dsin(j*tauangle(intertyp,i))
6019           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6020           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6021         enddo
6022 C        print *,i,tauangle(1,i),gloci
6023         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6024 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6025 c     &gloc_sc(intertyp,i-3,icg)
6026         if (lprn)
6027      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6028      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6029      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6030      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6031         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6032        enddo !intertyp
6033       enddo
6034 c        do i=1,nres
6035 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc_sc(2,i,icg),
6036 c     &   gloc_sc(3,i,icg)
6037 c        enddo
6038       return
6039       end
6040 c----------------------------------------------------------------------------
6041       subroutine multibody(ecorr)
6042 C This subroutine calculates multi-body contributions to energy following
6043 C the idea of Skolnick et al. If side chains I and J make a contact and
6044 C at the same time side chains I+1 and J+1 make a contact, an extra 
6045 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6046       implicit real*8 (a-h,o-z)
6047       include 'DIMENSIONS'
6048       include 'COMMON.IOUNITS'
6049       include 'COMMON.DERIV'
6050       include 'COMMON.INTERACT'
6051       include 'COMMON.CONTACTS'
6052       double precision gx(3),gx1(3)
6053       logical lprn
6054
6055 C Set lprn=.true. for debugging
6056       lprn=.false.
6057
6058       if (lprn) then
6059         write (iout,'(a)') 'Contact function values:'
6060         do i=nnt,nct-2
6061           write (iout,'(i2,20(1x,i2,f10.5))') 
6062      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6063         enddo
6064       endif
6065       ecorr=0.0D0
6066       do i=nnt,nct
6067         do j=1,3
6068           gradcorr(j,i)=0.0D0
6069           gradxorr(j,i)=0.0D0
6070         enddo
6071       enddo
6072       do i=nnt,nct-2
6073
6074         DO ISHIFT = 3,4
6075
6076         i1=i+ishift
6077         num_conti=num_cont(i)
6078         num_conti1=num_cont(i1)
6079         do jj=1,num_conti
6080           j=jcont(jj,i)
6081           do kk=1,num_conti1
6082             j1=jcont(kk,i1)
6083             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6084 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6085 cd   &                   ' ishift=',ishift
6086 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6087 C The system gains extra energy.
6088               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6089             endif   ! j1==j+-ishift
6090           enddo     ! kk  
6091         enddo       ! jj
6092
6093         ENDDO ! ISHIFT
6094
6095       enddo         ! i
6096       return
6097       end
6098 c------------------------------------------------------------------------------
6099       double precision function esccorr(i,j,k,l,jj,kk)
6100       implicit real*8 (a-h,o-z)
6101       include 'DIMENSIONS'
6102       include 'COMMON.IOUNITS'
6103       include 'COMMON.DERIV'
6104       include 'COMMON.INTERACT'
6105       include 'COMMON.CONTACTS'
6106       double precision gx(3),gx1(3)
6107       logical lprn
6108       lprn=.false.
6109       eij=facont(jj,i)
6110       ekl=facont(kk,k)
6111 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6112 C Calculate the multi-body contribution to energy.
6113 C Calculate multi-body contributions to the gradient.
6114 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6115 cd   & k,l,(gacont(m,kk,k),m=1,3)
6116       do m=1,3
6117         gx(m) =ekl*gacont(m,jj,i)
6118         gx1(m)=eij*gacont(m,kk,k)
6119         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6120         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6121         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6122         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6123       enddo
6124       do m=i,j-1
6125         do ll=1,3
6126           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6127         enddo
6128       enddo
6129       do m=k,l-1
6130         do ll=1,3
6131           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6132         enddo
6133       enddo 
6134       esccorr=-eij*ekl
6135       return
6136       end
6137 c------------------------------------------------------------------------------
6138       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6139 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6140       implicit real*8 (a-h,o-z)
6141       include 'DIMENSIONS'
6142       include 'COMMON.IOUNITS'
6143 #ifdef MPI
6144       include "mpif.h"
6145       parameter (max_cont=maxconts)
6146       parameter (max_dim=26)
6147       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6148       double precision zapas(max_dim,maxconts,max_fg_procs),
6149      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6150       common /przechowalnia/ zapas
6151       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6152      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6153 #endif
6154       include 'COMMON.SETUP'
6155       include 'COMMON.FFIELD'
6156       include 'COMMON.DERIV'
6157       include 'COMMON.INTERACT'
6158       include 'COMMON.CONTACTS'
6159       include 'COMMON.CONTROL'
6160       include 'COMMON.LOCAL'
6161       double precision gx(3),gx1(3),time00
6162       logical lprn,ldone
6163
6164 C Set lprn=.true. for debugging
6165       lprn=.false.
6166 #ifdef MPI
6167       n_corr=0
6168       n_corr1=0
6169       if (nfgtasks.le.1) goto 30
6170       if (lprn) then
6171         write (iout,'(a)') 'Contact function values before RECEIVE:'
6172         do i=nnt,nct-2
6173           write (iout,'(2i3,50(1x,i2,f5.2))') 
6174      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6175      &    j=1,num_cont_hb(i))
6176         enddo
6177       endif
6178       call flush(iout)
6179       do i=1,ntask_cont_from
6180         ncont_recv(i)=0
6181       enddo
6182       do i=1,ntask_cont_to
6183         ncont_sent(i)=0
6184       enddo
6185 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6186 c     & ntask_cont_to
6187 C Make the list of contacts to send to send to other procesors
6188 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6189 c      call flush(iout)
6190       do i=iturn3_start,iturn3_end
6191 c        write (iout,*) "make contact list turn3",i," num_cont",
6192 c     &    num_cont_hb(i)
6193         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6194       enddo
6195       do i=iturn4_start,iturn4_end
6196 c        write (iout,*) "make contact list turn4",i," num_cont",
6197 c     &   num_cont_hb(i)
6198         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6199       enddo
6200       do ii=1,nat_sent
6201         i=iat_sent(ii)
6202 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6203 c     &    num_cont_hb(i)
6204         do j=1,num_cont_hb(i)
6205         do k=1,4
6206           jjc=jcont_hb(j,i)
6207           iproc=iint_sent_local(k,jjc,ii)
6208 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6209           if (iproc.gt.0) then
6210             ncont_sent(iproc)=ncont_sent(iproc)+1
6211             nn=ncont_sent(iproc)
6212             zapas(1,nn,iproc)=i
6213             zapas(2,nn,iproc)=jjc
6214             zapas(3,nn,iproc)=facont_hb(j,i)
6215             zapas(4,nn,iproc)=ees0p(j,i)
6216             zapas(5,nn,iproc)=ees0m(j,i)
6217             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6218             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6219             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6220             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6221             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6222             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6223             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6224             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6225             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6226             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6227             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6228             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6229             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6230             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6231             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6232             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6233             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6234             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6235             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6236             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6237             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6238           endif
6239         enddo
6240         enddo
6241       enddo
6242       if (lprn) then
6243       write (iout,*) 
6244      &  "Numbers of contacts to be sent to other processors",
6245      &  (ncont_sent(i),i=1,ntask_cont_to)
6246       write (iout,*) "Contacts sent"
6247       do ii=1,ntask_cont_to
6248         nn=ncont_sent(ii)
6249         iproc=itask_cont_to(ii)
6250         write (iout,*) nn," contacts to processor",iproc,
6251      &   " of CONT_TO_COMM group"
6252         do i=1,nn
6253           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6254         enddo
6255       enddo
6256       call flush(iout)
6257       endif
6258       CorrelType=477
6259       CorrelID=fg_rank+1
6260       CorrelType1=478
6261       CorrelID1=nfgtasks+fg_rank+1
6262       ireq=0
6263 C Receive the numbers of needed contacts from other processors 
6264       do ii=1,ntask_cont_from
6265         iproc=itask_cont_from(ii)
6266         ireq=ireq+1
6267         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6268      &    FG_COMM,req(ireq),IERR)
6269       enddo
6270 c      write (iout,*) "IRECV ended"
6271 c      call flush(iout)
6272 C Send the number of contacts needed by other processors
6273       do ii=1,ntask_cont_to
6274         iproc=itask_cont_to(ii)
6275         ireq=ireq+1
6276         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6277      &    FG_COMM,req(ireq),IERR)
6278       enddo
6279 c      write (iout,*) "ISEND ended"
6280 c      write (iout,*) "number of requests (nn)",ireq
6281       call flush(iout)
6282       if (ireq.gt.0) 
6283      &  call MPI_Waitall(ireq,req,status_array,ierr)
6284 c      write (iout,*) 
6285 c     &  "Numbers of contacts to be received from other processors",
6286 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6287 c      call flush(iout)
6288 C Receive contacts
6289       ireq=0
6290       do ii=1,ntask_cont_from
6291         iproc=itask_cont_from(ii)
6292         nn=ncont_recv(ii)
6293 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6294 c     &   " of CONT_TO_COMM group"
6295         call flush(iout)
6296         if (nn.gt.0) then
6297           ireq=ireq+1
6298           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6299      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6300 c          write (iout,*) "ireq,req",ireq,req(ireq)
6301         endif
6302       enddo
6303 C Send the contacts to processors that need them
6304       do ii=1,ntask_cont_to
6305         iproc=itask_cont_to(ii)
6306         nn=ncont_sent(ii)
6307 c        write (iout,*) nn," contacts to processor",iproc,
6308 c     &   " of CONT_TO_COMM group"
6309         if (nn.gt.0) then
6310           ireq=ireq+1 
6311           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6312      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6313 c          write (iout,*) "ireq,req",ireq,req(ireq)
6314 c          do i=1,nn
6315 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6316 c          enddo
6317         endif  
6318       enddo
6319 c      write (iout,*) "number of requests (contacts)",ireq
6320 c      write (iout,*) "req",(req(i),i=1,4)
6321 c      call flush(iout)
6322       if (ireq.gt.0) 
6323      & call MPI_Waitall(ireq,req,status_array,ierr)
6324       do iii=1,ntask_cont_from
6325         iproc=itask_cont_from(iii)
6326         nn=ncont_recv(iii)
6327         if (lprn) then
6328         write (iout,*) "Received",nn," contacts from processor",iproc,
6329      &   " of CONT_FROM_COMM group"
6330         call flush(iout)
6331         do i=1,nn
6332           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6333         enddo
6334         call flush(iout)
6335         endif
6336         do i=1,nn
6337           ii=zapas_recv(1,i,iii)
6338 c Flag the received contacts to prevent double-counting
6339           jj=-zapas_recv(2,i,iii)
6340 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6341 c          call flush(iout)
6342           nnn=num_cont_hb(ii)+1
6343           num_cont_hb(ii)=nnn
6344           jcont_hb(nnn,ii)=jj
6345           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6346           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6347           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6348           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6349           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6350           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6351           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6352           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6353           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6354           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6355           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6356           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6357           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6358           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6359           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6360           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6361           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6362           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6363           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6364           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6365           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6366           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6367           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6368           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6369         enddo
6370       enddo
6371       call flush(iout)
6372       if (lprn) then
6373         write (iout,'(a)') 'Contact function values after receive:'
6374         do i=nnt,nct-2
6375           write (iout,'(2i3,50(1x,i3,f5.2))') 
6376      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6377      &    j=1,num_cont_hb(i))
6378         enddo
6379         call flush(iout)
6380       endif
6381    30 continue
6382 #endif
6383       if (lprn) then
6384         write (iout,'(a)') 'Contact function values:'
6385         do i=nnt,nct-2
6386           write (iout,'(2i3,50(1x,i3,f5.2))') 
6387      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6388      &    j=1,num_cont_hb(i))
6389         enddo
6390       endif
6391       ecorr=0.0D0
6392 C Remove the loop below after debugging !!!
6393       do i=nnt,nct
6394         do j=1,3
6395           gradcorr(j,i)=0.0D0
6396           gradxorr(j,i)=0.0D0
6397         enddo
6398       enddo
6399 C Calculate the local-electrostatic correlation terms
6400       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6401         i1=i+1
6402         num_conti=num_cont_hb(i)
6403         num_conti1=num_cont_hb(i+1)
6404         do jj=1,num_conti
6405           j=jcont_hb(jj,i)
6406           jp=iabs(j)
6407           do kk=1,num_conti1
6408             j1=jcont_hb(kk,i1)
6409             jp1=iabs(j1)
6410 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6411 c     &         ' jj=',jj,' kk=',kk
6412             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6413      &          .or. j.lt.0 .and. j1.gt.0) .and.
6414      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6415 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6416 C The system gains extra energy.
6417               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6418               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6419      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6420               n_corr=n_corr+1
6421             else if (j1.eq.j) then
6422 C Contacts I-J and I-(J+1) occur simultaneously. 
6423 C The system loses extra energy.
6424 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6425             endif
6426           enddo ! kk
6427           do kk=1,num_conti
6428             j1=jcont_hb(kk,i)
6429 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6430 c    &         ' jj=',jj,' kk=',kk
6431             if (j1.eq.j+1) then
6432 C Contacts I-J and (I+1)-J occur simultaneously. 
6433 C The system loses extra energy.
6434 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6435             endif ! j1==j+1
6436           enddo ! kk
6437         enddo ! jj
6438       enddo ! i
6439       return
6440       end
6441 c------------------------------------------------------------------------------
6442       subroutine add_hb_contact(ii,jj,itask)
6443       implicit real*8 (a-h,o-z)
6444       include "DIMENSIONS"
6445       include "COMMON.IOUNITS"
6446       integer max_cont
6447       integer max_dim
6448       parameter (max_cont=maxconts)
6449       parameter (max_dim=26)
6450       include "COMMON.CONTACTS"
6451       double precision zapas(max_dim,maxconts,max_fg_procs),
6452      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6453       common /przechowalnia/ zapas
6454       integer i,j,ii,jj,iproc,itask(4),nn
6455 c      write (iout,*) "itask",itask
6456       do i=1,2
6457         iproc=itask(i)
6458         if (iproc.gt.0) then
6459           do j=1,num_cont_hb(ii)
6460             jjc=jcont_hb(j,ii)
6461 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6462             if (jjc.eq.jj) then
6463               ncont_sent(iproc)=ncont_sent(iproc)+1
6464               nn=ncont_sent(iproc)
6465               zapas(1,nn,iproc)=ii
6466               zapas(2,nn,iproc)=jjc
6467               zapas(3,nn,iproc)=facont_hb(j,ii)
6468               zapas(4,nn,iproc)=ees0p(j,ii)
6469               zapas(5,nn,iproc)=ees0m(j,ii)
6470               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6471               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6472               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6473               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6474               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6475               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6476               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6477               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6478               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6479               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6480               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6481               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6482               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6483               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6484               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6485               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6486               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6487               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6488               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6489               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6490               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6491               exit
6492             endif
6493           enddo
6494         endif
6495       enddo
6496       return
6497       end
6498 c------------------------------------------------------------------------------
6499       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6500      &  n_corr1)
6501 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6502       implicit real*8 (a-h,o-z)
6503       include 'DIMENSIONS'
6504       include 'COMMON.IOUNITS'
6505 #ifdef MPI
6506       include "mpif.h"
6507       parameter (max_cont=maxconts)
6508       parameter (max_dim=70)
6509       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6510       double precision zapas(max_dim,maxconts,max_fg_procs),
6511      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6512       common /przechowalnia/ zapas
6513       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6514      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6515 #endif
6516       include 'COMMON.SETUP'
6517       include 'COMMON.FFIELD'
6518       include 'COMMON.DERIV'
6519       include 'COMMON.LOCAL'
6520       include 'COMMON.INTERACT'
6521       include 'COMMON.CONTACTS'
6522       include 'COMMON.CHAIN'
6523       include 'COMMON.CONTROL'
6524       double precision gx(3),gx1(3)
6525       integer num_cont_hb_old(maxres)
6526       logical lprn,ldone
6527       double precision eello4,eello5,eelo6,eello_turn6
6528       external eello4,eello5,eello6,eello_turn6
6529 C Set lprn=.true. for debugging
6530       lprn=.false.
6531       eturn6=0.0d0
6532 #ifdef MPI
6533       do i=1,nres
6534         num_cont_hb_old(i)=num_cont_hb(i)
6535       enddo
6536       n_corr=0
6537       n_corr1=0
6538       if (nfgtasks.le.1) goto 30
6539       if (lprn) then
6540         write (iout,'(a)') 'Contact function values before RECEIVE:'
6541         do i=nnt,nct-2
6542           write (iout,'(2i3,50(1x,i2,f5.2))') 
6543      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6544      &    j=1,num_cont_hb(i))
6545         enddo
6546       endif
6547       call flush(iout)
6548       do i=1,ntask_cont_from
6549         ncont_recv(i)=0
6550       enddo
6551       do i=1,ntask_cont_to
6552         ncont_sent(i)=0
6553       enddo
6554 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6555 c     & ntask_cont_to
6556 C Make the list of contacts to send to send to other procesors
6557       do i=iturn3_start,iturn3_end
6558 c        write (iout,*) "make contact list turn3",i," num_cont",
6559 c     &    num_cont_hb(i)
6560         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6561       enddo
6562       do i=iturn4_start,iturn4_end
6563 c        write (iout,*) "make contact list turn4",i," num_cont",
6564 c     &   num_cont_hb(i)
6565         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6566       enddo
6567       do ii=1,nat_sent
6568         i=iat_sent(ii)
6569 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6570 c     &    num_cont_hb(i)
6571         do j=1,num_cont_hb(i)
6572         do k=1,4
6573           jjc=jcont_hb(j,i)
6574           iproc=iint_sent_local(k,jjc,ii)
6575 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6576           if (iproc.ne.0) then
6577             ncont_sent(iproc)=ncont_sent(iproc)+1
6578             nn=ncont_sent(iproc)
6579             zapas(1,nn,iproc)=i
6580             zapas(2,nn,iproc)=jjc
6581             zapas(3,nn,iproc)=d_cont(j,i)
6582             ind=3
6583             do kk=1,3
6584               ind=ind+1
6585               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6586             enddo
6587             do kk=1,2
6588               do ll=1,2
6589                 ind=ind+1
6590                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6591               enddo
6592             enddo
6593             do jj=1,5
6594               do kk=1,3
6595                 do ll=1,2
6596                   do mm=1,2
6597                     ind=ind+1
6598                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6599                   enddo
6600                 enddo
6601               enddo
6602             enddo
6603           endif
6604         enddo
6605         enddo
6606       enddo
6607       if (lprn) then
6608       write (iout,*) 
6609      &  "Numbers of contacts to be sent to other processors",
6610      &  (ncont_sent(i),i=1,ntask_cont_to)
6611       write (iout,*) "Contacts sent"
6612       do ii=1,ntask_cont_to
6613         nn=ncont_sent(ii)
6614         iproc=itask_cont_to(ii)
6615         write (iout,*) nn," contacts to processor",iproc,
6616      &   " of CONT_TO_COMM group"
6617         do i=1,nn
6618           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6619         enddo
6620       enddo
6621       call flush(iout)
6622       endif
6623       CorrelType=477
6624       CorrelID=fg_rank+1
6625       CorrelType1=478
6626       CorrelID1=nfgtasks+fg_rank+1
6627       ireq=0
6628 C Receive the numbers of needed contacts from other processors 
6629       do ii=1,ntask_cont_from
6630         iproc=itask_cont_from(ii)
6631         ireq=ireq+1
6632         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6633      &    FG_COMM,req(ireq),IERR)
6634       enddo
6635 c      write (iout,*) "IRECV ended"
6636 c      call flush(iout)
6637 C Send the number of contacts needed by other processors
6638       do ii=1,ntask_cont_to
6639         iproc=itask_cont_to(ii)
6640         ireq=ireq+1
6641         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6642      &    FG_COMM,req(ireq),IERR)
6643       enddo
6644 c      write (iout,*) "ISEND ended"
6645 c      write (iout,*) "number of requests (nn)",ireq
6646       call flush(iout)
6647       if (ireq.gt.0) 
6648      &  call MPI_Waitall(ireq,req,status_array,ierr)
6649 c      write (iout,*) 
6650 c     &  "Numbers of contacts to be received from other processors",
6651 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6652 c      call flush(iout)
6653 C Receive contacts
6654       ireq=0
6655       do ii=1,ntask_cont_from
6656         iproc=itask_cont_from(ii)
6657         nn=ncont_recv(ii)
6658 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6659 c     &   " of CONT_TO_COMM group"
6660         call flush(iout)
6661         if (nn.gt.0) then
6662           ireq=ireq+1
6663           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6664      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6665 c          write (iout,*) "ireq,req",ireq,req(ireq)
6666         endif
6667       enddo
6668 C Send the contacts to processors that need them
6669       do ii=1,ntask_cont_to
6670         iproc=itask_cont_to(ii)
6671         nn=ncont_sent(ii)
6672 c        write (iout,*) nn," contacts to processor",iproc,
6673 c     &   " of CONT_TO_COMM group"
6674         if (nn.gt.0) then
6675           ireq=ireq+1 
6676           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6677      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6678 c          write (iout,*) "ireq,req",ireq,req(ireq)
6679 c          do i=1,nn
6680 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6681 c          enddo
6682         endif  
6683       enddo
6684 c      write (iout,*) "number of requests (contacts)",ireq
6685 c      write (iout,*) "req",(req(i),i=1,4)
6686 c      call flush(iout)
6687       if (ireq.gt.0) 
6688      & call MPI_Waitall(ireq,req,status_array,ierr)
6689       do iii=1,ntask_cont_from
6690         iproc=itask_cont_from(iii)
6691         nn=ncont_recv(iii)
6692         if (lprn) then
6693         write (iout,*) "Received",nn," contacts from processor",iproc,
6694      &   " of CONT_FROM_COMM group"
6695         call flush(iout)
6696         do i=1,nn
6697           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6698         enddo
6699         call flush(iout)
6700         endif
6701         do i=1,nn
6702           ii=zapas_recv(1,i,iii)
6703 c Flag the received contacts to prevent double-counting
6704           jj=-zapas_recv(2,i,iii)
6705 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6706 c          call flush(iout)
6707           nnn=num_cont_hb(ii)+1
6708           num_cont_hb(ii)=nnn
6709           jcont_hb(nnn,ii)=jj
6710           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6711           ind=3
6712           do kk=1,3
6713             ind=ind+1
6714             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6715           enddo
6716           do kk=1,2
6717             do ll=1,2
6718               ind=ind+1
6719               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6720             enddo
6721           enddo
6722           do jj=1,5
6723             do kk=1,3
6724               do ll=1,2
6725                 do mm=1,2
6726                   ind=ind+1
6727                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6728                 enddo
6729               enddo
6730             enddo
6731           enddo
6732         enddo
6733       enddo
6734       call flush(iout)
6735       if (lprn) then
6736         write (iout,'(a)') 'Contact function values after receive:'
6737         do i=nnt,nct-2
6738           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6739      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6740      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6741         enddo
6742         call flush(iout)
6743       endif
6744    30 continue
6745 #endif
6746       if (lprn) then
6747         write (iout,'(a)') 'Contact function values:'
6748         do i=nnt,nct-2
6749           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6750      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6751      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6752         enddo
6753       endif
6754       ecorr=0.0D0
6755       ecorr5=0.0d0
6756       ecorr6=0.0d0
6757 C Remove the loop below after debugging !!!
6758       do i=nnt,nct
6759         do j=1,3
6760           gradcorr(j,i)=0.0D0
6761           gradxorr(j,i)=0.0D0
6762         enddo
6763       enddo
6764 C Calculate the dipole-dipole interaction energies
6765       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6766       do i=iatel_s,iatel_e+1
6767         num_conti=num_cont_hb(i)
6768         do jj=1,num_conti
6769           j=jcont_hb(jj,i)
6770 #ifdef MOMENT
6771           call dipole(i,j,jj)
6772 #endif
6773         enddo
6774       enddo
6775       endif
6776 C Calculate the local-electrostatic correlation terms
6777 c                write (iout,*) "gradcorr5 in eello5 before loop"
6778 c                do iii=1,nres
6779 c                  write (iout,'(i5,3f10.5)') 
6780 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6781 c                enddo
6782       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6783 c        write (iout,*) "corr loop i",i
6784         i1=i+1
6785         num_conti=num_cont_hb(i)
6786         num_conti1=num_cont_hb(i+1)
6787         do jj=1,num_conti
6788           j=jcont_hb(jj,i)
6789           jp=iabs(j)
6790           do kk=1,num_conti1
6791             j1=jcont_hb(kk,i1)
6792             jp1=iabs(j1)
6793 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6794 c     &         ' jj=',jj,' kk=',kk
6795 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6796             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6797      &          .or. j.lt.0 .and. j1.gt.0) .and.
6798      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6799 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6800 C The system gains extra energy.
6801               n_corr=n_corr+1
6802               sqd1=dsqrt(d_cont(jj,i))
6803               sqd2=dsqrt(d_cont(kk,i1))
6804               sred_geom = sqd1*sqd2
6805               IF (sred_geom.lt.cutoff_corr) THEN
6806                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6807      &            ekont,fprimcont)
6808 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6809 cd     &         ' jj=',jj,' kk=',kk
6810                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6811                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6812                 do l=1,3
6813                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6814                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6815                 enddo
6816                 n_corr1=n_corr1+1
6817 cd               write (iout,*) 'sred_geom=',sred_geom,
6818 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6819 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6820 cd               write (iout,*) "g_contij",g_contij
6821 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6822 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6823                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6824                 if (wcorr4.gt.0.0d0) 
6825      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6826                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6827      1                 write (iout,'(a6,4i5,0pf7.3)')
6828      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6829 c                write (iout,*) "gradcorr5 before eello5"
6830 c                do iii=1,nres
6831 c                  write (iout,'(i5,3f10.5)') 
6832 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6833 c                enddo
6834                 if (wcorr5.gt.0.0d0)
6835      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6836 c                write (iout,*) "gradcorr5 after eello5"
6837 c                do iii=1,nres
6838 c                  write (iout,'(i5,3f10.5)') 
6839 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6840 c                enddo
6841                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6842      1                 write (iout,'(a6,4i5,0pf7.3)')
6843      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6844 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6845 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6846                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6847      &               .or. wturn6.eq.0.0d0))then
6848 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6849                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6850                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6851      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6852 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6853 cd     &            'ecorr6=',ecorr6
6854 cd                write (iout,'(4e15.5)') sred_geom,
6855 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6856 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6857 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6858                 else if (wturn6.gt.0.0d0
6859      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6860 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6861                   eturn6=eturn6+eello_turn6(i,jj,kk)
6862                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6863      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6864 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6865                 endif
6866               ENDIF
6867 1111          continue
6868             endif
6869           enddo ! kk
6870         enddo ! jj
6871       enddo ! i
6872       do i=1,nres
6873         num_cont_hb(i)=num_cont_hb_old(i)
6874       enddo
6875 c                write (iout,*) "gradcorr5 in eello5"
6876 c                do iii=1,nres
6877 c                  write (iout,'(i5,3f10.5)') 
6878 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6879 c                enddo
6880       return
6881       end
6882 c------------------------------------------------------------------------------
6883       subroutine add_hb_contact_eello(ii,jj,itask)
6884       implicit real*8 (a-h,o-z)
6885       include "DIMENSIONS"
6886       include "COMMON.IOUNITS"
6887       integer max_cont
6888       integer max_dim
6889       parameter (max_cont=maxconts)
6890       parameter (max_dim=70)
6891       include "COMMON.CONTACTS"
6892       double precision zapas(max_dim,maxconts,max_fg_procs),
6893      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6894       common /przechowalnia/ zapas
6895       integer i,j,ii,jj,iproc,itask(4),nn
6896 c      write (iout,*) "itask",itask
6897       do i=1,2
6898         iproc=itask(i)
6899         if (iproc.gt.0) then
6900           do j=1,num_cont_hb(ii)
6901             jjc=jcont_hb(j,ii)
6902 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6903             if (jjc.eq.jj) then
6904               ncont_sent(iproc)=ncont_sent(iproc)+1
6905               nn=ncont_sent(iproc)
6906               zapas(1,nn,iproc)=ii
6907               zapas(2,nn,iproc)=jjc
6908               zapas(3,nn,iproc)=d_cont(j,ii)
6909               ind=3
6910               do kk=1,3
6911                 ind=ind+1
6912                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6913               enddo
6914               do kk=1,2
6915                 do ll=1,2
6916                   ind=ind+1
6917                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6918                 enddo
6919               enddo
6920               do jj=1,5
6921                 do kk=1,3
6922                   do ll=1,2
6923                     do mm=1,2
6924                       ind=ind+1
6925                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6926                     enddo
6927                   enddo
6928                 enddo
6929               enddo
6930               exit
6931             endif
6932           enddo
6933         endif
6934       enddo
6935       return
6936       end
6937 c------------------------------------------------------------------------------
6938       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6939       implicit real*8 (a-h,o-z)
6940       include 'DIMENSIONS'
6941       include 'COMMON.IOUNITS'
6942       include 'COMMON.DERIV'
6943       include 'COMMON.INTERACT'
6944       include 'COMMON.CONTACTS'
6945       double precision gx(3),gx1(3)
6946       logical lprn
6947       lprn=.false.
6948       eij=facont_hb(jj,i)
6949       ekl=facont_hb(kk,k)
6950       ees0pij=ees0p(jj,i)
6951       ees0pkl=ees0p(kk,k)
6952       ees0mij=ees0m(jj,i)
6953       ees0mkl=ees0m(kk,k)
6954       ekont=eij*ekl
6955       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6956 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6957 C Following 4 lines for diagnostics.
6958 cd    ees0pkl=0.0D0
6959 cd    ees0pij=1.0D0
6960 cd    ees0mkl=0.0D0
6961 cd    ees0mij=1.0D0
6962 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6963 c     & 'Contacts ',i,j,
6964 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6965 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6966 c     & 'gradcorr_long'
6967 C Calculate the multi-body contribution to energy.
6968 c      ecorr=ecorr+ekont*ees
6969 C Calculate multi-body contributions to the gradient.
6970       coeffpees0pij=coeffp*ees0pij
6971       coeffmees0mij=coeffm*ees0mij
6972       coeffpees0pkl=coeffp*ees0pkl
6973       coeffmees0mkl=coeffm*ees0mkl
6974       do ll=1,3
6975 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6976         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6977      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6978      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6979         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6980      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6981      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6982 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6983         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6984      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6985      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6986         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6987      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6988      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6989         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6990      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6991      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6992         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6993         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6994         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6995      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6996      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6997         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6998         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6999 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
7000       enddo
7001 c      write (iout,*)
7002 cgrad      do m=i+1,j-1
7003 cgrad        do ll=1,3
7004 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7005 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
7006 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
7007 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
7008 cgrad        enddo
7009 cgrad      enddo
7010 cgrad      do m=k+1,l-1
7011 cgrad        do ll=1,3
7012 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7013 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7014 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7015 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7016 cgrad        enddo
7017 cgrad      enddo 
7018 c      write (iout,*) "ehbcorr",ekont*ees
7019       ehbcorr=ekont*ees
7020       return
7021       end
7022 #ifdef MOMENT
7023 C---------------------------------------------------------------------------
7024       subroutine dipole(i,j,jj)
7025       implicit real*8 (a-h,o-z)
7026       include 'DIMENSIONS'
7027       include 'COMMON.IOUNITS'
7028       include 'COMMON.CHAIN'
7029       include 'COMMON.FFIELD'
7030       include 'COMMON.DERIV'
7031       include 'COMMON.INTERACT'
7032       include 'COMMON.CONTACTS'
7033       include 'COMMON.TORSION'
7034       include 'COMMON.VAR'
7035       include 'COMMON.GEO'
7036       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7037      &  auxmat(2,2)
7038       iti1 = itortyp(itype(i+1))
7039       if (j.lt.nres-1) then
7040         itj1 = itortyp(itype(j+1))
7041       else
7042         itj1=ntortyp+1
7043       endif
7044       do iii=1,2
7045         dipi(iii,1)=Ub2(iii,i)
7046         dipderi(iii)=Ub2der(iii,i)
7047         dipi(iii,2)=b1(iii,iti1)
7048         dipj(iii,1)=Ub2(iii,j)
7049         dipderj(iii)=Ub2der(iii,j)
7050         dipj(iii,2)=b1(iii,itj1)
7051       enddo
7052       kkk=0
7053       do iii=1,2
7054         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7055         do jjj=1,2
7056           kkk=kkk+1
7057           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7058         enddo
7059       enddo
7060       do kkk=1,5
7061         do lll=1,3
7062           mmm=0
7063           do iii=1,2
7064             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7065      &        auxvec(1))
7066             do jjj=1,2
7067               mmm=mmm+1
7068               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7069             enddo
7070           enddo
7071         enddo
7072       enddo
7073       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7074       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7075       do iii=1,2
7076         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7077       enddo
7078       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7079       do iii=1,2
7080         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7081       enddo
7082       return
7083       end
7084 #endif
7085 C---------------------------------------------------------------------------
7086       subroutine calc_eello(i,j,k,l,jj,kk)
7087
7088 C This subroutine computes matrices and vectors needed to calculate 
7089 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7090 C
7091       implicit real*8 (a-h,o-z)
7092       include 'DIMENSIONS'
7093       include 'COMMON.IOUNITS'
7094       include 'COMMON.CHAIN'
7095       include 'COMMON.DERIV'
7096       include 'COMMON.INTERACT'
7097       include 'COMMON.CONTACTS'
7098       include 'COMMON.TORSION'
7099       include 'COMMON.VAR'
7100       include 'COMMON.GEO'
7101       include 'COMMON.FFIELD'
7102       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7103      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7104       logical lprn
7105       common /kutas/ lprn
7106 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7107 cd     & ' jj=',jj,' kk=',kk
7108 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7109 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7110 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7111       do iii=1,2
7112         do jjj=1,2
7113           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7114           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7115         enddo
7116       enddo
7117       call transpose2(aa1(1,1),aa1t(1,1))
7118       call transpose2(aa2(1,1),aa2t(1,1))
7119       do kkk=1,5
7120         do lll=1,3
7121           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7122      &      aa1tder(1,1,lll,kkk))
7123           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7124      &      aa2tder(1,1,lll,kkk))
7125         enddo
7126       enddo 
7127       if (l.eq.j+1) then
7128 C parallel orientation of the two CA-CA-CA frames.
7129         if (i.gt.1) then
7130           iti=itortyp(itype(i))
7131         else
7132           iti=ntortyp+1
7133         endif
7134         itk1=itortyp(itype(k+1))
7135         itj=itortyp(itype(j))
7136         if (l.lt.nres-1) then
7137           itl1=itortyp(itype(l+1))
7138         else
7139           itl1=ntortyp+1
7140         endif
7141 C A1 kernel(j+1) A2T
7142 cd        do iii=1,2
7143 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7144 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7145 cd        enddo
7146         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7147      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7148      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7149 C Following matrices are needed only for 6-th order cumulants
7150         IF (wcorr6.gt.0.0d0) THEN
7151         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7152      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7153      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7154         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7155      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7156      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7157      &   ADtEAderx(1,1,1,1,1,1))
7158         lprn=.false.
7159         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7160      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7161      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7162      &   ADtEA1derx(1,1,1,1,1,1))
7163         ENDIF
7164 C End 6-th order cumulants
7165 cd        lprn=.false.
7166 cd        if (lprn) then
7167 cd        write (2,*) 'In calc_eello6'
7168 cd        do iii=1,2
7169 cd          write (2,*) 'iii=',iii
7170 cd          do kkk=1,5
7171 cd            write (2,*) 'kkk=',kkk
7172 cd            do jjj=1,2
7173 cd              write (2,'(3(2f10.5),5x)') 
7174 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7175 cd            enddo
7176 cd          enddo
7177 cd        enddo
7178 cd        endif
7179         call transpose2(EUgder(1,1,k),auxmat(1,1))
7180         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7181         call transpose2(EUg(1,1,k),auxmat(1,1))
7182         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7183         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7184         do iii=1,2
7185           do kkk=1,5
7186             do lll=1,3
7187               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7188      &          EAEAderx(1,1,lll,kkk,iii,1))
7189             enddo
7190           enddo
7191         enddo
7192 C A1T kernel(i+1) A2
7193         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7194      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7195      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7196 C Following matrices are needed only for 6-th order cumulants
7197         IF (wcorr6.gt.0.0d0) THEN
7198         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7199      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7200      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7201         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7202      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7203      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7204      &   ADtEAderx(1,1,1,1,1,2))
7205         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7206      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7207      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7208      &   ADtEA1derx(1,1,1,1,1,2))
7209         ENDIF
7210 C End 6-th order cumulants
7211         call transpose2(EUgder(1,1,l),auxmat(1,1))
7212         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7213         call transpose2(EUg(1,1,l),auxmat(1,1))
7214         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7215         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7216         do iii=1,2
7217           do kkk=1,5
7218             do lll=1,3
7219               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7220      &          EAEAderx(1,1,lll,kkk,iii,2))
7221             enddo
7222           enddo
7223         enddo
7224 C AEAb1 and AEAb2
7225 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7226 C They are needed only when the fifth- or the sixth-order cumulants are
7227 C indluded.
7228         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7229         call transpose2(AEA(1,1,1),auxmat(1,1))
7230         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7231         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7232         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7233         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7234         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7235         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7236         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7237         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7238         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7239         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7240         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7241         call transpose2(AEA(1,1,2),auxmat(1,1))
7242         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7243         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7244         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7245         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7246         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7247         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7248         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7249         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7250         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7251         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7252         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7253 C Calculate the Cartesian derivatives of the vectors.
7254         do iii=1,2
7255           do kkk=1,5
7256             do lll=1,3
7257               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7258               call matvec2(auxmat(1,1),b1(1,iti),
7259      &          AEAb1derx(1,lll,kkk,iii,1,1))
7260               call matvec2(auxmat(1,1),Ub2(1,i),
7261      &          AEAb2derx(1,lll,kkk,iii,1,1))
7262               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7263      &          AEAb1derx(1,lll,kkk,iii,2,1))
7264               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7265      &          AEAb2derx(1,lll,kkk,iii,2,1))
7266               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7267               call matvec2(auxmat(1,1),b1(1,itj),
7268      &          AEAb1derx(1,lll,kkk,iii,1,2))
7269               call matvec2(auxmat(1,1),Ub2(1,j),
7270      &          AEAb2derx(1,lll,kkk,iii,1,2))
7271               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7272      &          AEAb1derx(1,lll,kkk,iii,2,2))
7273               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7274      &          AEAb2derx(1,lll,kkk,iii,2,2))
7275             enddo
7276           enddo
7277         enddo
7278         ENDIF
7279 C End vectors
7280       else
7281 C Antiparallel orientation of the two CA-CA-CA frames.
7282         if (i.gt.1) then
7283           iti=itortyp(itype(i))
7284         else
7285           iti=ntortyp+1
7286         endif
7287         itk1=itortyp(itype(k+1))
7288         itl=itortyp(itype(l))
7289         itj=itortyp(itype(j))
7290         if (j.lt.nres-1) then
7291           itj1=itortyp(itype(j+1))
7292         else 
7293           itj1=ntortyp+1
7294         endif
7295 C A2 kernel(j-1)T A1T
7296         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7297      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7298      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7299 C Following matrices are needed only for 6-th order cumulants
7300         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7301      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7302         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7303      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7304      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7305         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7306      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7307      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7308      &   ADtEAderx(1,1,1,1,1,1))
7309         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7310      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7311      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7312      &   ADtEA1derx(1,1,1,1,1,1))
7313         ENDIF
7314 C End 6-th order cumulants
7315         call transpose2(EUgder(1,1,k),auxmat(1,1))
7316         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7317         call transpose2(EUg(1,1,k),auxmat(1,1))
7318         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7319         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7320         do iii=1,2
7321           do kkk=1,5
7322             do lll=1,3
7323               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7324      &          EAEAderx(1,1,lll,kkk,iii,1))
7325             enddo
7326           enddo
7327         enddo
7328 C A2T kernel(i+1)T A1
7329         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7330      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7331      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7332 C Following matrices are needed only for 6-th order cumulants
7333         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7334      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7335         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7336      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7337      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7338         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7339      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7340      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7341      &   ADtEAderx(1,1,1,1,1,2))
7342         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7343      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7344      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7345      &   ADtEA1derx(1,1,1,1,1,2))
7346         ENDIF
7347 C End 6-th order cumulants
7348         call transpose2(EUgder(1,1,j),auxmat(1,1))
7349         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7350         call transpose2(EUg(1,1,j),auxmat(1,1))
7351         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7352         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7353         do iii=1,2
7354           do kkk=1,5
7355             do lll=1,3
7356               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7357      &          EAEAderx(1,1,lll,kkk,iii,2))
7358             enddo
7359           enddo
7360         enddo
7361 C AEAb1 and AEAb2
7362 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7363 C They are needed only when the fifth- or the sixth-order cumulants are
7364 C indluded.
7365         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7366      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7367         call transpose2(AEA(1,1,1),auxmat(1,1))
7368         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7369         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7370         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7371         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7372         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7373         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7374         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7375         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7376         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7377         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7378         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7379         call transpose2(AEA(1,1,2),auxmat(1,1))
7380         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7381         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7382         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7383         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7384         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7385         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7386         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7387         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7388         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7389         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7390         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7391 C Calculate the Cartesian derivatives of the vectors.
7392         do iii=1,2
7393           do kkk=1,5
7394             do lll=1,3
7395               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7396               call matvec2(auxmat(1,1),b1(1,iti),
7397      &          AEAb1derx(1,lll,kkk,iii,1,1))
7398               call matvec2(auxmat(1,1),Ub2(1,i),
7399      &          AEAb2derx(1,lll,kkk,iii,1,1))
7400               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7401      &          AEAb1derx(1,lll,kkk,iii,2,1))
7402               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7403      &          AEAb2derx(1,lll,kkk,iii,2,1))
7404               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7405               call matvec2(auxmat(1,1),b1(1,itl),
7406      &          AEAb1derx(1,lll,kkk,iii,1,2))
7407               call matvec2(auxmat(1,1),Ub2(1,l),
7408      &          AEAb2derx(1,lll,kkk,iii,1,2))
7409               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7410      &          AEAb1derx(1,lll,kkk,iii,2,2))
7411               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7412      &          AEAb2derx(1,lll,kkk,iii,2,2))
7413             enddo
7414           enddo
7415         enddo
7416         ENDIF
7417 C End vectors
7418       endif
7419       return
7420       end
7421 C---------------------------------------------------------------------------
7422       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7423      &  KK,KKderg,AKA,AKAderg,AKAderx)
7424       implicit none
7425       integer nderg
7426       logical transp
7427       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7428      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7429      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7430       integer iii,kkk,lll
7431       integer jjj,mmm
7432       logical lprn
7433       common /kutas/ lprn
7434       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7435       do iii=1,nderg 
7436         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7437      &    AKAderg(1,1,iii))
7438       enddo
7439 cd      if (lprn) write (2,*) 'In kernel'
7440       do kkk=1,5
7441 cd        if (lprn) write (2,*) 'kkk=',kkk
7442         do lll=1,3
7443           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7444      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7445 cd          if (lprn) then
7446 cd            write (2,*) 'lll=',lll
7447 cd            write (2,*) 'iii=1'
7448 cd            do jjj=1,2
7449 cd              write (2,'(3(2f10.5),5x)') 
7450 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7451 cd            enddo
7452 cd          endif
7453           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7454      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7455 cd          if (lprn) then
7456 cd            write (2,*) 'lll=',lll
7457 cd            write (2,*) 'iii=2'
7458 cd            do jjj=1,2
7459 cd              write (2,'(3(2f10.5),5x)') 
7460 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7461 cd            enddo
7462 cd          endif
7463         enddo
7464       enddo
7465       return
7466       end
7467 C---------------------------------------------------------------------------
7468       double precision function eello4(i,j,k,l,jj,kk)
7469       implicit real*8 (a-h,o-z)
7470       include 'DIMENSIONS'
7471       include 'COMMON.IOUNITS'
7472       include 'COMMON.CHAIN'
7473       include 'COMMON.DERIV'
7474       include 'COMMON.INTERACT'
7475       include 'COMMON.CONTACTS'
7476       include 'COMMON.TORSION'
7477       include 'COMMON.VAR'
7478       include 'COMMON.GEO'
7479       double precision pizda(2,2),ggg1(3),ggg2(3)
7480 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7481 cd        eello4=0.0d0
7482 cd        return
7483 cd      endif
7484 cd      print *,'eello4:',i,j,k,l,jj,kk
7485 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7486 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7487 cold      eij=facont_hb(jj,i)
7488 cold      ekl=facont_hb(kk,k)
7489 cold      ekont=eij*ekl
7490       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7491 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7492       gcorr_loc(k-1)=gcorr_loc(k-1)
7493      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7494       if (l.eq.j+1) then
7495         gcorr_loc(l-1)=gcorr_loc(l-1)
7496      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7497       else
7498         gcorr_loc(j-1)=gcorr_loc(j-1)
7499      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7500       endif
7501       do iii=1,2
7502         do kkk=1,5
7503           do lll=1,3
7504             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7505      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7506 cd            derx(lll,kkk,iii)=0.0d0
7507           enddo
7508         enddo
7509       enddo
7510 cd      gcorr_loc(l-1)=0.0d0
7511 cd      gcorr_loc(j-1)=0.0d0
7512 cd      gcorr_loc(k-1)=0.0d0
7513 cd      eel4=1.0d0
7514 cd      write (iout,*)'Contacts have occurred for peptide groups',
7515 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7516 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7517       if (j.lt.nres-1) then
7518         j1=j+1
7519         j2=j-1
7520       else
7521         j1=j-1
7522         j2=j-2
7523       endif
7524       if (l.lt.nres-1) then
7525         l1=l+1
7526         l2=l-1
7527       else
7528         l1=l-1
7529         l2=l-2
7530       endif
7531       do ll=1,3
7532 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7533 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7534         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7535         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7536 cgrad        ghalf=0.5d0*ggg1(ll)
7537         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7538         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7539         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7540         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7541         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7542         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7543 cgrad        ghalf=0.5d0*ggg2(ll)
7544         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7545         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7546         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7547         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7548         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7549         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7550       enddo
7551 cgrad      do m=i+1,j-1
7552 cgrad        do ll=1,3
7553 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7554 cgrad        enddo
7555 cgrad      enddo
7556 cgrad      do m=k+1,l-1
7557 cgrad        do ll=1,3
7558 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7559 cgrad        enddo
7560 cgrad      enddo
7561 cgrad      do m=i+2,j2
7562 cgrad        do ll=1,3
7563 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7564 cgrad        enddo
7565 cgrad      enddo
7566 cgrad      do m=k+2,l2
7567 cgrad        do ll=1,3
7568 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7569 cgrad        enddo
7570 cgrad      enddo 
7571 cd      do iii=1,nres-3
7572 cd        write (2,*) iii,gcorr_loc(iii)
7573 cd      enddo
7574       eello4=ekont*eel4
7575 cd      write (2,*) 'ekont',ekont
7576 cd      write (iout,*) 'eello4',ekont*eel4
7577       return
7578       end
7579 C---------------------------------------------------------------------------
7580       double precision function eello5(i,j,k,l,jj,kk)
7581       implicit real*8 (a-h,o-z)
7582       include 'DIMENSIONS'
7583       include 'COMMON.IOUNITS'
7584       include 'COMMON.CHAIN'
7585       include 'COMMON.DERIV'
7586       include 'COMMON.INTERACT'
7587       include 'COMMON.CONTACTS'
7588       include 'COMMON.TORSION'
7589       include 'COMMON.VAR'
7590       include 'COMMON.GEO'
7591       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7592       double precision ggg1(3),ggg2(3)
7593 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7594 C                                                                              C
7595 C                            Parallel chains                                   C
7596 C                                                                              C
7597 C          o             o                   o             o                   C
7598 C         /l\           / \             \   / \           / \   /              C
7599 C        /   \         /   \             \ /   \         /   \ /               C
7600 C       j| o |l1       | o |              o| o |         | o |o                C
7601 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7602 C      \i/   \         /   \ /             /   \         /   \                 C
7603 C       o    k1             o                                                  C
7604 C         (I)          (II)                (III)          (IV)                 C
7605 C                                                                              C
7606 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7607 C                                                                              C
7608 C                            Antiparallel chains                               C
7609 C                                                                              C
7610 C          o             o                   o             o                   C
7611 C         /j\           / \             \   / \           / \   /              C
7612 C        /   \         /   \             \ /   \         /   \ /               C
7613 C      j1| o |l        | o |              o| o |         | o |o                C
7614 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7615 C      \i/   \         /   \ /             /   \         /   \                 C
7616 C       o     k1            o                                                  C
7617 C         (I)          (II)                (III)          (IV)                 C
7618 C                                                                              C
7619 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7620 C                                                                              C
7621 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7622 C                                                                              C
7623 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7624 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7625 cd        eello5=0.0d0
7626 cd        return
7627 cd      endif
7628 cd      write (iout,*)
7629 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7630 cd     &   ' and',k,l
7631       itk=itortyp(itype(k))
7632       itl=itortyp(itype(l))
7633       itj=itortyp(itype(j))
7634       eello5_1=0.0d0
7635       eello5_2=0.0d0
7636       eello5_3=0.0d0
7637       eello5_4=0.0d0
7638 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7639 cd     &   eel5_3_num,eel5_4_num)
7640       do iii=1,2
7641         do kkk=1,5
7642           do lll=1,3
7643             derx(lll,kkk,iii)=0.0d0
7644           enddo
7645         enddo
7646       enddo
7647 cd      eij=facont_hb(jj,i)
7648 cd      ekl=facont_hb(kk,k)
7649 cd      ekont=eij*ekl
7650 cd      write (iout,*)'Contacts have occurred for peptide groups',
7651 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7652 cd      goto 1111
7653 C Contribution from the graph I.
7654 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7655 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7656       call transpose2(EUg(1,1,k),auxmat(1,1))
7657       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7658       vv(1)=pizda(1,1)-pizda(2,2)
7659       vv(2)=pizda(1,2)+pizda(2,1)
7660       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7661      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7662 C Explicit gradient in virtual-dihedral angles.
7663       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7664      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7665      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7666       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7667       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7668       vv(1)=pizda(1,1)-pizda(2,2)
7669       vv(2)=pizda(1,2)+pizda(2,1)
7670       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7671      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7672      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7673       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7674       vv(1)=pizda(1,1)-pizda(2,2)
7675       vv(2)=pizda(1,2)+pizda(2,1)
7676       if (l.eq.j+1) then
7677         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7678      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7679      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7680       else
7681         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7682      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7683      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7684       endif 
7685 C Cartesian gradient
7686       do iii=1,2
7687         do kkk=1,5
7688           do lll=1,3
7689             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7690      &        pizda(1,1))
7691             vv(1)=pizda(1,1)-pizda(2,2)
7692             vv(2)=pizda(1,2)+pizda(2,1)
7693             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7694      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7695      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7696           enddo
7697         enddo
7698       enddo
7699 c      goto 1112
7700 c1111  continue
7701 C Contribution from graph II 
7702       call transpose2(EE(1,1,itk),auxmat(1,1))
7703       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7704       vv(1)=pizda(1,1)+pizda(2,2)
7705       vv(2)=pizda(2,1)-pizda(1,2)
7706       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7707      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7708 C Explicit gradient in virtual-dihedral angles.
7709       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7710      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7711       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7712       vv(1)=pizda(1,1)+pizda(2,2)
7713       vv(2)=pizda(2,1)-pizda(1,2)
7714       if (l.eq.j+1) then
7715         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7716      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7717      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7718       else
7719         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7720      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7721      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7722       endif
7723 C Cartesian gradient
7724       do iii=1,2
7725         do kkk=1,5
7726           do lll=1,3
7727             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7728      &        pizda(1,1))
7729             vv(1)=pizda(1,1)+pizda(2,2)
7730             vv(2)=pizda(2,1)-pizda(1,2)
7731             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7732      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7733      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7734           enddo
7735         enddo
7736       enddo
7737 cd      goto 1112
7738 cd1111  continue
7739       if (l.eq.j+1) then
7740 cd        goto 1110
7741 C Parallel orientation
7742 C Contribution from graph III
7743         call transpose2(EUg(1,1,l),auxmat(1,1))
7744         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7745         vv(1)=pizda(1,1)-pizda(2,2)
7746         vv(2)=pizda(1,2)+pizda(2,1)
7747         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7748      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7749 C Explicit gradient in virtual-dihedral angles.
7750         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7751      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7752      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7753         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7754         vv(1)=pizda(1,1)-pizda(2,2)
7755         vv(2)=pizda(1,2)+pizda(2,1)
7756         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7757      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7758      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7759         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7760         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7761         vv(1)=pizda(1,1)-pizda(2,2)
7762         vv(2)=pizda(1,2)+pizda(2,1)
7763         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7764      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7765      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7766 C Cartesian gradient
7767         do iii=1,2
7768           do kkk=1,5
7769             do lll=1,3
7770               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7771      &          pizda(1,1))
7772               vv(1)=pizda(1,1)-pizda(2,2)
7773               vv(2)=pizda(1,2)+pizda(2,1)
7774               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7775      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7776      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7777             enddo
7778           enddo
7779         enddo
7780 cd        goto 1112
7781 C Contribution from graph IV
7782 cd1110    continue
7783         call transpose2(EE(1,1,itl),auxmat(1,1))
7784         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7785         vv(1)=pizda(1,1)+pizda(2,2)
7786         vv(2)=pizda(2,1)-pizda(1,2)
7787         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7788      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7789 C Explicit gradient in virtual-dihedral angles.
7790         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7791      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7792         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7793         vv(1)=pizda(1,1)+pizda(2,2)
7794         vv(2)=pizda(2,1)-pizda(1,2)
7795         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7796      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7797      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7798 C Cartesian gradient
7799         do iii=1,2
7800           do kkk=1,5
7801             do lll=1,3
7802               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7803      &          pizda(1,1))
7804               vv(1)=pizda(1,1)+pizda(2,2)
7805               vv(2)=pizda(2,1)-pizda(1,2)
7806               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7807      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7808      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7809             enddo
7810           enddo
7811         enddo
7812       else
7813 C Antiparallel orientation
7814 C Contribution from graph III
7815 c        goto 1110
7816         call transpose2(EUg(1,1,j),auxmat(1,1))
7817         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7818         vv(1)=pizda(1,1)-pizda(2,2)
7819         vv(2)=pizda(1,2)+pizda(2,1)
7820         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7821      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7822 C Explicit gradient in virtual-dihedral angles.
7823         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7824      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7825      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7826         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7827         vv(1)=pizda(1,1)-pizda(2,2)
7828         vv(2)=pizda(1,2)+pizda(2,1)
7829         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7830      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7831      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7832         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7833         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7834         vv(1)=pizda(1,1)-pizda(2,2)
7835         vv(2)=pizda(1,2)+pizda(2,1)
7836         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7837      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7838      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7839 C Cartesian gradient
7840         do iii=1,2
7841           do kkk=1,5
7842             do lll=1,3
7843               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7844      &          pizda(1,1))
7845               vv(1)=pizda(1,1)-pizda(2,2)
7846               vv(2)=pizda(1,2)+pizda(2,1)
7847               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7848      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7849      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7850             enddo
7851           enddo
7852         enddo
7853 cd        goto 1112
7854 C Contribution from graph IV
7855 1110    continue
7856         call transpose2(EE(1,1,itj),auxmat(1,1))
7857         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7858         vv(1)=pizda(1,1)+pizda(2,2)
7859         vv(2)=pizda(2,1)-pizda(1,2)
7860         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7861      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7862 C Explicit gradient in virtual-dihedral angles.
7863         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7864      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7865         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7866         vv(1)=pizda(1,1)+pizda(2,2)
7867         vv(2)=pizda(2,1)-pizda(1,2)
7868         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7869      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7870      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7871 C Cartesian gradient
7872         do iii=1,2
7873           do kkk=1,5
7874             do lll=1,3
7875               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7876      &          pizda(1,1))
7877               vv(1)=pizda(1,1)+pizda(2,2)
7878               vv(2)=pizda(2,1)-pizda(1,2)
7879               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7880      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7881      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7882             enddo
7883           enddo
7884         enddo
7885       endif
7886 1112  continue
7887       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7888 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7889 cd        write (2,*) 'ijkl',i,j,k,l
7890 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7891 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7892 cd      endif
7893 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7894 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7895 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7896 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7897       if (j.lt.nres-1) then
7898         j1=j+1
7899         j2=j-1
7900       else
7901         j1=j-1
7902         j2=j-2
7903       endif
7904       if (l.lt.nres-1) then
7905         l1=l+1
7906         l2=l-1
7907       else
7908         l1=l-1
7909         l2=l-2
7910       endif
7911 cd      eij=1.0d0
7912 cd      ekl=1.0d0
7913 cd      ekont=1.0d0
7914 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7915 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7916 C        summed up outside the subrouine as for the other subroutines 
7917 C        handling long-range interactions. The old code is commented out
7918 C        with "cgrad" to keep track of changes.
7919       do ll=1,3
7920 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7921 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7922         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7923         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7924 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7925 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7926 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7927 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7928 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7929 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7930 c     &   gradcorr5ij,
7931 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7932 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7933 cgrad        ghalf=0.5d0*ggg1(ll)
7934 cd        ghalf=0.0d0
7935         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7936         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7937         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7938         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7939         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7940         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7941 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7942 cgrad        ghalf=0.5d0*ggg2(ll)
7943 cd        ghalf=0.0d0
7944         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7945         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7946         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7947         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7948         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7949         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7950       enddo
7951 cd      goto 1112
7952 cgrad      do m=i+1,j-1
7953 cgrad        do ll=1,3
7954 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7955 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7956 cgrad        enddo
7957 cgrad      enddo
7958 cgrad      do m=k+1,l-1
7959 cgrad        do ll=1,3
7960 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7961 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7962 cgrad        enddo
7963 cgrad      enddo
7964 c1112  continue
7965 cgrad      do m=i+2,j2
7966 cgrad        do ll=1,3
7967 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7968 cgrad        enddo
7969 cgrad      enddo
7970 cgrad      do m=k+2,l2
7971 cgrad        do ll=1,3
7972 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7973 cgrad        enddo
7974 cgrad      enddo 
7975 cd      do iii=1,nres-3
7976 cd        write (2,*) iii,g_corr5_loc(iii)
7977 cd      enddo
7978       eello5=ekont*eel5
7979 cd      write (2,*) 'ekont',ekont
7980 cd      write (iout,*) 'eello5',ekont*eel5
7981       return
7982       end
7983 c--------------------------------------------------------------------------
7984       double precision function eello6(i,j,k,l,jj,kk)
7985       implicit real*8 (a-h,o-z)
7986       include 'DIMENSIONS'
7987       include 'COMMON.IOUNITS'
7988       include 'COMMON.CHAIN'
7989       include 'COMMON.DERIV'
7990       include 'COMMON.INTERACT'
7991       include 'COMMON.CONTACTS'
7992       include 'COMMON.TORSION'
7993       include 'COMMON.VAR'
7994       include 'COMMON.GEO'
7995       include 'COMMON.FFIELD'
7996       double precision ggg1(3),ggg2(3)
7997 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7998 cd        eello6=0.0d0
7999 cd        return
8000 cd      endif
8001 cd      write (iout,*)
8002 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8003 cd     &   ' and',k,l
8004       eello6_1=0.0d0
8005       eello6_2=0.0d0
8006       eello6_3=0.0d0
8007       eello6_4=0.0d0
8008       eello6_5=0.0d0
8009       eello6_6=0.0d0
8010 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8011 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8012       do iii=1,2
8013         do kkk=1,5
8014           do lll=1,3
8015             derx(lll,kkk,iii)=0.0d0
8016           enddo
8017         enddo
8018       enddo
8019 cd      eij=facont_hb(jj,i)
8020 cd      ekl=facont_hb(kk,k)
8021 cd      ekont=eij*ekl
8022 cd      eij=1.0d0
8023 cd      ekl=1.0d0
8024 cd      ekont=1.0d0
8025       if (l.eq.j+1) then
8026         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8027         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8028         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8029         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8030         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8031         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8032       else
8033         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8034         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8035         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8036         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8037         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8038           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8039         else
8040           eello6_5=0.0d0
8041         endif
8042         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8043       endif
8044 C If turn contributions are considered, they will be handled separately.
8045       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8046 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8047 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8048 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8049 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8050 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8051 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8052 cd      goto 1112
8053       if (j.lt.nres-1) then
8054         j1=j+1
8055         j2=j-1
8056       else
8057         j1=j-1
8058         j2=j-2
8059       endif
8060       if (l.lt.nres-1) then
8061         l1=l+1
8062         l2=l-1
8063       else
8064         l1=l-1
8065         l2=l-2
8066       endif
8067       do ll=1,3
8068 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8069 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8070 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8071 cgrad        ghalf=0.5d0*ggg1(ll)
8072 cd        ghalf=0.0d0
8073         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8074         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8075         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8076         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8077         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8078         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8079         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8080         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8081 cgrad        ghalf=0.5d0*ggg2(ll)
8082 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8083 cd        ghalf=0.0d0
8084         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8085         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8086         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8087         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8088         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8089         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8090       enddo
8091 cd      goto 1112
8092 cgrad      do m=i+1,j-1
8093 cgrad        do ll=1,3
8094 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8095 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8096 cgrad        enddo
8097 cgrad      enddo
8098 cgrad      do m=k+1,l-1
8099 cgrad        do ll=1,3
8100 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8101 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8102 cgrad        enddo
8103 cgrad      enddo
8104 cgrad1112  continue
8105 cgrad      do m=i+2,j2
8106 cgrad        do ll=1,3
8107 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8108 cgrad        enddo
8109 cgrad      enddo
8110 cgrad      do m=k+2,l2
8111 cgrad        do ll=1,3
8112 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8113 cgrad        enddo
8114 cgrad      enddo 
8115 cd      do iii=1,nres-3
8116 cd        write (2,*) iii,g_corr6_loc(iii)
8117 cd      enddo
8118       eello6=ekont*eel6
8119 cd      write (2,*) 'ekont',ekont
8120 cd      write (iout,*) 'eello6',ekont*eel6
8121       return
8122       end
8123 c--------------------------------------------------------------------------
8124       double precision function eello6_graph1(i,j,k,l,imat,swap)
8125       implicit real*8 (a-h,o-z)
8126       include 'DIMENSIONS'
8127       include 'COMMON.IOUNITS'
8128       include 'COMMON.CHAIN'
8129       include 'COMMON.DERIV'
8130       include 'COMMON.INTERACT'
8131       include 'COMMON.CONTACTS'
8132       include 'COMMON.TORSION'
8133       include 'COMMON.VAR'
8134       include 'COMMON.GEO'
8135       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8136       logical swap
8137       logical lprn
8138       common /kutas/ lprn
8139 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8140 C                                              
8141 C      Parallel       Antiparallel
8142 C                                             
8143 C          o             o         
8144 C         /l\           /j\
8145 C        /   \         /   \
8146 C       /| o |         | o |\
8147 C     \ j|/k\|  /   \  |/k\|l /   
8148 C      \ /   \ /     \ /   \ /    
8149 C       o     o       o     o                
8150 C       i             i                     
8151 C
8152 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8153       itk=itortyp(itype(k))
8154       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8155       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8156       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8157       call transpose2(EUgC(1,1,k),auxmat(1,1))
8158       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8159       vv1(1)=pizda1(1,1)-pizda1(2,2)
8160       vv1(2)=pizda1(1,2)+pizda1(2,1)
8161       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8162       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8163       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8164       s5=scalar2(vv(1),Dtobr2(1,i))
8165 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8166       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8167       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8168      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8169      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8170      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8171      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8172      & +scalar2(vv(1),Dtobr2der(1,i)))
8173       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8174       vv1(1)=pizda1(1,1)-pizda1(2,2)
8175       vv1(2)=pizda1(1,2)+pizda1(2,1)
8176       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8177       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8178       if (l.eq.j+1) then
8179         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8180      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8181      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8182      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8183      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8184       else
8185         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8186      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8187      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8188      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8189      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8190       endif
8191       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8192       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8193       vv1(1)=pizda1(1,1)-pizda1(2,2)
8194       vv1(2)=pizda1(1,2)+pizda1(2,1)
8195       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8196      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8197      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8198      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8199       do iii=1,2
8200         if (swap) then
8201           ind=3-iii
8202         else
8203           ind=iii
8204         endif
8205         do kkk=1,5
8206           do lll=1,3
8207             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8208             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8209             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8210             call transpose2(EUgC(1,1,k),auxmat(1,1))
8211             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8212      &        pizda1(1,1))
8213             vv1(1)=pizda1(1,1)-pizda1(2,2)
8214             vv1(2)=pizda1(1,2)+pizda1(2,1)
8215             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8216             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8217      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8218             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8219      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8220             s5=scalar2(vv(1),Dtobr2(1,i))
8221             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8222           enddo
8223         enddo
8224       enddo
8225       return
8226       end
8227 c----------------------------------------------------------------------------
8228       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8229       implicit real*8 (a-h,o-z)
8230       include 'DIMENSIONS'
8231       include 'COMMON.IOUNITS'
8232       include 'COMMON.CHAIN'
8233       include 'COMMON.DERIV'
8234       include 'COMMON.INTERACT'
8235       include 'COMMON.CONTACTS'
8236       include 'COMMON.TORSION'
8237       include 'COMMON.VAR'
8238       include 'COMMON.GEO'
8239       logical swap
8240       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8241      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8242       logical lprn
8243       common /kutas/ lprn
8244 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8245 C                                                                              C
8246 C      Parallel       Antiparallel                                             C
8247 C                                                                              C
8248 C          o             o                                                     C
8249 C     \   /l\           /j\   /                                                C
8250 C      \ /   \         /   \ /                                                 C
8251 C       o| o |         | o |o                                                  C                
8252 C     \ j|/k\|      \  |/k\|l                                                  C
8253 C      \ /   \       \ /   \                                                   C
8254 C       o             o                                                        C
8255 C       i             i                                                        C 
8256 C                                                                              C           
8257 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8258 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8259 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8260 C           but not in a cluster cumulant
8261 #ifdef MOMENT
8262       s1=dip(1,jj,i)*dip(1,kk,k)
8263 #endif
8264       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8265       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8266       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8267       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8268       call transpose2(EUg(1,1,k),auxmat(1,1))
8269       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8270       vv(1)=pizda(1,1)-pizda(2,2)
8271       vv(2)=pizda(1,2)+pizda(2,1)
8272       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8273 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8274 #ifdef MOMENT
8275       eello6_graph2=-(s1+s2+s3+s4)
8276 #else
8277       eello6_graph2=-(s2+s3+s4)
8278 #endif
8279 c      eello6_graph2=-s3
8280 C Derivatives in gamma(i-1)
8281       if (i.gt.1) then
8282 #ifdef MOMENT
8283         s1=dipderg(1,jj,i)*dip(1,kk,k)
8284 #endif
8285         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8286         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8287         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8288         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8289 #ifdef MOMENT
8290         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8291 #else
8292         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8293 #endif
8294 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8295       endif
8296 C Derivatives in gamma(k-1)
8297 #ifdef MOMENT
8298       s1=dip(1,jj,i)*dipderg(1,kk,k)
8299 #endif
8300       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8301       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8302       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8303       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8304       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8305       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8306       vv(1)=pizda(1,1)-pizda(2,2)
8307       vv(2)=pizda(1,2)+pizda(2,1)
8308       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8309 #ifdef MOMENT
8310       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8311 #else
8312       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8313 #endif
8314 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8315 C Derivatives in gamma(j-1) or gamma(l-1)
8316       if (j.gt.1) then
8317 #ifdef MOMENT
8318         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8319 #endif
8320         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8321         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8322         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8323         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8324         vv(1)=pizda(1,1)-pizda(2,2)
8325         vv(2)=pizda(1,2)+pizda(2,1)
8326         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8327 #ifdef MOMENT
8328         if (swap) then
8329           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8330         else
8331           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8332         endif
8333 #endif
8334         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8335 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8336       endif
8337 C Derivatives in gamma(l-1) or gamma(j-1)
8338       if (l.gt.1) then 
8339 #ifdef MOMENT
8340         s1=dip(1,jj,i)*dipderg(3,kk,k)
8341 #endif
8342         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8343         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8344         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8345         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8346         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8347         vv(1)=pizda(1,1)-pizda(2,2)
8348         vv(2)=pizda(1,2)+pizda(2,1)
8349         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8350 #ifdef MOMENT
8351         if (swap) then
8352           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8353         else
8354           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8355         endif
8356 #endif
8357         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8358 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8359       endif
8360 C Cartesian derivatives.
8361       if (lprn) then
8362         write (2,*) 'In eello6_graph2'
8363         do iii=1,2
8364           write (2,*) 'iii=',iii
8365           do kkk=1,5
8366             write (2,*) 'kkk=',kkk
8367             do jjj=1,2
8368               write (2,'(3(2f10.5),5x)') 
8369      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8370             enddo
8371           enddo
8372         enddo
8373       endif
8374       do iii=1,2
8375         do kkk=1,5
8376           do lll=1,3
8377 #ifdef MOMENT
8378             if (iii.eq.1) then
8379               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8380             else
8381               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8382             endif
8383 #endif
8384             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8385      &        auxvec(1))
8386             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8387             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8388      &        auxvec(1))
8389             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8390             call transpose2(EUg(1,1,k),auxmat(1,1))
8391             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8392      &        pizda(1,1))
8393             vv(1)=pizda(1,1)-pizda(2,2)
8394             vv(2)=pizda(1,2)+pizda(2,1)
8395             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8396 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8397 #ifdef MOMENT
8398             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8399 #else
8400             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8401 #endif
8402             if (swap) then
8403               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8404             else
8405               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8406             endif
8407           enddo
8408         enddo
8409       enddo
8410       return
8411       end
8412 c----------------------------------------------------------------------------
8413       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8414       implicit real*8 (a-h,o-z)
8415       include 'DIMENSIONS'
8416       include 'COMMON.IOUNITS'
8417       include 'COMMON.CHAIN'
8418       include 'COMMON.DERIV'
8419       include 'COMMON.INTERACT'
8420       include 'COMMON.CONTACTS'
8421       include 'COMMON.TORSION'
8422       include 'COMMON.VAR'
8423       include 'COMMON.GEO'
8424       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8425       logical swap
8426 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8427 C                                                                              C 
8428 C      Parallel       Antiparallel                                             C
8429 C                                                                              C
8430 C          o             o                                                     C 
8431 C         /l\   /   \   /j\                                                    C 
8432 C        /   \ /     \ /   \                                                   C
8433 C       /| o |o       o| o |\                                                  C
8434 C       j|/k\|  /      |/k\|l /                                                C
8435 C        /   \ /       /   \ /                                                 C
8436 C       /     o       /     o                                                  C
8437 C       i             i                                                        C
8438 C                                                                              C
8439 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8440 C
8441 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8442 C           energy moment and not to the cluster cumulant.
8443       iti=itortyp(itype(i))
8444       if (j.lt.nres-1) then
8445         itj1=itortyp(itype(j+1))
8446       else
8447         itj1=ntortyp+1
8448       endif
8449       itk=itortyp(itype(k))
8450       itk1=itortyp(itype(k+1))
8451       if (l.lt.nres-1) then
8452         itl1=itortyp(itype(l+1))
8453       else
8454         itl1=ntortyp+1
8455       endif
8456 #ifdef MOMENT
8457       s1=dip(4,jj,i)*dip(4,kk,k)
8458 #endif
8459       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8460       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8461       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8462       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8463       call transpose2(EE(1,1,itk),auxmat(1,1))
8464       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8465       vv(1)=pizda(1,1)+pizda(2,2)
8466       vv(2)=pizda(2,1)-pizda(1,2)
8467       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8468 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8469 cd     & "sum",-(s2+s3+s4)
8470 #ifdef MOMENT
8471       eello6_graph3=-(s1+s2+s3+s4)
8472 #else
8473       eello6_graph3=-(s2+s3+s4)
8474 #endif
8475 c      eello6_graph3=-s4
8476 C Derivatives in gamma(k-1)
8477       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8478       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8479       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8480       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8481 C Derivatives in gamma(l-1)
8482       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8483       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8484       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8485       vv(1)=pizda(1,1)+pizda(2,2)
8486       vv(2)=pizda(2,1)-pizda(1,2)
8487       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8488       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8489 C Cartesian derivatives.
8490       do iii=1,2
8491         do kkk=1,5
8492           do lll=1,3
8493 #ifdef MOMENT
8494             if (iii.eq.1) then
8495               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8496             else
8497               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8498             endif
8499 #endif
8500             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8501      &        auxvec(1))
8502             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8503             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8504      &        auxvec(1))
8505             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8506             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8507      &        pizda(1,1))
8508             vv(1)=pizda(1,1)+pizda(2,2)
8509             vv(2)=pizda(2,1)-pizda(1,2)
8510             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8511 #ifdef MOMENT
8512             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8513 #else
8514             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8515 #endif
8516             if (swap) then
8517               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8518             else
8519               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8520             endif
8521 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8522           enddo
8523         enddo
8524       enddo
8525       return
8526       end
8527 c----------------------------------------------------------------------------
8528       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8529       implicit real*8 (a-h,o-z)
8530       include 'DIMENSIONS'
8531       include 'COMMON.IOUNITS'
8532       include 'COMMON.CHAIN'
8533       include 'COMMON.DERIV'
8534       include 'COMMON.INTERACT'
8535       include 'COMMON.CONTACTS'
8536       include 'COMMON.TORSION'
8537       include 'COMMON.VAR'
8538       include 'COMMON.GEO'
8539       include 'COMMON.FFIELD'
8540       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8541      & auxvec1(2),auxmat1(2,2)
8542       logical swap
8543 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8544 C                                                                              C                       
8545 C      Parallel       Antiparallel                                             C
8546 C                                                                              C
8547 C          o             o                                                     C
8548 C         /l\   /   \   /j\                                                    C
8549 C        /   \ /     \ /   \                                                   C
8550 C       /| o |o       o| o |\                                                  C
8551 C     \ j|/k\|      \  |/k\|l                                                  C
8552 C      \ /   \       \ /   \                                                   C 
8553 C       o     \       o     \                                                  C
8554 C       i             i                                                        C
8555 C                                                                              C 
8556 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8557 C
8558 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8559 C           energy moment and not to the cluster cumulant.
8560 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8561       iti=itortyp(itype(i))
8562       itj=itortyp(itype(j))
8563       if (j.lt.nres-1) then
8564         itj1=itortyp(itype(j+1))
8565       else
8566         itj1=ntortyp+1
8567       endif
8568       itk=itortyp(itype(k))
8569       if (k.lt.nres-1) then
8570         itk1=itortyp(itype(k+1))
8571       else
8572         itk1=ntortyp+1
8573       endif
8574       itl=itortyp(itype(l))
8575       if (l.lt.nres-1) then
8576         itl1=itortyp(itype(l+1))
8577       else
8578         itl1=ntortyp+1
8579       endif
8580 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8581 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8582 cd     & ' itl',itl,' itl1',itl1
8583 #ifdef MOMENT
8584       if (imat.eq.1) then
8585         s1=dip(3,jj,i)*dip(3,kk,k)
8586       else
8587         s1=dip(2,jj,j)*dip(2,kk,l)
8588       endif
8589 #endif
8590       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8591       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8592       if (j.eq.l+1) then
8593         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8594         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8595       else
8596         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8597         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8598       endif
8599       call transpose2(EUg(1,1,k),auxmat(1,1))
8600       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8601       vv(1)=pizda(1,1)-pizda(2,2)
8602       vv(2)=pizda(2,1)+pizda(1,2)
8603       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8604 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8605 #ifdef MOMENT
8606       eello6_graph4=-(s1+s2+s3+s4)
8607 #else
8608       eello6_graph4=-(s2+s3+s4)
8609 #endif
8610 C Derivatives in gamma(i-1)
8611       if (i.gt.1) then
8612 #ifdef MOMENT
8613         if (imat.eq.1) then
8614           s1=dipderg(2,jj,i)*dip(3,kk,k)
8615         else
8616           s1=dipderg(4,jj,j)*dip(2,kk,l)
8617         endif
8618 #endif
8619         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8620         if (j.eq.l+1) then
8621           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8622           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8623         else
8624           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8625           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8626         endif
8627         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8628         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8629 cd          write (2,*) 'turn6 derivatives'
8630 #ifdef MOMENT
8631           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8632 #else
8633           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8634 #endif
8635         else
8636 #ifdef MOMENT
8637           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8638 #else
8639           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8640 #endif
8641         endif
8642       endif
8643 C Derivatives in gamma(k-1)
8644 #ifdef MOMENT
8645       if (imat.eq.1) then
8646         s1=dip(3,jj,i)*dipderg(2,kk,k)
8647       else
8648         s1=dip(2,jj,j)*dipderg(4,kk,l)
8649       endif
8650 #endif
8651       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8652       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8653       if (j.eq.l+1) then
8654         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8655         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8656       else
8657         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8658         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8659       endif
8660       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8661       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8662       vv(1)=pizda(1,1)-pizda(2,2)
8663       vv(2)=pizda(2,1)+pizda(1,2)
8664       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8665       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8666 #ifdef MOMENT
8667         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8668 #else
8669         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8670 #endif
8671       else
8672 #ifdef MOMENT
8673         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8674 #else
8675         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8676 #endif
8677       endif
8678 C Derivatives in gamma(j-1) or gamma(l-1)
8679       if (l.eq.j+1 .and. l.gt.1) then
8680         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8681         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8682         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8683         vv(1)=pizda(1,1)-pizda(2,2)
8684         vv(2)=pizda(2,1)+pizda(1,2)
8685         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8686         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8687       else if (j.gt.1) then
8688         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8689         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8690         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8691         vv(1)=pizda(1,1)-pizda(2,2)
8692         vv(2)=pizda(2,1)+pizda(1,2)
8693         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8694         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8695           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8696         else
8697           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8698         endif
8699       endif
8700 C Cartesian derivatives.
8701       do iii=1,2
8702         do kkk=1,5
8703           do lll=1,3
8704 #ifdef MOMENT
8705             if (iii.eq.1) then
8706               if (imat.eq.1) then
8707                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8708               else
8709                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8710               endif
8711             else
8712               if (imat.eq.1) then
8713                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8714               else
8715                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8716               endif
8717             endif
8718 #endif
8719             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8720      &        auxvec(1))
8721             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8722             if (j.eq.l+1) then
8723               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8724      &          b1(1,itj1),auxvec(1))
8725               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8726             else
8727               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8728      &          b1(1,itl1),auxvec(1))
8729               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8730             endif
8731             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8732      &        pizda(1,1))
8733             vv(1)=pizda(1,1)-pizda(2,2)
8734             vv(2)=pizda(2,1)+pizda(1,2)
8735             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8736             if (swap) then
8737               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8738 #ifdef MOMENT
8739                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8740      &             -(s1+s2+s4)
8741 #else
8742                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8743      &             -(s2+s4)
8744 #endif
8745                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8746               else
8747 #ifdef MOMENT
8748                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8749 #else
8750                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8751 #endif
8752                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8753               endif
8754             else
8755 #ifdef MOMENT
8756               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8757 #else
8758               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8759 #endif
8760               if (l.eq.j+1) then
8761                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8762               else 
8763                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8764               endif
8765             endif 
8766           enddo
8767         enddo
8768       enddo
8769       return
8770       end
8771 c----------------------------------------------------------------------------
8772       double precision function eello_turn6(i,jj,kk)
8773       implicit real*8 (a-h,o-z)
8774       include 'DIMENSIONS'
8775       include 'COMMON.IOUNITS'
8776       include 'COMMON.CHAIN'
8777       include 'COMMON.DERIV'
8778       include 'COMMON.INTERACT'
8779       include 'COMMON.CONTACTS'
8780       include 'COMMON.TORSION'
8781       include 'COMMON.VAR'
8782       include 'COMMON.GEO'
8783       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8784      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8785      &  ggg1(3),ggg2(3)
8786       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8787      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8788 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8789 C           the respective energy moment and not to the cluster cumulant.
8790       s1=0.0d0
8791       s8=0.0d0
8792       s13=0.0d0
8793 c
8794       eello_turn6=0.0d0
8795       j=i+4
8796       k=i+1
8797       l=i+3
8798       iti=itortyp(itype(i))
8799       itk=itortyp(itype(k))
8800       itk1=itortyp(itype(k+1))
8801       itl=itortyp(itype(l))
8802       itj=itortyp(itype(j))
8803 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8804 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8805 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8806 cd        eello6=0.0d0
8807 cd        return
8808 cd      endif
8809 cd      write (iout,*)
8810 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8811 cd     &   ' and',k,l
8812 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8813       do iii=1,2
8814         do kkk=1,5
8815           do lll=1,3
8816             derx_turn(lll,kkk,iii)=0.0d0
8817           enddo
8818         enddo
8819       enddo
8820 cd      eij=1.0d0
8821 cd      ekl=1.0d0
8822 cd      ekont=1.0d0
8823       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8824 cd      eello6_5=0.0d0
8825 cd      write (2,*) 'eello6_5',eello6_5
8826 #ifdef MOMENT
8827       call transpose2(AEA(1,1,1),auxmat(1,1))
8828       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8829       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8830       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8831 #endif
8832       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8833       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8834       s2 = scalar2(b1(1,itk),vtemp1(1))
8835 #ifdef MOMENT
8836       call transpose2(AEA(1,1,2),atemp(1,1))
8837       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8838       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8839       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8840 #endif
8841       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8842       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8843       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8844 #ifdef MOMENT
8845       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8846       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8847       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8848       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8849       ss13 = scalar2(b1(1,itk),vtemp4(1))
8850       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8851 #endif
8852 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8853 c      s1=0.0d0
8854 c      s2=0.0d0
8855 c      s8=0.0d0
8856 c      s12=0.0d0
8857 c      s13=0.0d0
8858       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8859 C Derivatives in gamma(i+2)
8860       s1d =0.0d0
8861       s8d =0.0d0
8862 #ifdef MOMENT
8863       call transpose2(AEA(1,1,1),auxmatd(1,1))
8864       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8865       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8866       call transpose2(AEAderg(1,1,2),atempd(1,1))
8867       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8868       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8869 #endif
8870       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8871       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8872       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8873 c      s1d=0.0d0
8874 c      s2d=0.0d0
8875 c      s8d=0.0d0
8876 c      s12d=0.0d0
8877 c      s13d=0.0d0
8878       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8879 C Derivatives in gamma(i+3)
8880 #ifdef MOMENT
8881       call transpose2(AEA(1,1,1),auxmatd(1,1))
8882       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8883       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8884       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8885 #endif
8886       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8887       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8888       s2d = scalar2(b1(1,itk),vtemp1d(1))
8889 #ifdef MOMENT
8890       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8891       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8892 #endif
8893       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8894 #ifdef MOMENT
8895       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8896       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8897       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8898 #endif
8899 c      s1d=0.0d0
8900 c      s2d=0.0d0
8901 c      s8d=0.0d0
8902 c      s12d=0.0d0
8903 c      s13d=0.0d0
8904 #ifdef MOMENT
8905       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8906      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8907 #else
8908       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8909      &               -0.5d0*ekont*(s2d+s12d)
8910 #endif
8911 C Derivatives in gamma(i+4)
8912       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8913       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8914       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8915 #ifdef MOMENT
8916       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8917       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8918       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8919 #endif
8920 c      s1d=0.0d0
8921 c      s2d=0.0d0
8922 c      s8d=0.0d0
8923 C      s12d=0.0d0
8924 c      s13d=0.0d0
8925 #ifdef MOMENT
8926       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8927 #else
8928       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8929 #endif
8930 C Derivatives in gamma(i+5)
8931 #ifdef MOMENT
8932       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8933       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8934       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8935 #endif
8936       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8937       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8938       s2d = scalar2(b1(1,itk),vtemp1d(1))
8939 #ifdef MOMENT
8940       call transpose2(AEA(1,1,2),atempd(1,1))
8941       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8942       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8943 #endif
8944       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8945       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8946 #ifdef MOMENT
8947       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8948       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8949       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8950 #endif
8951 c      s1d=0.0d0
8952 c      s2d=0.0d0
8953 c      s8d=0.0d0
8954 c      s12d=0.0d0
8955 c      s13d=0.0d0
8956 #ifdef MOMENT
8957       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8958      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8959 #else
8960       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8961      &               -0.5d0*ekont*(s2d+s12d)
8962 #endif
8963 C Cartesian derivatives
8964       do iii=1,2
8965         do kkk=1,5
8966           do lll=1,3
8967 #ifdef MOMENT
8968             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8969             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8970             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8971 #endif
8972             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8973             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8974      &          vtemp1d(1))
8975             s2d = scalar2(b1(1,itk),vtemp1d(1))
8976 #ifdef MOMENT
8977             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8978             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8979             s8d = -(atempd(1,1)+atempd(2,2))*
8980      &           scalar2(cc(1,1,itl),vtemp2(1))
8981 #endif
8982             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8983      &           auxmatd(1,1))
8984             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8985             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8986 c      s1d=0.0d0
8987 c      s2d=0.0d0
8988 c      s8d=0.0d0
8989 c      s12d=0.0d0
8990 c      s13d=0.0d0
8991 #ifdef MOMENT
8992             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8993      &        - 0.5d0*(s1d+s2d)
8994 #else
8995             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8996      &        - 0.5d0*s2d
8997 #endif
8998 #ifdef MOMENT
8999             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9000      &        - 0.5d0*(s8d+s12d)
9001 #else
9002             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9003      &        - 0.5d0*s12d
9004 #endif
9005           enddo
9006         enddo
9007       enddo
9008 #ifdef MOMENT
9009       do kkk=1,5
9010         do lll=1,3
9011           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9012      &      achuj_tempd(1,1))
9013           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9014           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9015           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9016           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9017           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9018      &      vtemp4d(1)) 
9019           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9020           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9021           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9022         enddo
9023       enddo
9024 #endif
9025 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9026 cd     &  16*eel_turn6_num
9027 cd      goto 1112
9028       if (j.lt.nres-1) then
9029         j1=j+1
9030         j2=j-1
9031       else
9032         j1=j-1
9033         j2=j-2
9034       endif
9035       if (l.lt.nres-1) then
9036         l1=l+1
9037         l2=l-1
9038       else
9039         l1=l-1
9040         l2=l-2
9041       endif
9042       do ll=1,3
9043 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9044 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9045 cgrad        ghalf=0.5d0*ggg1(ll)
9046 cd        ghalf=0.0d0
9047         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9048         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9049         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9050      &    +ekont*derx_turn(ll,2,1)
9051         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9052         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9053      &    +ekont*derx_turn(ll,4,1)
9054         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9055         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9056         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9057 cgrad        ghalf=0.5d0*ggg2(ll)
9058 cd        ghalf=0.0d0
9059         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9060      &    +ekont*derx_turn(ll,2,2)
9061         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9062         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9063      &    +ekont*derx_turn(ll,4,2)
9064         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9065         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9066         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9067       enddo
9068 cd      goto 1112
9069 cgrad      do m=i+1,j-1
9070 cgrad        do ll=1,3
9071 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9072 cgrad        enddo
9073 cgrad      enddo
9074 cgrad      do m=k+1,l-1
9075 cgrad        do ll=1,3
9076 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9077 cgrad        enddo
9078 cgrad      enddo
9079 cgrad1112  continue
9080 cgrad      do m=i+2,j2
9081 cgrad        do ll=1,3
9082 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9083 cgrad        enddo
9084 cgrad      enddo
9085 cgrad      do m=k+2,l2
9086 cgrad        do ll=1,3
9087 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9088 cgrad        enddo
9089 cgrad      enddo 
9090 cd      do iii=1,nres-3
9091 cd        write (2,*) iii,g_corr6_loc(iii)
9092 cd      enddo
9093       eello_turn6=ekont*eel_turn6
9094 cd      write (2,*) 'ekont',ekont
9095 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9096       return
9097       end
9098
9099 C-----------------------------------------------------------------------------
9100       double precision function scalar(u,v)
9101 !DIR$ INLINEALWAYS scalar
9102 #ifndef OSF
9103 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9104 #endif
9105       implicit none
9106       double precision u(3),v(3)
9107 cd      double precision sc
9108 cd      integer i
9109 cd      sc=0.0d0
9110 cd      do i=1,3
9111 cd        sc=sc+u(i)*v(i)
9112 cd      enddo
9113 cd      scalar=sc
9114
9115       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9116       return
9117       end
9118 crc-------------------------------------------------
9119       SUBROUTINE MATVEC2(A1,V1,V2)
9120 !DIR$ INLINEALWAYS MATVEC2
9121 #ifndef OSF
9122 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9123 #endif
9124       implicit real*8 (a-h,o-z)
9125       include 'DIMENSIONS'
9126       DIMENSION A1(2,2),V1(2),V2(2)
9127 c      DO 1 I=1,2
9128 c        VI=0.0
9129 c        DO 3 K=1,2
9130 c    3     VI=VI+A1(I,K)*V1(K)
9131 c        Vaux(I)=VI
9132 c    1 CONTINUE
9133
9134       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9135       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9136
9137       v2(1)=vaux1
9138       v2(2)=vaux2
9139       END
9140 C---------------------------------------
9141       SUBROUTINE MATMAT2(A1,A2,A3)
9142 #ifndef OSF
9143 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9144 #endif
9145       implicit real*8 (a-h,o-z)
9146       include 'DIMENSIONS'
9147       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9148 c      DIMENSION AI3(2,2)
9149 c        DO  J=1,2
9150 c          A3IJ=0.0
9151 c          DO K=1,2
9152 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9153 c          enddo
9154 c          A3(I,J)=A3IJ
9155 c       enddo
9156 c      enddo
9157
9158       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9159       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9160       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9161       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9162
9163       A3(1,1)=AI3_11
9164       A3(2,1)=AI3_21
9165       A3(1,2)=AI3_12
9166       A3(2,2)=AI3_22
9167       END
9168
9169 c-------------------------------------------------------------------------
9170       double precision function scalar2(u,v)
9171 !DIR$ INLINEALWAYS scalar2
9172       implicit none
9173       double precision u(2),v(2)
9174       double precision sc
9175       integer i
9176       scalar2=u(1)*v(1)+u(2)*v(2)
9177       return
9178       end
9179
9180 C-----------------------------------------------------------------------------
9181
9182       subroutine transpose2(a,at)
9183 !DIR$ INLINEALWAYS transpose2
9184 #ifndef OSF
9185 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9186 #endif
9187       implicit none
9188       double precision a(2,2),at(2,2)
9189       at(1,1)=a(1,1)
9190       at(1,2)=a(2,1)
9191       at(2,1)=a(1,2)
9192       at(2,2)=a(2,2)
9193       return
9194       end
9195 c--------------------------------------------------------------------------
9196       subroutine transpose(n,a,at)
9197       implicit none
9198       integer n,i,j
9199       double precision a(n,n),at(n,n)
9200       do i=1,n
9201         do j=1,n
9202           at(j,i)=a(i,j)
9203         enddo
9204       enddo
9205       return
9206       end
9207 C---------------------------------------------------------------------------
9208       subroutine prodmat3(a1,a2,kk,transp,prod)
9209 !DIR$ INLINEALWAYS prodmat3
9210 #ifndef OSF
9211 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9212 #endif
9213       implicit none
9214       integer i,j
9215       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9216       logical transp
9217 crc      double precision auxmat(2,2),prod_(2,2)
9218
9219       if (transp) then
9220 crc        call transpose2(kk(1,1),auxmat(1,1))
9221 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9222 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9223         
9224            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9225      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9226            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9227      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9228            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9229      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9230            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9231      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9232
9233       else
9234 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9235 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9236
9237            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9238      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9239            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9240      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9241            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9242      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9243            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9244      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9245
9246       endif
9247 c      call transpose2(a2(1,1),a2t(1,1))
9248
9249 crc      print *,transp
9250 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9251 crc      print *,((prod(i,j),i=1,2),j=1,2)
9252
9253       return
9254       end
9255