By Adam
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=itype(j)
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026         dxi=dc(1,i)
3027         dyi=dc(2,i)
3028         dzi=dc(3,i)
3029         dx_normi=dc_norm(1,i)
3030         dy_normi=dc_norm(2,i)
3031         dz_normi=dc_norm(3,i)
3032         xmedi=c(1,i)+0.5d0*dxi
3033         ymedi=c(2,i)+0.5d0*dyi
3034         zmedi=c(3,i)+0.5d0*dzi
3035         num_conti=0
3036         call eelecij(i,i+2,ees,evdw1,eel_loc)
3037         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3038         num_cont_hb(i)=num_conti
3039       enddo
3040       do i=iturn4_start,iturn4_end
3041         dxi=dc(1,i)
3042         dyi=dc(2,i)
3043         dzi=dc(3,i)
3044         dx_normi=dc_norm(1,i)
3045         dy_normi=dc_norm(2,i)
3046         dz_normi=dc_norm(3,i)
3047         xmedi=c(1,i)+0.5d0*dxi
3048         ymedi=c(2,i)+0.5d0*dyi
3049         zmedi=c(3,i)+0.5d0*dzi
3050         num_conti=num_cont_hb(i)
3051         call eelecij(i,i+3,ees,evdw1,eel_loc)
3052         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3053         num_cont_hb(i)=num_conti
3054       enddo   ! i
3055 c
3056 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3057 c
3058       do i=iatel_s,iatel_e
3059         dxi=dc(1,i)
3060         dyi=dc(2,i)
3061         dzi=dc(3,i)
3062         dx_normi=dc_norm(1,i)
3063         dy_normi=dc_norm(2,i)
3064         dz_normi=dc_norm(3,i)
3065         xmedi=c(1,i)+0.5d0*dxi
3066         ymedi=c(2,i)+0.5d0*dyi
3067         zmedi=c(3,i)+0.5d0*dzi
3068 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3069         num_conti=num_cont_hb(i)
3070         do j=ielstart(i),ielend(i)
3071           call eelecij(i,j,ees,evdw1,eel_loc)
3072         enddo ! j
3073         num_cont_hb(i)=num_conti
3074       enddo   ! i
3075 c      write (iout,*) "Number of loop steps in EELEC:",ind
3076 cd      do i=1,nres
3077 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3078 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3079 cd      enddo
3080 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3081 ccc      eel_loc=eel_loc+eello_turn3
3082 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3083       return
3084       end
3085 C-------------------------------------------------------------------------------
3086       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3087       implicit real*8 (a-h,o-z)
3088       include 'DIMENSIONS'
3089 #ifdef MPI
3090       include "mpif.h"
3091 #endif
3092       include 'COMMON.CONTROL'
3093       include 'COMMON.IOUNITS'
3094       include 'COMMON.GEO'
3095       include 'COMMON.VAR'
3096       include 'COMMON.LOCAL'
3097       include 'COMMON.CHAIN'
3098       include 'COMMON.DERIV'
3099       include 'COMMON.INTERACT'
3100       include 'COMMON.CONTACTS'
3101       include 'COMMON.TORSION'
3102       include 'COMMON.VECTORS'
3103       include 'COMMON.FFIELD'
3104       include 'COMMON.TIME1'
3105       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3106      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3107       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3108      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3109       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3110      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3111      &    num_conti,j1,j2
3112 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3113 #ifdef MOMENT
3114       double precision scal_el /1.0d0/
3115 #else
3116       double precision scal_el /0.5d0/
3117 #endif
3118 C 12/13/98 
3119 C 13-go grudnia roku pamietnego... 
3120       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3121      &                   0.0d0,1.0d0,0.0d0,
3122      &                   0.0d0,0.0d0,1.0d0/
3123 c          time00=MPI_Wtime()
3124 cd      write (iout,*) "eelecij",i,j
3125 c          ind=ind+1
3126           iteli=itel(i)
3127           itelj=itel(j)
3128           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3129           aaa=app(iteli,itelj)
3130           bbb=bpp(iteli,itelj)
3131           ael6i=ael6(iteli,itelj)
3132           ael3i=ael3(iteli,itelj) 
3133           dxj=dc(1,j)
3134           dyj=dc(2,j)
3135           dzj=dc(3,j)
3136           dx_normj=dc_norm(1,j)
3137           dy_normj=dc_norm(2,j)
3138           dz_normj=dc_norm(3,j)
3139           xj=c(1,j)+0.5D0*dxj-xmedi
3140           yj=c(2,j)+0.5D0*dyj-ymedi
3141           zj=c(3,j)+0.5D0*dzj-zmedi
3142           rij=xj*xj+yj*yj+zj*zj
3143           rrmij=1.0D0/rij
3144           rij=dsqrt(rij)
3145           rmij=1.0D0/rij
3146           r3ij=rrmij*rmij
3147           r6ij=r3ij*r3ij  
3148           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3149           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3150           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3151           fac=cosa-3.0D0*cosb*cosg
3152           ev1=aaa*r6ij*r6ij
3153 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3154           if (j.eq.i+2) ev1=scal_el*ev1
3155           ev2=bbb*r6ij
3156           fac3=ael6i*r6ij
3157           fac4=ael3i*r3ij
3158           evdwij=ev1+ev2
3159           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3160           el2=fac4*fac       
3161           eesij=el1+el2
3162 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3163           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3164           ees=ees+eesij
3165           evdw1=evdw1+evdwij
3166 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3167 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3168 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3169 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3170
3171           if (energy_dec) then 
3172               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3173               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3174           endif
3175
3176 C
3177 C Calculate contributions to the Cartesian gradient.
3178 C
3179 #ifdef SPLITELE
3180           facvdw=-6*rrmij*(ev1+evdwij)
3181           facel=-3*rrmij*(el1+eesij)
3182           fac1=fac
3183           erij(1)=xj*rmij
3184           erij(2)=yj*rmij
3185           erij(3)=zj*rmij
3186 *
3187 * Radial derivatives. First process both termini of the fragment (i,j)
3188 *
3189           ggg(1)=facel*xj
3190           ggg(2)=facel*yj
3191           ggg(3)=facel*zj
3192 c          do k=1,3
3193 c            ghalf=0.5D0*ggg(k)
3194 c            gelc(k,i)=gelc(k,i)+ghalf
3195 c            gelc(k,j)=gelc(k,j)+ghalf
3196 c          enddo
3197 c 9/28/08 AL Gradient compotents will be summed only at the end
3198           do k=1,3
3199             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3200             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3201           enddo
3202 *
3203 * Loop over residues i+1 thru j-1.
3204 *
3205 cgrad          do k=i+1,j-1
3206 cgrad            do l=1,3
3207 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3208 cgrad            enddo
3209 cgrad          enddo
3210           ggg(1)=facvdw*xj
3211           ggg(2)=facvdw*yj
3212           ggg(3)=facvdw*zj
3213 c          do k=1,3
3214 c            ghalf=0.5D0*ggg(k)
3215 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3216 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3217 c          enddo
3218 c 9/28/08 AL Gradient compotents will be summed only at the end
3219           do k=1,3
3220             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3221             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3222           enddo
3223 *
3224 * Loop over residues i+1 thru j-1.
3225 *
3226 cgrad          do k=i+1,j-1
3227 cgrad            do l=1,3
3228 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3229 cgrad            enddo
3230 cgrad          enddo
3231 #else
3232           facvdw=ev1+evdwij 
3233           facel=el1+eesij  
3234           fac1=fac
3235           fac=-3*rrmij*(facvdw+facvdw+facel)
3236           erij(1)=xj*rmij
3237           erij(2)=yj*rmij
3238           erij(3)=zj*rmij
3239 *
3240 * Radial derivatives. First process both termini of the fragment (i,j)
3241
3242           ggg(1)=fac*xj
3243           ggg(2)=fac*yj
3244           ggg(3)=fac*zj
3245 c          do k=1,3
3246 c            ghalf=0.5D0*ggg(k)
3247 c            gelc(k,i)=gelc(k,i)+ghalf
3248 c            gelc(k,j)=gelc(k,j)+ghalf
3249 c          enddo
3250 c 9/28/08 AL Gradient compotents will be summed only at the end
3251           do k=1,3
3252             gelc_long(k,j)=gelc(k,j)+ggg(k)
3253             gelc_long(k,i)=gelc(k,i)-ggg(k)
3254           enddo
3255 *
3256 * Loop over residues i+1 thru j-1.
3257 *
3258 cgrad          do k=i+1,j-1
3259 cgrad            do l=1,3
3260 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3261 cgrad            enddo
3262 cgrad          enddo
3263 c 9/28/08 AL Gradient compotents will be summed only at the end
3264           ggg(1)=facvdw*xj
3265           ggg(2)=facvdw*yj
3266           ggg(3)=facvdw*zj
3267           do k=1,3
3268             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3269             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3270           enddo
3271 #endif
3272 *
3273 * Angular part
3274 *          
3275           ecosa=2.0D0*fac3*fac1+fac4
3276           fac4=-3.0D0*fac4
3277           fac3=-6.0D0*fac3
3278           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3279           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3280           do k=1,3
3281             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3282             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3283           enddo
3284 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3285 cd   &          (dcosg(k),k=1,3)
3286           do k=1,3
3287             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3288           enddo
3289 c          do k=1,3
3290 c            ghalf=0.5D0*ggg(k)
3291 c            gelc(k,i)=gelc(k,i)+ghalf
3292 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3293 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3294 c            gelc(k,j)=gelc(k,j)+ghalf
3295 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3296 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3297 c          enddo
3298 cgrad          do k=i+1,j-1
3299 cgrad            do l=1,3
3300 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3301 cgrad            enddo
3302 cgrad          enddo
3303           do k=1,3
3304             gelc(k,i)=gelc(k,i)
3305      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3306      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3307             gelc(k,j)=gelc(k,j)
3308      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3309      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3310             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3311             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3312           enddo
3313           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3314      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3315      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3316 C
3317 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3318 C   energy of a peptide unit is assumed in the form of a second-order 
3319 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3320 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3321 C   are computed for EVERY pair of non-contiguous peptide groups.
3322 C
3323           if (j.lt.nres-1) then
3324             j1=j+1
3325             j2=j-1
3326           else
3327             j1=j-1
3328             j2=j-2
3329           endif
3330           kkk=0
3331           do k=1,2
3332             do l=1,2
3333               kkk=kkk+1
3334               muij(kkk)=mu(k,i)*mu(l,j)
3335             enddo
3336           enddo  
3337 cd         write (iout,*) 'EELEC: i',i,' j',j
3338 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3339 cd          write(iout,*) 'muij',muij
3340           ury=scalar(uy(1,i),erij)
3341           urz=scalar(uz(1,i),erij)
3342           vry=scalar(uy(1,j),erij)
3343           vrz=scalar(uz(1,j),erij)
3344           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3345           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3346           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3347           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3348           fac=dsqrt(-ael6i)*r3ij
3349           a22=a22*fac
3350           a23=a23*fac
3351           a32=a32*fac
3352           a33=a33*fac
3353 cd          write (iout,'(4i5,4f10.5)')
3354 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3355 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3356 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3357 cd     &      uy(:,j),uz(:,j)
3358 cd          write (iout,'(4f10.5)') 
3359 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3360 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3361 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3362 cd           write (iout,'(9f10.5/)') 
3363 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3364 C Derivatives of the elements of A in virtual-bond vectors
3365           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3366           do k=1,3
3367             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3368             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3369             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3370             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3371             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3372             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3373             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3374             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3375             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3376             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3377             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3378             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3379           enddo
3380 C Compute radial contributions to the gradient
3381           facr=-3.0d0*rrmij
3382           a22der=a22*facr
3383           a23der=a23*facr
3384           a32der=a32*facr
3385           a33der=a33*facr
3386           agg(1,1)=a22der*xj
3387           agg(2,1)=a22der*yj
3388           agg(3,1)=a22der*zj
3389           agg(1,2)=a23der*xj
3390           agg(2,2)=a23der*yj
3391           agg(3,2)=a23der*zj
3392           agg(1,3)=a32der*xj
3393           agg(2,3)=a32der*yj
3394           agg(3,3)=a32der*zj
3395           agg(1,4)=a33der*xj
3396           agg(2,4)=a33der*yj
3397           agg(3,4)=a33der*zj
3398 C Add the contributions coming from er
3399           fac3=-3.0d0*fac
3400           do k=1,3
3401             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3402             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3403             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3404             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3405           enddo
3406           do k=1,3
3407 C Derivatives in DC(i) 
3408 cgrad            ghalf1=0.5d0*agg(k,1)
3409 cgrad            ghalf2=0.5d0*agg(k,2)
3410 cgrad            ghalf3=0.5d0*agg(k,3)
3411 cgrad            ghalf4=0.5d0*agg(k,4)
3412             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3413      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3414             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3415      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3416             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3417      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3418             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3419      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3420 C Derivatives in DC(i+1)
3421             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3422      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3423             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3424      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3425             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3426      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3427             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3428      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3429 C Derivatives in DC(j)
3430             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3431      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3432             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3433      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3434             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3435      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3436             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3437      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3438 C Derivatives in DC(j+1) or DC(nres-1)
3439             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3440      &      -3.0d0*vryg(k,3)*ury)
3441             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3442      &      -3.0d0*vrzg(k,3)*ury)
3443             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3444      &      -3.0d0*vryg(k,3)*urz)
3445             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3446      &      -3.0d0*vrzg(k,3)*urz)
3447 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3448 cgrad              do l=1,4
3449 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3450 cgrad              enddo
3451 cgrad            endif
3452           enddo
3453           acipa(1,1)=a22
3454           acipa(1,2)=a23
3455           acipa(2,1)=a32
3456           acipa(2,2)=a33
3457           a22=-a22
3458           a23=-a23
3459           do l=1,2
3460             do k=1,3
3461               agg(k,l)=-agg(k,l)
3462               aggi(k,l)=-aggi(k,l)
3463               aggi1(k,l)=-aggi1(k,l)
3464               aggj(k,l)=-aggj(k,l)
3465               aggj1(k,l)=-aggj1(k,l)
3466             enddo
3467           enddo
3468           if (j.lt.nres-1) then
3469             a22=-a22
3470             a32=-a32
3471             do l=1,3,2
3472               do k=1,3
3473                 agg(k,l)=-agg(k,l)
3474                 aggi(k,l)=-aggi(k,l)
3475                 aggi1(k,l)=-aggi1(k,l)
3476                 aggj(k,l)=-aggj(k,l)
3477                 aggj1(k,l)=-aggj1(k,l)
3478               enddo
3479             enddo
3480           else
3481             a22=-a22
3482             a23=-a23
3483             a32=-a32
3484             a33=-a33
3485             do l=1,4
3486               do k=1,3
3487                 agg(k,l)=-agg(k,l)
3488                 aggi(k,l)=-aggi(k,l)
3489                 aggi1(k,l)=-aggi1(k,l)
3490                 aggj(k,l)=-aggj(k,l)
3491                 aggj1(k,l)=-aggj1(k,l)
3492               enddo
3493             enddo 
3494           endif    
3495           ENDIF ! WCORR
3496           IF (wel_loc.gt.0.0d0) THEN
3497 C Contribution to the local-electrostatic energy coming from the i-j pair
3498           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3499      &     +a33*muij(4)
3500 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3501
3502           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3503      &            'eelloc',i,j,eel_loc_ij
3504
3505           eel_loc=eel_loc+eel_loc_ij
3506 C Partial derivatives in virtual-bond dihedral angles gamma
3507           if (i.gt.1)
3508      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3509      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3510      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3511           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3512      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3513      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3514 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3515           do l=1,3
3516             ggg(l)=agg(l,1)*muij(1)+
3517      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3518             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3519             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3520 cgrad            ghalf=0.5d0*ggg(l)
3521 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3522 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3523           enddo
3524 cgrad          do k=i+1,j2
3525 cgrad            do l=1,3
3526 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3527 cgrad            enddo
3528 cgrad          enddo
3529 C Remaining derivatives of eello
3530           do l=1,3
3531             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3532      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3533             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3534      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3535             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3536      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3537             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3538      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3539           enddo
3540           ENDIF
3541 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3542 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3543           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3544      &       .and. num_conti.le.maxconts) then
3545 c            write (iout,*) i,j," entered corr"
3546 C
3547 C Calculate the contact function. The ith column of the array JCONT will 
3548 C contain the numbers of atoms that make contacts with the atom I (of numbers
3549 C greater than I). The arrays FACONT and GACONT will contain the values of
3550 C the contact function and its derivative.
3551 c           r0ij=1.02D0*rpp(iteli,itelj)
3552 c           r0ij=1.11D0*rpp(iteli,itelj)
3553             r0ij=2.20D0*rpp(iteli,itelj)
3554 c           r0ij=1.55D0*rpp(iteli,itelj)
3555             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3556             if (fcont.gt.0.0D0) then
3557               num_conti=num_conti+1
3558               if (num_conti.gt.maxconts) then
3559                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3560      &                         ' will skip next contacts for this conf.'
3561               else
3562                 jcont_hb(num_conti,i)=j
3563 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3564 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3565                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3566      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3567 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3568 C  terms.
3569                 d_cont(num_conti,i)=rij
3570 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3571 C     --- Electrostatic-interaction matrix --- 
3572                 a_chuj(1,1,num_conti,i)=a22
3573                 a_chuj(1,2,num_conti,i)=a23
3574                 a_chuj(2,1,num_conti,i)=a32
3575                 a_chuj(2,2,num_conti,i)=a33
3576 C     --- Gradient of rij
3577                 do kkk=1,3
3578                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3579                 enddo
3580                 kkll=0
3581                 do k=1,2
3582                   do l=1,2
3583                     kkll=kkll+1
3584                     do m=1,3
3585                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3586                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3587                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3588                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3589                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3590                     enddo
3591                   enddo
3592                 enddo
3593                 ENDIF
3594                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3595 C Calculate contact energies
3596                 cosa4=4.0D0*cosa
3597                 wij=cosa-3.0D0*cosb*cosg
3598                 cosbg1=cosb+cosg
3599                 cosbg2=cosb-cosg
3600 c               fac3=dsqrt(-ael6i)/r0ij**3     
3601                 fac3=dsqrt(-ael6i)*r3ij
3602 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3603                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3604                 if (ees0tmp.gt.0) then
3605                   ees0pij=dsqrt(ees0tmp)
3606                 else
3607                   ees0pij=0
3608                 endif
3609 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3610                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3611                 if (ees0tmp.gt.0) then
3612                   ees0mij=dsqrt(ees0tmp)
3613                 else
3614                   ees0mij=0
3615                 endif
3616 c               ees0mij=0.0D0
3617                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3618                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3619 C Diagnostics. Comment out or remove after debugging!
3620 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3621 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3622 c               ees0m(num_conti,i)=0.0D0
3623 C End diagnostics.
3624 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3625 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3626 C Angular derivatives of the contact function
3627                 ees0pij1=fac3/ees0pij 
3628                 ees0mij1=fac3/ees0mij
3629                 fac3p=-3.0D0*fac3*rrmij
3630                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3631                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3632 c               ees0mij1=0.0D0
3633                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3634                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3635                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3636                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3637                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3638                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3639                 ecosap=ecosa1+ecosa2
3640                 ecosbp=ecosb1+ecosb2
3641                 ecosgp=ecosg1+ecosg2
3642                 ecosam=ecosa1-ecosa2
3643                 ecosbm=ecosb1-ecosb2
3644                 ecosgm=ecosg1-ecosg2
3645 C Diagnostics
3646 c               ecosap=ecosa1
3647 c               ecosbp=ecosb1
3648 c               ecosgp=ecosg1
3649 c               ecosam=0.0D0
3650 c               ecosbm=0.0D0
3651 c               ecosgm=0.0D0
3652 C End diagnostics
3653                 facont_hb(num_conti,i)=fcont
3654                 fprimcont=fprimcont/rij
3655 cd              facont_hb(num_conti,i)=1.0D0
3656 C Following line is for diagnostics.
3657 cd              fprimcont=0.0D0
3658                 do k=1,3
3659                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3660                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3661                 enddo
3662                 do k=1,3
3663                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3664                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3665                 enddo
3666                 gggp(1)=gggp(1)+ees0pijp*xj
3667                 gggp(2)=gggp(2)+ees0pijp*yj
3668                 gggp(3)=gggp(3)+ees0pijp*zj
3669                 gggm(1)=gggm(1)+ees0mijp*xj
3670                 gggm(2)=gggm(2)+ees0mijp*yj
3671                 gggm(3)=gggm(3)+ees0mijp*zj
3672 C Derivatives due to the contact function
3673                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3674                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3675                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3676                 do k=1,3
3677 c
3678 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3679 c          following the change of gradient-summation algorithm.
3680 c
3681 cgrad                  ghalfp=0.5D0*gggp(k)
3682 cgrad                  ghalfm=0.5D0*gggm(k)
3683                   gacontp_hb1(k,num_conti,i)=!ghalfp
3684      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3685      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3686                   gacontp_hb2(k,num_conti,i)=!ghalfp
3687      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3688      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3689                   gacontp_hb3(k,num_conti,i)=gggp(k)
3690                   gacontm_hb1(k,num_conti,i)=!ghalfm
3691      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3692      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3693                   gacontm_hb2(k,num_conti,i)=!ghalfm
3694      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3695      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3696                   gacontm_hb3(k,num_conti,i)=gggm(k)
3697                 enddo
3698 C Diagnostics. Comment out or remove after debugging!
3699 cdiag           do k=1,3
3700 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3701 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3702 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3703 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3704 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3705 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3706 cdiag           enddo
3707               ENDIF ! wcorr
3708               endif  ! num_conti.le.maxconts
3709             endif  ! fcont.gt.0
3710           endif    ! j.gt.i+1
3711           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3712             do k=1,4
3713               do l=1,3
3714                 ghalf=0.5d0*agg(l,k)
3715                 aggi(l,k)=aggi(l,k)+ghalf
3716                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3717                 aggj(l,k)=aggj(l,k)+ghalf
3718               enddo
3719             enddo
3720             if (j.eq.nres-1 .and. i.lt.j-2) then
3721               do k=1,4
3722                 do l=1,3
3723                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3724                 enddo
3725               enddo
3726             endif
3727           endif
3728 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3729       return
3730       end
3731 C-----------------------------------------------------------------------------
3732       subroutine eturn3(i,eello_turn3)
3733 C Third- and fourth-order contributions from turns
3734       implicit real*8 (a-h,o-z)
3735       include 'DIMENSIONS'
3736       include 'COMMON.IOUNITS'
3737       include 'COMMON.GEO'
3738       include 'COMMON.VAR'
3739       include 'COMMON.LOCAL'
3740       include 'COMMON.CHAIN'
3741       include 'COMMON.DERIV'
3742       include 'COMMON.INTERACT'
3743       include 'COMMON.CONTACTS'
3744       include 'COMMON.TORSION'
3745       include 'COMMON.VECTORS'
3746       include 'COMMON.FFIELD'
3747       include 'COMMON.CONTROL'
3748       dimension ggg(3)
3749       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3750      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3751      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3752       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3753      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3754       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3755      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3756      &    num_conti,j1,j2
3757       j=i+2
3758 c      write (iout,*) "eturn3",i,j,j1,j2
3759       a_temp(1,1)=a22
3760       a_temp(1,2)=a23
3761       a_temp(2,1)=a32
3762       a_temp(2,2)=a33
3763 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3764 C
3765 C               Third-order contributions
3766 C        
3767 C                 (i+2)o----(i+3)
3768 C                      | |
3769 C                      | |
3770 C                 (i+1)o----i
3771 C
3772 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3773 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3774         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3775         call transpose2(auxmat(1,1),auxmat1(1,1))
3776         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3777         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3778         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3779      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3780 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3781 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3782 cd     &    ' eello_turn3_num',4*eello_turn3_num
3783 C Derivatives in gamma(i)
3784         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3785         call transpose2(auxmat2(1,1),auxmat3(1,1))
3786         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3787         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3788 C Derivatives in gamma(i+1)
3789         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3790         call transpose2(auxmat2(1,1),auxmat3(1,1))
3791         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3792         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3793      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3794 C Cartesian derivatives
3795         do l=1,3
3796 c            ghalf1=0.5d0*agg(l,1)
3797 c            ghalf2=0.5d0*agg(l,2)
3798 c            ghalf3=0.5d0*agg(l,3)
3799 c            ghalf4=0.5d0*agg(l,4)
3800           a_temp(1,1)=aggi(l,1)!+ghalf1
3801           a_temp(1,2)=aggi(l,2)!+ghalf2
3802           a_temp(2,1)=aggi(l,3)!+ghalf3
3803           a_temp(2,2)=aggi(l,4)!+ghalf4
3804           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3805           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3806      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3807           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3808           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3809           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3810           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3811           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3812           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3813      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3814           a_temp(1,1)=aggj(l,1)!+ghalf1
3815           a_temp(1,2)=aggj(l,2)!+ghalf2
3816           a_temp(2,1)=aggj(l,3)!+ghalf3
3817           a_temp(2,2)=aggj(l,4)!+ghalf4
3818           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3819           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3820      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3821           a_temp(1,1)=aggj1(l,1)
3822           a_temp(1,2)=aggj1(l,2)
3823           a_temp(2,1)=aggj1(l,3)
3824           a_temp(2,2)=aggj1(l,4)
3825           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3826           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3827      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3828         enddo
3829       return
3830       end
3831 C-------------------------------------------------------------------------------
3832       subroutine eturn4(i,eello_turn4)
3833 C Third- and fourth-order contributions from turns
3834       implicit real*8 (a-h,o-z)
3835       include 'DIMENSIONS'
3836       include 'COMMON.IOUNITS'
3837       include 'COMMON.GEO'
3838       include 'COMMON.VAR'
3839       include 'COMMON.LOCAL'
3840       include 'COMMON.CHAIN'
3841       include 'COMMON.DERIV'
3842       include 'COMMON.INTERACT'
3843       include 'COMMON.CONTACTS'
3844       include 'COMMON.TORSION'
3845       include 'COMMON.VECTORS'
3846       include 'COMMON.FFIELD'
3847       include 'COMMON.CONTROL'
3848       dimension ggg(3)
3849       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3850      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3851      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3852       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3853      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3854       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3855      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3856      &    num_conti,j1,j2
3857       j=i+3
3858 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3859 C
3860 C               Fourth-order contributions
3861 C        
3862 C                 (i+3)o----(i+4)
3863 C                     /  |
3864 C               (i+2)o   |
3865 C                     \  |
3866 C                 (i+1)o----i
3867 C
3868 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3869 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3870 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3871         a_temp(1,1)=a22
3872         a_temp(1,2)=a23
3873         a_temp(2,1)=a32
3874         a_temp(2,2)=a33
3875         iti1=itortyp(itype(i+1))
3876         iti2=itortyp(itype(i+2))
3877         iti3=itortyp(itype(i+3))
3878 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3879         call transpose2(EUg(1,1,i+1),e1t(1,1))
3880         call transpose2(Eug(1,1,i+2),e2t(1,1))
3881         call transpose2(Eug(1,1,i+3),e3t(1,1))
3882         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3883         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3884         s1=scalar2(b1(1,iti2),auxvec(1))
3885         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3886         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3887         s2=scalar2(b1(1,iti1),auxvec(1))
3888         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3889         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3890         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3891         eello_turn4=eello_turn4-(s1+s2+s3)
3892         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3893      &      'eturn4',i,j,-(s1+s2+s3)
3894 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3895 cd     &    ' eello_turn4_num',8*eello_turn4_num
3896 C Derivatives in gamma(i)
3897         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3898         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3899         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3900         s1=scalar2(b1(1,iti2),auxvec(1))
3901         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3902         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3904 C Derivatives in gamma(i+1)
3905         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3906         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3907         s2=scalar2(b1(1,iti1),auxvec(1))
3908         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3909         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3910         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3911         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3912 C Derivatives in gamma(i+2)
3913         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3914         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3915         s1=scalar2(b1(1,iti2),auxvec(1))
3916         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3917         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3920         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3923 C Cartesian derivatives
3924 C Derivatives of this turn contributions in DC(i+2)
3925         if (j.lt.nres-1) then
3926           do l=1,3
3927             a_temp(1,1)=agg(l,1)
3928             a_temp(1,2)=agg(l,2)
3929             a_temp(2,1)=agg(l,3)
3930             a_temp(2,2)=agg(l,4)
3931             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3932             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3933             s1=scalar2(b1(1,iti2),auxvec(1))
3934             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3935             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3936             s2=scalar2(b1(1,iti1),auxvec(1))
3937             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3938             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3939             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3940             ggg(l)=-(s1+s2+s3)
3941             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3942           enddo
3943         endif
3944 C Remaining derivatives of this turn contribution
3945         do l=1,3
3946           a_temp(1,1)=aggi(l,1)
3947           a_temp(1,2)=aggi(l,2)
3948           a_temp(2,1)=aggi(l,3)
3949           a_temp(2,2)=aggi(l,4)
3950           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3951           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3952           s1=scalar2(b1(1,iti2),auxvec(1))
3953           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3954           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3955           s2=scalar2(b1(1,iti1),auxvec(1))
3956           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3957           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3958           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3959           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3960           a_temp(1,1)=aggi1(l,1)
3961           a_temp(1,2)=aggi1(l,2)
3962           a_temp(2,1)=aggi1(l,3)
3963           a_temp(2,2)=aggi1(l,4)
3964           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3965           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3966           s1=scalar2(b1(1,iti2),auxvec(1))
3967           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3968           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3969           s2=scalar2(b1(1,iti1),auxvec(1))
3970           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3971           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3972           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3973           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3974           a_temp(1,1)=aggj(l,1)
3975           a_temp(1,2)=aggj(l,2)
3976           a_temp(2,1)=aggj(l,3)
3977           a_temp(2,2)=aggj(l,4)
3978           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3979           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3980           s1=scalar2(b1(1,iti2),auxvec(1))
3981           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3982           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3983           s2=scalar2(b1(1,iti1),auxvec(1))
3984           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3985           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3986           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3987           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3988           a_temp(1,1)=aggj1(l,1)
3989           a_temp(1,2)=aggj1(l,2)
3990           a_temp(2,1)=aggj1(l,3)
3991           a_temp(2,2)=aggj1(l,4)
3992           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3993           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3994           s1=scalar2(b1(1,iti2),auxvec(1))
3995           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3996           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3997           s2=scalar2(b1(1,iti1),auxvec(1))
3998           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3999           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4000           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4001 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4002           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4003         enddo
4004       return
4005       end
4006 C-----------------------------------------------------------------------------
4007       subroutine vecpr(u,v,w)
4008       implicit real*8(a-h,o-z)
4009       dimension u(3),v(3),w(3)
4010       w(1)=u(2)*v(3)-u(3)*v(2)
4011       w(2)=-u(1)*v(3)+u(3)*v(1)
4012       w(3)=u(1)*v(2)-u(2)*v(1)
4013       return
4014       end
4015 C-----------------------------------------------------------------------------
4016       subroutine unormderiv(u,ugrad,unorm,ungrad)
4017 C This subroutine computes the derivatives of a normalized vector u, given
4018 C the derivatives computed without normalization conditions, ugrad. Returns
4019 C ungrad.
4020       implicit none
4021       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4022       double precision vec(3)
4023       double precision scalar
4024       integer i,j
4025 c      write (2,*) 'ugrad',ugrad
4026 c      write (2,*) 'u',u
4027       do i=1,3
4028         vec(i)=scalar(ugrad(1,i),u(1))
4029       enddo
4030 c      write (2,*) 'vec',vec
4031       do i=1,3
4032         do j=1,3
4033           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4034         enddo
4035       enddo
4036 c      write (2,*) 'ungrad',ungrad
4037       return
4038       end
4039 C-----------------------------------------------------------------------------
4040       subroutine escp_soft_sphere(evdw2,evdw2_14)
4041 C
4042 C This subroutine calculates the excluded-volume interaction energy between
4043 C peptide-group centers and side chains and its gradient in virtual-bond and
4044 C side-chain vectors.
4045 C
4046       implicit real*8 (a-h,o-z)
4047       include 'DIMENSIONS'
4048       include 'COMMON.GEO'
4049       include 'COMMON.VAR'
4050       include 'COMMON.LOCAL'
4051       include 'COMMON.CHAIN'
4052       include 'COMMON.DERIV'
4053       include 'COMMON.INTERACT'
4054       include 'COMMON.FFIELD'
4055       include 'COMMON.IOUNITS'
4056       include 'COMMON.CONTROL'
4057       dimension ggg(3)
4058       evdw2=0.0D0
4059       evdw2_14=0.0d0
4060       r0_scp=4.5d0
4061 cd    print '(a)','Enter ESCP'
4062 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4063       do i=iatscp_s,iatscp_e
4064         iteli=itel(i)
4065         xi=0.5D0*(c(1,i)+c(1,i+1))
4066         yi=0.5D0*(c(2,i)+c(2,i+1))
4067         zi=0.5D0*(c(3,i)+c(3,i+1))
4068
4069         do iint=1,nscp_gr(i)
4070
4071         do j=iscpstart(i,iint),iscpend(i,iint)
4072           itypj=itype(j)
4073 C Uncomment following three lines for SC-p interactions
4074 c         xj=c(1,nres+j)-xi
4075 c         yj=c(2,nres+j)-yi
4076 c         zj=c(3,nres+j)-zi
4077 C Uncomment following three lines for Ca-p interactions
4078           xj=c(1,j)-xi
4079           yj=c(2,j)-yi
4080           zj=c(3,j)-zi
4081           rij=xj*xj+yj*yj+zj*zj
4082           r0ij=r0_scp
4083           r0ijsq=r0ij*r0ij
4084           if (rij.lt.r0ijsq) then
4085             evdwij=0.25d0*(rij-r0ijsq)**2
4086             fac=rij-r0ijsq
4087           else
4088             evdwij=0.0d0
4089             fac=0.0d0
4090           endif 
4091           evdw2=evdw2+evdwij
4092 C
4093 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4094 C
4095           ggg(1)=xj*fac
4096           ggg(2)=yj*fac
4097           ggg(3)=zj*fac
4098 cgrad          if (j.lt.i) then
4099 cd          write (iout,*) 'j<i'
4100 C Uncomment following three lines for SC-p interactions
4101 c           do k=1,3
4102 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4103 c           enddo
4104 cgrad          else
4105 cd          write (iout,*) 'j>i'
4106 cgrad            do k=1,3
4107 cgrad              ggg(k)=-ggg(k)
4108 C Uncomment following line for SC-p interactions
4109 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4110 cgrad            enddo
4111 cgrad          endif
4112 cgrad          do k=1,3
4113 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4114 cgrad          enddo
4115 cgrad          kstart=min0(i+1,j)
4116 cgrad          kend=max0(i-1,j-1)
4117 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4118 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4119 cgrad          do k=kstart,kend
4120 cgrad            do l=1,3
4121 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4122 cgrad            enddo
4123 cgrad          enddo
4124           do k=1,3
4125             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4126             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4127           enddo
4128         enddo
4129
4130         enddo ! iint
4131       enddo ! i
4132       return
4133       end
4134 C-----------------------------------------------------------------------------
4135       subroutine escp(evdw2,evdw2_14)
4136 C
4137 C This subroutine calculates the excluded-volume interaction energy between
4138 C peptide-group centers and side chains and its gradient in virtual-bond and
4139 C side-chain vectors.
4140 C
4141       implicit real*8 (a-h,o-z)
4142       include 'DIMENSIONS'
4143       include 'COMMON.GEO'
4144       include 'COMMON.VAR'
4145       include 'COMMON.LOCAL'
4146       include 'COMMON.CHAIN'
4147       include 'COMMON.DERIV'
4148       include 'COMMON.INTERACT'
4149       include 'COMMON.FFIELD'
4150       include 'COMMON.IOUNITS'
4151       include 'COMMON.CONTROL'
4152       dimension ggg(3)
4153       evdw2=0.0D0
4154       evdw2_14=0.0d0
4155 cd    print '(a)','Enter ESCP'
4156 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4157       do i=iatscp_s,iatscp_e
4158         iteli=itel(i)
4159         xi=0.5D0*(c(1,i)+c(1,i+1))
4160         yi=0.5D0*(c(2,i)+c(2,i+1))
4161         zi=0.5D0*(c(3,i)+c(3,i+1))
4162
4163         do iint=1,nscp_gr(i)
4164
4165         do j=iscpstart(i,iint),iscpend(i,iint)
4166           itypj=itype(j)
4167 C Uncomment following three lines for SC-p interactions
4168 c         xj=c(1,nres+j)-xi
4169 c         yj=c(2,nres+j)-yi
4170 c         zj=c(3,nres+j)-zi
4171 C Uncomment following three lines for Ca-p interactions
4172           xj=c(1,j)-xi
4173           yj=c(2,j)-yi
4174           zj=c(3,j)-zi
4175           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4176           fac=rrij**expon2
4177           e1=fac*fac*aad(itypj,iteli)
4178           e2=fac*bad(itypj,iteli)
4179           if (iabs(j-i) .le. 2) then
4180             e1=scal14*e1
4181             e2=scal14*e2
4182             evdw2_14=evdw2_14+e1+e2
4183           endif
4184           evdwij=e1+e2
4185           evdw2=evdw2+evdwij
4186           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4187      &        'evdw2',i,j,evdwij
4188 C
4189 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4190 C
4191           fac=-(evdwij+e1)*rrij
4192           ggg(1)=xj*fac
4193           ggg(2)=yj*fac
4194           ggg(3)=zj*fac
4195 cgrad          if (j.lt.i) then
4196 cd          write (iout,*) 'j<i'
4197 C Uncomment following three lines for SC-p interactions
4198 c           do k=1,3
4199 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4200 c           enddo
4201 cgrad          else
4202 cd          write (iout,*) 'j>i'
4203 cgrad            do k=1,3
4204 cgrad              ggg(k)=-ggg(k)
4205 C Uncomment following line for SC-p interactions
4206 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4207 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4208 cgrad            enddo
4209 cgrad          endif
4210 cgrad          do k=1,3
4211 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4212 cgrad          enddo
4213 cgrad          kstart=min0(i+1,j)
4214 cgrad          kend=max0(i-1,j-1)
4215 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4216 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4217 cgrad          do k=kstart,kend
4218 cgrad            do l=1,3
4219 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4220 cgrad            enddo
4221 cgrad          enddo
4222           do k=1,3
4223             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4224             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4225           enddo
4226         enddo
4227
4228         enddo ! iint
4229       enddo ! i
4230       do i=1,nct
4231         do j=1,3
4232           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4233           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4234           gradx_scp(j,i)=expon*gradx_scp(j,i)
4235         enddo
4236       enddo
4237 C******************************************************************************
4238 C
4239 C                              N O T E !!!
4240 C
4241 C To save time the factor EXPON has been extracted from ALL components
4242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4243 C use!
4244 C
4245 C******************************************************************************
4246       return
4247       end
4248 C--------------------------------------------------------------------------
4249       subroutine edis(ehpb)
4250
4251 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4252 C
4253       implicit real*8 (a-h,o-z)
4254       include 'DIMENSIONS'
4255       include 'COMMON.SBRIDGE'
4256       include 'COMMON.CHAIN'
4257       include 'COMMON.DERIV'
4258       include 'COMMON.VAR'
4259       include 'COMMON.INTERACT'
4260       include 'COMMON.IOUNITS'
4261       dimension ggg(3)
4262       ehpb=0.0D0
4263 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4264 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4265       if (link_end.eq.0) return
4266       do i=link_start,link_end
4267 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4268 C CA-CA distance used in regularization of structure.
4269         ii=ihpb(i)
4270         jj=jhpb(i)
4271 C iii and jjj point to the residues for which the distance is assigned.
4272         if (ii.gt.nres) then
4273           iii=ii-nres
4274           jjj=jj-nres 
4275         else
4276           iii=ii
4277           jjj=jj
4278         endif
4279 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4280 c     &    dhpb(i),dhpb1(i),forcon(i)
4281 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4282 C    distance and angle dependent SS bond potential.
4283 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4284 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4285         if (.not.dyn_ss .and. i.le.nss) then
4286 C 15/02/13 CC dynamic SSbond - additional check
4287          if (ii.gt.nres 
4288      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4289           call ssbond_ene(iii,jjj,eij)
4290           ehpb=ehpb+2*eij
4291          endif
4292 cd          write (iout,*) "eij",eij
4293         else if (ii.gt.nres .and. jj.gt.nres) then
4294 c Restraints from contact prediction
4295           dd=dist(ii,jj)
4296           if (dhpb1(i).gt.0.0d0) then
4297             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4298             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4299 c            write (iout,*) "beta nmr",
4300 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4301           else
4302             dd=dist(ii,jj)
4303             rdis=dd-dhpb(i)
4304 C Get the force constant corresponding to this distance.
4305             waga=forcon(i)
4306 C Calculate the contribution to energy.
4307             ehpb=ehpb+waga*rdis*rdis
4308 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4309 C
4310 C Evaluate gradient.
4311 C
4312             fac=waga*rdis/dd
4313           endif  
4314           do j=1,3
4315             ggg(j)=fac*(c(j,jj)-c(j,ii))
4316           enddo
4317           do j=1,3
4318             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4319             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4320           enddo
4321           do k=1,3
4322             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4323             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4324           enddo
4325         else
4326 C Calculate the distance between the two points and its difference from the
4327 C target distance.
4328           dd=dist(ii,jj)
4329           if (dhpb1(i).gt.0.0d0) then
4330             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4331             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4332 c            write (iout,*) "alph nmr",
4333 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4334           else
4335             rdis=dd-dhpb(i)
4336 C Get the force constant corresponding to this distance.
4337             waga=forcon(i)
4338 C Calculate the contribution to energy.
4339             ehpb=ehpb+waga*rdis*rdis
4340 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4341 C
4342 C Evaluate gradient.
4343 C
4344             fac=waga*rdis/dd
4345           endif
4346 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4347 cd   &   ' waga=',waga,' fac=',fac
4348             do j=1,3
4349               ggg(j)=fac*(c(j,jj)-c(j,ii))
4350             enddo
4351 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4352 C If this is a SC-SC distance, we need to calculate the contributions to the
4353 C Cartesian gradient in the SC vectors (ghpbx).
4354           if (iii.lt.ii) then
4355           do j=1,3
4356             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4357             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4358           enddo
4359           endif
4360 cgrad        do j=iii,jjj-1
4361 cgrad          do k=1,3
4362 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4363 cgrad          enddo
4364 cgrad        enddo
4365           do k=1,3
4366             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4367             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4368           enddo
4369         endif
4370       enddo
4371       ehpb=0.5D0*ehpb
4372       return
4373       end
4374 C--------------------------------------------------------------------------
4375       subroutine ssbond_ene(i,j,eij)
4376
4377 C Calculate the distance and angle dependent SS-bond potential energy
4378 C using a free-energy function derived based on RHF/6-31G** ab initio
4379 C calculations of diethyl disulfide.
4380 C
4381 C A. Liwo and U. Kozlowska, 11/24/03
4382 C
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.SBRIDGE'
4386       include 'COMMON.CHAIN'
4387       include 'COMMON.DERIV'
4388       include 'COMMON.LOCAL'
4389       include 'COMMON.INTERACT'
4390       include 'COMMON.VAR'
4391       include 'COMMON.IOUNITS'
4392       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4393       itypi=itype(i)
4394       xi=c(1,nres+i)
4395       yi=c(2,nres+i)
4396       zi=c(3,nres+i)
4397       dxi=dc_norm(1,nres+i)
4398       dyi=dc_norm(2,nres+i)
4399       dzi=dc_norm(3,nres+i)
4400 c      dsci_inv=dsc_inv(itypi)
4401       dsci_inv=vbld_inv(nres+i)
4402       itypj=itype(j)
4403 c      dscj_inv=dsc_inv(itypj)
4404       dscj_inv=vbld_inv(nres+j)
4405       xj=c(1,nres+j)-xi
4406       yj=c(2,nres+j)-yi
4407       zj=c(3,nres+j)-zi
4408       dxj=dc_norm(1,nres+j)
4409       dyj=dc_norm(2,nres+j)
4410       dzj=dc_norm(3,nres+j)
4411       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4412       rij=dsqrt(rrij)
4413       erij(1)=xj*rij
4414       erij(2)=yj*rij
4415       erij(3)=zj*rij
4416       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4417       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4418       om12=dxi*dxj+dyi*dyj+dzi*dzj
4419       do k=1,3
4420         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4421         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4422       enddo
4423       rij=1.0d0/rij
4424       deltad=rij-d0cm
4425       deltat1=1.0d0-om1
4426       deltat2=1.0d0+om2
4427       deltat12=om2-om1+2.0d0
4428       cosphi=om12-om1*om2
4429       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4430      &  +akct*deltad*deltat12+ebr
4431      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4432 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4433 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4434 c     &  " deltat12",deltat12," eij",eij 
4435       ed=2*akcm*deltad+akct*deltat12
4436       pom1=akct*deltad
4437       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4438       eom1=-2*akth*deltat1-pom1-om2*pom2
4439       eom2= 2*akth*deltat2+pom1-om1*pom2
4440       eom12=pom2
4441       do k=1,3
4442         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4443         ghpbx(k,i)=ghpbx(k,i)-ggk
4444      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4445      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4446         ghpbx(k,j)=ghpbx(k,j)+ggk
4447      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4448      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4449         ghpbc(k,i)=ghpbc(k,i)-ggk
4450         ghpbc(k,j)=ghpbc(k,j)+ggk
4451       enddo
4452 C
4453 C Calculate the components of the gradient in DC and X
4454 C
4455 cgrad      do k=i,j-1
4456 cgrad        do l=1,3
4457 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4458 cgrad        enddo
4459 cgrad      enddo
4460       return
4461       end
4462 C--------------------------------------------------------------------------
4463       subroutine ebond(estr)
4464 c
4465 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4466 c
4467       implicit real*8 (a-h,o-z)
4468       include 'DIMENSIONS'
4469       include 'COMMON.LOCAL'
4470       include 'COMMON.GEO'
4471       include 'COMMON.INTERACT'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.VAR'
4474       include 'COMMON.CHAIN'
4475       include 'COMMON.IOUNITS'
4476       include 'COMMON.NAMES'
4477       include 'COMMON.FFIELD'
4478       include 'COMMON.CONTROL'
4479       include 'COMMON.SETUP'
4480       double precision u(3),ud(3)
4481       estr=0.0d0
4482       do i=ibondp_start,ibondp_end
4483         diff = vbld(i)-vbldp0
4484 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4485         estr=estr+diff*diff
4486         do j=1,3
4487           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4488         enddo
4489 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4490       enddo
4491       estr=0.5d0*AKP*estr
4492 c
4493 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4494 c
4495       do i=ibond_start,ibond_end
4496         iti=itype(i)
4497         if (iti.ne.10) then
4498           nbi=nbondterm(iti)
4499           if (nbi.eq.1) then
4500             diff=vbld(i+nres)-vbldsc0(1,iti)
4501 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4502 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4503             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4504             do j=1,3
4505               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4506             enddo
4507           else
4508             do j=1,nbi
4509               diff=vbld(i+nres)-vbldsc0(j,iti) 
4510               ud(j)=aksc(j,iti)*diff
4511               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4512             enddo
4513             uprod=u(1)
4514             do j=2,nbi
4515               uprod=uprod*u(j)
4516             enddo
4517             usum=0.0d0
4518             usumsqder=0.0d0
4519             do j=1,nbi
4520               uprod1=1.0d0
4521               uprod2=1.0d0
4522               do k=1,nbi
4523                 if (k.ne.j) then
4524                   uprod1=uprod1*u(k)
4525                   uprod2=uprod2*u(k)*u(k)
4526                 endif
4527               enddo
4528               usum=usum+uprod1
4529               usumsqder=usumsqder+ud(j)*uprod2   
4530             enddo
4531             estr=estr+uprod/usum
4532             do j=1,3
4533              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4534             enddo
4535           endif
4536         endif
4537       enddo
4538       return
4539       end 
4540 #ifdef CRYST_THETA
4541 C--------------------------------------------------------------------------
4542       subroutine ebend(etheta)
4543 C
4544 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4545 C angles gamma and its derivatives in consecutive thetas and gammas.
4546 C
4547       implicit real*8 (a-h,o-z)
4548       include 'DIMENSIONS'
4549       include 'COMMON.LOCAL'
4550       include 'COMMON.GEO'
4551       include 'COMMON.INTERACT'
4552       include 'COMMON.DERIV'
4553       include 'COMMON.VAR'
4554       include 'COMMON.CHAIN'
4555       include 'COMMON.IOUNITS'
4556       include 'COMMON.NAMES'
4557       include 'COMMON.FFIELD'
4558       include 'COMMON.CONTROL'
4559       common /calcthet/ term1,term2,termm,diffak,ratak,
4560      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4561      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4562       double precision y(2),z(2)
4563       delta=0.02d0*pi
4564 c      time11=dexp(-2*time)
4565 c      time12=1.0d0
4566       etheta=0.0D0
4567 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4568       do i=ithet_start,ithet_end
4569 C Zero the energy function and its derivative at 0 or pi.
4570         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4571         it=itype(i-1)
4572         if (i.gt.3) then
4573 #ifdef OSF
4574           phii=phi(i)
4575           if (phii.ne.phii) phii=150.0
4576 #else
4577           phii=phi(i)
4578 #endif
4579           y(1)=dcos(phii)
4580           y(2)=dsin(phii)
4581         else 
4582           y(1)=0.0D0
4583           y(2)=0.0D0
4584         endif
4585         if (i.lt.nres) then
4586 #ifdef OSF
4587           phii1=phi(i+1)
4588           if (phii1.ne.phii1) phii1=150.0
4589           phii1=pinorm(phii1)
4590           z(1)=cos(phii1)
4591 #else
4592           phii1=phi(i+1)
4593           z(1)=dcos(phii1)
4594 #endif
4595           z(2)=dsin(phii1)
4596         else
4597           z(1)=0.0D0
4598           z(2)=0.0D0
4599         endif  
4600 C Calculate the "mean" value of theta from the part of the distribution
4601 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4602 C In following comments this theta will be referred to as t_c.
4603         thet_pred_mean=0.0d0
4604         do k=1,2
4605           athetk=athet(k,it)
4606           bthetk=bthet(k,it)
4607           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4608         enddo
4609         dthett=thet_pred_mean*ssd
4610         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4611 C Derivatives of the "mean" values in gamma1 and gamma2.
4612         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4613         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4614         if (theta(i).gt.pi-delta) then
4615           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4616      &         E_tc0)
4617           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4618           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4619           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4620      &        E_theta)
4621           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4622      &        E_tc)
4623         else if (theta(i).lt.delta) then
4624           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4625           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4626           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4627      &        E_theta)
4628           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4630      &        E_tc)
4631         else
4632           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4633      &        E_theta,E_tc)
4634         endif
4635         etheta=etheta+ethetai
4636         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4637      &      'ebend',i,ethetai
4638         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4639         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4640         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4641       enddo
4642 C Ufff.... We've done all this!!! 
4643       return
4644       end
4645 C---------------------------------------------------------------------------
4646       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4647      &     E_tc)
4648       implicit real*8 (a-h,o-z)
4649       include 'DIMENSIONS'
4650       include 'COMMON.LOCAL'
4651       include 'COMMON.IOUNITS'
4652       common /calcthet/ term1,term2,termm,diffak,ratak,
4653      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4654      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4655 C Calculate the contributions to both Gaussian lobes.
4656 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4657 C The "polynomial part" of the "standard deviation" of this part of 
4658 C the distribution.
4659         sig=polthet(3,it)
4660         do j=2,0,-1
4661           sig=sig*thet_pred_mean+polthet(j,it)
4662         enddo
4663 C Derivative of the "interior part" of the "standard deviation of the" 
4664 C gamma-dependent Gaussian lobe in t_c.
4665         sigtc=3*polthet(3,it)
4666         do j=2,1,-1
4667           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4668         enddo
4669         sigtc=sig*sigtc
4670 C Set the parameters of both Gaussian lobes of the distribution.
4671 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4672         fac=sig*sig+sigc0(it)
4673         sigcsq=fac+fac
4674         sigc=1.0D0/sigcsq
4675 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4676         sigsqtc=-4.0D0*sigcsq*sigtc
4677 c       print *,i,sig,sigtc,sigsqtc
4678 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4679         sigtc=-sigtc/(fac*fac)
4680 C Following variable is sigma(t_c)**(-2)
4681         sigcsq=sigcsq*sigcsq
4682         sig0i=sig0(it)
4683         sig0inv=1.0D0/sig0i**2
4684         delthec=thetai-thet_pred_mean
4685         delthe0=thetai-theta0i
4686         term1=-0.5D0*sigcsq*delthec*delthec
4687         term2=-0.5D0*sig0inv*delthe0*delthe0
4688 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4689 C NaNs in taking the logarithm. We extract the largest exponent which is added
4690 C to the energy (this being the log of the distribution) at the end of energy
4691 C term evaluation for this virtual-bond angle.
4692         if (term1.gt.term2) then
4693           termm=term1
4694           term2=dexp(term2-termm)
4695           term1=1.0d0
4696         else
4697           termm=term2
4698           term1=dexp(term1-termm)
4699           term2=1.0d0
4700         endif
4701 C The ratio between the gamma-independent and gamma-dependent lobes of
4702 C the distribution is a Gaussian function of thet_pred_mean too.
4703         diffak=gthet(2,it)-thet_pred_mean
4704         ratak=diffak/gthet(3,it)**2
4705         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4706 C Let's differentiate it in thet_pred_mean NOW.
4707         aktc=ak*ratak
4708 C Now put together the distribution terms to make complete distribution.
4709         termexp=term1+ak*term2
4710         termpre=sigc+ak*sig0i
4711 C Contribution of the bending energy from this theta is just the -log of
4712 C the sum of the contributions from the two lobes and the pre-exponential
4713 C factor. Simple enough, isn't it?
4714         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4715 C NOW the derivatives!!!
4716 C 6/6/97 Take into account the deformation.
4717         E_theta=(delthec*sigcsq*term1
4718      &       +ak*delthe0*sig0inv*term2)/termexp
4719         E_tc=((sigtc+aktc*sig0i)/termpre
4720      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4721      &       aktc*term2)/termexp)
4722       return
4723       end
4724 c-----------------------------------------------------------------------------
4725       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4726       implicit real*8 (a-h,o-z)
4727       include 'DIMENSIONS'
4728       include 'COMMON.LOCAL'
4729       include 'COMMON.IOUNITS'
4730       common /calcthet/ term1,term2,termm,diffak,ratak,
4731      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4732      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4733       delthec=thetai-thet_pred_mean
4734       delthe0=thetai-theta0i
4735 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4736       t3 = thetai-thet_pred_mean
4737       t6 = t3**2
4738       t9 = term1
4739       t12 = t3*sigcsq
4740       t14 = t12+t6*sigsqtc
4741       t16 = 1.0d0
4742       t21 = thetai-theta0i
4743       t23 = t21**2
4744       t26 = term2
4745       t27 = t21*t26
4746       t32 = termexp
4747       t40 = t32**2
4748       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4749      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4750      & *(-t12*t9-ak*sig0inv*t27)
4751       return
4752       end
4753 #else
4754 C--------------------------------------------------------------------------
4755       subroutine ebend(etheta)
4756 C
4757 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4758 C angles gamma and its derivatives in consecutive thetas and gammas.
4759 C ab initio-derived potentials from 
4760 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4761 C
4762       implicit real*8 (a-h,o-z)
4763       include 'DIMENSIONS'
4764       include 'COMMON.LOCAL'
4765       include 'COMMON.GEO'
4766       include 'COMMON.INTERACT'
4767       include 'COMMON.DERIV'
4768       include 'COMMON.VAR'
4769       include 'COMMON.CHAIN'
4770       include 'COMMON.IOUNITS'
4771       include 'COMMON.NAMES'
4772       include 'COMMON.FFIELD'
4773       include 'COMMON.CONTROL'
4774       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4775      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4776      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4777      & sinph1ph2(maxdouble,maxdouble)
4778       logical lprn /.false./, lprn1 /.true./
4779       etheta=0.0D0
4780       do i=ithet_start,ithet_end
4781         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4782      &(itype(i).eq.ntyp1)) cycle
4783         dethetai=0.0d0
4784         dephii=0.0d0
4785         dephii1=0.0d0
4786         theti2=0.5d0*theta(i)
4787         ityp2=ithetyp(itype(i-1))
4788         do k=1,nntheterm
4789           coskt(k)=dcos(k*theti2)
4790           sinkt(k)=dsin(k*theti2)
4791         enddo
4792         if (i.gt.3) then
4793 #ifdef OSF
4794           phii=phi(i)
4795           if (phii.ne.phii) phii=150.0
4796 #else
4797           phii=phi(i)
4798 #endif
4799           ityp1=ithetyp(itype(i-2))
4800           do k=1,nsingle
4801             cosph1(k)=dcos(k*phii)
4802             sinph1(k)=dsin(k*phii)
4803           enddo
4804         else
4805           phii=0.0d0
4806           ityp1=nthetyp+1
4807           do k=1,nsingle
4808             cosph1(k)=0.0d0
4809             sinph1(k)=0.0d0
4810           enddo 
4811         endif
4812         if (i.lt.nres) then
4813 #ifdef OSF
4814           phii1=phi(i+1)
4815           if (phii1.ne.phii1) phii1=150.0
4816           phii1=pinorm(phii1)
4817 #else
4818           phii1=phi(i+1)
4819 #endif
4820           ityp3=ithetyp(itype(i))
4821           do k=1,nsingle
4822             cosph2(k)=dcos(k*phii1)
4823             sinph2(k)=dsin(k*phii1)
4824           enddo
4825         else
4826           phii1=0.0d0
4827           ityp3=nthetyp+1
4828           do k=1,nsingle
4829             cosph2(k)=0.0d0
4830             sinph2(k)=0.0d0
4831           enddo
4832         endif  
4833         ethetai=aa0thet(ityp1,ityp2,ityp3)
4834         do k=1,ndouble
4835           do l=1,k-1
4836             ccl=cosph1(l)*cosph2(k-l)
4837             ssl=sinph1(l)*sinph2(k-l)
4838             scl=sinph1(l)*cosph2(k-l)
4839             csl=cosph1(l)*sinph2(k-l)
4840             cosph1ph2(l,k)=ccl-ssl
4841             cosph1ph2(k,l)=ccl+ssl
4842             sinph1ph2(l,k)=scl+csl
4843             sinph1ph2(k,l)=scl-csl
4844           enddo
4845         enddo
4846         if (lprn) then
4847         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4848      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4849         write (iout,*) "coskt and sinkt"
4850         do k=1,nntheterm
4851           write (iout,*) k,coskt(k),sinkt(k)
4852         enddo
4853         endif
4854         do k=1,ntheterm
4855           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4856           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4857      &      *coskt(k)
4858           if (lprn)
4859      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4860      &     " ethetai",ethetai
4861         enddo
4862         if (lprn) then
4863         write (iout,*) "cosph and sinph"
4864         do k=1,nsingle
4865           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4866         enddo
4867         write (iout,*) "cosph1ph2 and sinph2ph2"
4868         do k=2,ndouble
4869           do l=1,k-1
4870             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4871      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4872           enddo
4873         enddo
4874         write(iout,*) "ethetai",ethetai
4875         endif
4876         do m=1,ntheterm2
4877           do k=1,nsingle
4878             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4879      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4880      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4881      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4882             ethetai=ethetai+sinkt(m)*aux
4883             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4884             dephii=dephii+k*sinkt(m)*(
4885      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4886      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4887             dephii1=dephii1+k*sinkt(m)*(
4888      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4889      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4890             if (lprn)
4891      &      write (iout,*) "m",m," k",k," bbthet",
4892      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4893      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4894      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4895      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4896           enddo
4897         enddo
4898         if (lprn)
4899      &  write(iout,*) "ethetai",ethetai
4900         do m=1,ntheterm3
4901           do k=2,ndouble
4902             do l=1,k-1
4903               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4904      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4905      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4906      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4907               ethetai=ethetai+sinkt(m)*aux
4908               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4909               dephii=dephii+l*sinkt(m)*(
4910      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4911      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4912      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4913      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4914               dephii1=dephii1+(k-l)*sinkt(m)*(
4915      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4916      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4917      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4918      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4919               if (lprn) then
4920               write (iout,*) "m",m," k",k," l",l," ffthet",
4921      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4922      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4923      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4924      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4925               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4926      &            cosph1ph2(k,l)*sinkt(m),
4927      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4928               endif
4929             enddo
4930           enddo
4931         enddo
4932 10      continue
4933 c        lprn1=.true.
4934         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
4935      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
4936      &   phii1*rad2deg,ethetai
4937 c        lprn1=.false.
4938         etheta=etheta+ethetai
4939         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4940         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4941         gloc(nphi+i-2,icg)=wang*dethetai
4942       enddo
4943       return
4944       end
4945 #endif
4946 #ifdef CRYST_SC
4947 c-----------------------------------------------------------------------------
4948       subroutine esc(escloc)
4949 C Calculate the local energy of a side chain and its derivatives in the
4950 C corresponding virtual-bond valence angles THETA and the spherical angles 
4951 C ALPHA and OMEGA.
4952       implicit real*8 (a-h,o-z)
4953       include 'DIMENSIONS'
4954       include 'COMMON.GEO'
4955       include 'COMMON.LOCAL'
4956       include 'COMMON.VAR'
4957       include 'COMMON.INTERACT'
4958       include 'COMMON.DERIV'
4959       include 'COMMON.CHAIN'
4960       include 'COMMON.IOUNITS'
4961       include 'COMMON.NAMES'
4962       include 'COMMON.FFIELD'
4963       include 'COMMON.CONTROL'
4964       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4965      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4966       common /sccalc/ time11,time12,time112,theti,it,nlobit
4967       delta=0.02d0*pi
4968       escloc=0.0D0
4969 c     write (iout,'(a)') 'ESC'
4970       do i=loc_start,loc_end
4971         it=itype(i)
4972         if (it.eq.10) goto 1
4973         nlobit=nlob(it)
4974 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4975 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4976         theti=theta(i+1)-pipol
4977         x(1)=dtan(theti)
4978         x(2)=alph(i)
4979         x(3)=omeg(i)
4980
4981         if (x(2).gt.pi-delta) then
4982           xtemp(1)=x(1)
4983           xtemp(2)=pi-delta
4984           xtemp(3)=x(3)
4985           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4986           xtemp(2)=pi
4987           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4988           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4989      &        escloci,dersc(2))
4990           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4991      &        ddersc0(1),dersc(1))
4992           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4993      &        ddersc0(3),dersc(3))
4994           xtemp(2)=pi-delta
4995           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4996           xtemp(2)=pi
4997           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4998           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4999      &            dersc0(2),esclocbi,dersc02)
5000           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5001      &            dersc12,dersc01)
5002           call splinthet(x(2),0.5d0*delta,ss,ssd)
5003           dersc0(1)=dersc01
5004           dersc0(2)=dersc02
5005           dersc0(3)=0.0d0
5006           do k=1,3
5007             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5008           enddo
5009           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5010 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5011 c    &             esclocbi,ss,ssd
5012           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5013 c         escloci=esclocbi
5014 c         write (iout,*) escloci
5015         else if (x(2).lt.delta) then
5016           xtemp(1)=x(1)
5017           xtemp(2)=delta
5018           xtemp(3)=x(3)
5019           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5020           xtemp(2)=0.0d0
5021           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5022           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5023      &        escloci,dersc(2))
5024           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5025      &        ddersc0(1),dersc(1))
5026           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5027      &        ddersc0(3),dersc(3))
5028           xtemp(2)=delta
5029           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5030           xtemp(2)=0.0d0
5031           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5032           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5033      &            dersc0(2),esclocbi,dersc02)
5034           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5035      &            dersc12,dersc01)
5036           dersc0(1)=dersc01
5037           dersc0(2)=dersc02
5038           dersc0(3)=0.0d0
5039           call splinthet(x(2),0.5d0*delta,ss,ssd)
5040           do k=1,3
5041             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5042           enddo
5043           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5044 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5045 c    &             esclocbi,ss,ssd
5046           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5047 c         write (iout,*) escloci
5048         else
5049           call enesc(x,escloci,dersc,ddummy,.false.)
5050         endif
5051
5052         escloc=escloc+escloci
5053         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5054      &     'escloc',i,escloci
5055 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5056
5057         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5058      &   wscloc*dersc(1)
5059         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5060         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5061     1   continue
5062       enddo
5063       return
5064       end
5065 C---------------------------------------------------------------------------
5066       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5067       implicit real*8 (a-h,o-z)
5068       include 'DIMENSIONS'
5069       include 'COMMON.GEO'
5070       include 'COMMON.LOCAL'
5071       include 'COMMON.IOUNITS'
5072       common /sccalc/ time11,time12,time112,theti,it,nlobit
5073       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5074       double precision contr(maxlob,-1:1)
5075       logical mixed
5076 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5077         escloc_i=0.0D0
5078         do j=1,3
5079           dersc(j)=0.0D0
5080           if (mixed) ddersc(j)=0.0d0
5081         enddo
5082         x3=x(3)
5083
5084 C Because of periodicity of the dependence of the SC energy in omega we have
5085 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5086 C To avoid underflows, first compute & store the exponents.
5087
5088         do iii=-1,1
5089
5090           x(3)=x3+iii*dwapi
5091  
5092           do j=1,nlobit
5093             do k=1,3
5094               z(k)=x(k)-censc(k,j,it)
5095             enddo
5096             do k=1,3
5097               Axk=0.0D0
5098               do l=1,3
5099                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5100               enddo
5101               Ax(k,j,iii)=Axk
5102             enddo 
5103             expfac=0.0D0 
5104             do k=1,3
5105               expfac=expfac+Ax(k,j,iii)*z(k)
5106             enddo
5107             contr(j,iii)=expfac
5108           enddo ! j
5109
5110         enddo ! iii
5111
5112         x(3)=x3
5113 C As in the case of ebend, we want to avoid underflows in exponentiation and
5114 C subsequent NaNs and INFs in energy calculation.
5115 C Find the largest exponent
5116         emin=contr(1,-1)
5117         do iii=-1,1
5118           do j=1,nlobit
5119             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5120           enddo 
5121         enddo
5122         emin=0.5D0*emin
5123 cd      print *,'it=',it,' emin=',emin
5124
5125 C Compute the contribution to SC energy and derivatives
5126         do iii=-1,1
5127
5128           do j=1,nlobit
5129 #ifdef OSF
5130             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5131             if(adexp.ne.adexp) adexp=1.0
5132             expfac=dexp(adexp)
5133 #else
5134             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5135 #endif
5136 cd          print *,'j=',j,' expfac=',expfac
5137             escloc_i=escloc_i+expfac
5138             do k=1,3
5139               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5140             enddo
5141             if (mixed) then
5142               do k=1,3,2
5143                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5144      &            +gaussc(k,2,j,it))*expfac
5145               enddo
5146             endif
5147           enddo
5148
5149         enddo ! iii
5150
5151         dersc(1)=dersc(1)/cos(theti)**2
5152         ddersc(1)=ddersc(1)/cos(theti)**2
5153         ddersc(3)=ddersc(3)
5154
5155         escloci=-(dlog(escloc_i)-emin)
5156         do j=1,3
5157           dersc(j)=dersc(j)/escloc_i
5158         enddo
5159         if (mixed) then
5160           do j=1,3,2
5161             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5162           enddo
5163         endif
5164       return
5165       end
5166 C------------------------------------------------------------------------------
5167       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5168       implicit real*8 (a-h,o-z)
5169       include 'DIMENSIONS'
5170       include 'COMMON.GEO'
5171       include 'COMMON.LOCAL'
5172       include 'COMMON.IOUNITS'
5173       common /sccalc/ time11,time12,time112,theti,it,nlobit
5174       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5175       double precision contr(maxlob)
5176       logical mixed
5177
5178       escloc_i=0.0D0
5179
5180       do j=1,3
5181         dersc(j)=0.0D0
5182       enddo
5183
5184       do j=1,nlobit
5185         do k=1,2
5186           z(k)=x(k)-censc(k,j,it)
5187         enddo
5188         z(3)=dwapi
5189         do k=1,3
5190           Axk=0.0D0
5191           do l=1,3
5192             Axk=Axk+gaussc(l,k,j,it)*z(l)
5193           enddo
5194           Ax(k,j)=Axk
5195         enddo 
5196         expfac=0.0D0 
5197         do k=1,3
5198           expfac=expfac+Ax(k,j)*z(k)
5199         enddo
5200         contr(j)=expfac
5201       enddo ! j
5202
5203 C As in the case of ebend, we want to avoid underflows in exponentiation and
5204 C subsequent NaNs and INFs in energy calculation.
5205 C Find the largest exponent
5206       emin=contr(1)
5207       do j=1,nlobit
5208         if (emin.gt.contr(j)) emin=contr(j)
5209       enddo 
5210       emin=0.5D0*emin
5211  
5212 C Compute the contribution to SC energy and derivatives
5213
5214       dersc12=0.0d0
5215       do j=1,nlobit
5216         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5217         escloc_i=escloc_i+expfac
5218         do k=1,2
5219           dersc(k)=dersc(k)+Ax(k,j)*expfac
5220         enddo
5221         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5222      &            +gaussc(1,2,j,it))*expfac
5223         dersc(3)=0.0d0
5224       enddo
5225
5226       dersc(1)=dersc(1)/cos(theti)**2
5227       dersc12=dersc12/cos(theti)**2
5228       escloci=-(dlog(escloc_i)-emin)
5229       do j=1,2
5230         dersc(j)=dersc(j)/escloc_i
5231       enddo
5232       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5233       return
5234       end
5235 #else
5236 c----------------------------------------------------------------------------------
5237       subroutine esc(escloc)
5238 C Calculate the local energy of a side chain and its derivatives in the
5239 C corresponding virtual-bond valence angles THETA and the spherical angles 
5240 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5241 C added by Urszula Kozlowska. 07/11/2007
5242 C
5243       implicit real*8 (a-h,o-z)
5244       include 'DIMENSIONS'
5245       include 'COMMON.GEO'
5246       include 'COMMON.LOCAL'
5247       include 'COMMON.VAR'
5248       include 'COMMON.SCROT'
5249       include 'COMMON.INTERACT'
5250       include 'COMMON.DERIV'
5251       include 'COMMON.CHAIN'
5252       include 'COMMON.IOUNITS'
5253       include 'COMMON.NAMES'
5254       include 'COMMON.FFIELD'
5255       include 'COMMON.CONTROL'
5256       include 'COMMON.VECTORS'
5257       double precision x_prime(3),y_prime(3),z_prime(3)
5258      &    , sumene,dsc_i,dp2_i,x(65),
5259      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5260      &    de_dxx,de_dyy,de_dzz,de_dt
5261       double precision s1_t,s1_6_t,s2_t,s2_6_t
5262       double precision 
5263      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5264      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5265      & dt_dCi(3),dt_dCi1(3)
5266       common /sccalc/ time11,time12,time112,theti,it,nlobit
5267       delta=0.02d0*pi
5268       escloc=0.0D0
5269       do i=loc_start,loc_end
5270         costtab(i+1) =dcos(theta(i+1))
5271         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5272         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5273         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5274         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5275         cosfac=dsqrt(cosfac2)
5276         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5277         sinfac=dsqrt(sinfac2)
5278         it=itype(i)
5279         if (it.eq.10) goto 1
5280 c
5281 C  Compute the axes of tghe local cartesian coordinates system; store in
5282 c   x_prime, y_prime and z_prime 
5283 c
5284         do j=1,3
5285           x_prime(j) = 0.00
5286           y_prime(j) = 0.00
5287           z_prime(j) = 0.00
5288         enddo
5289 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5290 C     &   dc_norm(3,i+nres)
5291         do j = 1,3
5292           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5293           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5294         enddo
5295         do j = 1,3
5296           z_prime(j) = -uz(j,i-1)
5297         enddo     
5298 c       write (2,*) "i",i
5299 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5300 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5301 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5302 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5303 c      & " xy",scalar(x_prime(1),y_prime(1)),
5304 c      & " xz",scalar(x_prime(1),z_prime(1)),
5305 c      & " yy",scalar(y_prime(1),y_prime(1)),
5306 c      & " yz",scalar(y_prime(1),z_prime(1)),
5307 c      & " zz",scalar(z_prime(1),z_prime(1))
5308 c
5309 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5310 C to local coordinate system. Store in xx, yy, zz.
5311 c
5312         xx=0.0d0
5313         yy=0.0d0
5314         zz=0.0d0
5315         do j = 1,3
5316           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5317           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5318           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5319         enddo
5320
5321         xxtab(i)=xx
5322         yytab(i)=yy
5323         zztab(i)=zz
5324 C
5325 C Compute the energy of the ith side cbain
5326 C
5327 c        write (2,*) "xx",xx," yy",yy," zz",zz
5328         it=itype(i)
5329         do j = 1,65
5330           x(j) = sc_parmin(j,it) 
5331         enddo
5332 #ifdef CHECK_COORD
5333 Cc diagnostics - remove later
5334         xx1 = dcos(alph(2))
5335         yy1 = dsin(alph(2))*dcos(omeg(2))
5336         zz1 = -dsin(alph(2))*dsin(omeg(2))
5337         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5338      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5339      &    xx1,yy1,zz1
5340 C,"  --- ", xx_w,yy_w,zz_w
5341 c end diagnostics
5342 #endif
5343         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5344      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5345      &   + x(10)*yy*zz
5346         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5347      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5348      & + x(20)*yy*zz
5349         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5350      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5351      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5352      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5353      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5354      &  +x(40)*xx*yy*zz
5355         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5356      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5357      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5358      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5359      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5360      &  +x(60)*xx*yy*zz
5361         dsc_i   = 0.743d0+x(61)
5362         dp2_i   = 1.9d0+x(62)
5363         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5364      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5365         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5366      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5367         s1=(1+x(63))/(0.1d0 + dscp1)
5368         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5369         s2=(1+x(65))/(0.1d0 + dscp2)
5370         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5371         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5372      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5373 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5374 c     &   sumene4,
5375 c     &   dscp1,dscp2,sumene
5376 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5377         escloc = escloc + sumene
5378 c        write (2,*) "i",i," escloc",sumene,escloc
5379 #ifdef DEBUG
5380 C
5381 C This section to check the numerical derivatives of the energy of ith side
5382 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5383 C #define DEBUG in the code to turn it on.
5384 C
5385         write (2,*) "sumene               =",sumene
5386         aincr=1.0d-7
5387         xxsave=xx
5388         xx=xx+aincr
5389         write (2,*) xx,yy,zz
5390         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5391         de_dxx_num=(sumenep-sumene)/aincr
5392         xx=xxsave
5393         write (2,*) "xx+ sumene from enesc=",sumenep
5394         yysave=yy
5395         yy=yy+aincr
5396         write (2,*) xx,yy,zz
5397         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5398         de_dyy_num=(sumenep-sumene)/aincr
5399         yy=yysave
5400         write (2,*) "yy+ sumene from enesc=",sumenep
5401         zzsave=zz
5402         zz=zz+aincr
5403         write (2,*) xx,yy,zz
5404         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5405         de_dzz_num=(sumenep-sumene)/aincr
5406         zz=zzsave
5407         write (2,*) "zz+ sumene from enesc=",sumenep
5408         costsave=cost2tab(i+1)
5409         sintsave=sint2tab(i+1)
5410         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5411         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5412         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5413         de_dt_num=(sumenep-sumene)/aincr
5414         write (2,*) " t+ sumene from enesc=",sumenep
5415         cost2tab(i+1)=costsave
5416         sint2tab(i+1)=sintsave
5417 C End of diagnostics section.
5418 #endif
5419 C        
5420 C Compute the gradient of esc
5421 C
5422         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5423         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5424         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5425         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5426         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5427         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5428         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5429         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5430         pom1=(sumene3*sint2tab(i+1)+sumene1)
5431      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5432         pom2=(sumene4*cost2tab(i+1)+sumene2)
5433      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5434         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5435         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5436      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5437      &  +x(40)*yy*zz
5438         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5439         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5440      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5441      &  +x(60)*yy*zz
5442         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5443      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5444      &        +(pom1+pom2)*pom_dx
5445 #ifdef DEBUG
5446         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5447 #endif
5448 C
5449         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5450         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5451      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5452      &  +x(40)*xx*zz
5453         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5454         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5455      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5456      &  +x(59)*zz**2 +x(60)*xx*zz
5457         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5458      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5459      &        +(pom1-pom2)*pom_dy
5460 #ifdef DEBUG
5461         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5462 #endif
5463 C
5464         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5465      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5466      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5467      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5468      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5469      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5470      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5471      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5472 #ifdef DEBUG
5473         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5474 #endif
5475 C
5476         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5477      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5478      &  +pom1*pom_dt1+pom2*pom_dt2
5479 #ifdef DEBUG
5480         write(2,*), "de_dt = ", de_dt,de_dt_num
5481 #endif
5482
5483 C
5484        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5485        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5486        cosfac2xx=cosfac2*xx
5487        sinfac2yy=sinfac2*yy
5488        do k = 1,3
5489          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5490      &      vbld_inv(i+1)
5491          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5492      &      vbld_inv(i)
5493          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5494          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5495 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5496 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5497 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5498 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5499          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5500          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5501          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5502          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5503          dZZ_Ci1(k)=0.0d0
5504          dZZ_Ci(k)=0.0d0
5505          do j=1,3
5506            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5507            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5508          enddo
5509           
5510          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5511          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5512          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5513 c
5514          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5515          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5516        enddo
5517
5518        do k=1,3
5519          dXX_Ctab(k,i)=dXX_Ci(k)
5520          dXX_C1tab(k,i)=dXX_Ci1(k)
5521          dYY_Ctab(k,i)=dYY_Ci(k)
5522          dYY_C1tab(k,i)=dYY_Ci1(k)
5523          dZZ_Ctab(k,i)=dZZ_Ci(k)
5524          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5525          dXX_XYZtab(k,i)=dXX_XYZ(k)
5526          dYY_XYZtab(k,i)=dYY_XYZ(k)
5527          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5528        enddo
5529
5530        do k = 1,3
5531 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5532 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5533 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5534 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5535 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5536 c     &    dt_dci(k)
5537 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5538 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5539          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5540      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5541          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5542      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5543          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5544      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5545        enddo
5546 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5547 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5548
5549 C to check gradient call subroutine check_grad
5550
5551     1 continue
5552       enddo
5553       return
5554       end
5555 c------------------------------------------------------------------------------
5556       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5557       implicit none
5558       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5559      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5560       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5561      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5562      &   + x(10)*yy*zz
5563       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5564      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5565      & + x(20)*yy*zz
5566       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5567      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5568      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5569      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5570      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5571      &  +x(40)*xx*yy*zz
5572       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5573      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5574      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5575      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5576      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5577      &  +x(60)*xx*yy*zz
5578       dsc_i   = 0.743d0+x(61)
5579       dp2_i   = 1.9d0+x(62)
5580       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5581      &          *(xx*cost2+yy*sint2))
5582       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5583      &          *(xx*cost2-yy*sint2))
5584       s1=(1+x(63))/(0.1d0 + dscp1)
5585       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5586       s2=(1+x(65))/(0.1d0 + dscp2)
5587       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5588       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5589      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5590       enesc=sumene
5591       return
5592       end
5593 #endif
5594 c------------------------------------------------------------------------------
5595       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5596 C
5597 C This procedure calculates two-body contact function g(rij) and its derivative:
5598 C
5599 C           eps0ij                                     !       x < -1
5600 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5601 C            0                                         !       x > 1
5602 C
5603 C where x=(rij-r0ij)/delta
5604 C
5605 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5606 C
5607       implicit none
5608       double precision rij,r0ij,eps0ij,fcont,fprimcont
5609       double precision x,x2,x4,delta
5610 c     delta=0.02D0*r0ij
5611 c      delta=0.2D0*r0ij
5612       x=(rij-r0ij)/delta
5613       if (x.lt.-1.0D0) then
5614         fcont=eps0ij
5615         fprimcont=0.0D0
5616       else if (x.le.1.0D0) then  
5617         x2=x*x
5618         x4=x2*x2
5619         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5620         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5621       else
5622         fcont=0.0D0
5623         fprimcont=0.0D0
5624       endif
5625       return
5626       end
5627 c------------------------------------------------------------------------------
5628       subroutine splinthet(theti,delta,ss,ssder)
5629       implicit real*8 (a-h,o-z)
5630       include 'DIMENSIONS'
5631       include 'COMMON.VAR'
5632       include 'COMMON.GEO'
5633       thetup=pi-delta
5634       thetlow=delta
5635       if (theti.gt.pipol) then
5636         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5637       else
5638         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5639         ssder=-ssder
5640       endif
5641       return
5642       end
5643 c------------------------------------------------------------------------------
5644       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5645       implicit none
5646       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5647       double precision ksi,ksi2,ksi3,a1,a2,a3
5648       a1=fprim0*delta/(f1-f0)
5649       a2=3.0d0-2.0d0*a1
5650       a3=a1-2.0d0
5651       ksi=(x-x0)/delta
5652       ksi2=ksi*ksi
5653       ksi3=ksi2*ksi  
5654       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5655       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5656       return
5657       end
5658 c------------------------------------------------------------------------------
5659       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5660       implicit none
5661       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5662       double precision ksi,ksi2,ksi3,a1,a2,a3
5663       ksi=(x-x0)/delta  
5664       ksi2=ksi*ksi
5665       ksi3=ksi2*ksi
5666       a1=fprim0x*delta
5667       a2=3*(f1x-f0x)-2*fprim0x*delta
5668       a3=fprim0x*delta-2*(f1x-f0x)
5669       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5670       return
5671       end
5672 C-----------------------------------------------------------------------------
5673 #ifdef CRYST_TOR
5674 C-----------------------------------------------------------------------------
5675       subroutine etor(etors,edihcnstr)
5676       implicit real*8 (a-h,o-z)
5677       include 'DIMENSIONS'
5678       include 'COMMON.VAR'
5679       include 'COMMON.GEO'
5680       include 'COMMON.LOCAL'
5681       include 'COMMON.TORSION'
5682       include 'COMMON.INTERACT'
5683       include 'COMMON.DERIV'
5684       include 'COMMON.CHAIN'
5685       include 'COMMON.NAMES'
5686       include 'COMMON.IOUNITS'
5687       include 'COMMON.FFIELD'
5688       include 'COMMON.TORCNSTR'
5689       include 'COMMON.CONTROL'
5690       logical lprn
5691 C Set lprn=.true. for debugging
5692       lprn=.false.
5693 c      lprn=.true.
5694       etors=0.0D0
5695       do i=iphi_start,iphi_end
5696       etors_ii=0.0D0
5697         itori=itortyp(itype(i-2))
5698         itori1=itortyp(itype(i-1))
5699         phii=phi(i)
5700         gloci=0.0D0
5701 C Proline-Proline pair is a special case...
5702         if (itori.eq.3 .and. itori1.eq.3) then
5703           if (phii.gt.-dwapi3) then
5704             cosphi=dcos(3*phii)
5705             fac=1.0D0/(1.0D0-cosphi)
5706             etorsi=v1(1,3,3)*fac
5707             etorsi=etorsi+etorsi
5708             etors=etors+etorsi-v1(1,3,3)
5709             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5710             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5711           endif
5712           do j=1,3
5713             v1ij=v1(j+1,itori,itori1)
5714             v2ij=v2(j+1,itori,itori1)
5715             cosphi=dcos(j*phii)
5716             sinphi=dsin(j*phii)
5717             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5718             if (energy_dec) etors_ii=etors_ii+
5719      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5720             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5721           enddo
5722         else 
5723           do j=1,nterm_old
5724             v1ij=v1(j,itori,itori1)
5725             v2ij=v2(j,itori,itori1)
5726             cosphi=dcos(j*phii)
5727             sinphi=dsin(j*phii)
5728             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5729             if (energy_dec) etors_ii=etors_ii+
5730      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5731             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5732           enddo
5733         endif
5734         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5735      &        'etor',i,etors_ii
5736         if (lprn)
5737      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5738      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5739      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5740         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5741         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5742       enddo
5743 ! 6/20/98 - dihedral angle constraints
5744       edihcnstr=0.0d0
5745       do i=1,ndih_constr
5746         itori=idih_constr(i)
5747         phii=phi(itori)
5748         difi=phii-phi0(i)
5749         if (difi.gt.drange(i)) then
5750           difi=difi-drange(i)
5751           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5752           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5753         else if (difi.lt.-drange(i)) then
5754           difi=difi+drange(i)
5755           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5756           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5757         endif
5758 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5759 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5760       enddo
5761 !      write (iout,*) 'edihcnstr',edihcnstr
5762       return
5763       end
5764 c------------------------------------------------------------------------------
5765       subroutine etor_d(etors_d)
5766       etors_d=0.0d0
5767       return
5768       end
5769 c----------------------------------------------------------------------------
5770 #else
5771       subroutine etor(etors,edihcnstr)
5772       implicit real*8 (a-h,o-z)
5773       include 'DIMENSIONS'
5774       include 'COMMON.VAR'
5775       include 'COMMON.GEO'
5776       include 'COMMON.LOCAL'
5777       include 'COMMON.TORSION'
5778       include 'COMMON.INTERACT'
5779       include 'COMMON.DERIV'
5780       include 'COMMON.CHAIN'
5781       include 'COMMON.NAMES'
5782       include 'COMMON.IOUNITS'
5783       include 'COMMON.FFIELD'
5784       include 'COMMON.TORCNSTR'
5785       include 'COMMON.CONTROL'
5786       logical lprn
5787 C Set lprn=.true. for debugging
5788       lprn=.false.
5789 c     lprn=.true.
5790       etors=0.0D0
5791       do i=iphi_start,iphi_end
5792       etors_ii=0.0D0
5793         itori=itortyp(itype(i-2))
5794         itori1=itortyp(itype(i-1))
5795         phii=phi(i)
5796         gloci=0.0D0
5797 C Regular cosine and sine terms
5798         do j=1,nterm(itori,itori1)
5799           v1ij=v1(j,itori,itori1)
5800           v2ij=v2(j,itori,itori1)
5801           cosphi=dcos(j*phii)
5802           sinphi=dsin(j*phii)
5803           etors=etors+v1ij*cosphi+v2ij*sinphi
5804           if (energy_dec) etors_ii=etors_ii+
5805      &                v1ij*cosphi+v2ij*sinphi
5806           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5807         enddo
5808 C Lorentz terms
5809 C                         v1
5810 C  E = SUM ----------------------------------- - v1
5811 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5812 C
5813         cosphi=dcos(0.5d0*phii)
5814         sinphi=dsin(0.5d0*phii)
5815         do j=1,nlor(itori,itori1)
5816           vl1ij=vlor1(j,itori,itori1)
5817           vl2ij=vlor2(j,itori,itori1)
5818           vl3ij=vlor3(j,itori,itori1)
5819           pom=vl2ij*cosphi+vl3ij*sinphi
5820           pom1=1.0d0/(pom*pom+1.0d0)
5821           etors=etors+vl1ij*pom1
5822           if (energy_dec) etors_ii=etors_ii+
5823      &                vl1ij*pom1
5824           pom=-pom*pom1*pom1
5825           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5826         enddo
5827 C Subtract the constant term
5828         etors=etors-v0(itori,itori1)
5829           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5830      &         'etor',i,etors_ii-v0(itori,itori1)
5831         if (lprn)
5832      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5833      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5834      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5835         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5836 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5837       enddo
5838 ! 6/20/98 - dihedral angle constraints
5839       edihcnstr=0.0d0
5840 c      do i=1,ndih_constr
5841       do i=idihconstr_start,idihconstr_end
5842         itori=idih_constr(i)
5843         phii=phi(itori)
5844         difi=pinorm(phii-phi0(i))
5845         if (difi.gt.drange(i)) then
5846           difi=difi-drange(i)
5847           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5848           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5849         else if (difi.lt.-drange(i)) then
5850           difi=difi+drange(i)
5851           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5852           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5853         else
5854           difi=0.0
5855         endif
5856 c        write (iout,*) "gloci", gloc(i-3,icg)
5857 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5858 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5859 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5860       enddo
5861 cd       write (iout,*) 'edihcnstr',edihcnstr
5862       return
5863       end
5864 c----------------------------------------------------------------------------
5865       subroutine etor_d(etors_d)
5866 C 6/23/01 Compute double torsional energy
5867       implicit real*8 (a-h,o-z)
5868       include 'DIMENSIONS'
5869       include 'COMMON.VAR'
5870       include 'COMMON.GEO'
5871       include 'COMMON.LOCAL'
5872       include 'COMMON.TORSION'
5873       include 'COMMON.INTERACT'
5874       include 'COMMON.DERIV'
5875       include 'COMMON.CHAIN'
5876       include 'COMMON.NAMES'
5877       include 'COMMON.IOUNITS'
5878       include 'COMMON.FFIELD'
5879       include 'COMMON.TORCNSTR'
5880       logical lprn
5881 C Set lprn=.true. for debugging
5882       lprn=.false.
5883 c     lprn=.true.
5884       etors_d=0.0D0
5885       do i=iphid_start,iphid_end
5886         itori=itortyp(itype(i-2))
5887         itori1=itortyp(itype(i-1))
5888         itori2=itortyp(itype(i))
5889         phii=phi(i)
5890         phii1=phi(i+1)
5891         gloci1=0.0D0
5892         gloci2=0.0D0
5893         do j=1,ntermd_1(itori,itori1,itori2)
5894           v1cij=v1c(1,j,itori,itori1,itori2)
5895           v1sij=v1s(1,j,itori,itori1,itori2)
5896           v2cij=v1c(2,j,itori,itori1,itori2)
5897           v2sij=v1s(2,j,itori,itori1,itori2)
5898           cosphi1=dcos(j*phii)
5899           sinphi1=dsin(j*phii)
5900           cosphi2=dcos(j*phii1)
5901           sinphi2=dsin(j*phii1)
5902           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5903      &     v2cij*cosphi2+v2sij*sinphi2
5904           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5905           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5906         enddo
5907         do k=2,ntermd_2(itori,itori1,itori2)
5908           do l=1,k-1
5909             v1cdij = v2c(k,l,itori,itori1,itori2)
5910             v2cdij = v2c(l,k,itori,itori1,itori2)
5911             v1sdij = v2s(k,l,itori,itori1,itori2)
5912             v2sdij = v2s(l,k,itori,itori1,itori2)
5913             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5914             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5915             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5916             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5917             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5918      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5919             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5920      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5921             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5922      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5923           enddo
5924         enddo
5925         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5926         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5927 c        write (iout,*) "gloci", gloc(i-3,icg)
5928       enddo
5929       return
5930       end
5931 #endif
5932 c------------------------------------------------------------------------------
5933       subroutine eback_sc_corr(esccor)
5934 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5935 c        conformational states; temporarily implemented as differences
5936 c        between UNRES torsional potentials (dependent on three types of
5937 c        residues) and the torsional potentials dependent on all 20 types
5938 c        of residues computed from AM1  energy surfaces of terminally-blocked
5939 c        amino-acid residues.
5940       implicit real*8 (a-h,o-z)
5941       include 'DIMENSIONS'
5942       include 'COMMON.VAR'
5943       include 'COMMON.GEO'
5944       include 'COMMON.LOCAL'
5945       include 'COMMON.TORSION'
5946       include 'COMMON.SCCOR'
5947       include 'COMMON.INTERACT'
5948       include 'COMMON.DERIV'
5949       include 'COMMON.CHAIN'
5950       include 'COMMON.NAMES'
5951       include 'COMMON.IOUNITS'
5952       include 'COMMON.FFIELD'
5953       include 'COMMON.CONTROL'
5954       logical lprn
5955 C Set lprn=.true. for debugging
5956       lprn=.false.
5957 c      lprn=.true.
5958 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5959       esccor=0.0D0
5960       do i=itau_start,itau_end
5961         esccor_ii=0.0D0
5962         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5963         isccori=isccortyp(itype(i-2))
5964         isccori1=isccortyp(itype(i-1))
5965         phii=phi(i)
5966 cccc  Added 9 May 2012
5967 cc Tauangle is torsional engle depending on the value of first digit 
5968 c(see comment below)
5969 cc Omicron is flat angle depending on the value of first digit 
5970 c(see comment below)
5971
5972         
5973 c        do intertyp=1,3 !intertyp
5974         do intertyp=2,2 !intertyp
5975 cc Added 09 May 2012 (Adasko)
5976 cc  Intertyp means interaction type of backbone mainchain correlation: 
5977 c   1 = SC...Ca...Ca...Ca
5978 c   2 = Ca...Ca...Ca...SC
5979 c   3 = SC...Ca...Ca...SCi
5980         gloci=0.0D0
5981         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5982      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
5983      &      (itype(i-1).eq.21)))
5984      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5985      &     .or.(itype(i-2).eq.21)))
5986      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5987      &      (itype(i-1).eq.21)))) cycle  
5988         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
5989         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
5990      & cycle
5991         do j=1,nterm_sccor(isccori,isccori1)
5992           v1ij=v1sccor(j,intertyp,isccori,isccori1)
5993           v2ij=v2sccor(j,intertyp,isccori,isccori1)
5994           cosphi=dcos(j*tauangle(intertyp,i))
5995           sinphi=dsin(j*tauangle(intertyp,i))
5996           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5997           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5998         enddo
5999         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6000 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6001 c     &gloc_sc(intertyp,i-3,icg)
6002         if (lprn)
6003      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6004      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6005      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6006      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6007         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6008        enddo !intertyp
6009       enddo
6010 c        do i=1,nres
6011 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc_sc(2,i,icg),
6012 c     &   gloc_sc(3,i,icg)
6013 c        enddo
6014       return
6015       end
6016 c----------------------------------------------------------------------------
6017       subroutine multibody(ecorr)
6018 C This subroutine calculates multi-body contributions to energy following
6019 C the idea of Skolnick et al. If side chains I and J make a contact and
6020 C at the same time side chains I+1 and J+1 make a contact, an extra 
6021 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6022       implicit real*8 (a-h,o-z)
6023       include 'DIMENSIONS'
6024       include 'COMMON.IOUNITS'
6025       include 'COMMON.DERIV'
6026       include 'COMMON.INTERACT'
6027       include 'COMMON.CONTACTS'
6028       double precision gx(3),gx1(3)
6029       logical lprn
6030
6031 C Set lprn=.true. for debugging
6032       lprn=.false.
6033
6034       if (lprn) then
6035         write (iout,'(a)') 'Contact function values:'
6036         do i=nnt,nct-2
6037           write (iout,'(i2,20(1x,i2,f10.5))') 
6038      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6039         enddo
6040       endif
6041       ecorr=0.0D0
6042       do i=nnt,nct
6043         do j=1,3
6044           gradcorr(j,i)=0.0D0
6045           gradxorr(j,i)=0.0D0
6046         enddo
6047       enddo
6048       do i=nnt,nct-2
6049
6050         DO ISHIFT = 3,4
6051
6052         i1=i+ishift
6053         num_conti=num_cont(i)
6054         num_conti1=num_cont(i1)
6055         do jj=1,num_conti
6056           j=jcont(jj,i)
6057           do kk=1,num_conti1
6058             j1=jcont(kk,i1)
6059             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6060 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6061 cd   &                   ' ishift=',ishift
6062 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6063 C The system gains extra energy.
6064               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6065             endif   ! j1==j+-ishift
6066           enddo     ! kk  
6067         enddo       ! jj
6068
6069         ENDDO ! ISHIFT
6070
6071       enddo         ! i
6072       return
6073       end
6074 c------------------------------------------------------------------------------
6075       double precision function esccorr(i,j,k,l,jj,kk)
6076       implicit real*8 (a-h,o-z)
6077       include 'DIMENSIONS'
6078       include 'COMMON.IOUNITS'
6079       include 'COMMON.DERIV'
6080       include 'COMMON.INTERACT'
6081       include 'COMMON.CONTACTS'
6082       double precision gx(3),gx1(3)
6083       logical lprn
6084       lprn=.false.
6085       eij=facont(jj,i)
6086       ekl=facont(kk,k)
6087 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6088 C Calculate the multi-body contribution to energy.
6089 C Calculate multi-body contributions to the gradient.
6090 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6091 cd   & k,l,(gacont(m,kk,k),m=1,3)
6092       do m=1,3
6093         gx(m) =ekl*gacont(m,jj,i)
6094         gx1(m)=eij*gacont(m,kk,k)
6095         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6096         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6097         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6098         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6099       enddo
6100       do m=i,j-1
6101         do ll=1,3
6102           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6103         enddo
6104       enddo
6105       do m=k,l-1
6106         do ll=1,3
6107           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6108         enddo
6109       enddo 
6110       esccorr=-eij*ekl
6111       return
6112       end
6113 c------------------------------------------------------------------------------
6114       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6115 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6116       implicit real*8 (a-h,o-z)
6117       include 'DIMENSIONS'
6118       include 'COMMON.IOUNITS'
6119 #ifdef MPI
6120       include "mpif.h"
6121       parameter (max_cont=maxconts)
6122       parameter (max_dim=26)
6123       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6124       double precision zapas(max_dim,maxconts,max_fg_procs),
6125      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6126       common /przechowalnia/ zapas
6127       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6128      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6129 #endif
6130       include 'COMMON.SETUP'
6131       include 'COMMON.FFIELD'
6132       include 'COMMON.DERIV'
6133       include 'COMMON.INTERACT'
6134       include 'COMMON.CONTACTS'
6135       include 'COMMON.CONTROL'
6136       include 'COMMON.LOCAL'
6137       double precision gx(3),gx1(3),time00
6138       logical lprn,ldone
6139
6140 C Set lprn=.true. for debugging
6141       lprn=.false.
6142 #ifdef MPI
6143       n_corr=0
6144       n_corr1=0
6145       if (nfgtasks.le.1) goto 30
6146       if (lprn) then
6147         write (iout,'(a)') 'Contact function values before RECEIVE:'
6148         do i=nnt,nct-2
6149           write (iout,'(2i3,50(1x,i2,f5.2))') 
6150      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6151      &    j=1,num_cont_hb(i))
6152         enddo
6153       endif
6154       call flush(iout)
6155       do i=1,ntask_cont_from
6156         ncont_recv(i)=0
6157       enddo
6158       do i=1,ntask_cont_to
6159         ncont_sent(i)=0
6160       enddo
6161 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6162 c     & ntask_cont_to
6163 C Make the list of contacts to send to send to other procesors
6164 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6165 c      call flush(iout)
6166       do i=iturn3_start,iturn3_end
6167 c        write (iout,*) "make contact list turn3",i," num_cont",
6168 c     &    num_cont_hb(i)
6169         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6170       enddo
6171       do i=iturn4_start,iturn4_end
6172 c        write (iout,*) "make contact list turn4",i," num_cont",
6173 c     &   num_cont_hb(i)
6174         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6175       enddo
6176       do ii=1,nat_sent
6177         i=iat_sent(ii)
6178 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6179 c     &    num_cont_hb(i)
6180         do j=1,num_cont_hb(i)
6181         do k=1,4
6182           jjc=jcont_hb(j,i)
6183           iproc=iint_sent_local(k,jjc,ii)
6184 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6185           if (iproc.gt.0) then
6186             ncont_sent(iproc)=ncont_sent(iproc)+1
6187             nn=ncont_sent(iproc)
6188             zapas(1,nn,iproc)=i
6189             zapas(2,nn,iproc)=jjc
6190             zapas(3,nn,iproc)=facont_hb(j,i)
6191             zapas(4,nn,iproc)=ees0p(j,i)
6192             zapas(5,nn,iproc)=ees0m(j,i)
6193             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6194             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6195             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6196             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6197             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6198             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6199             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6200             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6201             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6202             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6203             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6204             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6205             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6206             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6207             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6208             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6209             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6210             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6211             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6212             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6213             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6214           endif
6215         enddo
6216         enddo
6217       enddo
6218       if (lprn) then
6219       write (iout,*) 
6220      &  "Numbers of contacts to be sent to other processors",
6221      &  (ncont_sent(i),i=1,ntask_cont_to)
6222       write (iout,*) "Contacts sent"
6223       do ii=1,ntask_cont_to
6224         nn=ncont_sent(ii)
6225         iproc=itask_cont_to(ii)
6226         write (iout,*) nn," contacts to processor",iproc,
6227      &   " of CONT_TO_COMM group"
6228         do i=1,nn
6229           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6230         enddo
6231       enddo
6232       call flush(iout)
6233       endif
6234       CorrelType=477
6235       CorrelID=fg_rank+1
6236       CorrelType1=478
6237       CorrelID1=nfgtasks+fg_rank+1
6238       ireq=0
6239 C Receive the numbers of needed contacts from other processors 
6240       do ii=1,ntask_cont_from
6241         iproc=itask_cont_from(ii)
6242         ireq=ireq+1
6243         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6244      &    FG_COMM,req(ireq),IERR)
6245       enddo
6246 c      write (iout,*) "IRECV ended"
6247 c      call flush(iout)
6248 C Send the number of contacts needed by other processors
6249       do ii=1,ntask_cont_to
6250         iproc=itask_cont_to(ii)
6251         ireq=ireq+1
6252         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6253      &    FG_COMM,req(ireq),IERR)
6254       enddo
6255 c      write (iout,*) "ISEND ended"
6256 c      write (iout,*) "number of requests (nn)",ireq
6257       call flush(iout)
6258       if (ireq.gt.0) 
6259      &  call MPI_Waitall(ireq,req,status_array,ierr)
6260 c      write (iout,*) 
6261 c     &  "Numbers of contacts to be received from other processors",
6262 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6263 c      call flush(iout)
6264 C Receive contacts
6265       ireq=0
6266       do ii=1,ntask_cont_from
6267         iproc=itask_cont_from(ii)
6268         nn=ncont_recv(ii)
6269 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6270 c     &   " of CONT_TO_COMM group"
6271         call flush(iout)
6272         if (nn.gt.0) then
6273           ireq=ireq+1
6274           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6275      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6276 c          write (iout,*) "ireq,req",ireq,req(ireq)
6277         endif
6278       enddo
6279 C Send the contacts to processors that need them
6280       do ii=1,ntask_cont_to
6281         iproc=itask_cont_to(ii)
6282         nn=ncont_sent(ii)
6283 c        write (iout,*) nn," contacts to processor",iproc,
6284 c     &   " of CONT_TO_COMM group"
6285         if (nn.gt.0) then
6286           ireq=ireq+1 
6287           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6288      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6289 c          write (iout,*) "ireq,req",ireq,req(ireq)
6290 c          do i=1,nn
6291 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6292 c          enddo
6293         endif  
6294       enddo
6295 c      write (iout,*) "number of requests (contacts)",ireq
6296 c      write (iout,*) "req",(req(i),i=1,4)
6297 c      call flush(iout)
6298       if (ireq.gt.0) 
6299      & call MPI_Waitall(ireq,req,status_array,ierr)
6300       do iii=1,ntask_cont_from
6301         iproc=itask_cont_from(iii)
6302         nn=ncont_recv(iii)
6303         if (lprn) then
6304         write (iout,*) "Received",nn," contacts from processor",iproc,
6305      &   " of CONT_FROM_COMM group"
6306         call flush(iout)
6307         do i=1,nn
6308           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6309         enddo
6310         call flush(iout)
6311         endif
6312         do i=1,nn
6313           ii=zapas_recv(1,i,iii)
6314 c Flag the received contacts to prevent double-counting
6315           jj=-zapas_recv(2,i,iii)
6316 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6317 c          call flush(iout)
6318           nnn=num_cont_hb(ii)+1
6319           num_cont_hb(ii)=nnn
6320           jcont_hb(nnn,ii)=jj
6321           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6322           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6323           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6324           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6325           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6326           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6327           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6328           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6329           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6330           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6331           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6332           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6333           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6334           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6335           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6336           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6337           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6338           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6339           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6340           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6341           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6342           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6343           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6344           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6345         enddo
6346       enddo
6347       call flush(iout)
6348       if (lprn) then
6349         write (iout,'(a)') 'Contact function values after receive:'
6350         do i=nnt,nct-2
6351           write (iout,'(2i3,50(1x,i3,f5.2))') 
6352      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6353      &    j=1,num_cont_hb(i))
6354         enddo
6355         call flush(iout)
6356       endif
6357    30 continue
6358 #endif
6359       if (lprn) then
6360         write (iout,'(a)') 'Contact function values:'
6361         do i=nnt,nct-2
6362           write (iout,'(2i3,50(1x,i3,f5.2))') 
6363      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6364      &    j=1,num_cont_hb(i))
6365         enddo
6366       endif
6367       ecorr=0.0D0
6368 C Remove the loop below after debugging !!!
6369       do i=nnt,nct
6370         do j=1,3
6371           gradcorr(j,i)=0.0D0
6372           gradxorr(j,i)=0.0D0
6373         enddo
6374       enddo
6375 C Calculate the local-electrostatic correlation terms
6376       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6377         i1=i+1
6378         num_conti=num_cont_hb(i)
6379         num_conti1=num_cont_hb(i+1)
6380         do jj=1,num_conti
6381           j=jcont_hb(jj,i)
6382           jp=iabs(j)
6383           do kk=1,num_conti1
6384             j1=jcont_hb(kk,i1)
6385             jp1=iabs(j1)
6386 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6387 c     &         ' jj=',jj,' kk=',kk
6388             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6389      &          .or. j.lt.0 .and. j1.gt.0) .and.
6390      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6391 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6392 C The system gains extra energy.
6393               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6394               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6395      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6396               n_corr=n_corr+1
6397             else if (j1.eq.j) then
6398 C Contacts I-J and I-(J+1) occur simultaneously. 
6399 C The system loses extra energy.
6400 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6401             endif
6402           enddo ! kk
6403           do kk=1,num_conti
6404             j1=jcont_hb(kk,i)
6405 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6406 c    &         ' jj=',jj,' kk=',kk
6407             if (j1.eq.j+1) then
6408 C Contacts I-J and (I+1)-J occur simultaneously. 
6409 C The system loses extra energy.
6410 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6411             endif ! j1==j+1
6412           enddo ! kk
6413         enddo ! jj
6414       enddo ! i
6415       return
6416       end
6417 c------------------------------------------------------------------------------
6418       subroutine add_hb_contact(ii,jj,itask)
6419       implicit real*8 (a-h,o-z)
6420       include "DIMENSIONS"
6421       include "COMMON.IOUNITS"
6422       integer max_cont
6423       integer max_dim
6424       parameter (max_cont=maxconts)
6425       parameter (max_dim=26)
6426       include "COMMON.CONTACTS"
6427       double precision zapas(max_dim,maxconts,max_fg_procs),
6428      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6429       common /przechowalnia/ zapas
6430       integer i,j,ii,jj,iproc,itask(4),nn
6431 c      write (iout,*) "itask",itask
6432       do i=1,2
6433         iproc=itask(i)
6434         if (iproc.gt.0) then
6435           do j=1,num_cont_hb(ii)
6436             jjc=jcont_hb(j,ii)
6437 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6438             if (jjc.eq.jj) then
6439               ncont_sent(iproc)=ncont_sent(iproc)+1
6440               nn=ncont_sent(iproc)
6441               zapas(1,nn,iproc)=ii
6442               zapas(2,nn,iproc)=jjc
6443               zapas(3,nn,iproc)=facont_hb(j,ii)
6444               zapas(4,nn,iproc)=ees0p(j,ii)
6445               zapas(5,nn,iproc)=ees0m(j,ii)
6446               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6447               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6448               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6449               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6450               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6451               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6452               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6453               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6454               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6455               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6456               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6457               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6458               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6459               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6460               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6461               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6462               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6463               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6464               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6465               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6466               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6467               exit
6468             endif
6469           enddo
6470         endif
6471       enddo
6472       return
6473       end
6474 c------------------------------------------------------------------------------
6475       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6476      &  n_corr1)
6477 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6478       implicit real*8 (a-h,o-z)
6479       include 'DIMENSIONS'
6480       include 'COMMON.IOUNITS'
6481 #ifdef MPI
6482       include "mpif.h"
6483       parameter (max_cont=maxconts)
6484       parameter (max_dim=70)
6485       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6486       double precision zapas(max_dim,maxconts,max_fg_procs),
6487      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6488       common /przechowalnia/ zapas
6489       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6490      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6491 #endif
6492       include 'COMMON.SETUP'
6493       include 'COMMON.FFIELD'
6494       include 'COMMON.DERIV'
6495       include 'COMMON.LOCAL'
6496       include 'COMMON.INTERACT'
6497       include 'COMMON.CONTACTS'
6498       include 'COMMON.CHAIN'
6499       include 'COMMON.CONTROL'
6500       double precision gx(3),gx1(3)
6501       integer num_cont_hb_old(maxres)
6502       logical lprn,ldone
6503       double precision eello4,eello5,eelo6,eello_turn6
6504       external eello4,eello5,eello6,eello_turn6
6505 C Set lprn=.true. for debugging
6506       lprn=.false.
6507       eturn6=0.0d0
6508 #ifdef MPI
6509       do i=1,nres
6510         num_cont_hb_old(i)=num_cont_hb(i)
6511       enddo
6512       n_corr=0
6513       n_corr1=0
6514       if (nfgtasks.le.1) goto 30
6515       if (lprn) then
6516         write (iout,'(a)') 'Contact function values before RECEIVE:'
6517         do i=nnt,nct-2
6518           write (iout,'(2i3,50(1x,i2,f5.2))') 
6519      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6520      &    j=1,num_cont_hb(i))
6521         enddo
6522       endif
6523       call flush(iout)
6524       do i=1,ntask_cont_from
6525         ncont_recv(i)=0
6526       enddo
6527       do i=1,ntask_cont_to
6528         ncont_sent(i)=0
6529       enddo
6530 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6531 c     & ntask_cont_to
6532 C Make the list of contacts to send to send to other procesors
6533       do i=iturn3_start,iturn3_end
6534 c        write (iout,*) "make contact list turn3",i," num_cont",
6535 c     &    num_cont_hb(i)
6536         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6537       enddo
6538       do i=iturn4_start,iturn4_end
6539 c        write (iout,*) "make contact list turn4",i," num_cont",
6540 c     &   num_cont_hb(i)
6541         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6542       enddo
6543       do ii=1,nat_sent
6544         i=iat_sent(ii)
6545 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6546 c     &    num_cont_hb(i)
6547         do j=1,num_cont_hb(i)
6548         do k=1,4
6549           jjc=jcont_hb(j,i)
6550           iproc=iint_sent_local(k,jjc,ii)
6551 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6552           if (iproc.ne.0) then
6553             ncont_sent(iproc)=ncont_sent(iproc)+1
6554             nn=ncont_sent(iproc)
6555             zapas(1,nn,iproc)=i
6556             zapas(2,nn,iproc)=jjc
6557             zapas(3,nn,iproc)=d_cont(j,i)
6558             ind=3
6559             do kk=1,3
6560               ind=ind+1
6561               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6562             enddo
6563             do kk=1,2
6564               do ll=1,2
6565                 ind=ind+1
6566                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6567               enddo
6568             enddo
6569             do jj=1,5
6570               do kk=1,3
6571                 do ll=1,2
6572                   do mm=1,2
6573                     ind=ind+1
6574                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6575                   enddo
6576                 enddo
6577               enddo
6578             enddo
6579           endif
6580         enddo
6581         enddo
6582       enddo
6583       if (lprn) then
6584       write (iout,*) 
6585      &  "Numbers of contacts to be sent to other processors",
6586      &  (ncont_sent(i),i=1,ntask_cont_to)
6587       write (iout,*) "Contacts sent"
6588       do ii=1,ntask_cont_to
6589         nn=ncont_sent(ii)
6590         iproc=itask_cont_to(ii)
6591         write (iout,*) nn," contacts to processor",iproc,
6592      &   " of CONT_TO_COMM group"
6593         do i=1,nn
6594           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6595         enddo
6596       enddo
6597       call flush(iout)
6598       endif
6599       CorrelType=477
6600       CorrelID=fg_rank+1
6601       CorrelType1=478
6602       CorrelID1=nfgtasks+fg_rank+1
6603       ireq=0
6604 C Receive the numbers of needed contacts from other processors 
6605       do ii=1,ntask_cont_from
6606         iproc=itask_cont_from(ii)
6607         ireq=ireq+1
6608         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6609      &    FG_COMM,req(ireq),IERR)
6610       enddo
6611 c      write (iout,*) "IRECV ended"
6612 c      call flush(iout)
6613 C Send the number of contacts needed by other processors
6614       do ii=1,ntask_cont_to
6615         iproc=itask_cont_to(ii)
6616         ireq=ireq+1
6617         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6618      &    FG_COMM,req(ireq),IERR)
6619       enddo
6620 c      write (iout,*) "ISEND ended"
6621 c      write (iout,*) "number of requests (nn)",ireq
6622       call flush(iout)
6623       if (ireq.gt.0) 
6624      &  call MPI_Waitall(ireq,req,status_array,ierr)
6625 c      write (iout,*) 
6626 c     &  "Numbers of contacts to be received from other processors",
6627 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6628 c      call flush(iout)
6629 C Receive contacts
6630       ireq=0
6631       do ii=1,ntask_cont_from
6632         iproc=itask_cont_from(ii)
6633         nn=ncont_recv(ii)
6634 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6635 c     &   " of CONT_TO_COMM group"
6636         call flush(iout)
6637         if (nn.gt.0) then
6638           ireq=ireq+1
6639           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6640      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6641 c          write (iout,*) "ireq,req",ireq,req(ireq)
6642         endif
6643       enddo
6644 C Send the contacts to processors that need them
6645       do ii=1,ntask_cont_to
6646         iproc=itask_cont_to(ii)
6647         nn=ncont_sent(ii)
6648 c        write (iout,*) nn," contacts to processor",iproc,
6649 c     &   " of CONT_TO_COMM group"
6650         if (nn.gt.0) then
6651           ireq=ireq+1 
6652           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6653      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6654 c          write (iout,*) "ireq,req",ireq,req(ireq)
6655 c          do i=1,nn
6656 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6657 c          enddo
6658         endif  
6659       enddo
6660 c      write (iout,*) "number of requests (contacts)",ireq
6661 c      write (iout,*) "req",(req(i),i=1,4)
6662 c      call flush(iout)
6663       if (ireq.gt.0) 
6664      & call MPI_Waitall(ireq,req,status_array,ierr)
6665       do iii=1,ntask_cont_from
6666         iproc=itask_cont_from(iii)
6667         nn=ncont_recv(iii)
6668         if (lprn) then
6669         write (iout,*) "Received",nn," contacts from processor",iproc,
6670      &   " of CONT_FROM_COMM group"
6671         call flush(iout)
6672         do i=1,nn
6673           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6674         enddo
6675         call flush(iout)
6676         endif
6677         do i=1,nn
6678           ii=zapas_recv(1,i,iii)
6679 c Flag the received contacts to prevent double-counting
6680           jj=-zapas_recv(2,i,iii)
6681 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6682 c          call flush(iout)
6683           nnn=num_cont_hb(ii)+1
6684           num_cont_hb(ii)=nnn
6685           jcont_hb(nnn,ii)=jj
6686           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6687           ind=3
6688           do kk=1,3
6689             ind=ind+1
6690             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6691           enddo
6692           do kk=1,2
6693             do ll=1,2
6694               ind=ind+1
6695               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6696             enddo
6697           enddo
6698           do jj=1,5
6699             do kk=1,3
6700               do ll=1,2
6701                 do mm=1,2
6702                   ind=ind+1
6703                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6704                 enddo
6705               enddo
6706             enddo
6707           enddo
6708         enddo
6709       enddo
6710       call flush(iout)
6711       if (lprn) then
6712         write (iout,'(a)') 'Contact function values after receive:'
6713         do i=nnt,nct-2
6714           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6715      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6716      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6717         enddo
6718         call flush(iout)
6719       endif
6720    30 continue
6721 #endif
6722       if (lprn) then
6723         write (iout,'(a)') 'Contact function values:'
6724         do i=nnt,nct-2
6725           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6726      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6727      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6728         enddo
6729       endif
6730       ecorr=0.0D0
6731       ecorr5=0.0d0
6732       ecorr6=0.0d0
6733 C Remove the loop below after debugging !!!
6734       do i=nnt,nct
6735         do j=1,3
6736           gradcorr(j,i)=0.0D0
6737           gradxorr(j,i)=0.0D0
6738         enddo
6739       enddo
6740 C Calculate the dipole-dipole interaction energies
6741       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6742       do i=iatel_s,iatel_e+1
6743         num_conti=num_cont_hb(i)
6744         do jj=1,num_conti
6745           j=jcont_hb(jj,i)
6746 #ifdef MOMENT
6747           call dipole(i,j,jj)
6748 #endif
6749         enddo
6750       enddo
6751       endif
6752 C Calculate the local-electrostatic correlation terms
6753 c                write (iout,*) "gradcorr5 in eello5 before loop"
6754 c                do iii=1,nres
6755 c                  write (iout,'(i5,3f10.5)') 
6756 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6757 c                enddo
6758       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6759 c        write (iout,*) "corr loop i",i
6760         i1=i+1
6761         num_conti=num_cont_hb(i)
6762         num_conti1=num_cont_hb(i+1)
6763         do jj=1,num_conti
6764           j=jcont_hb(jj,i)
6765           jp=iabs(j)
6766           do kk=1,num_conti1
6767             j1=jcont_hb(kk,i1)
6768             jp1=iabs(j1)
6769 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6770 c     &         ' jj=',jj,' kk=',kk
6771 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6772             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6773      &          .or. j.lt.0 .and. j1.gt.0) .and.
6774      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6775 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6776 C The system gains extra energy.
6777               n_corr=n_corr+1
6778               sqd1=dsqrt(d_cont(jj,i))
6779               sqd2=dsqrt(d_cont(kk,i1))
6780               sred_geom = sqd1*sqd2
6781               IF (sred_geom.lt.cutoff_corr) THEN
6782                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6783      &            ekont,fprimcont)
6784 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6785 cd     &         ' jj=',jj,' kk=',kk
6786                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6787                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6788                 do l=1,3
6789                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6790                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6791                 enddo
6792                 n_corr1=n_corr1+1
6793 cd               write (iout,*) 'sred_geom=',sred_geom,
6794 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6795 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6796 cd               write (iout,*) "g_contij",g_contij
6797 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6798 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6799                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6800                 if (wcorr4.gt.0.0d0) 
6801      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6802                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6803      1                 write (iout,'(a6,4i5,0pf7.3)')
6804      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6805 c                write (iout,*) "gradcorr5 before eello5"
6806 c                do iii=1,nres
6807 c                  write (iout,'(i5,3f10.5)') 
6808 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6809 c                enddo
6810                 if (wcorr5.gt.0.0d0)
6811      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6812 c                write (iout,*) "gradcorr5 after eello5"
6813 c                do iii=1,nres
6814 c                  write (iout,'(i5,3f10.5)') 
6815 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6816 c                enddo
6817                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6818      1                 write (iout,'(a6,4i5,0pf7.3)')
6819      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6820 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6821 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6822                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6823      &               .or. wturn6.eq.0.0d0))then
6824 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6825                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6826                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6827      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6828 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6829 cd     &            'ecorr6=',ecorr6
6830 cd                write (iout,'(4e15.5)') sred_geom,
6831 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6832 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6833 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6834                 else if (wturn6.gt.0.0d0
6835      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6836 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6837                   eturn6=eturn6+eello_turn6(i,jj,kk)
6838                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6839      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6840 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6841                 endif
6842               ENDIF
6843 1111          continue
6844             endif
6845           enddo ! kk
6846         enddo ! jj
6847       enddo ! i
6848       do i=1,nres
6849         num_cont_hb(i)=num_cont_hb_old(i)
6850       enddo
6851 c                write (iout,*) "gradcorr5 in eello5"
6852 c                do iii=1,nres
6853 c                  write (iout,'(i5,3f10.5)') 
6854 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6855 c                enddo
6856       return
6857       end
6858 c------------------------------------------------------------------------------
6859       subroutine add_hb_contact_eello(ii,jj,itask)
6860       implicit real*8 (a-h,o-z)
6861       include "DIMENSIONS"
6862       include "COMMON.IOUNITS"
6863       integer max_cont
6864       integer max_dim
6865       parameter (max_cont=maxconts)
6866       parameter (max_dim=70)
6867       include "COMMON.CONTACTS"
6868       double precision zapas(max_dim,maxconts,max_fg_procs),
6869      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6870       common /przechowalnia/ zapas
6871       integer i,j,ii,jj,iproc,itask(4),nn
6872 c      write (iout,*) "itask",itask
6873       do i=1,2
6874         iproc=itask(i)
6875         if (iproc.gt.0) then
6876           do j=1,num_cont_hb(ii)
6877             jjc=jcont_hb(j,ii)
6878 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6879             if (jjc.eq.jj) then
6880               ncont_sent(iproc)=ncont_sent(iproc)+1
6881               nn=ncont_sent(iproc)
6882               zapas(1,nn,iproc)=ii
6883               zapas(2,nn,iproc)=jjc
6884               zapas(3,nn,iproc)=d_cont(j,ii)
6885               ind=3
6886               do kk=1,3
6887                 ind=ind+1
6888                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6889               enddo
6890               do kk=1,2
6891                 do ll=1,2
6892                   ind=ind+1
6893                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6894                 enddo
6895               enddo
6896               do jj=1,5
6897                 do kk=1,3
6898                   do ll=1,2
6899                     do mm=1,2
6900                       ind=ind+1
6901                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6902                     enddo
6903                   enddo
6904                 enddo
6905               enddo
6906               exit
6907             endif
6908           enddo
6909         endif
6910       enddo
6911       return
6912       end
6913 c------------------------------------------------------------------------------
6914       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6915       implicit real*8 (a-h,o-z)
6916       include 'DIMENSIONS'
6917       include 'COMMON.IOUNITS'
6918       include 'COMMON.DERIV'
6919       include 'COMMON.INTERACT'
6920       include 'COMMON.CONTACTS'
6921       double precision gx(3),gx1(3)
6922       logical lprn
6923       lprn=.false.
6924       eij=facont_hb(jj,i)
6925       ekl=facont_hb(kk,k)
6926       ees0pij=ees0p(jj,i)
6927       ees0pkl=ees0p(kk,k)
6928       ees0mij=ees0m(jj,i)
6929       ees0mkl=ees0m(kk,k)
6930       ekont=eij*ekl
6931       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6932 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6933 C Following 4 lines for diagnostics.
6934 cd    ees0pkl=0.0D0
6935 cd    ees0pij=1.0D0
6936 cd    ees0mkl=0.0D0
6937 cd    ees0mij=1.0D0
6938 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6939 c     & 'Contacts ',i,j,
6940 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6941 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6942 c     & 'gradcorr_long'
6943 C Calculate the multi-body contribution to energy.
6944 c      ecorr=ecorr+ekont*ees
6945 C Calculate multi-body contributions to the gradient.
6946       coeffpees0pij=coeffp*ees0pij
6947       coeffmees0mij=coeffm*ees0mij
6948       coeffpees0pkl=coeffp*ees0pkl
6949       coeffmees0mkl=coeffm*ees0mkl
6950       do ll=1,3
6951 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6952         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6953      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6954      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6955         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6956      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6957      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6958 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6959         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6960      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6961      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6962         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6963      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6964      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6965         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6966      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6967      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6968         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6969         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6970         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6971      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6972      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6973         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6974         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6975 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6976       enddo
6977 c      write (iout,*)
6978 cgrad      do m=i+1,j-1
6979 cgrad        do ll=1,3
6980 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6981 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6982 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6983 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6984 cgrad        enddo
6985 cgrad      enddo
6986 cgrad      do m=k+1,l-1
6987 cgrad        do ll=1,3
6988 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6989 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6990 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6991 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6992 cgrad        enddo
6993 cgrad      enddo 
6994 c      write (iout,*) "ehbcorr",ekont*ees
6995       ehbcorr=ekont*ees
6996       return
6997       end
6998 #ifdef MOMENT
6999 C---------------------------------------------------------------------------
7000       subroutine dipole(i,j,jj)
7001       implicit real*8 (a-h,o-z)
7002       include 'DIMENSIONS'
7003       include 'COMMON.IOUNITS'
7004       include 'COMMON.CHAIN'
7005       include 'COMMON.FFIELD'
7006       include 'COMMON.DERIV'
7007       include 'COMMON.INTERACT'
7008       include 'COMMON.CONTACTS'
7009       include 'COMMON.TORSION'
7010       include 'COMMON.VAR'
7011       include 'COMMON.GEO'
7012       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7013      &  auxmat(2,2)
7014       iti1 = itortyp(itype(i+1))
7015       if (j.lt.nres-1) then
7016         itj1 = itortyp(itype(j+1))
7017       else
7018         itj1=ntortyp+1
7019       endif
7020       do iii=1,2
7021         dipi(iii,1)=Ub2(iii,i)
7022         dipderi(iii)=Ub2der(iii,i)
7023         dipi(iii,2)=b1(iii,iti1)
7024         dipj(iii,1)=Ub2(iii,j)
7025         dipderj(iii)=Ub2der(iii,j)
7026         dipj(iii,2)=b1(iii,itj1)
7027       enddo
7028       kkk=0
7029       do iii=1,2
7030         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7031         do jjj=1,2
7032           kkk=kkk+1
7033           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7034         enddo
7035       enddo
7036       do kkk=1,5
7037         do lll=1,3
7038           mmm=0
7039           do iii=1,2
7040             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7041      &        auxvec(1))
7042             do jjj=1,2
7043               mmm=mmm+1
7044               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7045             enddo
7046           enddo
7047         enddo
7048       enddo
7049       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7050       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7051       do iii=1,2
7052         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7053       enddo
7054       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7055       do iii=1,2
7056         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7057       enddo
7058       return
7059       end
7060 #endif
7061 C---------------------------------------------------------------------------
7062       subroutine calc_eello(i,j,k,l,jj,kk)
7063
7064 C This subroutine computes matrices and vectors needed to calculate 
7065 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7066 C
7067       implicit real*8 (a-h,o-z)
7068       include 'DIMENSIONS'
7069       include 'COMMON.IOUNITS'
7070       include 'COMMON.CHAIN'
7071       include 'COMMON.DERIV'
7072       include 'COMMON.INTERACT'
7073       include 'COMMON.CONTACTS'
7074       include 'COMMON.TORSION'
7075       include 'COMMON.VAR'
7076       include 'COMMON.GEO'
7077       include 'COMMON.FFIELD'
7078       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7079      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7080       logical lprn
7081       common /kutas/ lprn
7082 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7083 cd     & ' jj=',jj,' kk=',kk
7084 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7085 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7086 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7087       do iii=1,2
7088         do jjj=1,2
7089           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7090           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7091         enddo
7092       enddo
7093       call transpose2(aa1(1,1),aa1t(1,1))
7094       call transpose2(aa2(1,1),aa2t(1,1))
7095       do kkk=1,5
7096         do lll=1,3
7097           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7098      &      aa1tder(1,1,lll,kkk))
7099           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7100      &      aa2tder(1,1,lll,kkk))
7101         enddo
7102       enddo 
7103       if (l.eq.j+1) then
7104 C parallel orientation of the two CA-CA-CA frames.
7105         if (i.gt.1) then
7106           iti=itortyp(itype(i))
7107         else
7108           iti=ntortyp+1
7109         endif
7110         itk1=itortyp(itype(k+1))
7111         itj=itortyp(itype(j))
7112         if (l.lt.nres-1) then
7113           itl1=itortyp(itype(l+1))
7114         else
7115           itl1=ntortyp+1
7116         endif
7117 C A1 kernel(j+1) A2T
7118 cd        do iii=1,2
7119 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7120 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7121 cd        enddo
7122         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7123      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7124      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7125 C Following matrices are needed only for 6-th order cumulants
7126         IF (wcorr6.gt.0.0d0) THEN
7127         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7128      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7129      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7130         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7131      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7132      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7133      &   ADtEAderx(1,1,1,1,1,1))
7134         lprn=.false.
7135         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7136      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7137      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7138      &   ADtEA1derx(1,1,1,1,1,1))
7139         ENDIF
7140 C End 6-th order cumulants
7141 cd        lprn=.false.
7142 cd        if (lprn) then
7143 cd        write (2,*) 'In calc_eello6'
7144 cd        do iii=1,2
7145 cd          write (2,*) 'iii=',iii
7146 cd          do kkk=1,5
7147 cd            write (2,*) 'kkk=',kkk
7148 cd            do jjj=1,2
7149 cd              write (2,'(3(2f10.5),5x)') 
7150 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7151 cd            enddo
7152 cd          enddo
7153 cd        enddo
7154 cd        endif
7155         call transpose2(EUgder(1,1,k),auxmat(1,1))
7156         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7157         call transpose2(EUg(1,1,k),auxmat(1,1))
7158         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7159         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7160         do iii=1,2
7161           do kkk=1,5
7162             do lll=1,3
7163               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7164      &          EAEAderx(1,1,lll,kkk,iii,1))
7165             enddo
7166           enddo
7167         enddo
7168 C A1T kernel(i+1) A2
7169         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7170      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7171      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7172 C Following matrices are needed only for 6-th order cumulants
7173         IF (wcorr6.gt.0.0d0) THEN
7174         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7175      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7176      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7177         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7178      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7179      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7180      &   ADtEAderx(1,1,1,1,1,2))
7181         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7182      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7183      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7184      &   ADtEA1derx(1,1,1,1,1,2))
7185         ENDIF
7186 C End 6-th order cumulants
7187         call transpose2(EUgder(1,1,l),auxmat(1,1))
7188         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7189         call transpose2(EUg(1,1,l),auxmat(1,1))
7190         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7191         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7192         do iii=1,2
7193           do kkk=1,5
7194             do lll=1,3
7195               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7196      &          EAEAderx(1,1,lll,kkk,iii,2))
7197             enddo
7198           enddo
7199         enddo
7200 C AEAb1 and AEAb2
7201 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7202 C They are needed only when the fifth- or the sixth-order cumulants are
7203 C indluded.
7204         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7205         call transpose2(AEA(1,1,1),auxmat(1,1))
7206         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7207         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7208         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7209         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7210         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7211         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7212         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7213         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7214         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7215         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7216         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7217         call transpose2(AEA(1,1,2),auxmat(1,1))
7218         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7219         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7220         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7221         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7222         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7223         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7224         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7225         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7226         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7227         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7228         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7229 C Calculate the Cartesian derivatives of the vectors.
7230         do iii=1,2
7231           do kkk=1,5
7232             do lll=1,3
7233               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7234               call matvec2(auxmat(1,1),b1(1,iti),
7235      &          AEAb1derx(1,lll,kkk,iii,1,1))
7236               call matvec2(auxmat(1,1),Ub2(1,i),
7237      &          AEAb2derx(1,lll,kkk,iii,1,1))
7238               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7239      &          AEAb1derx(1,lll,kkk,iii,2,1))
7240               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7241      &          AEAb2derx(1,lll,kkk,iii,2,1))
7242               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7243               call matvec2(auxmat(1,1),b1(1,itj),
7244      &          AEAb1derx(1,lll,kkk,iii,1,2))
7245               call matvec2(auxmat(1,1),Ub2(1,j),
7246      &          AEAb2derx(1,lll,kkk,iii,1,2))
7247               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7248      &          AEAb1derx(1,lll,kkk,iii,2,2))
7249               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7250      &          AEAb2derx(1,lll,kkk,iii,2,2))
7251             enddo
7252           enddo
7253         enddo
7254         ENDIF
7255 C End vectors
7256       else
7257 C Antiparallel orientation of the two CA-CA-CA frames.
7258         if (i.gt.1) then
7259           iti=itortyp(itype(i))
7260         else
7261           iti=ntortyp+1
7262         endif
7263         itk1=itortyp(itype(k+1))
7264         itl=itortyp(itype(l))
7265         itj=itortyp(itype(j))
7266         if (j.lt.nres-1) then
7267           itj1=itortyp(itype(j+1))
7268         else 
7269           itj1=ntortyp+1
7270         endif
7271 C A2 kernel(j-1)T A1T
7272         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7273      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7274      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7275 C Following matrices are needed only for 6-th order cumulants
7276         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7277      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7278         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7279      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7280      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7281         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7282      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7283      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7284      &   ADtEAderx(1,1,1,1,1,1))
7285         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7286      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7287      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7288      &   ADtEA1derx(1,1,1,1,1,1))
7289         ENDIF
7290 C End 6-th order cumulants
7291         call transpose2(EUgder(1,1,k),auxmat(1,1))
7292         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7293         call transpose2(EUg(1,1,k),auxmat(1,1))
7294         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7295         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7296         do iii=1,2
7297           do kkk=1,5
7298             do lll=1,3
7299               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7300      &          EAEAderx(1,1,lll,kkk,iii,1))
7301             enddo
7302           enddo
7303         enddo
7304 C A2T kernel(i+1)T A1
7305         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7306      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7307      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7308 C Following matrices are needed only for 6-th order cumulants
7309         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7310      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7311         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7312      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7313      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7314         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7315      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7316      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7317      &   ADtEAderx(1,1,1,1,1,2))
7318         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7319      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7320      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7321      &   ADtEA1derx(1,1,1,1,1,2))
7322         ENDIF
7323 C End 6-th order cumulants
7324         call transpose2(EUgder(1,1,j),auxmat(1,1))
7325         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7326         call transpose2(EUg(1,1,j),auxmat(1,1))
7327         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7328         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7329         do iii=1,2
7330           do kkk=1,5
7331             do lll=1,3
7332               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7333      &          EAEAderx(1,1,lll,kkk,iii,2))
7334             enddo
7335           enddo
7336         enddo
7337 C AEAb1 and AEAb2
7338 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7339 C They are needed only when the fifth- or the sixth-order cumulants are
7340 C indluded.
7341         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7342      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7343         call transpose2(AEA(1,1,1),auxmat(1,1))
7344         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7345         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7346         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7347         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7348         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7349         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7350         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7351         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7352         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7353         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7354         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7355         call transpose2(AEA(1,1,2),auxmat(1,1))
7356         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7357         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7358         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7359         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7360         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7361         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7362         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7363         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7364         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7365         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7366         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7367 C Calculate the Cartesian derivatives of the vectors.
7368         do iii=1,2
7369           do kkk=1,5
7370             do lll=1,3
7371               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7372               call matvec2(auxmat(1,1),b1(1,iti),
7373      &          AEAb1derx(1,lll,kkk,iii,1,1))
7374               call matvec2(auxmat(1,1),Ub2(1,i),
7375      &          AEAb2derx(1,lll,kkk,iii,1,1))
7376               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7377      &          AEAb1derx(1,lll,kkk,iii,2,1))
7378               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7379      &          AEAb2derx(1,lll,kkk,iii,2,1))
7380               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7381               call matvec2(auxmat(1,1),b1(1,itl),
7382      &          AEAb1derx(1,lll,kkk,iii,1,2))
7383               call matvec2(auxmat(1,1),Ub2(1,l),
7384      &          AEAb2derx(1,lll,kkk,iii,1,2))
7385               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7386      &          AEAb1derx(1,lll,kkk,iii,2,2))
7387               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7388      &          AEAb2derx(1,lll,kkk,iii,2,2))
7389             enddo
7390           enddo
7391         enddo
7392         ENDIF
7393 C End vectors
7394       endif
7395       return
7396       end
7397 C---------------------------------------------------------------------------
7398       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7399      &  KK,KKderg,AKA,AKAderg,AKAderx)
7400       implicit none
7401       integer nderg
7402       logical transp
7403       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7404      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7405      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7406       integer iii,kkk,lll
7407       integer jjj,mmm
7408       logical lprn
7409       common /kutas/ lprn
7410       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7411       do iii=1,nderg 
7412         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7413      &    AKAderg(1,1,iii))
7414       enddo
7415 cd      if (lprn) write (2,*) 'In kernel'
7416       do kkk=1,5
7417 cd        if (lprn) write (2,*) 'kkk=',kkk
7418         do lll=1,3
7419           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7420      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7421 cd          if (lprn) then
7422 cd            write (2,*) 'lll=',lll
7423 cd            write (2,*) 'iii=1'
7424 cd            do jjj=1,2
7425 cd              write (2,'(3(2f10.5),5x)') 
7426 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7427 cd            enddo
7428 cd          endif
7429           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7430      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7431 cd          if (lprn) then
7432 cd            write (2,*) 'lll=',lll
7433 cd            write (2,*) 'iii=2'
7434 cd            do jjj=1,2
7435 cd              write (2,'(3(2f10.5),5x)') 
7436 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7437 cd            enddo
7438 cd          endif
7439         enddo
7440       enddo
7441       return
7442       end
7443 C---------------------------------------------------------------------------
7444       double precision function eello4(i,j,k,l,jj,kk)
7445       implicit real*8 (a-h,o-z)
7446       include 'DIMENSIONS'
7447       include 'COMMON.IOUNITS'
7448       include 'COMMON.CHAIN'
7449       include 'COMMON.DERIV'
7450       include 'COMMON.INTERACT'
7451       include 'COMMON.CONTACTS'
7452       include 'COMMON.TORSION'
7453       include 'COMMON.VAR'
7454       include 'COMMON.GEO'
7455       double precision pizda(2,2),ggg1(3),ggg2(3)
7456 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7457 cd        eello4=0.0d0
7458 cd        return
7459 cd      endif
7460 cd      print *,'eello4:',i,j,k,l,jj,kk
7461 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7462 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7463 cold      eij=facont_hb(jj,i)
7464 cold      ekl=facont_hb(kk,k)
7465 cold      ekont=eij*ekl
7466       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7467 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7468       gcorr_loc(k-1)=gcorr_loc(k-1)
7469      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7470       if (l.eq.j+1) then
7471         gcorr_loc(l-1)=gcorr_loc(l-1)
7472      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7473       else
7474         gcorr_loc(j-1)=gcorr_loc(j-1)
7475      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7476       endif
7477       do iii=1,2
7478         do kkk=1,5
7479           do lll=1,3
7480             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7481      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7482 cd            derx(lll,kkk,iii)=0.0d0
7483           enddo
7484         enddo
7485       enddo
7486 cd      gcorr_loc(l-1)=0.0d0
7487 cd      gcorr_loc(j-1)=0.0d0
7488 cd      gcorr_loc(k-1)=0.0d0
7489 cd      eel4=1.0d0
7490 cd      write (iout,*)'Contacts have occurred for peptide groups',
7491 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7492 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7493       if (j.lt.nres-1) then
7494         j1=j+1
7495         j2=j-1
7496       else
7497         j1=j-1
7498         j2=j-2
7499       endif
7500       if (l.lt.nres-1) then
7501         l1=l+1
7502         l2=l-1
7503       else
7504         l1=l-1
7505         l2=l-2
7506       endif
7507       do ll=1,3
7508 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7509 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7510         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7511         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7512 cgrad        ghalf=0.5d0*ggg1(ll)
7513         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7514         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7515         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7516         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7517         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7518         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7519 cgrad        ghalf=0.5d0*ggg2(ll)
7520         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7521         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7522         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7523         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7524         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7525         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7526       enddo
7527 cgrad      do m=i+1,j-1
7528 cgrad        do ll=1,3
7529 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7530 cgrad        enddo
7531 cgrad      enddo
7532 cgrad      do m=k+1,l-1
7533 cgrad        do ll=1,3
7534 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7535 cgrad        enddo
7536 cgrad      enddo
7537 cgrad      do m=i+2,j2
7538 cgrad        do ll=1,3
7539 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7540 cgrad        enddo
7541 cgrad      enddo
7542 cgrad      do m=k+2,l2
7543 cgrad        do ll=1,3
7544 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7545 cgrad        enddo
7546 cgrad      enddo 
7547 cd      do iii=1,nres-3
7548 cd        write (2,*) iii,gcorr_loc(iii)
7549 cd      enddo
7550       eello4=ekont*eel4
7551 cd      write (2,*) 'ekont',ekont
7552 cd      write (iout,*) 'eello4',ekont*eel4
7553       return
7554       end
7555 C---------------------------------------------------------------------------
7556       double precision function eello5(i,j,k,l,jj,kk)
7557       implicit real*8 (a-h,o-z)
7558       include 'DIMENSIONS'
7559       include 'COMMON.IOUNITS'
7560       include 'COMMON.CHAIN'
7561       include 'COMMON.DERIV'
7562       include 'COMMON.INTERACT'
7563       include 'COMMON.CONTACTS'
7564       include 'COMMON.TORSION'
7565       include 'COMMON.VAR'
7566       include 'COMMON.GEO'
7567       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7568       double precision ggg1(3),ggg2(3)
7569 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7570 C                                                                              C
7571 C                            Parallel chains                                   C
7572 C                                                                              C
7573 C          o             o                   o             o                   C
7574 C         /l\           / \             \   / \           / \   /              C
7575 C        /   \         /   \             \ /   \         /   \ /               C
7576 C       j| o |l1       | o |              o| o |         | o |o                C
7577 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7578 C      \i/   \         /   \ /             /   \         /   \                 C
7579 C       o    k1             o                                                  C
7580 C         (I)          (II)                (III)          (IV)                 C
7581 C                                                                              C
7582 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7583 C                                                                              C
7584 C                            Antiparallel chains                               C
7585 C                                                                              C
7586 C          o             o                   o             o                   C
7587 C         /j\           / \             \   / \           / \   /              C
7588 C        /   \         /   \             \ /   \         /   \ /               C
7589 C      j1| o |l        | o |              o| o |         | o |o                C
7590 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7591 C      \i/   \         /   \ /             /   \         /   \                 C
7592 C       o     k1            o                                                  C
7593 C         (I)          (II)                (III)          (IV)                 C
7594 C                                                                              C
7595 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7596 C                                                                              C
7597 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7598 C                                                                              C
7599 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7600 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7601 cd        eello5=0.0d0
7602 cd        return
7603 cd      endif
7604 cd      write (iout,*)
7605 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7606 cd     &   ' and',k,l
7607       itk=itortyp(itype(k))
7608       itl=itortyp(itype(l))
7609       itj=itortyp(itype(j))
7610       eello5_1=0.0d0
7611       eello5_2=0.0d0
7612       eello5_3=0.0d0
7613       eello5_4=0.0d0
7614 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7615 cd     &   eel5_3_num,eel5_4_num)
7616       do iii=1,2
7617         do kkk=1,5
7618           do lll=1,3
7619             derx(lll,kkk,iii)=0.0d0
7620           enddo
7621         enddo
7622       enddo
7623 cd      eij=facont_hb(jj,i)
7624 cd      ekl=facont_hb(kk,k)
7625 cd      ekont=eij*ekl
7626 cd      write (iout,*)'Contacts have occurred for peptide groups',
7627 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7628 cd      goto 1111
7629 C Contribution from the graph I.
7630 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7631 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7632       call transpose2(EUg(1,1,k),auxmat(1,1))
7633       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7634       vv(1)=pizda(1,1)-pizda(2,2)
7635       vv(2)=pizda(1,2)+pizda(2,1)
7636       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7637      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7638 C Explicit gradient in virtual-dihedral angles.
7639       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7640      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7641      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7642       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7643       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7644       vv(1)=pizda(1,1)-pizda(2,2)
7645       vv(2)=pizda(1,2)+pizda(2,1)
7646       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7647      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7648      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7649       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7650       vv(1)=pizda(1,1)-pizda(2,2)
7651       vv(2)=pizda(1,2)+pizda(2,1)
7652       if (l.eq.j+1) then
7653         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7654      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7655      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7656       else
7657         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7658      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7659      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7660       endif 
7661 C Cartesian gradient
7662       do iii=1,2
7663         do kkk=1,5
7664           do lll=1,3
7665             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7666      &        pizda(1,1))
7667             vv(1)=pizda(1,1)-pizda(2,2)
7668             vv(2)=pizda(1,2)+pizda(2,1)
7669             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7670      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7671      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7672           enddo
7673         enddo
7674       enddo
7675 c      goto 1112
7676 c1111  continue
7677 C Contribution from graph II 
7678       call transpose2(EE(1,1,itk),auxmat(1,1))
7679       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7680       vv(1)=pizda(1,1)+pizda(2,2)
7681       vv(2)=pizda(2,1)-pizda(1,2)
7682       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7683      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7684 C Explicit gradient in virtual-dihedral angles.
7685       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7686      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7687       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7688       vv(1)=pizda(1,1)+pizda(2,2)
7689       vv(2)=pizda(2,1)-pizda(1,2)
7690       if (l.eq.j+1) then
7691         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7692      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7693      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7694       else
7695         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7696      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7697      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7698       endif
7699 C Cartesian gradient
7700       do iii=1,2
7701         do kkk=1,5
7702           do lll=1,3
7703             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7704      &        pizda(1,1))
7705             vv(1)=pizda(1,1)+pizda(2,2)
7706             vv(2)=pizda(2,1)-pizda(1,2)
7707             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7708      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7709      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7710           enddo
7711         enddo
7712       enddo
7713 cd      goto 1112
7714 cd1111  continue
7715       if (l.eq.j+1) then
7716 cd        goto 1110
7717 C Parallel orientation
7718 C Contribution from graph III
7719         call transpose2(EUg(1,1,l),auxmat(1,1))
7720         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7721         vv(1)=pizda(1,1)-pizda(2,2)
7722         vv(2)=pizda(1,2)+pizda(2,1)
7723         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7724      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7725 C Explicit gradient in virtual-dihedral angles.
7726         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7727      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7728      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7729         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7730         vv(1)=pizda(1,1)-pizda(2,2)
7731         vv(2)=pizda(1,2)+pizda(2,1)
7732         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7733      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7734      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7735         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7736         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7737         vv(1)=pizda(1,1)-pizda(2,2)
7738         vv(2)=pizda(1,2)+pizda(2,1)
7739         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7740      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7741      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7742 C Cartesian gradient
7743         do iii=1,2
7744           do kkk=1,5
7745             do lll=1,3
7746               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7747      &          pizda(1,1))
7748               vv(1)=pizda(1,1)-pizda(2,2)
7749               vv(2)=pizda(1,2)+pizda(2,1)
7750               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7751      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7752      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7753             enddo
7754           enddo
7755         enddo
7756 cd        goto 1112
7757 C Contribution from graph IV
7758 cd1110    continue
7759         call transpose2(EE(1,1,itl),auxmat(1,1))
7760         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7761         vv(1)=pizda(1,1)+pizda(2,2)
7762         vv(2)=pizda(2,1)-pizda(1,2)
7763         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7764      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7765 C Explicit gradient in virtual-dihedral angles.
7766         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7767      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7768         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7769         vv(1)=pizda(1,1)+pizda(2,2)
7770         vv(2)=pizda(2,1)-pizda(1,2)
7771         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7772      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7773      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7774 C Cartesian gradient
7775         do iii=1,2
7776           do kkk=1,5
7777             do lll=1,3
7778               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7779      &          pizda(1,1))
7780               vv(1)=pizda(1,1)+pizda(2,2)
7781               vv(2)=pizda(2,1)-pizda(1,2)
7782               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7783      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7784      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7785             enddo
7786           enddo
7787         enddo
7788       else
7789 C Antiparallel orientation
7790 C Contribution from graph III
7791 c        goto 1110
7792         call transpose2(EUg(1,1,j),auxmat(1,1))
7793         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7794         vv(1)=pizda(1,1)-pizda(2,2)
7795         vv(2)=pizda(1,2)+pizda(2,1)
7796         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7797      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7798 C Explicit gradient in virtual-dihedral angles.
7799         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7800      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7801      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7802         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7803         vv(1)=pizda(1,1)-pizda(2,2)
7804         vv(2)=pizda(1,2)+pizda(2,1)
7805         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7806      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7807      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7808         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7809         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7810         vv(1)=pizda(1,1)-pizda(2,2)
7811         vv(2)=pizda(1,2)+pizda(2,1)
7812         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7813      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7814      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7815 C Cartesian gradient
7816         do iii=1,2
7817           do kkk=1,5
7818             do lll=1,3
7819               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7820      &          pizda(1,1))
7821               vv(1)=pizda(1,1)-pizda(2,2)
7822               vv(2)=pizda(1,2)+pizda(2,1)
7823               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7824      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7825      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7826             enddo
7827           enddo
7828         enddo
7829 cd        goto 1112
7830 C Contribution from graph IV
7831 1110    continue
7832         call transpose2(EE(1,1,itj),auxmat(1,1))
7833         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7834         vv(1)=pizda(1,1)+pizda(2,2)
7835         vv(2)=pizda(2,1)-pizda(1,2)
7836         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7837      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7838 C Explicit gradient in virtual-dihedral angles.
7839         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7840      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7841         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7842         vv(1)=pizda(1,1)+pizda(2,2)
7843         vv(2)=pizda(2,1)-pizda(1,2)
7844         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7845      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7846      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7847 C Cartesian gradient
7848         do iii=1,2
7849           do kkk=1,5
7850             do lll=1,3
7851               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7852      &          pizda(1,1))
7853               vv(1)=pizda(1,1)+pizda(2,2)
7854               vv(2)=pizda(2,1)-pizda(1,2)
7855               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7856      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7857      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7858             enddo
7859           enddo
7860         enddo
7861       endif
7862 1112  continue
7863       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7864 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7865 cd        write (2,*) 'ijkl',i,j,k,l
7866 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7867 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7868 cd      endif
7869 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7870 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7871 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7872 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7873       if (j.lt.nres-1) then
7874         j1=j+1
7875         j2=j-1
7876       else
7877         j1=j-1
7878         j2=j-2
7879       endif
7880       if (l.lt.nres-1) then
7881         l1=l+1
7882         l2=l-1
7883       else
7884         l1=l-1
7885         l2=l-2
7886       endif
7887 cd      eij=1.0d0
7888 cd      ekl=1.0d0
7889 cd      ekont=1.0d0
7890 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7891 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7892 C        summed up outside the subrouine as for the other subroutines 
7893 C        handling long-range interactions. The old code is commented out
7894 C        with "cgrad" to keep track of changes.
7895       do ll=1,3
7896 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7897 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7898         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7899         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7900 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7901 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7902 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7903 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7904 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7905 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7906 c     &   gradcorr5ij,
7907 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7908 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7909 cgrad        ghalf=0.5d0*ggg1(ll)
7910 cd        ghalf=0.0d0
7911         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7912         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7913         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7914         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7915         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7916         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7917 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7918 cgrad        ghalf=0.5d0*ggg2(ll)
7919 cd        ghalf=0.0d0
7920         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7921         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7922         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7923         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7924         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7925         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7926       enddo
7927 cd      goto 1112
7928 cgrad      do m=i+1,j-1
7929 cgrad        do ll=1,3
7930 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7931 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7932 cgrad        enddo
7933 cgrad      enddo
7934 cgrad      do m=k+1,l-1
7935 cgrad        do ll=1,3
7936 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7937 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7938 cgrad        enddo
7939 cgrad      enddo
7940 c1112  continue
7941 cgrad      do m=i+2,j2
7942 cgrad        do ll=1,3
7943 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7944 cgrad        enddo
7945 cgrad      enddo
7946 cgrad      do m=k+2,l2
7947 cgrad        do ll=1,3
7948 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7949 cgrad        enddo
7950 cgrad      enddo 
7951 cd      do iii=1,nres-3
7952 cd        write (2,*) iii,g_corr5_loc(iii)
7953 cd      enddo
7954       eello5=ekont*eel5
7955 cd      write (2,*) 'ekont',ekont
7956 cd      write (iout,*) 'eello5',ekont*eel5
7957       return
7958       end
7959 c--------------------------------------------------------------------------
7960       double precision function eello6(i,j,k,l,jj,kk)
7961       implicit real*8 (a-h,o-z)
7962       include 'DIMENSIONS'
7963       include 'COMMON.IOUNITS'
7964       include 'COMMON.CHAIN'
7965       include 'COMMON.DERIV'
7966       include 'COMMON.INTERACT'
7967       include 'COMMON.CONTACTS'
7968       include 'COMMON.TORSION'
7969       include 'COMMON.VAR'
7970       include 'COMMON.GEO'
7971       include 'COMMON.FFIELD'
7972       double precision ggg1(3),ggg2(3)
7973 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7974 cd        eello6=0.0d0
7975 cd        return
7976 cd      endif
7977 cd      write (iout,*)
7978 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7979 cd     &   ' and',k,l
7980       eello6_1=0.0d0
7981       eello6_2=0.0d0
7982       eello6_3=0.0d0
7983       eello6_4=0.0d0
7984       eello6_5=0.0d0
7985       eello6_6=0.0d0
7986 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7987 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7988       do iii=1,2
7989         do kkk=1,5
7990           do lll=1,3
7991             derx(lll,kkk,iii)=0.0d0
7992           enddo
7993         enddo
7994       enddo
7995 cd      eij=facont_hb(jj,i)
7996 cd      ekl=facont_hb(kk,k)
7997 cd      ekont=eij*ekl
7998 cd      eij=1.0d0
7999 cd      ekl=1.0d0
8000 cd      ekont=1.0d0
8001       if (l.eq.j+1) then
8002         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8003         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8004         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8005         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8006         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8007         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8008       else
8009         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8010         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8011         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8012         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8013         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8014           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8015         else
8016           eello6_5=0.0d0
8017         endif
8018         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8019       endif
8020 C If turn contributions are considered, they will be handled separately.
8021       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8022 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8023 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8024 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8025 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8026 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8027 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8028 cd      goto 1112
8029       if (j.lt.nres-1) then
8030         j1=j+1
8031         j2=j-1
8032       else
8033         j1=j-1
8034         j2=j-2
8035       endif
8036       if (l.lt.nres-1) then
8037         l1=l+1
8038         l2=l-1
8039       else
8040         l1=l-1
8041         l2=l-2
8042       endif
8043       do ll=1,3
8044 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8045 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8046 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8047 cgrad        ghalf=0.5d0*ggg1(ll)
8048 cd        ghalf=0.0d0
8049         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8050         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8051         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8052         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8053         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8054         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8055         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8056         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8057 cgrad        ghalf=0.5d0*ggg2(ll)
8058 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8059 cd        ghalf=0.0d0
8060         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8061         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8062         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8063         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8064         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8065         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8066       enddo
8067 cd      goto 1112
8068 cgrad      do m=i+1,j-1
8069 cgrad        do ll=1,3
8070 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8071 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8072 cgrad        enddo
8073 cgrad      enddo
8074 cgrad      do m=k+1,l-1
8075 cgrad        do ll=1,3
8076 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8077 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8078 cgrad        enddo
8079 cgrad      enddo
8080 cgrad1112  continue
8081 cgrad      do m=i+2,j2
8082 cgrad        do ll=1,3
8083 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8084 cgrad        enddo
8085 cgrad      enddo
8086 cgrad      do m=k+2,l2
8087 cgrad        do ll=1,3
8088 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8089 cgrad        enddo
8090 cgrad      enddo 
8091 cd      do iii=1,nres-3
8092 cd        write (2,*) iii,g_corr6_loc(iii)
8093 cd      enddo
8094       eello6=ekont*eel6
8095 cd      write (2,*) 'ekont',ekont
8096 cd      write (iout,*) 'eello6',ekont*eel6
8097       return
8098       end
8099 c--------------------------------------------------------------------------
8100       double precision function eello6_graph1(i,j,k,l,imat,swap)
8101       implicit real*8 (a-h,o-z)
8102       include 'DIMENSIONS'
8103       include 'COMMON.IOUNITS'
8104       include 'COMMON.CHAIN'
8105       include 'COMMON.DERIV'
8106       include 'COMMON.INTERACT'
8107       include 'COMMON.CONTACTS'
8108       include 'COMMON.TORSION'
8109       include 'COMMON.VAR'
8110       include 'COMMON.GEO'
8111       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8112       logical swap
8113       logical lprn
8114       common /kutas/ lprn
8115 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8116 C                                              
8117 C      Parallel       Antiparallel
8118 C                                             
8119 C          o             o         
8120 C         /l\           /j\
8121 C        /   \         /   \
8122 C       /| o |         | o |\
8123 C     \ j|/k\|  /   \  |/k\|l /   
8124 C      \ /   \ /     \ /   \ /    
8125 C       o     o       o     o                
8126 C       i             i                     
8127 C
8128 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8129       itk=itortyp(itype(k))
8130       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8131       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8132       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8133       call transpose2(EUgC(1,1,k),auxmat(1,1))
8134       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8135       vv1(1)=pizda1(1,1)-pizda1(2,2)
8136       vv1(2)=pizda1(1,2)+pizda1(2,1)
8137       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8138       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8139       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8140       s5=scalar2(vv(1),Dtobr2(1,i))
8141 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8142       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8143       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8144      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8145      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8146      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8147      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8148      & +scalar2(vv(1),Dtobr2der(1,i)))
8149       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8150       vv1(1)=pizda1(1,1)-pizda1(2,2)
8151       vv1(2)=pizda1(1,2)+pizda1(2,1)
8152       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8153       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8154       if (l.eq.j+1) then
8155         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8156      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8157      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8158      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8159      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8160       else
8161         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8162      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8163      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8164      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8165      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8166       endif
8167       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8168       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8169       vv1(1)=pizda1(1,1)-pizda1(2,2)
8170       vv1(2)=pizda1(1,2)+pizda1(2,1)
8171       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8172      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8173      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8174      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8175       do iii=1,2
8176         if (swap) then
8177           ind=3-iii
8178         else
8179           ind=iii
8180         endif
8181         do kkk=1,5
8182           do lll=1,3
8183             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8184             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8185             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8186             call transpose2(EUgC(1,1,k),auxmat(1,1))
8187             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8188      &        pizda1(1,1))
8189             vv1(1)=pizda1(1,1)-pizda1(2,2)
8190             vv1(2)=pizda1(1,2)+pizda1(2,1)
8191             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8192             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8193      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8194             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8195      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8196             s5=scalar2(vv(1),Dtobr2(1,i))
8197             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8198           enddo
8199         enddo
8200       enddo
8201       return
8202       end
8203 c----------------------------------------------------------------------------
8204       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8205       implicit real*8 (a-h,o-z)
8206       include 'DIMENSIONS'
8207       include 'COMMON.IOUNITS'
8208       include 'COMMON.CHAIN'
8209       include 'COMMON.DERIV'
8210       include 'COMMON.INTERACT'
8211       include 'COMMON.CONTACTS'
8212       include 'COMMON.TORSION'
8213       include 'COMMON.VAR'
8214       include 'COMMON.GEO'
8215       logical swap
8216       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8217      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8218       logical lprn
8219       common /kutas/ lprn
8220 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8221 C                                                                              C
8222 C      Parallel       Antiparallel                                             C
8223 C                                                                              C
8224 C          o             o                                                     C
8225 C     \   /l\           /j\   /                                                C
8226 C      \ /   \         /   \ /                                                 C
8227 C       o| o |         | o |o                                                  C                
8228 C     \ j|/k\|      \  |/k\|l                                                  C
8229 C      \ /   \       \ /   \                                                   C
8230 C       o             o                                                        C
8231 C       i             i                                                        C 
8232 C                                                                              C           
8233 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8234 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8235 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8236 C           but not in a cluster cumulant
8237 #ifdef MOMENT
8238       s1=dip(1,jj,i)*dip(1,kk,k)
8239 #endif
8240       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8241       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8242       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8243       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8244       call transpose2(EUg(1,1,k),auxmat(1,1))
8245       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8246       vv(1)=pizda(1,1)-pizda(2,2)
8247       vv(2)=pizda(1,2)+pizda(2,1)
8248       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8249 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8250 #ifdef MOMENT
8251       eello6_graph2=-(s1+s2+s3+s4)
8252 #else
8253       eello6_graph2=-(s2+s3+s4)
8254 #endif
8255 c      eello6_graph2=-s3
8256 C Derivatives in gamma(i-1)
8257       if (i.gt.1) then
8258 #ifdef MOMENT
8259         s1=dipderg(1,jj,i)*dip(1,kk,k)
8260 #endif
8261         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8262         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8263         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8264         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8265 #ifdef MOMENT
8266         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8267 #else
8268         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8269 #endif
8270 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8271       endif
8272 C Derivatives in gamma(k-1)
8273 #ifdef MOMENT
8274       s1=dip(1,jj,i)*dipderg(1,kk,k)
8275 #endif
8276       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8277       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8278       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8279       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8280       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8281       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8282       vv(1)=pizda(1,1)-pizda(2,2)
8283       vv(2)=pizda(1,2)+pizda(2,1)
8284       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8285 #ifdef MOMENT
8286       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8287 #else
8288       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8289 #endif
8290 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8291 C Derivatives in gamma(j-1) or gamma(l-1)
8292       if (j.gt.1) then
8293 #ifdef MOMENT
8294         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8295 #endif
8296         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8297         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8298         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8299         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8300         vv(1)=pizda(1,1)-pizda(2,2)
8301         vv(2)=pizda(1,2)+pizda(2,1)
8302         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8303 #ifdef MOMENT
8304         if (swap) then
8305           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8306         else
8307           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8308         endif
8309 #endif
8310         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8311 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8312       endif
8313 C Derivatives in gamma(l-1) or gamma(j-1)
8314       if (l.gt.1) then 
8315 #ifdef MOMENT
8316         s1=dip(1,jj,i)*dipderg(3,kk,k)
8317 #endif
8318         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8319         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8320         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8321         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8322         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8323         vv(1)=pizda(1,1)-pizda(2,2)
8324         vv(2)=pizda(1,2)+pizda(2,1)
8325         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8326 #ifdef MOMENT
8327         if (swap) then
8328           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8329         else
8330           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8331         endif
8332 #endif
8333         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8334 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8335       endif
8336 C Cartesian derivatives.
8337       if (lprn) then
8338         write (2,*) 'In eello6_graph2'
8339         do iii=1,2
8340           write (2,*) 'iii=',iii
8341           do kkk=1,5
8342             write (2,*) 'kkk=',kkk
8343             do jjj=1,2
8344               write (2,'(3(2f10.5),5x)') 
8345      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8346             enddo
8347           enddo
8348         enddo
8349       endif
8350       do iii=1,2
8351         do kkk=1,5
8352           do lll=1,3
8353 #ifdef MOMENT
8354             if (iii.eq.1) then
8355               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8356             else
8357               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8358             endif
8359 #endif
8360             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8361      &        auxvec(1))
8362             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8363             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8364      &        auxvec(1))
8365             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8366             call transpose2(EUg(1,1,k),auxmat(1,1))
8367             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8368      &        pizda(1,1))
8369             vv(1)=pizda(1,1)-pizda(2,2)
8370             vv(2)=pizda(1,2)+pizda(2,1)
8371             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8372 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8373 #ifdef MOMENT
8374             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8375 #else
8376             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8377 #endif
8378             if (swap) then
8379               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8380             else
8381               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8382             endif
8383           enddo
8384         enddo
8385       enddo
8386       return
8387       end
8388 c----------------------------------------------------------------------------
8389       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8390       implicit real*8 (a-h,o-z)
8391       include 'DIMENSIONS'
8392       include 'COMMON.IOUNITS'
8393       include 'COMMON.CHAIN'
8394       include 'COMMON.DERIV'
8395       include 'COMMON.INTERACT'
8396       include 'COMMON.CONTACTS'
8397       include 'COMMON.TORSION'
8398       include 'COMMON.VAR'
8399       include 'COMMON.GEO'
8400       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8401       logical swap
8402 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8403 C                                                                              C 
8404 C      Parallel       Antiparallel                                             C
8405 C                                                                              C
8406 C          o             o                                                     C 
8407 C         /l\   /   \   /j\                                                    C 
8408 C        /   \ /     \ /   \                                                   C
8409 C       /| o |o       o| o |\                                                  C
8410 C       j|/k\|  /      |/k\|l /                                                C
8411 C        /   \ /       /   \ /                                                 C
8412 C       /     o       /     o                                                  C
8413 C       i             i                                                        C
8414 C                                                                              C
8415 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8416 C
8417 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8418 C           energy moment and not to the cluster cumulant.
8419       iti=itortyp(itype(i))
8420       if (j.lt.nres-1) then
8421         itj1=itortyp(itype(j+1))
8422       else
8423         itj1=ntortyp+1
8424       endif
8425       itk=itortyp(itype(k))
8426       itk1=itortyp(itype(k+1))
8427       if (l.lt.nres-1) then
8428         itl1=itortyp(itype(l+1))
8429       else
8430         itl1=ntortyp+1
8431       endif
8432 #ifdef MOMENT
8433       s1=dip(4,jj,i)*dip(4,kk,k)
8434 #endif
8435       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8436       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8437       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8438       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8439       call transpose2(EE(1,1,itk),auxmat(1,1))
8440       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8441       vv(1)=pizda(1,1)+pizda(2,2)
8442       vv(2)=pizda(2,1)-pizda(1,2)
8443       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8444 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8445 cd     & "sum",-(s2+s3+s4)
8446 #ifdef MOMENT
8447       eello6_graph3=-(s1+s2+s3+s4)
8448 #else
8449       eello6_graph3=-(s2+s3+s4)
8450 #endif
8451 c      eello6_graph3=-s4
8452 C Derivatives in gamma(k-1)
8453       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8454       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8455       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8456       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8457 C Derivatives in gamma(l-1)
8458       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8459       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8460       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8461       vv(1)=pizda(1,1)+pizda(2,2)
8462       vv(2)=pizda(2,1)-pizda(1,2)
8463       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8464       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8465 C Cartesian derivatives.
8466       do iii=1,2
8467         do kkk=1,5
8468           do lll=1,3
8469 #ifdef MOMENT
8470             if (iii.eq.1) then
8471               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8472             else
8473               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8474             endif
8475 #endif
8476             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8477      &        auxvec(1))
8478             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8479             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8480      &        auxvec(1))
8481             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8482             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8483      &        pizda(1,1))
8484             vv(1)=pizda(1,1)+pizda(2,2)
8485             vv(2)=pizda(2,1)-pizda(1,2)
8486             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8487 #ifdef MOMENT
8488             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8489 #else
8490             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8491 #endif
8492             if (swap) then
8493               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8494             else
8495               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8496             endif
8497 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8498           enddo
8499         enddo
8500       enddo
8501       return
8502       end
8503 c----------------------------------------------------------------------------
8504       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8505       implicit real*8 (a-h,o-z)
8506       include 'DIMENSIONS'
8507       include 'COMMON.IOUNITS'
8508       include 'COMMON.CHAIN'
8509       include 'COMMON.DERIV'
8510       include 'COMMON.INTERACT'
8511       include 'COMMON.CONTACTS'
8512       include 'COMMON.TORSION'
8513       include 'COMMON.VAR'
8514       include 'COMMON.GEO'
8515       include 'COMMON.FFIELD'
8516       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8517      & auxvec1(2),auxmat1(2,2)
8518       logical swap
8519 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8520 C                                                                              C                       
8521 C      Parallel       Antiparallel                                             C
8522 C                                                                              C
8523 C          o             o                                                     C
8524 C         /l\   /   \   /j\                                                    C
8525 C        /   \ /     \ /   \                                                   C
8526 C       /| o |o       o| o |\                                                  C
8527 C     \ j|/k\|      \  |/k\|l                                                  C
8528 C      \ /   \       \ /   \                                                   C 
8529 C       o     \       o     \                                                  C
8530 C       i             i                                                        C
8531 C                                                                              C 
8532 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8533 C
8534 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8535 C           energy moment and not to the cluster cumulant.
8536 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8537       iti=itortyp(itype(i))
8538       itj=itortyp(itype(j))
8539       if (j.lt.nres-1) then
8540         itj1=itortyp(itype(j+1))
8541       else
8542         itj1=ntortyp+1
8543       endif
8544       itk=itortyp(itype(k))
8545       if (k.lt.nres-1) then
8546         itk1=itortyp(itype(k+1))
8547       else
8548         itk1=ntortyp+1
8549       endif
8550       itl=itortyp(itype(l))
8551       if (l.lt.nres-1) then
8552         itl1=itortyp(itype(l+1))
8553       else
8554         itl1=ntortyp+1
8555       endif
8556 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8557 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8558 cd     & ' itl',itl,' itl1',itl1
8559 #ifdef MOMENT
8560       if (imat.eq.1) then
8561         s1=dip(3,jj,i)*dip(3,kk,k)
8562       else
8563         s1=dip(2,jj,j)*dip(2,kk,l)
8564       endif
8565 #endif
8566       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8567       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8568       if (j.eq.l+1) then
8569         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8570         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8571       else
8572         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8573         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8574       endif
8575       call transpose2(EUg(1,1,k),auxmat(1,1))
8576       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8577       vv(1)=pizda(1,1)-pizda(2,2)
8578       vv(2)=pizda(2,1)+pizda(1,2)
8579       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8580 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8581 #ifdef MOMENT
8582       eello6_graph4=-(s1+s2+s3+s4)
8583 #else
8584       eello6_graph4=-(s2+s3+s4)
8585 #endif
8586 C Derivatives in gamma(i-1)
8587       if (i.gt.1) then
8588 #ifdef MOMENT
8589         if (imat.eq.1) then
8590           s1=dipderg(2,jj,i)*dip(3,kk,k)
8591         else
8592           s1=dipderg(4,jj,j)*dip(2,kk,l)
8593         endif
8594 #endif
8595         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8596         if (j.eq.l+1) then
8597           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8598           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8599         else
8600           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8601           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8602         endif
8603         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8604         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8605 cd          write (2,*) 'turn6 derivatives'
8606 #ifdef MOMENT
8607           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8608 #else
8609           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8610 #endif
8611         else
8612 #ifdef MOMENT
8613           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8614 #else
8615           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8616 #endif
8617         endif
8618       endif
8619 C Derivatives in gamma(k-1)
8620 #ifdef MOMENT
8621       if (imat.eq.1) then
8622         s1=dip(3,jj,i)*dipderg(2,kk,k)
8623       else
8624         s1=dip(2,jj,j)*dipderg(4,kk,l)
8625       endif
8626 #endif
8627       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8628       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8629       if (j.eq.l+1) then
8630         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8631         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8632       else
8633         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8634         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8635       endif
8636       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8637       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8638       vv(1)=pizda(1,1)-pizda(2,2)
8639       vv(2)=pizda(2,1)+pizda(1,2)
8640       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8641       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8642 #ifdef MOMENT
8643         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8644 #else
8645         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8646 #endif
8647       else
8648 #ifdef MOMENT
8649         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8650 #else
8651         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8652 #endif
8653       endif
8654 C Derivatives in gamma(j-1) or gamma(l-1)
8655       if (l.eq.j+1 .and. l.gt.1) then
8656         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8657         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8658         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8659         vv(1)=pizda(1,1)-pizda(2,2)
8660         vv(2)=pizda(2,1)+pizda(1,2)
8661         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8662         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8663       else if (j.gt.1) then
8664         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8665         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8666         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8667         vv(1)=pizda(1,1)-pizda(2,2)
8668         vv(2)=pizda(2,1)+pizda(1,2)
8669         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8670         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8671           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8672         else
8673           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8674         endif
8675       endif
8676 C Cartesian derivatives.
8677       do iii=1,2
8678         do kkk=1,5
8679           do lll=1,3
8680 #ifdef MOMENT
8681             if (iii.eq.1) then
8682               if (imat.eq.1) then
8683                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8684               else
8685                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8686               endif
8687             else
8688               if (imat.eq.1) then
8689                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8690               else
8691                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8692               endif
8693             endif
8694 #endif
8695             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8696      &        auxvec(1))
8697             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8698             if (j.eq.l+1) then
8699               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8700      &          b1(1,itj1),auxvec(1))
8701               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8702             else
8703               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8704      &          b1(1,itl1),auxvec(1))
8705               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8706             endif
8707             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8708      &        pizda(1,1))
8709             vv(1)=pizda(1,1)-pizda(2,2)
8710             vv(2)=pizda(2,1)+pizda(1,2)
8711             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8712             if (swap) then
8713               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8714 #ifdef MOMENT
8715                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8716      &             -(s1+s2+s4)
8717 #else
8718                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8719      &             -(s2+s4)
8720 #endif
8721                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8722               else
8723 #ifdef MOMENT
8724                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8725 #else
8726                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8727 #endif
8728                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8729               endif
8730             else
8731 #ifdef MOMENT
8732               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8733 #else
8734               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8735 #endif
8736               if (l.eq.j+1) then
8737                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8738               else 
8739                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8740               endif
8741             endif 
8742           enddo
8743         enddo
8744       enddo
8745       return
8746       end
8747 c----------------------------------------------------------------------------
8748       double precision function eello_turn6(i,jj,kk)
8749       implicit real*8 (a-h,o-z)
8750       include 'DIMENSIONS'
8751       include 'COMMON.IOUNITS'
8752       include 'COMMON.CHAIN'
8753       include 'COMMON.DERIV'
8754       include 'COMMON.INTERACT'
8755       include 'COMMON.CONTACTS'
8756       include 'COMMON.TORSION'
8757       include 'COMMON.VAR'
8758       include 'COMMON.GEO'
8759       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8760      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8761      &  ggg1(3),ggg2(3)
8762       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8763      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8764 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8765 C           the respective energy moment and not to the cluster cumulant.
8766       s1=0.0d0
8767       s8=0.0d0
8768       s13=0.0d0
8769 c
8770       eello_turn6=0.0d0
8771       j=i+4
8772       k=i+1
8773       l=i+3
8774       iti=itortyp(itype(i))
8775       itk=itortyp(itype(k))
8776       itk1=itortyp(itype(k+1))
8777       itl=itortyp(itype(l))
8778       itj=itortyp(itype(j))
8779 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8780 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8781 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8782 cd        eello6=0.0d0
8783 cd        return
8784 cd      endif
8785 cd      write (iout,*)
8786 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8787 cd     &   ' and',k,l
8788 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8789       do iii=1,2
8790         do kkk=1,5
8791           do lll=1,3
8792             derx_turn(lll,kkk,iii)=0.0d0
8793           enddo
8794         enddo
8795       enddo
8796 cd      eij=1.0d0
8797 cd      ekl=1.0d0
8798 cd      ekont=1.0d0
8799       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8800 cd      eello6_5=0.0d0
8801 cd      write (2,*) 'eello6_5',eello6_5
8802 #ifdef MOMENT
8803       call transpose2(AEA(1,1,1),auxmat(1,1))
8804       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8805       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8806       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8807 #endif
8808       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8809       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8810       s2 = scalar2(b1(1,itk),vtemp1(1))
8811 #ifdef MOMENT
8812       call transpose2(AEA(1,1,2),atemp(1,1))
8813       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8814       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8815       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8816 #endif
8817       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8818       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8819       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8820 #ifdef MOMENT
8821       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8822       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8823       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8824       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8825       ss13 = scalar2(b1(1,itk),vtemp4(1))
8826       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8827 #endif
8828 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8829 c      s1=0.0d0
8830 c      s2=0.0d0
8831 c      s8=0.0d0
8832 c      s12=0.0d0
8833 c      s13=0.0d0
8834       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8835 C Derivatives in gamma(i+2)
8836       s1d =0.0d0
8837       s8d =0.0d0
8838 #ifdef MOMENT
8839       call transpose2(AEA(1,1,1),auxmatd(1,1))
8840       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8841       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8842       call transpose2(AEAderg(1,1,2),atempd(1,1))
8843       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8844       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8845 #endif
8846       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8847       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8848       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8849 c      s1d=0.0d0
8850 c      s2d=0.0d0
8851 c      s8d=0.0d0
8852 c      s12d=0.0d0
8853 c      s13d=0.0d0
8854       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8855 C Derivatives in gamma(i+3)
8856 #ifdef MOMENT
8857       call transpose2(AEA(1,1,1),auxmatd(1,1))
8858       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8859       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8860       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8861 #endif
8862       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8863       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8864       s2d = scalar2(b1(1,itk),vtemp1d(1))
8865 #ifdef MOMENT
8866       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8867       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8868 #endif
8869       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8870 #ifdef MOMENT
8871       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8872       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8873       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8874 #endif
8875 c      s1d=0.0d0
8876 c      s2d=0.0d0
8877 c      s8d=0.0d0
8878 c      s12d=0.0d0
8879 c      s13d=0.0d0
8880 #ifdef MOMENT
8881       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8882      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8883 #else
8884       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8885      &               -0.5d0*ekont*(s2d+s12d)
8886 #endif
8887 C Derivatives in gamma(i+4)
8888       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8889       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8890       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8891 #ifdef MOMENT
8892       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8893       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8894       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8895 #endif
8896 c      s1d=0.0d0
8897 c      s2d=0.0d0
8898 c      s8d=0.0d0
8899 C      s12d=0.0d0
8900 c      s13d=0.0d0
8901 #ifdef MOMENT
8902       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8903 #else
8904       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8905 #endif
8906 C Derivatives in gamma(i+5)
8907 #ifdef MOMENT
8908       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8909       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8910       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8911 #endif
8912       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8913       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8914       s2d = scalar2(b1(1,itk),vtemp1d(1))
8915 #ifdef MOMENT
8916       call transpose2(AEA(1,1,2),atempd(1,1))
8917       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8918       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8919 #endif
8920       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8921       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8922 #ifdef MOMENT
8923       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8924       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8925       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8926 #endif
8927 c      s1d=0.0d0
8928 c      s2d=0.0d0
8929 c      s8d=0.0d0
8930 c      s12d=0.0d0
8931 c      s13d=0.0d0
8932 #ifdef MOMENT
8933       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8934      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8935 #else
8936       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8937      &               -0.5d0*ekont*(s2d+s12d)
8938 #endif
8939 C Cartesian derivatives
8940       do iii=1,2
8941         do kkk=1,5
8942           do lll=1,3
8943 #ifdef MOMENT
8944             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8945             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8946             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8947 #endif
8948             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8949             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8950      &          vtemp1d(1))
8951             s2d = scalar2(b1(1,itk),vtemp1d(1))
8952 #ifdef MOMENT
8953             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8954             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8955             s8d = -(atempd(1,1)+atempd(2,2))*
8956      &           scalar2(cc(1,1,itl),vtemp2(1))
8957 #endif
8958             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8959      &           auxmatd(1,1))
8960             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8961             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8962 c      s1d=0.0d0
8963 c      s2d=0.0d0
8964 c      s8d=0.0d0
8965 c      s12d=0.0d0
8966 c      s13d=0.0d0
8967 #ifdef MOMENT
8968             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8969      &        - 0.5d0*(s1d+s2d)
8970 #else
8971             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8972      &        - 0.5d0*s2d
8973 #endif
8974 #ifdef MOMENT
8975             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8976      &        - 0.5d0*(s8d+s12d)
8977 #else
8978             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8979      &        - 0.5d0*s12d
8980 #endif
8981           enddo
8982         enddo
8983       enddo
8984 #ifdef MOMENT
8985       do kkk=1,5
8986         do lll=1,3
8987           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8988      &      achuj_tempd(1,1))
8989           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8990           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8991           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8992           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8993           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8994      &      vtemp4d(1)) 
8995           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8996           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8997           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8998         enddo
8999       enddo
9000 #endif
9001 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9002 cd     &  16*eel_turn6_num
9003 cd      goto 1112
9004       if (j.lt.nres-1) then
9005         j1=j+1
9006         j2=j-1
9007       else
9008         j1=j-1
9009         j2=j-2
9010       endif
9011       if (l.lt.nres-1) then
9012         l1=l+1
9013         l2=l-1
9014       else
9015         l1=l-1
9016         l2=l-2
9017       endif
9018       do ll=1,3
9019 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9020 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9021 cgrad        ghalf=0.5d0*ggg1(ll)
9022 cd        ghalf=0.0d0
9023         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9024         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9025         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9026      &    +ekont*derx_turn(ll,2,1)
9027         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9028         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9029      &    +ekont*derx_turn(ll,4,1)
9030         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9031         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9032         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9033 cgrad        ghalf=0.5d0*ggg2(ll)
9034 cd        ghalf=0.0d0
9035         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9036      &    +ekont*derx_turn(ll,2,2)
9037         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9038         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9039      &    +ekont*derx_turn(ll,4,2)
9040         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9041         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9042         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9043       enddo
9044 cd      goto 1112
9045 cgrad      do m=i+1,j-1
9046 cgrad        do ll=1,3
9047 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9048 cgrad        enddo
9049 cgrad      enddo
9050 cgrad      do m=k+1,l-1
9051 cgrad        do ll=1,3
9052 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9053 cgrad        enddo
9054 cgrad      enddo
9055 cgrad1112  continue
9056 cgrad      do m=i+2,j2
9057 cgrad        do ll=1,3
9058 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9059 cgrad        enddo
9060 cgrad      enddo
9061 cgrad      do m=k+2,l2
9062 cgrad        do ll=1,3
9063 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9064 cgrad        enddo
9065 cgrad      enddo 
9066 cd      do iii=1,nres-3
9067 cd        write (2,*) iii,g_corr6_loc(iii)
9068 cd      enddo
9069       eello_turn6=ekont*eel_turn6
9070 cd      write (2,*) 'ekont',ekont
9071 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9072       return
9073       end
9074
9075 C-----------------------------------------------------------------------------
9076       double precision function scalar(u,v)
9077 !DIR$ INLINEALWAYS scalar
9078 #ifndef OSF
9079 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9080 #endif
9081       implicit none
9082       double precision u(3),v(3)
9083 cd      double precision sc
9084 cd      integer i
9085 cd      sc=0.0d0
9086 cd      do i=1,3
9087 cd        sc=sc+u(i)*v(i)
9088 cd      enddo
9089 cd      scalar=sc
9090
9091       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9092       return
9093       end
9094 crc-------------------------------------------------
9095       SUBROUTINE MATVEC2(A1,V1,V2)
9096 !DIR$ INLINEALWAYS MATVEC2
9097 #ifndef OSF
9098 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9099 #endif
9100       implicit real*8 (a-h,o-z)
9101       include 'DIMENSIONS'
9102       DIMENSION A1(2,2),V1(2),V2(2)
9103 c      DO 1 I=1,2
9104 c        VI=0.0
9105 c        DO 3 K=1,2
9106 c    3     VI=VI+A1(I,K)*V1(K)
9107 c        Vaux(I)=VI
9108 c    1 CONTINUE
9109
9110       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9111       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9112
9113       v2(1)=vaux1
9114       v2(2)=vaux2
9115       END
9116 C---------------------------------------
9117       SUBROUTINE MATMAT2(A1,A2,A3)
9118 #ifndef OSF
9119 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9120 #endif
9121       implicit real*8 (a-h,o-z)
9122       include 'DIMENSIONS'
9123       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9124 c      DIMENSION AI3(2,2)
9125 c        DO  J=1,2
9126 c          A3IJ=0.0
9127 c          DO K=1,2
9128 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9129 c          enddo
9130 c          A3(I,J)=A3IJ
9131 c       enddo
9132 c      enddo
9133
9134       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9135       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9136       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9137       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9138
9139       A3(1,1)=AI3_11
9140       A3(2,1)=AI3_21
9141       A3(1,2)=AI3_12
9142       A3(2,2)=AI3_22
9143       END
9144
9145 c-------------------------------------------------------------------------
9146       double precision function scalar2(u,v)
9147 !DIR$ INLINEALWAYS scalar2
9148       implicit none
9149       double precision u(2),v(2)
9150       double precision sc
9151       integer i
9152       scalar2=u(1)*v(1)+u(2)*v(2)
9153       return
9154       end
9155
9156 C-----------------------------------------------------------------------------
9157
9158       subroutine transpose2(a,at)
9159 !DIR$ INLINEALWAYS transpose2
9160 #ifndef OSF
9161 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9162 #endif
9163       implicit none
9164       double precision a(2,2),at(2,2)
9165       at(1,1)=a(1,1)
9166       at(1,2)=a(2,1)
9167       at(2,1)=a(1,2)
9168       at(2,2)=a(2,2)
9169       return
9170       end
9171 c--------------------------------------------------------------------------
9172       subroutine transpose(n,a,at)
9173       implicit none
9174       integer n,i,j
9175       double precision a(n,n),at(n,n)
9176       do i=1,n
9177         do j=1,n
9178           at(j,i)=a(i,j)
9179         enddo
9180       enddo
9181       return
9182       end
9183 C---------------------------------------------------------------------------
9184       subroutine prodmat3(a1,a2,kk,transp,prod)
9185 !DIR$ INLINEALWAYS prodmat3
9186 #ifndef OSF
9187 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9188 #endif
9189       implicit none
9190       integer i,j
9191       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9192       logical transp
9193 crc      double precision auxmat(2,2),prod_(2,2)
9194
9195       if (transp) then
9196 crc        call transpose2(kk(1,1),auxmat(1,1))
9197 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9198 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9199         
9200            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9201      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9202            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9203      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9204            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9205      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9206            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9207      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9208
9209       else
9210 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9211 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9212
9213            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9214      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9215            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9216      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9217            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9218      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9219            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9220      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9221
9222       endif
9223 c      call transpose2(a2(1,1),a2t(1,1))
9224
9225 crc      print *,transp
9226 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9227 crc      print *,((prod(i,j),i=1,2),j=1,2)
9228
9229       return
9230       end
9231