Merge branch 'prerelease-3.2.1' of mmka.chem.univ.gda.pl:unres into prerelease-3.2.1
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=itype(j)
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026 C        if (itype(i).eq.21 .or. itype(i+1).eq.21
3027 C     &  .or. itype(i+2).eq.21 .or. itype(i+3).eq.21.or.itype(i+4).eq.21)
3028 C     &  cycle
3029         dxi=dc(1,i)
3030         dyi=dc(2,i)
3031         dzi=dc(3,i)
3032         dx_normi=dc_norm(1,i)
3033         dy_normi=dc_norm(2,i)
3034         dz_normi=dc_norm(3,i)
3035         xmedi=c(1,i)+0.5d0*dxi
3036         ymedi=c(2,i)+0.5d0*dyi
3037         zmedi=c(3,i)+0.5d0*dzi
3038         num_conti=0
3039         call eelecij(i,i+2,ees,evdw1,eel_loc)
3040         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3041         num_cont_hb(i)=num_conti
3042       enddo
3043       do i=iturn4_start,iturn4_end
3044 C        if (itype(i).eq.21 .or. itype(i+1).eq.21
3045 C     &  .or. itype(i+2).eq.21 .or. itype(i+3).eq.21.or.itype(i+4).eq.21
3046 C     &  .or. itype(i+5).eq.21)
3047 C     & cycle
3048         dxi=dc(1,i)
3049         dyi=dc(2,i)
3050         dzi=dc(3,i)
3051         dx_normi=dc_norm(1,i)
3052         dy_normi=dc_norm(2,i)
3053         dz_normi=dc_norm(3,i)
3054         xmedi=c(1,i)+0.5d0*dxi
3055         ymedi=c(2,i)+0.5d0*dyi
3056         zmedi=c(3,i)+0.5d0*dzi
3057         num_conti=num_cont_hb(i)
3058         call eelecij(i,i+3,ees,evdw1,eel_loc)
3059         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3060         num_cont_hb(i)=num_conti
3061       enddo   ! i
3062 c
3063 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3064 c
3065       do i=iatel_s,iatel_e
3066 C          if (itype(i).eq.21 .or. itype(i+1).eq.21
3067 C     &.or.itype(i+2)) cycle
3068         dxi=dc(1,i)
3069         dyi=dc(2,i)
3070         dzi=dc(3,i)
3071         dx_normi=dc_norm(1,i)
3072         dy_normi=dc_norm(2,i)
3073         dz_normi=dc_norm(3,i)
3074         xmedi=c(1,i)+0.5d0*dxi
3075         ymedi=c(2,i)+0.5d0*dyi
3076         zmedi=c(3,i)+0.5d0*dzi
3077 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3078         num_conti=num_cont_hb(i)
3079         do j=ielstart(i),ielend(i)
3080 C          if (itype(j).eq.21 .or. itype(j+1).eq.21
3081 C     &.or.itype(j+2)) cycle
3082           call eelecij(i,j,ees,evdw1,eel_loc)
3083         enddo ! j
3084         num_cont_hb(i)=num_conti
3085       enddo   ! i
3086 c      write (iout,*) "Number of loop steps in EELEC:",ind
3087 cd      do i=1,nres
3088 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3089 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3090 cd      enddo
3091 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3092 ccc      eel_loc=eel_loc+eello_turn3
3093 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3094       return
3095       end
3096 C-------------------------------------------------------------------------------
3097       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3098       implicit real*8 (a-h,o-z)
3099       include 'DIMENSIONS'
3100 #ifdef MPI
3101       include "mpif.h"
3102 #endif
3103       include 'COMMON.CONTROL'
3104       include 'COMMON.IOUNITS'
3105       include 'COMMON.GEO'
3106       include 'COMMON.VAR'
3107       include 'COMMON.LOCAL'
3108       include 'COMMON.CHAIN'
3109       include 'COMMON.DERIV'
3110       include 'COMMON.INTERACT'
3111       include 'COMMON.CONTACTS'
3112       include 'COMMON.TORSION'
3113       include 'COMMON.VECTORS'
3114       include 'COMMON.FFIELD'
3115       include 'COMMON.TIME1'
3116       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3117      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3118       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3119      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3120       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3121      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3122      &    num_conti,j1,j2
3123 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3124 #ifdef MOMENT
3125       double precision scal_el /1.0d0/
3126 #else
3127       double precision scal_el /0.5d0/
3128 #endif
3129 C 12/13/98 
3130 C 13-go grudnia roku pamietnego... 
3131       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3132      &                   0.0d0,1.0d0,0.0d0,
3133      &                   0.0d0,0.0d0,1.0d0/
3134 c          time00=MPI_Wtime()
3135 cd      write (iout,*) "eelecij",i,j
3136 c          ind=ind+1
3137           iteli=itel(i)
3138           itelj=itel(j)
3139           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3140           aaa=app(iteli,itelj)
3141           bbb=bpp(iteli,itelj)
3142           ael6i=ael6(iteli,itelj)
3143           ael3i=ael3(iteli,itelj) 
3144           dxj=dc(1,j)
3145           dyj=dc(2,j)
3146           dzj=dc(3,j)
3147           dx_normj=dc_norm(1,j)
3148           dy_normj=dc_norm(2,j)
3149           dz_normj=dc_norm(3,j)
3150           xj=c(1,j)+0.5D0*dxj-xmedi
3151           yj=c(2,j)+0.5D0*dyj-ymedi
3152           zj=c(3,j)+0.5D0*dzj-zmedi
3153           rij=xj*xj+yj*yj+zj*zj
3154           rrmij=1.0D0/rij
3155           rij=dsqrt(rij)
3156           rmij=1.0D0/rij
3157           r3ij=rrmij*rmij
3158           r6ij=r3ij*r3ij  
3159           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3160           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3161           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3162           fac=cosa-3.0D0*cosb*cosg
3163           ev1=aaa*r6ij*r6ij
3164 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3165           if (j.eq.i+2) ev1=scal_el*ev1
3166           ev2=bbb*r6ij
3167           fac3=ael6i*r6ij
3168           fac4=ael3i*r3ij
3169           evdwij=ev1+ev2
3170           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3171           el2=fac4*fac       
3172           eesij=el1+el2
3173 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3174           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3175           ees=ees+eesij
3176           evdw1=evdw1+evdwij
3177 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3178 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3179 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3180 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3181
3182           if (energy_dec) then 
3183               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3184               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3185           endif
3186
3187 C
3188 C Calculate contributions to the Cartesian gradient.
3189 C
3190 #ifdef SPLITELE
3191           facvdw=-6*rrmij*(ev1+evdwij)
3192           facel=-3*rrmij*(el1+eesij)
3193           fac1=fac
3194           erij(1)=xj*rmij
3195           erij(2)=yj*rmij
3196           erij(3)=zj*rmij
3197 *
3198 * Radial derivatives. First process both termini of the fragment (i,j)
3199 *
3200           ggg(1)=facel*xj
3201           ggg(2)=facel*yj
3202           ggg(3)=facel*zj
3203 c          do k=1,3
3204 c            ghalf=0.5D0*ggg(k)
3205 c            gelc(k,i)=gelc(k,i)+ghalf
3206 c            gelc(k,j)=gelc(k,j)+ghalf
3207 c          enddo
3208 c 9/28/08 AL Gradient compotents will be summed only at the end
3209           do k=1,3
3210             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3211             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3212           enddo
3213 *
3214 * Loop over residues i+1 thru j-1.
3215 *
3216 cgrad          do k=i+1,j-1
3217 cgrad            do l=1,3
3218 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3219 cgrad            enddo
3220 cgrad          enddo
3221           ggg(1)=facvdw*xj
3222           ggg(2)=facvdw*yj
3223           ggg(3)=facvdw*zj
3224 c          do k=1,3
3225 c            ghalf=0.5D0*ggg(k)
3226 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3227 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3228 c          enddo
3229 c 9/28/08 AL Gradient compotents will be summed only at the end
3230           do k=1,3
3231             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3232             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3233           enddo
3234 *
3235 * Loop over residues i+1 thru j-1.
3236 *
3237 cgrad          do k=i+1,j-1
3238 cgrad            do l=1,3
3239 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3240 cgrad            enddo
3241 cgrad          enddo
3242 #else
3243           facvdw=ev1+evdwij 
3244           facel=el1+eesij  
3245           fac1=fac
3246           fac=-3*rrmij*(facvdw+facvdw+facel)
3247           erij(1)=xj*rmij
3248           erij(2)=yj*rmij
3249           erij(3)=zj*rmij
3250 *
3251 * Radial derivatives. First process both termini of the fragment (i,j)
3252
3253           ggg(1)=fac*xj
3254           ggg(2)=fac*yj
3255           ggg(3)=fac*zj
3256 c          do k=1,3
3257 c            ghalf=0.5D0*ggg(k)
3258 c            gelc(k,i)=gelc(k,i)+ghalf
3259 c            gelc(k,j)=gelc(k,j)+ghalf
3260 c          enddo
3261 c 9/28/08 AL Gradient compotents will be summed only at the end
3262           do k=1,3
3263             gelc_long(k,j)=gelc(k,j)+ggg(k)
3264             gelc_long(k,i)=gelc(k,i)-ggg(k)
3265           enddo
3266 *
3267 * Loop over residues i+1 thru j-1.
3268 *
3269 cgrad          do k=i+1,j-1
3270 cgrad            do l=1,3
3271 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3272 cgrad            enddo
3273 cgrad          enddo
3274 c 9/28/08 AL Gradient compotents will be summed only at the end
3275           ggg(1)=facvdw*xj
3276           ggg(2)=facvdw*yj
3277           ggg(3)=facvdw*zj
3278           do k=1,3
3279             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3280             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3281           enddo
3282 #endif
3283 *
3284 * Angular part
3285 *          
3286           ecosa=2.0D0*fac3*fac1+fac4
3287           fac4=-3.0D0*fac4
3288           fac3=-6.0D0*fac3
3289           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3290           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3291           do k=1,3
3292             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3293             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3294           enddo
3295 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3296 cd   &          (dcosg(k),k=1,3)
3297           do k=1,3
3298             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3299           enddo
3300 c          do k=1,3
3301 c            ghalf=0.5D0*ggg(k)
3302 c            gelc(k,i)=gelc(k,i)+ghalf
3303 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3304 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3305 c            gelc(k,j)=gelc(k,j)+ghalf
3306 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3307 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3308 c          enddo
3309 cgrad          do k=i+1,j-1
3310 cgrad            do l=1,3
3311 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3312 cgrad            enddo
3313 cgrad          enddo
3314           do k=1,3
3315             gelc(k,i)=gelc(k,i)
3316      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3317      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3318             gelc(k,j)=gelc(k,j)
3319      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3320      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3321             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3322             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3323           enddo
3324           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3325      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3326      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3327 C
3328 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3329 C   energy of a peptide unit is assumed in the form of a second-order 
3330 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3331 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3332 C   are computed for EVERY pair of non-contiguous peptide groups.
3333 C
3334           if (j.lt.nres-1) then
3335             j1=j+1
3336             j2=j-1
3337           else
3338             j1=j-1
3339             j2=j-2
3340           endif
3341           kkk=0
3342           do k=1,2
3343             do l=1,2
3344               kkk=kkk+1
3345               muij(kkk)=mu(k,i)*mu(l,j)
3346             enddo
3347           enddo  
3348 cd         write (iout,*) 'EELEC: i',i,' j',j
3349 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3350 cd          write(iout,*) 'muij',muij
3351           ury=scalar(uy(1,i),erij)
3352           urz=scalar(uz(1,i),erij)
3353           vry=scalar(uy(1,j),erij)
3354           vrz=scalar(uz(1,j),erij)
3355           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3356           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3357           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3358           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3359           fac=dsqrt(-ael6i)*r3ij
3360           a22=a22*fac
3361           a23=a23*fac
3362           a32=a32*fac
3363           a33=a33*fac
3364 cd          write (iout,'(4i5,4f10.5)')
3365 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3366 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3367 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3368 cd     &      uy(:,j),uz(:,j)
3369 cd          write (iout,'(4f10.5)') 
3370 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3371 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3372 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3373 cd           write (iout,'(9f10.5/)') 
3374 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3375 C Derivatives of the elements of A in virtual-bond vectors
3376           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3377           do k=1,3
3378             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3379             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3380             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3381             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3382             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3383             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3384             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3385             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3386             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3387             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3388             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3389             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3390           enddo
3391 C Compute radial contributions to the gradient
3392           facr=-3.0d0*rrmij
3393           a22der=a22*facr
3394           a23der=a23*facr
3395           a32der=a32*facr
3396           a33der=a33*facr
3397           agg(1,1)=a22der*xj
3398           agg(2,1)=a22der*yj
3399           agg(3,1)=a22der*zj
3400           agg(1,2)=a23der*xj
3401           agg(2,2)=a23der*yj
3402           agg(3,2)=a23der*zj
3403           agg(1,3)=a32der*xj
3404           agg(2,3)=a32der*yj
3405           agg(3,3)=a32der*zj
3406           agg(1,4)=a33der*xj
3407           agg(2,4)=a33der*yj
3408           agg(3,4)=a33der*zj
3409 C Add the contributions coming from er
3410           fac3=-3.0d0*fac
3411           do k=1,3
3412             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3413             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3414             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3415             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3416           enddo
3417           do k=1,3
3418 C Derivatives in DC(i) 
3419 cgrad            ghalf1=0.5d0*agg(k,1)
3420 cgrad            ghalf2=0.5d0*agg(k,2)
3421 cgrad            ghalf3=0.5d0*agg(k,3)
3422 cgrad            ghalf4=0.5d0*agg(k,4)
3423             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3424      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3425             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3426      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3427             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3428      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3429             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3430      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3431 C Derivatives in DC(i+1)
3432             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3433      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3434             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3435      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3436             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3437      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3438             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3439      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3440 C Derivatives in DC(j)
3441             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3442      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3443             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3444      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3445             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3446      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3447             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3448      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3449 C Derivatives in DC(j+1) or DC(nres-1)
3450             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3451      &      -3.0d0*vryg(k,3)*ury)
3452             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3453      &      -3.0d0*vrzg(k,3)*ury)
3454             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3455      &      -3.0d0*vryg(k,3)*urz)
3456             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3457      &      -3.0d0*vrzg(k,3)*urz)
3458 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3459 cgrad              do l=1,4
3460 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3461 cgrad              enddo
3462 cgrad            endif
3463           enddo
3464           acipa(1,1)=a22
3465           acipa(1,2)=a23
3466           acipa(2,1)=a32
3467           acipa(2,2)=a33
3468           a22=-a22
3469           a23=-a23
3470           do l=1,2
3471             do k=1,3
3472               agg(k,l)=-agg(k,l)
3473               aggi(k,l)=-aggi(k,l)
3474               aggi1(k,l)=-aggi1(k,l)
3475               aggj(k,l)=-aggj(k,l)
3476               aggj1(k,l)=-aggj1(k,l)
3477             enddo
3478           enddo
3479           if (j.lt.nres-1) then
3480             a22=-a22
3481             a32=-a32
3482             do l=1,3,2
3483               do k=1,3
3484                 agg(k,l)=-agg(k,l)
3485                 aggi(k,l)=-aggi(k,l)
3486                 aggi1(k,l)=-aggi1(k,l)
3487                 aggj(k,l)=-aggj(k,l)
3488                 aggj1(k,l)=-aggj1(k,l)
3489               enddo
3490             enddo
3491           else
3492             a22=-a22
3493             a23=-a23
3494             a32=-a32
3495             a33=-a33
3496             do l=1,4
3497               do k=1,3
3498                 agg(k,l)=-agg(k,l)
3499                 aggi(k,l)=-aggi(k,l)
3500                 aggi1(k,l)=-aggi1(k,l)
3501                 aggj(k,l)=-aggj(k,l)
3502                 aggj1(k,l)=-aggj1(k,l)
3503               enddo
3504             enddo 
3505           endif    
3506           ENDIF ! WCORR
3507           IF (wel_loc.gt.0.0d0) THEN
3508 C Contribution to the local-electrostatic energy coming from the i-j pair
3509           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3510      &     +a33*muij(4)
3511 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3512
3513           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3514      &            'eelloc',i,j,eel_loc_ij
3515
3516           eel_loc=eel_loc+eel_loc_ij
3517 C Partial derivatives in virtual-bond dihedral angles gamma
3518           if (i.gt.1)
3519      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3520      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3521      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3522           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3523      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3524      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3525 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3526           do l=1,3
3527             ggg(l)=agg(l,1)*muij(1)+
3528      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3529             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3530             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3531 cgrad            ghalf=0.5d0*ggg(l)
3532 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3533 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3534           enddo
3535 cgrad          do k=i+1,j2
3536 cgrad            do l=1,3
3537 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3538 cgrad            enddo
3539 cgrad          enddo
3540 C Remaining derivatives of eello
3541           do l=1,3
3542             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3543      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3544             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3545      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3546             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3547      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3548             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3549      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3550           enddo
3551           ENDIF
3552 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3553 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3554           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3555      &       .and. num_conti.le.maxconts) then
3556 c            write (iout,*) i,j," entered corr"
3557 C
3558 C Calculate the contact function. The ith column of the array JCONT will 
3559 C contain the numbers of atoms that make contacts with the atom I (of numbers
3560 C greater than I). The arrays FACONT and GACONT will contain the values of
3561 C the contact function and its derivative.
3562 c           r0ij=1.02D0*rpp(iteli,itelj)
3563 c           r0ij=1.11D0*rpp(iteli,itelj)
3564             r0ij=2.20D0*rpp(iteli,itelj)
3565 c           r0ij=1.55D0*rpp(iteli,itelj)
3566             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3567             if (fcont.gt.0.0D0) then
3568               num_conti=num_conti+1
3569               if (num_conti.gt.maxconts) then
3570                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3571      &                         ' will skip next contacts for this conf.'
3572               else
3573                 jcont_hb(num_conti,i)=j
3574 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3575 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3576                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3577      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3578 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3579 C  terms.
3580                 d_cont(num_conti,i)=rij
3581 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3582 C     --- Electrostatic-interaction matrix --- 
3583                 a_chuj(1,1,num_conti,i)=a22
3584                 a_chuj(1,2,num_conti,i)=a23
3585                 a_chuj(2,1,num_conti,i)=a32
3586                 a_chuj(2,2,num_conti,i)=a33
3587 C     --- Gradient of rij
3588                 do kkk=1,3
3589                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3590                 enddo
3591                 kkll=0
3592                 do k=1,2
3593                   do l=1,2
3594                     kkll=kkll+1
3595                     do m=1,3
3596                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3597                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3598                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3599                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3600                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3601                     enddo
3602                   enddo
3603                 enddo
3604                 ENDIF
3605                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3606 C Calculate contact energies
3607                 cosa4=4.0D0*cosa
3608                 wij=cosa-3.0D0*cosb*cosg
3609                 cosbg1=cosb+cosg
3610                 cosbg2=cosb-cosg
3611 c               fac3=dsqrt(-ael6i)/r0ij**3     
3612                 fac3=dsqrt(-ael6i)*r3ij
3613 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3614                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3615                 if (ees0tmp.gt.0) then
3616                   ees0pij=dsqrt(ees0tmp)
3617                 else
3618                   ees0pij=0
3619                 endif
3620 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3621                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3622                 if (ees0tmp.gt.0) then
3623                   ees0mij=dsqrt(ees0tmp)
3624                 else
3625                   ees0mij=0
3626                 endif
3627 c               ees0mij=0.0D0
3628                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3629                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3630 C Diagnostics. Comment out or remove after debugging!
3631 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3632 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3633 c               ees0m(num_conti,i)=0.0D0
3634 C End diagnostics.
3635 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3636 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3637 C Angular derivatives of the contact function
3638                 ees0pij1=fac3/ees0pij 
3639                 ees0mij1=fac3/ees0mij
3640                 fac3p=-3.0D0*fac3*rrmij
3641                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3642                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3643 c               ees0mij1=0.0D0
3644                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3645                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3646                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3647                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3648                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3649                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3650                 ecosap=ecosa1+ecosa2
3651                 ecosbp=ecosb1+ecosb2
3652                 ecosgp=ecosg1+ecosg2
3653                 ecosam=ecosa1-ecosa2
3654                 ecosbm=ecosb1-ecosb2
3655                 ecosgm=ecosg1-ecosg2
3656 C Diagnostics
3657 c               ecosap=ecosa1
3658 c               ecosbp=ecosb1
3659 c               ecosgp=ecosg1
3660 c               ecosam=0.0D0
3661 c               ecosbm=0.0D0
3662 c               ecosgm=0.0D0
3663 C End diagnostics
3664                 facont_hb(num_conti,i)=fcont
3665                 fprimcont=fprimcont/rij
3666 cd              facont_hb(num_conti,i)=1.0D0
3667 C Following line is for diagnostics.
3668 cd              fprimcont=0.0D0
3669                 do k=1,3
3670                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3671                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3672                 enddo
3673                 do k=1,3
3674                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3675                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3676                 enddo
3677                 gggp(1)=gggp(1)+ees0pijp*xj
3678                 gggp(2)=gggp(2)+ees0pijp*yj
3679                 gggp(3)=gggp(3)+ees0pijp*zj
3680                 gggm(1)=gggm(1)+ees0mijp*xj
3681                 gggm(2)=gggm(2)+ees0mijp*yj
3682                 gggm(3)=gggm(3)+ees0mijp*zj
3683 C Derivatives due to the contact function
3684                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3685                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3686                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3687                 do k=1,3
3688 c
3689 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3690 c          following the change of gradient-summation algorithm.
3691 c
3692 cgrad                  ghalfp=0.5D0*gggp(k)
3693 cgrad                  ghalfm=0.5D0*gggm(k)
3694                   gacontp_hb1(k,num_conti,i)=!ghalfp
3695      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3696      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3697                   gacontp_hb2(k,num_conti,i)=!ghalfp
3698      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3699      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3700                   gacontp_hb3(k,num_conti,i)=gggp(k)
3701                   gacontm_hb1(k,num_conti,i)=!ghalfm
3702      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3703      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3704                   gacontm_hb2(k,num_conti,i)=!ghalfm
3705      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3706      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3707                   gacontm_hb3(k,num_conti,i)=gggm(k)
3708                 enddo
3709 C Diagnostics. Comment out or remove after debugging!
3710 cdiag           do k=1,3
3711 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3712 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3713 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3714 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3715 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3716 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3717 cdiag           enddo
3718               ENDIF ! wcorr
3719               endif  ! num_conti.le.maxconts
3720             endif  ! fcont.gt.0
3721           endif    ! j.gt.i+1
3722           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3723             do k=1,4
3724               do l=1,3
3725                 ghalf=0.5d0*agg(l,k)
3726                 aggi(l,k)=aggi(l,k)+ghalf
3727                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3728                 aggj(l,k)=aggj(l,k)+ghalf
3729               enddo
3730             enddo
3731             if (j.eq.nres-1 .and. i.lt.j-2) then
3732               do k=1,4
3733                 do l=1,3
3734                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3735                 enddo
3736               enddo
3737             endif
3738           endif
3739 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3740       return
3741       end
3742 C-----------------------------------------------------------------------------
3743       subroutine eturn3(i,eello_turn3)
3744 C Third- and fourth-order contributions from turns
3745       implicit real*8 (a-h,o-z)
3746       include 'DIMENSIONS'
3747       include 'COMMON.IOUNITS'
3748       include 'COMMON.GEO'
3749       include 'COMMON.VAR'
3750       include 'COMMON.LOCAL'
3751       include 'COMMON.CHAIN'
3752       include 'COMMON.DERIV'
3753       include 'COMMON.INTERACT'
3754       include 'COMMON.CONTACTS'
3755       include 'COMMON.TORSION'
3756       include 'COMMON.VECTORS'
3757       include 'COMMON.FFIELD'
3758       include 'COMMON.CONTROL'
3759       dimension ggg(3)
3760       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3761      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3762      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3763       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3764      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3765       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3766      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3767      &    num_conti,j1,j2
3768       j=i+2
3769 c      write (iout,*) "eturn3",i,j,j1,j2
3770       a_temp(1,1)=a22
3771       a_temp(1,2)=a23
3772       a_temp(2,1)=a32
3773       a_temp(2,2)=a33
3774 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3775 C
3776 C               Third-order contributions
3777 C        
3778 C                 (i+2)o----(i+3)
3779 C                      | |
3780 C                      | |
3781 C                 (i+1)o----i
3782 C
3783 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3784 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3785         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3786         call transpose2(auxmat(1,1),auxmat1(1,1))
3787         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3788         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3789         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3790      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3791 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3792 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3793 cd     &    ' eello_turn3_num',4*eello_turn3_num
3794 C Derivatives in gamma(i)
3795         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3796         call transpose2(auxmat2(1,1),auxmat3(1,1))
3797         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3798         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3799 C Derivatives in gamma(i+1)
3800         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3801         call transpose2(auxmat2(1,1),auxmat3(1,1))
3802         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3803         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3804      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3805 C Cartesian derivatives
3806         do l=1,3
3807 c            ghalf1=0.5d0*agg(l,1)
3808 c            ghalf2=0.5d0*agg(l,2)
3809 c            ghalf3=0.5d0*agg(l,3)
3810 c            ghalf4=0.5d0*agg(l,4)
3811           a_temp(1,1)=aggi(l,1)!+ghalf1
3812           a_temp(1,2)=aggi(l,2)!+ghalf2
3813           a_temp(2,1)=aggi(l,3)!+ghalf3
3814           a_temp(2,2)=aggi(l,4)!+ghalf4
3815           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3816           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3817      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3818           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3819           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3820           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3821           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3822           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3823           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3824      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3825           a_temp(1,1)=aggj(l,1)!+ghalf1
3826           a_temp(1,2)=aggj(l,2)!+ghalf2
3827           a_temp(2,1)=aggj(l,3)!+ghalf3
3828           a_temp(2,2)=aggj(l,4)!+ghalf4
3829           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3830           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3831      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3832           a_temp(1,1)=aggj1(l,1)
3833           a_temp(1,2)=aggj1(l,2)
3834           a_temp(2,1)=aggj1(l,3)
3835           a_temp(2,2)=aggj1(l,4)
3836           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3837           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3838      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3839         enddo
3840       return
3841       end
3842 C-------------------------------------------------------------------------------
3843       subroutine eturn4(i,eello_turn4)
3844 C Third- and fourth-order contributions from turns
3845       implicit real*8 (a-h,o-z)
3846       include 'DIMENSIONS'
3847       include 'COMMON.IOUNITS'
3848       include 'COMMON.GEO'
3849       include 'COMMON.VAR'
3850       include 'COMMON.LOCAL'
3851       include 'COMMON.CHAIN'
3852       include 'COMMON.DERIV'
3853       include 'COMMON.INTERACT'
3854       include 'COMMON.CONTACTS'
3855       include 'COMMON.TORSION'
3856       include 'COMMON.VECTORS'
3857       include 'COMMON.FFIELD'
3858       include 'COMMON.CONTROL'
3859       dimension ggg(3)
3860       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3861      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3862      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3863       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3864      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3865       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3866      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3867      &    num_conti,j1,j2
3868       j=i+3
3869 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3870 C
3871 C               Fourth-order contributions
3872 C        
3873 C                 (i+3)o----(i+4)
3874 C                     /  |
3875 C               (i+2)o   |
3876 C                     \  |
3877 C                 (i+1)o----i
3878 C
3879 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3880 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3881 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3882         a_temp(1,1)=a22
3883         a_temp(1,2)=a23
3884         a_temp(2,1)=a32
3885         a_temp(2,2)=a33
3886         iti1=itortyp(itype(i+1))
3887         iti2=itortyp(itype(i+2))
3888         iti3=itortyp(itype(i+3))
3889 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3890         call transpose2(EUg(1,1,i+1),e1t(1,1))
3891         call transpose2(Eug(1,1,i+2),e2t(1,1))
3892         call transpose2(Eug(1,1,i+3),e3t(1,1))
3893         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3894         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3895         s1=scalar2(b1(1,iti2),auxvec(1))
3896         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3897         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3898         s2=scalar2(b1(1,iti1),auxvec(1))
3899         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3900         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3901         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3902         eello_turn4=eello_turn4-(s1+s2+s3)
3903         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3904      &      'eturn4',i,j,-(s1+s2+s3)
3905 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3906 cd     &    ' eello_turn4_num',8*eello_turn4_num
3907 C Derivatives in gamma(i)
3908         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3909         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3910         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3911         s1=scalar2(b1(1,iti2),auxvec(1))
3912         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3913         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3914         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3915 C Derivatives in gamma(i+1)
3916         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3917         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3920         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3923 C Derivatives in gamma(i+2)
3924         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3925         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3926         s1=scalar2(b1(1,iti2),auxvec(1))
3927         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3928         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3929         s2=scalar2(b1(1,iti1),auxvec(1))
3930         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3931         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3932         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3933         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3934 C Cartesian derivatives
3935 C Derivatives of this turn contributions in DC(i+2)
3936         if (j.lt.nres-1) then
3937           do l=1,3
3938             a_temp(1,1)=agg(l,1)
3939             a_temp(1,2)=agg(l,2)
3940             a_temp(2,1)=agg(l,3)
3941             a_temp(2,2)=agg(l,4)
3942             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3943             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3944             s1=scalar2(b1(1,iti2),auxvec(1))
3945             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3946             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3947             s2=scalar2(b1(1,iti1),auxvec(1))
3948             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3949             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3950             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3951             ggg(l)=-(s1+s2+s3)
3952             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3953           enddo
3954         endif
3955 C Remaining derivatives of this turn contribution
3956         do l=1,3
3957           a_temp(1,1)=aggi(l,1)
3958           a_temp(1,2)=aggi(l,2)
3959           a_temp(2,1)=aggi(l,3)
3960           a_temp(2,2)=aggi(l,4)
3961           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3962           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3963           s1=scalar2(b1(1,iti2),auxvec(1))
3964           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3965           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3966           s2=scalar2(b1(1,iti1),auxvec(1))
3967           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3968           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3969           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3970           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3971           a_temp(1,1)=aggi1(l,1)
3972           a_temp(1,2)=aggi1(l,2)
3973           a_temp(2,1)=aggi1(l,3)
3974           a_temp(2,2)=aggi1(l,4)
3975           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3976           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3977           s1=scalar2(b1(1,iti2),auxvec(1))
3978           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3979           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3980           s2=scalar2(b1(1,iti1),auxvec(1))
3981           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3982           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3983           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3984           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3985           a_temp(1,1)=aggj(l,1)
3986           a_temp(1,2)=aggj(l,2)
3987           a_temp(2,1)=aggj(l,3)
3988           a_temp(2,2)=aggj(l,4)
3989           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3990           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3991           s1=scalar2(b1(1,iti2),auxvec(1))
3992           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3993           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3994           s2=scalar2(b1(1,iti1),auxvec(1))
3995           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3996           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3997           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3998           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3999           a_temp(1,1)=aggj1(l,1)
4000           a_temp(1,2)=aggj1(l,2)
4001           a_temp(2,1)=aggj1(l,3)
4002           a_temp(2,2)=aggj1(l,4)
4003           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4004           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4005           s1=scalar2(b1(1,iti2),auxvec(1))
4006           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4007           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4008           s2=scalar2(b1(1,iti1),auxvec(1))
4009           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4010           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4011           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4012 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4013           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4014         enddo
4015       return
4016       end
4017 C-----------------------------------------------------------------------------
4018       subroutine vecpr(u,v,w)
4019       implicit real*8(a-h,o-z)
4020       dimension u(3),v(3),w(3)
4021       w(1)=u(2)*v(3)-u(3)*v(2)
4022       w(2)=-u(1)*v(3)+u(3)*v(1)
4023       w(3)=u(1)*v(2)-u(2)*v(1)
4024       return
4025       end
4026 C-----------------------------------------------------------------------------
4027       subroutine unormderiv(u,ugrad,unorm,ungrad)
4028 C This subroutine computes the derivatives of a normalized vector u, given
4029 C the derivatives computed without normalization conditions, ugrad. Returns
4030 C ungrad.
4031       implicit none
4032       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4033       double precision vec(3)
4034       double precision scalar
4035       integer i,j
4036 c      write (2,*) 'ugrad',ugrad
4037 c      write (2,*) 'u',u
4038       do i=1,3
4039         vec(i)=scalar(ugrad(1,i),u(1))
4040       enddo
4041 c      write (2,*) 'vec',vec
4042       do i=1,3
4043         do j=1,3
4044           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4045         enddo
4046       enddo
4047 c      write (2,*) 'ungrad',ungrad
4048       return
4049       end
4050 C-----------------------------------------------------------------------------
4051       subroutine escp_soft_sphere(evdw2,evdw2_14)
4052 C
4053 C This subroutine calculates the excluded-volume interaction energy between
4054 C peptide-group centers and side chains and its gradient in virtual-bond and
4055 C side-chain vectors.
4056 C
4057       implicit real*8 (a-h,o-z)
4058       include 'DIMENSIONS'
4059       include 'COMMON.GEO'
4060       include 'COMMON.VAR'
4061       include 'COMMON.LOCAL'
4062       include 'COMMON.CHAIN'
4063       include 'COMMON.DERIV'
4064       include 'COMMON.INTERACT'
4065       include 'COMMON.FFIELD'
4066       include 'COMMON.IOUNITS'
4067       include 'COMMON.CONTROL'
4068       dimension ggg(3)
4069       evdw2=0.0D0
4070       evdw2_14=0.0d0
4071       r0_scp=4.5d0
4072 cd    print '(a)','Enter ESCP'
4073 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4074       do i=iatscp_s,iatscp_e
4075         iteli=itel(i)
4076         xi=0.5D0*(c(1,i)+c(1,i+1))
4077         yi=0.5D0*(c(2,i)+c(2,i+1))
4078         zi=0.5D0*(c(3,i)+c(3,i+1))
4079
4080         do iint=1,nscp_gr(i)
4081
4082         do j=iscpstart(i,iint),iscpend(i,iint)
4083           itypj=itype(j)
4084 C Uncomment following three lines for SC-p interactions
4085 c         xj=c(1,nres+j)-xi
4086 c         yj=c(2,nres+j)-yi
4087 c         zj=c(3,nres+j)-zi
4088 C Uncomment following three lines for Ca-p interactions
4089           xj=c(1,j)-xi
4090           yj=c(2,j)-yi
4091           zj=c(3,j)-zi
4092           rij=xj*xj+yj*yj+zj*zj
4093           r0ij=r0_scp
4094           r0ijsq=r0ij*r0ij
4095           if (rij.lt.r0ijsq) then
4096             evdwij=0.25d0*(rij-r0ijsq)**2
4097             fac=rij-r0ijsq
4098           else
4099             evdwij=0.0d0
4100             fac=0.0d0
4101           endif 
4102           evdw2=evdw2+evdwij
4103 C
4104 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4105 C
4106           ggg(1)=xj*fac
4107           ggg(2)=yj*fac
4108           ggg(3)=zj*fac
4109 cgrad          if (j.lt.i) then
4110 cd          write (iout,*) 'j<i'
4111 C Uncomment following three lines for SC-p interactions
4112 c           do k=1,3
4113 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4114 c           enddo
4115 cgrad          else
4116 cd          write (iout,*) 'j>i'
4117 cgrad            do k=1,3
4118 cgrad              ggg(k)=-ggg(k)
4119 C Uncomment following line for SC-p interactions
4120 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4121 cgrad            enddo
4122 cgrad          endif
4123 cgrad          do k=1,3
4124 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4125 cgrad          enddo
4126 cgrad          kstart=min0(i+1,j)
4127 cgrad          kend=max0(i-1,j-1)
4128 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4129 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4130 cgrad          do k=kstart,kend
4131 cgrad            do l=1,3
4132 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4133 cgrad            enddo
4134 cgrad          enddo
4135           do k=1,3
4136             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4137             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4138           enddo
4139         enddo
4140
4141         enddo ! iint
4142       enddo ! i
4143       return
4144       end
4145 C-----------------------------------------------------------------------------
4146       subroutine escp(evdw2,evdw2_14)
4147 C
4148 C This subroutine calculates the excluded-volume interaction energy between
4149 C peptide-group centers and side chains and its gradient in virtual-bond and
4150 C side-chain vectors.
4151 C
4152       implicit real*8 (a-h,o-z)
4153       include 'DIMENSIONS'
4154       include 'COMMON.GEO'
4155       include 'COMMON.VAR'
4156       include 'COMMON.LOCAL'
4157       include 'COMMON.CHAIN'
4158       include 'COMMON.DERIV'
4159       include 'COMMON.INTERACT'
4160       include 'COMMON.FFIELD'
4161       include 'COMMON.IOUNITS'
4162       include 'COMMON.CONTROL'
4163       dimension ggg(3)
4164       evdw2=0.0D0
4165       evdw2_14=0.0d0
4166 cd    print '(a)','Enter ESCP'
4167 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4168       do i=iatscp_s,iatscp_e
4169         iteli=itel(i)
4170         xi=0.5D0*(c(1,i)+c(1,i+1))
4171         yi=0.5D0*(c(2,i)+c(2,i+1))
4172         zi=0.5D0*(c(3,i)+c(3,i+1))
4173
4174         do iint=1,nscp_gr(i)
4175
4176         do j=iscpstart(i,iint),iscpend(i,iint)
4177           itypj=itype(j)
4178 C Uncomment following three lines for SC-p interactions
4179 c         xj=c(1,nres+j)-xi
4180 c         yj=c(2,nres+j)-yi
4181 c         zj=c(3,nres+j)-zi
4182 C Uncomment following three lines for Ca-p interactions
4183           xj=c(1,j)-xi
4184           yj=c(2,j)-yi
4185           zj=c(3,j)-zi
4186           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4187           fac=rrij**expon2
4188           e1=fac*fac*aad(itypj,iteli)
4189           e2=fac*bad(itypj,iteli)
4190           if (iabs(j-i) .le. 2) then
4191             e1=scal14*e1
4192             e2=scal14*e2
4193             evdw2_14=evdw2_14+e1+e2
4194           endif
4195           evdwij=e1+e2
4196           evdw2=evdw2+evdwij
4197           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4198      &        'evdw2',i,j,evdwij
4199 C
4200 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4201 C
4202           fac=-(evdwij+e1)*rrij
4203           ggg(1)=xj*fac
4204           ggg(2)=yj*fac
4205           ggg(3)=zj*fac
4206 cgrad          if (j.lt.i) then
4207 cd          write (iout,*) 'j<i'
4208 C Uncomment following three lines for SC-p interactions
4209 c           do k=1,3
4210 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4211 c           enddo
4212 cgrad          else
4213 cd          write (iout,*) 'j>i'
4214 cgrad            do k=1,3
4215 cgrad              ggg(k)=-ggg(k)
4216 C Uncomment following line for SC-p interactions
4217 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4218 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4219 cgrad            enddo
4220 cgrad          endif
4221 cgrad          do k=1,3
4222 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4223 cgrad          enddo
4224 cgrad          kstart=min0(i+1,j)
4225 cgrad          kend=max0(i-1,j-1)
4226 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4227 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4228 cgrad          do k=kstart,kend
4229 cgrad            do l=1,3
4230 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4231 cgrad            enddo
4232 cgrad          enddo
4233           do k=1,3
4234             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4235             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4236           enddo
4237         enddo
4238
4239         enddo ! iint
4240       enddo ! i
4241       do i=1,nct
4242         do j=1,3
4243           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4244           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4245           gradx_scp(j,i)=expon*gradx_scp(j,i)
4246         enddo
4247       enddo
4248 C******************************************************************************
4249 C
4250 C                              N O T E !!!
4251 C
4252 C To save time the factor EXPON has been extracted from ALL components
4253 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4254 C use!
4255 C
4256 C******************************************************************************
4257       return
4258       end
4259 C--------------------------------------------------------------------------
4260       subroutine edis(ehpb)
4261
4262 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4263 C
4264       implicit real*8 (a-h,o-z)
4265       include 'DIMENSIONS'
4266       include 'COMMON.SBRIDGE'
4267       include 'COMMON.CHAIN'
4268       include 'COMMON.DERIV'
4269       include 'COMMON.VAR'
4270       include 'COMMON.INTERACT'
4271       include 'COMMON.IOUNITS'
4272       dimension ggg(3)
4273       ehpb=0.0D0
4274 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4275 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4276       if (link_end.eq.0) return
4277       do i=link_start,link_end
4278 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4279 C CA-CA distance used in regularization of structure.
4280         ii=ihpb(i)
4281         jj=jhpb(i)
4282 C iii and jjj point to the residues for which the distance is assigned.
4283         if (ii.gt.nres) then
4284           iii=ii-nres
4285           jjj=jj-nres 
4286         else
4287           iii=ii
4288           jjj=jj
4289         endif
4290 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4291 c     &    dhpb(i),dhpb1(i),forcon(i)
4292 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4293 C    distance and angle dependent SS bond potential.
4294 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4295 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4296         if (.not.dyn_ss .and. i.le.nss) then
4297 C 15/02/13 CC dynamic SSbond - additional check
4298          if (ii.gt.nres 
4299      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4300           call ssbond_ene(iii,jjj,eij)
4301           ehpb=ehpb+2*eij
4302          endif
4303 cd          write (iout,*) "eij",eij
4304         else if (ii.gt.nres .and. jj.gt.nres) then
4305 c Restraints from contact prediction
4306           dd=dist(ii,jj)
4307           if (dhpb1(i).gt.0.0d0) then
4308             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4309             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4310 c            write (iout,*) "beta nmr",
4311 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4312           else
4313             dd=dist(ii,jj)
4314             rdis=dd-dhpb(i)
4315 C Get the force constant corresponding to this distance.
4316             waga=forcon(i)
4317 C Calculate the contribution to energy.
4318             ehpb=ehpb+waga*rdis*rdis
4319 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4320 C
4321 C Evaluate gradient.
4322 C
4323             fac=waga*rdis/dd
4324           endif  
4325           do j=1,3
4326             ggg(j)=fac*(c(j,jj)-c(j,ii))
4327           enddo
4328           do j=1,3
4329             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4330             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4331           enddo
4332           do k=1,3
4333             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4334             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4335           enddo
4336         else
4337 C Calculate the distance between the two points and its difference from the
4338 C target distance.
4339           dd=dist(ii,jj)
4340           if (dhpb1(i).gt.0.0d0) then
4341             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4342             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4343 c            write (iout,*) "alph nmr",
4344 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4345           else
4346             rdis=dd-dhpb(i)
4347 C Get the force constant corresponding to this distance.
4348             waga=forcon(i)
4349 C Calculate the contribution to energy.
4350             ehpb=ehpb+waga*rdis*rdis
4351 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4352 C
4353 C Evaluate gradient.
4354 C
4355             fac=waga*rdis/dd
4356           endif
4357 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4358 cd   &   ' waga=',waga,' fac=',fac
4359             do j=1,3
4360               ggg(j)=fac*(c(j,jj)-c(j,ii))
4361             enddo
4362 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4363 C If this is a SC-SC distance, we need to calculate the contributions to the
4364 C Cartesian gradient in the SC vectors (ghpbx).
4365           if (iii.lt.ii) then
4366           do j=1,3
4367             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4368             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4369           enddo
4370           endif
4371 cgrad        do j=iii,jjj-1
4372 cgrad          do k=1,3
4373 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4374 cgrad          enddo
4375 cgrad        enddo
4376           do k=1,3
4377             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4378             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4379           enddo
4380         endif
4381       enddo
4382       ehpb=0.5D0*ehpb
4383       return
4384       end
4385 C--------------------------------------------------------------------------
4386       subroutine ssbond_ene(i,j,eij)
4387
4388 C Calculate the distance and angle dependent SS-bond potential energy
4389 C using a free-energy function derived based on RHF/6-31G** ab initio
4390 C calculations of diethyl disulfide.
4391 C
4392 C A. Liwo and U. Kozlowska, 11/24/03
4393 C
4394       implicit real*8 (a-h,o-z)
4395       include 'DIMENSIONS'
4396       include 'COMMON.SBRIDGE'
4397       include 'COMMON.CHAIN'
4398       include 'COMMON.DERIV'
4399       include 'COMMON.LOCAL'
4400       include 'COMMON.INTERACT'
4401       include 'COMMON.VAR'
4402       include 'COMMON.IOUNITS'
4403       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4404       itypi=itype(i)
4405       xi=c(1,nres+i)
4406       yi=c(2,nres+i)
4407       zi=c(3,nres+i)
4408       dxi=dc_norm(1,nres+i)
4409       dyi=dc_norm(2,nres+i)
4410       dzi=dc_norm(3,nres+i)
4411 c      dsci_inv=dsc_inv(itypi)
4412       dsci_inv=vbld_inv(nres+i)
4413       itypj=itype(j)
4414 c      dscj_inv=dsc_inv(itypj)
4415       dscj_inv=vbld_inv(nres+j)
4416       xj=c(1,nres+j)-xi
4417       yj=c(2,nres+j)-yi
4418       zj=c(3,nres+j)-zi
4419       dxj=dc_norm(1,nres+j)
4420       dyj=dc_norm(2,nres+j)
4421       dzj=dc_norm(3,nres+j)
4422       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4423       rij=dsqrt(rrij)
4424       erij(1)=xj*rij
4425       erij(2)=yj*rij
4426       erij(3)=zj*rij
4427       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4428       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4429       om12=dxi*dxj+dyi*dyj+dzi*dzj
4430       do k=1,3
4431         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4432         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4433       enddo
4434       rij=1.0d0/rij
4435       deltad=rij-d0cm
4436       deltat1=1.0d0-om1
4437       deltat2=1.0d0+om2
4438       deltat12=om2-om1+2.0d0
4439       cosphi=om12-om1*om2
4440       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4441      &  +akct*deltad*deltat12+ebr
4442      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4443 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4444 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4445 c     &  " deltat12",deltat12," eij",eij 
4446       ed=2*akcm*deltad+akct*deltat12
4447       pom1=akct*deltad
4448       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4449       eom1=-2*akth*deltat1-pom1-om2*pom2
4450       eom2= 2*akth*deltat2+pom1-om1*pom2
4451       eom12=pom2
4452       do k=1,3
4453         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4454         ghpbx(k,i)=ghpbx(k,i)-ggk
4455      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4456      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4457         ghpbx(k,j)=ghpbx(k,j)+ggk
4458      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4459      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4460         ghpbc(k,i)=ghpbc(k,i)-ggk
4461         ghpbc(k,j)=ghpbc(k,j)+ggk
4462       enddo
4463 C
4464 C Calculate the components of the gradient in DC and X
4465 C
4466 cgrad      do k=i,j-1
4467 cgrad        do l=1,3
4468 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4469 cgrad        enddo
4470 cgrad      enddo
4471       return
4472       end
4473 C--------------------------------------------------------------------------
4474       subroutine ebond(estr)
4475 c
4476 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4477 c
4478       implicit real*8 (a-h,o-z)
4479       include 'DIMENSIONS'
4480       include 'COMMON.LOCAL'
4481       include 'COMMON.GEO'
4482       include 'COMMON.INTERACT'
4483       include 'COMMON.DERIV'
4484       include 'COMMON.VAR'
4485       include 'COMMON.CHAIN'
4486       include 'COMMON.IOUNITS'
4487       include 'COMMON.NAMES'
4488       include 'COMMON.FFIELD'
4489       include 'COMMON.CONTROL'
4490       include 'COMMON.SETUP'
4491       double precision u(3),ud(3)
4492       estr=0.0d0
4493       do i=ibondp_start,ibondp_end
4494         diff = vbld(i)-vbldp0
4495 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4496         estr=estr+diff*diff
4497         do j=1,3
4498           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4499         enddo
4500 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4501       enddo
4502       estr=0.5d0*AKP*estr
4503 c
4504 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4505 c
4506       do i=ibond_start,ibond_end
4507         iti=itype(i)
4508         if (iti.ne.10) then
4509           nbi=nbondterm(iti)
4510           if (nbi.eq.1) then
4511             diff=vbld(i+nres)-vbldsc0(1,iti)
4512 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4513 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4514             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4515             do j=1,3
4516               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4517             enddo
4518           else
4519             do j=1,nbi
4520               diff=vbld(i+nres)-vbldsc0(j,iti) 
4521               ud(j)=aksc(j,iti)*diff
4522               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4523             enddo
4524             uprod=u(1)
4525             do j=2,nbi
4526               uprod=uprod*u(j)
4527             enddo
4528             usum=0.0d0
4529             usumsqder=0.0d0
4530             do j=1,nbi
4531               uprod1=1.0d0
4532               uprod2=1.0d0
4533               do k=1,nbi
4534                 if (k.ne.j) then
4535                   uprod1=uprod1*u(k)
4536                   uprod2=uprod2*u(k)*u(k)
4537                 endif
4538               enddo
4539               usum=usum+uprod1
4540               usumsqder=usumsqder+ud(j)*uprod2   
4541             enddo
4542             estr=estr+uprod/usum
4543             do j=1,3
4544              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4545             enddo
4546           endif
4547         endif
4548       enddo
4549       return
4550       end 
4551 #ifdef CRYST_THETA
4552 C--------------------------------------------------------------------------
4553       subroutine ebend(etheta)
4554 C
4555 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4556 C angles gamma and its derivatives in consecutive thetas and gammas.
4557 C
4558       implicit real*8 (a-h,o-z)
4559       include 'DIMENSIONS'
4560       include 'COMMON.LOCAL'
4561       include 'COMMON.GEO'
4562       include 'COMMON.INTERACT'
4563       include 'COMMON.DERIV'
4564       include 'COMMON.VAR'
4565       include 'COMMON.CHAIN'
4566       include 'COMMON.IOUNITS'
4567       include 'COMMON.NAMES'
4568       include 'COMMON.FFIELD'
4569       include 'COMMON.CONTROL'
4570       common /calcthet/ term1,term2,termm,diffak,ratak,
4571      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4572      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4573       double precision y(2),z(2)
4574       delta=0.02d0*pi
4575 c      time11=dexp(-2*time)
4576 c      time12=1.0d0
4577       etheta=0.0D0
4578 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4579       do i=ithet_start,ithet_end
4580 C Zero the energy function and its derivative at 0 or pi.
4581         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4582         it=itype(i-1)
4583         if (i.gt.3) then
4584 #ifdef OSF
4585           phii=phi(i)
4586           if (phii.ne.phii) phii=150.0
4587 #else
4588           phii=phi(i)
4589 #endif
4590           y(1)=dcos(phii)
4591           y(2)=dsin(phii)
4592         else 
4593           y(1)=0.0D0
4594           y(2)=0.0D0
4595         endif
4596         if (i.lt.nres) then
4597 #ifdef OSF
4598           phii1=phi(i+1)
4599           if (phii1.ne.phii1) phii1=150.0
4600           phii1=pinorm(phii1)
4601           z(1)=cos(phii1)
4602 #else
4603           phii1=phi(i+1)
4604           z(1)=dcos(phii1)
4605 #endif
4606           z(2)=dsin(phii1)
4607         else
4608           z(1)=0.0D0
4609           z(2)=0.0D0
4610         endif  
4611 C Calculate the "mean" value of theta from the part of the distribution
4612 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4613 C In following comments this theta will be referred to as t_c.
4614         thet_pred_mean=0.0d0
4615         do k=1,2
4616           athetk=athet(k,it)
4617           bthetk=bthet(k,it)
4618           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4619         enddo
4620         dthett=thet_pred_mean*ssd
4621         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4622 C Derivatives of the "mean" values in gamma1 and gamma2.
4623         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4624         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4625         if (theta(i).gt.pi-delta) then
4626           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4627      &         E_tc0)
4628           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4630           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4631      &        E_theta)
4632           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4633      &        E_tc)
4634         else if (theta(i).lt.delta) then
4635           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4636           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4637           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4638      &        E_theta)
4639           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4640           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4641      &        E_tc)
4642         else
4643           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4644      &        E_theta,E_tc)
4645         endif
4646         etheta=etheta+ethetai
4647         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4648      &      'ebend',i,ethetai
4649         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4650         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4651         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4652       enddo
4653 C Ufff.... We've done all this!!! 
4654       return
4655       end
4656 C---------------------------------------------------------------------------
4657       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4658      &     E_tc)
4659       implicit real*8 (a-h,o-z)
4660       include 'DIMENSIONS'
4661       include 'COMMON.LOCAL'
4662       include 'COMMON.IOUNITS'
4663       common /calcthet/ term1,term2,termm,diffak,ratak,
4664      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4665      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4666 C Calculate the contributions to both Gaussian lobes.
4667 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4668 C The "polynomial part" of the "standard deviation" of this part of 
4669 C the distribution.
4670         sig=polthet(3,it)
4671         do j=2,0,-1
4672           sig=sig*thet_pred_mean+polthet(j,it)
4673         enddo
4674 C Derivative of the "interior part" of the "standard deviation of the" 
4675 C gamma-dependent Gaussian lobe in t_c.
4676         sigtc=3*polthet(3,it)
4677         do j=2,1,-1
4678           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4679         enddo
4680         sigtc=sig*sigtc
4681 C Set the parameters of both Gaussian lobes of the distribution.
4682 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4683         fac=sig*sig+sigc0(it)
4684         sigcsq=fac+fac
4685         sigc=1.0D0/sigcsq
4686 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4687         sigsqtc=-4.0D0*sigcsq*sigtc
4688 c       print *,i,sig,sigtc,sigsqtc
4689 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4690         sigtc=-sigtc/(fac*fac)
4691 C Following variable is sigma(t_c)**(-2)
4692         sigcsq=sigcsq*sigcsq
4693         sig0i=sig0(it)
4694         sig0inv=1.0D0/sig0i**2
4695         delthec=thetai-thet_pred_mean
4696         delthe0=thetai-theta0i
4697         term1=-0.5D0*sigcsq*delthec*delthec
4698         term2=-0.5D0*sig0inv*delthe0*delthe0
4699 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4700 C NaNs in taking the logarithm. We extract the largest exponent which is added
4701 C to the energy (this being the log of the distribution) at the end of energy
4702 C term evaluation for this virtual-bond angle.
4703         if (term1.gt.term2) then
4704           termm=term1
4705           term2=dexp(term2-termm)
4706           term1=1.0d0
4707         else
4708           termm=term2
4709           term1=dexp(term1-termm)
4710           term2=1.0d0
4711         endif
4712 C The ratio between the gamma-independent and gamma-dependent lobes of
4713 C the distribution is a Gaussian function of thet_pred_mean too.
4714         diffak=gthet(2,it)-thet_pred_mean
4715         ratak=diffak/gthet(3,it)**2
4716         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4717 C Let's differentiate it in thet_pred_mean NOW.
4718         aktc=ak*ratak
4719 C Now put together the distribution terms to make complete distribution.
4720         termexp=term1+ak*term2
4721         termpre=sigc+ak*sig0i
4722 C Contribution of the bending energy from this theta is just the -log of
4723 C the sum of the contributions from the two lobes and the pre-exponential
4724 C factor. Simple enough, isn't it?
4725         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4726 C NOW the derivatives!!!
4727 C 6/6/97 Take into account the deformation.
4728         E_theta=(delthec*sigcsq*term1
4729      &       +ak*delthe0*sig0inv*term2)/termexp
4730         E_tc=((sigtc+aktc*sig0i)/termpre
4731      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4732      &       aktc*term2)/termexp)
4733       return
4734       end
4735 c-----------------------------------------------------------------------------
4736       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4737       implicit real*8 (a-h,o-z)
4738       include 'DIMENSIONS'
4739       include 'COMMON.LOCAL'
4740       include 'COMMON.IOUNITS'
4741       common /calcthet/ term1,term2,termm,diffak,ratak,
4742      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4743      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4744       delthec=thetai-thet_pred_mean
4745       delthe0=thetai-theta0i
4746 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4747       t3 = thetai-thet_pred_mean
4748       t6 = t3**2
4749       t9 = term1
4750       t12 = t3*sigcsq
4751       t14 = t12+t6*sigsqtc
4752       t16 = 1.0d0
4753       t21 = thetai-theta0i
4754       t23 = t21**2
4755       t26 = term2
4756       t27 = t21*t26
4757       t32 = termexp
4758       t40 = t32**2
4759       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4760      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4761      & *(-t12*t9-ak*sig0inv*t27)
4762       return
4763       end
4764 #else
4765 C--------------------------------------------------------------------------
4766       subroutine ebend(etheta)
4767 C
4768 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4769 C angles gamma and its derivatives in consecutive thetas and gammas.
4770 C ab initio-derived potentials from 
4771 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4772 C
4773       implicit real*8 (a-h,o-z)
4774       include 'DIMENSIONS'
4775       include 'COMMON.LOCAL'
4776       include 'COMMON.GEO'
4777       include 'COMMON.INTERACT'
4778       include 'COMMON.DERIV'
4779       include 'COMMON.VAR'
4780       include 'COMMON.CHAIN'
4781       include 'COMMON.IOUNITS'
4782       include 'COMMON.NAMES'
4783       include 'COMMON.FFIELD'
4784       include 'COMMON.CONTROL'
4785       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4786      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4787      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4788      & sinph1ph2(maxdouble,maxdouble)
4789       logical lprn /.false./, lprn1 /.false./
4790       etheta=0.0D0
4791       do i=ithet_start,ithet_end
4792         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4793      &(itype(i).eq.ntyp1)) cycle
4794         dethetai=0.0d0
4795         dephii=0.0d0
4796         dephii1=0.0d0
4797         theti2=0.5d0*theta(i)
4798         ityp2=ithetyp(itype(i-1))
4799         do k=1,nntheterm
4800           coskt(k)=dcos(k*theti2)
4801           sinkt(k)=dsin(k*theti2)
4802         enddo
4803 C        if (i.gt.3) then
4804          if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4805 #ifdef OSF
4806           phii=phi(i)
4807           if (phii.ne.phii) phii=150.0
4808 #else
4809           phii=phi(i)
4810 #endif
4811           ityp1=ithetyp(itype(i-2))
4812           do k=1,nsingle
4813             cosph1(k)=dcos(k*phii)
4814             sinph1(k)=dsin(k*phii)
4815           enddo
4816         else
4817           phii=0.0d0
4818           ityp1=ithetyp(itype(i-2))
4819           do k=1,nsingle
4820             cosph1(k)=0.0d0
4821             sinph1(k)=0.0d0
4822           enddo 
4823         endif
4824         if ((i.lt.nres).and. itype(i+1).ne.ntyp1) then
4825 #ifdef OSF
4826           phii1=phi(i+1)
4827           if (phii1.ne.phii1) phii1=150.0
4828           phii1=pinorm(phii1)
4829 #else
4830           phii1=phi(i+1)
4831 #endif
4832           ityp3=ithetyp(itype(i))
4833           do k=1,nsingle
4834             cosph2(k)=dcos(k*phii1)
4835             sinph2(k)=dsin(k*phii1)
4836           enddo
4837         else
4838           phii1=0.0d0
4839           ityp3=ithetyp(itype(i))
4840           do k=1,nsingle
4841             cosph2(k)=0.0d0
4842             sinph2(k)=0.0d0
4843           enddo
4844         endif  
4845         ethetai=aa0thet(ityp1,ityp2,ityp3)
4846         do k=1,ndouble
4847           do l=1,k-1
4848             ccl=cosph1(l)*cosph2(k-l)
4849             ssl=sinph1(l)*sinph2(k-l)
4850             scl=sinph1(l)*cosph2(k-l)
4851             csl=cosph1(l)*sinph2(k-l)
4852             cosph1ph2(l,k)=ccl-ssl
4853             cosph1ph2(k,l)=ccl+ssl
4854             sinph1ph2(l,k)=scl+csl
4855             sinph1ph2(k,l)=scl-csl
4856           enddo
4857         enddo
4858         if (lprn) then
4859         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4860      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4861         write (iout,*) "coskt and sinkt"
4862         do k=1,nntheterm
4863           write (iout,*) k,coskt(k),sinkt(k)
4864         enddo
4865         endif
4866         do k=1,ntheterm
4867           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4868           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4869      &      *coskt(k)
4870           if (lprn)
4871      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4872      &     " ethetai",ethetai
4873         enddo
4874         if (lprn) then
4875         write (iout,*) "cosph and sinph"
4876         do k=1,nsingle
4877           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4878         enddo
4879         write (iout,*) "cosph1ph2 and sinph2ph2"
4880         do k=2,ndouble
4881           do l=1,k-1
4882             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4883      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4884           enddo
4885         enddo
4886         write(iout,*) "ethetai",ethetai
4887         endif
4888         do m=1,ntheterm2
4889           do k=1,nsingle
4890             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4891      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4892      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4893      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4894             ethetai=ethetai+sinkt(m)*aux
4895             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4896             dephii=dephii+k*sinkt(m)*(
4897      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4898      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4899             dephii1=dephii1+k*sinkt(m)*(
4900      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4901      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4902             if (lprn)
4903      &      write (iout,*) "m",m," k",k," bbthet",
4904      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4905      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4906      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4907      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4908           enddo
4909         enddo
4910         if (lprn)
4911      &  write(iout,*) "ethetai",ethetai
4912         do m=1,ntheterm3
4913           do k=2,ndouble
4914             do l=1,k-1
4915               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4916      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4917      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4918      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4919               ethetai=ethetai+sinkt(m)*aux
4920               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4921               dephii=dephii+l*sinkt(m)*(
4922      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4923      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4924      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4925      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4926               dephii1=dephii1+(k-l)*sinkt(m)*(
4927      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4928      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4929      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4930      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4931               if (lprn) then
4932               write (iout,*) "m",m," k",k," l",l," ffthet",
4933      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4934      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4935      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4936      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4937               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4938      &            cosph1ph2(k,l)*sinkt(m),
4939      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4940               endif
4941             enddo
4942           enddo
4943         enddo
4944 10      continue
4945         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
4946      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
4947      &   phii1*rad2deg,ethetai
4948         etheta=etheta+ethetai
4949         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4950         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4951         gloc(nphi+i-2,icg)=wang*dethetai
4952       enddo
4953       return
4954       end
4955 #endif
4956 #ifdef CRYST_SC
4957 c-----------------------------------------------------------------------------
4958       subroutine esc(escloc)
4959 C Calculate the local energy of a side chain and its derivatives in the
4960 C corresponding virtual-bond valence angles THETA and the spherical angles 
4961 C ALPHA and OMEGA.
4962       implicit real*8 (a-h,o-z)
4963       include 'DIMENSIONS'
4964       include 'COMMON.GEO'
4965       include 'COMMON.LOCAL'
4966       include 'COMMON.VAR'
4967       include 'COMMON.INTERACT'
4968       include 'COMMON.DERIV'
4969       include 'COMMON.CHAIN'
4970       include 'COMMON.IOUNITS'
4971       include 'COMMON.NAMES'
4972       include 'COMMON.FFIELD'
4973       include 'COMMON.CONTROL'
4974       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4975      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4976       common /sccalc/ time11,time12,time112,theti,it,nlobit
4977       delta=0.02d0*pi
4978       escloc=0.0D0
4979 c     write (iout,'(a)') 'ESC'
4980       do i=loc_start,loc_end
4981         it=itype(i)
4982         if (it.eq.10) goto 1
4983         nlobit=nlob(it)
4984 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4985 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4986         theti=theta(i+1)-pipol
4987         x(1)=dtan(theti)
4988         x(2)=alph(i)
4989         x(3)=omeg(i)
4990
4991         if (x(2).gt.pi-delta) then
4992           xtemp(1)=x(1)
4993           xtemp(2)=pi-delta
4994           xtemp(3)=x(3)
4995           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4996           xtemp(2)=pi
4997           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4998           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4999      &        escloci,dersc(2))
5000           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5001      &        ddersc0(1),dersc(1))
5002           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5003      &        ddersc0(3),dersc(3))
5004           xtemp(2)=pi-delta
5005           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5006           xtemp(2)=pi
5007           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5008           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5009      &            dersc0(2),esclocbi,dersc02)
5010           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5011      &            dersc12,dersc01)
5012           call splinthet(x(2),0.5d0*delta,ss,ssd)
5013           dersc0(1)=dersc01
5014           dersc0(2)=dersc02
5015           dersc0(3)=0.0d0
5016           do k=1,3
5017             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5018           enddo
5019           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5020 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5021 c    &             esclocbi,ss,ssd
5022           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5023 c         escloci=esclocbi
5024 c         write (iout,*) escloci
5025         else if (x(2).lt.delta) then
5026           xtemp(1)=x(1)
5027           xtemp(2)=delta
5028           xtemp(3)=x(3)
5029           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5030           xtemp(2)=0.0d0
5031           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5032           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5033      &        escloci,dersc(2))
5034           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5035      &        ddersc0(1),dersc(1))
5036           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5037      &        ddersc0(3),dersc(3))
5038           xtemp(2)=delta
5039           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5040           xtemp(2)=0.0d0
5041           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5042           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5043      &            dersc0(2),esclocbi,dersc02)
5044           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5045      &            dersc12,dersc01)
5046           dersc0(1)=dersc01
5047           dersc0(2)=dersc02
5048           dersc0(3)=0.0d0
5049           call splinthet(x(2),0.5d0*delta,ss,ssd)
5050           do k=1,3
5051             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5052           enddo
5053           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5054 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5055 c    &             esclocbi,ss,ssd
5056           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5057 c         write (iout,*) escloci
5058         else
5059           call enesc(x,escloci,dersc,ddummy,.false.)
5060         endif
5061
5062         escloc=escloc+escloci
5063         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5064      &     'escloc',i,escloci
5065 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5066
5067         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5068      &   wscloc*dersc(1)
5069         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5070         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5071     1   continue
5072       enddo
5073       return
5074       end
5075 C---------------------------------------------------------------------------
5076       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5077       implicit real*8 (a-h,o-z)
5078       include 'DIMENSIONS'
5079       include 'COMMON.GEO'
5080       include 'COMMON.LOCAL'
5081       include 'COMMON.IOUNITS'
5082       common /sccalc/ time11,time12,time112,theti,it,nlobit
5083       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5084       double precision contr(maxlob,-1:1)
5085       logical mixed
5086 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5087         escloc_i=0.0D0
5088         do j=1,3
5089           dersc(j)=0.0D0
5090           if (mixed) ddersc(j)=0.0d0
5091         enddo
5092         x3=x(3)
5093
5094 C Because of periodicity of the dependence of the SC energy in omega we have
5095 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5096 C To avoid underflows, first compute & store the exponents.
5097
5098         do iii=-1,1
5099
5100           x(3)=x3+iii*dwapi
5101  
5102           do j=1,nlobit
5103             do k=1,3
5104               z(k)=x(k)-censc(k,j,it)
5105             enddo
5106             do k=1,3
5107               Axk=0.0D0
5108               do l=1,3
5109                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5110               enddo
5111               Ax(k,j,iii)=Axk
5112             enddo 
5113             expfac=0.0D0 
5114             do k=1,3
5115               expfac=expfac+Ax(k,j,iii)*z(k)
5116             enddo
5117             contr(j,iii)=expfac
5118           enddo ! j
5119
5120         enddo ! iii
5121
5122         x(3)=x3
5123 C As in the case of ebend, we want to avoid underflows in exponentiation and
5124 C subsequent NaNs and INFs in energy calculation.
5125 C Find the largest exponent
5126         emin=contr(1,-1)
5127         do iii=-1,1
5128           do j=1,nlobit
5129             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5130           enddo 
5131         enddo
5132         emin=0.5D0*emin
5133 cd      print *,'it=',it,' emin=',emin
5134
5135 C Compute the contribution to SC energy and derivatives
5136         do iii=-1,1
5137
5138           do j=1,nlobit
5139 #ifdef OSF
5140             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5141             if(adexp.ne.adexp) adexp=1.0
5142             expfac=dexp(adexp)
5143 #else
5144             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5145 #endif
5146 cd          print *,'j=',j,' expfac=',expfac
5147             escloc_i=escloc_i+expfac
5148             do k=1,3
5149               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5150             enddo
5151             if (mixed) then
5152               do k=1,3,2
5153                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5154      &            +gaussc(k,2,j,it))*expfac
5155               enddo
5156             endif
5157           enddo
5158
5159         enddo ! iii
5160
5161         dersc(1)=dersc(1)/cos(theti)**2
5162         ddersc(1)=ddersc(1)/cos(theti)**2
5163         ddersc(3)=ddersc(3)
5164
5165         escloci=-(dlog(escloc_i)-emin)
5166         do j=1,3
5167           dersc(j)=dersc(j)/escloc_i
5168         enddo
5169         if (mixed) then
5170           do j=1,3,2
5171             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5172           enddo
5173         endif
5174       return
5175       end
5176 C------------------------------------------------------------------------------
5177       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5178       implicit real*8 (a-h,o-z)
5179       include 'DIMENSIONS'
5180       include 'COMMON.GEO'
5181       include 'COMMON.LOCAL'
5182       include 'COMMON.IOUNITS'
5183       common /sccalc/ time11,time12,time112,theti,it,nlobit
5184       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5185       double precision contr(maxlob)
5186       logical mixed
5187
5188       escloc_i=0.0D0
5189
5190       do j=1,3
5191         dersc(j)=0.0D0
5192       enddo
5193
5194       do j=1,nlobit
5195         do k=1,2
5196           z(k)=x(k)-censc(k,j,it)
5197         enddo
5198         z(3)=dwapi
5199         do k=1,3
5200           Axk=0.0D0
5201           do l=1,3
5202             Axk=Axk+gaussc(l,k,j,it)*z(l)
5203           enddo
5204           Ax(k,j)=Axk
5205         enddo 
5206         expfac=0.0D0 
5207         do k=1,3
5208           expfac=expfac+Ax(k,j)*z(k)
5209         enddo
5210         contr(j)=expfac
5211       enddo ! j
5212
5213 C As in the case of ebend, we want to avoid underflows in exponentiation and
5214 C subsequent NaNs and INFs in energy calculation.
5215 C Find the largest exponent
5216       emin=contr(1)
5217       do j=1,nlobit
5218         if (emin.gt.contr(j)) emin=contr(j)
5219       enddo 
5220       emin=0.5D0*emin
5221  
5222 C Compute the contribution to SC energy and derivatives
5223
5224       dersc12=0.0d0
5225       do j=1,nlobit
5226         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5227         escloc_i=escloc_i+expfac
5228         do k=1,2
5229           dersc(k)=dersc(k)+Ax(k,j)*expfac
5230         enddo
5231         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5232      &            +gaussc(1,2,j,it))*expfac
5233         dersc(3)=0.0d0
5234       enddo
5235
5236       dersc(1)=dersc(1)/cos(theti)**2
5237       dersc12=dersc12/cos(theti)**2
5238       escloci=-(dlog(escloc_i)-emin)
5239       do j=1,2
5240         dersc(j)=dersc(j)/escloc_i
5241       enddo
5242       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5243       return
5244       end
5245 #else
5246 c----------------------------------------------------------------------------------
5247       subroutine esc(escloc)
5248 C Calculate the local energy of a side chain and its derivatives in the
5249 C corresponding virtual-bond valence angles THETA and the spherical angles 
5250 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5251 C added by Urszula Kozlowska. 07/11/2007
5252 C
5253       implicit real*8 (a-h,o-z)
5254       include 'DIMENSIONS'
5255       include 'COMMON.GEO'
5256       include 'COMMON.LOCAL'
5257       include 'COMMON.VAR'
5258       include 'COMMON.SCROT'
5259       include 'COMMON.INTERACT'
5260       include 'COMMON.DERIV'
5261       include 'COMMON.CHAIN'
5262       include 'COMMON.IOUNITS'
5263       include 'COMMON.NAMES'
5264       include 'COMMON.FFIELD'
5265       include 'COMMON.CONTROL'
5266       include 'COMMON.VECTORS'
5267       double precision x_prime(3),y_prime(3),z_prime(3)
5268      &    , sumene,dsc_i,dp2_i,x(65),
5269      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5270      &    de_dxx,de_dyy,de_dzz,de_dt
5271       double precision s1_t,s1_6_t,s2_t,s2_6_t
5272       double precision 
5273      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5274      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5275      & dt_dCi(3),dt_dCi1(3)
5276       common /sccalc/ time11,time12,time112,theti,it,nlobit
5277       delta=0.02d0*pi
5278       escloc=0.0D0
5279       do i=loc_start,loc_end
5280         costtab(i+1) =dcos(theta(i+1))
5281         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5282         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5283         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5284         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5285         cosfac=dsqrt(cosfac2)
5286         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5287         sinfac=dsqrt(sinfac2)
5288         it=itype(i)
5289         if (it.eq.10) goto 1
5290 c
5291 C  Compute the axes of tghe local cartesian coordinates system; store in
5292 c   x_prime, y_prime and z_prime 
5293 c
5294         do j=1,3
5295           x_prime(j) = 0.00
5296           y_prime(j) = 0.00
5297           z_prime(j) = 0.00
5298         enddo
5299 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5300 C     &   dc_norm(3,i+nres)
5301         do j = 1,3
5302           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5303           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5304         enddo
5305         do j = 1,3
5306           z_prime(j) = -uz(j,i-1)
5307         enddo     
5308 c       write (2,*) "i",i
5309 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5310 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5311 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5312 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5313 c      & " xy",scalar(x_prime(1),y_prime(1)),
5314 c      & " xz",scalar(x_prime(1),z_prime(1)),
5315 c      & " yy",scalar(y_prime(1),y_prime(1)),
5316 c      & " yz",scalar(y_prime(1),z_prime(1)),
5317 c      & " zz",scalar(z_prime(1),z_prime(1))
5318 c
5319 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5320 C to local coordinate system. Store in xx, yy, zz.
5321 c
5322         xx=0.0d0
5323         yy=0.0d0
5324         zz=0.0d0
5325         do j = 1,3
5326           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5327           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5328           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5329         enddo
5330
5331         xxtab(i)=xx
5332         yytab(i)=yy
5333         zztab(i)=zz
5334 C
5335 C Compute the energy of the ith side cbain
5336 C
5337 c        write (2,*) "xx",xx," yy",yy," zz",zz
5338         it=itype(i)
5339         do j = 1,65
5340           x(j) = sc_parmin(j,it) 
5341         enddo
5342 #ifdef CHECK_COORD
5343 Cc diagnostics - remove later
5344         xx1 = dcos(alph(2))
5345         yy1 = dsin(alph(2))*dcos(omeg(2))
5346         zz1 = -dsin(alph(2))*dsin(omeg(2))
5347         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5348      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5349      &    xx1,yy1,zz1
5350 C,"  --- ", xx_w,yy_w,zz_w
5351 c end diagnostics
5352 #endif
5353         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5354      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5355      &   + x(10)*yy*zz
5356         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5357      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5358      & + x(20)*yy*zz
5359         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5360      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5361      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5362      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5363      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5364      &  +x(40)*xx*yy*zz
5365         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5366      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5367      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5368      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5369      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5370      &  +x(60)*xx*yy*zz
5371         dsc_i   = 0.743d0+x(61)
5372         dp2_i   = 1.9d0+x(62)
5373         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5374      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5375         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5376      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5377         s1=(1+x(63))/(0.1d0 + dscp1)
5378         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5379         s2=(1+x(65))/(0.1d0 + dscp2)
5380         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5381         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5382      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5383 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5384 c     &   sumene4,
5385 c     &   dscp1,dscp2,sumene
5386 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5387         escloc = escloc + sumene
5388 c        write (2,*) "i",i," escloc",sumene,escloc
5389 #ifdef DEBUG
5390 C
5391 C This section to check the numerical derivatives of the energy of ith side
5392 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5393 C #define DEBUG in the code to turn it on.
5394 C
5395         write (2,*) "sumene               =",sumene
5396         aincr=1.0d-7
5397         xxsave=xx
5398         xx=xx+aincr
5399         write (2,*) xx,yy,zz
5400         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5401         de_dxx_num=(sumenep-sumene)/aincr
5402         xx=xxsave
5403         write (2,*) "xx+ sumene from enesc=",sumenep
5404         yysave=yy
5405         yy=yy+aincr
5406         write (2,*) xx,yy,zz
5407         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5408         de_dyy_num=(sumenep-sumene)/aincr
5409         yy=yysave
5410         write (2,*) "yy+ sumene from enesc=",sumenep
5411         zzsave=zz
5412         zz=zz+aincr
5413         write (2,*) xx,yy,zz
5414         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5415         de_dzz_num=(sumenep-sumene)/aincr
5416         zz=zzsave
5417         write (2,*) "zz+ sumene from enesc=",sumenep
5418         costsave=cost2tab(i+1)
5419         sintsave=sint2tab(i+1)
5420         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5421         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5422         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5423         de_dt_num=(sumenep-sumene)/aincr
5424         write (2,*) " t+ sumene from enesc=",sumenep
5425         cost2tab(i+1)=costsave
5426         sint2tab(i+1)=sintsave
5427 C End of diagnostics section.
5428 #endif
5429 C        
5430 C Compute the gradient of esc
5431 C
5432         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5433         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5434         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5435         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5436         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5437         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5438         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5439         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5440         pom1=(sumene3*sint2tab(i+1)+sumene1)
5441      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5442         pom2=(sumene4*cost2tab(i+1)+sumene2)
5443      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5444         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5445         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5446      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5447      &  +x(40)*yy*zz
5448         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5449         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5450      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5451      &  +x(60)*yy*zz
5452         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5453      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5454      &        +(pom1+pom2)*pom_dx
5455 #ifdef DEBUG
5456         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5457 #endif
5458 C
5459         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5460         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5461      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5462      &  +x(40)*xx*zz
5463         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5464         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5465      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5466      &  +x(59)*zz**2 +x(60)*xx*zz
5467         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5468      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5469      &        +(pom1-pom2)*pom_dy
5470 #ifdef DEBUG
5471         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5472 #endif
5473 C
5474         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5475      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5476      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5477      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5478      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5479      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5480      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5481      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5482 #ifdef DEBUG
5483         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5484 #endif
5485 C
5486         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5487      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5488      &  +pom1*pom_dt1+pom2*pom_dt2
5489 #ifdef DEBUG
5490         write(2,*), "de_dt = ", de_dt,de_dt_num
5491 #endif
5492
5493 C
5494        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5495        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5496        cosfac2xx=cosfac2*xx
5497        sinfac2yy=sinfac2*yy
5498        do k = 1,3
5499          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5500      &      vbld_inv(i+1)
5501          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5502      &      vbld_inv(i)
5503          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5504          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5505 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5506 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5507 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5508 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5509          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5510          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5511          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5512          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5513          dZZ_Ci1(k)=0.0d0
5514          dZZ_Ci(k)=0.0d0
5515          do j=1,3
5516            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5517            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5518          enddo
5519           
5520          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5521          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5522          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5523 c
5524          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5525          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5526        enddo
5527
5528        do k=1,3
5529          dXX_Ctab(k,i)=dXX_Ci(k)
5530          dXX_C1tab(k,i)=dXX_Ci1(k)
5531          dYY_Ctab(k,i)=dYY_Ci(k)
5532          dYY_C1tab(k,i)=dYY_Ci1(k)
5533          dZZ_Ctab(k,i)=dZZ_Ci(k)
5534          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5535          dXX_XYZtab(k,i)=dXX_XYZ(k)
5536          dYY_XYZtab(k,i)=dYY_XYZ(k)
5537          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5538        enddo
5539
5540        do k = 1,3
5541 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5542 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5543 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5544 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5545 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5546 c     &    dt_dci(k)
5547 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5548 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5549          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5550      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5551          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5552      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5553          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5554      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5555        enddo
5556 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5557 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5558
5559 C to check gradient call subroutine check_grad
5560
5561     1 continue
5562       enddo
5563       return
5564       end
5565 c------------------------------------------------------------------------------
5566       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5567       implicit none
5568       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5569      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5570       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5571      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5572      &   + x(10)*yy*zz
5573       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5574      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5575      & + x(20)*yy*zz
5576       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5577      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5578      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5579      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5580      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5581      &  +x(40)*xx*yy*zz
5582       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5583      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5584      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5585      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5586      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5587      &  +x(60)*xx*yy*zz
5588       dsc_i   = 0.743d0+x(61)
5589       dp2_i   = 1.9d0+x(62)
5590       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5591      &          *(xx*cost2+yy*sint2))
5592       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5593      &          *(xx*cost2-yy*sint2))
5594       s1=(1+x(63))/(0.1d0 + dscp1)
5595       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5596       s2=(1+x(65))/(0.1d0 + dscp2)
5597       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5598       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5599      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5600       enesc=sumene
5601       return
5602       end
5603 #endif
5604 c------------------------------------------------------------------------------
5605       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5606 C
5607 C This procedure calculates two-body contact function g(rij) and its derivative:
5608 C
5609 C           eps0ij                                     !       x < -1
5610 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5611 C            0                                         !       x > 1
5612 C
5613 C where x=(rij-r0ij)/delta
5614 C
5615 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5616 C
5617       implicit none
5618       double precision rij,r0ij,eps0ij,fcont,fprimcont
5619       double precision x,x2,x4,delta
5620 c     delta=0.02D0*r0ij
5621 c      delta=0.2D0*r0ij
5622       x=(rij-r0ij)/delta
5623       if (x.lt.-1.0D0) then
5624         fcont=eps0ij
5625         fprimcont=0.0D0
5626       else if (x.le.1.0D0) then  
5627         x2=x*x
5628         x4=x2*x2
5629         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5630         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5631       else
5632         fcont=0.0D0
5633         fprimcont=0.0D0
5634       endif
5635       return
5636       end
5637 c------------------------------------------------------------------------------
5638       subroutine splinthet(theti,delta,ss,ssder)
5639       implicit real*8 (a-h,o-z)
5640       include 'DIMENSIONS'
5641       include 'COMMON.VAR'
5642       include 'COMMON.GEO'
5643       thetup=pi-delta
5644       thetlow=delta
5645       if (theti.gt.pipol) then
5646         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5647       else
5648         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5649         ssder=-ssder
5650       endif
5651       return
5652       end
5653 c------------------------------------------------------------------------------
5654       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5655       implicit none
5656       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5657       double precision ksi,ksi2,ksi3,a1,a2,a3
5658       a1=fprim0*delta/(f1-f0)
5659       a2=3.0d0-2.0d0*a1
5660       a3=a1-2.0d0
5661       ksi=(x-x0)/delta
5662       ksi2=ksi*ksi
5663       ksi3=ksi2*ksi  
5664       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5665       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5666       return
5667       end
5668 c------------------------------------------------------------------------------
5669       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5670       implicit none
5671       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5672       double precision ksi,ksi2,ksi3,a1,a2,a3
5673       ksi=(x-x0)/delta  
5674       ksi2=ksi*ksi
5675       ksi3=ksi2*ksi
5676       a1=fprim0x*delta
5677       a2=3*(f1x-f0x)-2*fprim0x*delta
5678       a3=fprim0x*delta-2*(f1x-f0x)
5679       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5680       return
5681       end
5682 C-----------------------------------------------------------------------------
5683 #ifdef CRYST_TOR
5684 C-----------------------------------------------------------------------------
5685       subroutine etor(etors,edihcnstr)
5686       implicit real*8 (a-h,o-z)
5687       include 'DIMENSIONS'
5688       include 'COMMON.VAR'
5689       include 'COMMON.GEO'
5690       include 'COMMON.LOCAL'
5691       include 'COMMON.TORSION'
5692       include 'COMMON.INTERACT'
5693       include 'COMMON.DERIV'
5694       include 'COMMON.CHAIN'
5695       include 'COMMON.NAMES'
5696       include 'COMMON.IOUNITS'
5697       include 'COMMON.FFIELD'
5698       include 'COMMON.TORCNSTR'
5699       include 'COMMON.CONTROL'
5700       logical lprn
5701 C Set lprn=.true. for debugging
5702       lprn=.false.
5703 c      lprn=.true.
5704       etors=0.0D0
5705       do i=iphi_start,iphi_end
5706       etors_ii=0.0D0
5707         itori=itortyp(itype(i-2))
5708         itori1=itortyp(itype(i-1))
5709         phii=phi(i)
5710         gloci=0.0D0
5711 C Proline-Proline pair is a special case...
5712         if (itori.eq.3 .and. itori1.eq.3) then
5713           if (phii.gt.-dwapi3) then
5714             cosphi=dcos(3*phii)
5715             fac=1.0D0/(1.0D0-cosphi)
5716             etorsi=v1(1,3,3)*fac
5717             etorsi=etorsi+etorsi
5718             etors=etors+etorsi-v1(1,3,3)
5719             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5720             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5721           endif
5722           do j=1,3
5723             v1ij=v1(j+1,itori,itori1)
5724             v2ij=v2(j+1,itori,itori1)
5725             cosphi=dcos(j*phii)
5726             sinphi=dsin(j*phii)
5727             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5728             if (energy_dec) etors_ii=etors_ii+
5729      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5730             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5731           enddo
5732         else 
5733           do j=1,nterm_old
5734             v1ij=v1(j,itori,itori1)
5735             v2ij=v2(j,itori,itori1)
5736             cosphi=dcos(j*phii)
5737             sinphi=dsin(j*phii)
5738             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5739             if (energy_dec) etors_ii=etors_ii+
5740      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5741             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5742           enddo
5743         endif
5744         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5745      &        'etor',i,etors_ii
5746         if (lprn)
5747      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5748      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5749      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5750         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5751         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5752       enddo
5753 ! 6/20/98 - dihedral angle constraints
5754       edihcnstr=0.0d0
5755       do i=1,ndih_constr
5756         itori=idih_constr(i)
5757         phii=phi(itori)
5758         difi=phii-phi0(i)
5759         if (difi.gt.drange(i)) then
5760           difi=difi-drange(i)
5761           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5762           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5763         else if (difi.lt.-drange(i)) then
5764           difi=difi+drange(i)
5765           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5766           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5767         endif
5768 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5769 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5770       enddo
5771 !      write (iout,*) 'edihcnstr',edihcnstr
5772       return
5773       end
5774 c------------------------------------------------------------------------------
5775       subroutine etor_d(etors_d)
5776       etors_d=0.0d0
5777       return
5778       end
5779 c----------------------------------------------------------------------------
5780 #else
5781       subroutine etor(etors,edihcnstr)
5782       implicit real*8 (a-h,o-z)
5783       include 'DIMENSIONS'
5784       include 'COMMON.VAR'
5785       include 'COMMON.GEO'
5786       include 'COMMON.LOCAL'
5787       include 'COMMON.TORSION'
5788       include 'COMMON.INTERACT'
5789       include 'COMMON.DERIV'
5790       include 'COMMON.CHAIN'
5791       include 'COMMON.NAMES'
5792       include 'COMMON.IOUNITS'
5793       include 'COMMON.FFIELD'
5794       include 'COMMON.TORCNSTR'
5795       include 'COMMON.CONTROL'
5796       logical lprn
5797 C Set lprn=.true. for debugging
5798       lprn=.false.
5799 c     lprn=.true.
5800       etors=0.0D0
5801       do i=iphi_start,iphi_end
5802       etors_ii=0.0D0
5803         itori=itortyp(itype(i-2))
5804         itori1=itortyp(itype(i-1))
5805         phii=phi(i)
5806         gloci=0.0D0
5807 C Regular cosine and sine terms
5808         do j=1,nterm(itori,itori1)
5809           v1ij=v1(j,itori,itori1)
5810           v2ij=v2(j,itori,itori1)
5811           cosphi=dcos(j*phii)
5812           sinphi=dsin(j*phii)
5813           etors=etors+v1ij*cosphi+v2ij*sinphi
5814           if (energy_dec) etors_ii=etors_ii+
5815      &                v1ij*cosphi+v2ij*sinphi
5816           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5817         enddo
5818 C Lorentz terms
5819 C                         v1
5820 C  E = SUM ----------------------------------- - v1
5821 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5822 C
5823         cosphi=dcos(0.5d0*phii)
5824         sinphi=dsin(0.5d0*phii)
5825         do j=1,nlor(itori,itori1)
5826           vl1ij=vlor1(j,itori,itori1)
5827           vl2ij=vlor2(j,itori,itori1)
5828           vl3ij=vlor3(j,itori,itori1)
5829           pom=vl2ij*cosphi+vl3ij*sinphi
5830           pom1=1.0d0/(pom*pom+1.0d0)
5831           etors=etors+vl1ij*pom1
5832           if (energy_dec) etors_ii=etors_ii+
5833      &                vl1ij*pom1
5834           pom=-pom*pom1*pom1
5835           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5836         enddo
5837 C Subtract the constant term
5838         etors=etors-v0(itori,itori1)
5839           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5840      &         'etor',i,etors_ii-v0(itori,itori1)
5841         if (lprn)
5842      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5843      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5844      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5845         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5846 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5847       enddo
5848 ! 6/20/98 - dihedral angle constraints
5849       edihcnstr=0.0d0
5850 c      do i=1,ndih_constr
5851       do i=idihconstr_start,idihconstr_end
5852         itori=idih_constr(i)
5853         phii=phi(itori)
5854         difi=pinorm(phii-phi0(i))
5855         if (difi.gt.drange(i)) then
5856           difi=difi-drange(i)
5857           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5858           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5859         else if (difi.lt.-drange(i)) then
5860           difi=difi+drange(i)
5861           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5862           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5863         else
5864           difi=0.0
5865         endif
5866 c        write (iout,*) "gloci", gloc(i-3,icg)
5867 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5868 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5869 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5870       enddo
5871 cd       write (iout,*) 'edihcnstr',edihcnstr
5872       return
5873       end
5874 c----------------------------------------------------------------------------
5875       subroutine etor_d(etors_d)
5876 C 6/23/01 Compute double torsional energy
5877       implicit real*8 (a-h,o-z)
5878       include 'DIMENSIONS'
5879       include 'COMMON.VAR'
5880       include 'COMMON.GEO'
5881       include 'COMMON.LOCAL'
5882       include 'COMMON.TORSION'
5883       include 'COMMON.INTERACT'
5884       include 'COMMON.DERIV'
5885       include 'COMMON.CHAIN'
5886       include 'COMMON.NAMES'
5887       include 'COMMON.IOUNITS'
5888       include 'COMMON.FFIELD'
5889       include 'COMMON.TORCNSTR'
5890       logical lprn
5891 C Set lprn=.true. for debugging
5892       lprn=.false.
5893 c     lprn=.true.
5894       etors_d=0.0D0
5895       do i=iphid_start,iphid_end
5896         itori=itortyp(itype(i-2))
5897         itori1=itortyp(itype(i-1))
5898         itori2=itortyp(itype(i))
5899         phii=phi(i)
5900         phii1=phi(i+1)
5901         gloci1=0.0D0
5902         gloci2=0.0D0
5903         do j=1,ntermd_1(itori,itori1,itori2)
5904           v1cij=v1c(1,j,itori,itori1,itori2)
5905           v1sij=v1s(1,j,itori,itori1,itori2)
5906           v2cij=v1c(2,j,itori,itori1,itori2)
5907           v2sij=v1s(2,j,itori,itori1,itori2)
5908           cosphi1=dcos(j*phii)
5909           sinphi1=dsin(j*phii)
5910           cosphi2=dcos(j*phii1)
5911           sinphi2=dsin(j*phii1)
5912           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5913      &     v2cij*cosphi2+v2sij*sinphi2
5914           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5915           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5916         enddo
5917         do k=2,ntermd_2(itori,itori1,itori2)
5918           do l=1,k-1
5919             v1cdij = v2c(k,l,itori,itori1,itori2)
5920             v2cdij = v2c(l,k,itori,itori1,itori2)
5921             v1sdij = v2s(k,l,itori,itori1,itori2)
5922             v2sdij = v2s(l,k,itori,itori1,itori2)
5923             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5924             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5925             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5926             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5927             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5928      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5929             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5930      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5931             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5932      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5933           enddo
5934         enddo
5935         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5936         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5937 c        write (iout,*) "gloci", gloc(i-3,icg)
5938       enddo
5939       return
5940       end
5941 #endif
5942 c------------------------------------------------------------------------------
5943       subroutine eback_sc_corr(esccor)
5944 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5945 c        conformational states; temporarily implemented as differences
5946 c        between UNRES torsional potentials (dependent on three types of
5947 c        residues) and the torsional potentials dependent on all 20 types
5948 c        of residues computed from AM1  energy surfaces of terminally-blocked
5949 c        amino-acid residues.
5950       implicit real*8 (a-h,o-z)
5951       include 'DIMENSIONS'
5952       include 'COMMON.VAR'
5953       include 'COMMON.GEO'
5954       include 'COMMON.LOCAL'
5955       include 'COMMON.TORSION'
5956       include 'COMMON.SCCOR'
5957       include 'COMMON.INTERACT'
5958       include 'COMMON.DERIV'
5959       include 'COMMON.CHAIN'
5960       include 'COMMON.NAMES'
5961       include 'COMMON.IOUNITS'
5962       include 'COMMON.FFIELD'
5963       include 'COMMON.CONTROL'
5964       logical lprn
5965 C Set lprn=.true. for debugging
5966       lprn=.false.
5967 c      lprn=.true.
5968 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5969       esccor=0.0D0
5970       do i=itau_start,itau_end
5971 C        do i=42,42
5972         esccor_ii=0.0D0
5973         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5974         isccori=isccortyp(itype(i-2))
5975         isccori1=isccortyp(itype(i-1))
5976         phii=phi(i)
5977
5978 cccc  Added 9 May 2012
5979 cc Tauangle is torsional engle depending on the value of first digit 
5980 c(see comment below)
5981 cc Omicron is flat angle depending on the value of first digit 
5982 c(see comment below)
5983 C        print *,i,tauangle(1,i)
5984         
5985 c        do intertyp=1,3 !intertyp
5986         do intertyp=2,2 !intertyp
5987 cc Added 09 May 2012 (Adasko)
5988 cc  Intertyp means interaction type of backbone mainchain correlation: 
5989 c   1 = SC...Ca...Ca...Ca
5990 c   2 = Ca...Ca...Ca...SC
5991 c   3 = SC...Ca...Ca...SCi
5992         gloci=0.0D0
5993         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5994      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
5995      &      (itype(i-1).eq.21)))
5996      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5997      &     .or.(itype(i-2).eq.21)))
5998      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5999      &      (itype(i-1).eq.21)))) cycle  
6000         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
6001         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
6002      & cycle
6003         do j=1,nterm_sccor(isccori,isccori1)
6004           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6005           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6006           cosphi=dcos(j*tauangle(intertyp,i))
6007           sinphi=dsin(j*tauangle(intertyp,i))
6008           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6009           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6010         enddo
6011 C        print *,i,tauangle(1,i),gloci
6012         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6013 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6014 c     &gloc_sc(intertyp,i-3,icg)
6015         if (lprn)
6016      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6017      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6018      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6019      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6020         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6021        enddo !intertyp
6022       enddo
6023 c        do i=1,nres
6024 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc_sc(2,i,icg),
6025 c     &   gloc_sc(3,i,icg)
6026 c        enddo
6027       return
6028       end
6029 c----------------------------------------------------------------------------
6030       subroutine multibody(ecorr)
6031 C This subroutine calculates multi-body contributions to energy following
6032 C the idea of Skolnick et al. If side chains I and J make a contact and
6033 C at the same time side chains I+1 and J+1 make a contact, an extra 
6034 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6035       implicit real*8 (a-h,o-z)
6036       include 'DIMENSIONS'
6037       include 'COMMON.IOUNITS'
6038       include 'COMMON.DERIV'
6039       include 'COMMON.INTERACT'
6040       include 'COMMON.CONTACTS'
6041       double precision gx(3),gx1(3)
6042       logical lprn
6043
6044 C Set lprn=.true. for debugging
6045       lprn=.false.
6046
6047       if (lprn) then
6048         write (iout,'(a)') 'Contact function values:'
6049         do i=nnt,nct-2
6050           write (iout,'(i2,20(1x,i2,f10.5))') 
6051      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6052         enddo
6053       endif
6054       ecorr=0.0D0
6055       do i=nnt,nct
6056         do j=1,3
6057           gradcorr(j,i)=0.0D0
6058           gradxorr(j,i)=0.0D0
6059         enddo
6060       enddo
6061       do i=nnt,nct-2
6062
6063         DO ISHIFT = 3,4
6064
6065         i1=i+ishift
6066         num_conti=num_cont(i)
6067         num_conti1=num_cont(i1)
6068         do jj=1,num_conti
6069           j=jcont(jj,i)
6070           do kk=1,num_conti1
6071             j1=jcont(kk,i1)
6072             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6073 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6074 cd   &                   ' ishift=',ishift
6075 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6076 C The system gains extra energy.
6077               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6078             endif   ! j1==j+-ishift
6079           enddo     ! kk  
6080         enddo       ! jj
6081
6082         ENDDO ! ISHIFT
6083
6084       enddo         ! i
6085       return
6086       end
6087 c------------------------------------------------------------------------------
6088       double precision function esccorr(i,j,k,l,jj,kk)
6089       implicit real*8 (a-h,o-z)
6090       include 'DIMENSIONS'
6091       include 'COMMON.IOUNITS'
6092       include 'COMMON.DERIV'
6093       include 'COMMON.INTERACT'
6094       include 'COMMON.CONTACTS'
6095       double precision gx(3),gx1(3)
6096       logical lprn
6097       lprn=.false.
6098       eij=facont(jj,i)
6099       ekl=facont(kk,k)
6100 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6101 C Calculate the multi-body contribution to energy.
6102 C Calculate multi-body contributions to the gradient.
6103 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6104 cd   & k,l,(gacont(m,kk,k),m=1,3)
6105       do m=1,3
6106         gx(m) =ekl*gacont(m,jj,i)
6107         gx1(m)=eij*gacont(m,kk,k)
6108         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6109         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6110         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6111         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6112       enddo
6113       do m=i,j-1
6114         do ll=1,3
6115           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6116         enddo
6117       enddo
6118       do m=k,l-1
6119         do ll=1,3
6120           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6121         enddo
6122       enddo 
6123       esccorr=-eij*ekl
6124       return
6125       end
6126 c------------------------------------------------------------------------------
6127       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6128 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6129       implicit real*8 (a-h,o-z)
6130       include 'DIMENSIONS'
6131       include 'COMMON.IOUNITS'
6132 #ifdef MPI
6133       include "mpif.h"
6134       parameter (max_cont=maxconts)
6135       parameter (max_dim=26)
6136       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6137       double precision zapas(max_dim,maxconts,max_fg_procs),
6138      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6139       common /przechowalnia/ zapas
6140       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6141      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6142 #endif
6143       include 'COMMON.SETUP'
6144       include 'COMMON.FFIELD'
6145       include 'COMMON.DERIV'
6146       include 'COMMON.INTERACT'
6147       include 'COMMON.CONTACTS'
6148       include 'COMMON.CONTROL'
6149       include 'COMMON.LOCAL'
6150       double precision gx(3),gx1(3),time00
6151       logical lprn,ldone
6152
6153 C Set lprn=.true. for debugging
6154       lprn=.false.
6155 #ifdef MPI
6156       n_corr=0
6157       n_corr1=0
6158       if (nfgtasks.le.1) goto 30
6159       if (lprn) then
6160         write (iout,'(a)') 'Contact function values before RECEIVE:'
6161         do i=nnt,nct-2
6162           write (iout,'(2i3,50(1x,i2,f5.2))') 
6163      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6164      &    j=1,num_cont_hb(i))
6165         enddo
6166       endif
6167       call flush(iout)
6168       do i=1,ntask_cont_from
6169         ncont_recv(i)=0
6170       enddo
6171       do i=1,ntask_cont_to
6172         ncont_sent(i)=0
6173       enddo
6174 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6175 c     & ntask_cont_to
6176 C Make the list of contacts to send to send to other procesors
6177 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6178 c      call flush(iout)
6179       do i=iturn3_start,iturn3_end
6180 c        write (iout,*) "make contact list turn3",i," num_cont",
6181 c     &    num_cont_hb(i)
6182         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6183       enddo
6184       do i=iturn4_start,iturn4_end
6185 c        write (iout,*) "make contact list turn4",i," num_cont",
6186 c     &   num_cont_hb(i)
6187         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6188       enddo
6189       do ii=1,nat_sent
6190         i=iat_sent(ii)
6191 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6192 c     &    num_cont_hb(i)
6193         do j=1,num_cont_hb(i)
6194         do k=1,4
6195           jjc=jcont_hb(j,i)
6196           iproc=iint_sent_local(k,jjc,ii)
6197 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6198           if (iproc.gt.0) then
6199             ncont_sent(iproc)=ncont_sent(iproc)+1
6200             nn=ncont_sent(iproc)
6201             zapas(1,nn,iproc)=i
6202             zapas(2,nn,iproc)=jjc
6203             zapas(3,nn,iproc)=facont_hb(j,i)
6204             zapas(4,nn,iproc)=ees0p(j,i)
6205             zapas(5,nn,iproc)=ees0m(j,i)
6206             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6207             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6208             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6209             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6210             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6211             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6212             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6213             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6214             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6215             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6216             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6217             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6218             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6219             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6220             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6221             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6222             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6223             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6224             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6225             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6226             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6227           endif
6228         enddo
6229         enddo
6230       enddo
6231       if (lprn) then
6232       write (iout,*) 
6233      &  "Numbers of contacts to be sent to other processors",
6234      &  (ncont_sent(i),i=1,ntask_cont_to)
6235       write (iout,*) "Contacts sent"
6236       do ii=1,ntask_cont_to
6237         nn=ncont_sent(ii)
6238         iproc=itask_cont_to(ii)
6239         write (iout,*) nn," contacts to processor",iproc,
6240      &   " of CONT_TO_COMM group"
6241         do i=1,nn
6242           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6243         enddo
6244       enddo
6245       call flush(iout)
6246       endif
6247       CorrelType=477
6248       CorrelID=fg_rank+1
6249       CorrelType1=478
6250       CorrelID1=nfgtasks+fg_rank+1
6251       ireq=0
6252 C Receive the numbers of needed contacts from other processors 
6253       do ii=1,ntask_cont_from
6254         iproc=itask_cont_from(ii)
6255         ireq=ireq+1
6256         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6257      &    FG_COMM,req(ireq),IERR)
6258       enddo
6259 c      write (iout,*) "IRECV ended"
6260 c      call flush(iout)
6261 C Send the number of contacts needed by other processors
6262       do ii=1,ntask_cont_to
6263         iproc=itask_cont_to(ii)
6264         ireq=ireq+1
6265         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6266      &    FG_COMM,req(ireq),IERR)
6267       enddo
6268 c      write (iout,*) "ISEND ended"
6269 c      write (iout,*) "number of requests (nn)",ireq
6270       call flush(iout)
6271       if (ireq.gt.0) 
6272      &  call MPI_Waitall(ireq,req,status_array,ierr)
6273 c      write (iout,*) 
6274 c     &  "Numbers of contacts to be received from other processors",
6275 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6276 c      call flush(iout)
6277 C Receive contacts
6278       ireq=0
6279       do ii=1,ntask_cont_from
6280         iproc=itask_cont_from(ii)
6281         nn=ncont_recv(ii)
6282 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6283 c     &   " of CONT_TO_COMM group"
6284         call flush(iout)
6285         if (nn.gt.0) then
6286           ireq=ireq+1
6287           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6288      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6289 c          write (iout,*) "ireq,req",ireq,req(ireq)
6290         endif
6291       enddo
6292 C Send the contacts to processors that need them
6293       do ii=1,ntask_cont_to
6294         iproc=itask_cont_to(ii)
6295         nn=ncont_sent(ii)
6296 c        write (iout,*) nn," contacts to processor",iproc,
6297 c     &   " of CONT_TO_COMM group"
6298         if (nn.gt.0) then
6299           ireq=ireq+1 
6300           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6301      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6302 c          write (iout,*) "ireq,req",ireq,req(ireq)
6303 c          do i=1,nn
6304 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6305 c          enddo
6306         endif  
6307       enddo
6308 c      write (iout,*) "number of requests (contacts)",ireq
6309 c      write (iout,*) "req",(req(i),i=1,4)
6310 c      call flush(iout)
6311       if (ireq.gt.0) 
6312      & call MPI_Waitall(ireq,req,status_array,ierr)
6313       do iii=1,ntask_cont_from
6314         iproc=itask_cont_from(iii)
6315         nn=ncont_recv(iii)
6316         if (lprn) then
6317         write (iout,*) "Received",nn," contacts from processor",iproc,
6318      &   " of CONT_FROM_COMM group"
6319         call flush(iout)
6320         do i=1,nn
6321           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6322         enddo
6323         call flush(iout)
6324         endif
6325         do i=1,nn
6326           ii=zapas_recv(1,i,iii)
6327 c Flag the received contacts to prevent double-counting
6328           jj=-zapas_recv(2,i,iii)
6329 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6330 c          call flush(iout)
6331           nnn=num_cont_hb(ii)+1
6332           num_cont_hb(ii)=nnn
6333           jcont_hb(nnn,ii)=jj
6334           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6335           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6336           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6337           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6338           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6339           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6340           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6341           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6342           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6343           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6344           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6345           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6346           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6347           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6348           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6349           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6350           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6351           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6352           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6353           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6354           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6355           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6356           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6357           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6358         enddo
6359       enddo
6360       call flush(iout)
6361       if (lprn) then
6362         write (iout,'(a)') 'Contact function values after receive:'
6363         do i=nnt,nct-2
6364           write (iout,'(2i3,50(1x,i3,f5.2))') 
6365      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6366      &    j=1,num_cont_hb(i))
6367         enddo
6368         call flush(iout)
6369       endif
6370    30 continue
6371 #endif
6372       if (lprn) then
6373         write (iout,'(a)') 'Contact function values:'
6374         do i=nnt,nct-2
6375           write (iout,'(2i3,50(1x,i3,f5.2))') 
6376      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6377      &    j=1,num_cont_hb(i))
6378         enddo
6379       endif
6380       ecorr=0.0D0
6381 C Remove the loop below after debugging !!!
6382       do i=nnt,nct
6383         do j=1,3
6384           gradcorr(j,i)=0.0D0
6385           gradxorr(j,i)=0.0D0
6386         enddo
6387       enddo
6388 C Calculate the local-electrostatic correlation terms
6389       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6390         i1=i+1
6391         num_conti=num_cont_hb(i)
6392         num_conti1=num_cont_hb(i+1)
6393         do jj=1,num_conti
6394           j=jcont_hb(jj,i)
6395           jp=iabs(j)
6396           do kk=1,num_conti1
6397             j1=jcont_hb(kk,i1)
6398             jp1=iabs(j1)
6399 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6400 c     &         ' jj=',jj,' kk=',kk
6401             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6402      &          .or. j.lt.0 .and. j1.gt.0) .and.
6403      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6404 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6405 C The system gains extra energy.
6406               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6407               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6408      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6409               n_corr=n_corr+1
6410             else if (j1.eq.j) then
6411 C Contacts I-J and I-(J+1) occur simultaneously. 
6412 C The system loses extra energy.
6413 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6414             endif
6415           enddo ! kk
6416           do kk=1,num_conti
6417             j1=jcont_hb(kk,i)
6418 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6419 c    &         ' jj=',jj,' kk=',kk
6420             if (j1.eq.j+1) then
6421 C Contacts I-J and (I+1)-J occur simultaneously. 
6422 C The system loses extra energy.
6423 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6424             endif ! j1==j+1
6425           enddo ! kk
6426         enddo ! jj
6427       enddo ! i
6428       return
6429       end
6430 c------------------------------------------------------------------------------
6431       subroutine add_hb_contact(ii,jj,itask)
6432       implicit real*8 (a-h,o-z)
6433       include "DIMENSIONS"
6434       include "COMMON.IOUNITS"
6435       integer max_cont
6436       integer max_dim
6437       parameter (max_cont=maxconts)
6438       parameter (max_dim=26)
6439       include "COMMON.CONTACTS"
6440       double precision zapas(max_dim,maxconts,max_fg_procs),
6441      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6442       common /przechowalnia/ zapas
6443       integer i,j,ii,jj,iproc,itask(4),nn
6444 c      write (iout,*) "itask",itask
6445       do i=1,2
6446         iproc=itask(i)
6447         if (iproc.gt.0) then
6448           do j=1,num_cont_hb(ii)
6449             jjc=jcont_hb(j,ii)
6450 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6451             if (jjc.eq.jj) then
6452               ncont_sent(iproc)=ncont_sent(iproc)+1
6453               nn=ncont_sent(iproc)
6454               zapas(1,nn,iproc)=ii
6455               zapas(2,nn,iproc)=jjc
6456               zapas(3,nn,iproc)=facont_hb(j,ii)
6457               zapas(4,nn,iproc)=ees0p(j,ii)
6458               zapas(5,nn,iproc)=ees0m(j,ii)
6459               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6460               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6461               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6462               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6463               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6464               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6465               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6466               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6467               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6468               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6469               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6470               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6471               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6472               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6473               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6474               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6475               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6476               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6477               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6478               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6479               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6480               exit
6481             endif
6482           enddo
6483         endif
6484       enddo
6485       return
6486       end
6487 c------------------------------------------------------------------------------
6488       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6489      &  n_corr1)
6490 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6491       implicit real*8 (a-h,o-z)
6492       include 'DIMENSIONS'
6493       include 'COMMON.IOUNITS'
6494 #ifdef MPI
6495       include "mpif.h"
6496       parameter (max_cont=maxconts)
6497       parameter (max_dim=70)
6498       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6499       double precision zapas(max_dim,maxconts,max_fg_procs),
6500      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6501       common /przechowalnia/ zapas
6502       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6503      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6504 #endif
6505       include 'COMMON.SETUP'
6506       include 'COMMON.FFIELD'
6507       include 'COMMON.DERIV'
6508       include 'COMMON.LOCAL'
6509       include 'COMMON.INTERACT'
6510       include 'COMMON.CONTACTS'
6511       include 'COMMON.CHAIN'
6512       include 'COMMON.CONTROL'
6513       double precision gx(3),gx1(3)
6514       integer num_cont_hb_old(maxres)
6515       logical lprn,ldone
6516       double precision eello4,eello5,eelo6,eello_turn6
6517       external eello4,eello5,eello6,eello_turn6
6518 C Set lprn=.true. for debugging
6519       lprn=.false.
6520       eturn6=0.0d0
6521 #ifdef MPI
6522       do i=1,nres
6523         num_cont_hb_old(i)=num_cont_hb(i)
6524       enddo
6525       n_corr=0
6526       n_corr1=0
6527       if (nfgtasks.le.1) goto 30
6528       if (lprn) then
6529         write (iout,'(a)') 'Contact function values before RECEIVE:'
6530         do i=nnt,nct-2
6531           write (iout,'(2i3,50(1x,i2,f5.2))') 
6532      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6533      &    j=1,num_cont_hb(i))
6534         enddo
6535       endif
6536       call flush(iout)
6537       do i=1,ntask_cont_from
6538         ncont_recv(i)=0
6539       enddo
6540       do i=1,ntask_cont_to
6541         ncont_sent(i)=0
6542       enddo
6543 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6544 c     & ntask_cont_to
6545 C Make the list of contacts to send to send to other procesors
6546       do i=iturn3_start,iturn3_end
6547 c        write (iout,*) "make contact list turn3",i," num_cont",
6548 c     &    num_cont_hb(i)
6549         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6550       enddo
6551       do i=iturn4_start,iturn4_end
6552 c        write (iout,*) "make contact list turn4",i," num_cont",
6553 c     &   num_cont_hb(i)
6554         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6555       enddo
6556       do ii=1,nat_sent
6557         i=iat_sent(ii)
6558 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6559 c     &    num_cont_hb(i)
6560         do j=1,num_cont_hb(i)
6561         do k=1,4
6562           jjc=jcont_hb(j,i)
6563           iproc=iint_sent_local(k,jjc,ii)
6564 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6565           if (iproc.ne.0) then
6566             ncont_sent(iproc)=ncont_sent(iproc)+1
6567             nn=ncont_sent(iproc)
6568             zapas(1,nn,iproc)=i
6569             zapas(2,nn,iproc)=jjc
6570             zapas(3,nn,iproc)=d_cont(j,i)
6571             ind=3
6572             do kk=1,3
6573               ind=ind+1
6574               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6575             enddo
6576             do kk=1,2
6577               do ll=1,2
6578                 ind=ind+1
6579                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6580               enddo
6581             enddo
6582             do jj=1,5
6583               do kk=1,3
6584                 do ll=1,2
6585                   do mm=1,2
6586                     ind=ind+1
6587                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6588                   enddo
6589                 enddo
6590               enddo
6591             enddo
6592           endif
6593         enddo
6594         enddo
6595       enddo
6596       if (lprn) then
6597       write (iout,*) 
6598      &  "Numbers of contacts to be sent to other processors",
6599      &  (ncont_sent(i),i=1,ntask_cont_to)
6600       write (iout,*) "Contacts sent"
6601       do ii=1,ntask_cont_to
6602         nn=ncont_sent(ii)
6603         iproc=itask_cont_to(ii)
6604         write (iout,*) nn," contacts to processor",iproc,
6605      &   " of CONT_TO_COMM group"
6606         do i=1,nn
6607           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6608         enddo
6609       enddo
6610       call flush(iout)
6611       endif
6612       CorrelType=477
6613       CorrelID=fg_rank+1
6614       CorrelType1=478
6615       CorrelID1=nfgtasks+fg_rank+1
6616       ireq=0
6617 C Receive the numbers of needed contacts from other processors 
6618       do ii=1,ntask_cont_from
6619         iproc=itask_cont_from(ii)
6620         ireq=ireq+1
6621         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6622      &    FG_COMM,req(ireq),IERR)
6623       enddo
6624 c      write (iout,*) "IRECV ended"
6625 c      call flush(iout)
6626 C Send the number of contacts needed by other processors
6627       do ii=1,ntask_cont_to
6628         iproc=itask_cont_to(ii)
6629         ireq=ireq+1
6630         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6631      &    FG_COMM,req(ireq),IERR)
6632       enddo
6633 c      write (iout,*) "ISEND ended"
6634 c      write (iout,*) "number of requests (nn)",ireq
6635       call flush(iout)
6636       if (ireq.gt.0) 
6637      &  call MPI_Waitall(ireq,req,status_array,ierr)
6638 c      write (iout,*) 
6639 c     &  "Numbers of contacts to be received from other processors",
6640 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6641 c      call flush(iout)
6642 C Receive contacts
6643       ireq=0
6644       do ii=1,ntask_cont_from
6645         iproc=itask_cont_from(ii)
6646         nn=ncont_recv(ii)
6647 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6648 c     &   " of CONT_TO_COMM group"
6649         call flush(iout)
6650         if (nn.gt.0) then
6651           ireq=ireq+1
6652           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6653      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6654 c          write (iout,*) "ireq,req",ireq,req(ireq)
6655         endif
6656       enddo
6657 C Send the contacts to processors that need them
6658       do ii=1,ntask_cont_to
6659         iproc=itask_cont_to(ii)
6660         nn=ncont_sent(ii)
6661 c        write (iout,*) nn," contacts to processor",iproc,
6662 c     &   " of CONT_TO_COMM group"
6663         if (nn.gt.0) then
6664           ireq=ireq+1 
6665           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6666      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6667 c          write (iout,*) "ireq,req",ireq,req(ireq)
6668 c          do i=1,nn
6669 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6670 c          enddo
6671         endif  
6672       enddo
6673 c      write (iout,*) "number of requests (contacts)",ireq
6674 c      write (iout,*) "req",(req(i),i=1,4)
6675 c      call flush(iout)
6676       if (ireq.gt.0) 
6677      & call MPI_Waitall(ireq,req,status_array,ierr)
6678       do iii=1,ntask_cont_from
6679         iproc=itask_cont_from(iii)
6680         nn=ncont_recv(iii)
6681         if (lprn) then
6682         write (iout,*) "Received",nn," contacts from processor",iproc,
6683      &   " of CONT_FROM_COMM group"
6684         call flush(iout)
6685         do i=1,nn
6686           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6687         enddo
6688         call flush(iout)
6689         endif
6690         do i=1,nn
6691           ii=zapas_recv(1,i,iii)
6692 c Flag the received contacts to prevent double-counting
6693           jj=-zapas_recv(2,i,iii)
6694 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6695 c          call flush(iout)
6696           nnn=num_cont_hb(ii)+1
6697           num_cont_hb(ii)=nnn
6698           jcont_hb(nnn,ii)=jj
6699           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6700           ind=3
6701           do kk=1,3
6702             ind=ind+1
6703             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6704           enddo
6705           do kk=1,2
6706             do ll=1,2
6707               ind=ind+1
6708               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6709             enddo
6710           enddo
6711           do jj=1,5
6712             do kk=1,3
6713               do ll=1,2
6714                 do mm=1,2
6715                   ind=ind+1
6716                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6717                 enddo
6718               enddo
6719             enddo
6720           enddo
6721         enddo
6722       enddo
6723       call flush(iout)
6724       if (lprn) then
6725         write (iout,'(a)') 'Contact function values after receive:'
6726         do i=nnt,nct-2
6727           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6728      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6729      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6730         enddo
6731         call flush(iout)
6732       endif
6733    30 continue
6734 #endif
6735       if (lprn) then
6736         write (iout,'(a)') 'Contact function values:'
6737         do i=nnt,nct-2
6738           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6739      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6740      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6741         enddo
6742       endif
6743       ecorr=0.0D0
6744       ecorr5=0.0d0
6745       ecorr6=0.0d0
6746 C Remove the loop below after debugging !!!
6747       do i=nnt,nct
6748         do j=1,3
6749           gradcorr(j,i)=0.0D0
6750           gradxorr(j,i)=0.0D0
6751         enddo
6752       enddo
6753 C Calculate the dipole-dipole interaction energies
6754       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6755       do i=iatel_s,iatel_e+1
6756         num_conti=num_cont_hb(i)
6757         do jj=1,num_conti
6758           j=jcont_hb(jj,i)
6759 #ifdef MOMENT
6760           call dipole(i,j,jj)
6761 #endif
6762         enddo
6763       enddo
6764       endif
6765 C Calculate the local-electrostatic correlation terms
6766 c                write (iout,*) "gradcorr5 in eello5 before loop"
6767 c                do iii=1,nres
6768 c                  write (iout,'(i5,3f10.5)') 
6769 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6770 c                enddo
6771       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6772 c        write (iout,*) "corr loop i",i
6773         i1=i+1
6774         num_conti=num_cont_hb(i)
6775         num_conti1=num_cont_hb(i+1)
6776         do jj=1,num_conti
6777           j=jcont_hb(jj,i)
6778           jp=iabs(j)
6779           do kk=1,num_conti1
6780             j1=jcont_hb(kk,i1)
6781             jp1=iabs(j1)
6782 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6783 c     &         ' jj=',jj,' kk=',kk
6784 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6785             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6786      &          .or. j.lt.0 .and. j1.gt.0) .and.
6787      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6788 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6789 C The system gains extra energy.
6790               n_corr=n_corr+1
6791               sqd1=dsqrt(d_cont(jj,i))
6792               sqd2=dsqrt(d_cont(kk,i1))
6793               sred_geom = sqd1*sqd2
6794               IF (sred_geom.lt.cutoff_corr) THEN
6795                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6796      &            ekont,fprimcont)
6797 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6798 cd     &         ' jj=',jj,' kk=',kk
6799                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6800                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6801                 do l=1,3
6802                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6803                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6804                 enddo
6805                 n_corr1=n_corr1+1
6806 cd               write (iout,*) 'sred_geom=',sred_geom,
6807 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6808 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6809 cd               write (iout,*) "g_contij",g_contij
6810 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6811 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6812                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6813                 if (wcorr4.gt.0.0d0) 
6814      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6815                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6816      1                 write (iout,'(a6,4i5,0pf7.3)')
6817      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6818 c                write (iout,*) "gradcorr5 before eello5"
6819 c                do iii=1,nres
6820 c                  write (iout,'(i5,3f10.5)') 
6821 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6822 c                enddo
6823                 if (wcorr5.gt.0.0d0)
6824      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6825 c                write (iout,*) "gradcorr5 after eello5"
6826 c                do iii=1,nres
6827 c                  write (iout,'(i5,3f10.5)') 
6828 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6829 c                enddo
6830                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6831      1                 write (iout,'(a6,4i5,0pf7.3)')
6832      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6833 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6834 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6835                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6836      &               .or. wturn6.eq.0.0d0))then
6837 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6838                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6839                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6840      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6841 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6842 cd     &            'ecorr6=',ecorr6
6843 cd                write (iout,'(4e15.5)') sred_geom,
6844 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6845 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6846 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6847                 else if (wturn6.gt.0.0d0
6848      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6849 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6850                   eturn6=eturn6+eello_turn6(i,jj,kk)
6851                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6852      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6853 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6854                 endif
6855               ENDIF
6856 1111          continue
6857             endif
6858           enddo ! kk
6859         enddo ! jj
6860       enddo ! i
6861       do i=1,nres
6862         num_cont_hb(i)=num_cont_hb_old(i)
6863       enddo
6864 c                write (iout,*) "gradcorr5 in eello5"
6865 c                do iii=1,nres
6866 c                  write (iout,'(i5,3f10.5)') 
6867 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6868 c                enddo
6869       return
6870       end
6871 c------------------------------------------------------------------------------
6872       subroutine add_hb_contact_eello(ii,jj,itask)
6873       implicit real*8 (a-h,o-z)
6874       include "DIMENSIONS"
6875       include "COMMON.IOUNITS"
6876       integer max_cont
6877       integer max_dim
6878       parameter (max_cont=maxconts)
6879       parameter (max_dim=70)
6880       include "COMMON.CONTACTS"
6881       double precision zapas(max_dim,maxconts,max_fg_procs),
6882      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6883       common /przechowalnia/ zapas
6884       integer i,j,ii,jj,iproc,itask(4),nn
6885 c      write (iout,*) "itask",itask
6886       do i=1,2
6887         iproc=itask(i)
6888         if (iproc.gt.0) then
6889           do j=1,num_cont_hb(ii)
6890             jjc=jcont_hb(j,ii)
6891 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6892             if (jjc.eq.jj) then
6893               ncont_sent(iproc)=ncont_sent(iproc)+1
6894               nn=ncont_sent(iproc)
6895               zapas(1,nn,iproc)=ii
6896               zapas(2,nn,iproc)=jjc
6897               zapas(3,nn,iproc)=d_cont(j,ii)
6898               ind=3
6899               do kk=1,3
6900                 ind=ind+1
6901                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6902               enddo
6903               do kk=1,2
6904                 do ll=1,2
6905                   ind=ind+1
6906                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6907                 enddo
6908               enddo
6909               do jj=1,5
6910                 do kk=1,3
6911                   do ll=1,2
6912                     do mm=1,2
6913                       ind=ind+1
6914                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6915                     enddo
6916                   enddo
6917                 enddo
6918               enddo
6919               exit
6920             endif
6921           enddo
6922         endif
6923       enddo
6924       return
6925       end
6926 c------------------------------------------------------------------------------
6927       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6928       implicit real*8 (a-h,o-z)
6929       include 'DIMENSIONS'
6930       include 'COMMON.IOUNITS'
6931       include 'COMMON.DERIV'
6932       include 'COMMON.INTERACT'
6933       include 'COMMON.CONTACTS'
6934       double precision gx(3),gx1(3)
6935       logical lprn
6936       lprn=.false.
6937       eij=facont_hb(jj,i)
6938       ekl=facont_hb(kk,k)
6939       ees0pij=ees0p(jj,i)
6940       ees0pkl=ees0p(kk,k)
6941       ees0mij=ees0m(jj,i)
6942       ees0mkl=ees0m(kk,k)
6943       ekont=eij*ekl
6944       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6945 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6946 C Following 4 lines for diagnostics.
6947 cd    ees0pkl=0.0D0
6948 cd    ees0pij=1.0D0
6949 cd    ees0mkl=0.0D0
6950 cd    ees0mij=1.0D0
6951 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6952 c     & 'Contacts ',i,j,
6953 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6954 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6955 c     & 'gradcorr_long'
6956 C Calculate the multi-body contribution to energy.
6957 c      ecorr=ecorr+ekont*ees
6958 C Calculate multi-body contributions to the gradient.
6959       coeffpees0pij=coeffp*ees0pij
6960       coeffmees0mij=coeffm*ees0mij
6961       coeffpees0pkl=coeffp*ees0pkl
6962       coeffmees0mkl=coeffm*ees0mkl
6963       do ll=1,3
6964 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6965         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6966      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6967      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6968         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6969      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6970      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6971 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6972         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6973      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6974      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6975         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6976      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6977      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6978         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6979      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6980      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6981         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6982         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6983         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6984      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6985      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6986         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6987         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6988 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6989       enddo
6990 c      write (iout,*)
6991 cgrad      do m=i+1,j-1
6992 cgrad        do ll=1,3
6993 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6994 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6995 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6996 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6997 cgrad        enddo
6998 cgrad      enddo
6999 cgrad      do m=k+1,l-1
7000 cgrad        do ll=1,3
7001 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7002 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7003 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7004 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7005 cgrad        enddo
7006 cgrad      enddo 
7007 c      write (iout,*) "ehbcorr",ekont*ees
7008       ehbcorr=ekont*ees
7009       return
7010       end
7011 #ifdef MOMENT
7012 C---------------------------------------------------------------------------
7013       subroutine dipole(i,j,jj)
7014       implicit real*8 (a-h,o-z)
7015       include 'DIMENSIONS'
7016       include 'COMMON.IOUNITS'
7017       include 'COMMON.CHAIN'
7018       include 'COMMON.FFIELD'
7019       include 'COMMON.DERIV'
7020       include 'COMMON.INTERACT'
7021       include 'COMMON.CONTACTS'
7022       include 'COMMON.TORSION'
7023       include 'COMMON.VAR'
7024       include 'COMMON.GEO'
7025       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7026      &  auxmat(2,2)
7027       iti1 = itortyp(itype(i+1))
7028       if (j.lt.nres-1) then
7029         itj1 = itortyp(itype(j+1))
7030       else
7031         itj1=ntortyp+1
7032       endif
7033       do iii=1,2
7034         dipi(iii,1)=Ub2(iii,i)
7035         dipderi(iii)=Ub2der(iii,i)
7036         dipi(iii,2)=b1(iii,iti1)
7037         dipj(iii,1)=Ub2(iii,j)
7038         dipderj(iii)=Ub2der(iii,j)
7039         dipj(iii,2)=b1(iii,itj1)
7040       enddo
7041       kkk=0
7042       do iii=1,2
7043         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7044         do jjj=1,2
7045           kkk=kkk+1
7046           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7047         enddo
7048       enddo
7049       do kkk=1,5
7050         do lll=1,3
7051           mmm=0
7052           do iii=1,2
7053             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7054      &        auxvec(1))
7055             do jjj=1,2
7056               mmm=mmm+1
7057               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7058             enddo
7059           enddo
7060         enddo
7061       enddo
7062       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7063       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7064       do iii=1,2
7065         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7066       enddo
7067       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7068       do iii=1,2
7069         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7070       enddo
7071       return
7072       end
7073 #endif
7074 C---------------------------------------------------------------------------
7075       subroutine calc_eello(i,j,k,l,jj,kk)
7076
7077 C This subroutine computes matrices and vectors needed to calculate 
7078 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7079 C
7080       implicit real*8 (a-h,o-z)
7081       include 'DIMENSIONS'
7082       include 'COMMON.IOUNITS'
7083       include 'COMMON.CHAIN'
7084       include 'COMMON.DERIV'
7085       include 'COMMON.INTERACT'
7086       include 'COMMON.CONTACTS'
7087       include 'COMMON.TORSION'
7088       include 'COMMON.VAR'
7089       include 'COMMON.GEO'
7090       include 'COMMON.FFIELD'
7091       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7092      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7093       logical lprn
7094       common /kutas/ lprn
7095 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7096 cd     & ' jj=',jj,' kk=',kk
7097 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7098 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7099 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7100       do iii=1,2
7101         do jjj=1,2
7102           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7103           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7104         enddo
7105       enddo
7106       call transpose2(aa1(1,1),aa1t(1,1))
7107       call transpose2(aa2(1,1),aa2t(1,1))
7108       do kkk=1,5
7109         do lll=1,3
7110           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7111      &      aa1tder(1,1,lll,kkk))
7112           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7113      &      aa2tder(1,1,lll,kkk))
7114         enddo
7115       enddo 
7116       if (l.eq.j+1) then
7117 C parallel orientation of the two CA-CA-CA frames.
7118         if (i.gt.1) then
7119           iti=itortyp(itype(i))
7120         else
7121           iti=ntortyp+1
7122         endif
7123         itk1=itortyp(itype(k+1))
7124         itj=itortyp(itype(j))
7125         if (l.lt.nres-1) then
7126           itl1=itortyp(itype(l+1))
7127         else
7128           itl1=ntortyp+1
7129         endif
7130 C A1 kernel(j+1) A2T
7131 cd        do iii=1,2
7132 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7133 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7134 cd        enddo
7135         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7136      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7137      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7138 C Following matrices are needed only for 6-th order cumulants
7139         IF (wcorr6.gt.0.0d0) THEN
7140         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7141      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7142      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7143         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7144      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7145      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7146      &   ADtEAderx(1,1,1,1,1,1))
7147         lprn=.false.
7148         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7149      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7150      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7151      &   ADtEA1derx(1,1,1,1,1,1))
7152         ENDIF
7153 C End 6-th order cumulants
7154 cd        lprn=.false.
7155 cd        if (lprn) then
7156 cd        write (2,*) 'In calc_eello6'
7157 cd        do iii=1,2
7158 cd          write (2,*) 'iii=',iii
7159 cd          do kkk=1,5
7160 cd            write (2,*) 'kkk=',kkk
7161 cd            do jjj=1,2
7162 cd              write (2,'(3(2f10.5),5x)') 
7163 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7164 cd            enddo
7165 cd          enddo
7166 cd        enddo
7167 cd        endif
7168         call transpose2(EUgder(1,1,k),auxmat(1,1))
7169         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7170         call transpose2(EUg(1,1,k),auxmat(1,1))
7171         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7172         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7173         do iii=1,2
7174           do kkk=1,5
7175             do lll=1,3
7176               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7177      &          EAEAderx(1,1,lll,kkk,iii,1))
7178             enddo
7179           enddo
7180         enddo
7181 C A1T kernel(i+1) A2
7182         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7183      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7184      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7185 C Following matrices are needed only for 6-th order cumulants
7186         IF (wcorr6.gt.0.0d0) THEN
7187         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7188      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7189      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7190         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7191      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7192      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7193      &   ADtEAderx(1,1,1,1,1,2))
7194         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7195      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7196      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7197      &   ADtEA1derx(1,1,1,1,1,2))
7198         ENDIF
7199 C End 6-th order cumulants
7200         call transpose2(EUgder(1,1,l),auxmat(1,1))
7201         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7202         call transpose2(EUg(1,1,l),auxmat(1,1))
7203         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7204         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7205         do iii=1,2
7206           do kkk=1,5
7207             do lll=1,3
7208               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7209      &          EAEAderx(1,1,lll,kkk,iii,2))
7210             enddo
7211           enddo
7212         enddo
7213 C AEAb1 and AEAb2
7214 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7215 C They are needed only when the fifth- or the sixth-order cumulants are
7216 C indluded.
7217         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7218         call transpose2(AEA(1,1,1),auxmat(1,1))
7219         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7220         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7221         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7222         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7223         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7224         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7225         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7226         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7227         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7228         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7229         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7230         call transpose2(AEA(1,1,2),auxmat(1,1))
7231         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7232         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7233         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7234         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7235         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7236         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7237         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7238         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7239         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7240         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7241         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7242 C Calculate the Cartesian derivatives of the vectors.
7243         do iii=1,2
7244           do kkk=1,5
7245             do lll=1,3
7246               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7247               call matvec2(auxmat(1,1),b1(1,iti),
7248      &          AEAb1derx(1,lll,kkk,iii,1,1))
7249               call matvec2(auxmat(1,1),Ub2(1,i),
7250      &          AEAb2derx(1,lll,kkk,iii,1,1))
7251               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7252      &          AEAb1derx(1,lll,kkk,iii,2,1))
7253               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7254      &          AEAb2derx(1,lll,kkk,iii,2,1))
7255               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7256               call matvec2(auxmat(1,1),b1(1,itj),
7257      &          AEAb1derx(1,lll,kkk,iii,1,2))
7258               call matvec2(auxmat(1,1),Ub2(1,j),
7259      &          AEAb2derx(1,lll,kkk,iii,1,2))
7260               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7261      &          AEAb1derx(1,lll,kkk,iii,2,2))
7262               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7263      &          AEAb2derx(1,lll,kkk,iii,2,2))
7264             enddo
7265           enddo
7266         enddo
7267         ENDIF
7268 C End vectors
7269       else
7270 C Antiparallel orientation of the two CA-CA-CA frames.
7271         if (i.gt.1) then
7272           iti=itortyp(itype(i))
7273         else
7274           iti=ntortyp+1
7275         endif
7276         itk1=itortyp(itype(k+1))
7277         itl=itortyp(itype(l))
7278         itj=itortyp(itype(j))
7279         if (j.lt.nres-1) then
7280           itj1=itortyp(itype(j+1))
7281         else 
7282           itj1=ntortyp+1
7283         endif
7284 C A2 kernel(j-1)T A1T
7285         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7286      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7287      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7288 C Following matrices are needed only for 6-th order cumulants
7289         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7290      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7291         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7292      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7293      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7294         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7295      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7296      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7297      &   ADtEAderx(1,1,1,1,1,1))
7298         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7299      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7300      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7301      &   ADtEA1derx(1,1,1,1,1,1))
7302         ENDIF
7303 C End 6-th order cumulants
7304         call transpose2(EUgder(1,1,k),auxmat(1,1))
7305         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7306         call transpose2(EUg(1,1,k),auxmat(1,1))
7307         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7308         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7309         do iii=1,2
7310           do kkk=1,5
7311             do lll=1,3
7312               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7313      &          EAEAderx(1,1,lll,kkk,iii,1))
7314             enddo
7315           enddo
7316         enddo
7317 C A2T kernel(i+1)T A1
7318         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7319      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7320      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7321 C Following matrices are needed only for 6-th order cumulants
7322         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7323      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7324         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7325      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7326      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7327         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7328      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7329      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7330      &   ADtEAderx(1,1,1,1,1,2))
7331         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7332      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7333      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7334      &   ADtEA1derx(1,1,1,1,1,2))
7335         ENDIF
7336 C End 6-th order cumulants
7337         call transpose2(EUgder(1,1,j),auxmat(1,1))
7338         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7339         call transpose2(EUg(1,1,j),auxmat(1,1))
7340         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7341         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7342         do iii=1,2
7343           do kkk=1,5
7344             do lll=1,3
7345               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7346      &          EAEAderx(1,1,lll,kkk,iii,2))
7347             enddo
7348           enddo
7349         enddo
7350 C AEAb1 and AEAb2
7351 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7352 C They are needed only when the fifth- or the sixth-order cumulants are
7353 C indluded.
7354         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7355      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7356         call transpose2(AEA(1,1,1),auxmat(1,1))
7357         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7358         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7359         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7360         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7361         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7362         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7363         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7364         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7365         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7366         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7367         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7368         call transpose2(AEA(1,1,2),auxmat(1,1))
7369         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7370         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7371         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7372         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7373         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7374         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7375         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7376         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7377         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7378         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7379         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7380 C Calculate the Cartesian derivatives of the vectors.
7381         do iii=1,2
7382           do kkk=1,5
7383             do lll=1,3
7384               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7385               call matvec2(auxmat(1,1),b1(1,iti),
7386      &          AEAb1derx(1,lll,kkk,iii,1,1))
7387               call matvec2(auxmat(1,1),Ub2(1,i),
7388      &          AEAb2derx(1,lll,kkk,iii,1,1))
7389               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7390      &          AEAb1derx(1,lll,kkk,iii,2,1))
7391               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7392      &          AEAb2derx(1,lll,kkk,iii,2,1))
7393               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7394               call matvec2(auxmat(1,1),b1(1,itl),
7395      &          AEAb1derx(1,lll,kkk,iii,1,2))
7396               call matvec2(auxmat(1,1),Ub2(1,l),
7397      &          AEAb2derx(1,lll,kkk,iii,1,2))
7398               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7399      &          AEAb1derx(1,lll,kkk,iii,2,2))
7400               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7401      &          AEAb2derx(1,lll,kkk,iii,2,2))
7402             enddo
7403           enddo
7404         enddo
7405         ENDIF
7406 C End vectors
7407       endif
7408       return
7409       end
7410 C---------------------------------------------------------------------------
7411       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7412      &  KK,KKderg,AKA,AKAderg,AKAderx)
7413       implicit none
7414       integer nderg
7415       logical transp
7416       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7417      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7418      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7419       integer iii,kkk,lll
7420       integer jjj,mmm
7421       logical lprn
7422       common /kutas/ lprn
7423       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7424       do iii=1,nderg 
7425         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7426      &    AKAderg(1,1,iii))
7427       enddo
7428 cd      if (lprn) write (2,*) 'In kernel'
7429       do kkk=1,5
7430 cd        if (lprn) write (2,*) 'kkk=',kkk
7431         do lll=1,3
7432           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7433      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7434 cd          if (lprn) then
7435 cd            write (2,*) 'lll=',lll
7436 cd            write (2,*) 'iii=1'
7437 cd            do jjj=1,2
7438 cd              write (2,'(3(2f10.5),5x)') 
7439 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7440 cd            enddo
7441 cd          endif
7442           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7443      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7444 cd          if (lprn) then
7445 cd            write (2,*) 'lll=',lll
7446 cd            write (2,*) 'iii=2'
7447 cd            do jjj=1,2
7448 cd              write (2,'(3(2f10.5),5x)') 
7449 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7450 cd            enddo
7451 cd          endif
7452         enddo
7453       enddo
7454       return
7455       end
7456 C---------------------------------------------------------------------------
7457       double precision function eello4(i,j,k,l,jj,kk)
7458       implicit real*8 (a-h,o-z)
7459       include 'DIMENSIONS'
7460       include 'COMMON.IOUNITS'
7461       include 'COMMON.CHAIN'
7462       include 'COMMON.DERIV'
7463       include 'COMMON.INTERACT'
7464       include 'COMMON.CONTACTS'
7465       include 'COMMON.TORSION'
7466       include 'COMMON.VAR'
7467       include 'COMMON.GEO'
7468       double precision pizda(2,2),ggg1(3),ggg2(3)
7469 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7470 cd        eello4=0.0d0
7471 cd        return
7472 cd      endif
7473 cd      print *,'eello4:',i,j,k,l,jj,kk
7474 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7475 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7476 cold      eij=facont_hb(jj,i)
7477 cold      ekl=facont_hb(kk,k)
7478 cold      ekont=eij*ekl
7479       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7480 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7481       gcorr_loc(k-1)=gcorr_loc(k-1)
7482      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7483       if (l.eq.j+1) then
7484         gcorr_loc(l-1)=gcorr_loc(l-1)
7485      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7486       else
7487         gcorr_loc(j-1)=gcorr_loc(j-1)
7488      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7489       endif
7490       do iii=1,2
7491         do kkk=1,5
7492           do lll=1,3
7493             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7494      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7495 cd            derx(lll,kkk,iii)=0.0d0
7496           enddo
7497         enddo
7498       enddo
7499 cd      gcorr_loc(l-1)=0.0d0
7500 cd      gcorr_loc(j-1)=0.0d0
7501 cd      gcorr_loc(k-1)=0.0d0
7502 cd      eel4=1.0d0
7503 cd      write (iout,*)'Contacts have occurred for peptide groups',
7504 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7505 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7506       if (j.lt.nres-1) then
7507         j1=j+1
7508         j2=j-1
7509       else
7510         j1=j-1
7511         j2=j-2
7512       endif
7513       if (l.lt.nres-1) then
7514         l1=l+1
7515         l2=l-1
7516       else
7517         l1=l-1
7518         l2=l-2
7519       endif
7520       do ll=1,3
7521 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7522 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7523         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7524         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7525 cgrad        ghalf=0.5d0*ggg1(ll)
7526         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7527         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7528         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7529         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7530         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7531         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7532 cgrad        ghalf=0.5d0*ggg2(ll)
7533         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7534         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7535         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7536         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7537         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7538         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7539       enddo
7540 cgrad      do m=i+1,j-1
7541 cgrad        do ll=1,3
7542 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7543 cgrad        enddo
7544 cgrad      enddo
7545 cgrad      do m=k+1,l-1
7546 cgrad        do ll=1,3
7547 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7548 cgrad        enddo
7549 cgrad      enddo
7550 cgrad      do m=i+2,j2
7551 cgrad        do ll=1,3
7552 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7553 cgrad        enddo
7554 cgrad      enddo
7555 cgrad      do m=k+2,l2
7556 cgrad        do ll=1,3
7557 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7558 cgrad        enddo
7559 cgrad      enddo 
7560 cd      do iii=1,nres-3
7561 cd        write (2,*) iii,gcorr_loc(iii)
7562 cd      enddo
7563       eello4=ekont*eel4
7564 cd      write (2,*) 'ekont',ekont
7565 cd      write (iout,*) 'eello4',ekont*eel4
7566       return
7567       end
7568 C---------------------------------------------------------------------------
7569       double precision function eello5(i,j,k,l,jj,kk)
7570       implicit real*8 (a-h,o-z)
7571       include 'DIMENSIONS'
7572       include 'COMMON.IOUNITS'
7573       include 'COMMON.CHAIN'
7574       include 'COMMON.DERIV'
7575       include 'COMMON.INTERACT'
7576       include 'COMMON.CONTACTS'
7577       include 'COMMON.TORSION'
7578       include 'COMMON.VAR'
7579       include 'COMMON.GEO'
7580       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7581       double precision ggg1(3),ggg2(3)
7582 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7583 C                                                                              C
7584 C                            Parallel chains                                   C
7585 C                                                                              C
7586 C          o             o                   o             o                   C
7587 C         /l\           / \             \   / \           / \   /              C
7588 C        /   \         /   \             \ /   \         /   \ /               C
7589 C       j| o |l1       | o |              o| o |         | o |o                C
7590 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7591 C      \i/   \         /   \ /             /   \         /   \                 C
7592 C       o    k1             o                                                  C
7593 C         (I)          (II)                (III)          (IV)                 C
7594 C                                                                              C
7595 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7596 C                                                                              C
7597 C                            Antiparallel chains                               C
7598 C                                                                              C
7599 C          o             o                   o             o                   C
7600 C         /j\           / \             \   / \           / \   /              C
7601 C        /   \         /   \             \ /   \         /   \ /               C
7602 C      j1| o |l        | o |              o| o |         | o |o                C
7603 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7604 C      \i/   \         /   \ /             /   \         /   \                 C
7605 C       o     k1            o                                                  C
7606 C         (I)          (II)                (III)          (IV)                 C
7607 C                                                                              C
7608 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7609 C                                                                              C
7610 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7611 C                                                                              C
7612 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7613 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7614 cd        eello5=0.0d0
7615 cd        return
7616 cd      endif
7617 cd      write (iout,*)
7618 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7619 cd     &   ' and',k,l
7620       itk=itortyp(itype(k))
7621       itl=itortyp(itype(l))
7622       itj=itortyp(itype(j))
7623       eello5_1=0.0d0
7624       eello5_2=0.0d0
7625       eello5_3=0.0d0
7626       eello5_4=0.0d0
7627 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7628 cd     &   eel5_3_num,eel5_4_num)
7629       do iii=1,2
7630         do kkk=1,5
7631           do lll=1,3
7632             derx(lll,kkk,iii)=0.0d0
7633           enddo
7634         enddo
7635       enddo
7636 cd      eij=facont_hb(jj,i)
7637 cd      ekl=facont_hb(kk,k)
7638 cd      ekont=eij*ekl
7639 cd      write (iout,*)'Contacts have occurred for peptide groups',
7640 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7641 cd      goto 1111
7642 C Contribution from the graph I.
7643 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7644 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7645       call transpose2(EUg(1,1,k),auxmat(1,1))
7646       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7647       vv(1)=pizda(1,1)-pizda(2,2)
7648       vv(2)=pizda(1,2)+pizda(2,1)
7649       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7650      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7651 C Explicit gradient in virtual-dihedral angles.
7652       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7653      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7654      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7655       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7656       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7657       vv(1)=pizda(1,1)-pizda(2,2)
7658       vv(2)=pizda(1,2)+pizda(2,1)
7659       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7660      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7661      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7662       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7663       vv(1)=pizda(1,1)-pizda(2,2)
7664       vv(2)=pizda(1,2)+pizda(2,1)
7665       if (l.eq.j+1) then
7666         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7667      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7668      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7669       else
7670         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7671      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7672      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7673       endif 
7674 C Cartesian gradient
7675       do iii=1,2
7676         do kkk=1,5
7677           do lll=1,3
7678             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7679      &        pizda(1,1))
7680             vv(1)=pizda(1,1)-pizda(2,2)
7681             vv(2)=pizda(1,2)+pizda(2,1)
7682             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7683      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7684      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7685           enddo
7686         enddo
7687       enddo
7688 c      goto 1112
7689 c1111  continue
7690 C Contribution from graph II 
7691       call transpose2(EE(1,1,itk),auxmat(1,1))
7692       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7693       vv(1)=pizda(1,1)+pizda(2,2)
7694       vv(2)=pizda(2,1)-pizda(1,2)
7695       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7696      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7697 C Explicit gradient in virtual-dihedral angles.
7698       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7699      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7700       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7701       vv(1)=pizda(1,1)+pizda(2,2)
7702       vv(2)=pizda(2,1)-pizda(1,2)
7703       if (l.eq.j+1) then
7704         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7705      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7706      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7707       else
7708         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7709      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7710      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7711       endif
7712 C Cartesian gradient
7713       do iii=1,2
7714         do kkk=1,5
7715           do lll=1,3
7716             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7717      &        pizda(1,1))
7718             vv(1)=pizda(1,1)+pizda(2,2)
7719             vv(2)=pizda(2,1)-pizda(1,2)
7720             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7721      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7722      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7723           enddo
7724         enddo
7725       enddo
7726 cd      goto 1112
7727 cd1111  continue
7728       if (l.eq.j+1) then
7729 cd        goto 1110
7730 C Parallel orientation
7731 C Contribution from graph III
7732         call transpose2(EUg(1,1,l),auxmat(1,1))
7733         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7734         vv(1)=pizda(1,1)-pizda(2,2)
7735         vv(2)=pizda(1,2)+pizda(2,1)
7736         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7737      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7738 C Explicit gradient in virtual-dihedral angles.
7739         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7740      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7741      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7742         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7743         vv(1)=pizda(1,1)-pizda(2,2)
7744         vv(2)=pizda(1,2)+pizda(2,1)
7745         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7746      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7747      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7748         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7749         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7750         vv(1)=pizda(1,1)-pizda(2,2)
7751         vv(2)=pizda(1,2)+pizda(2,1)
7752         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7753      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7754      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7755 C Cartesian gradient
7756         do iii=1,2
7757           do kkk=1,5
7758             do lll=1,3
7759               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7760      &          pizda(1,1))
7761               vv(1)=pizda(1,1)-pizda(2,2)
7762               vv(2)=pizda(1,2)+pizda(2,1)
7763               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7764      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7765      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7766             enddo
7767           enddo
7768         enddo
7769 cd        goto 1112
7770 C Contribution from graph IV
7771 cd1110    continue
7772         call transpose2(EE(1,1,itl),auxmat(1,1))
7773         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7774         vv(1)=pizda(1,1)+pizda(2,2)
7775         vv(2)=pizda(2,1)-pizda(1,2)
7776         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7777      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7778 C Explicit gradient in virtual-dihedral angles.
7779         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7780      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7781         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7782         vv(1)=pizda(1,1)+pizda(2,2)
7783         vv(2)=pizda(2,1)-pizda(1,2)
7784         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7785      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7786      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7787 C Cartesian gradient
7788         do iii=1,2
7789           do kkk=1,5
7790             do lll=1,3
7791               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7792      &          pizda(1,1))
7793               vv(1)=pizda(1,1)+pizda(2,2)
7794               vv(2)=pizda(2,1)-pizda(1,2)
7795               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7796      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7797      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7798             enddo
7799           enddo
7800         enddo
7801       else
7802 C Antiparallel orientation
7803 C Contribution from graph III
7804 c        goto 1110
7805         call transpose2(EUg(1,1,j),auxmat(1,1))
7806         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7807         vv(1)=pizda(1,1)-pizda(2,2)
7808         vv(2)=pizda(1,2)+pizda(2,1)
7809         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7810      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7811 C Explicit gradient in virtual-dihedral angles.
7812         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7813      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7814      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7815         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7816         vv(1)=pizda(1,1)-pizda(2,2)
7817         vv(2)=pizda(1,2)+pizda(2,1)
7818         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7819      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7820      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7821         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7822         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7823         vv(1)=pizda(1,1)-pizda(2,2)
7824         vv(2)=pizda(1,2)+pizda(2,1)
7825         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7826      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7827      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7828 C Cartesian gradient
7829         do iii=1,2
7830           do kkk=1,5
7831             do lll=1,3
7832               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7833      &          pizda(1,1))
7834               vv(1)=pizda(1,1)-pizda(2,2)
7835               vv(2)=pizda(1,2)+pizda(2,1)
7836               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7837      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7838      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7839             enddo
7840           enddo
7841         enddo
7842 cd        goto 1112
7843 C Contribution from graph IV
7844 1110    continue
7845         call transpose2(EE(1,1,itj),auxmat(1,1))
7846         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7847         vv(1)=pizda(1,1)+pizda(2,2)
7848         vv(2)=pizda(2,1)-pizda(1,2)
7849         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7850      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7851 C Explicit gradient in virtual-dihedral angles.
7852         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7853      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7854         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7855         vv(1)=pizda(1,1)+pizda(2,2)
7856         vv(2)=pizda(2,1)-pizda(1,2)
7857         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7858      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7859      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7860 C Cartesian gradient
7861         do iii=1,2
7862           do kkk=1,5
7863             do lll=1,3
7864               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7865      &          pizda(1,1))
7866               vv(1)=pizda(1,1)+pizda(2,2)
7867               vv(2)=pizda(2,1)-pizda(1,2)
7868               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7869      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7870      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7871             enddo
7872           enddo
7873         enddo
7874       endif
7875 1112  continue
7876       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7877 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7878 cd        write (2,*) 'ijkl',i,j,k,l
7879 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7880 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7881 cd      endif
7882 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7883 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7884 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7885 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7886       if (j.lt.nres-1) then
7887         j1=j+1
7888         j2=j-1
7889       else
7890         j1=j-1
7891         j2=j-2
7892       endif
7893       if (l.lt.nres-1) then
7894         l1=l+1
7895         l2=l-1
7896       else
7897         l1=l-1
7898         l2=l-2
7899       endif
7900 cd      eij=1.0d0
7901 cd      ekl=1.0d0
7902 cd      ekont=1.0d0
7903 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7904 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7905 C        summed up outside the subrouine as for the other subroutines 
7906 C        handling long-range interactions. The old code is commented out
7907 C        with "cgrad" to keep track of changes.
7908       do ll=1,3
7909 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7910 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7911         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7912         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7913 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7914 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7915 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7916 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7917 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7918 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7919 c     &   gradcorr5ij,
7920 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7921 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7922 cgrad        ghalf=0.5d0*ggg1(ll)
7923 cd        ghalf=0.0d0
7924         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7925         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7926         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7927         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7928         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7929         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7930 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7931 cgrad        ghalf=0.5d0*ggg2(ll)
7932 cd        ghalf=0.0d0
7933         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7934         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7935         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7936         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7937         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7938         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7939       enddo
7940 cd      goto 1112
7941 cgrad      do m=i+1,j-1
7942 cgrad        do ll=1,3
7943 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7944 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7945 cgrad        enddo
7946 cgrad      enddo
7947 cgrad      do m=k+1,l-1
7948 cgrad        do ll=1,3
7949 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7950 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7951 cgrad        enddo
7952 cgrad      enddo
7953 c1112  continue
7954 cgrad      do m=i+2,j2
7955 cgrad        do ll=1,3
7956 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7957 cgrad        enddo
7958 cgrad      enddo
7959 cgrad      do m=k+2,l2
7960 cgrad        do ll=1,3
7961 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7962 cgrad        enddo
7963 cgrad      enddo 
7964 cd      do iii=1,nres-3
7965 cd        write (2,*) iii,g_corr5_loc(iii)
7966 cd      enddo
7967       eello5=ekont*eel5
7968 cd      write (2,*) 'ekont',ekont
7969 cd      write (iout,*) 'eello5',ekont*eel5
7970       return
7971       end
7972 c--------------------------------------------------------------------------
7973       double precision function eello6(i,j,k,l,jj,kk)
7974       implicit real*8 (a-h,o-z)
7975       include 'DIMENSIONS'
7976       include 'COMMON.IOUNITS'
7977       include 'COMMON.CHAIN'
7978       include 'COMMON.DERIV'
7979       include 'COMMON.INTERACT'
7980       include 'COMMON.CONTACTS'
7981       include 'COMMON.TORSION'
7982       include 'COMMON.VAR'
7983       include 'COMMON.GEO'
7984       include 'COMMON.FFIELD'
7985       double precision ggg1(3),ggg2(3)
7986 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7987 cd        eello6=0.0d0
7988 cd        return
7989 cd      endif
7990 cd      write (iout,*)
7991 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7992 cd     &   ' and',k,l
7993       eello6_1=0.0d0
7994       eello6_2=0.0d0
7995       eello6_3=0.0d0
7996       eello6_4=0.0d0
7997       eello6_5=0.0d0
7998       eello6_6=0.0d0
7999 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8000 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8001       do iii=1,2
8002         do kkk=1,5
8003           do lll=1,3
8004             derx(lll,kkk,iii)=0.0d0
8005           enddo
8006         enddo
8007       enddo
8008 cd      eij=facont_hb(jj,i)
8009 cd      ekl=facont_hb(kk,k)
8010 cd      ekont=eij*ekl
8011 cd      eij=1.0d0
8012 cd      ekl=1.0d0
8013 cd      ekont=1.0d0
8014       if (l.eq.j+1) then
8015         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8016         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8017         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8018         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8019         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8020         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8021       else
8022         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8023         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8024         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8025         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8026         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8027           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8028         else
8029           eello6_5=0.0d0
8030         endif
8031         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8032       endif
8033 C If turn contributions are considered, they will be handled separately.
8034       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8035 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8036 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8037 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8038 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8039 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8040 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8041 cd      goto 1112
8042       if (j.lt.nres-1) then
8043         j1=j+1
8044         j2=j-1
8045       else
8046         j1=j-1
8047         j2=j-2
8048       endif
8049       if (l.lt.nres-1) then
8050         l1=l+1
8051         l2=l-1
8052       else
8053         l1=l-1
8054         l2=l-2
8055       endif
8056       do ll=1,3
8057 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8058 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8059 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8060 cgrad        ghalf=0.5d0*ggg1(ll)
8061 cd        ghalf=0.0d0
8062         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8063         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8064         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8065         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8066         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8067         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8068         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8069         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8070 cgrad        ghalf=0.5d0*ggg2(ll)
8071 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8072 cd        ghalf=0.0d0
8073         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8074         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8075         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8076         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8077         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8078         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8079       enddo
8080 cd      goto 1112
8081 cgrad      do m=i+1,j-1
8082 cgrad        do ll=1,3
8083 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8084 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8085 cgrad        enddo
8086 cgrad      enddo
8087 cgrad      do m=k+1,l-1
8088 cgrad        do ll=1,3
8089 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8090 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8091 cgrad        enddo
8092 cgrad      enddo
8093 cgrad1112  continue
8094 cgrad      do m=i+2,j2
8095 cgrad        do ll=1,3
8096 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8097 cgrad        enddo
8098 cgrad      enddo
8099 cgrad      do m=k+2,l2
8100 cgrad        do ll=1,3
8101 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8102 cgrad        enddo
8103 cgrad      enddo 
8104 cd      do iii=1,nres-3
8105 cd        write (2,*) iii,g_corr6_loc(iii)
8106 cd      enddo
8107       eello6=ekont*eel6
8108 cd      write (2,*) 'ekont',ekont
8109 cd      write (iout,*) 'eello6',ekont*eel6
8110       return
8111       end
8112 c--------------------------------------------------------------------------
8113       double precision function eello6_graph1(i,j,k,l,imat,swap)
8114       implicit real*8 (a-h,o-z)
8115       include 'DIMENSIONS'
8116       include 'COMMON.IOUNITS'
8117       include 'COMMON.CHAIN'
8118       include 'COMMON.DERIV'
8119       include 'COMMON.INTERACT'
8120       include 'COMMON.CONTACTS'
8121       include 'COMMON.TORSION'
8122       include 'COMMON.VAR'
8123       include 'COMMON.GEO'
8124       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8125       logical swap
8126       logical lprn
8127       common /kutas/ lprn
8128 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8129 C                                              
8130 C      Parallel       Antiparallel
8131 C                                             
8132 C          o             o         
8133 C         /l\           /j\
8134 C        /   \         /   \
8135 C       /| o |         | o |\
8136 C     \ j|/k\|  /   \  |/k\|l /   
8137 C      \ /   \ /     \ /   \ /    
8138 C       o     o       o     o                
8139 C       i             i                     
8140 C
8141 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8142       itk=itortyp(itype(k))
8143       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8144       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8145       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8146       call transpose2(EUgC(1,1,k),auxmat(1,1))
8147       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8148       vv1(1)=pizda1(1,1)-pizda1(2,2)
8149       vv1(2)=pizda1(1,2)+pizda1(2,1)
8150       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8151       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8152       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8153       s5=scalar2(vv(1),Dtobr2(1,i))
8154 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8155       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8156       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8157      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8158      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8159      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8160      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8161      & +scalar2(vv(1),Dtobr2der(1,i)))
8162       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8163       vv1(1)=pizda1(1,1)-pizda1(2,2)
8164       vv1(2)=pizda1(1,2)+pizda1(2,1)
8165       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8166       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8167       if (l.eq.j+1) then
8168         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8169      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8170      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8171      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8172      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8173       else
8174         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8175      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8176      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8177      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8178      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8179       endif
8180       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8181       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8182       vv1(1)=pizda1(1,1)-pizda1(2,2)
8183       vv1(2)=pizda1(1,2)+pizda1(2,1)
8184       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8185      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8186      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8187      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8188       do iii=1,2
8189         if (swap) then
8190           ind=3-iii
8191         else
8192           ind=iii
8193         endif
8194         do kkk=1,5
8195           do lll=1,3
8196             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8197             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8198             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8199             call transpose2(EUgC(1,1,k),auxmat(1,1))
8200             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8201      &        pizda1(1,1))
8202             vv1(1)=pizda1(1,1)-pizda1(2,2)
8203             vv1(2)=pizda1(1,2)+pizda1(2,1)
8204             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8205             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8206      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8207             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8208      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8209             s5=scalar2(vv(1),Dtobr2(1,i))
8210             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8211           enddo
8212         enddo
8213       enddo
8214       return
8215       end
8216 c----------------------------------------------------------------------------
8217       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8218       implicit real*8 (a-h,o-z)
8219       include 'DIMENSIONS'
8220       include 'COMMON.IOUNITS'
8221       include 'COMMON.CHAIN'
8222       include 'COMMON.DERIV'
8223       include 'COMMON.INTERACT'
8224       include 'COMMON.CONTACTS'
8225       include 'COMMON.TORSION'
8226       include 'COMMON.VAR'
8227       include 'COMMON.GEO'
8228       logical swap
8229       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8230      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8231       logical lprn
8232       common /kutas/ lprn
8233 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8234 C                                                                              C
8235 C      Parallel       Antiparallel                                             C
8236 C                                                                              C
8237 C          o             o                                                     C
8238 C     \   /l\           /j\   /                                                C
8239 C      \ /   \         /   \ /                                                 C
8240 C       o| o |         | o |o                                                  C                
8241 C     \ j|/k\|      \  |/k\|l                                                  C
8242 C      \ /   \       \ /   \                                                   C
8243 C       o             o                                                        C
8244 C       i             i                                                        C 
8245 C                                                                              C           
8246 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8247 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8248 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8249 C           but not in a cluster cumulant
8250 #ifdef MOMENT
8251       s1=dip(1,jj,i)*dip(1,kk,k)
8252 #endif
8253       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8254       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8255       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8256       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8257       call transpose2(EUg(1,1,k),auxmat(1,1))
8258       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8259       vv(1)=pizda(1,1)-pizda(2,2)
8260       vv(2)=pizda(1,2)+pizda(2,1)
8261       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8262 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8263 #ifdef MOMENT
8264       eello6_graph2=-(s1+s2+s3+s4)
8265 #else
8266       eello6_graph2=-(s2+s3+s4)
8267 #endif
8268 c      eello6_graph2=-s3
8269 C Derivatives in gamma(i-1)
8270       if (i.gt.1) then
8271 #ifdef MOMENT
8272         s1=dipderg(1,jj,i)*dip(1,kk,k)
8273 #endif
8274         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8275         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8276         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8277         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8278 #ifdef MOMENT
8279         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8280 #else
8281         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8282 #endif
8283 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8284       endif
8285 C Derivatives in gamma(k-1)
8286 #ifdef MOMENT
8287       s1=dip(1,jj,i)*dipderg(1,kk,k)
8288 #endif
8289       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8290       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8291       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8292       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8293       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8294       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8295       vv(1)=pizda(1,1)-pizda(2,2)
8296       vv(2)=pizda(1,2)+pizda(2,1)
8297       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8298 #ifdef MOMENT
8299       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8300 #else
8301       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8302 #endif
8303 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8304 C Derivatives in gamma(j-1) or gamma(l-1)
8305       if (j.gt.1) then
8306 #ifdef MOMENT
8307         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8308 #endif
8309         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8310         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8311         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8312         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8313         vv(1)=pizda(1,1)-pizda(2,2)
8314         vv(2)=pizda(1,2)+pizda(2,1)
8315         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8316 #ifdef MOMENT
8317         if (swap) then
8318           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8319         else
8320           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8321         endif
8322 #endif
8323         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8324 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8325       endif
8326 C Derivatives in gamma(l-1) or gamma(j-1)
8327       if (l.gt.1) then 
8328 #ifdef MOMENT
8329         s1=dip(1,jj,i)*dipderg(3,kk,k)
8330 #endif
8331         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8332         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8333         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8334         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8335         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8336         vv(1)=pizda(1,1)-pizda(2,2)
8337         vv(2)=pizda(1,2)+pizda(2,1)
8338         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8339 #ifdef MOMENT
8340         if (swap) then
8341           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8342         else
8343           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8344         endif
8345 #endif
8346         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8347 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8348       endif
8349 C Cartesian derivatives.
8350       if (lprn) then
8351         write (2,*) 'In eello6_graph2'
8352         do iii=1,2
8353           write (2,*) 'iii=',iii
8354           do kkk=1,5
8355             write (2,*) 'kkk=',kkk
8356             do jjj=1,2
8357               write (2,'(3(2f10.5),5x)') 
8358      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8359             enddo
8360           enddo
8361         enddo
8362       endif
8363       do iii=1,2
8364         do kkk=1,5
8365           do lll=1,3
8366 #ifdef MOMENT
8367             if (iii.eq.1) then
8368               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8369             else
8370               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8371             endif
8372 #endif
8373             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8374      &        auxvec(1))
8375             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8376             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8377      &        auxvec(1))
8378             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8379             call transpose2(EUg(1,1,k),auxmat(1,1))
8380             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8381      &        pizda(1,1))
8382             vv(1)=pizda(1,1)-pizda(2,2)
8383             vv(2)=pizda(1,2)+pizda(2,1)
8384             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8385 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8386 #ifdef MOMENT
8387             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8388 #else
8389             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8390 #endif
8391             if (swap) then
8392               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8393             else
8394               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8395             endif
8396           enddo
8397         enddo
8398       enddo
8399       return
8400       end
8401 c----------------------------------------------------------------------------
8402       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8403       implicit real*8 (a-h,o-z)
8404       include 'DIMENSIONS'
8405       include 'COMMON.IOUNITS'
8406       include 'COMMON.CHAIN'
8407       include 'COMMON.DERIV'
8408       include 'COMMON.INTERACT'
8409       include 'COMMON.CONTACTS'
8410       include 'COMMON.TORSION'
8411       include 'COMMON.VAR'
8412       include 'COMMON.GEO'
8413       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8414       logical swap
8415 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8416 C                                                                              C 
8417 C      Parallel       Antiparallel                                             C
8418 C                                                                              C
8419 C          o             o                                                     C 
8420 C         /l\   /   \   /j\                                                    C 
8421 C        /   \ /     \ /   \                                                   C
8422 C       /| o |o       o| o |\                                                  C
8423 C       j|/k\|  /      |/k\|l /                                                C
8424 C        /   \ /       /   \ /                                                 C
8425 C       /     o       /     o                                                  C
8426 C       i             i                                                        C
8427 C                                                                              C
8428 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8429 C
8430 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8431 C           energy moment and not to the cluster cumulant.
8432       iti=itortyp(itype(i))
8433       if (j.lt.nres-1) then
8434         itj1=itortyp(itype(j+1))
8435       else
8436         itj1=ntortyp+1
8437       endif
8438       itk=itortyp(itype(k))
8439       itk1=itortyp(itype(k+1))
8440       if (l.lt.nres-1) then
8441         itl1=itortyp(itype(l+1))
8442       else
8443         itl1=ntortyp+1
8444       endif
8445 #ifdef MOMENT
8446       s1=dip(4,jj,i)*dip(4,kk,k)
8447 #endif
8448       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8449       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8450       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8451       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8452       call transpose2(EE(1,1,itk),auxmat(1,1))
8453       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8454       vv(1)=pizda(1,1)+pizda(2,2)
8455       vv(2)=pizda(2,1)-pizda(1,2)
8456       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8457 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8458 cd     & "sum",-(s2+s3+s4)
8459 #ifdef MOMENT
8460       eello6_graph3=-(s1+s2+s3+s4)
8461 #else
8462       eello6_graph3=-(s2+s3+s4)
8463 #endif
8464 c      eello6_graph3=-s4
8465 C Derivatives in gamma(k-1)
8466       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8467       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8468       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8469       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8470 C Derivatives in gamma(l-1)
8471       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8472       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8473       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8474       vv(1)=pizda(1,1)+pizda(2,2)
8475       vv(2)=pizda(2,1)-pizda(1,2)
8476       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8477       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8478 C Cartesian derivatives.
8479       do iii=1,2
8480         do kkk=1,5
8481           do lll=1,3
8482 #ifdef MOMENT
8483             if (iii.eq.1) then
8484               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8485             else
8486               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8487             endif
8488 #endif
8489             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8490      &        auxvec(1))
8491             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8492             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8493      &        auxvec(1))
8494             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8495             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8496      &        pizda(1,1))
8497             vv(1)=pizda(1,1)+pizda(2,2)
8498             vv(2)=pizda(2,1)-pizda(1,2)
8499             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8500 #ifdef MOMENT
8501             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8502 #else
8503             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8504 #endif
8505             if (swap) then
8506               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8507             else
8508               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8509             endif
8510 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8511           enddo
8512         enddo
8513       enddo
8514       return
8515       end
8516 c----------------------------------------------------------------------------
8517       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8518       implicit real*8 (a-h,o-z)
8519       include 'DIMENSIONS'
8520       include 'COMMON.IOUNITS'
8521       include 'COMMON.CHAIN'
8522       include 'COMMON.DERIV'
8523       include 'COMMON.INTERACT'
8524       include 'COMMON.CONTACTS'
8525       include 'COMMON.TORSION'
8526       include 'COMMON.VAR'
8527       include 'COMMON.GEO'
8528       include 'COMMON.FFIELD'
8529       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8530      & auxvec1(2),auxmat1(2,2)
8531       logical swap
8532 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8533 C                                                                              C                       
8534 C      Parallel       Antiparallel                                             C
8535 C                                                                              C
8536 C          o             o                                                     C
8537 C         /l\   /   \   /j\                                                    C
8538 C        /   \ /     \ /   \                                                   C
8539 C       /| o |o       o| o |\                                                  C
8540 C     \ j|/k\|      \  |/k\|l                                                  C
8541 C      \ /   \       \ /   \                                                   C 
8542 C       o     \       o     \                                                  C
8543 C       i             i                                                        C
8544 C                                                                              C 
8545 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8546 C
8547 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8548 C           energy moment and not to the cluster cumulant.
8549 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8550       iti=itortyp(itype(i))
8551       itj=itortyp(itype(j))
8552       if (j.lt.nres-1) then
8553         itj1=itortyp(itype(j+1))
8554       else
8555         itj1=ntortyp+1
8556       endif
8557       itk=itortyp(itype(k))
8558       if (k.lt.nres-1) then
8559         itk1=itortyp(itype(k+1))
8560       else
8561         itk1=ntortyp+1
8562       endif
8563       itl=itortyp(itype(l))
8564       if (l.lt.nres-1) then
8565         itl1=itortyp(itype(l+1))
8566       else
8567         itl1=ntortyp+1
8568       endif
8569 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8570 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8571 cd     & ' itl',itl,' itl1',itl1
8572 #ifdef MOMENT
8573       if (imat.eq.1) then
8574         s1=dip(3,jj,i)*dip(3,kk,k)
8575       else
8576         s1=dip(2,jj,j)*dip(2,kk,l)
8577       endif
8578 #endif
8579       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8580       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8581       if (j.eq.l+1) then
8582         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8583         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8584       else
8585         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8586         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8587       endif
8588       call transpose2(EUg(1,1,k),auxmat(1,1))
8589       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8590       vv(1)=pizda(1,1)-pizda(2,2)
8591       vv(2)=pizda(2,1)+pizda(1,2)
8592       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8593 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8594 #ifdef MOMENT
8595       eello6_graph4=-(s1+s2+s3+s4)
8596 #else
8597       eello6_graph4=-(s2+s3+s4)
8598 #endif
8599 C Derivatives in gamma(i-1)
8600       if (i.gt.1) then
8601 #ifdef MOMENT
8602         if (imat.eq.1) then
8603           s1=dipderg(2,jj,i)*dip(3,kk,k)
8604         else
8605           s1=dipderg(4,jj,j)*dip(2,kk,l)
8606         endif
8607 #endif
8608         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8609         if (j.eq.l+1) then
8610           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8611           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8612         else
8613           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8614           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8615         endif
8616         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8617         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8618 cd          write (2,*) 'turn6 derivatives'
8619 #ifdef MOMENT
8620           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8621 #else
8622           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8623 #endif
8624         else
8625 #ifdef MOMENT
8626           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8627 #else
8628           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8629 #endif
8630         endif
8631       endif
8632 C Derivatives in gamma(k-1)
8633 #ifdef MOMENT
8634       if (imat.eq.1) then
8635         s1=dip(3,jj,i)*dipderg(2,kk,k)
8636       else
8637         s1=dip(2,jj,j)*dipderg(4,kk,l)
8638       endif
8639 #endif
8640       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8641       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8642       if (j.eq.l+1) then
8643         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8644         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8645       else
8646         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8647         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8648       endif
8649       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8650       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8651       vv(1)=pizda(1,1)-pizda(2,2)
8652       vv(2)=pizda(2,1)+pizda(1,2)
8653       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8654       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8655 #ifdef MOMENT
8656         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8657 #else
8658         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8659 #endif
8660       else
8661 #ifdef MOMENT
8662         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8663 #else
8664         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8665 #endif
8666       endif
8667 C Derivatives in gamma(j-1) or gamma(l-1)
8668       if (l.eq.j+1 .and. l.gt.1) then
8669         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8670         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8671         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8672         vv(1)=pizda(1,1)-pizda(2,2)
8673         vv(2)=pizda(2,1)+pizda(1,2)
8674         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8675         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8676       else if (j.gt.1) then
8677         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8678         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8679         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8680         vv(1)=pizda(1,1)-pizda(2,2)
8681         vv(2)=pizda(2,1)+pizda(1,2)
8682         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8683         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8684           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8685         else
8686           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8687         endif
8688       endif
8689 C Cartesian derivatives.
8690       do iii=1,2
8691         do kkk=1,5
8692           do lll=1,3
8693 #ifdef MOMENT
8694             if (iii.eq.1) then
8695               if (imat.eq.1) then
8696                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8697               else
8698                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8699               endif
8700             else
8701               if (imat.eq.1) then
8702                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8703               else
8704                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8705               endif
8706             endif
8707 #endif
8708             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8709      &        auxvec(1))
8710             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8711             if (j.eq.l+1) then
8712               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8713      &          b1(1,itj1),auxvec(1))
8714               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8715             else
8716               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8717      &          b1(1,itl1),auxvec(1))
8718               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8719             endif
8720             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8721      &        pizda(1,1))
8722             vv(1)=pizda(1,1)-pizda(2,2)
8723             vv(2)=pizda(2,1)+pizda(1,2)
8724             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8725             if (swap) then
8726               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8727 #ifdef MOMENT
8728                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8729      &             -(s1+s2+s4)
8730 #else
8731                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8732      &             -(s2+s4)
8733 #endif
8734                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8735               else
8736 #ifdef MOMENT
8737                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8738 #else
8739                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8740 #endif
8741                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8742               endif
8743             else
8744 #ifdef MOMENT
8745               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8746 #else
8747               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8748 #endif
8749               if (l.eq.j+1) then
8750                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8751               else 
8752                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8753               endif
8754             endif 
8755           enddo
8756         enddo
8757       enddo
8758       return
8759       end
8760 c----------------------------------------------------------------------------
8761       double precision function eello_turn6(i,jj,kk)
8762       implicit real*8 (a-h,o-z)
8763       include 'DIMENSIONS'
8764       include 'COMMON.IOUNITS'
8765       include 'COMMON.CHAIN'
8766       include 'COMMON.DERIV'
8767       include 'COMMON.INTERACT'
8768       include 'COMMON.CONTACTS'
8769       include 'COMMON.TORSION'
8770       include 'COMMON.VAR'
8771       include 'COMMON.GEO'
8772       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8773      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8774      &  ggg1(3),ggg2(3)
8775       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8776      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8777 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8778 C           the respective energy moment and not to the cluster cumulant.
8779       s1=0.0d0
8780       s8=0.0d0
8781       s13=0.0d0
8782 c
8783       eello_turn6=0.0d0
8784       j=i+4
8785       k=i+1
8786       l=i+3
8787       iti=itortyp(itype(i))
8788       itk=itortyp(itype(k))
8789       itk1=itortyp(itype(k+1))
8790       itl=itortyp(itype(l))
8791       itj=itortyp(itype(j))
8792 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8793 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8794 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8795 cd        eello6=0.0d0
8796 cd        return
8797 cd      endif
8798 cd      write (iout,*)
8799 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8800 cd     &   ' and',k,l
8801 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8802       do iii=1,2
8803         do kkk=1,5
8804           do lll=1,3
8805             derx_turn(lll,kkk,iii)=0.0d0
8806           enddo
8807         enddo
8808       enddo
8809 cd      eij=1.0d0
8810 cd      ekl=1.0d0
8811 cd      ekont=1.0d0
8812       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8813 cd      eello6_5=0.0d0
8814 cd      write (2,*) 'eello6_5',eello6_5
8815 #ifdef MOMENT
8816       call transpose2(AEA(1,1,1),auxmat(1,1))
8817       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8818       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8819       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8820 #endif
8821       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8822       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8823       s2 = scalar2(b1(1,itk),vtemp1(1))
8824 #ifdef MOMENT
8825       call transpose2(AEA(1,1,2),atemp(1,1))
8826       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8827       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8828       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8829 #endif
8830       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8831       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8832       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8833 #ifdef MOMENT
8834       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8835       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8836       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8837       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8838       ss13 = scalar2(b1(1,itk),vtemp4(1))
8839       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8840 #endif
8841 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8842 c      s1=0.0d0
8843 c      s2=0.0d0
8844 c      s8=0.0d0
8845 c      s12=0.0d0
8846 c      s13=0.0d0
8847       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8848 C Derivatives in gamma(i+2)
8849       s1d =0.0d0
8850       s8d =0.0d0
8851 #ifdef MOMENT
8852       call transpose2(AEA(1,1,1),auxmatd(1,1))
8853       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8854       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8855       call transpose2(AEAderg(1,1,2),atempd(1,1))
8856       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8857       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8858 #endif
8859       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8860       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8861       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8862 c      s1d=0.0d0
8863 c      s2d=0.0d0
8864 c      s8d=0.0d0
8865 c      s12d=0.0d0
8866 c      s13d=0.0d0
8867       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8868 C Derivatives in gamma(i+3)
8869 #ifdef MOMENT
8870       call transpose2(AEA(1,1,1),auxmatd(1,1))
8871       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8872       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8873       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8874 #endif
8875       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8876       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8877       s2d = scalar2(b1(1,itk),vtemp1d(1))
8878 #ifdef MOMENT
8879       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8880       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8881 #endif
8882       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8883 #ifdef MOMENT
8884       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8885       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8886       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8887 #endif
8888 c      s1d=0.0d0
8889 c      s2d=0.0d0
8890 c      s8d=0.0d0
8891 c      s12d=0.0d0
8892 c      s13d=0.0d0
8893 #ifdef MOMENT
8894       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8895      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8896 #else
8897       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8898      &               -0.5d0*ekont*(s2d+s12d)
8899 #endif
8900 C Derivatives in gamma(i+4)
8901       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8902       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8903       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8904 #ifdef MOMENT
8905       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8906       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8907       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8908 #endif
8909 c      s1d=0.0d0
8910 c      s2d=0.0d0
8911 c      s8d=0.0d0
8912 C      s12d=0.0d0
8913 c      s13d=0.0d0
8914 #ifdef MOMENT
8915       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8916 #else
8917       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8918 #endif
8919 C Derivatives in gamma(i+5)
8920 #ifdef MOMENT
8921       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8922       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8923       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8924 #endif
8925       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8926       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8927       s2d = scalar2(b1(1,itk),vtemp1d(1))
8928 #ifdef MOMENT
8929       call transpose2(AEA(1,1,2),atempd(1,1))
8930       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8931       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8932 #endif
8933       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8934       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8935 #ifdef MOMENT
8936       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8937       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8938       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8939 #endif
8940 c      s1d=0.0d0
8941 c      s2d=0.0d0
8942 c      s8d=0.0d0
8943 c      s12d=0.0d0
8944 c      s13d=0.0d0
8945 #ifdef MOMENT
8946       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8947      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8948 #else
8949       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8950      &               -0.5d0*ekont*(s2d+s12d)
8951 #endif
8952 C Cartesian derivatives
8953       do iii=1,2
8954         do kkk=1,5
8955           do lll=1,3
8956 #ifdef MOMENT
8957             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8958             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8959             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8960 #endif
8961             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8962             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8963      &          vtemp1d(1))
8964             s2d = scalar2(b1(1,itk),vtemp1d(1))
8965 #ifdef MOMENT
8966             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8967             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8968             s8d = -(atempd(1,1)+atempd(2,2))*
8969      &           scalar2(cc(1,1,itl),vtemp2(1))
8970 #endif
8971             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8972      &           auxmatd(1,1))
8973             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8974             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8975 c      s1d=0.0d0
8976 c      s2d=0.0d0
8977 c      s8d=0.0d0
8978 c      s12d=0.0d0
8979 c      s13d=0.0d0
8980 #ifdef MOMENT
8981             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8982      &        - 0.5d0*(s1d+s2d)
8983 #else
8984             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8985      &        - 0.5d0*s2d
8986 #endif
8987 #ifdef MOMENT
8988             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8989      &        - 0.5d0*(s8d+s12d)
8990 #else
8991             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8992      &        - 0.5d0*s12d
8993 #endif
8994           enddo
8995         enddo
8996       enddo
8997 #ifdef MOMENT
8998       do kkk=1,5
8999         do lll=1,3
9000           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9001      &      achuj_tempd(1,1))
9002           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9003           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9004           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9005           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9006           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9007      &      vtemp4d(1)) 
9008           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9009           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9010           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9011         enddo
9012       enddo
9013 #endif
9014 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9015 cd     &  16*eel_turn6_num
9016 cd      goto 1112
9017       if (j.lt.nres-1) then
9018         j1=j+1
9019         j2=j-1
9020       else
9021         j1=j-1
9022         j2=j-2
9023       endif
9024       if (l.lt.nres-1) then
9025         l1=l+1
9026         l2=l-1
9027       else
9028         l1=l-1
9029         l2=l-2
9030       endif
9031       do ll=1,3
9032 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9033 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9034 cgrad        ghalf=0.5d0*ggg1(ll)
9035 cd        ghalf=0.0d0
9036         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9037         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9038         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9039      &    +ekont*derx_turn(ll,2,1)
9040         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9041         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9042      &    +ekont*derx_turn(ll,4,1)
9043         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9044         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9045         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9046 cgrad        ghalf=0.5d0*ggg2(ll)
9047 cd        ghalf=0.0d0
9048         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9049      &    +ekont*derx_turn(ll,2,2)
9050         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9051         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9052      &    +ekont*derx_turn(ll,4,2)
9053         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9054         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9055         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9056       enddo
9057 cd      goto 1112
9058 cgrad      do m=i+1,j-1
9059 cgrad        do ll=1,3
9060 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9061 cgrad        enddo
9062 cgrad      enddo
9063 cgrad      do m=k+1,l-1
9064 cgrad        do ll=1,3
9065 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9066 cgrad        enddo
9067 cgrad      enddo
9068 cgrad1112  continue
9069 cgrad      do m=i+2,j2
9070 cgrad        do ll=1,3
9071 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9072 cgrad        enddo
9073 cgrad      enddo
9074 cgrad      do m=k+2,l2
9075 cgrad        do ll=1,3
9076 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9077 cgrad        enddo
9078 cgrad      enddo 
9079 cd      do iii=1,nres-3
9080 cd        write (2,*) iii,g_corr6_loc(iii)
9081 cd      enddo
9082       eello_turn6=ekont*eel_turn6
9083 cd      write (2,*) 'ekont',ekont
9084 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9085       return
9086       end
9087
9088 C-----------------------------------------------------------------------------
9089       double precision function scalar(u,v)
9090 !DIR$ INLINEALWAYS scalar
9091 #ifndef OSF
9092 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9093 #endif
9094       implicit none
9095       double precision u(3),v(3)
9096 cd      double precision sc
9097 cd      integer i
9098 cd      sc=0.0d0
9099 cd      do i=1,3
9100 cd        sc=sc+u(i)*v(i)
9101 cd      enddo
9102 cd      scalar=sc
9103
9104       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9105       return
9106       end
9107 crc-------------------------------------------------
9108       SUBROUTINE MATVEC2(A1,V1,V2)
9109 !DIR$ INLINEALWAYS MATVEC2
9110 #ifndef OSF
9111 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9112 #endif
9113       implicit real*8 (a-h,o-z)
9114       include 'DIMENSIONS'
9115       DIMENSION A1(2,2),V1(2),V2(2)
9116 c      DO 1 I=1,2
9117 c        VI=0.0
9118 c        DO 3 K=1,2
9119 c    3     VI=VI+A1(I,K)*V1(K)
9120 c        Vaux(I)=VI
9121 c    1 CONTINUE
9122
9123       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9124       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9125
9126       v2(1)=vaux1
9127       v2(2)=vaux2
9128       END
9129 C---------------------------------------
9130       SUBROUTINE MATMAT2(A1,A2,A3)
9131 #ifndef OSF
9132 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9133 #endif
9134       implicit real*8 (a-h,o-z)
9135       include 'DIMENSIONS'
9136       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9137 c      DIMENSION AI3(2,2)
9138 c        DO  J=1,2
9139 c          A3IJ=0.0
9140 c          DO K=1,2
9141 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9142 c          enddo
9143 c          A3(I,J)=A3IJ
9144 c       enddo
9145 c      enddo
9146
9147       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9148       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9149       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9150       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9151
9152       A3(1,1)=AI3_11
9153       A3(2,1)=AI3_21
9154       A3(1,2)=AI3_12
9155       A3(2,2)=AI3_22
9156       END
9157
9158 c-------------------------------------------------------------------------
9159       double precision function scalar2(u,v)
9160 !DIR$ INLINEALWAYS scalar2
9161       implicit none
9162       double precision u(2),v(2)
9163       double precision sc
9164       integer i
9165       scalar2=u(1)*v(1)+u(2)*v(2)
9166       return
9167       end
9168
9169 C-----------------------------------------------------------------------------
9170
9171       subroutine transpose2(a,at)
9172 !DIR$ INLINEALWAYS transpose2
9173 #ifndef OSF
9174 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9175 #endif
9176       implicit none
9177       double precision a(2,2),at(2,2)
9178       at(1,1)=a(1,1)
9179       at(1,2)=a(2,1)
9180       at(2,1)=a(1,2)
9181       at(2,2)=a(2,2)
9182       return
9183       end
9184 c--------------------------------------------------------------------------
9185       subroutine transpose(n,a,at)
9186       implicit none
9187       integer n,i,j
9188       double precision a(n,n),at(n,n)
9189       do i=1,n
9190         do j=1,n
9191           at(j,i)=a(i,j)
9192         enddo
9193       enddo
9194       return
9195       end
9196 C---------------------------------------------------------------------------
9197       subroutine prodmat3(a1,a2,kk,transp,prod)
9198 !DIR$ INLINEALWAYS prodmat3
9199 #ifndef OSF
9200 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9201 #endif
9202       implicit none
9203       integer i,j
9204       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9205       logical transp
9206 crc      double precision auxmat(2,2),prod_(2,2)
9207
9208       if (transp) then
9209 crc        call transpose2(kk(1,1),auxmat(1,1))
9210 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9211 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9212         
9213            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9214      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9215            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9216      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9217            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9218      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9219            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9220      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9221
9222       else
9223 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9224 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9225
9226            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9227      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9228            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9229      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9230            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9231      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9232            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9233      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9234
9235       endif
9236 c      call transpose2(a2(1,1),a2t(1,1))
9237
9238 crc      print *,transp
9239 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9240 crc      print *,((prod(i,j),i=1,2),j=1,2)
9241
9242       return
9243       end
9244