zmiany w galezi multichain
[unres.git] / source / unres / src_MD-M / parmread.F
1       subroutine parmread
2 C
3 C Read the parameters of the probability distributions of the virtual-bond
4 C valence angles and the side chains and energy parameters.
5 C
6 C Important! Energy-term weights ARE NOT read here; they are read from the
7 C main input file instead, because NO defaults have yet been set for these
8 C parameters.
9 C
10       implicit real*8 (a-h,o-z)
11       include 'DIMENSIONS'
12 #ifdef MPI
13       include "mpif.h"
14       integer IERROR
15 #endif
16       include 'COMMON.IOUNITS'
17       include 'COMMON.CHAIN'
18       include 'COMMON.INTERACT'
19       include 'COMMON.GEO'
20       include 'COMMON.LOCAL'
21       include 'COMMON.TORSION'
22       include 'COMMON.SCCOR'
23       include 'COMMON.SCROT'
24       include 'COMMON.FFIELD'
25       include 'COMMON.NAMES'
26       include 'COMMON.SBRIDGE'
27       include 'COMMON.MD'
28       include 'COMMON.SETUP'
29       character*1 t1,t2,t3
30       character*1 onelett(4) /"G","A","P","D"/
31       character*1 toronelet(-2:2) /"p","a","G","A","P"/
32       logical lprint,LaTeX
33       dimension blower(3,3,maxlob)
34       dimension b(13)
35       character*3 lancuch,ucase
36 C
37 C For printing parameters after they are read set the following in the UNRES
38 C C-shell script:
39 C
40 C setenv PRINT_PARM YES
41 C
42 C To print parameters in LaTeX format rather than as ASCII tables:
43 C
44 C setenv LATEX YES
45 C
46       call getenv_loc("PRINT_PARM",lancuch)
47       lprint = (ucase(lancuch).eq."YES" .or. ucase(lancuch).eq."Y")
48       call getenv_loc("LATEX",lancuch)
49       LaTeX = (ucase(lancuch).eq."YES" .or. ucase(lancuch).eq."Y")
50 C
51       dwa16=2.0d0**(1.0d0/6.0d0)
52       itypro=20
53 C Assign virtual-bond length
54       vbl=3.8D0
55       vblinv=1.0D0/vbl
56       vblinv2=vblinv*vblinv
57 c
58 c Read the virtual-bond parameters, masses, and moments of inertia
59 c and Stokes' radii of the peptide group and side chains
60 c
61 #ifdef CRYST_BOND
62       read (ibond,*) vbldp0,vbldpdum,akp,mp,ip,pstok
63       do i=1,ntyp
64         nbondterm(i)=1
65         read (ibond,*) vbldsc0(1,i),aksc(1,i),msc(i),isc(i),restok(i)
66         dsc(i) = vbldsc0(1,i)
67         if (i.eq.10) then
68           dsc_inv(i)=0.0D0
69         else
70           dsc_inv(i)=1.0D0/dsc(i)
71         endif
72       enddo
73 #else
74       read (ibond,*) junk,vbldp0,vbldpdum,akp,rjunk,mp,ip,pstok
75       do i=1,ntyp
76         read (ibond,*) nbondterm(i),(vbldsc0(j,i),aksc(j,i),abond0(j,i),
77      &   j=1,nbondterm(i)),msc(i),isc(i),restok(i)
78         dsc(i) = vbldsc0(1,i)
79         if (i.eq.10) then
80           dsc_inv(i)=0.0D0
81         else
82           dsc_inv(i)=1.0D0/dsc(i)
83         endif
84       enddo
85 #endif
86       if (lprint) then
87         write(iout,'(/a/)')"Dynamic constants of the interaction sites:"
88         write (iout,'(a10,a3,6a10)') 'Type','N','VBL','K','A0','mass',
89      &   'inertia','Pstok'
90         write(iout,'(a10,i3,6f10.5)') "p",1,vbldp0,akp,0.0d0,mp,ip,pstok
91         do i=1,ntyp
92           write (iout,'(a10,i3,6f10.5)') restyp(i),nbondterm(i),
93      &      vbldsc0(1,i),aksc(1,i),abond0(1,i),msc(i),isc(i),restok(i)
94           do j=2,nbondterm(i)
95             write (iout,'(13x,3f10.5)')
96      &        vbldsc0(j,i),aksc(j,i),abond0(j,i)
97           enddo
98         enddo
99       endif
100 #ifdef CRYST_THETA
101 C
102 C Read the parameters of the probability distribution/energy expression 
103 C of the virtual-bond valence angles theta
104 C
105       do i=1,ntyp
106         read (ithep,*,err=111,end=111) a0thet(i),(athet(j,i,1,1),j=1,2),
107      &    (bthet(j,i,1,1),j=1,2)
108         read (ithep,*,err=111,end=111) (polthet(j,i),j=0,3)
109         read (ithep,*,err=111,end=111) (gthet(j,i),j=1,3)
110         read (ithep,*,err=111,end=111) theta0(i),sig0(i),sigc0(i)
111         sigc0(i)=sigc0(i)**2
112       enddo
113       do i=1,ntyp
114       athet(1,i,1,-1)=athet(1,i,1,1)
115       athet(2,i,1,-1)=athet(2,i,1,1)
116       bthet(1,i,1,-1)=-bthet(1,i,1,1)
117       bthet(2,i,1,-1)=-bthet(2,i,1,1)
118       athet(1,i,-1,1)=-athet(1,i,1,1)
119       athet(2,i,-1,1)=-athet(2,i,1,1)
120       bthet(1,i,-1,1)=bthet(1,i,1,1)
121       bthet(2,i,-1,1)=bthet(2,i,1,1)
122       enddo
123       do i=-ntyp,-1
124       a0thet(i)=a0thet(-i)
125       athet(1,i,-1,-1)=athet(1,-i,1,1)
126       athet(2,i,-1,-1)=-athet(2,-i,1,1)
127       bthet(1,i,-1,-1)=bthet(1,-i,1,1)
128       bthet(2,i,-1,-1)=-bthet(2,-i,1,1)
129       athet(1,i,-1,1)=athet(1,-i,1,1)
130       athet(2,i,-1,1)=-athet(2,-i,1,1)
131       bthet(1,i,-1,1)=-bthet(1,-i,1,1)
132       bthet(2,i,-1,1)=bthet(2,-i,1,1)
133       athet(1,i,1,-1)=-athet(1,-i,1,1)
134       athet(2,i,1,-1)=athet(2,-i,1,1)
135       bthet(1,i,1,-1)=bthet(1,-i,1,1)
136       bthet(2,i,1,-1)=-bthet(2,-i,1,1)
137       theta0(i)=theta0(-i)
138       sig0(i)=sig0(-i)
139       sigc0(i)=sigc0(-i)
140        do j=0,3
141         polthet(j,i)=polthet(j,-i)
142        enddo
143        do j=1,3
144          gthet(j,i)=gthet(j,-i)
145        enddo
146       enddo
147
148       close (ithep)
149       if (lprint) then
150       if (.not.LaTeX) then
151         write (iout,'(a)') 
152      &    'Parameters of the virtual-bond valence angles:'
153         write (iout,'(/a/9x,5a/79(1h-))') 'Fourier coefficients:',
154      & '    ATHETA0   ','         A1   ','        A2    ',
155      & '        B1    ','         B2   '        
156         do i=1,ntyp
157           write(iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,
158      &        a0thet(i),(athet(j,i,1,1),j=1,2),(bthet(j,i,1,1),j=1,2)
159         enddo
160         write (iout,'(/a/9x,5a/79(1h-))') 
161      & 'Parameters of the expression for sigma(theta_c):',
162      & '     ALPH0    ','      ALPH1   ','     ALPH2    ',
163      & '     ALPH3    ','    SIGMA0C   '        
164         do i=1,ntyp
165           write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,
166      &      (polthet(j,i),j=0,3),sigc0(i) 
167         enddo
168         write (iout,'(/a/9x,5a/79(1h-))') 
169      & 'Parameters of the second gaussian:',
170      & '    THETA0    ','     SIGMA0   ','        G1    ',
171      & '        G2    ','         G3   '        
172         do i=1,ntyp
173           write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,theta0(i),
174      &       sig0(i),(gthet(j,i),j=1,3)
175         enddo
176        else
177         write (iout,'(a)') 
178      &    'Parameters of the virtual-bond valence angles:'
179         write (iout,'(/a/9x,5a/79(1h-))') 
180      & 'Coefficients of expansion',
181      & '     theta0   ','    a1*10^2   ','   a2*10^2    ',
182      & '   b1*10^1    ','    b2*10^1   '        
183         do i=1,ntyp
184           write(iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i),
185      &        a0thet(i),(100*athet(j,i,1,1),j=1,2),
186      &        (10*bthet(j,i,1,1),j=1,2)
187         enddo
188         write (iout,'(/a/9x,5a/79(1h-))') 
189      & 'Parameters of the expression for sigma(theta_c):',
190      & ' alpha0       ','  alph1       ',' alph2        ',
191      & ' alhp3        ','   sigma0c    '        
192         do i=1,ntyp
193           write (iout,'(a3,1h&,2x,5(1pe12.3,1h&))') restyp(i),
194      &      (polthet(j,i),j=0,3),sigc0(i) 
195         enddo
196         write (iout,'(/a/9x,5a/79(1h-))') 
197      & 'Parameters of the second gaussian:',
198      & '    theta0    ','  sigma0*10^2 ','      G1*10^-1',
199      & '        G2    ','   G3*10^1    '        
200         do i=1,ntyp
201           write (iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i),theta0(i),
202      &       100*sig0(i),gthet(1,i)*0.1D0,gthet(2,i),gthet(3,i)*10.0D0
203         enddo
204       endif
205       endif
206 #else 
207
208 C Read the parameters of Utheta determined from ab initio surfaces
209 C Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
210 C
211       read (ithep,*,err=111,end=111) nthetyp,ntheterm,ntheterm2,
212      &  ntheterm3,nsingle,ndouble
213       nntheterm=max0(ntheterm,ntheterm2,ntheterm3)
214       read (ithep,*,err=111,end=111) (ithetyp(i),i=1,ntyp1)
215       do i=-ntyp1,-1
216         ithetyp(i)=-ithetyp(-i)
217       enddo
218       do iblock=1,2
219       do i=-maxthetyp,maxthetyp
220         do j=-maxthetyp,maxthetyp
221           do k=-maxthetyp,maxthetyp
222             aa0thet(i,j,k,iblock)=0.0d0
223             do l=1,ntheterm
224               aathet(l,i,j,k,iblock)=0.0d0
225             enddo
226             do l=1,ntheterm2
227               do m=1,nsingle
228                 bbthet(m,l,i,j,k,iblock)=0.0d0
229                 ccthet(m,l,i,j,k,iblock)=0.0d0
230                 ddthet(m,l,i,j,k,iblock)=0.0d0
231                 eethet(m,l,i,j,k,iblock)=0.0d0
232               enddo
233             enddo
234             do l=1,ntheterm3
235               do m=1,ndouble
236                 do mm=1,ndouble
237                  ffthet(mm,m,l,i,j,k,iblock)=0.0d0
238                  ggthet(mm,m,l,i,j,k,iblock)=0.0d0
239                 enddo
240               enddo
241             enddo
242           enddo
243         enddo
244       enddo
245       enddo
246 c VAR:iblock means terminally blocking group 1=non-proline 2=proline
247       do iblock=1,2 
248 c VAR:ntethtyp is type of theta potentials type currently 0=glycine 
249 c VAR:1=non-glicyne non-proline 2=proline
250 c VAR:negative values for D-aminoacid
251       do i=0,nthetyp
252         do j=-nthetyp,nthetyp
253           do k=-nthetyp,nthetyp
254             read (ithep,'(6a)',end=111,err=111) res1
255             read (ithep,*,end=111,err=111) aa0thet(i,j,k,iblock)
256 c VAR: aa0thet is variable describing the average value of Foureir
257 c VAR: expansion series
258 c VAR: aathet is foureir expansion in theta/2 angle for full formula
259 c VAR: look at the fitting equation in Kozlowska et al., J. Phys.:
260 Condens. Matter 19 (2007) 285203 and Sieradzan et al., unpublished
261             read (ithep,*,end=111,err=111)
262      &(aathet(l,i,j,k,iblock),l=1,ntheterm)
263             read (ithep,*,end=111,err=111)
264      &       ((bbthet(lll,ll,i,j,k,iblock),lll=1,nsingle),
265      &        (ccthet(lll,ll,i,j,k,iblock),lll=1,nsingle),
266      &        (ddthet(lll,ll,i,j,k,iblock),lll=1,nsingle),
267      &        (eethet(lll,ll,i,j,k,iblock),lll=1,nsingle),
268      &        ll=1,ntheterm2)
269             read (ithep,*,end=111,err=111)
270      &      (((ffthet(llll,lll,ll,i,j,k,iblock),
271      &         ffthet(lll,llll,ll,i,j,k,iblock),
272      &         ggthet(llll,lll,ll,i,j,k,iblock),
273      &         ggthet(lll,llll,ll,i,j,k,iblock),
274      &         llll=1,lll-1),lll=2,ndouble),ll=1,ntheterm3)
275           enddo
276         enddo
277       enddo
278 C
279 C For dummy ends assign glycine-type coefficients of theta-only terms; the
280 C coefficients of theta-and-gamma-dependent terms are zero.
281 C IF YOU WANT VALENCE POTENTIALS FOR DUMMY ATOM UNCOMENT BELOW (NOT
282 C RECOMENTDED AFTER VERSION 3.3)
283 c      do i=1,nthetyp
284 c        do j=1,nthetyp
285 c          do l=1,ntheterm
286 c            aathet(l,i,j,nthetyp+1,iblock)=aathet(l,i,j,1,iblock)
287 c            aathet(l,nthetyp+1,i,j,iblock)=aathet(l,1,i,j,iblock)
288 c          enddo
289 c          aa0thet(i,j,nthetyp+1,iblock)=aa0thet(i,j,1,iblock)
290 c          aa0thet(nthetyp+1,i,j,iblock)=aa0thet(1,i,j,iblock)
291 c        enddo
292 c        do l=1,ntheterm
293 c          aathet(l,nthetyp+1,i,nthetyp+1,iblock)=aathet(l,1,i,1,iblock)
294 c        enddo
295 c        aa0thet(nthetyp+1,i,nthetyp+1,iblock)=aa0thet(1,i,1,iblock)
296 c      enddo
297 c      enddo
298 C AND COMMENT THE LOOPS BELOW
299       do i=1,nthetyp
300         do j=1,nthetyp
301           do l=1,ntheterm
302             aathet(l,i,j,nthetyp+1,iblock)=0.0d0
303             aathet(l,nthetyp+1,i,j,iblock)=0.0d0
304           enddo
305           aa0thet(i,j,nthetyp+1,iblock)=0.0d0
306           aa0thet(nthetyp+1,i,j,iblock)=0.0d0
307         enddo
308         do l=1,ntheterm
309           aathet(l,nthetyp+1,i,nthetyp+1,iblock)=0.0d0
310         enddo
311         aa0thet(nthetyp+1,i,nthetyp+1,iblock)=0.0d0
312       enddo
313       enddo
314 C TILL HERE
315 C Substitution for D aminoacids from symmetry.
316       do iblock=1,2
317       do i=-nthetyp,0
318         do j=-nthetyp,nthetyp
319           do k=-nthetyp,nthetyp
320            aa0thet(i,j,k,iblock)=aa0thet(-i,-j,-k,iblock)
321            do l=1,ntheterm
322            aathet(l,i,j,k,iblock)=aathet(l,-i,-j,-k,iblock) 
323            enddo
324            do ll=1,ntheterm2
325             do lll=1,nsingle
326             bbthet(lll,ll,i,j,k,iblock)=bbthet(lll,ll,-i,-j,-k,iblock)
327             ccthet(lll,ll,i,j,k,iblock)=-ccthet(lll,ll,-i,-j,-k,iblock)
328             ddthet(lll,ll,i,j,k,iblock)=ddthet(lll,ll,-i,-j,-k,iblock)
329             eethet(lll,ll,i,j,k,iblock)=-eethet(lll,ll,-i,-j,-k,iblock)
330             enddo
331           enddo
332           do ll=1,ntheterm3
333            do lll=2,ndouble
334             do llll=1,lll-1
335             ffthet(llll,lll,ll,i,j,k,iblock)=
336      &      ffthet(llll,lll,ll,-i,-j,-k,iblock) 
337             ffthet(lll,llll,ll,i,j,k,iblock)=
338      &      ffthet(lll,llll,ll,-i,-j,-k,iblock)
339             ggthet(llll,lll,ll,i,j,k,iblock)=
340      &      -ggthet(llll,lll,ll,-i,-j,-k,iblock)
341             ggthet(lll,llll,ll,i,j,k,iblock)=
342      &      -ggthet(lll,llll,ll,-i,-j,-k,iblock)      
343             enddo !ll
344            enddo  !lll  
345           enddo   !llll
346          enddo    !k
347         enddo     !j
348        enddo      !i
349       enddo       !iblock
350 C
351 C Control printout of the coefficients of virtual-bond-angle potentials
352 C
353       if (lprint) then
354         write (iout,'(//a)') 'Parameter of virtual-bond-angle potential'
355         do i=1,nthetyp+1
356           do j=1,nthetyp+1
357             do k=1,nthetyp+1
358               write (iout,'(//4a)') 
359      &         'Type ',onelett(i),onelett(j),onelett(k) 
360               write (iout,'(//a,10x,a)') " l","a[l]"
361               write (iout,'(i2,1pe15.5)') 0,aa0thet(i,j,k,iblock)
362               write (iout,'(i2,1pe15.5)')
363      &           (l,aathet(l,i,j,k,iblock),l=1,ntheterm)
364             do l=1,ntheterm2
365               write (iout,'(//2h m,4(9x,a,3h[m,,i1,1h]))') 
366      &          "b",l,"c",l,"d",l,"e",l
367               do m=1,nsingle
368                 write (iout,'(i2,4(1pe15.5))') m,
369      &          bbthet(m,l,i,j,k,iblock),ccthet(m,l,i,j,k,iblock),
370      &          ddthet(m,l,i,j,k,iblock),eethet(m,l,i,j,k,iblock)
371               enddo
372             enddo
373             do l=1,ntheterm3
374               write (iout,'(//3hm,n,4(6x,a,5h[m,n,,i1,1h]))')
375      &          "f+",l,"f-",l,"g+",l,"g-",l
376               do m=2,ndouble
377                 do n=1,m-1
378                   write (iout,'(i1,1x,i1,4(1pe15.5))') n,m,
379      &              ffthet(n,m,l,i,j,k,iblock),
380      &              ffthet(m,n,l,i,j,k,iblock),
381      &              ggthet(n,m,l,i,j,k,iblock),
382      &              ggthet(m,n,l,i,j,k,iblock)
383                 enddo
384               enddo
385             enddo
386           enddo
387         enddo
388       enddo
389       call flush(iout)
390       endif
391       write (2,*) "Start reading THETA_PDB",ithep_pdb
392       do i=1,ntyp
393 c      write (2,*) 'i=',i
394         read (ithep_pdb,*,err=111,end=111)
395      &     a0thet(i),(athet(j,i,1,1),j=1,2),
396      &    (bthet(j,i,1,1),j=1,2)
397         read (ithep_pdb,*,err=111,end=111) (polthet(j,i),j=0,3)
398         read (ithep_pdb,*,err=111,end=111) (gthet(j,i),j=1,3)
399         read (ithep_pdb,*,err=111,end=111) theta0(i),sig0(i),sigc0(i)
400         sigc0(i)=sigc0(i)**2
401       enddo
402       do i=1,ntyp
403       athet(1,i,1,-1)=athet(1,i,1,1)
404       athet(2,i,1,-1)=athet(2,i,1,1)
405       bthet(1,i,1,-1)=-bthet(1,i,1,1)
406       bthet(2,i,1,-1)=-bthet(2,i,1,1)
407       athet(1,i,-1,1)=-athet(1,i,1,1)
408       athet(2,i,-1,1)=-athet(2,i,1,1)
409       bthet(1,i,-1,1)=bthet(1,i,1,1)
410       bthet(2,i,-1,1)=bthet(2,i,1,1)
411       enddo
412       do i=-ntyp,-1
413       a0thet(i)=a0thet(-i)
414       athet(1,i,-1,-1)=athet(1,-i,1,1)
415       athet(2,i,-1,-1)=-athet(2,-i,1,1)
416       bthet(1,i,-1,-1)=bthet(1,-i,1,1)
417       bthet(2,i,-1,-1)=-bthet(2,-i,1,1)
418       athet(1,i,-1,1)=athet(1,-i,1,1)
419       athet(2,i,-1,1)=-athet(2,-i,1,1)
420       bthet(1,i,-1,1)=-bthet(1,-i,1,1)
421       bthet(2,i,-1,1)=bthet(2,-i,1,1)
422       athet(1,i,1,-1)=-athet(1,-i,1,1)
423       athet(2,i,1,-1)=athet(2,-i,1,1)
424       bthet(1,i,1,-1)=bthet(1,-i,1,1)
425       bthet(2,i,1,-1)=-bthet(2,-i,1,1)
426       theta0(i)=theta0(-i)
427       sig0(i)=sig0(-i)
428       sigc0(i)=sigc0(-i)
429        do j=0,3
430         polthet(j,i)=polthet(j,-i)
431        enddo
432        do j=1,3
433          gthet(j,i)=gthet(j,-i)
434        enddo
435       enddo
436       write (2,*) "End reading THETA_PDB"
437       close (ithep_pdb)
438 #endif
439       close(ithep)
440 #ifdef CRYST_SC
441 C
442 C Read the parameters of the probability distribution/energy expression
443 C of the side chains.
444 C
445       do i=1,ntyp
446         read (irotam,'(3x,i3,f8.3)',end=112,err=112) nlob(i),dsc(i)
447         if (i.eq.10) then
448           dsc_inv(i)=0.0D0
449         else
450           dsc_inv(i)=1.0D0/dsc(i)
451         endif
452         if (i.ne.10) then
453         do j=1,nlob(i)
454           do k=1,3
455             do l=1,3
456               blower(l,k,j)=0.0D0
457             enddo
458           enddo
459         enddo  
460         bsc(1,i)=0.0D0
461         read(irotam,*,end=112,err=112)(censc(k,1,i),k=1,3),
462      &    ((blower(k,l,1),l=1,k),k=1,3)
463         censc(1,1,-i)=censc(1,1,i)
464         censc(2,1,-i)=censc(2,1,i)
465         censc(3,1,-i)=-censc(3,1,i)
466         do j=2,nlob(i)
467           read (irotam,*,end=112,err=112) bsc(j,i)
468           read (irotam,*,end=112,err=112) (censc(k,j,i),k=1,3),
469      &                                 ((blower(k,l,j),l=1,k),k=1,3)
470         censc(1,j,-i)=censc(1,j,i)
471         censc(2,j,-i)=censc(2,j,i)
472         censc(3,j,-i)=-censc(3,j,i)
473 C BSC is amplitude of Gaussian
474         enddo
475         do j=1,nlob(i)
476           do k=1,3
477             do l=1,k
478               akl=0.0D0
479               do m=1,3
480                 akl=akl+blower(k,m,j)*blower(l,m,j)
481               enddo
482               gaussc(k,l,j,i)=akl
483               gaussc(l,k,j,i)=akl
484              if (((k.eq.3).and.(l.ne.3))
485      &        .or.((l.eq.3).and.(k.ne.3))) then
486                 gaussc(k,l,j,-i)=-akl
487                 gaussc(l,k,j,-i)=-akl
488               else
489                 gaussc(k,l,j,-i)=akl
490                 gaussc(l,k,j,-i)=akl
491               endif
492             enddo
493           enddo 
494         enddo
495         endif
496       enddo
497       close (irotam)
498       if (lprint) then
499         write (iout,'(/a)') 'Parameters of side-chain local geometry'
500         do i=1,ntyp
501           nlobi=nlob(i)
502           if (nlobi.gt.0) then
503             if (LaTeX) then
504               write (iout,'(/3a,i2,a,f8.3)') 'Residue type: ',restyp(i),
505      &         ' # of gaussian lobes:',nlobi,' dsc:',dsc(i)
506                write (iout,'(1h&,a,3(2h&&,f8.3,2h&&))')
507      &                             'log h',(bsc(j,i),j=1,nlobi)
508                write (iout,'(1h&,a,3(1h&,f8.3,1h&,f8.3,1h&,f8.3,1h&))')
509      &        'x',((censc(k,j,i),k=1,3),j=1,nlobi)
510               do k=1,3
511                 write (iout,'(2h& ,5(2x,1h&,3(f7.3,1h&)))')
512      &                 ((gaussc(k,l,j,i),l=1,3),j=1,nlobi)
513               enddo
514             else
515               write (iout,'(/a,8x,i1,4(25x,i1))') 'Lobe:',(j,j=1,nlobi)
516               write (iout,'(a,f10.4,4(16x,f10.4))')
517      &                             'Center  ',(bsc(j,i),j=1,nlobi)
518               write (iout,'(5(2x,3f8.4))') ((censc(k,j,i),k=1,3),
519      &           j=1,nlobi)
520               write (iout,'(a)')
521             endif
522           endif
523         enddo
524       endif
525 #else
526
527 C Read scrot parameters for potentials determined from all-atom AM1 calculations
528 C added by Urszula Kozlowska 07/11/2007
529 C
530       do i=1,ntyp
531         read (irotam,*,end=112,err=112) 
532        if (i.eq.10) then 
533          read (irotam,*,end=112,err=112) 
534        else
535          do j=1,65
536            read(irotam,*,end=112,err=112) sc_parmin(j,i)
537          enddo  
538        endif
539       enddo
540 C
541 C Read the parameters of the probability distribution/energy expression
542 C of the side chains.
543 C
544       write (2,*) "Start reading ROTAM_PDB"
545       do i=1,ntyp
546         read (irotam_pdb,'(3x,i3,f8.3)',end=112,err=112) nlob(i),dsc(i)
547         if (i.eq.10) then
548           dsc_inv(i)=0.0D0
549         else
550           dsc_inv(i)=1.0D0/dsc(i)
551         endif
552         if (i.ne.10) then
553         do j=1,nlob(i)
554           do k=1,3
555             do l=1,3
556               blower(l,k,j)=0.0D0
557             enddo
558           enddo
559         enddo
560         bsc(1,i)=0.0D0
561         read(irotam_pdb,*,end=112,err=112)(censc(k,1,i),k=1,3),
562      &    ((blower(k,l,1),l=1,k),k=1,3)
563         do j=2,nlob(i)
564           read (irotam_pdb,*,end=112,err=112) bsc(j,i)
565           read (irotam_pdb,*,end=112,err=112) (censc(k,j,i),k=1,3),
566      &                                 ((blower(k,l,j),l=1,k),k=1,3)
567         enddo
568         do j=1,nlob(i)
569           do k=1,3
570             do l=1,k
571               akl=0.0D0
572               do m=1,3
573                 akl=akl+blower(k,m,j)*blower(l,m,j)
574               enddo
575               gaussc(k,l,j,i)=akl
576               gaussc(l,k,j,i)=akl
577             enddo
578           enddo
579         enddo
580         endif
581       enddo
582       close (irotam_pdb)
583       write (2,*) "End reading ROTAM_PDB"
584 #endif
585       close(irotam)
586
587 #ifdef CRYST_TOR
588 C
589 C Read torsional parameters in old format
590 C
591       read (itorp,*,end=113,err=113) ntortyp,nterm_old
592       if (lprint)write (iout,*) 'ntortyp,nterm',ntortyp,nterm_old
593       read (itorp,*,end=113,err=113) (itortyp(i),i=1,ntyp)
594       itortyp(ntyp1)=0
595       do i=1,ntortyp
596         do j=1,ntortyp
597           read (itorp,'(a)')
598           do k=1,nterm_old
599             read (itorp,*,end=113,err=113) kk,v1(k,j,i),v2(k,j,i) 
600           enddo
601         enddo
602       enddo
603       close (itorp)
604       if (lprint) then
605         write (iout,'(/a/)') 'Torsional constants:'
606         do i=1,ntortyp
607           do j=1,ntortyp
608             write (iout,'(2i3,6f10.5)') i,j,(v1(k,i,j),k=1,nterm_old)
609             write (iout,'(6x,6f10.5)') (v2(k,i,j),k=1,nterm_old)
610           enddo
611         enddo
612       endif
613 #else
614 C
615 C Read torsional parameters
616 C
617       read (itorp,*,end=113,err=113) ntortyp
618       read (itorp,*,end=113,err=113) (itortyp(i),i=1,ntyp)
619       do iblock=1,2
620       do i=-ntyp,-1
621        itortyp(i)=-itortyp(-i)
622       enddo
623       write (iout,*) 'ntortyp',ntortyp
624       do i=0,ntortyp-1
625         do j=-ntortyp+1,ntortyp-1
626           read (itorp,*,end=113,err=113) nterm(i,j,iblock),
627      &          nlor(i,j,iblock)
628           nterm(-i,-j,iblock)=nterm(i,j,iblock)
629           nlor(-i,-j,iblock)=nlor(i,j,iblock)
630           v0ij=0.0d0
631           si=-1.0d0
632           do k=1,nterm(i,j,iblock)
633             read (itorp,*,end=113,err=113) kk,v1(k,i,j,iblock),
634      &      v2(k,i,j,iblock)
635             v1(k,-i,-j,iblock)=v1(k,i,j,iblock)
636             v2(k,-i,-j,iblock)=-v2(k,i,j,iblock)
637             v0ij=v0ij+si*v1(k,i,j,iblock)
638             si=-si
639 c         write(iout,*) i,j,k,iblock,nterm(i,j,iblock)
640 c         write(iout,*) v1(k,-i,-j,iblock),v1(k,i,j,iblock),
641 c      &v2(k,-i,-j,iblock),v2(k,i,j,iblock)
642           enddo
643           do k=1,nlor(i,j,iblock)
644             read (itorp,*,end=113,err=113) kk,vlor1(k,i,j),
645      &        vlor2(k,i,j),vlor3(k,i,j)
646             v0ij=v0ij+vlor1(k,i,j)/(1+vlor3(k,i,j)**2)
647           enddo
648           v0(i,j,iblock)=v0ij
649           v0(-i,-j,iblock)=v0ij
650         enddo
651       enddo
652       enddo
653       close (itorp)
654       if (lprint) then
655         write (iout,'(/a/)') 'Torsional constants:'
656         do i=1,ntortyp
657           do j=1,ntortyp
658             write (iout,*) 'ityp',i,' jtyp',j
659             write (iout,*) 'Fourier constants'
660             do k=1,nterm(i,j,iblock)
661               write (iout,'(2(1pe15.5))') v1(k,i,j,iblock),
662      &        v2(k,i,j,iblock)
663             enddo
664             write (iout,*) 'Lorenz constants'
665             do k=1,nlor(i,j,iblock)
666               write (iout,'(3(1pe15.5))')
667      &         vlor1(k,i,j),vlor2(k,i,j),vlor3(k,i,j)
668             enddo
669           enddo
670         enddo
671       endif
672
673 C
674 C 6/23/01 Read parameters for double torsionals
675 C
676       do iblock=1,2
677       do i=0,ntortyp-1
678         do j=-ntortyp+1,ntortyp-1
679           do k=-ntortyp+1,ntortyp-1
680             read (itordp,'(3a1)',end=114,err=114) t1,t2,t3
681 c              write (iout,*) "OK onelett",
682 c     &         i,j,k,t1,t2,t3
683
684             if (t1.ne.toronelet(i) .or. t2.ne.toronelet(j)
685      &        .or. t3.ne.toronelet(k)) then
686               write (iout,*) "Error in double torsional parameter file",
687      &         i,j,k,t1,t2,t3
688 #ifdef MPI
689               call MPI_Finalize(Ierror)
690 #endif
691                stop "Error in double torsional parameter file"
692             endif
693            read (itordp,*,end=114,err=114) ntermd_1(i,j,k,iblock),
694      &         ntermd_2(i,j,k,iblock)
695             ntermd_1(-i,-j,-k,iblock)=ntermd_1(i,j,k,iblock)
696             ntermd_2(-i,-j,-k,iblock)=ntermd_2(i,j,k,iblock)
697             read (itordp,*,end=114,err=114) (v1c(1,l,i,j,k,iblock),l=1,
698      &         ntermd_1(i,j,k,iblock))
699             read (itordp,*,end=114,err=114) (v1s(1,l,i,j,k,iblock),l=1,
700      &         ntermd_1(i,j,k,iblock))
701             read (itordp,*,end=114,err=114) (v1c(2,l,i,j,k,iblock),l=1,
702      &         ntermd_1(i,j,k,iblock))
703             read (itordp,*,end=114,err=114) (v1s(2,l,i,j,k,iblock),l=1,
704      &         ntermd_1(i,j,k,iblock))
705 C Martix of D parameters for one dimesional foureir series
706             do l=1,ntermd_1(i,j,k,iblock)
707              v1c(1,l,-i,-j,-k,iblock)=v1c(1,l,i,j,k,iblock)
708              v1s(1,l,-i,-j,-k,iblock)=-v1s(1,l,i,j,k,iblock)
709              v1c(2,l,-i,-j,-k,iblock)=v1c(2,l,i,j,k,iblock)
710              v1s(2,l,-i,-j,-k,iblock)=-v1s(2,l,i,j,k,iblock)
711 c            write(iout,*) "whcodze" ,
712 c     & v1s(2,l,-i,-j,-k,iblock),v1s(2,l,i,j,k,iblock)
713             enddo
714             read (itordp,*,end=114,err=114) ((v2c(l,m,i,j,k,iblock),
715      &         v2c(m,l,i,j,k,iblock),v2s(l,m,i,j,k,iblock),
716      &         v2s(m,l,i,j,k,iblock),
717      &         m=1,l-1),l=1,ntermd_2(i,j,k,iblock))
718 C Martix of D parameters for two dimesional fourier series
719             do l=1,ntermd_2(i,j,k,iblock)
720              do m=1,l-1
721              v2c(l,m,-i,-j,-k,iblock)=v2c(l,m,i,j,k,iblock)
722              v2c(m,l,-i,-j,-k,iblock)=v2c(m,l,i,j,k,iblock)
723              v2s(l,m,-i,-j,-k,iblock)=-v2s(l,m,i,j,k,iblock)
724              v2s(m,l,-i,-j,-k,iblock)=-v2s(m,l,i,j,k,iblock)
725              enddo!m
726             enddo!l
727           enddo!k
728         enddo!j
729       enddo!i
730       enddo!iblock
731       if (lprint) then
732       write (iout,*)
733       write (iout,*) 'Constants for double torsionals'
734       do iblock=1,2
735       do i=0,ntortyp-1
736         do j=-ntortyp+1,ntortyp-1
737           do k=-ntortyp+1,ntortyp-1
738             write (iout,*) 'ityp',i,' jtyp',j,' ktyp',k,
739      &        ' nsingle',ntermd_1(i,j,k,iblock),
740      &        ' ndouble',ntermd_2(i,j,k,iblock)
741             write (iout,*)
742             write (iout,*) 'Single angles:'
743             do l=1,ntermd_1(i,j,k,iblock)
744               write (iout,'(i5,2f10.5,5x,2f10.5,5x,2f10.5)') l,
745      &           v1c(1,l,i,j,k,iblock),v1s(1,l,i,j,k,iblock),
746      &           v1c(2,l,i,j,k,iblock),v1s(2,l,i,j,k,iblock),
747      &           v1s(1,l,-i,-j,-k,iblock),v1s(2,l,-i,-j,-k,iblock)
748             enddo
749             write (iout,*)
750             write (iout,*) 'Pairs of angles:'
751             write (iout,'(3x,20i10)') (l,l=1,ntermd_2(i,j,k,iblock))
752             do l=1,ntermd_2(i,j,k,iblock)
753               write (iout,'(i5,20f10.5)')
754      &         l,(v2c(l,m,i,j,k,iblock),m=1,ntermd_2(i,j,k,iblock))
755             enddo
756             write (iout,*)
757             write (iout,'(3x,20i10)') (l,l=1,ntermd_2(i,j,k,iblock))
758             do l=1,ntermd_2(i,j,k,iblock)
759               write (iout,'(i5,20f10.5)')
760      &         l,(v2s(l,m,i,j,k,iblock),m=1,ntermd_2(i,j,k,iblock)),
761      &         (v2s(l,m,-i,-j,-k,iblock),m=1,ntermd_2(i,j,k,iblock))
762             enddo
763             write (iout,*)
764           enddo
765         enddo
766       enddo
767       enddo
768       endif
769 #endif
770 C Read of Side-chain backbone correlation parameters
771 C Modified 11 May 2012 by Adasko
772 CCC
773 C
774       read (isccor,*,end=119,err=119) nsccortyp
775 #ifdef SCCORPDB
776       read (isccor,*,end=119,err=119) (isccortyp(i),i=1,ntyp)
777       do i=-ntyp,-1
778         isccortyp(i)=-isccortyp(-i)
779       enddo
780       iscprol=isccortyp(20)
781 c      write (iout,*) 'ntortyp',ntortyp
782       maxinter=3
783 cc maxinter is maximum interaction sites
784       do l=1,maxinter
785       do i=1,nsccortyp
786         do j=1,nsccortyp
787           read (isccor,*,end=119,err=119)
788      &nterm_sccor(i,j),nlor_sccor(i,j)
789           v0ijsccor=0.0d0
790           v0ijsccor1=0.0d0
791           v0ijsccor2=0.0d0
792           v0ijsccor3=0.0d0
793           si=-1.0d0
794           nterm_sccor(-i,j)=nterm_sccor(i,j)
795           nterm_sccor(-i,-j)=nterm_sccor(i,j)
796           nterm_sccor(i,-j)=nterm_sccor(i,j)
797           do k=1,nterm_sccor(i,j)
798             read (isccor,*,end=119,err=119) kk,v1sccor(k,l,i,j)
799      &    ,v2sccor(k,l,i,j)
800             if (j.eq.iscprol) then
801              if (i.eq.isccortyp(10)) then
802              v1sccor(k,l,i,-j)=v1sccor(k,l,i,j)
803              v2sccor(k,l,i,-j)=-v2sccor(k,l,i,j)
804              else
805              v1sccor(k,l,i,-j)=v1sccor(k,l,i,j)*0.5d0
806      &                        +v2sccor(k,l,i,j)*dsqrt(0.75d0)
807              v2sccor(k,l,i,-j)=-v2sccor(k,l,i,j)*0.5d0
808      &                        +v1sccor(k,l,i,j)*dsqrt(0.75d0)
809              v1sccor(k,l,-i,-j)=v1sccor(k,l,i,j)
810              v2sccor(k,l,-i,-j)=-v2sccor(k,l,i,j)
811              v1sccor(k,l,-i,j)=v1sccor(k,l,i,-j)
812              v2sccor(k,l,-i,j)=-v2sccor(k,l,i,-j)
813              endif
814             else
815              if (i.eq.isccortyp(10)) then
816              v1sccor(k,l,i,-j)=v1sccor(k,l,i,j)
817              v2sccor(k,l,i,-j)=-v2sccor(k,l,i,j)
818              else
819                if (j.eq.isccortyp(10)) then
820              v1sccor(k,l,-i,j)=v1sccor(k,l,i,j)
821              v2sccor(k,l,-i,j)=-v2sccor(k,l,i,j)
822                else
823              v1sccor(k,l,i,-j)=-v1sccor(k,l,i,j)
824              v2sccor(k,l,i,-j)=-v2sccor(k,l,i,j)
825              v1sccor(k,l,-i,-j)=v1sccor(k,l,i,j)
826              v2sccor(k,l,-i,-j)=-v2sccor(k,l,i,j)
827              v1sccor(k,l,-i,j)=v1sccor(k,l,i,-j)
828              v2sccor(k,l,-i,j)=-v2sccor(k,l,i,-j)
829                 endif
830                endif
831             endif
832             v0ijsccor=v0ijsccor+si*v1sccor(k,l,i,j)
833             v0ijsccor1=v0ijsccor+si*v1sccor(k,l,-i,j)
834             v0ijsccor2=v0ijsccor+si*v1sccor(k,l,i,-j)
835             v0ijsccor3=v0ijsccor+si*v1sccor(k,l,-i,-j)
836             si=-si
837           enddo
838           do k=1,nlor_sccor(i,j)
839             read (isccor,*,end=119,err=119) kk,vlor1sccor(k,i,j),
840      &        vlor2sccor(k,i,j),vlor3sccor(k,i,j)
841             v0ijsccor=v0ijsccor+vlor1sccor(k,i,j)/
842      &(1+vlor3sccor(k,i,j)**2)
843           enddo
844           v0sccor(l,i,j)=v0ijsccor
845           v0sccor(l,-i,j)=v0ijsccor1
846           v0sccor(l,i,-j)=v0ijsccor2
847           v0sccor(l,-i,-j)=v0ijsccor3         
848         enddo
849       enddo
850       enddo
851       close (isccor)
852 #else
853       read (isccor,*,end=119,err=119) (isccortyp(i),i=1,ntyp)
854 c      write (iout,*) 'ntortyp',ntortyp
855       maxinter=3
856 cc maxinter is maximum interaction sites
857       do l=1,maxinter
858       do i=1,nsccortyp
859         do j=1,nsccortyp
860           read (isccor,*,end=119,err=119)
861      & nterm_sccor(i,j),nlor_sccor(i,j)
862           v0ijsccor=0.0d0
863           si=-1.0d0
864
865           do k=1,nterm_sccor(i,j)
866             read (isccor,*,end=119,err=119) kk,v1sccor(k,l,i,j)
867      &    ,v2sccor(k,l,i,j)
868             v0ijsccor=v0ijsccor+si*v1sccor(k,l,i,j)
869             si=-si
870           enddo
871           do k=1,nlor_sccor(i,j)
872             read (isccor,*,end=119,err=119) kk,vlor1sccor(k,i,j),
873      &        vlor2sccor(k,i,j),vlor3sccor(k,i,j)
874             v0ijsccor=v0ijsccor+vlor1sccor(k,i,j)/
875      &(1+vlor3sccor(k,i,j)**2)
876           enddo
877           v0sccor(i,j,iblock)=v0ijsccor
878         enddo
879       enddo
880       enddo
881       close (isccor)
882
883 #endif      
884       if (lprint) then
885         write (iout,'(/a/)') 'Torsional constants:'
886         do i=1,nsccortyp
887           do j=1,nsccortyp
888             write (iout,*) 'ityp',i,' jtyp',j
889             write (iout,*) 'Fourier constants'
890             do k=1,nterm_sccor(i,j)
891       write (iout,'(2(1pe15.5))') v1sccor(k,l,i,j),v2sccor(k,l,i,j)
892             enddo
893             write (iout,*) 'Lorenz constants'
894             do k=1,nlor_sccor(i,j)
895               write (iout,'(3(1pe15.5))')
896      &         vlor1sccor(k,i,j),vlor2sccor(k,i,j),vlor3sccor(k,i,j)
897             enddo
898           enddo
899         enddo
900       endif
901
902 C
903 C 9/18/99 (AL) Read coefficients of the Fourier expansion of the local
904 C         interaction energy of the Gly, Ala, and Pro prototypes.
905 C
906       if (lprint) then
907         write (iout,*)
908         write (iout,*) "Coefficients of the cumulants"
909       endif
910       read (ifourier,*) nloctyp
911       do i=0,nloctyp-1
912         read (ifourier,*,end=115,err=115)
913         read (ifourier,*,end=115,err=115) (b(ii),ii=1,13)
914         if (lprint) then
915         write (iout,*) 'Type',i
916         write (iout,'(a,i2,a,f10.5)') ('b(',ii,')=',b(ii),ii=1,13)
917         endif
918         B1(1,i)  = b(3)
919         B1(2,i)  = b(5)
920         B1(1,-i) = b(3)
921         B1(2,-i) = -b(5)
922 c        b1(1,i)=0.0d0
923 c        b1(2,i)=0.0d0
924         B1tilde(1,i) = b(3)
925         B1tilde(2,i) =-b(5)
926         B1tilde(1,-i) =-b(3)
927         B1tilde(2,-i) =b(5)
928 c        b1tilde(1,i)=0.0d0
929 c        b1tilde(2,i)=0.0d0
930         B2(1,i)  = b(2)
931         B2(2,i)  = b(4)
932         B2(1,-i)  =b(2)
933         B2(2,-i)  =-b(4)
934
935 c        b2(1,i)=0.0d0
936 c        b2(2,i)=0.0d0
937         CC(1,1,i)= b(7)
938         CC(2,2,i)=-b(7)
939         CC(2,1,i)= b(9)
940         CC(1,2,i)= b(9)
941         CC(1,1,-i)= b(7)
942         CC(2,2,-i)=-b(7)
943         CC(2,1,-i)=-b(9)
944         CC(1,2,-i)=-b(9)
945 c        CC(1,1,i)=0.0d0
946 c        CC(2,2,i)=0.0d0
947 c        CC(2,1,i)=0.0d0
948 c        CC(1,2,i)=0.0d0
949         Ctilde(1,1,i)=b(7)
950         Ctilde(1,2,i)=b(9)
951         Ctilde(2,1,i)=-b(9)
952         Ctilde(2,2,i)=b(7)
953         Ctilde(1,1,-i)=b(7)
954         Ctilde(1,2,-i)=-b(9)
955         Ctilde(2,1,-i)=b(9)
956         Ctilde(2,2,-i)=b(7)
957
958 c        Ctilde(1,1,i)=0.0d0
959 c        Ctilde(1,2,i)=0.0d0
960 c        Ctilde(2,1,i)=0.0d0
961 c        Ctilde(2,2,i)=0.0d0
962         DD(1,1,i)= b(6)
963         DD(2,2,i)=-b(6)
964         DD(2,1,i)= b(8)
965         DD(1,2,i)= b(8)
966         DD(1,1,-i)= b(6)
967         DD(2,2,-i)=-b(6)
968         DD(2,1,-i)=-b(8)
969         DD(1,2,-i)=-b(8)
970 c        DD(1,1,i)=0.0d0
971 c        DD(2,2,i)=0.0d0
972 c        DD(2,1,i)=0.0d0
973 c        DD(1,2,i)=0.0d0
974         Dtilde(1,1,i)=b(6)
975         Dtilde(1,2,i)=b(8)
976         Dtilde(2,1,i)=-b(8)
977         Dtilde(2,2,i)=b(6)
978         Dtilde(1,1,-i)=b(6)
979         Dtilde(1,2,-i)=-b(8)
980         Dtilde(2,1,-i)=b(8)
981         Dtilde(2,2,-i)=b(6)
982
983 c        Dtilde(1,1,i)=0.0d0
984 c        Dtilde(1,2,i)=0.0d0
985 c        Dtilde(2,1,i)=0.0d0
986 c        Dtilde(2,2,i)=0.0d0
987         EE(1,1,i)= b(10)+b(11)
988         EE(2,2,i)=-b(10)+b(11)
989         EE(2,1,i)= b(12)-b(13)
990         EE(1,2,i)= b(12)+b(13)
991         EE(1,1,-i)= b(10)+b(11)
992         EE(2,2,-i)=-b(10)+b(11)
993         EE(2,1,-i)=-b(12)+b(13)
994         EE(1,2,-i)=-b(12)-b(13)
995
996 c        ee(1,1,i)=1.0d0
997 c        ee(2,2,i)=1.0d0
998 c        ee(2,1,i)=0.0d0
999 c        ee(1,2,i)=0.0d0
1000 c        ee(2,1,i)=ee(1,2,i)
1001       enddo
1002       if (lprint) then
1003       do i=1,nloctyp
1004         write (iout,*) 'Type',i
1005         write (iout,*) 'B1'
1006         write(iout,*) B1(1,i),B1(2,i)
1007         write (iout,*) 'B2'
1008         write(iout,*) B2(1,i),B2(2,i)
1009         write (iout,*) 'CC'
1010         do j=1,2
1011           write (iout,'(2f10.5)') CC(j,1,i),CC(j,2,i)
1012         enddo
1013         write(iout,*) 'DD'
1014         do j=1,2
1015           write (iout,'(2f10.5)') DD(j,1,i),DD(j,2,i)
1016         enddo
1017         write(iout,*) 'EE'
1018         do j=1,2
1019           write (iout,'(2f10.5)') EE(j,1,i),EE(j,2,i)
1020         enddo
1021       enddo
1022       endif
1023
1024
1025 C Read electrostatic-interaction parameters
1026 C
1027       if (lprint) then
1028         write (iout,*)
1029         write (iout,'(/a)') 'Electrostatic interaction constants:'
1030         write (iout,'(1x,a,1x,a,10x,a,11x,a,11x,a,11x,a)') 
1031      &            'IT','JT','APP','BPP','AEL6','AEL3'
1032       endif
1033       read (ielep,*,end=116,err=116) ((epp(i,j),j=1,2),i=1,2)
1034       read (ielep,*,end=116,err=116) ((rpp(i,j),j=1,2),i=1,2)
1035       read (ielep,*,end=116,err=116) ((elpp6(i,j),j=1,2),i=1,2)
1036       read (ielep,*,end=116,err=116) ((elpp3(i,j),j=1,2),i=1,2)
1037       close (ielep)
1038       do i=1,2
1039         do j=1,2
1040         rri=rpp(i,j)**6
1041         app (i,j)=epp(i,j)*rri*rri 
1042         bpp (i,j)=-2.0D0*epp(i,j)*rri
1043         ael6(i,j)=elpp6(i,j)*4.2D0**6
1044         ael3(i,j)=elpp3(i,j)*4.2D0**3
1045 c        lprint=.true.
1046         if (lprint) write(iout,'(2i3,4(1pe15.4))')i,j,app(i,j),bpp(i,j),
1047      &                    ael6(i,j),ael3(i,j)
1048 c        lprint=.false.
1049         enddo
1050       enddo
1051 C
1052 C Read side-chain interaction parameters.
1053 C
1054       read (isidep,*,end=117,err=117) ipot,expon
1055       if (ipot.lt.1 .or. ipot.gt.5) then
1056         write (iout,'(2a)') 'Error while reading SC interaction',
1057      &               'potential file - unknown potential type.'
1058 #ifdef MPI
1059         call MPI_Finalize(Ierror)
1060 #endif
1061         stop
1062       endif
1063       expon2=expon/2
1064       if(me.eq.king)
1065      & write(iout,'(/3a,2i3)') 'Potential is ',potname(ipot),
1066      & ', exponents are ',expon,2*expon 
1067       goto (10,20,30,30,40) ipot
1068 C----------------------- LJ potential ---------------------------------
1069    10 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp),
1070      &   (sigma0(i),i=1,ntyp)
1071       if (lprint) then
1072         write (iout,'(/a/)') 'Parameters of the LJ potential:'
1073         write (iout,'(a/)') 'The epsilon array:'
1074         call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
1075         write (iout,'(/a)') 'One-body parameters:'
1076         write (iout,'(a,4x,a)') 'residue','sigma'
1077         write (iout,'(a3,6x,f10.5)') (restyp(i),sigma0(i),i=1,ntyp)
1078       endif
1079       goto 50
1080 C----------------------- LJK potential --------------------------------
1081    20 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp),
1082      &  (sigma0(i),i=1,ntyp),(rr0(i),i=1,ntyp)
1083       if (lprint) then
1084         write (iout,'(/a/)') 'Parameters of the LJK potential:'
1085         write (iout,'(a/)') 'The epsilon array:'
1086         call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
1087         write (iout,'(/a)') 'One-body parameters:'
1088         write (iout,'(a,4x,2a)') 'residue','   sigma  ','    r0    '
1089         write (iout,'(a3,6x,2f10.5)') (restyp(i),sigma0(i),rr0(i),
1090      &        i=1,ntyp)
1091       endif
1092       goto 50
1093 C---------------------- GB or BP potential -----------------------------
1094    30 do i=1,ntyp
1095        read (isidep,*,end=116,err=116)(eps(i,j),j=i,ntyp)
1096       enddo
1097       read (isidep,*,end=116,err=116)(sigma0(i),i=1,ntyp)
1098       read (isidep,*,end=116,err=116)(sigii(i),i=1,ntyp)
1099       read (isidep,*,end=116,err=116)(chip(i),i=1,ntyp)
1100       read (isidep,*,end=116,err=116)(alp(i),i=1,ntyp)
1101 C For the GB potential convert sigma'**2 into chi'
1102       if (ipot.eq.4) then
1103         do i=1,ntyp
1104           chip(i)=(chip(i)-1.0D0)/(chip(i)+1.0D0)
1105         enddo
1106       endif
1107       if (lprint) then
1108         write (iout,'(/a/)') 'Parameters of the BP potential:'
1109         write (iout,'(a/)') 'The epsilon array:'
1110         call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
1111         write (iout,'(/a)') 'One-body parameters:'
1112         write (iout,'(a,4x,4a)') 'residue','   sigma  ','s||/s_|_^2',
1113      &       '    chip  ','    alph  '
1114         write (iout,'(a3,6x,4f10.5)') (restyp(i),sigma0(i),sigii(i),
1115      &                     chip(i),alp(i),i=1,ntyp)
1116       endif
1117       goto 50
1118 C--------------------- GBV potential -----------------------------------
1119    40 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp),
1120      &  (sigma0(i),i=1,ntyp),(rr0(i),i=1,ntyp),(sigii(i),i=1,ntyp),
1121      &  (chip(i),i=1,ntyp),(alp(i),i=1,ntyp)
1122       if (lprint) then
1123         write (iout,'(/a/)') 'Parameters of the GBV potential:'
1124         write (iout,'(a/)') 'The epsilon array:'
1125         call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
1126         write (iout,'(/a)') 'One-body parameters:'
1127         write (iout,'(a,4x,5a)') 'residue','   sigma  ','    r0    ',
1128      &      's||/s_|_^2','    chip  ','    alph  '
1129         write (iout,'(a3,6x,5f10.5)') (restyp(i),sigma0(i),rr0(i),
1130      &           sigii(i),chip(i),alp(i),i=1,ntyp)
1131       endif
1132    50 continue
1133       close (isidep)
1134 C-----------------------------------------------------------------------
1135 C Calculate the "working" parameters of SC interactions.
1136       do i=2,ntyp
1137         do j=1,i-1
1138           eps(i,j)=eps(j,i)
1139         enddo
1140       enddo
1141       do i=1,ntyp
1142         do j=i,ntyp
1143           sigma(i,j)=dsqrt(sigma0(i)**2+sigma0(j)**2)
1144           sigma(j,i)=sigma(i,j)
1145           rs0(i,j)=dwa16*sigma(i,j)
1146           rs0(j,i)=rs0(i,j)
1147         enddo
1148       enddo
1149       if (lprint) write (iout,'(/a/10x,7a/72(1h-))') 
1150      & 'Working parameters of the SC interactions:',
1151      & '     a    ','     b    ','   augm   ','  sigma ','   r0   ',
1152      & '  chi1   ','   chi2   ' 
1153       do i=1,ntyp
1154         do j=i,ntyp
1155           epsij=eps(i,j)
1156           if (ipot.eq.1 .or. ipot.eq.3 .or. ipot.eq.4) then
1157             rrij=sigma(i,j)
1158           else
1159             rrij=rr0(i)+rr0(j)
1160           endif
1161           r0(i,j)=rrij
1162           r0(j,i)=rrij
1163           rrij=rrij**expon
1164           epsij=eps(i,j)
1165           sigeps=dsign(1.0D0,epsij)
1166           epsij=dabs(epsij)
1167           aa(i,j)=epsij*rrij*rrij
1168           bb(i,j)=-sigeps*epsij*rrij
1169           aa(j,i)=aa(i,j)
1170           bb(j,i)=bb(i,j)
1171           if (ipot.gt.2) then
1172             sigt1sq=sigma0(i)**2
1173             sigt2sq=sigma0(j)**2
1174             sigii1=sigii(i)
1175             sigii2=sigii(j)
1176             ratsig1=sigt2sq/sigt1sq
1177             ratsig2=1.0D0/ratsig1
1178             chi(i,j)=(sigii1-1.0D0)/(sigii1+ratsig1)
1179             if (j.gt.i) chi(j,i)=(sigii2-1.0D0)/(sigii2+ratsig2)
1180             rsum_max=dsqrt(sigii1*sigt1sq+sigii2*sigt2sq)
1181           else
1182             rsum_max=sigma(i,j)
1183           endif
1184 c         if (ipot.eq.1 .or. ipot.eq.3 .or. ipot.eq.4) then
1185             sigmaii(i,j)=rsum_max
1186             sigmaii(j,i)=rsum_max 
1187 c         else
1188 c           sigmaii(i,j)=r0(i,j)
1189 c           sigmaii(j,i)=r0(i,j)
1190 c         endif
1191 cd        write (iout,*) i,j,r0(i,j),sigma(i,j),rsum_max
1192           if ((ipot.eq.2 .or. ipot.eq.5) .and. r0(i,j).gt.rsum_max) then
1193             r_augm=sigma(i,j)*(rrij-sigma(i,j))/rrij
1194             augm(i,j)=epsij*r_augm**(2*expon)
1195 c           augm(i,j)=0.5D0**(2*expon)*aa(i,j)
1196             augm(j,i)=augm(i,j)
1197           else
1198             augm(i,j)=0.0D0
1199             augm(j,i)=0.0D0
1200           endif
1201           if (lprint) then
1202             write (iout,'(2(a3,2x),3(1pe10.3),5(0pf8.3))') 
1203      &      restyp(i),restyp(j),aa(i,j),bb(i,j),augm(i,j),
1204      &      sigma(i,j),r0(i,j),chi(i,j),chi(j,i)
1205           endif
1206         enddo
1207       enddo
1208 #ifdef OLDSCP
1209 C
1210 C Define the SC-p interaction constants (hard-coded; old style)
1211 C
1212       do i=1,ntyp
1213 C "Soft" SC-p repulsion (causes helices to be too flat, but facilitates
1214 C helix formation)
1215 c       aad(i,1)=0.3D0*4.0D0**12
1216 C Following line for constants currently implemented
1217 C "Hard" SC-p repulsion (gives correct turn spacing in helices)
1218         aad(i,1)=1.5D0*4.0D0**12
1219 c       aad(i,1)=0.17D0*5.6D0**12
1220         aad(i,2)=aad(i,1)
1221 C "Soft" SC-p repulsion
1222         bad(i,1)=0.0D0
1223 C Following line for constants currently implemented
1224 c       aad(i,1)=0.3D0*4.0D0**6
1225 C "Hard" SC-p repulsion
1226         bad(i,1)=3.0D0*4.0D0**6
1227 c       bad(i,1)=-2.0D0*0.17D0*5.6D0**6
1228         bad(i,2)=bad(i,1)
1229 c       aad(i,1)=0.0D0
1230 c       aad(i,2)=0.0D0
1231 c       bad(i,1)=1228.8D0
1232 c       bad(i,2)=1228.8D0
1233       enddo
1234 #else
1235 C
1236 C 8/9/01 Read the SC-p interaction constants from file
1237 C
1238       do i=1,ntyp
1239         read (iscpp,*,end=118,err=118) (eps_scp(i,j),rscp(i,j),j=1,2)
1240       enddo
1241       do i=1,ntyp
1242         aad(i,1)=dabs(eps_scp(i,1))*rscp(i,1)**12
1243         aad(i,2)=dabs(eps_scp(i,2))*rscp(i,2)**12
1244         bad(i,1)=-2*eps_scp(i,1)*rscp(i,1)**6
1245         bad(i,2)=-2*eps_scp(i,2)*rscp(i,2)**6
1246       enddo
1247 c      lprint=.true.
1248       if (lprint) then
1249         write (iout,*) "Parameters of SC-p interactions:"
1250         do i=1,ntyp
1251           write (iout,'(4f8.3,4e12.4)') eps_scp(i,1),rscp(i,1),
1252      &     eps_scp(i,2),rscp(i,2),aad(i,1),bad(i,1),aad(i,2),bad(i,2)
1253         enddo
1254       endif
1255 c      lprint=.false.
1256 #endif
1257 C
1258 C Define the constants of the disulfide bridge
1259 C
1260       ebr=-5.50D0
1261 c
1262 c Old arbitrary potential - commented out.
1263 c
1264 c      dbr= 4.20D0
1265 c      fbr= 3.30D0
1266 c
1267 c Constants of the disulfide-bond potential determined based on the RHF/6-31G**
1268 c energy surface of diethyl disulfide.
1269 c A. Liwo and U. Kozlowska, 11/24/03
1270 c
1271       D0CM = 3.78d0
1272       AKCM = 15.1d0
1273       AKTH = 11.0d0
1274       AKCT = 12.0d0
1275       V1SS =-1.08d0
1276       V2SS = 7.61d0
1277       V3SS = 13.7d0
1278 c      akcm=0.0d0
1279 c      akth=0.0d0
1280 c      akct=0.0d0
1281 c      v1ss=0.0d0
1282 c      v2ss=0.0d0
1283 c      v3ss=0.0d0
1284       
1285       if(me.eq.king) then
1286       write (iout,'(/a)') "Disulfide bridge parameters:"
1287       write (iout,'(a,f10.2)') 'S-S bridge energy: ',ebr
1288       write (iout,'(2(a,f10.2))') 'd0cm:',d0cm,' akcm:',akcm
1289       write (iout,'(2(a,f10.2))') 'akth:',akth,' akct:',akct
1290       write (iout,'(3(a,f10.2))') 'v1ss:',v1ss,' v2ss:',v2ss,
1291      &  ' v3ss:',v3ss
1292       endif
1293       return
1294   111 write (iout,*) "Error reading bending energy parameters."
1295       goto 999
1296   112 write (iout,*) "Error reading rotamer energy parameters."
1297       goto 999
1298   113 write (iout,*) "Error reading torsional energy parameters."
1299       goto 999
1300   114 write (iout,*) "Error reading double torsional energy parameters."
1301       goto 999
1302   115 write (iout,*) 
1303      &  "Error reading cumulant (multibody energy) parameters."
1304       goto 999
1305   116 write (iout,*) "Error reading electrostatic energy parameters."
1306       goto 999
1307   117 write (iout,*) "Error reading side chain interaction parameters."
1308       goto 999
1309   118 write (iout,*) "Error reading SCp interaction parameters."
1310       goto 999
1311   119 write (iout,*) "Error reading SCCOR parameters"
1312   999 continue
1313 #ifdef MPI
1314       call MPI_Finalize(Ierror)
1315 #endif
1316       stop
1317       return
1318       end
1319
1320
1321       subroutine getenv_loc(var, val)
1322       character(*) var, val
1323
1324 #ifdef WINIFL
1325       character(2000) line
1326       external ilen
1327
1328       open (196,file='env',status='old',readonly,shared)
1329       iread=0
1330 c      write(*,*)'looking for ',var
1331 10    read(196,*,err=11,end=11)line
1332       iread=index(line,var)
1333 c      write(*,*)iread,' ',var,' ',line
1334       if (iread.eq.0) go to 10 
1335 c      write(*,*)'---> ',line
1336 11    continue
1337       if(iread.eq.0) then
1338 c       write(*,*)'CHUJ'
1339        val=''
1340       else
1341        iread=iread+ilen(var)+1
1342        read (line(iread:),*,err=12,end=12) val
1343 c       write(*,*)'OK: ',var,' = ',val
1344       endif
1345       close(196)
1346       return
1347 12    val=''
1348       close(196)
1349 #elif (defined CRAY)
1350       integer lennam,lenval,ierror
1351 c
1352 c        getenv using a POSIX call, useful on the T3D
1353 c        Sept 1996, comment out error check on advice of H. Pritchard
1354 c
1355       lennam = len(var)
1356       if(lennam.le.0) stop '--error calling getenv--'
1357       call pxfgetenv(var,lennam,val,lenval,ierror)
1358 c-HP- if(ierror.ne.0) stop '--error returned by pxfgetenv--'
1359 #else
1360       call getenv(var,val)
1361 #endif
1362
1363       return
1364       end