D i L aminokwasy dzialajace dla src_CSA
[unres.git] / source / unres / src_CSA_DiL / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD_'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31         time00=MPI_Wtime()
32 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
33         if (fg_rank.eq.0) then
34           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
35 c          print *,"Processor",myrank," BROADCAST iorder"
36 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
37 C FG slaves as WEIGHTS array.
38           weights_(1)=wsc
39           weights_(2)=wscp
40           weights_(3)=welec
41           weights_(4)=wcorr
42           weights_(5)=wcorr5
43           weights_(6)=wcorr6
44           weights_(7)=wel_loc
45           weights_(8)=wturn3
46           weights_(9)=wturn4
47           weights_(10)=wturn6
48           weights_(11)=wang
49           weights_(12)=wscloc
50           weights_(13)=wtor
51           weights_(14)=wtor_d
52           weights_(15)=wstrain
53           weights_(16)=wvdwpp
54           weights_(17)=wbond
55           weights_(18)=scal14
56           weights_(21)=wsccor
57           weights_(22)=wsct
58 C FG Master broadcasts the WEIGHTS_ array
59           call MPI_Bcast(weights_(1),n_ene,
60      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
61         else
62 C FG slaves receive the WEIGHTS array
63           call MPI_Bcast(weights(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65           wsc=weights(1)
66           wscp=weights(2)
67           welec=weights(3)
68           wcorr=weights(4)
69           wcorr5=weights(5)
70           wcorr6=weights(6)
71           wel_loc=weights(7)
72           wturn3=weights(8)
73           wturn4=weights(9)
74           wturn6=weights(10)
75           wang=weights(11)
76           wscloc=weights(12)
77           wtor=weights(13)
78           wtor_d=weights(14)
79           wstrain=weights(15)
80           wvdwpp=weights(16)
81           wbond=weights(17)
82           scal14=weights(18)
83           wsccor=weights(21)
84           wsct=weights(22)
85         endif
86         time_Bcast=time_Bcast+MPI_Wtime()-time00
87         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
88 c        call chainbuild_cart
89       endif
90 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
91 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
92 #else
93 c      if (modecalc.eq.12.or.modecalc.eq.14) then
94 c        call int_from_cart1(.false.)
95 c      endif
96 #endif     
97 #ifdef TIMING
98       time00=MPI_Wtime()
99 #endif
100
101 C Compute the side-chain and electrostatic interaction energy
102 C
103       goto (101,102,103,104,105,106) ipot
104 C Lennard-Jones potential.
105   101 call elj(evdw,evdw_p,evdw_m)
106 cd    print '(a)','Exit ELJ'
107       goto 107
108 C Lennard-Jones-Kihara potential (shifted).
109   102 call eljk(evdw,evdw_p,evdw_m)
110       goto 107
111 C Berne-Pechukas potential (dilated LJ, angular dependence).
112   103 call ebp(evdw,evdw_p,evdw_m)
113       goto 107
114 C Gay-Berne potential (shifted LJ, angular dependence).
115   104 call egb(evdw,evdw_p,evdw_m)
116       goto 107
117 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
118   105 call egbv(evdw,evdw_p,evdw_m)
119       goto 107
120 C Soft-sphere potential
121   106 call e_softsphere(evdw)
122 C
123 C Calculate electrostatic (H-bonding) energy of the main chain.
124 C
125   107 continue
126       
127 C     JUYONG for dfa test!
128       if (wdfa_dist.gt.0) call edfad(edfadis)
129 c      print*, 'edfad is finished!', edfadis
130       if (wdfa_tor.gt.0) call edfat(edfator)
131 c      print*, 'edfat is finished!', edfator
132       if (wdfa_nei.gt.0) call edfan(edfanei)
133 c      print*, 'edfan is finished!', edfanei
134       if (wdfa_beta.gt.0) call edfab(edfabet)
135 c      print*, 'edfab is finished!', edfabet
136 C      stop
137 C     JUYONG
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141       time01=MPI_Wtime() 
142 #endif
143       call vec_and_deriv
144 #ifdef TIMING
145       time_vec=time_vec+MPI_Wtime()-time01
146 #endif
147 c      print *,"Processor",myrank," left VEC_AND_DERIV"
148       if (ipot.lt.6) then
149 #ifdef SPLITELE
150          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
151      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
152      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
153      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
154 #else
155          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
156      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
157      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
158      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
159 #endif
160             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
161          else
162             ees=0.0d0
163             evdw1=0.0d0
164             eel_loc=0.0d0
165             eello_turn3=0.0d0
166             eello_turn4=0.0d0
167          endif
168       else
169 c        write (iout,*) "Soft-spheer ELEC potential"
170         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
171      &   eello_turn4)
172       endif
173 c      print *,"Processor",myrank," computed UELEC"
174 C
175 C Calculate excluded-volume interaction energy between peptide groups
176 C and side chains.
177 C
178       if (ipot.lt.6) then
179        if(wscp.gt.0d0) then
180         call escp(evdw2,evdw2_14)
181        else
182         evdw2=0
183         evdw2_14=0
184        endif
185       else
186 c        write (iout,*) "Soft-sphere SCP potential"
187         call escp_soft_sphere(evdw2,evdw2_14)
188       endif
189 c
190 c Calculate the bond-stretching energy
191 c
192       call ebond(estr)
193
194 C Calculate the disulfide-bridge and other energy and the contributions
195 C from other distance constraints.
196 cd    print *,'Calling EHPB'
197       call edis(ehpb)
198 cd    print *,'EHPB exitted succesfully.'
199 C
200 C Calculate the virtual-bond-angle energy.
201 C
202       if (wang.gt.0d0) then
203         call ebend(ebe)
204       else
205         ebe=0
206       endif
207 c      print *,"Processor",myrank," computed UB"
208 C
209 C Calculate the SC local energy.
210 C
211       call esc(escloc)
212 c      print *,"Processor",myrank," computed USC"
213 C
214 C Calculate the virtual-bond torsional energy.
215 C
216 cd    print *,'nterm=',nterm
217       if (wtor.gt.0) then
218        call etor(etors,edihcnstr)
219       else
220        etors=0
221        edihcnstr=0
222       endif
223 c      print *,"Processor",myrank," computed Utor"
224 C
225 C 6/23/01 Calculate double-torsional energy
226 C
227       if (wtor_d.gt.0) then
228        call etor_d(etors_d)
229       else
230        etors_d=0
231       endif
232 c      print *,"Processor",myrank," computed Utord"
233 C
234 C 21/5/07 Calculate local sicdechain correlation energy
235 C
236       if (wsccor.gt.0.0d0) then
237         call eback_sc_corr(esccor)
238       else
239         esccor=0.0d0
240       endif
241 c      print *,"Processor",myrank," computed Usccorr"
242
243 C 12/1/95 Multi-body terms
244 C
245       n_corr=0
246       n_corr1=0
247       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
248      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
249          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
250 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
251 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
252       else
253          ecorr=0.0d0
254          ecorr5=0.0d0
255          ecorr6=0.0d0
256          eturn6=0.0d0
257       endif
258       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
259          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
260 cd         write (iout,*) "multibody_hb ecorr",ecorr
261       endif
262 c      print *,"Processor",myrank," computed Ucorr"
263
264 C If performing constraint dynamics, call the constraint energy
265 C  after the equilibration time
266       if(usampl.and.totT.gt.eq_time) then
267 c         call EconstrQ   
268          call Econstr_back
269       else
270          Uconst=0.0d0
271          Uconst_back=0.0d0
272       endif
273 #ifdef TIMING
274       time_enecalc=time_enecalc+MPI_Wtime()-time00
275 #endif
276 c      print *,"Processor",myrank," computed Uconstr"
277 #ifdef TIMING
278       time00=MPI_Wtime()
279 #endif
280 c
281 C Sum the energies
282 C
283       energia(1)=evdw
284 #ifdef SCP14
285       energia(2)=evdw2-evdw2_14
286       energia(18)=evdw2_14
287 #else
288       energia(2)=evdw2
289       energia(18)=0.0d0
290 #endif
291 #ifdef SPLITELE
292       energia(3)=ees
293       energia(16)=evdw1
294 #else
295       energia(3)=ees+evdw1
296       energia(16)=0.0d0
297 #endif
298       energia(4)=ecorr
299       energia(5)=ecorr5
300       energia(6)=ecorr6
301       energia(7)=eel_loc
302       energia(8)=eello_turn3
303       energia(9)=eello_turn4
304       energia(10)=eturn6
305       energia(11)=ebe
306       energia(12)=escloc
307       energia(13)=etors
308       energia(14)=etors_d
309       energia(15)=ehpb
310       energia(19)=edihcnstr
311       energia(17)=estr
312       energia(20)=Uconst+Uconst_back
313       energia(21)=esccor
314       energia(22)=evdw_p
315       energia(23)=evdw_m
316       energia(24)=edfadis
317       energia(25)=edfator
318       energia(26)=edfanei
319       energia(27)=edfabet
320 c      print *," Processor",myrank," calls SUM_ENERGY"
321       call sum_energy(energia,.true.)
322 c      print *," Processor",myrank," left SUM_ENERGY"
323 #ifdef TIMING
324       time_sumene=time_sumene+MPI_Wtime()-time00
325 #endif
326       
327 c      print*, 'etot:',energia(0)
328       
329       return
330       end
331 c-------------------------------------------------------------------------------
332       subroutine sum_energy(energia,reduce)
333       implicit real*8 (a-h,o-z)
334       include 'DIMENSIONS'
335 #ifndef ISNAN
336       external proc_proc
337 #ifdef WINPGI
338 cMS$ATTRIBUTES C ::  proc_proc
339 #endif
340 #endif
341 #ifdef MPI
342       include "mpif.h"
343 #endif
344       include 'COMMON.SETUP'
345       include 'COMMON.IOUNITS'
346       double precision energia(0:n_ene),enebuff(0:n_ene+1)
347       include 'COMMON.FFIELD'
348       include 'COMMON.DERIV'
349       include 'COMMON.INTERACT'
350       include 'COMMON.SBRIDGE'
351       include 'COMMON.CHAIN'
352       include 'COMMON.VAR'
353       include 'COMMON.CONTROL'
354       include 'COMMON.TIME1'
355       logical reduce
356 #ifdef MPI
357       if (nfgtasks.gt.1 .and. reduce) then
358 #ifdef DEBUG
359         write (iout,*) "energies before REDUCE"
360         call enerprint(energia)
361         call flush(iout)
362 #endif
363         do i=0,n_ene
364           enebuff(i)=energia(i)
365         enddo
366         time00=MPI_Wtime()
367         call MPI_Barrier(FG_COMM,IERR)
368         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
369         time00=MPI_Wtime()
370         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
371      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
372 #ifdef DEBUG
373         write (iout,*) "energies after REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         time_Reduce=time_Reduce+MPI_Wtime()-time00
378       endif
379       if (fg_rank.eq.0) then
380 #endif
381 #ifdef TSCSC
382       evdw=energia(22)+wsct*energia(23)
383 #else
384       evdw=energia(1)
385 #endif
386 #ifdef SCP14
387       evdw2=energia(2)+energia(18)
388       evdw2_14=energia(18)
389 #else
390       evdw2=energia(2)
391 #endif
392 #ifdef SPLITELE
393       ees=energia(3)
394       evdw1=energia(16)
395 #else
396       ees=energia(3)
397       evdw1=0.0d0
398 #endif
399       ecorr=energia(4)
400       ecorr5=energia(5)
401       ecorr6=energia(6)
402       eel_loc=energia(7)
403       eello_turn3=energia(8)
404       eello_turn4=energia(9)
405       eturn6=energia(10)
406       ebe=energia(11)
407       escloc=energia(12)
408       etors=energia(13)
409       etors_d=energia(14)
410       ehpb=energia(15)
411       edihcnstr=energia(19)
412       estr=energia(17)
413       Uconst=energia(20)
414       esccor=energia(21)
415       edfadis=energia(24)
416       edfator=energia(25)
417       edfanei=energia(26)
418       edfabet=energia(27)
419 #ifdef SPLITELE
420       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
421      & +wang*ebe+wtor*etors+wscloc*escloc
422      & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
423      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
424      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
425      & +wbond*estr+Uconst+wsccor*esccor
426      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
427      & +wdfa_beta*edfabet    
428 #else
429       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
430      & +wang*ebe+wtor*etors+wscloc*escloc
431      & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
432      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
433      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
434      & +wbond*estr+Uconst+wsccor*esccor
435      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
436      & +wdfa_beta*edfabet    
437
438 #endif
439       energia(0)=etot
440 c detecting NaNQ
441 #ifdef ISNAN
442 #ifdef AIX
443       if (isnan(etot).ne.0) energia(0)=1.0d+99
444 #else
445       if (isnan(etot)) energia(0)=1.0d+99
446 #endif
447 #else
448       i=0
449 #ifdef WINPGI
450       idumm=proc_proc(etot,i)
451 #else
452       call proc_proc(etot,i)
453 #endif
454       if(i.eq.1)energia(0)=1.0d+99
455 #endif
456 #ifdef MPI
457       endif
458 #endif
459       return
460       end
461 c-------------------------------------------------------------------------------
462       subroutine sum_gradient
463       implicit real*8 (a-h,o-z)
464       include 'DIMENSIONS'
465 #ifndef ISNAN
466       external proc_proc
467 #ifdef WINPGI
468 cMS$ATTRIBUTES C ::  proc_proc
469 #endif
470 #endif
471 #ifdef MPI
472       include 'mpif.h'
473       double precision gradbufc(3,maxres),gradbufx(3,maxres),
474      &  glocbuf(4*maxres),gradbufc_sum(3,maxres)
475 #else
476       double precision gradbufc(3,maxres),gradbufx(3,maxres),
477      &  glocbuf(4*maxres),gradbufc_sum(3,maxres)
478 #endif
479       include 'COMMON.SETUP'
480       include 'COMMON.IOUNITS'
481       include 'COMMON.FFIELD'
482       include 'COMMON.DERIV'
483       include 'COMMON.INTERACT'
484       include 'COMMON.SBRIDGE'
485       include 'COMMON.CHAIN'
486       include 'COMMON.VAR'
487       include 'COMMON.CONTROL'
488       include 'COMMON.TIME1'
489       include 'COMMON.MAXGRAD'
490 #ifdef TIMING
491       time01=MPI_Wtime()
492 #endif
493 #ifdef DEBUG
494       write (iout,*) "sum_gradient gvdwc, gvdwx"
495       do i=1,nres
496         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
497      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
498      &   (gvdwcT(j,i),j=1,3)
499       enddo
500       call flush(iout)
501 #endif
502 #ifdef MPI
503 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
504         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
505      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
506 #endif
507 C
508 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
509 C            in virtual-bond-vector coordinates
510 C
511 #ifdef DEBUG
512 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
513 c      do i=1,nres-1
514 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
515 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
516 c      enddo
517 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
518 c      do i=1,nres-1
519 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
520 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
521 c      enddo
522       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
523       do i=1,nres
524         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
525      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
526      &   g_corr5_loc(i)
527       enddo
528       call flush(iout)
529 #endif
530 #ifdef SPLITELE
531 #ifdef TSCSC
532       do i=1,nct
533         do j=1,3
534           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
535      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
536      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
537      &                wel_loc*gel_loc_long(j,i)+
538      &                wcorr*gradcorr_long(j,i)+
539      &                wcorr5*gradcorr5_long(j,i)+
540      &                wcorr6*gradcorr6_long(j,i)+
541      &                wturn6*gcorr6_turn_long(j,i)+
542      &                wstrain*ghpbc(j,i)+
543      &                wdfa_dist*gdfad(j,i)+
544      &                wdfa_tor*gdfat(j,i)+
545      &                wdfa_nei*gdfan(j,i)+
546      &                wdfa_beta*gdfab(j,i)
547
548         enddo
549       enddo 
550 #else
551       do i=1,nct
552         do j=1,3
553           gradbufc(j,i)=wsc*gvdwc(j,i)+
554      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
555      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
556      &                wel_loc*gel_loc_long(j,i)+
557      &                wcorr*gradcorr_long(j,i)+
558      &                wcorr5*gradcorr5_long(j,i)+
559      &                wcorr6*gradcorr6_long(j,i)+
560      &                wturn6*gcorr6_turn_long(j,i)+
561      &                wstrain*ghpbc(j,i)+
562      &                wdfa_dist*gdfad(j,i)+
563      &                wdfa_tor*gdfat(j,i)+
564      &                wdfa_nei*gdfan(j,i)+
565      &                wdfa_beta*gdfab(j,i)
566
567         enddo
568       enddo 
569 #endif
570 #else
571       do i=1,nct
572         do j=1,3
573           gradbufc(j,i)=wsc*gvdwc(j,i)+
574      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
575      &                welec*gelc_long(j,i)+
576      &                wbond*gradb(j,i)+
577      &                wel_loc*gel_loc_long(j,i)+
578      &                wcorr*gradcorr_long(j,i)+
579      &                wcorr5*gradcorr5_long(j,i)+
580      &                wcorr6*gradcorr6_long(j,i)+
581      &                wturn6*gcorr6_turn_long(j,i)+
582      &                wstrain*ghpbc(j,i)+
583      &                wdfa_dist*gdfad(j,i)+
584      &                wdfa_tor*gdfat(j,i)+
585      &                wdfa_nei*gdfan(j,i)+
586      &                wdfa_beta*gdfab(j,i)
587
588
589         enddo
590       enddo 
591 #endif
592 #ifdef MPI
593       if (nfgtasks.gt.1) then
594       time00=MPI_Wtime()
595 #ifdef DEBUG
596       write (iout,*) "gradbufc before allreduce"
597       do i=1,nres
598         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
599       enddo
600       call flush(iout)
601 #endif
602       call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
603      &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
604       time_reduce=time_reduce+MPI_Wtime()-time00
605 #ifdef DEBUG
606       write (iout,*) "gradbufc_sum after allreduce"
607       do i=1,nres
608         write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
609       enddo
610       call flush(iout)
611 #endif
612 #ifdef TIMING
613       time_allreduce=time_allreduce+MPI_Wtime()-time00
614 #endif
615       do i=nnt,nres
616         do k=1,3
617           gradbufc(k,i)=0.0d0
618         enddo
619       enddo
620       do i=igrad_start,igrad_end
621         do j=jgrad_start(i),jgrad_end(i)
622           do k=1,3
623             gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
624           enddo
625         enddo
626       enddo
627       else
628 #endif
629 #ifdef DEBUG
630       write (iout,*) "gradbufc"
631       do i=1,nres
632         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
633       enddo
634       call flush(iout)
635 #endif
636       do i=nnt,nres-1
637         do k=1,3
638           gradbufc(k,i)=0.0d0
639         enddo
640         do j=i+1,nres
641           do k=1,3
642             gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
643           enddo
644         enddo
645       enddo
646 #ifdef MPI
647       endif
648 #endif
649       do k=1,3
650         gradbufc(k,nres)=0.0d0
651       enddo
652       do i=1,nct
653         do j=1,3
654 #ifdef SPLITELE
655           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
656      &                wel_loc*gel_loc(j,i)+
657      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
658      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
659      &                wel_loc*gel_loc_long(j,i)+
660      &                wcorr*gradcorr_long(j,i)+
661      &                wcorr5*gradcorr5_long(j,i)+
662      &                wcorr6*gradcorr6_long(j,i)+
663      &                wturn6*gcorr6_turn_long(j,i))+
664      &                wbond*gradb(j,i)+
665      &                wcorr*gradcorr(j,i)+
666      &                wturn3*gcorr3_turn(j,i)+
667      &                wturn4*gcorr4_turn(j,i)+
668      &                wcorr5*gradcorr5(j,i)+
669      &                wcorr6*gradcorr6(j,i)+
670      &                wturn6*gcorr6_turn(j,i)+
671      &                wsccor*gsccorc(j,i)
672      &               +wscloc*gscloc(j,i)
673 #else
674           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
675      &                wel_loc*gel_loc(j,i)+
676      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
677      &                welec*gelc_long(j,i)
678      &                wel_loc*gel_loc_long(j,i)+
679      &                wcorr*gcorr_long(j,i)+
680      &                wcorr5*gradcorr5_long(j,i)+
681      &                wcorr6*gradcorr6_long(j,i)+
682      &                wturn6*gcorr6_turn_long(j,i))+
683      &                wbond*gradb(j,i)+
684      &                wcorr*gradcorr(j,i)+
685      &                wturn3*gcorr3_turn(j,i)+
686      &                wturn4*gcorr4_turn(j,i)+
687      &                wcorr5*gradcorr5(j,i)+
688      &                wcorr6*gradcorr6(j,i)+
689      &                wturn6*gcorr6_turn(j,i)+
690      &                wsccor*gsccorc(j,i)
691      &               +wscloc*gscloc(j,i)
692 #endif
693 #ifdef TSCSC
694           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
695      &                  wscp*gradx_scp(j,i)+
696      &                  wbond*gradbx(j,i)+
697      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
698      &                  wsccor*gsccorx(j,i)
699      &                 +wscloc*gsclocx(j,i)
700 #else
701           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
702      &                  wbond*gradbx(j,i)+
703      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
704      &                  wsccor*gsccorx(j,i)
705      &                 +wscloc*gsclocx(j,i)
706 #endif
707         enddo
708       enddo 
709 #ifdef DEBUG
710       write (iout,*) "gloc before adding corr"
711       do i=1,4*nres
712         write (iout,*) i,gloc(i,icg)
713       enddo
714 #endif
715       do i=1,nres-3
716         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
717      &   +wcorr5*g_corr5_loc(i)
718      &   +wcorr6*g_corr6_loc(i)
719      &   +wturn4*gel_loc_turn4(i)
720      &   +wturn3*gel_loc_turn3(i)
721      &   +wturn6*gel_loc_turn6(i)
722      &   +wel_loc*gel_loc_loc(i)
723      &   +wsccor*gsccor_loc(i)
724       enddo
725 #ifdef DEBUG
726       write (iout,*) "gloc after adding corr"
727       do i=1,4*nres
728         write (iout,*) i,gloc(i,icg)
729       enddo
730 #endif
731 #ifdef MPI
732       if (nfgtasks.gt.1) then
733         do j=1,3
734           do i=1,nres
735             gradbufc(j,i)=gradc(j,i,icg)
736             gradbufx(j,i)=gradx(j,i,icg)
737           enddo
738         enddo
739         do i=1,4*nres
740           glocbuf(i)=gloc(i,icg)
741         enddo
742         time00=MPI_Wtime()
743         call MPI_Barrier(FG_COMM,IERR)
744         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
745         time00=MPI_Wtime()
746         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
747      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
748         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
749      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
750         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
751      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
752         time_reduce=time_reduce+MPI_Wtime()-time00
753 #ifdef DEBUG
754       write (iout,*) "gloc after reduce"
755       do i=1,4*nres
756         write (iout,*) i,gloc(i,icg)
757       enddo
758 #endif
759       endif
760 #endif
761       if (gnorm_check) then
762 c
763 c Compute the maximum elements of the gradient
764 c
765       gvdwc_max=0.0d0
766       gvdwc_scp_max=0.0d0
767       gelc_max=0.0d0
768       gvdwpp_max=0.0d0
769       gradb_max=0.0d0
770       ghpbc_max=0.0d0
771       gradcorr_max=0.0d0
772       gel_loc_max=0.0d0
773       gcorr3_turn_max=0.0d0
774       gcorr4_turn_max=0.0d0
775       gradcorr5_max=0.0d0
776       gradcorr6_max=0.0d0
777       gcorr6_turn_max=0.0d0
778       gsccorc_max=0.0d0
779       gscloc_max=0.0d0
780       gvdwx_max=0.0d0
781       gradx_scp_max=0.0d0
782       ghpbx_max=0.0d0
783       gradxorr_max=0.0d0
784       gsccorx_max=0.0d0
785       gsclocx_max=0.0d0
786       do i=1,nct
787         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
788         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
789 #ifdef TSCSC
790         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
791         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
792 #endif
793         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
794         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
795      &   gvdwc_scp_max=gvdwc_scp_norm
796         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
797         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
798         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
799         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
800         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
801         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
802         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
803         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
804         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
805         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
806         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
807         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
808         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
809      &    gcorr3_turn(1,i)))
810         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
811      &    gcorr3_turn_max=gcorr3_turn_norm
812         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
813      &    gcorr4_turn(1,i)))
814         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
815      &    gcorr4_turn_max=gcorr4_turn_norm
816         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
817         if (gradcorr5_norm.gt.gradcorr5_max) 
818      &    gradcorr5_max=gradcorr5_norm
819         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
820         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
821         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
822      &    gcorr6_turn(1,i)))
823         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
824      &    gcorr6_turn_max=gcorr6_turn_norm
825         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
826         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
827         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
828         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
829         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
830         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
831 #ifdef TSCSC
832         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
833         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
834 #endif
835         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
836         if (gradx_scp_norm.gt.gradx_scp_max) 
837      &    gradx_scp_max=gradx_scp_norm
838         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
839         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
840         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
841         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
842         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
843         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
844         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
845         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
846       enddo 
847       if (gradout) then
848 #ifdef AIX
849         open(istat,file=statname,position="append")
850 #else
851         open(istat,file=statname,access="append")
852 #endif
853         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
854      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
855      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
856      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
857      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
858      &     gsccorx_max,gsclocx_max
859         close(istat)
860         if (gvdwc_max.gt.1.0d4) then
861           write (iout,*) "gvdwc gvdwx gradb gradbx"
862           do i=nnt,nct
863             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
864      &        gradb(j,i),gradbx(j,i),j=1,3)
865           enddo
866           call pdbout(0.0d0,'cipiszcze',iout)
867           call flush(iout)
868         endif
869       endif
870       endif
871 #ifdef DEBUG
872       write (iout,*) "gradc gradx gloc"
873       do i=1,nres
874         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
875      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
876       enddo 
877 #endif
878 #ifdef TIMING
879       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
880 #endif
881       return
882       end
883 c-------------------------------------------------------------------------------
884       subroutine rescale_weights(t_bath)
885       implicit real*8 (a-h,o-z)
886       include 'DIMENSIONS'
887       include 'COMMON.IOUNITS'
888       include 'COMMON.FFIELD'
889       include 'COMMON.SBRIDGE'
890       double precision kfac /2.4d0/
891       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
892 c      facT=temp0/t_bath
893 c      facT=2*temp0/(t_bath+temp0)
894       if (rescale_mode.eq.0) then
895         facT=1.0d0
896         facT2=1.0d0
897         facT3=1.0d0
898         facT4=1.0d0
899         facT5=1.0d0
900       else if (rescale_mode.eq.1) then
901         facT=kfac/(kfac-1.0d0+t_bath/temp0)
902         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
903         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
904         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
905         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
906       else if (rescale_mode.eq.2) then
907         x=t_bath/temp0
908         x2=x*x
909         x3=x2*x
910         x4=x3*x
911         x5=x4*x
912         facT=licznik/dlog(dexp(x)+dexp(-x))
913         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
914         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
915         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
916         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
917       else
918         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
919         write (*,*) "Wrong RESCALE_MODE",rescale_mode
920 #ifdef MPI
921        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
922 #endif
923        stop 555
924       endif
925       welec=weights(3)*fact
926       wcorr=weights(4)*fact3
927       wcorr5=weights(5)*fact4
928       wcorr6=weights(6)*fact5
929       wel_loc=weights(7)*fact2
930       wturn3=weights(8)*fact2
931       wturn4=weights(9)*fact3
932       wturn6=weights(10)*fact5
933       wtor=weights(13)*fact
934       wtor_d=weights(14)*fact2
935       wsccor=weights(21)*fact
936 #ifdef TSCSC
937 c      wsct=t_bath/temp0
938       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
939 #endif
940       return
941       end
942 C------------------------------------------------------------------------
943       subroutine enerprint(energia)
944       implicit real*8 (a-h,o-z)
945       include 'DIMENSIONS'
946       include 'COMMON.IOUNITS'
947       include 'COMMON.FFIELD'
948       include 'COMMON.SBRIDGE'
949       include 'COMMON.MD_'
950       double precision energia(0:n_ene)
951       etot=energia(0)
952 #ifdef TSCSC
953       evdw=energia(22)+wsct*energia(23)
954 #else
955       evdw=energia(1)
956 #endif
957       evdw2=energia(2)
958 #ifdef SCP14
959       evdw2=energia(2)+energia(18)
960 #else
961       evdw2=energia(2)
962 #endif
963       ees=energia(3)
964 #ifdef SPLITELE
965       evdw1=energia(16)
966 #endif
967       ecorr=energia(4)
968       ecorr5=energia(5)
969       ecorr6=energia(6)
970       eel_loc=energia(7)
971       eello_turn3=energia(8)
972       eello_turn4=energia(9)
973       eello_turn6=energia(10)
974       ebe=energia(11)
975       escloc=energia(12)
976       etors=energia(13)
977       etors_d=energia(14)
978       ehpb=energia(15)
979       edihcnstr=energia(19)
980       estr=energia(17)
981       Uconst=energia(20)
982       esccor=energia(21)
983 C     Juyong
984       edfadis = energia(24)
985       edfator = energia(25)
986       edfanei = energia(26)
987       edfabet = energia(27)
988 C     
989 #ifdef SPLITELE
990       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
991      &  estr,wbond,ebe,wang,
992      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
993      &  ecorr,wcorr,
994      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
995      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
996      &  edihcnstr,ebr*nss,
997      &  Uconst,edfadis,edfator,edfanei,edfabet,etot
998    10 format (/'Virtual-chain energies:'//
999      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1000      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1001      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1002      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
1003      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1004      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1005      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1006      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1007      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1008      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1009      & ' (SS bridges & dist. cnstr.)'/
1010      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1011      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1012      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1013      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1014      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1015      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1016      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1017      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1018      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1019      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1020      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1021      & 'EDFAD= ',1pE16.6,' (DFA distance energy)'/ 
1022      & 'EDFAT= ',1pE16.6,' (DFA torsion energy)'/ 
1023      & 'EDFAN= ',1pE16.6,' (DFA NCa energy)'/ 
1024      & 'EDFAB= ',1pE16.6,' (DFA Beta energy)'/ 
1025      & 'ETOT=  ',1pE16.6,' (total)')
1026 #else
1027       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1028      &  estr,wbond,ebe,wang,
1029      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1030      &  ecorr,wcorr,
1031      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1032      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1033      &  ebr*nss,
1034      &  Uconst,edfadis,edfator,edfanei,edfabet,etot
1035    10 format (/'Virtual-chain energies:'//
1036      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1037      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1038      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1039      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1040      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1041      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1042      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1043      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1044      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1045      & ' (SS bridges & dist. cnstr.)'/
1046      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1047      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1048      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1049      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1050      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1051      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1052      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1053      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1054      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1055      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1056      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1057      & 'EDFAD= ',1pE16.6,' (DFA distance energy)'/ 
1058      & 'EDFAT= ',1pE16.6,' (DFA torsion energy)'/ 
1059      & 'EDFAN= ',1pE16.6,' (DFA NCa energy)'/ 
1060      & 'EDFAB= ',1pE16.6,' (DFA Beta energy)'/ 
1061      & 'ETOT=  ',1pE16.6,' (total)')
1062 #endif
1063       return
1064       end
1065 C-----------------------------------------------------------------------
1066       subroutine elj(evdw,evdw_p,evdw_m)
1067 C
1068 C This subroutine calculates the interaction energy of nonbonded side chains
1069 C assuming the LJ potential of interaction.
1070 C
1071       implicit real*8 (a-h,o-z)
1072       include 'DIMENSIONS'
1073       parameter (accur=1.0d-10)
1074       include 'COMMON.GEO'
1075       include 'COMMON.VAR'
1076       include 'COMMON.LOCAL'
1077       include 'COMMON.CHAIN'
1078       include 'COMMON.DERIV'
1079       include 'COMMON.INTERACT'
1080       include 'COMMON.TORSION'
1081       include 'COMMON.SBRIDGE'
1082       include 'COMMON.NAMES'
1083       include 'COMMON.IOUNITS'
1084       include 'COMMON.CONTACTS'
1085 #ifdef MOMENT
1086       include 'COMMON.CONTACTS.MOMENT'
1087 #endif  
1088       dimension gg(3)
1089 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1090       evdw=0.0D0
1091       do i=iatsc_s,iatsc_e
1092         itypi=itype(i)
1093         itypi1=itype(i+1)
1094         xi=c(1,nres+i)
1095         yi=c(2,nres+i)
1096         zi=c(3,nres+i)
1097 C Change 12/1/95
1098         num_conti=0
1099 C
1100 C Calculate SC interaction energy.
1101 C
1102         do iint=1,nint_gr(i)
1103 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1104 cd   &                  'iend=',iend(i,iint)
1105           do j=istart(i,iint),iend(i,iint)
1106             itypj=itype(j)
1107             xj=c(1,nres+j)-xi
1108             yj=c(2,nres+j)-yi
1109             zj=c(3,nres+j)-zi
1110 C Change 12/1/95 to calculate four-body interactions
1111             rij=xj*xj+yj*yj+zj*zj
1112             rrij=1.0D0/rij
1113 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1114             eps0ij=eps(itypi,itypj)
1115             fac=rrij**expon2
1116             e1=fac*fac*aa(itypi,itypj)
1117             e2=fac*bb(itypi,itypj)
1118             evdwij=e1+e2
1119 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1120 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1121 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1122 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1123 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1124 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1125 #ifdef TSCSC
1126             if (bb(itypi,itypj).gt.0) then
1127                evdw_p=evdw_p+evdwij
1128             else
1129                evdw_m=evdw_m+evdwij
1130             endif
1131 #else
1132             evdw=evdw+evdwij
1133 #endif
1134
1135 C Calculate the components of the gradient in DC and X
1136 C
1137             fac=-rrij*(e1+evdwij)
1138             gg(1)=xj*fac
1139             gg(2)=yj*fac
1140             gg(3)=zj*fac
1141 #ifdef TSCSC
1142             if (bb(itypi,itypj).gt.0.0d0) then
1143               do k=1,3
1144                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1145                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1146                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1147                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1148               enddo
1149             else
1150               do k=1,3
1151                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1152                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1153                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1154                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1155               enddo
1156             endif
1157 #else
1158             do k=1,3
1159               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1160               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1161               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1162               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1163             enddo
1164 #endif
1165 cgrad            do k=i,j-1
1166 cgrad              do l=1,3
1167 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1168 cgrad              enddo
1169 cgrad            enddo
1170 C
1171 C 12/1/95, revised on 5/20/97
1172 C
1173 C Calculate the contact function. The ith column of the array JCONT will 
1174 C contain the numbers of atoms that make contacts with the atom I (of numbers
1175 C greater than I). The arrays FACONT and GACONT will contain the values of
1176 C the contact function and its derivative.
1177 C
1178 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1179 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1180 C Uncomment next line, if the correlation interactions are contact function only
1181             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1182               rij=dsqrt(rij)
1183               sigij=sigma(itypi,itypj)
1184               r0ij=rs0(itypi,itypj)
1185 C
1186 C Check whether the SC's are not too far to make a contact.
1187 C
1188               rcut=1.5d0*r0ij
1189               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1190 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1191 C
1192               if (fcont.gt.0.0D0) then
1193 C If the SC-SC distance if close to sigma, apply spline.
1194 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1195 cAdam &             fcont1,fprimcont1)
1196 cAdam           fcont1=1.0d0-fcont1
1197 cAdam           if (fcont1.gt.0.0d0) then
1198 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1199 cAdam             fcont=fcont*fcont1
1200 cAdam           endif
1201 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1202 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1203 cga             do k=1,3
1204 cga               gg(k)=gg(k)*eps0ij
1205 cga             enddo
1206 cga             eps0ij=-evdwij*eps0ij
1207 C Uncomment for AL's type of SC correlation interactions.
1208 cadam           eps0ij=-evdwij
1209                 num_conti=num_conti+1
1210                 jcont(num_conti,i)=j
1211                 facont(num_conti,i)=fcont*eps0ij
1212                 fprimcont=eps0ij*fprimcont/rij
1213                 fcont=expon*fcont
1214 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1215 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1216 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1217 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1218                 gacont(1,num_conti,i)=-fprimcont*xj
1219                 gacont(2,num_conti,i)=-fprimcont*yj
1220                 gacont(3,num_conti,i)=-fprimcont*zj
1221 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1222 cd              write (iout,'(2i3,3f10.5)') 
1223 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1224               endif
1225             endif
1226           enddo      ! j
1227         enddo        ! iint
1228 C Change 12/1/95
1229         num_cont(i)=num_conti
1230       enddo          ! i
1231       do i=1,nct
1232         do j=1,3
1233           gvdwc(j,i)=expon*gvdwc(j,i)
1234           gvdwx(j,i)=expon*gvdwx(j,i)
1235         enddo
1236       enddo
1237 C******************************************************************************
1238 C
1239 C                              N O T E !!!
1240 C
1241 C To save time, the factor of EXPON has been extracted from ALL components
1242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1243 C use!
1244 C
1245 C******************************************************************************
1246       return
1247       end
1248 C-----------------------------------------------------------------------------
1249       subroutine eljk(evdw,evdw_p,evdw_m)
1250 C
1251 C This subroutine calculates the interaction energy of nonbonded side chains
1252 C assuming the LJK potential of interaction.
1253 C
1254       implicit real*8 (a-h,o-z)
1255       include 'DIMENSIONS'
1256       include 'COMMON.GEO'
1257       include 'COMMON.VAR'
1258       include 'COMMON.LOCAL'
1259       include 'COMMON.CHAIN'
1260       include 'COMMON.DERIV'
1261       include 'COMMON.INTERACT'
1262       include 'COMMON.IOUNITS'
1263       include 'COMMON.NAMES'
1264       dimension gg(3)
1265       logical scheck
1266 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1267       evdw=0.0D0
1268       do i=iatsc_s,iatsc_e
1269         itypi=itype(i)
1270         itypi1=itype(i+1)
1271         xi=c(1,nres+i)
1272         yi=c(2,nres+i)
1273         zi=c(3,nres+i)
1274 C
1275 C Calculate SC interaction energy.
1276 C
1277         do iint=1,nint_gr(i)
1278           do j=istart(i,iint),iend(i,iint)
1279             itypj=itype(j)
1280             xj=c(1,nres+j)-xi
1281             yj=c(2,nres+j)-yi
1282             zj=c(3,nres+j)-zi
1283             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1284             fac_augm=rrij**expon
1285             e_augm=augm(itypi,itypj)*fac_augm
1286             r_inv_ij=dsqrt(rrij)
1287             rij=1.0D0/r_inv_ij 
1288             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1289             fac=r_shift_inv**expon
1290             e1=fac*fac*aa(itypi,itypj)
1291             e2=fac*bb(itypi,itypj)
1292             evdwij=e_augm+e1+e2
1293 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1294 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1295 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1296 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1297 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1298 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1299 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1300 #ifdef TSCSC
1301             if (bb(itypi,itypj).gt.0) then
1302                evdw_p=evdw_p+evdwij
1303             else
1304                evdw_m=evdw_m+evdwij
1305             endif
1306 #else
1307             evdw=evdw+evdwij
1308 #endif
1309
1310 C Calculate the components of the gradient in DC and X
1311 C
1312             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1313             gg(1)=xj*fac
1314             gg(2)=yj*fac
1315             gg(3)=zj*fac
1316 #ifdef TSCSC
1317             if (bb(itypi,itypj).gt.0.0d0) then
1318               do k=1,3
1319                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1320                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1321                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1322                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1323               enddo
1324             else
1325               do k=1,3
1326                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1327                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1328                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1329                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1330               enddo
1331             endif
1332 #else
1333             do k=1,3
1334               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1335               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1336               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1337               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1338             enddo
1339 #endif
1340 cgrad            do k=i,j-1
1341 cgrad              do l=1,3
1342 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1343 cgrad              enddo
1344 cgrad            enddo
1345           enddo      ! j
1346         enddo        ! iint
1347       enddo          ! i
1348       do i=1,nct
1349         do j=1,3
1350           gvdwc(j,i)=expon*gvdwc(j,i)
1351           gvdwx(j,i)=expon*gvdwx(j,i)
1352         enddo
1353       enddo
1354       return
1355       end
1356 C-----------------------------------------------------------------------------
1357       subroutine ebp(evdw,evdw_p,evdw_m)
1358 C
1359 C This subroutine calculates the interaction energy of nonbonded side chains
1360 C assuming the Berne-Pechukas potential of interaction.
1361 C
1362       implicit real*8 (a-h,o-z)
1363       include 'DIMENSIONS'
1364       include 'COMMON.GEO'
1365       include 'COMMON.VAR'
1366       include 'COMMON.LOCAL'
1367       include 'COMMON.CHAIN'
1368       include 'COMMON.DERIV'
1369       include 'COMMON.NAMES'
1370       include 'COMMON.INTERACT'
1371       include 'COMMON.IOUNITS'
1372       include 'COMMON.CALC'
1373       common /srutu/ icall
1374 c     double precision rrsave(maxdim)
1375       logical lprn
1376       evdw=0.0D0
1377 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1378       evdw=0.0D0
1379 c     if (icall.eq.0) then
1380 c       lprn=.true.
1381 c     else
1382         lprn=.false.
1383 c     endif
1384       ind=0
1385       do i=iatsc_s,iatsc_e
1386         itypi=itype(i)
1387         itypi1=itype(i+1)
1388         xi=c(1,nres+i)
1389         yi=c(2,nres+i)
1390         zi=c(3,nres+i)
1391         dxi=dc_norm(1,nres+i)
1392         dyi=dc_norm(2,nres+i)
1393         dzi=dc_norm(3,nres+i)
1394 c        dsci_inv=dsc_inv(itypi)
1395         dsci_inv=vbld_inv(i+nres)
1396 C
1397 C Calculate SC interaction energy.
1398 C
1399         do iint=1,nint_gr(i)
1400           do j=istart(i,iint),iend(i,iint)
1401             ind=ind+1
1402             itypj=itype(j)
1403 c            dscj_inv=dsc_inv(itypj)
1404             dscj_inv=vbld_inv(j+nres)
1405             chi1=chi(itypi,itypj)
1406             chi2=chi(itypj,itypi)
1407             chi12=chi1*chi2
1408             chip1=chip(itypi)
1409             chip2=chip(itypj)
1410             chip12=chip1*chip2
1411             alf1=alp(itypi)
1412             alf2=alp(itypj)
1413             alf12=0.5D0*(alf1+alf2)
1414 C For diagnostics only!!!
1415 c           chi1=0.0D0
1416 c           chi2=0.0D0
1417 c           chi12=0.0D0
1418 c           chip1=0.0D0
1419 c           chip2=0.0D0
1420 c           chip12=0.0D0
1421 c           alf1=0.0D0
1422 c           alf2=0.0D0
1423 c           alf12=0.0D0
1424             xj=c(1,nres+j)-xi
1425             yj=c(2,nres+j)-yi
1426             zj=c(3,nres+j)-zi
1427             dxj=dc_norm(1,nres+j)
1428             dyj=dc_norm(2,nres+j)
1429             dzj=dc_norm(3,nres+j)
1430             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1431 cd          if (icall.eq.0) then
1432 cd            rrsave(ind)=rrij
1433 cd          else
1434 cd            rrij=rrsave(ind)
1435 cd          endif
1436             rij=dsqrt(rrij)
1437 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1438             call sc_angular
1439 C Calculate whole angle-dependent part of epsilon and contributions
1440 C to its derivatives
1441             fac=(rrij*sigsq)**expon2
1442             e1=fac*fac*aa(itypi,itypj)
1443             e2=fac*bb(itypi,itypj)
1444             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1445             eps2der=evdwij*eps3rt
1446             eps3der=evdwij*eps2rt
1447             evdwij=evdwij*eps2rt*eps3rt
1448 #ifdef TSCSC
1449             if (bb(itypi,itypj).gt.0) then
1450                evdw_p=evdw_p+evdwij
1451             else
1452                evdw_m=evdw_m+evdwij
1453             endif
1454 #else
1455             evdw=evdw+evdwij
1456 #endif
1457             if (lprn) then
1458             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1459             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1460 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1461 cd     &        restyp(itypi),i,restyp(itypj),j,
1462 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1463 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1464 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1465 cd     &        evdwij
1466             endif
1467 C Calculate gradient components.
1468             e1=e1*eps1*eps2rt**2*eps3rt**2
1469             fac=-expon*(e1+evdwij)
1470             sigder=fac/sigsq
1471             fac=rrij*fac
1472 C Calculate radial part of the gradient
1473             gg(1)=xj*fac
1474             gg(2)=yj*fac
1475             gg(3)=zj*fac
1476 C Calculate the angular part of the gradient and sum add the contributions
1477 C to the appropriate components of the Cartesian gradient.
1478 #ifdef TSCSC
1479             if (bb(itypi,itypj).gt.0) then
1480                call sc_grad
1481             else
1482                call sc_grad_T
1483             endif
1484 #else
1485             call sc_grad
1486 #endif
1487           enddo      ! j
1488         enddo        ! iint
1489       enddo          ! i
1490 c     stop
1491       return
1492       end
1493 C-----------------------------------------------------------------------------
1494       subroutine egb(evdw,evdw_p,evdw_m)
1495 C
1496 C This subroutine calculates the interaction energy of nonbonded side chains
1497 C assuming the Gay-Berne potential of interaction.
1498 C
1499       implicit real*8 (a-h,o-z)
1500       include 'DIMENSIONS'
1501       include 'COMMON.GEO'
1502       include 'COMMON.VAR'
1503       include 'COMMON.LOCAL'
1504       include 'COMMON.CHAIN'
1505       include 'COMMON.DERIV'
1506       include 'COMMON.NAMES'
1507       include 'COMMON.INTERACT'
1508       include 'COMMON.IOUNITS'
1509       include 'COMMON.CALC'
1510       include 'COMMON.CONTROL'
1511       logical lprn
1512       evdw=0.0D0
1513 ccccc      energy_dec=.false.
1514 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1515       evdw=0.0D0
1516       evdw_p=0.0D0
1517       evdw_m=0.0D0
1518       lprn=.false.
1519 c     if (icall.eq.0) lprn=.false.
1520       ind=0
1521       do i=iatsc_s,iatsc_e
1522         itypi=itype(i)
1523         itypi1=itype(i+1)
1524         xi=c(1,nres+i)
1525         yi=c(2,nres+i)
1526         zi=c(3,nres+i)
1527         dxi=dc_norm(1,nres+i)
1528         dyi=dc_norm(2,nres+i)
1529         dzi=dc_norm(3,nres+i)
1530 c        dsci_inv=dsc_inv(itypi)
1531         dsci_inv=vbld_inv(i+nres)
1532 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1533 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1534 C
1535 C Calculate SC interaction energy.
1536 C
1537         do iint=1,nint_gr(i)
1538           do j=istart(i,iint),iend(i,iint)
1539             ind=ind+1
1540             itypj=itype(j)
1541 c            dscj_inv=dsc_inv(itypj)
1542             dscj_inv=vbld_inv(j+nres)
1543 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1544 c     &       1.0d0/vbld(j+nres)
1545 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1546             sig0ij=sigma(itypi,itypj)
1547             chi1=chi(itypi,itypj)
1548             chi2=chi(itypj,itypi)
1549             chi12=chi1*chi2
1550             chip1=chip(itypi)
1551             chip2=chip(itypj)
1552             chip12=chip1*chip2
1553             alf1=alp(itypi)
1554             alf2=alp(itypj)
1555             alf12=0.5D0*(alf1+alf2)
1556 C For diagnostics only!!!
1557 c           chi1=0.0D0
1558 c           chi2=0.0D0
1559 c           chi12=0.0D0
1560 c           chip1=0.0D0
1561 c           chip2=0.0D0
1562 c           chip12=0.0D0
1563 c           alf1=0.0D0
1564 c           alf2=0.0D0
1565 c           alf12=0.0D0
1566             xj=c(1,nres+j)-xi
1567             yj=c(2,nres+j)-yi
1568             zj=c(3,nres+j)-zi
1569             dxj=dc_norm(1,nres+j)
1570             dyj=dc_norm(2,nres+j)
1571             dzj=dc_norm(3,nres+j)
1572 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1573 c            write (iout,*) "j",j," dc_norm",
1574 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1575             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1576             rij=dsqrt(rrij)
1577 C Calculate angle-dependent terms of energy and contributions to their
1578 C derivatives.
1579             call sc_angular
1580             sigsq=1.0D0/sigsq
1581             sig=sig0ij*dsqrt(sigsq)
1582             rij_shift=1.0D0/rij-sig+sig0ij
1583 c for diagnostics; uncomment
1584 c            rij_shift=1.2*sig0ij
1585 C I hate to put IF's in the loops, but here don't have another choice!!!!
1586             if (rij_shift.le.0.0D0) then
1587               evdw=1.0D20
1588 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1589 cd     &        restyp(itypi),i,restyp(itypj),j,
1590 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1591               return
1592             endif
1593             sigder=-sig*sigsq
1594 c---------------------------------------------------------------
1595             rij_shift=1.0D0/rij_shift 
1596             fac=rij_shift**expon
1597             e1=fac*fac*aa(itypi,itypj)
1598             e2=fac*bb(itypi,itypj)
1599             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1600             eps2der=evdwij*eps3rt
1601             eps3der=evdwij*eps2rt
1602 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1603 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1604             evdwij=evdwij*eps2rt*eps3rt
1605 #ifdef TSCSC
1606             if (bb(itypi,itypj).gt.0) then
1607                evdw_p=evdw_p+evdwij
1608             else
1609                evdw_m=evdw_m+evdwij
1610             endif
1611 #else
1612             evdw=evdw+evdwij
1613 #endif
1614             if (lprn) then
1615             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1616             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1617             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1618      &        restyp(itypi),i,restyp(itypj),j,
1619      &        epsi,sigm,chi1,chi2,chip1,chip2,
1620      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1621      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1622      &        evdwij
1623             endif
1624
1625             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1626      &                        'evdw',i,j,evdwij
1627
1628 C Calculate gradient components.
1629             e1=e1*eps1*eps2rt**2*eps3rt**2
1630             fac=-expon*(e1+evdwij)*rij_shift
1631             sigder=fac*sigder
1632             fac=rij*fac
1633 c            fac=0.0d0
1634 C Calculate the radial part of the gradient
1635             gg(1)=xj*fac
1636             gg(2)=yj*fac
1637             gg(3)=zj*fac
1638 C Calculate angular part of the gradient.
1639 #ifdef TSCSC
1640             if (bb(itypi,itypj).gt.0) then
1641                call sc_grad
1642             else
1643                call sc_grad_T
1644             endif
1645 #else
1646             call sc_grad
1647 #endif
1648           enddo      ! j
1649         enddo        ! iint
1650       enddo          ! i
1651 c      write (iout,*) "Number of loop steps in EGB:",ind
1652 cccc      energy_dec=.false.
1653       return
1654       end
1655 C-----------------------------------------------------------------------------
1656       subroutine egbv(evdw,evdw_p,evdw_m)
1657 C
1658 C This subroutine calculates the interaction energy of nonbonded side chains
1659 C assuming the Gay-Berne-Vorobjev potential of interaction.
1660 C
1661       implicit real*8 (a-h,o-z)
1662       include 'DIMENSIONS'
1663       include 'COMMON.GEO'
1664       include 'COMMON.VAR'
1665       include 'COMMON.LOCAL'
1666       include 'COMMON.CHAIN'
1667       include 'COMMON.DERIV'
1668       include 'COMMON.NAMES'
1669       include 'COMMON.INTERACT'
1670       include 'COMMON.IOUNITS'
1671       include 'COMMON.CALC'
1672       common /srutu/ icall
1673       logical lprn
1674       evdw=0.0D0
1675 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1676       evdw=0.0D0
1677       lprn=.false.
1678 c     if (icall.eq.0) lprn=.true.
1679       ind=0
1680       do i=iatsc_s,iatsc_e
1681         itypi=itype(i)
1682         itypi1=itype(i+1)
1683         xi=c(1,nres+i)
1684         yi=c(2,nres+i)
1685         zi=c(3,nres+i)
1686         dxi=dc_norm(1,nres+i)
1687         dyi=dc_norm(2,nres+i)
1688         dzi=dc_norm(3,nres+i)
1689 c        dsci_inv=dsc_inv(itypi)
1690         dsci_inv=vbld_inv(i+nres)
1691 C
1692 C Calculate SC interaction energy.
1693 C
1694         do iint=1,nint_gr(i)
1695           do j=istart(i,iint),iend(i,iint)
1696             ind=ind+1
1697             itypj=itype(j)
1698 c            dscj_inv=dsc_inv(itypj)
1699             dscj_inv=vbld_inv(j+nres)
1700             sig0ij=sigma(itypi,itypj)
1701             r0ij=r0(itypi,itypj)
1702             chi1=chi(itypi,itypj)
1703             chi2=chi(itypj,itypi)
1704             chi12=chi1*chi2
1705             chip1=chip(itypi)
1706             chip2=chip(itypj)
1707             chip12=chip1*chip2
1708             alf1=alp(itypi)
1709             alf2=alp(itypj)
1710             alf12=0.5D0*(alf1+alf2)
1711 C For diagnostics only!!!
1712 c           chi1=0.0D0
1713 c           chi2=0.0D0
1714 c           chi12=0.0D0
1715 c           chip1=0.0D0
1716 c           chip2=0.0D0
1717 c           chip12=0.0D0
1718 c           alf1=0.0D0
1719 c           alf2=0.0D0
1720 c           alf12=0.0D0
1721             xj=c(1,nres+j)-xi
1722             yj=c(2,nres+j)-yi
1723             zj=c(3,nres+j)-zi
1724             dxj=dc_norm(1,nres+j)
1725             dyj=dc_norm(2,nres+j)
1726             dzj=dc_norm(3,nres+j)
1727             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1728             rij=dsqrt(rrij)
1729 C Calculate angle-dependent terms of energy and contributions to their
1730 C derivatives.
1731             call sc_angular
1732             sigsq=1.0D0/sigsq
1733             sig=sig0ij*dsqrt(sigsq)
1734             rij_shift=1.0D0/rij-sig+r0ij
1735 C I hate to put IF's in the loops, but here don't have another choice!!!!
1736             if (rij_shift.le.0.0D0) then
1737               evdw=1.0D20
1738               return
1739             endif
1740             sigder=-sig*sigsq
1741 c---------------------------------------------------------------
1742             rij_shift=1.0D0/rij_shift 
1743             fac=rij_shift**expon
1744             e1=fac*fac*aa(itypi,itypj)
1745             e2=fac*bb(itypi,itypj)
1746             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1747             eps2der=evdwij*eps3rt
1748             eps3der=evdwij*eps2rt
1749             fac_augm=rrij**expon
1750             e_augm=augm(itypi,itypj)*fac_augm
1751             evdwij=evdwij*eps2rt*eps3rt
1752 #ifdef TSCSC
1753             if (bb(itypi,itypj).gt.0) then
1754                evdw_p=evdw_p+evdwij+e_augm
1755             else
1756                evdw_m=evdw_m+evdwij+e_augm
1757             endif
1758 #else
1759             evdw=evdw+evdwij+e_augm
1760 #endif
1761             if (lprn) then
1762             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1763             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1764             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1765      &        restyp(itypi),i,restyp(itypj),j,
1766      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1767      &        chi1,chi2,chip1,chip2,
1768      &        eps1,eps2rt**2,eps3rt**2,
1769      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1770      &        evdwij+e_augm
1771             endif
1772 C Calculate gradient components.
1773             e1=e1*eps1*eps2rt**2*eps3rt**2
1774             fac=-expon*(e1+evdwij)*rij_shift
1775             sigder=fac*sigder
1776             fac=rij*fac-2*expon*rrij*e_augm
1777 C Calculate the radial part of the gradient
1778             gg(1)=xj*fac
1779             gg(2)=yj*fac
1780             gg(3)=zj*fac
1781 C Calculate angular part of the gradient.
1782 #ifdef TSCSC
1783             if (bb(itypi,itypj).gt.0) then
1784                call sc_grad
1785             else
1786                call sc_grad_T
1787             endif
1788 #else
1789             call sc_grad
1790 #endif
1791           enddo      ! j
1792         enddo        ! iint
1793       enddo          ! i
1794       end
1795 C-----------------------------------------------------------------------------
1796       subroutine sc_angular
1797 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1798 C om12. Called by ebp, egb, and egbv.
1799       implicit none
1800       include 'COMMON.CALC'
1801       include 'COMMON.IOUNITS'
1802       erij(1)=xj*rij
1803       erij(2)=yj*rij
1804       erij(3)=zj*rij
1805       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1806       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1807       om12=dxi*dxj+dyi*dyj+dzi*dzj
1808       chiom12=chi12*om12
1809 C Calculate eps1(om12) and its derivative in om12
1810       faceps1=1.0D0-om12*chiom12
1811       faceps1_inv=1.0D0/faceps1
1812       eps1=dsqrt(faceps1_inv)
1813 C Following variable is eps1*deps1/dom12
1814       eps1_om12=faceps1_inv*chiom12
1815 c diagnostics only
1816 c      faceps1_inv=om12
1817 c      eps1=om12
1818 c      eps1_om12=1.0d0
1819 c      write (iout,*) "om12",om12," eps1",eps1
1820 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1821 C and om12.
1822       om1om2=om1*om2
1823       chiom1=chi1*om1
1824       chiom2=chi2*om2
1825       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1826       sigsq=1.0D0-facsig*faceps1_inv
1827       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1828       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1829       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1830 c diagnostics only
1831 c      sigsq=1.0d0
1832 c      sigsq_om1=0.0d0
1833 c      sigsq_om2=0.0d0
1834 c      sigsq_om12=0.0d0
1835 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1836 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1837 c     &    " eps1",eps1
1838 C Calculate eps2 and its derivatives in om1, om2, and om12.
1839       chipom1=chip1*om1
1840       chipom2=chip2*om2
1841       chipom12=chip12*om12
1842       facp=1.0D0-om12*chipom12
1843       facp_inv=1.0D0/facp
1844       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1845 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1846 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1847 C Following variable is the square root of eps2
1848       eps2rt=1.0D0-facp1*facp_inv
1849 C Following three variables are the derivatives of the square root of eps
1850 C in om1, om2, and om12.
1851       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1852       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1853       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1854 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1855       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1856 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1857 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1858 c     &  " eps2rt_om12",eps2rt_om12
1859 C Calculate whole angle-dependent part of epsilon and contributions
1860 C to its derivatives
1861       return
1862       end
1863
1864 C----------------------------------------------------------------------------
1865       subroutine sc_grad_T
1866       implicit real*8 (a-h,o-z)
1867       include 'DIMENSIONS'
1868       include 'COMMON.CHAIN'
1869       include 'COMMON.DERIV'
1870       include 'COMMON.CALC'
1871       include 'COMMON.IOUNITS'
1872       double precision dcosom1(3),dcosom2(3)
1873       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1874       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1875       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1876      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1877 c diagnostics only
1878 c      eom1=0.0d0
1879 c      eom2=0.0d0
1880 c      eom12=evdwij*eps1_om12
1881 c end diagnostics
1882 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1883 c     &  " sigder",sigder
1884 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1885 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1886       do k=1,3
1887         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1888         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1889       enddo
1890       do k=1,3
1891         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1892       enddo 
1893 c      write (iout,*) "gg",(gg(k),k=1,3)
1894       do k=1,3
1895         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1896      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1897      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1898         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1899      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1900      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1901 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1902 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1903 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1904 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1905       enddo
1906
1907 C Calculate the components of the gradient in DC and X
1908 C
1909 cgrad      do k=i,j-1
1910 cgrad        do l=1,3
1911 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1912 cgrad        enddo
1913 cgrad      enddo
1914       do l=1,3
1915         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1916         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1917       enddo
1918       return
1919       end
1920
1921 C----------------------------------------------------------------------------
1922       subroutine sc_grad
1923       implicit real*8 (a-h,o-z)
1924       include 'DIMENSIONS'
1925       include 'COMMON.CHAIN'
1926       include 'COMMON.DERIV'
1927       include 'COMMON.CALC'
1928       include 'COMMON.IOUNITS'
1929       double precision dcosom1(3),dcosom2(3)
1930       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1931       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1932       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1933      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1934 c diagnostics only
1935 c      eom1=0.0d0
1936 c      eom2=0.0d0
1937 c      eom12=evdwij*eps1_om12
1938 c end diagnostics
1939 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1940 c     &  " sigder",sigder
1941 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1942 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1943       do k=1,3
1944         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1945         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1946       enddo
1947       do k=1,3
1948         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1949       enddo 
1950 c      write (iout,*) "gg",(gg(k),k=1,3)
1951       do k=1,3
1952         gvdwx(k,i)=gvdwx(k,i)-gg(k)
1953      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1954      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1955         gvdwx(k,j)=gvdwx(k,j)+gg(k)
1956      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1957      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1958 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1959 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1960 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1961 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1962       enddo
1963
1964 C Calculate the components of the gradient in DC and X
1965 C
1966 cgrad      do k=i,j-1
1967 cgrad        do l=1,3
1968 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1969 cgrad        enddo
1970 cgrad      enddo
1971       do l=1,3
1972         gvdwc(l,i)=gvdwc(l,i)-gg(l)
1973         gvdwc(l,j)=gvdwc(l,j)+gg(l)
1974       enddo
1975       return
1976       end
1977 C-----------------------------------------------------------------------
1978       subroutine e_softsphere(evdw)
1979 C
1980 C This subroutine calculates the interaction energy of nonbonded side chains
1981 C assuming the LJ potential of interaction.
1982 C
1983       implicit real*8 (a-h,o-z)
1984       include 'DIMENSIONS'
1985       parameter (accur=1.0d-10)
1986       include 'COMMON.GEO'
1987       include 'COMMON.VAR'
1988       include 'COMMON.LOCAL'
1989       include 'COMMON.CHAIN'
1990       include 'COMMON.DERIV'
1991       include 'COMMON.INTERACT'
1992       include 'COMMON.TORSION'
1993       include 'COMMON.SBRIDGE'
1994       include 'COMMON.NAMES'
1995       include 'COMMON.IOUNITS'
1996       include 'COMMON.CONTACTS'
1997 #ifdef MOMENT
1998       include 'COMMON.CONTACTS.MOMENT'
1999 #endif  
2000       dimension gg(3)
2001 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2002       evdw=0.0D0
2003       do i=iatsc_s,iatsc_e
2004         itypi=itype(i)
2005         itypi1=itype(i+1)
2006         xi=c(1,nres+i)
2007         yi=c(2,nres+i)
2008         zi=c(3,nres+i)
2009 C
2010 C Calculate SC interaction energy.
2011 C
2012         do iint=1,nint_gr(i)
2013 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2014 cd   &                  'iend=',iend(i,iint)
2015           do j=istart(i,iint),iend(i,iint)
2016             itypj=itype(j)
2017             xj=c(1,nres+j)-xi
2018             yj=c(2,nres+j)-yi
2019             zj=c(3,nres+j)-zi
2020             rij=xj*xj+yj*yj+zj*zj
2021 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2022             r0ij=r0(itypi,itypj)
2023             r0ijsq=r0ij*r0ij
2024 c            print *,i,j,r0ij,dsqrt(rij)
2025             if (rij.lt.r0ijsq) then
2026               evdwij=0.25d0*(rij-r0ijsq)**2
2027               fac=rij-r0ijsq
2028             else
2029               evdwij=0.0d0
2030               fac=0.0d0
2031             endif
2032             evdw=evdw+evdwij
2033
2034 C Calculate the components of the gradient in DC and X
2035 C
2036             gg(1)=xj*fac
2037             gg(2)=yj*fac
2038             gg(3)=zj*fac
2039             do k=1,3
2040               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2041               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2042               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2043               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2044             enddo
2045 cgrad            do k=i,j-1
2046 cgrad              do l=1,3
2047 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2048 cgrad              enddo
2049 cgrad            enddo
2050           enddo ! j
2051         enddo ! iint
2052       enddo ! i
2053       return
2054       end
2055 C--------------------------------------------------------------------------
2056       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2057      &              eello_turn4)
2058 C
2059 C Soft-sphere potential of p-p interaction
2060
2061       implicit real*8 (a-h,o-z)
2062       include 'DIMENSIONS'
2063       include 'COMMON.CONTROL'
2064       include 'COMMON.IOUNITS'
2065       include 'COMMON.GEO'
2066       include 'COMMON.VAR'
2067       include 'COMMON.LOCAL'
2068       include 'COMMON.CHAIN'
2069       include 'COMMON.DERIV'
2070       include 'COMMON.INTERACT'
2071       include 'COMMON.CONTACTS'
2072 #ifdef MOMENT
2073       include 'COMMON.CONTACTS.MOMENT'
2074 #endif  
2075       include 'COMMON.TORSION'
2076       include 'COMMON.VECTORS'
2077       include 'COMMON.FFIELD'
2078       dimension ggg(3)
2079 cd      write(iout,*) 'In EELEC_soft_sphere'
2080       ees=0.0D0
2081       evdw1=0.0D0
2082       eel_loc=0.0d0 
2083       eello_turn3=0.0d0
2084       eello_turn4=0.0d0
2085       ind=0
2086       do i=iatel_s,iatel_e
2087         dxi=dc(1,i)
2088         dyi=dc(2,i)
2089         dzi=dc(3,i)
2090         xmedi=c(1,i)+0.5d0*dxi
2091         ymedi=c(2,i)+0.5d0*dyi
2092         zmedi=c(3,i)+0.5d0*dzi
2093         num_conti=0
2094 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2095         do j=ielstart(i),ielend(i)
2096           ind=ind+1
2097           iteli=itel(i)
2098           itelj=itel(j)
2099           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2100           r0ij=rpp(iteli,itelj)
2101           r0ijsq=r0ij*r0ij 
2102           dxj=dc(1,j)
2103           dyj=dc(2,j)
2104           dzj=dc(3,j)
2105           xj=c(1,j)+0.5D0*dxj-xmedi
2106           yj=c(2,j)+0.5D0*dyj-ymedi
2107           zj=c(3,j)+0.5D0*dzj-zmedi
2108           rij=xj*xj+yj*yj+zj*zj
2109           if (rij.lt.r0ijsq) then
2110             evdw1ij=0.25d0*(rij-r0ijsq)**2
2111             fac=rij-r0ijsq
2112           else
2113             evdw1ij=0.0d0
2114             fac=0.0d0
2115           endif
2116           evdw1=evdw1+evdw1ij
2117 C
2118 C Calculate contributions to the Cartesian gradient.
2119 C
2120           ggg(1)=fac*xj
2121           ggg(2)=fac*yj
2122           ggg(3)=fac*zj
2123           do k=1,3
2124             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2125             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2126           enddo
2127 *
2128 * Loop over residues i+1 thru j-1.
2129 *
2130 cgrad          do k=i+1,j-1
2131 cgrad            do l=1,3
2132 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2133 cgrad            enddo
2134 cgrad          enddo
2135         enddo ! j
2136       enddo   ! i
2137 cgrad      do i=nnt,nct-1
2138 cgrad        do k=1,3
2139 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2140 cgrad        enddo
2141 cgrad        do j=i+1,nct-1
2142 cgrad          do k=1,3
2143 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2144 cgrad          enddo
2145 cgrad        enddo
2146 cgrad      enddo
2147       return
2148       end
2149 c------------------------------------------------------------------------------
2150       subroutine vec_and_deriv
2151       implicit real*8 (a-h,o-z)
2152       include 'DIMENSIONS'
2153 #ifdef MPI
2154       include 'mpif.h'
2155 #endif
2156       include 'COMMON.IOUNITS'
2157       include 'COMMON.GEO'
2158       include 'COMMON.VAR'
2159       include 'COMMON.LOCAL'
2160       include 'COMMON.CHAIN'
2161       include 'COMMON.VECTORS'
2162       include 'COMMON.SETUP'
2163       include 'COMMON.TIME1'
2164       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2165 C Compute the local reference systems. For reference system (i), the
2166 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2167 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2168 #ifdef PARVEC
2169       do i=ivec_start,ivec_end
2170 #else
2171       do i=1,nres-1
2172 #endif
2173           if (i.eq.nres-1) then
2174 C Case of the last full residue
2175 C Compute the Z-axis
2176             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2177             costh=dcos(pi-theta(nres))
2178             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2179             do k=1,3
2180               uz(k,i)=fac*uz(k,i)
2181             enddo
2182 C Compute the derivatives of uz
2183             uzder(1,1,1)= 0.0d0
2184             uzder(2,1,1)=-dc_norm(3,i-1)
2185             uzder(3,1,1)= dc_norm(2,i-1) 
2186             uzder(1,2,1)= dc_norm(3,i-1)
2187             uzder(2,2,1)= 0.0d0
2188             uzder(3,2,1)=-dc_norm(1,i-1)
2189             uzder(1,3,1)=-dc_norm(2,i-1)
2190             uzder(2,3,1)= dc_norm(1,i-1)
2191             uzder(3,3,1)= 0.0d0
2192             uzder(1,1,2)= 0.0d0
2193             uzder(2,1,2)= dc_norm(3,i)
2194             uzder(3,1,2)=-dc_norm(2,i) 
2195             uzder(1,2,2)=-dc_norm(3,i)
2196             uzder(2,2,2)= 0.0d0
2197             uzder(3,2,2)= dc_norm(1,i)
2198             uzder(1,3,2)= dc_norm(2,i)
2199             uzder(2,3,2)=-dc_norm(1,i)
2200             uzder(3,3,2)= 0.0d0
2201 C Compute the Y-axis
2202             facy=fac
2203             do k=1,3
2204               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2205             enddo
2206 C Compute the derivatives of uy
2207             do j=1,3
2208               do k=1,3
2209                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2210      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2211                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2212               enddo
2213               uyder(j,j,1)=uyder(j,j,1)-costh
2214               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2215             enddo
2216             do j=1,2
2217               do k=1,3
2218                 do l=1,3
2219                   uygrad(l,k,j,i)=uyder(l,k,j)
2220                   uzgrad(l,k,j,i)=uzder(l,k,j)
2221                 enddo
2222               enddo
2223             enddo 
2224             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2225             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2226             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2227             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2228           else
2229 C Other residues
2230 C Compute the Z-axis
2231             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2232             costh=dcos(pi-theta(i+2))
2233             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2234             do k=1,3
2235               uz(k,i)=fac*uz(k,i)
2236             enddo
2237 C Compute the derivatives of uz
2238             uzder(1,1,1)= 0.0d0
2239             uzder(2,1,1)=-dc_norm(3,i+1)
2240             uzder(3,1,1)= dc_norm(2,i+1) 
2241             uzder(1,2,1)= dc_norm(3,i+1)
2242             uzder(2,2,1)= 0.0d0
2243             uzder(3,2,1)=-dc_norm(1,i+1)
2244             uzder(1,3,1)=-dc_norm(2,i+1)
2245             uzder(2,3,1)= dc_norm(1,i+1)
2246             uzder(3,3,1)= 0.0d0
2247             uzder(1,1,2)= 0.0d0
2248             uzder(2,1,2)= dc_norm(3,i)
2249             uzder(3,1,2)=-dc_norm(2,i) 
2250             uzder(1,2,2)=-dc_norm(3,i)
2251             uzder(2,2,2)= 0.0d0
2252             uzder(3,2,2)= dc_norm(1,i)
2253             uzder(1,3,2)= dc_norm(2,i)
2254             uzder(2,3,2)=-dc_norm(1,i)
2255             uzder(3,3,2)= 0.0d0
2256 C Compute the Y-axis
2257             facy=fac
2258             do k=1,3
2259               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2260             enddo
2261 C Compute the derivatives of uy
2262             do j=1,3
2263               do k=1,3
2264                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2265      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2266                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2267               enddo
2268               uyder(j,j,1)=uyder(j,j,1)-costh
2269               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2270             enddo
2271             do j=1,2
2272               do k=1,3
2273                 do l=1,3
2274                   uygrad(l,k,j,i)=uyder(l,k,j)
2275                   uzgrad(l,k,j,i)=uzder(l,k,j)
2276                 enddo
2277               enddo
2278             enddo 
2279             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2280             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2281             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2282             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2283           endif
2284       enddo
2285       do i=1,nres-1
2286         vbld_inv_temp(1)=vbld_inv(i+1)
2287         if (i.lt.nres-1) then
2288           vbld_inv_temp(2)=vbld_inv(i+2)
2289           else
2290           vbld_inv_temp(2)=vbld_inv(i)
2291           endif
2292         do j=1,2
2293           do k=1,3
2294             do l=1,3
2295               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2296               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2297             enddo
2298           enddo
2299         enddo
2300       enddo
2301 #if defined(PARVEC) && defined(MPI)
2302       if (nfgtasks1.gt.1) then
2303         time00=MPI_Wtime()
2304 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2305 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2306 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2307         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2308      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2309      &   FG_COMM1,IERR)
2310         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2311      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2312      &   FG_COMM1,IERR)
2313         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2314      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2315      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2316         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2317      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2318      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2319         time_gather=time_gather+MPI_Wtime()-time00
2320       endif
2321 c      if (fg_rank.eq.0) then
2322 c        write (iout,*) "Arrays UY and UZ"
2323 c        do i=1,nres-1
2324 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2325 c     &     (uz(k,i),k=1,3)
2326 c        enddo
2327 c      endif
2328 #endif
2329       return
2330       end
2331 C-----------------------------------------------------------------------------
2332       subroutine check_vecgrad
2333       implicit real*8 (a-h,o-z)
2334       include 'DIMENSIONS'
2335       include 'COMMON.IOUNITS'
2336       include 'COMMON.GEO'
2337       include 'COMMON.VAR'
2338       include 'COMMON.LOCAL'
2339       include 'COMMON.CHAIN'
2340       include 'COMMON.VECTORS'
2341       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2342       dimension uyt(3,maxres),uzt(3,maxres)
2343       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2344       double precision delta /1.0d-7/
2345       call vec_and_deriv
2346 cd      do i=1,nres
2347 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2348 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2349 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2350 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2351 cd     &     (dc_norm(if90,i),if90=1,3)
2352 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2353 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2354 cd          write(iout,'(a)')
2355 cd      enddo
2356       do i=1,nres
2357         do j=1,2
2358           do k=1,3
2359             do l=1,3
2360               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2361               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2362             enddo
2363           enddo
2364         enddo
2365       enddo
2366       call vec_and_deriv
2367       do i=1,nres
2368         do j=1,3
2369           uyt(j,i)=uy(j,i)
2370           uzt(j,i)=uz(j,i)
2371         enddo
2372       enddo
2373       do i=1,nres
2374 cd        write (iout,*) 'i=',i
2375         do k=1,3
2376           erij(k)=dc_norm(k,i)
2377         enddo
2378         do j=1,3
2379           do k=1,3
2380             dc_norm(k,i)=erij(k)
2381           enddo
2382           dc_norm(j,i)=dc_norm(j,i)+delta
2383 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2384 c          do k=1,3
2385 c            dc_norm(k,i)=dc_norm(k,i)/fac
2386 c          enddo
2387 c          write (iout,*) (dc_norm(k,i),k=1,3)
2388 c          write (iout,*) (erij(k),k=1,3)
2389           call vec_and_deriv
2390           do k=1,3
2391             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2392             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2393             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2394             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2395           enddo 
2396 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2397 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2398 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2399         enddo
2400         do k=1,3
2401           dc_norm(k,i)=erij(k)
2402         enddo
2403 cd        do k=1,3
2404 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2405 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2406 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2407 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2408 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2409 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2410 cd          write (iout,'(a)')
2411 cd        enddo
2412       enddo
2413       return
2414       end
2415 C--------------------------------------------------------------------------
2416       subroutine set_matrices
2417       implicit real*8 (a-h,o-z)
2418       include 'DIMENSIONS'
2419 #ifdef MPI
2420       include "mpif.h"
2421       include "COMMON.SETUP"
2422       integer IERR
2423       integer status(MPI_STATUS_SIZE)
2424 #endif
2425       include 'COMMON.IOUNITS'
2426       include 'COMMON.GEO'
2427       include 'COMMON.VAR'
2428       include 'COMMON.LOCAL'
2429       include 'COMMON.CHAIN'
2430       include 'COMMON.DERIV'
2431       include 'COMMON.INTERACT'
2432       include 'COMMON.CONTACTS'
2433 #ifdef MOMENT
2434       include 'COMMON.CONTACTS.MOMENT'
2435 #endif  
2436       include 'COMMON.TORSION'
2437       include 'COMMON.VECTORS'
2438       include 'COMMON.FFIELD'
2439       double precision auxvec(2),auxmat(2,2)
2440 C
2441 C Compute the virtual-bond-torsional-angle dependent quantities needed
2442 C to calculate the el-loc multibody terms of various order.
2443 C
2444 #ifdef PARMAT
2445       do i=ivec_start+2,ivec_end+2
2446 #else
2447       do i=3,nres+1
2448 #endif
2449         if (i .lt. nres+1) then
2450           sin1=dsin(phi(i))
2451           cos1=dcos(phi(i))
2452           sintab(i-2)=sin1
2453           costab(i-2)=cos1
2454           obrot(1,i-2)=cos1
2455           obrot(2,i-2)=sin1
2456           sin2=dsin(2*phi(i))
2457           cos2=dcos(2*phi(i))
2458           sintab2(i-2)=sin2
2459           costab2(i-2)=cos2
2460           obrot2(1,i-2)=cos2
2461           obrot2(2,i-2)=sin2
2462           Ug(1,1,i-2)=-cos1
2463           Ug(1,2,i-2)=-sin1
2464           Ug(2,1,i-2)=-sin1
2465           Ug(2,2,i-2)= cos1
2466           Ug2(1,1,i-2)=-cos2
2467           Ug2(1,2,i-2)=-sin2
2468           Ug2(2,1,i-2)=-sin2
2469           Ug2(2,2,i-2)= cos2
2470         else
2471           costab(i-2)=1.0d0
2472           sintab(i-2)=0.0d0
2473           obrot(1,i-2)=1.0d0
2474           obrot(2,i-2)=0.0d0
2475           obrot2(1,i-2)=0.0d0
2476           obrot2(2,i-2)=0.0d0
2477           Ug(1,1,i-2)=1.0d0
2478           Ug(1,2,i-2)=0.0d0
2479           Ug(2,1,i-2)=0.0d0
2480           Ug(2,2,i-2)=1.0d0
2481           Ug2(1,1,i-2)=0.0d0
2482           Ug2(1,2,i-2)=0.0d0
2483           Ug2(2,1,i-2)=0.0d0
2484           Ug2(2,2,i-2)=0.0d0
2485         endif
2486         if (i .gt. 3 .and. i .lt. nres+1) then
2487           obrot_der(1,i-2)=-sin1
2488           obrot_der(2,i-2)= cos1
2489           Ugder(1,1,i-2)= sin1
2490           Ugder(1,2,i-2)=-cos1
2491           Ugder(2,1,i-2)=-cos1
2492           Ugder(2,2,i-2)=-sin1
2493           dwacos2=cos2+cos2
2494           dwasin2=sin2+sin2
2495           obrot2_der(1,i-2)=-dwasin2
2496           obrot2_der(2,i-2)= dwacos2
2497           Ug2der(1,1,i-2)= dwasin2
2498           Ug2der(1,2,i-2)=-dwacos2
2499           Ug2der(2,1,i-2)=-dwacos2
2500           Ug2der(2,2,i-2)=-dwasin2
2501         else
2502           obrot_der(1,i-2)=0.0d0
2503           obrot_der(2,i-2)=0.0d0
2504           Ugder(1,1,i-2)=0.0d0
2505           Ugder(1,2,i-2)=0.0d0
2506           Ugder(2,1,i-2)=0.0d0
2507           Ugder(2,2,i-2)=0.0d0
2508           obrot2_der(1,i-2)=0.0d0
2509           obrot2_der(2,i-2)=0.0d0
2510           Ug2der(1,1,i-2)=0.0d0
2511           Ug2der(1,2,i-2)=0.0d0
2512           Ug2der(2,1,i-2)=0.0d0
2513           Ug2der(2,2,i-2)=0.0d0
2514         endif
2515 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2516         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2517           iti = itortyp(itype(i-2))
2518         else
2519           iti=ntortyp+1
2520         endif
2521 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2522         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2523           iti1 = itortyp(itype(i-1))
2524         else
2525           iti1=ntortyp+1
2526         endif
2527 cd        write (iout,*) '*******i',i,' iti1',iti
2528 cd        write (iout,*) 'b1',b1(:,iti)
2529 cd        write (iout,*) 'b2',b2(:,iti)
2530 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2531 c        if (i .gt. iatel_s+2) then
2532         if (i .gt. nnt+2) then
2533           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2534           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2535           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2536      &    then
2537           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2538           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2539           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2540           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2541           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2542           endif
2543         else
2544           do k=1,2
2545             Ub2(k,i-2)=0.0d0
2546             Ctobr(k,i-2)=0.0d0 
2547             Dtobr2(k,i-2)=0.0d0
2548             do l=1,2
2549               EUg(l,k,i-2)=0.0d0
2550               CUg(l,k,i-2)=0.0d0
2551               DUg(l,k,i-2)=0.0d0
2552               DtUg2(l,k,i-2)=0.0d0
2553             enddo
2554           enddo
2555         endif
2556         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2557         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2558         do k=1,2
2559           muder(k,i-2)=Ub2der(k,i-2)
2560         enddo
2561 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2562         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2563           iti1 = itortyp(itype(i-1))
2564         else
2565           iti1=ntortyp+1
2566         endif
2567         do k=1,2
2568           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2569         enddo
2570 cd        write (iout,*) 'mu ',mu(:,i-2)
2571 cd        write (iout,*) 'mu1',mu1(:,i-2)
2572 cd        write (iout,*) 'mu2',mu2(:,i-2)
2573         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2574      &  then  
2575         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2576         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2577         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2578         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2579         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2580 C Vectors and matrices dependent on a single virtual-bond dihedral.
2581         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2582         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2583         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2584         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2585         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2586         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2587         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2588         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2589         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2590         endif
2591       enddo
2592 C Matrices dependent on two consecutive virtual-bond dihedrals.
2593 C The order of matrices is from left to right.
2594       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2595      &then
2596 c      do i=max0(ivec_start,2),ivec_end
2597       do i=2,nres-1
2598         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2599         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2600         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2601         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2602         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2603         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2604         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2605         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2606       enddo
2607       endif
2608 #if defined(MPI) && defined(PARMAT)
2609 #ifdef DEBUG
2610 c      if (fg_rank.eq.0) then
2611         write (iout,*) "Arrays UG and UGDER before GATHER"
2612         do i=1,nres-1
2613           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2614      &     ((ug(l,k,i),l=1,2),k=1,2),
2615      &     ((ugder(l,k,i),l=1,2),k=1,2)
2616         enddo
2617         write (iout,*) "Arrays UG2 and UG2DER"
2618         do i=1,nres-1
2619           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2620      &     ((ug2(l,k,i),l=1,2),k=1,2),
2621      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2622         enddo
2623         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2624         do i=1,nres-1
2625           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2626      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2627      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2628         enddo
2629         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2630         do i=1,nres-1
2631           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2632      &     costab(i),sintab(i),costab2(i),sintab2(i)
2633         enddo
2634         write (iout,*) "Array MUDER"
2635         do i=1,nres-1
2636           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2637         enddo
2638 c      endif
2639 #endif
2640       if (nfgtasks.gt.1) then
2641         time00=MPI_Wtime()
2642 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2643 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2644 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2645 #ifdef MATGATHER
2646         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2647      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2648      &   FG_COMM1,IERR)
2649         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2650      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2651      &   FG_COMM1,IERR)
2652         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2653      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2654      &   FG_COMM1,IERR)
2655         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2656      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2657      &   FG_COMM1,IERR)
2658         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2659      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2660      &   FG_COMM1,IERR)
2661         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2662      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2663      &   FG_COMM1,IERR)
2664         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2665      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2666      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2667         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2668      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2669      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2670         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2671      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2672      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2673         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2674      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2675      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2676         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2677      &  then
2678         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2679      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2680      &   FG_COMM1,IERR)
2681         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2682      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2683      &   FG_COMM1,IERR)
2684         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2685      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2686      &   FG_COMM1,IERR)
2687        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2688      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2689      &   FG_COMM1,IERR)
2690         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2691      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2692      &   FG_COMM1,IERR)
2693         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2694      &   ivec_count(fg_rank1),
2695      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2696      &   FG_COMM1,IERR)
2697         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2698      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2699      &   FG_COMM1,IERR)
2700         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2701      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2702      &   FG_COMM1,IERR)
2703         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2704      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2705      &   FG_COMM1,IERR)
2706         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2707      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2708      &   FG_COMM1,IERR)
2709         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2710      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2711      &   FG_COMM1,IERR)
2712         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2713      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2714      &   FG_COMM1,IERR)
2715         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2716      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2717      &   FG_COMM1,IERR)
2718         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2719      &   ivec_count(fg_rank1),
2720      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2721      &   FG_COMM1,IERR)
2722         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2723      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2724      &   FG_COMM1,IERR)
2725        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2726      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2727      &   FG_COMM1,IERR)
2728         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2729      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2730      &   FG_COMM1,IERR)
2731        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2732      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2733      &   FG_COMM1,IERR)
2734         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2735      &   ivec_count(fg_rank1),
2736      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2737      &   FG_COMM1,IERR)
2738         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2739      &   ivec_count(fg_rank1),
2740      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2745      &   MPI_MAT2,FG_COMM1,IERR)
2746         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2747      &   ivec_count(fg_rank1),
2748      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2749      &   MPI_MAT2,FG_COMM1,IERR)
2750         endif
2751 #else
2752 c Passes matrix info through the ring
2753       isend=fg_rank1
2754       irecv=fg_rank1-1
2755       if (irecv.lt.0) irecv=nfgtasks1-1 
2756       iprev=irecv
2757       inext=fg_rank1+1
2758       if (inext.ge.nfgtasks1) inext=0
2759       do i=1,nfgtasks1-1
2760 c        write (iout,*) "isend",isend," irecv",irecv
2761 c        call flush(iout)
2762         lensend=lentyp(isend)
2763         lenrecv=lentyp(irecv)
2764 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2765 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2766 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2767 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2768 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2769 c        write (iout,*) "Gather ROTAT1"
2770 c        call flush(iout)
2771 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2772 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2773 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2774 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2775 c        write (iout,*) "Gather ROTAT2"
2776 c        call flush(iout)
2777         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2778      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2779      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2780      &   iprev,4400+irecv,FG_COMM,status,IERR)
2781 c        write (iout,*) "Gather ROTAT_OLD"
2782 c        call flush(iout)
2783         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2784      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2785      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2786      &   iprev,5500+irecv,FG_COMM,status,IERR)
2787 c        write (iout,*) "Gather PRECOMP11"
2788 c        call flush(iout)
2789         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2790      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2791      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2792      &   iprev,6600+irecv,FG_COMM,status,IERR)
2793 c        write (iout,*) "Gather PRECOMP12"
2794 c        call flush(iout)
2795         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2796      &  then
2797         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2798      &   MPI_ROTAT2(lensend),inext,7700+isend,
2799      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2800      &   iprev,7700+irecv,FG_COMM,status,IERR)
2801 c        write (iout,*) "Gather PRECOMP21"
2802 c        call flush(iout)
2803         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2804      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2805      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2806      &   iprev,8800+irecv,FG_COMM,status,IERR)
2807 c        write (iout,*) "Gather PRECOMP22"
2808 c        call flush(iout)
2809         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2810      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2811      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2812      &   MPI_PRECOMP23(lenrecv),
2813      &   iprev,9900+irecv,FG_COMM,status,IERR)
2814 c        write (iout,*) "Gather PRECOMP23"
2815 c        call flush(iout)
2816         endif
2817         isend=irecv
2818         irecv=irecv-1
2819         if (irecv.lt.0) irecv=nfgtasks1-1
2820       enddo
2821 #endif
2822         time_gather=time_gather+MPI_Wtime()-time00
2823       endif
2824 #ifdef DEBUG
2825 c      if (fg_rank.eq.0) then
2826         write (iout,*) "Arrays UG and UGDER"
2827         do i=1,nres-1
2828           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2829      &     ((ug(l,k,i),l=1,2),k=1,2),
2830      &     ((ugder(l,k,i),l=1,2),k=1,2)
2831         enddo
2832         write (iout,*) "Arrays UG2 and UG2DER"
2833         do i=1,nres-1
2834           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2835      &     ((ug2(l,k,i),l=1,2),k=1,2),
2836      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2837         enddo
2838         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2839         do i=1,nres-1
2840           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2841      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2842      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2843         enddo
2844         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2845         do i=1,nres-1
2846           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2847      &     costab(i),sintab(i),costab2(i),sintab2(i)
2848         enddo
2849         write (iout,*) "Array MUDER"
2850         do i=1,nres-1
2851           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2852         enddo
2853 c      endif
2854 #endif
2855 #endif
2856 cd      do i=1,nres
2857 cd        iti = itortyp(itype(i))
2858 cd        write (iout,*) i
2859 cd        do j=1,2
2860 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2861 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2862 cd        enddo
2863 cd      enddo
2864       return
2865       end
2866 C--------------------------------------------------------------------------
2867       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2868 C
2869 C This subroutine calculates the average interaction energy and its gradient
2870 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2871 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2872 C The potential depends both on the distance of peptide-group centers and on 
2873 C the orientation of the CA-CA virtual bonds.
2874
2875       implicit real*8 (a-h,o-z)
2876 #ifdef MPI
2877       include 'mpif.h'
2878 #endif
2879       include 'DIMENSIONS'
2880       include 'COMMON.CONTROL'
2881       include 'COMMON.SETUP'
2882       include 'COMMON.IOUNITS'
2883       include 'COMMON.GEO'
2884       include 'COMMON.VAR'
2885       include 'COMMON.LOCAL'
2886       include 'COMMON.CHAIN'
2887       include 'COMMON.DERIV'
2888       include 'COMMON.INTERACT'
2889       include 'COMMON.CONTACTS'
2890 #ifdef MOMENT
2891       include 'COMMON.CONTACTS.MOMENT'
2892 #endif  
2893       include 'COMMON.TORSION'
2894       include 'COMMON.VECTORS'
2895       include 'COMMON.FFIELD'
2896       include 'COMMON.TIME1'
2897       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2898      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2899       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2900      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2901       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2902      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2903      &    num_conti,j1,j2
2904 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2905 #ifdef MOMENT
2906       double precision scal_el /1.0d0/
2907 #else
2908       double precision scal_el /0.5d0/
2909 #endif
2910 C 12/13/98 
2911 C 13-go grudnia roku pamietnego... 
2912       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2913      &                   0.0d0,1.0d0,0.0d0,
2914      &                   0.0d0,0.0d0,1.0d0/
2915 cd      write(iout,*) 'In EELEC'
2916 cd      do i=1,nloctyp
2917 cd        write(iout,*) 'Type',i
2918 cd        write(iout,*) 'B1',B1(:,i)
2919 cd        write(iout,*) 'B2',B2(:,i)
2920 cd        write(iout,*) 'CC',CC(:,:,i)
2921 cd        write(iout,*) 'DD',DD(:,:,i)
2922 cd        write(iout,*) 'EE',EE(:,:,i)
2923 cd      enddo
2924 cd      call check_vecgrad
2925 cd      stop
2926       if (icheckgrad.eq.1) then
2927         do i=1,nres-1
2928           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2929           do k=1,3
2930             dc_norm(k,i)=dc(k,i)*fac
2931           enddo
2932 c          write (iout,*) 'i',i,' fac',fac
2933         enddo
2934       endif
2935       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2936      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2937      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2938 c        call vec_and_deriv
2939 #ifdef TIMING
2940         time01=MPI_Wtime()
2941 #endif
2942         call set_matrices
2943 #ifdef TIMING
2944         time_mat=time_mat+MPI_Wtime()-time01
2945 #endif
2946       endif
2947 cd      do i=1,nres-1
2948 cd        write (iout,*) 'i=',i
2949 cd        do k=1,3
2950 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2951 cd        enddo
2952 cd        do k=1,3
2953 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
2954 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
2955 cd        enddo
2956 cd      enddo
2957       t_eelecij=0.0d0
2958       ees=0.0D0
2959       evdw1=0.0D0
2960       eel_loc=0.0d0 
2961       eello_turn3=0.0d0
2962       eello_turn4=0.0d0
2963       ind=0
2964       do i=1,nres
2965         num_cont_hb(i)=0
2966       enddo
2967 cd      print '(a)','Enter EELEC'
2968 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
2969       do i=1,nres
2970         gel_loc_loc(i)=0.0d0
2971         gcorr_loc(i)=0.0d0
2972       enddo
2973 c
2974 c
2975 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
2976 C
2977 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
2978 C
2979       do i=iturn3_start,iturn3_end
2980         dxi=dc(1,i)
2981         dyi=dc(2,i)
2982         dzi=dc(3,i)
2983         dx_normi=dc_norm(1,i)
2984         dy_normi=dc_norm(2,i)
2985         dz_normi=dc_norm(3,i)
2986         xmedi=c(1,i)+0.5d0*dxi
2987         ymedi=c(2,i)+0.5d0*dyi
2988         zmedi=c(3,i)+0.5d0*dzi
2989         num_conti=0
2990         call eelecij(i,i+2,ees,evdw1,eel_loc)
2991         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
2992         num_cont_hb(i)=num_conti
2993       enddo
2994       do i=iturn4_start,iturn4_end
2995         dxi=dc(1,i)
2996         dyi=dc(2,i)
2997         dzi=dc(3,i)
2998         dx_normi=dc_norm(1,i)
2999         dy_normi=dc_norm(2,i)
3000         dz_normi=dc_norm(3,i)
3001         xmedi=c(1,i)+0.5d0*dxi
3002         ymedi=c(2,i)+0.5d0*dyi
3003         zmedi=c(3,i)+0.5d0*dzi
3004         num_conti=num_cont_hb(i)
3005         call eelecij(i,i+3,ees,evdw1,eel_loc)
3006         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3007         num_cont_hb(i)=num_conti
3008       enddo   ! i
3009 c
3010 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3011 c
3012       do i=iatel_s,iatel_e
3013         dxi=dc(1,i)
3014         dyi=dc(2,i)
3015         dzi=dc(3,i)
3016         dx_normi=dc_norm(1,i)
3017         dy_normi=dc_norm(2,i)
3018         dz_normi=dc_norm(3,i)
3019         xmedi=c(1,i)+0.5d0*dxi
3020         ymedi=c(2,i)+0.5d0*dyi
3021         zmedi=c(3,i)+0.5d0*dzi
3022 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3023         num_conti=num_cont_hb(i)
3024         do j=ielstart(i),ielend(i)
3025           call eelecij(i,j,ees,evdw1,eel_loc)
3026         enddo ! j
3027         num_cont_hb(i)=num_conti
3028       enddo   ! i
3029 c      write (iout,*) "Number of loop steps in EELEC:",ind
3030 cd      do i=1,nres
3031 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3032 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3033 cd      enddo
3034 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3035 ccc      eel_loc=eel_loc+eello_turn3
3036 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3037       return
3038       end
3039 C-------------------------------------------------------------------------------
3040       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3041       implicit real*8 (a-h,o-z)
3042       include 'DIMENSIONS'
3043 #ifdef MPI
3044       include "mpif.h"
3045 #endif
3046       include 'COMMON.CONTROL'
3047       include 'COMMON.IOUNITS'
3048       include 'COMMON.GEO'
3049       include 'COMMON.VAR'
3050       include 'COMMON.LOCAL'
3051       include 'COMMON.CHAIN'
3052       include 'COMMON.DERIV'
3053       include 'COMMON.INTERACT'
3054       include 'COMMON.CONTACTS'
3055 #ifdef MOMENT
3056       include 'COMMON.CONTACTS.MOMENT'
3057 #endif  
3058       include 'COMMON.TORSION'
3059       include 'COMMON.VECTORS'
3060       include 'COMMON.FFIELD'
3061       include 'COMMON.TIME1'
3062       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3063      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3064       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3065      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3066       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3067      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3068      &    num_conti,j1,j2
3069 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3070 #ifdef MOMENT
3071       double precision scal_el /1.0d0/
3072 #else
3073       double precision scal_el /0.5d0/
3074 #endif
3075 C 12/13/98 
3076 C 13-go grudnia roku pamietnego... 
3077       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3078      &                   0.0d0,1.0d0,0.0d0,
3079      &                   0.0d0,0.0d0,1.0d0/
3080 c          time00=MPI_Wtime()
3081 cd      write (iout,*) "eelecij",i,j
3082 c          ind=ind+1
3083           iteli=itel(i)
3084           itelj=itel(j)
3085           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3086           aaa=app(iteli,itelj)
3087           bbb=bpp(iteli,itelj)
3088           ael6i=ael6(iteli,itelj)
3089           ael3i=ael3(iteli,itelj) 
3090           dxj=dc(1,j)
3091           dyj=dc(2,j)
3092           dzj=dc(3,j)
3093           dx_normj=dc_norm(1,j)
3094           dy_normj=dc_norm(2,j)
3095           dz_normj=dc_norm(3,j)
3096           xj=c(1,j)+0.5D0*dxj-xmedi
3097           yj=c(2,j)+0.5D0*dyj-ymedi
3098           zj=c(3,j)+0.5D0*dzj-zmedi
3099           rij=xj*xj+yj*yj+zj*zj
3100           rrmij=1.0D0/rij
3101           rij=dsqrt(rij)
3102           rmij=1.0D0/rij
3103           r3ij=rrmij*rmij
3104           r6ij=r3ij*r3ij  
3105           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3106           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3107           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3108           fac=cosa-3.0D0*cosb*cosg
3109           ev1=aaa*r6ij*r6ij
3110 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3111           if (j.eq.i+2) ev1=scal_el*ev1
3112           ev2=bbb*r6ij
3113           fac3=ael6i*r6ij
3114           fac4=ael3i*r3ij
3115           evdwij=ev1+ev2
3116           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3117           el2=fac4*fac       
3118           eesij=el1+el2
3119 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3120           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3121           ees=ees+eesij
3122           evdw1=evdw1+evdwij
3123 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3124 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3125 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3126 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3127
3128           if (energy_dec) then 
3129               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3130               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3131           endif
3132
3133 C
3134 C Calculate contributions to the Cartesian gradient.
3135 C
3136 #ifdef SPLITELE
3137           facvdw=-6*rrmij*(ev1+evdwij)
3138           facel=-3*rrmij*(el1+eesij)
3139           fac1=fac
3140           erij(1)=xj*rmij
3141           erij(2)=yj*rmij
3142           erij(3)=zj*rmij
3143 *
3144 * Radial derivatives. First process both termini of the fragment (i,j)
3145 *
3146           ggg(1)=facel*xj
3147           ggg(2)=facel*yj
3148           ggg(3)=facel*zj
3149 c          do k=1,3
3150 c            ghalf=0.5D0*ggg(k)
3151 c            gelc(k,i)=gelc(k,i)+ghalf
3152 c            gelc(k,j)=gelc(k,j)+ghalf
3153 c          enddo
3154 c 9/28/08 AL Gradient compotents will be summed only at the end
3155           do k=1,3
3156             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3157             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3158           enddo
3159 *
3160 * Loop over residues i+1 thru j-1.
3161 *
3162 cgrad          do k=i+1,j-1
3163 cgrad            do l=1,3
3164 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3165 cgrad            enddo
3166 cgrad          enddo
3167           ggg(1)=facvdw*xj
3168           ggg(2)=facvdw*yj
3169           ggg(3)=facvdw*zj
3170 c          do k=1,3
3171 c            ghalf=0.5D0*ggg(k)
3172 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3173 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3174 c          enddo
3175 c 9/28/08 AL Gradient compotents will be summed only at the end
3176           do k=1,3
3177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3178             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3179           enddo
3180 *
3181 * Loop over residues i+1 thru j-1.
3182 *
3183 cgrad          do k=i+1,j-1
3184 cgrad            do l=1,3
3185 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3186 cgrad            enddo
3187 cgrad          enddo
3188 #else
3189           facvdw=ev1+evdwij 
3190           facel=el1+eesij  
3191           fac1=fac
3192           fac=-3*rrmij*(facvdw+facvdw+facel)
3193           erij(1)=xj*rmij
3194           erij(2)=yj*rmij
3195           erij(3)=zj*rmij
3196 *
3197 * Radial derivatives. First process both termini of the fragment (i,j)
3198
3199           ggg(1)=fac*xj
3200           ggg(2)=fac*yj
3201           ggg(3)=fac*zj
3202 c          do k=1,3
3203 c            ghalf=0.5D0*ggg(k)
3204 c            gelc(k,i)=gelc(k,i)+ghalf
3205 c            gelc(k,j)=gelc(k,j)+ghalf
3206 c          enddo
3207 c 9/28/08 AL Gradient compotents will be summed only at the end
3208           do k=1,3
3209             gelc_long(k,j)=gelc(k,j)+ggg(k)
3210             gelc_long(k,i)=gelc(k,i)-ggg(k)
3211           enddo
3212 *
3213 * Loop over residues i+1 thru j-1.
3214 *
3215 cgrad          do k=i+1,j-1
3216 cgrad            do l=1,3
3217 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3218 cgrad            enddo
3219 cgrad          enddo
3220 c 9/28/08 AL Gradient compotents will be summed only at the end
3221           ggg(1)=facvdw*xj
3222           ggg(2)=facvdw*yj
3223           ggg(3)=facvdw*zj
3224           do k=1,3
3225             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3226             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3227           enddo
3228 #endif
3229 *
3230 * Angular part
3231 *          
3232           ecosa=2.0D0*fac3*fac1+fac4
3233           fac4=-3.0D0*fac4
3234           fac3=-6.0D0*fac3
3235           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3236           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3237           do k=1,3
3238             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3239             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3240           enddo
3241 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3242 cd   &          (dcosg(k),k=1,3)
3243           do k=1,3
3244             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3245           enddo
3246 c          do k=1,3
3247 c            ghalf=0.5D0*ggg(k)
3248 c            gelc(k,i)=gelc(k,i)+ghalf
3249 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3250 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3251 c            gelc(k,j)=gelc(k,j)+ghalf
3252 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3253 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3254 c          enddo
3255 cgrad          do k=i+1,j-1
3256 cgrad            do l=1,3
3257 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3258 cgrad            enddo
3259 cgrad          enddo
3260           do k=1,3
3261             gelc(k,i)=gelc(k,i)
3262      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3263      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3264             gelc(k,j)=gelc(k,j)
3265      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3266      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3267             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3268             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3269           enddo
3270           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3271      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3272      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3273 C
3274 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3275 C   energy of a peptide unit is assumed in the form of a second-order 
3276 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3277 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3278 C   are computed for EVERY pair of non-contiguous peptide groups.
3279 C
3280           if (j.lt.nres-1) then
3281             j1=j+1
3282             j2=j-1
3283           else
3284             j1=j-1
3285             j2=j-2
3286           endif
3287           kkk=0
3288           do k=1,2
3289             do l=1,2
3290               kkk=kkk+1
3291               muij(kkk)=mu(k,i)*mu(l,j)
3292             enddo
3293           enddo  
3294 cd         write (iout,*) 'EELEC: i',i,' j',j
3295 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3296 cd          write(iout,*) 'muij',muij
3297           ury=scalar(uy(1,i),erij)
3298           urz=scalar(uz(1,i),erij)
3299           vry=scalar(uy(1,j),erij)
3300           vrz=scalar(uz(1,j),erij)
3301           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3302           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3303           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3304           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3305           fac=dsqrt(-ael6i)*r3ij
3306           a22=a22*fac
3307           a23=a23*fac
3308           a32=a32*fac
3309           a33=a33*fac
3310 cd          write (iout,'(4i5,4f10.5)')
3311 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3312 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3313 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3314 cd     &      uy(:,j),uz(:,j)
3315 cd          write (iout,'(4f10.5)') 
3316 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3317 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3318 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3319 cd           write (iout,'(9f10.5/)') 
3320 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3321 C Derivatives of the elements of A in virtual-bond vectors
3322           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3323           do k=1,3
3324             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3325             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3326             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3327             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3328             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3329             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3330             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3331             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3332             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3333             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3334             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3335             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3336           enddo
3337 C Compute radial contributions to the gradient
3338           facr=-3.0d0*rrmij
3339           a22der=a22*facr
3340           a23der=a23*facr
3341           a32der=a32*facr
3342           a33der=a33*facr
3343           agg(1,1)=a22der*xj
3344           agg(2,1)=a22der*yj
3345           agg(3,1)=a22der*zj
3346           agg(1,2)=a23der*xj
3347           agg(2,2)=a23der*yj
3348           agg(3,2)=a23der*zj
3349           agg(1,3)=a32der*xj
3350           agg(2,3)=a32der*yj
3351           agg(3,3)=a32der*zj
3352           agg(1,4)=a33der*xj
3353           agg(2,4)=a33der*yj
3354           agg(3,4)=a33der*zj
3355 C Add the contributions coming from er
3356           fac3=-3.0d0*fac
3357           do k=1,3
3358             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3359             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3360             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3361             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3362           enddo
3363           do k=1,3
3364 C Derivatives in DC(i) 
3365 cgrad            ghalf1=0.5d0*agg(k,1)
3366 cgrad            ghalf2=0.5d0*agg(k,2)
3367 cgrad            ghalf3=0.5d0*agg(k,3)
3368 cgrad            ghalf4=0.5d0*agg(k,4)
3369             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3370      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3371             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3372      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3373             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3374      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3375             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3376      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3377 C Derivatives in DC(i+1)
3378             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3379      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3380             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3381      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3382             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3383      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3384             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3385      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3386 C Derivatives in DC(j)
3387             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3388      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3389             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3390      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3391             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3392      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3393             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3394      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3395 C Derivatives in DC(j+1) or DC(nres-1)
3396             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3397      &      -3.0d0*vryg(k,3)*ury)
3398             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3399      &      -3.0d0*vrzg(k,3)*ury)
3400             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3401      &      -3.0d0*vryg(k,3)*urz)
3402             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3403      &      -3.0d0*vrzg(k,3)*urz)
3404 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3405 cgrad              do l=1,4
3406 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3407 cgrad              enddo
3408 cgrad            endif
3409           enddo
3410           acipa(1,1)=a22
3411           acipa(1,2)=a23
3412           acipa(2,1)=a32
3413           acipa(2,2)=a33
3414           a22=-a22
3415           a23=-a23
3416           do l=1,2
3417             do k=1,3
3418               agg(k,l)=-agg(k,l)
3419               aggi(k,l)=-aggi(k,l)
3420               aggi1(k,l)=-aggi1(k,l)
3421               aggj(k,l)=-aggj(k,l)
3422               aggj1(k,l)=-aggj1(k,l)
3423             enddo
3424           enddo
3425           if (j.lt.nres-1) then
3426             a22=-a22
3427             a32=-a32
3428             do l=1,3,2
3429               do k=1,3
3430                 agg(k,l)=-agg(k,l)
3431                 aggi(k,l)=-aggi(k,l)
3432                 aggi1(k,l)=-aggi1(k,l)
3433                 aggj(k,l)=-aggj(k,l)
3434                 aggj1(k,l)=-aggj1(k,l)
3435               enddo
3436             enddo
3437           else
3438             a22=-a22
3439             a23=-a23
3440             a32=-a32
3441             a33=-a33
3442             do l=1,4
3443               do k=1,3
3444                 agg(k,l)=-agg(k,l)
3445                 aggi(k,l)=-aggi(k,l)
3446                 aggi1(k,l)=-aggi1(k,l)
3447                 aggj(k,l)=-aggj(k,l)
3448                 aggj1(k,l)=-aggj1(k,l)
3449               enddo
3450             enddo 
3451           endif    
3452           ENDIF ! WCORR
3453           IF (wel_loc.gt.0.0d0) THEN
3454 C Contribution to the local-electrostatic energy coming from the i-j pair
3455           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3456      &     +a33*muij(4)
3457 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3458
3459           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3460      &            'eelloc',i,j,eel_loc_ij
3461
3462           eel_loc=eel_loc+eel_loc_ij
3463 C Partial derivatives in virtual-bond dihedral angles gamma
3464           if (i.gt.1)
3465      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3466      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3467      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3468           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3469      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3470      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3471 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3472           do l=1,3
3473             ggg(l)=agg(l,1)*muij(1)+
3474      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3475             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3476             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3477 cgrad            ghalf=0.5d0*ggg(l)
3478 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3479 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3480           enddo
3481 cgrad          do k=i+1,j2
3482 cgrad            do l=1,3
3483 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3484 cgrad            enddo
3485 cgrad          enddo
3486 C Remaining derivatives of eello
3487           do l=1,3
3488             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3489      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3490             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3491      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3492             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3493      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3494             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3495      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3496           enddo
3497           ENDIF
3498 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3499 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3500           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3501      &       .and. num_conti.le.maxconts) then
3502 c            write (iout,*) i,j," entered corr"
3503 C
3504 C Calculate the contact function. The ith column of the array JCONT will 
3505 C contain the numbers of atoms that make contacts with the atom I (of numbers
3506 C greater than I). The arrays FACONT and GACONT will contain the values of
3507 C the contact function and its derivative.
3508 c           r0ij=1.02D0*rpp(iteli,itelj)
3509 c           r0ij=1.11D0*rpp(iteli,itelj)
3510             r0ij=2.20D0*rpp(iteli,itelj)
3511 c           r0ij=1.55D0*rpp(iteli,itelj)
3512             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3513             if (fcont.gt.0.0D0) then
3514               num_conti=num_conti+1
3515               if (num_conti.gt.maxconts) then
3516                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3517      &                         ' will skip next contacts for this conf.'
3518               else
3519                 jcont_hb(num_conti,i)=j
3520 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3521 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3522                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3523      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3524 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3525 C  terms.
3526                 d_cont(num_conti,i)=rij
3527 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3528 C     --- Electrostatic-interaction matrix --- 
3529                 a_chuj(1,1,num_conti,i)=a22
3530                 a_chuj(1,2,num_conti,i)=a23
3531                 a_chuj(2,1,num_conti,i)=a32
3532                 a_chuj(2,2,num_conti,i)=a33
3533 C     --- Gradient of rij
3534                 do kkk=1,3
3535                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3536                 enddo
3537                 kkll=0
3538                 do k=1,2
3539                   do l=1,2
3540                     kkll=kkll+1
3541                     do m=1,3
3542                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3543                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3544                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3545                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3546                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3547                     enddo
3548                   enddo
3549                 enddo
3550                 ENDIF
3551                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3552 C Calculate contact energies
3553                 cosa4=4.0D0*cosa
3554                 wij=cosa-3.0D0*cosb*cosg
3555                 cosbg1=cosb+cosg
3556                 cosbg2=cosb-cosg
3557 c               fac3=dsqrt(-ael6i)/r0ij**3     
3558                 fac3=dsqrt(-ael6i)*r3ij
3559 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3560                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3561                 if (ees0tmp.gt.0) then
3562                   ees0pij=dsqrt(ees0tmp)
3563                 else
3564                   ees0pij=0
3565                 endif
3566 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3567                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3568                 if (ees0tmp.gt.0) then
3569                   ees0mij=dsqrt(ees0tmp)
3570                 else
3571                   ees0mij=0
3572                 endif
3573 c               ees0mij=0.0D0
3574                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3575                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3576 C Diagnostics. Comment out or remove after debugging!
3577 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3578 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3579 c               ees0m(num_conti,i)=0.0D0
3580 C End diagnostics.
3581 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3582 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3583 C Angular derivatives of the contact function
3584                 ees0pij1=fac3/ees0pij 
3585                 ees0mij1=fac3/ees0mij
3586                 fac3p=-3.0D0*fac3*rrmij
3587                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3588                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3589 c               ees0mij1=0.0D0
3590                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3591                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3592                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3593                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3594                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3595                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3596                 ecosap=ecosa1+ecosa2
3597                 ecosbp=ecosb1+ecosb2
3598                 ecosgp=ecosg1+ecosg2
3599                 ecosam=ecosa1-ecosa2
3600                 ecosbm=ecosb1-ecosb2
3601                 ecosgm=ecosg1-ecosg2
3602 C Diagnostics
3603 c               ecosap=ecosa1
3604 c               ecosbp=ecosb1
3605 c               ecosgp=ecosg1
3606 c               ecosam=0.0D0
3607 c               ecosbm=0.0D0
3608 c               ecosgm=0.0D0
3609 C End diagnostics
3610                 facont_hb(num_conti,i)=fcont
3611                 fprimcont=fprimcont/rij
3612 cd              facont_hb(num_conti,i)=1.0D0
3613 C Following line is for diagnostics.
3614 cd              fprimcont=0.0D0
3615                 do k=1,3
3616                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3617                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3618                 enddo
3619                 do k=1,3
3620                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3621                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3622                 enddo
3623                 gggp(1)=gggp(1)+ees0pijp*xj
3624                 gggp(2)=gggp(2)+ees0pijp*yj
3625                 gggp(3)=gggp(3)+ees0pijp*zj
3626                 gggm(1)=gggm(1)+ees0mijp*xj
3627                 gggm(2)=gggm(2)+ees0mijp*yj
3628                 gggm(3)=gggm(3)+ees0mijp*zj
3629 C Derivatives due to the contact function
3630                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3631                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3632                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3633                 do k=1,3
3634 c
3635 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3636 c          following the change of gradient-summation algorithm.
3637 c
3638 cgrad                  ghalfp=0.5D0*gggp(k)
3639 cgrad                  ghalfm=0.5D0*gggm(k)
3640                   gacontp_hb1(k,num_conti,i)=!ghalfp
3641      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3642      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3643                   gacontp_hb2(k,num_conti,i)=!ghalfp
3644      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3645      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3646                   gacontp_hb3(k,num_conti,i)=gggp(k)
3647                   gacontm_hb1(k,num_conti,i)=!ghalfm
3648      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3649      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3650                   gacontm_hb2(k,num_conti,i)=!ghalfm
3651      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3652      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3653                   gacontm_hb3(k,num_conti,i)=gggm(k)
3654                 enddo
3655 C Diagnostics. Comment out or remove after debugging!
3656 cdiag           do k=1,3
3657 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3658 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3659 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3660 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3661 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3662 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3663 cdiag           enddo
3664               ENDIF ! wcorr
3665               endif  ! num_conti.le.maxconts
3666             endif  ! fcont.gt.0
3667           endif    ! j.gt.i+1
3668           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3669             do k=1,4
3670               do l=1,3
3671                 ghalf=0.5d0*agg(l,k)
3672                 aggi(l,k)=aggi(l,k)+ghalf
3673                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3674                 aggj(l,k)=aggj(l,k)+ghalf
3675               enddo
3676             enddo
3677             if (j.eq.nres-1 .and. i.lt.j-2) then
3678               do k=1,4
3679                 do l=1,3
3680                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3681                 enddo
3682               enddo
3683             endif
3684           endif
3685 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3686       return
3687       end
3688 C-----------------------------------------------------------------------------
3689       subroutine eturn3(i,eello_turn3)
3690 C Third- and fourth-order contributions from turns
3691       implicit real*8 (a-h,o-z)
3692       include 'DIMENSIONS'
3693       include 'COMMON.IOUNITS'
3694       include 'COMMON.GEO'
3695       include 'COMMON.VAR'
3696       include 'COMMON.LOCAL'
3697       include 'COMMON.CHAIN'
3698       include 'COMMON.DERIV'
3699       include 'COMMON.INTERACT'
3700       include 'COMMON.CONTACTS'
3701 #ifdef MOMENT
3702       include 'COMMON.CONTACTS.MOMENT'
3703 #endif  
3704       include 'COMMON.TORSION'
3705       include 'COMMON.VECTORS'
3706       include 'COMMON.FFIELD'
3707       include 'COMMON.CONTROL'
3708       dimension ggg(3)
3709       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3710      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3711      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3712       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3713      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3714       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3715      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3716      &    num_conti,j1,j2
3717       j=i+2
3718 c      write (iout,*) "eturn3",i,j,j1,j2
3719       a_temp(1,1)=a22
3720       a_temp(1,2)=a23
3721       a_temp(2,1)=a32
3722       a_temp(2,2)=a33
3723 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3724 C
3725 C               Third-order contributions
3726 C        
3727 C                 (i+2)o----(i+3)
3728 C                      | |
3729 C                      | |
3730 C                 (i+1)o----i
3731 C
3732 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3733 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3734         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3735         call transpose2(auxmat(1,1),auxmat1(1,1))
3736         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3737         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3738         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3739      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3740 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3741 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3742 cd     &    ' eello_turn3_num',4*eello_turn3_num
3743 C Derivatives in gamma(i)
3744         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3745         call transpose2(auxmat2(1,1),auxmat3(1,1))
3746         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3747         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3748 C Derivatives in gamma(i+1)
3749         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3750         call transpose2(auxmat2(1,1),auxmat3(1,1))
3751         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3752         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3753      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3754 C Cartesian derivatives
3755         do l=1,3
3756 c            ghalf1=0.5d0*agg(l,1)
3757 c            ghalf2=0.5d0*agg(l,2)
3758 c            ghalf3=0.5d0*agg(l,3)
3759 c            ghalf4=0.5d0*agg(l,4)
3760           a_temp(1,1)=aggi(l,1)!+ghalf1
3761           a_temp(1,2)=aggi(l,2)!+ghalf2
3762           a_temp(2,1)=aggi(l,3)!+ghalf3
3763           a_temp(2,2)=aggi(l,4)!+ghalf4
3764           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3765           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3766      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3767           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3768           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3769           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3770           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3771           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3772           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3773      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3774           a_temp(1,1)=aggj(l,1)!+ghalf1
3775           a_temp(1,2)=aggj(l,2)!+ghalf2
3776           a_temp(2,1)=aggj(l,3)!+ghalf3
3777           a_temp(2,2)=aggj(l,4)!+ghalf4
3778           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3779           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3780      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3781           a_temp(1,1)=aggj1(l,1)
3782           a_temp(1,2)=aggj1(l,2)
3783           a_temp(2,1)=aggj1(l,3)
3784           a_temp(2,2)=aggj1(l,4)
3785           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3786           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3787      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3788         enddo
3789       return
3790       end
3791 C-------------------------------------------------------------------------------
3792       subroutine eturn4(i,eello_turn4)
3793 C Third- and fourth-order contributions from turns
3794       implicit real*8 (a-h,o-z)
3795       include 'DIMENSIONS'
3796       include 'COMMON.IOUNITS'
3797       include 'COMMON.GEO'
3798       include 'COMMON.VAR'
3799       include 'COMMON.LOCAL'
3800       include 'COMMON.CHAIN'
3801       include 'COMMON.DERIV'
3802       include 'COMMON.INTERACT'
3803       include 'COMMON.CONTACTS'
3804 #ifdef MOMENT
3805       include 'COMMON.CONTACTS.MOMENT'
3806 #endif  
3807       include 'COMMON.TORSION'
3808       include 'COMMON.VECTORS'
3809       include 'COMMON.FFIELD'
3810       include 'COMMON.CONTROL'
3811       dimension ggg(3)
3812       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3813      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3814      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3815       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3816      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3817       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3818      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3819      &    num_conti,j1,j2
3820       j=i+3
3821 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3822 C
3823 C               Fourth-order contributions
3824 C        
3825 C                 (i+3)o----(i+4)
3826 C                     /  |
3827 C               (i+2)o   |
3828 C                     \  |
3829 C                 (i+1)o----i
3830 C
3831 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3832 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3833 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3834         a_temp(1,1)=a22
3835         a_temp(1,2)=a23
3836         a_temp(2,1)=a32
3837         a_temp(2,2)=a33
3838         iti1=itortyp(itype(i+1))
3839         iti2=itortyp(itype(i+2))
3840         iti3=itortyp(itype(i+3))
3841 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3842         call transpose2(EUg(1,1,i+1),e1t(1,1))
3843         call transpose2(Eug(1,1,i+2),e2t(1,1))
3844         call transpose2(Eug(1,1,i+3),e3t(1,1))
3845         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3846         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3847         s1=scalar2(b1(1,iti2),auxvec(1))
3848         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3849         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3850         s2=scalar2(b1(1,iti1),auxvec(1))
3851         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3852         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3853         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3854         eello_turn4=eello_turn4-(s1+s2+s3)
3855         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3856      &      'eturn4',i,j,-(s1+s2+s3)
3857 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3858 cd     &    ' eello_turn4_num',8*eello_turn4_num
3859 C Derivatives in gamma(i)
3860         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3861         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3862         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3863         s1=scalar2(b1(1,iti2),auxvec(1))
3864         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3865         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3866         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3867 C Derivatives in gamma(i+1)
3868         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3869         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3870         s2=scalar2(b1(1,iti1),auxvec(1))
3871         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3872         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3873         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3874         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3875 C Derivatives in gamma(i+2)
3876         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3877         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3878         s1=scalar2(b1(1,iti2),auxvec(1))
3879         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3880         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3881         s2=scalar2(b1(1,iti1),auxvec(1))
3882         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3883         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3884         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3885         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3886 C Cartesian derivatives
3887 C Derivatives of this turn contributions in DC(i+2)
3888         if (j.lt.nres-1) then
3889           do l=1,3
3890             a_temp(1,1)=agg(l,1)
3891             a_temp(1,2)=agg(l,2)
3892             a_temp(2,1)=agg(l,3)
3893             a_temp(2,2)=agg(l,4)
3894             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3895             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3896             s1=scalar2(b1(1,iti2),auxvec(1))
3897             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3898             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3899             s2=scalar2(b1(1,iti1),auxvec(1))
3900             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3901             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3902             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903             ggg(l)=-(s1+s2+s3)
3904             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3905           enddo
3906         endif
3907 C Remaining derivatives of this turn contribution
3908         do l=1,3
3909           a_temp(1,1)=aggi(l,1)
3910           a_temp(1,2)=aggi(l,2)
3911           a_temp(2,1)=aggi(l,3)
3912           a_temp(2,2)=aggi(l,4)
3913           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3914           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3915           s1=scalar2(b1(1,iti2),auxvec(1))
3916           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3917           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3918           s2=scalar2(b1(1,iti1),auxvec(1))
3919           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3920           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3921           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3923           a_temp(1,1)=aggi1(l,1)
3924           a_temp(1,2)=aggi1(l,2)
3925           a_temp(2,1)=aggi1(l,3)
3926           a_temp(2,2)=aggi1(l,4)
3927           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3928           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3929           s1=scalar2(b1(1,iti2),auxvec(1))
3930           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3931           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3932           s2=scalar2(b1(1,iti1),auxvec(1))
3933           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3934           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3935           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3936           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3937           a_temp(1,1)=aggj(l,1)
3938           a_temp(1,2)=aggj(l,2)
3939           a_temp(2,1)=aggj(l,3)
3940           a_temp(2,2)=aggj(l,4)
3941           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3942           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3943           s1=scalar2(b1(1,iti2),auxvec(1))
3944           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3945           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3946           s2=scalar2(b1(1,iti1),auxvec(1))
3947           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3948           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3949           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3950           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3951           a_temp(1,1)=aggj1(l,1)
3952           a_temp(1,2)=aggj1(l,2)
3953           a_temp(2,1)=aggj1(l,3)
3954           a_temp(2,2)=aggj1(l,4)
3955           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3956           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3957           s1=scalar2(b1(1,iti2),auxvec(1))
3958           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3959           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3960           s2=scalar2(b1(1,iti1),auxvec(1))
3961           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3962           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3963           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3964 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
3965           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
3966         enddo
3967       return
3968       end
3969 C-----------------------------------------------------------------------------
3970       subroutine vecpr(u,v,w)
3971       implicit real*8(a-h,o-z)
3972       dimension u(3),v(3),w(3)
3973       w(1)=u(2)*v(3)-u(3)*v(2)
3974       w(2)=-u(1)*v(3)+u(3)*v(1)
3975       w(3)=u(1)*v(2)-u(2)*v(1)
3976       return
3977       end
3978 C-----------------------------------------------------------------------------
3979       subroutine unormderiv(u,ugrad,unorm,ungrad)
3980 C This subroutine computes the derivatives of a normalized vector u, given
3981 C the derivatives computed without normalization conditions, ugrad. Returns
3982 C ungrad.
3983       implicit none
3984       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
3985       double precision vec(3)
3986       double precision scalar
3987       integer i,j
3988 c      write (2,*) 'ugrad',ugrad
3989 c      write (2,*) 'u',u
3990       do i=1,3
3991         vec(i)=scalar(ugrad(1,i),u(1))
3992       enddo
3993 c      write (2,*) 'vec',vec
3994       do i=1,3
3995         do j=1,3
3996           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
3997         enddo
3998       enddo
3999 c      write (2,*) 'ungrad',ungrad
4000       return
4001       end
4002 C-----------------------------------------------------------------------------
4003       subroutine escp_soft_sphere(evdw2,evdw2_14)
4004 C
4005 C This subroutine calculates the excluded-volume interaction energy between
4006 C peptide-group centers and side chains and its gradient in virtual-bond and
4007 C side-chain vectors.
4008 C
4009       implicit real*8 (a-h,o-z)
4010       include 'DIMENSIONS'
4011       include 'COMMON.GEO'
4012       include 'COMMON.VAR'
4013       include 'COMMON.LOCAL'
4014       include 'COMMON.CHAIN'
4015       include 'COMMON.DERIV'
4016       include 'COMMON.INTERACT'
4017       include 'COMMON.FFIELD'
4018       include 'COMMON.IOUNITS'
4019       include 'COMMON.CONTROL'
4020       dimension ggg(3)
4021       evdw2=0.0D0
4022       evdw2_14=0.0d0
4023       r0_scp=4.5d0
4024 cd    print '(a)','Enter ESCP'
4025 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4026       do i=iatscp_s,iatscp_e
4027         iteli=itel(i)
4028         xi=0.5D0*(c(1,i)+c(1,i+1))
4029         yi=0.5D0*(c(2,i)+c(2,i+1))
4030         zi=0.5D0*(c(3,i)+c(3,i+1))
4031
4032         do iint=1,nscp_gr(i)
4033
4034         do j=iscpstart(i,iint),iscpend(i,iint)
4035           itypj=itype(j)
4036 C Uncomment following three lines for SC-p interactions
4037 c         xj=c(1,nres+j)-xi
4038 c         yj=c(2,nres+j)-yi
4039 c         zj=c(3,nres+j)-zi
4040 C Uncomment following three lines for Ca-p interactions
4041           xj=c(1,j)-xi
4042           yj=c(2,j)-yi
4043           zj=c(3,j)-zi
4044           rij=xj*xj+yj*yj+zj*zj
4045           r0ij=r0_scp
4046           r0ijsq=r0ij*r0ij
4047           if (rij.lt.r0ijsq) then
4048             evdwij=0.25d0*(rij-r0ijsq)**2
4049             fac=rij-r0ijsq
4050           else
4051             evdwij=0.0d0
4052             fac=0.0d0
4053           endif 
4054           evdw2=evdw2+evdwij
4055 C
4056 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4057 C
4058           ggg(1)=xj*fac
4059           ggg(2)=yj*fac
4060           ggg(3)=zj*fac
4061 cgrad          if (j.lt.i) then
4062 cd          write (iout,*) 'j<i'
4063 C Uncomment following three lines for SC-p interactions
4064 c           do k=1,3
4065 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4066 c           enddo
4067 cgrad          else
4068 cd          write (iout,*) 'j>i'
4069 cgrad            do k=1,3
4070 cgrad              ggg(k)=-ggg(k)
4071 C Uncomment following line for SC-p interactions
4072 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4073 cgrad            enddo
4074 cgrad          endif
4075 cgrad          do k=1,3
4076 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4077 cgrad          enddo
4078 cgrad          kstart=min0(i+1,j)
4079 cgrad          kend=max0(i-1,j-1)
4080 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4081 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4082 cgrad          do k=kstart,kend
4083 cgrad            do l=1,3
4084 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4085 cgrad            enddo
4086 cgrad          enddo
4087           do k=1,3
4088             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4089             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4090           enddo
4091         enddo
4092
4093         enddo ! iint
4094       enddo ! i
4095       return
4096       end
4097 C-----------------------------------------------------------------------------
4098       subroutine escp(evdw2,evdw2_14)
4099 C
4100 C This subroutine calculates the excluded-volume interaction energy between
4101 C peptide-group centers and side chains and its gradient in virtual-bond and
4102 C side-chain vectors.
4103 C
4104       implicit real*8 (a-h,o-z)
4105       include 'DIMENSIONS'
4106       include 'COMMON.GEO'
4107       include 'COMMON.VAR'
4108       include 'COMMON.LOCAL'
4109       include 'COMMON.CHAIN'
4110       include 'COMMON.DERIV'
4111       include 'COMMON.INTERACT'
4112       include 'COMMON.FFIELD'
4113       include 'COMMON.IOUNITS'
4114       include 'COMMON.CONTROL'
4115       dimension ggg(3)
4116       evdw2=0.0D0
4117       evdw2_14=0.0d0
4118 cd    print '(a)','Enter ESCP'
4119 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4120       do i=iatscp_s,iatscp_e
4121         iteli=itel(i)
4122         xi=0.5D0*(c(1,i)+c(1,i+1))
4123         yi=0.5D0*(c(2,i)+c(2,i+1))
4124         zi=0.5D0*(c(3,i)+c(3,i+1))
4125
4126         do iint=1,nscp_gr(i)
4127
4128         do j=iscpstart(i,iint),iscpend(i,iint)
4129           itypj=itype(j)
4130 C Uncomment following three lines for SC-p interactions
4131 c         xj=c(1,nres+j)-xi
4132 c         yj=c(2,nres+j)-yi
4133 c         zj=c(3,nres+j)-zi
4134 C Uncomment following three lines for Ca-p interactions
4135           xj=c(1,j)-xi
4136           yj=c(2,j)-yi
4137           zj=c(3,j)-zi
4138           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4139           fac=rrij**expon2
4140           e1=fac*fac*aad(itypj,iteli)
4141           e2=fac*bad(itypj,iteli)
4142           if (iabs(j-i) .le. 2) then
4143             e1=scal14*e1
4144             e2=scal14*e2
4145             evdw2_14=evdw2_14+e1+e2
4146           endif
4147           evdwij=e1+e2
4148           evdw2=evdw2+evdwij
4149           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4150      &        'evdw2',i,j,evdwij
4151 C
4152 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4153 C
4154           fac=-(evdwij+e1)*rrij
4155           ggg(1)=xj*fac
4156           ggg(2)=yj*fac
4157           ggg(3)=zj*fac
4158 cgrad          if (j.lt.i) then
4159 cd          write (iout,*) 'j<i'
4160 C Uncomment following three lines for SC-p interactions
4161 c           do k=1,3
4162 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4163 c           enddo
4164 cgrad          else
4165 cd          write (iout,*) 'j>i'
4166 cgrad            do k=1,3
4167 cgrad              ggg(k)=-ggg(k)
4168 C Uncomment following line for SC-p interactions
4169 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4170 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4171 cgrad            enddo
4172 cgrad          endif
4173 cgrad          do k=1,3
4174 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4175 cgrad          enddo
4176 cgrad          kstart=min0(i+1,j)
4177 cgrad          kend=max0(i-1,j-1)
4178 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4179 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4180 cgrad          do k=kstart,kend
4181 cgrad            do l=1,3
4182 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4183 cgrad            enddo
4184 cgrad          enddo
4185           do k=1,3
4186             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4187             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4188           enddo
4189         enddo
4190
4191         enddo ! iint
4192       enddo ! i
4193       do i=1,nct
4194         do j=1,3
4195           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4196           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4197           gradx_scp(j,i)=expon*gradx_scp(j,i)
4198         enddo
4199       enddo
4200 C******************************************************************************
4201 C
4202 C                              N O T E !!!
4203 C
4204 C To save time the factor EXPON has been extracted from ALL components
4205 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4206 C use!
4207 C
4208 C******************************************************************************
4209       return
4210       end
4211 C--------------------------------------------------------------------------
4212       subroutine edis(ehpb)
4213
4214 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4215 C
4216       implicit real*8 (a-h,o-z)
4217       include 'DIMENSIONS'
4218       include 'COMMON.SBRIDGE'
4219       include 'COMMON.CHAIN'
4220       include 'COMMON.DERIV'
4221       include 'COMMON.VAR'
4222       include 'COMMON.INTERACT'
4223       include 'COMMON.IOUNITS'
4224       dimension ggg(3)
4225       ehpb=0.0D0
4226 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4227 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4228       if (link_end.eq.0) return
4229       do i=link_start,link_end
4230 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4231 C CA-CA distance used in regularization of structure.
4232         ii=ihpb(i)
4233         jj=jhpb(i)
4234 C iii and jjj point to the residues for which the distance is assigned.
4235         if (ii.gt.nres) then
4236           iii=ii-nres
4237           jjj=jj-nres 
4238         else
4239           iii=ii
4240           jjj=jj
4241         endif
4242 cd        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj
4243 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4244 C    distance and angle dependent SS bond potential.
4245         if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4246           call ssbond_ene(iii,jjj,eij)
4247           ehpb=ehpb+2*eij
4248 cd          write (iout,*) "eij",eij
4249         else
4250 C Calculate the distance between the two points and its difference from the
4251 C target distance.
4252         dd=dist(ii,jj)
4253         rdis=dd-dhpb(i)
4254 C Get the force constant corresponding to this distance.
4255         waga=forcon(i)
4256 C Calculate the contribution to energy.
4257         ehpb=ehpb+waga*rdis*rdis
4258 C
4259 C Evaluate gradient.
4260 C
4261         fac=waga*rdis/dd
4262 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4263 cd   &   ' waga=',waga,' fac=',fac
4264         do j=1,3
4265           ggg(j)=fac*(c(j,jj)-c(j,ii))
4266         enddo
4267 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4268 C If this is a SC-SC distance, we need to calculate the contributions to the
4269 C Cartesian gradient in the SC vectors (ghpbx).
4270         if (iii.lt.ii) then
4271           do j=1,3
4272             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4273             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4274           enddo
4275         endif
4276 cgrad        do j=iii,jjj-1
4277 cgrad          do k=1,3
4278 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4279 cgrad          enddo
4280 cgrad        enddo
4281         do k=1,3
4282           ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4283           ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4284         enddo
4285         endif
4286       enddo
4287       ehpb=0.5D0*ehpb
4288       return
4289       end
4290 C--------------------------------------------------------------------------
4291       subroutine ssbond_ene(i,j,eij)
4292
4293 C Calculate the distance and angle dependent SS-bond potential energy
4294 C using a free-energy function derived based on RHF/6-31G** ab initio
4295 C calculations of diethyl disulfide.
4296 C
4297 C A. Liwo and U. Kozlowska, 11/24/03
4298 C
4299       implicit real*8 (a-h,o-z)
4300       include 'DIMENSIONS'
4301       include 'COMMON.SBRIDGE'
4302       include 'COMMON.CHAIN'
4303       include 'COMMON.DERIV'
4304       include 'COMMON.LOCAL'
4305       include 'COMMON.INTERACT'
4306       include 'COMMON.VAR'
4307       include 'COMMON.IOUNITS'
4308       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4309       itypi=itype(i)
4310       xi=c(1,nres+i)
4311       yi=c(2,nres+i)
4312       zi=c(3,nres+i)
4313       dxi=dc_norm(1,nres+i)
4314       dyi=dc_norm(2,nres+i)
4315       dzi=dc_norm(3,nres+i)
4316 c      dsci_inv=dsc_inv(itypi)
4317       dsci_inv=vbld_inv(nres+i)
4318       itypj=itype(j)
4319 c      dscj_inv=dsc_inv(itypj)
4320       dscj_inv=vbld_inv(nres+j)
4321       xj=c(1,nres+j)-xi
4322       yj=c(2,nres+j)-yi
4323       zj=c(3,nres+j)-zi
4324       dxj=dc_norm(1,nres+j)
4325       dyj=dc_norm(2,nres+j)
4326       dzj=dc_norm(3,nres+j)
4327       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4328       rij=dsqrt(rrij)
4329       erij(1)=xj*rij
4330       erij(2)=yj*rij
4331       erij(3)=zj*rij
4332       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4333       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4334       om12=dxi*dxj+dyi*dyj+dzi*dzj
4335       do k=1,3
4336         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4337         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4338       enddo
4339       rij=1.0d0/rij
4340       deltad=rij-d0cm
4341       deltat1=1.0d0-om1
4342       deltat2=1.0d0+om2
4343       deltat12=om2-om1+2.0d0
4344       cosphi=om12-om1*om2
4345       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4346      &  +akct*deltad*deltat12
4347      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4348 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4349 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4350 c     &  " deltat12",deltat12," eij",eij 
4351       ed=2*akcm*deltad+akct*deltat12
4352       pom1=akct*deltad
4353       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4354       eom1=-2*akth*deltat1-pom1-om2*pom2
4355       eom2= 2*akth*deltat2+pom1-om1*pom2
4356       eom12=pom2
4357       do k=1,3
4358         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4359         ghpbx(k,i)=ghpbx(k,i)-ggk
4360      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4361      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4362         ghpbx(k,j)=ghpbx(k,j)+ggk
4363      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4364      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4365         ghpbc(k,i)=ghpbc(k,i)-ggk
4366         ghpbc(k,j)=ghpbc(k,j)+ggk
4367       enddo
4368 C
4369 C Calculate the components of the gradient in DC and X
4370 C
4371 cgrad      do k=i,j-1
4372 cgrad        do l=1,3
4373 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4374 cgrad        enddo
4375 cgrad      enddo
4376       return
4377       end
4378 C--------------------------------------------------------------------------
4379       subroutine ebond(estr)
4380 c
4381 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4382 c
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.LOCAL'
4386       include 'COMMON.GEO'
4387       include 'COMMON.INTERACT'
4388       include 'COMMON.DERIV'
4389       include 'COMMON.VAR'
4390       include 'COMMON.CHAIN'
4391       include 'COMMON.IOUNITS'
4392       include 'COMMON.NAMES'
4393       include 'COMMON.FFIELD'
4394       include 'COMMON.CONTROL'
4395       include 'COMMON.SETUP'
4396       double precision u(3),ud(3)
4397       estr=0.0d0
4398       do i=ibondp_start,ibondp_end
4399         diff = vbld(i)-vbldp0
4400 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4401         estr=estr+diff*diff
4402         do j=1,3
4403           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4404         enddo
4405 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4406       enddo
4407       estr=0.5d0*AKP*estr
4408 c
4409 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4410 c
4411       do i=ibond_start,ibond_end
4412         iti=itype(i)
4413         if (iti.ne.10) then
4414           nbi=nbondterm(iti)
4415           if (nbi.eq.1) then
4416             diff=vbld(i+nres)-vbldsc0(1,iti)
4417 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4418 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4419             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4420             do j=1,3
4421               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4422             enddo
4423           else
4424             do j=1,nbi
4425               diff=vbld(i+nres)-vbldsc0(j,iti) 
4426               ud(j)=aksc(j,iti)*diff
4427               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4428             enddo
4429             uprod=u(1)
4430             do j=2,nbi
4431               uprod=uprod*u(j)
4432             enddo
4433             usum=0.0d0
4434             usumsqder=0.0d0
4435             do j=1,nbi
4436               uprod1=1.0d0
4437               uprod2=1.0d0
4438               do k=1,nbi
4439                 if (k.ne.j) then
4440                   uprod1=uprod1*u(k)
4441                   uprod2=uprod2*u(k)*u(k)
4442                 endif
4443               enddo
4444               usum=usum+uprod1
4445               usumsqder=usumsqder+ud(j)*uprod2   
4446             enddo
4447             estr=estr+uprod/usum
4448             do j=1,3
4449              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4450             enddo
4451           endif
4452         endif
4453       enddo
4454       return
4455       end 
4456 #ifdef CRYST_THETA
4457 C--------------------------------------------------------------------------
4458       subroutine ebend(etheta)
4459 C
4460 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4461 C angles gamma and its derivatives in consecutive thetas and gammas.
4462 C
4463       implicit real*8 (a-h,o-z)
4464       include 'DIMENSIONS'
4465       include 'COMMON.LOCAL'
4466       include 'COMMON.GEO'
4467       include 'COMMON.INTERACT'
4468       include 'COMMON.DERIV'
4469       include 'COMMON.VAR'
4470       include 'COMMON.CHAIN'
4471       include 'COMMON.IOUNITS'
4472       include 'COMMON.NAMES'
4473       include 'COMMON.FFIELD'
4474       include 'COMMON.CONTROL'
4475       common /calcthet/ term1,term2,termm,diffak,ratak,
4476      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4477      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4478       double precision y(2),z(2)
4479       delta=0.02d0*pi
4480 c      time11=dexp(-2*time)
4481 c      time12=1.0d0
4482       etheta=0.0D0
4483 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4484       do i=ithet_start,ithet_end
4485 C Zero the energy function and its derivative at 0 or pi.
4486         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4487         it=itype(i-1)
4488         ichir1=isign(1,itype(i-2))
4489         ichir2=isign(1,itype(i))
4490         if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1))
4491         if (itype(i).eq.10) ichir2=isign(1,itype(i-1))
4492         if (itype(i-1).eq.10) then
4493          itype1=isign(10,itype(i-2))
4494          ichir11=isign(1,itype(i-2))
4495          ichir12=isign(1,itype(i-2))
4496          itype2=isign(10,itype(i))
4497          ichir21=isign(1,itype(i))
4498          ichir22=isign(1,itype(i))
4499         endif
4500         if (i.gt.3) then
4501 #ifdef OSF
4502           phii=phi(i)
4503           if (phii.ne.phii) phii=150.0
4504 #else
4505           phii=phi(i)
4506 #endif
4507           y(1)=dcos(phii)
4508           y(2)=dsin(phii)
4509         else 
4510           y(1)=0.0D0
4511           y(2)=0.0D0
4512         endif
4513         if (i.lt.nres) then
4514 #ifdef OSF
4515           phii1=phi(i+1)
4516           if (phii1.ne.phii1) phii1=150.0
4517           phii1=pinorm(phii1)
4518           z(1)=cos(phii1)
4519 #else
4520           phii1=phi(i+1)
4521           z(1)=dcos(phii1)
4522 #endif
4523           z(2)=dsin(phii1)
4524         else
4525           z(1)=0.0D0
4526           z(2)=0.0D0
4527         endif  
4528 C Calculate the "mean" value of theta from the part of the distribution
4529 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4530 C In following comments this theta will be referred to as t_c.
4531         thet_pred_mean=0.0d0
4532         do k=1,2
4533           athetk=athet(k,it,ichir1,ichir2)
4534           bthetk=bthet(k,it,ichir1,ichir2)
4535         if (it.eq.10) then
4536            athetk=athet(k,itype1,ichir11,ichir12)
4537            bthetk=bthet(k,itype2,ichir21,ichir22)
4538         endif
4539           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4540         enddo
4541         dthett=thet_pred_mean*ssd
4542         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4543 C Derivatives of the "mean" values in gamma1 and gamma2.
4544         dthetg1=(-athet(1,it,ichir1,ichir2)*y(2)
4545      &+athet(2,it,ichir1,ichir2)*y(1))*ss
4546         dthetg2=(-bthet(1,it,ichir1,ichir2)*z(2)
4547      &          +bthet(2,it,ichir1,ichir2)*z(1))*ss
4548         if (it.eq.10) then
4549       dthetg1=(-athet(1,itype1,ichir11,ichir12)*y(2)
4550      &+athet(2,itype1,ichir11,ichir12)*y(1))*ss
4551         dthetg2=(-bthet(1,itype2,ichir21,ichir22)*z(2)
4552      &         +bthet(2,itype2,ichir21,ichir22)*z(1))*ss
4553         endif
4554         if (theta(i).gt.pi-delta) then
4555           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4556      &         E_tc0)
4557           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4558           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4559           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4560      &        E_theta)
4561           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4562      &        E_tc)
4563         else if (theta(i).lt.delta) then
4564           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4565           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4566           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4567      &        E_theta)
4568           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4569           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4570      &        E_tc)
4571         else
4572           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4573      &        E_theta,E_tc)
4574         endif
4575         etheta=etheta+ethetai
4576         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4577      &      'ebend',i,ethetai
4578         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4579         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4580         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4581       enddo
4582 C Ufff.... We've done all this!!! 
4583       return
4584       end
4585 C---------------------------------------------------------------------------
4586       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4587      &     E_tc)
4588       implicit real*8 (a-h,o-z)
4589       include 'DIMENSIONS'
4590       include 'COMMON.LOCAL'
4591       include 'COMMON.IOUNITS'
4592       common /calcthet/ term1,term2,termm,diffak,ratak,
4593      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4594      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4595 C Calculate the contributions to both Gaussian lobes.
4596 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4597 C The "polynomial part" of the "standard deviation" of this part of 
4598 C the distribution.
4599         sig=polthet(3,it)
4600         do j=2,0,-1
4601           sig=sig*thet_pred_mean+polthet(j,it)
4602         enddo
4603 C Derivative of the "interior part" of the "standard deviation of the" 
4604 C gamma-dependent Gaussian lobe in t_c.
4605         sigtc=3*polthet(3,it)
4606         do j=2,1,-1
4607           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4608         enddo
4609         sigtc=sig*sigtc
4610 C Set the parameters of both Gaussian lobes of the distribution.
4611 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4612         fac=sig*sig+sigc0(it)
4613         sigcsq=fac+fac
4614         sigc=1.0D0/sigcsq
4615 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4616         sigsqtc=-4.0D0*sigcsq*sigtc
4617 c       print *,i,sig,sigtc,sigsqtc
4618 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4619         sigtc=-sigtc/(fac*fac)
4620 C Following variable is sigma(t_c)**(-2)
4621         sigcsq=sigcsq*sigcsq
4622         sig0i=sig0(it)
4623         sig0inv=1.0D0/sig0i**2
4624         delthec=thetai-thet_pred_mean
4625         delthe0=thetai-theta0i
4626         term1=-0.5D0*sigcsq*delthec*delthec
4627         term2=-0.5D0*sig0inv*delthe0*delthe0
4628 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4629 C NaNs in taking the logarithm. We extract the largest exponent which is added
4630 C to the energy (this being the log of the distribution) at the end of energy
4631 C term evaluation for this virtual-bond angle.
4632         if (term1.gt.term2) then
4633           termm=term1
4634           term2=dexp(term2-termm)
4635           term1=1.0d0
4636         else
4637           termm=term2
4638           term1=dexp(term1-termm)
4639           term2=1.0d0
4640         endif
4641 C The ratio between the gamma-independent and gamma-dependent lobes of
4642 C the distribution is a Gaussian function of thet_pred_mean too.
4643         diffak=gthet(2,it)-thet_pred_mean
4644         ratak=diffak/gthet(3,it)**2
4645         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4646 C Let's differentiate it in thet_pred_mean NOW.
4647         aktc=ak*ratak
4648 C Now put together the distribution terms to make complete distribution.
4649         termexp=term1+ak*term2
4650         termpre=sigc+ak*sig0i
4651 C Contribution of the bending energy from this theta is just the -log of
4652 C the sum of the contributions from the two lobes and the pre-exponential
4653 C factor. Simple enough, isn't it?
4654         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4655 C NOW the derivatives!!!
4656 C 6/6/97 Take into account the deformation.
4657         E_theta=(delthec*sigcsq*term1
4658      &       +ak*delthe0*sig0inv*term2)/termexp
4659         E_tc=((sigtc+aktc*sig0i)/termpre
4660      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4661      &       aktc*term2)/termexp)
4662       return
4663       end
4664 c-----------------------------------------------------------------------------
4665       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4666       implicit real*8 (a-h,o-z)
4667       include 'DIMENSIONS'
4668       include 'COMMON.LOCAL'
4669       include 'COMMON.IOUNITS'
4670       common /calcthet/ term1,term2,termm,diffak,ratak,
4671      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4672      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4673       delthec=thetai-thet_pred_mean
4674       delthe0=thetai-theta0i
4675 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4676       t3 = thetai-thet_pred_mean
4677       t6 = t3**2
4678       t9 = term1
4679       t12 = t3*sigcsq
4680       t14 = t12+t6*sigsqtc
4681       t16 = 1.0d0
4682       t21 = thetai-theta0i
4683       t23 = t21**2
4684       t26 = term2
4685       t27 = t21*t26
4686       t32 = termexp
4687       t40 = t32**2
4688       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4689      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4690      & *(-t12*t9-ak*sig0inv*t27)
4691       return
4692       end
4693 #else
4694 C--------------------------------------------------------------------------
4695       subroutine ebend(etheta)
4696 C
4697 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4698 C angles gamma and its derivatives in consecutive thetas and gammas.
4699 C ab initio-derived potentials from 
4700 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4701 C
4702       implicit real*8 (a-h,o-z)
4703       include 'DIMENSIONS'
4704       include 'COMMON.LOCAL'
4705       include 'COMMON.GEO'
4706       include 'COMMON.INTERACT'
4707       include 'COMMON.DERIV'
4708       include 'COMMON.VAR'
4709       include 'COMMON.CHAIN'
4710       include 'COMMON.IOUNITS'
4711       include 'COMMON.NAMES'
4712       include 'COMMON.FFIELD'
4713       include 'COMMON.CONTROL'
4714       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4715      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4716      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4717      & sinph1ph2(maxdouble,maxdouble)
4718       logical lprn /.false./, lprn1 /.false./
4719       etheta=0.0D0
4720       do i=ithet_start,ithet_end
4721         dethetai=0.0d0
4722         dephii=0.0d0
4723         dephii1=0.0d0
4724         theti2=0.5d0*theta(i)
4725         ityp2=ithetyp(itype(i-1))
4726         do k=1,nntheterm
4727           coskt(k)=dcos(k*theti2)
4728           sinkt(k)=dsin(k*theti2)
4729         enddo
4730         if (i.gt.3) then
4731 #ifdef OSF
4732           phii=phi(i)
4733           if (phii.ne.phii) phii=150.0
4734 #else
4735           phii=phi(i)
4736 #endif
4737           ityp1=ithetyp(itype(i-2))
4738           do k=1,nsingle
4739             cosph1(k)=dcos(k*phii)
4740             sinph1(k)=dsin(k*phii)
4741           enddo
4742         else
4743           phii=0.0d0
4744           ityp1=nthetyp+1
4745           do k=1,nsingle
4746             cosph1(k)=0.0d0
4747             sinph1(k)=0.0d0
4748           enddo 
4749         endif
4750         if (i.lt.nres) then
4751 #ifdef OSF
4752           phii1=phi(i+1)
4753           if (phii1.ne.phii1) phii1=150.0
4754           phii1=pinorm(phii1)
4755 #else
4756           phii1=phi(i+1)
4757 #endif
4758           ityp3=ithetyp(itype(i))
4759           do k=1,nsingle
4760             cosph2(k)=dcos(k*phii1)
4761             sinph2(k)=dsin(k*phii1)
4762           enddo
4763         else
4764           phii1=0.0d0
4765           ityp3=nthetyp+1
4766           do k=1,nsingle
4767             cosph2(k)=0.0d0
4768             sinph2(k)=0.0d0
4769           enddo
4770         endif  
4771         ethetai=aa0thet(ityp1,ityp2,ityp3)
4772         do k=1,ndouble
4773           do l=1,k-1
4774             ccl=cosph1(l)*cosph2(k-l)
4775             ssl=sinph1(l)*sinph2(k-l)
4776             scl=sinph1(l)*cosph2(k-l)
4777             csl=cosph1(l)*sinph2(k-l)
4778             cosph1ph2(l,k)=ccl-ssl
4779             cosph1ph2(k,l)=ccl+ssl
4780             sinph1ph2(l,k)=scl+csl
4781             sinph1ph2(k,l)=scl-csl
4782           enddo
4783         enddo
4784         if (lprn) then
4785         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4786      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4787         write (iout,*) "coskt and sinkt"
4788         do k=1,nntheterm
4789           write (iout,*) k,coskt(k),sinkt(k)
4790         enddo
4791         endif
4792         do k=1,ntheterm
4793           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4794           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4795      &      *coskt(k)
4796           if (lprn)
4797      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4798      &     " ethetai",ethetai
4799         enddo
4800         if (lprn) then
4801         write (iout,*) "cosph and sinph"
4802         do k=1,nsingle
4803           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4804         enddo
4805         write (iout,*) "cosph1ph2 and sinph2ph2"
4806         do k=2,ndouble
4807           do l=1,k-1
4808             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4809      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4810           enddo
4811         enddo
4812         write(iout,*) "ethetai",ethetai
4813         endif
4814         do m=1,ntheterm2
4815           do k=1,nsingle
4816             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4817      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4818      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4819      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4820             ethetai=ethetai+sinkt(m)*aux
4821             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4822             dephii=dephii+k*sinkt(m)*(
4823      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4824      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4825             dephii1=dephii1+k*sinkt(m)*(
4826      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4827      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4828             if (lprn)
4829      &      write (iout,*) "m",m," k",k," bbthet",
4830      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4831      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4832      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4833      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4834           enddo
4835         enddo
4836         if (lprn)
4837      &  write(iout,*) "ethetai",ethetai
4838         do m=1,ntheterm3
4839           do k=2,ndouble
4840             do l=1,k-1
4841               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4842      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4843      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4844      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4845               ethetai=ethetai+sinkt(m)*aux
4846               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4847               dephii=dephii+l*sinkt(m)*(
4848      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4849      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4850      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4851      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4852               dephii1=dephii1+(k-l)*sinkt(m)*(
4853      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4854      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4855      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4856      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4857               if (lprn) then
4858               write (iout,*) "m",m," k",k," l",l," ffthet",
4859      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4860      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4861      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4862      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4863               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4864      &            cosph1ph2(k,l)*sinkt(m),
4865      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4866               endif
4867             enddo
4868           enddo
4869         enddo
4870 10      continue
4871         if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
4872      &   i,theta(i)*rad2deg,phii*rad2deg,
4873      &   phii1*rad2deg,ethetai
4874         etheta=etheta+ethetai
4875         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4876         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4877         gloc(nphi+i-2,icg)=wang*dethetai
4878       enddo
4879       return
4880       end
4881 #endif
4882 #ifdef CRYST_SC
4883 c-----------------------------------------------------------------------------
4884       subroutine esc(escloc)
4885 C Calculate the local energy of a side chain and its derivatives in the
4886 C corresponding virtual-bond valence angles THETA and the spherical angles 
4887 C ALPHA and OMEGA.
4888       implicit real*8 (a-h,o-z)
4889       include 'DIMENSIONS'
4890       include 'COMMON.GEO'
4891       include 'COMMON.LOCAL'
4892       include 'COMMON.VAR'
4893       include 'COMMON.INTERACT'
4894       include 'COMMON.DERIV'
4895       include 'COMMON.CHAIN'
4896       include 'COMMON.IOUNITS'
4897       include 'COMMON.NAMES'
4898       include 'COMMON.FFIELD'
4899       include 'COMMON.CONTROL'
4900       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4901      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4902       common /sccalc/ time11,time12,time112,theti,it,nlobit
4903       delta=0.02d0*pi
4904       escloc=0.0D0
4905 c     write (iout,'(a)') 'ESC'
4906       do i=loc_start,loc_end
4907         it=itype(i)
4908         if (it.eq.10) goto 1
4909         nlobit=nlob(it)
4910 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4911 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4912         theti=theta(i+1)-pipol
4913         x(1)=dtan(theti)
4914         x(2)=alph(i)
4915         x(3)=omeg(i)
4916
4917         if (x(2).gt.pi-delta) then
4918           xtemp(1)=x(1)
4919           xtemp(2)=pi-delta
4920           xtemp(3)=x(3)
4921           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4922           xtemp(2)=pi
4923           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4924           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4925      &        escloci,dersc(2))
4926           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4927      &        ddersc0(1),dersc(1))
4928           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4929      &        ddersc0(3),dersc(3))
4930           xtemp(2)=pi-delta
4931           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4932           xtemp(2)=pi
4933           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4934           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4935      &            dersc0(2),esclocbi,dersc02)
4936           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4937      &            dersc12,dersc01)
4938           call splinthet(x(2),0.5d0*delta,ss,ssd)
4939           dersc0(1)=dersc01
4940           dersc0(2)=dersc02
4941           dersc0(3)=0.0d0
4942           do k=1,3
4943             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4944           enddo
4945           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4946 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4947 c    &             esclocbi,ss,ssd
4948           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4949 c         escloci=esclocbi
4950 c         write (iout,*) escloci
4951         else if (x(2).lt.delta) then
4952           xtemp(1)=x(1)
4953           xtemp(2)=delta
4954           xtemp(3)=x(3)
4955           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4956           xtemp(2)=0.0d0
4957           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4958           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
4959      &        escloci,dersc(2))
4960           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4961      &        ddersc0(1),dersc(1))
4962           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
4963      &        ddersc0(3),dersc(3))
4964           xtemp(2)=delta
4965           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4966           xtemp(2)=0.0d0
4967           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4968           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
4969      &            dersc0(2),esclocbi,dersc02)
4970           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4971      &            dersc12,dersc01)
4972           dersc0(1)=dersc01
4973           dersc0(2)=dersc02
4974           dersc0(3)=0.0d0
4975           call splinthet(x(2),0.5d0*delta,ss,ssd)
4976           do k=1,3
4977             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4978           enddo
4979           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4980 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4981 c    &             esclocbi,ss,ssd
4982           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4983 c         write (iout,*) escloci
4984         else
4985           call enesc(x,escloci,dersc,ddummy,.false.)
4986         endif
4987
4988         escloc=escloc+escloci
4989         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4990      &     'escloc',i,escloci
4991 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
4992
4993         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
4994      &   wscloc*dersc(1)
4995         gloc(ialph(i,1),icg)=wscloc*dersc(2)
4996         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
4997     1   continue
4998       enddo
4999       return
5000       end
5001 C---------------------------------------------------------------------------
5002       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5003       implicit real*8 (a-h,o-z)
5004       include 'DIMENSIONS'
5005       include 'COMMON.GEO'
5006       include 'COMMON.LOCAL'
5007       include 'COMMON.IOUNITS'
5008       common /sccalc/ time11,time12,time112,theti,it,nlobit
5009       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5010       double precision contr(maxlob,-1:1)
5011       logical mixed
5012 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5013         escloc_i=0.0D0
5014         do j=1,3
5015           dersc(j)=0.0D0
5016           if (mixed) ddersc(j)=0.0d0
5017         enddo
5018         x3=x(3)
5019
5020 C Because of periodicity of the dependence of the SC energy in omega we have
5021 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5022 C To avoid underflows, first compute & store the exponents.
5023
5024         do iii=-1,1
5025
5026           x(3)=x3+iii*dwapi
5027  
5028           do j=1,nlobit
5029             do k=1,3
5030               z(k)=x(k)-censc(k,j,it)
5031             enddo
5032             do k=1,3
5033               Axk=0.0D0
5034               do l=1,3
5035                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5036               enddo
5037               Ax(k,j,iii)=Axk
5038             enddo 
5039             expfac=0.0D0 
5040             do k=1,3
5041               expfac=expfac+Ax(k,j,iii)*z(k)
5042             enddo
5043             contr(j,iii)=expfac
5044           enddo ! j
5045
5046         enddo ! iii
5047
5048         x(3)=x3
5049 C As in the case of ebend, we want to avoid underflows in exponentiation and
5050 C subsequent NaNs and INFs in energy calculation.
5051 C Find the largest exponent
5052         emin=contr(1,-1)
5053         do iii=-1,1
5054           do j=1,nlobit
5055             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5056           enddo 
5057         enddo
5058         emin=0.5D0*emin
5059 cd      print *,'it=',it,' emin=',emin
5060
5061 C Compute the contribution to SC energy and derivatives
5062         do iii=-1,1
5063
5064           do j=1,nlobit
5065 #ifdef OSF
5066             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5067             if(adexp.ne.adexp) adexp=1.0
5068             expfac=dexp(adexp)
5069 #else
5070             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5071 #endif
5072 cd          print *,'j=',j,' expfac=',expfac
5073             escloc_i=escloc_i+expfac
5074             do k=1,3
5075               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5076             enddo
5077             if (mixed) then
5078               do k=1,3,2
5079                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5080      &            +gaussc(k,2,j,it))*expfac
5081               enddo
5082             endif
5083           enddo
5084
5085         enddo ! iii
5086
5087         dersc(1)=dersc(1)/cos(theti)**2
5088         ddersc(1)=ddersc(1)/cos(theti)**2
5089         ddersc(3)=ddersc(3)
5090
5091         escloci=-(dlog(escloc_i)-emin)
5092         do j=1,3
5093           dersc(j)=dersc(j)/escloc_i
5094         enddo
5095         if (mixed) then
5096           do j=1,3,2
5097             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5098           enddo
5099         endif
5100       return
5101       end
5102 C------------------------------------------------------------------------------
5103       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5104       implicit real*8 (a-h,o-z)
5105       include 'DIMENSIONS'
5106       include 'COMMON.GEO'
5107       include 'COMMON.LOCAL'
5108       include 'COMMON.IOUNITS'
5109       common /sccalc/ time11,time12,time112,theti,it,nlobit
5110       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5111       double precision contr(maxlob)
5112       logical mixed
5113
5114       escloc_i=0.0D0
5115
5116       do j=1,3
5117         dersc(j)=0.0D0
5118       enddo
5119
5120       do j=1,nlobit
5121         do k=1,2
5122           z(k)=x(k)-censc(k,j,it)
5123         enddo
5124         z(3)=dwapi
5125         do k=1,3
5126           Axk=0.0D0
5127           do l=1,3
5128             Axk=Axk+gaussc(l,k,j,it)*z(l)
5129           enddo
5130           Ax(k,j)=Axk
5131         enddo 
5132         expfac=0.0D0 
5133         do k=1,3
5134           expfac=expfac+Ax(k,j)*z(k)
5135         enddo
5136         contr(j)=expfac
5137       enddo ! j
5138
5139 C As in the case of ebend, we want to avoid underflows in exponentiation and
5140 C subsequent NaNs and INFs in energy calculation.
5141 C Find the largest exponent
5142       emin=contr(1)
5143       do j=1,nlobit
5144         if (emin.gt.contr(j)) emin=contr(j)
5145       enddo 
5146       emin=0.5D0*emin
5147  
5148 C Compute the contribution to SC energy and derivatives
5149
5150       dersc12=0.0d0
5151       do j=1,nlobit
5152         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5153         escloc_i=escloc_i+expfac
5154         do k=1,2
5155           dersc(k)=dersc(k)+Ax(k,j)*expfac
5156         enddo
5157         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5158      &            +gaussc(1,2,j,it))*expfac
5159         dersc(3)=0.0d0
5160       enddo
5161
5162       dersc(1)=dersc(1)/cos(theti)**2
5163       dersc12=dersc12/cos(theti)**2
5164       escloci=-(dlog(escloc_i)-emin)
5165       do j=1,2
5166         dersc(j)=dersc(j)/escloc_i
5167       enddo
5168       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5169       return
5170       end
5171 #else
5172 c----------------------------------------------------------------------------------
5173       subroutine esc(escloc)
5174 C Calculate the local energy of a side chain and its derivatives in the
5175 C corresponding virtual-bond valence angles THETA and the spherical angles 
5176 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5177 C added by Urszula Kozlowska. 07/11/2007
5178 C
5179       implicit real*8 (a-h,o-z)
5180       include 'DIMENSIONS'
5181       include 'COMMON.GEO'
5182       include 'COMMON.LOCAL'
5183       include 'COMMON.VAR'
5184       include 'COMMON.SCROT'
5185       include 'COMMON.INTERACT'
5186       include 'COMMON.DERIV'
5187       include 'COMMON.CHAIN'
5188       include 'COMMON.IOUNITS'
5189       include 'COMMON.NAMES'
5190       include 'COMMON.FFIELD'
5191       include 'COMMON.CONTROL'
5192       include 'COMMON.VECTORS'
5193       double precision x_prime(3),y_prime(3),z_prime(3)
5194      &    , sumene,dsc_i,dp2_i,x(65),
5195      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5196      &    de_dxx,de_dyy,de_dzz,de_dt
5197       double precision s1_t,s1_6_t,s2_t,s2_6_t
5198       double precision 
5199      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5200      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5201      & dt_dCi(3),dt_dCi1(3)
5202       common /sccalc/ time11,time12,time112,theti,it,nlobit
5203       delta=0.02d0*pi
5204       escloc=0.0D0
5205       do i=loc_start,loc_end
5206         costtab(i+1) =dcos(theta(i+1))
5207         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5208         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5209         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5210         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5211         cosfac=dsqrt(cosfac2)
5212         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5213         sinfac=dsqrt(sinfac2)
5214         it=itype(i)
5215         if (it.eq.10) goto 1
5216 c
5217 C  Compute the axes of tghe local cartesian coordinates system; store in
5218 c   x_prime, y_prime and z_prime 
5219 c
5220         do j=1,3
5221           x_prime(j) = 0.00
5222           y_prime(j) = 0.00
5223           z_prime(j) = 0.00
5224         enddo
5225 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5226 C     &   dc_norm(3,i+nres)
5227         do j = 1,3
5228           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5229           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5230         enddo
5231         do j = 1,3
5232           z_prime(j) = -uz(j,i-1)
5233         enddo     
5234 c       write (2,*) "i",i
5235 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5236 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5237 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5238 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5239 c      & " xy",scalar(x_prime(1),y_prime(1)),
5240 c      & " xz",scalar(x_prime(1),z_prime(1)),
5241 c      & " yy",scalar(y_prime(1),y_prime(1)),
5242 c      & " yz",scalar(y_prime(1),z_prime(1)),
5243 c      & " zz",scalar(z_prime(1),z_prime(1))
5244 c
5245 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5246 C to local coordinate system. Store in xx, yy, zz.
5247 c
5248         xx=0.0d0
5249         yy=0.0d0
5250         zz=0.0d0
5251         do j = 1,3
5252           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5253           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5254           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5255         enddo
5256
5257         xxtab(i)=xx
5258         yytab(i)=yy
5259         zztab(i)=zz
5260 C
5261 C Compute the energy of the ith side cbain
5262 C
5263 c        write (2,*) "xx",xx," yy",yy," zz",zz
5264         it=itype(i)
5265         do j = 1,65
5266           x(j) = sc_parmin(j,it) 
5267         enddo
5268 #ifdef CHECK_COORD
5269 Cc diagnostics - remove later
5270         xx1 = dcos(alph(2))
5271         yy1 = dsin(alph(2))*dcos(omeg(2))
5272         zz1 = -dsin(alph(2))*dsin(omeg(2))
5273         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5274      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5275      &    xx1,yy1,zz1
5276 C,"  --- ", xx_w,yy_w,zz_w
5277 c end diagnostics
5278 #endif
5279         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5280      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5281      &   + x(10)*yy*zz
5282         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5283      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5284      & + x(20)*yy*zz
5285         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5286      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5287      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5288      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5289      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5290      &  +x(40)*xx*yy*zz
5291         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5292      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5293      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5294      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5295      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5296      &  +x(60)*xx*yy*zz
5297         dsc_i   = 0.743d0+x(61)
5298         dp2_i   = 1.9d0+x(62)
5299         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5300      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5301         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5302      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5303         s1=(1+x(63))/(0.1d0 + dscp1)
5304         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5305         s2=(1+x(65))/(0.1d0 + dscp2)
5306         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5307         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5308      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5309 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5310 c     &   sumene4,
5311 c     &   dscp1,dscp2,sumene
5312 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5313         escloc = escloc + sumene
5314 c        write (2,*) "i",i," escloc",sumene,escloc
5315 #ifdef DEBUG
5316 C
5317 C This section to check the numerical derivatives of the energy of ith side
5318 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5319 C #define DEBUG in the code to turn it on.
5320 C
5321         write (2,*) "sumene               =",sumene
5322         aincr=1.0d-7
5323         xxsave=xx
5324         xx=xx+aincr
5325         write (2,*) xx,yy,zz
5326         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5327         de_dxx_num=(sumenep-sumene)/aincr
5328         xx=xxsave
5329         write (2,*) "xx+ sumene from enesc=",sumenep
5330         yysave=yy
5331         yy=yy+aincr
5332         write (2,*) xx,yy,zz
5333         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5334         de_dyy_num=(sumenep-sumene)/aincr
5335         yy=yysave
5336         write (2,*) "yy+ sumene from enesc=",sumenep
5337         zzsave=zz
5338         zz=zz+aincr
5339         write (2,*) xx,yy,zz
5340         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5341         de_dzz_num=(sumenep-sumene)/aincr
5342         zz=zzsave
5343         write (2,*) "zz+ sumene from enesc=",sumenep
5344         costsave=cost2tab(i+1)
5345         sintsave=sint2tab(i+1)
5346         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5347         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5348         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5349         de_dt_num=(sumenep-sumene)/aincr
5350         write (2,*) " t+ sumene from enesc=",sumenep
5351         cost2tab(i+1)=costsave
5352         sint2tab(i+1)=sintsave
5353 C End of diagnostics section.
5354 #endif
5355 C        
5356 C Compute the gradient of esc
5357 C
5358         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5359         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5360         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5361         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5362         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5363         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5364         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5365         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5366         pom1=(sumene3*sint2tab(i+1)+sumene1)
5367      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5368         pom2=(sumene4*cost2tab(i+1)+sumene2)
5369      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5370         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5371         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5372      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5373      &  +x(40)*yy*zz
5374         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5375         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5376      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5377      &  +x(60)*yy*zz
5378         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5379      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5380      &        +(pom1+pom2)*pom_dx
5381 #ifdef DEBUG
5382         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5383 #endif
5384 C
5385         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5386         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5387      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5388      &  +x(40)*xx*zz
5389         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5390         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5391      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5392      &  +x(59)*zz**2 +x(60)*xx*zz
5393         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5394      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5395      &        +(pom1-pom2)*pom_dy
5396 #ifdef DEBUG
5397         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5398 #endif
5399 C
5400         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5401      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5402      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5403      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5404      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5405      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5406      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5407      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5408 #ifdef DEBUG
5409         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5410 #endif
5411 C
5412         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5413      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5414      &  +pom1*pom_dt1+pom2*pom_dt2
5415 #ifdef DEBUG
5416         write(2,*), "de_dt = ", de_dt,de_dt_num
5417 #endif
5418
5419 C
5420        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5421        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5422        cosfac2xx=cosfac2*xx
5423        sinfac2yy=sinfac2*yy
5424        do k = 1,3
5425          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5426      &      vbld_inv(i+1)
5427          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5428      &      vbld_inv(i)
5429          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5430          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5431 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5432 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5433 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5434 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5435          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5436          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5437          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5438          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5439          dZZ_Ci1(k)=0.0d0
5440          dZZ_Ci(k)=0.0d0
5441          do j=1,3
5442            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5443            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5444          enddo
5445           
5446          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5447          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5448          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5449 c
5450          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5451          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5452        enddo
5453
5454        do k=1,3
5455          dXX_Ctab(k,i)=dXX_Ci(k)
5456          dXX_C1tab(k,i)=dXX_Ci1(k)
5457          dYY_Ctab(k,i)=dYY_Ci(k)
5458          dYY_C1tab(k,i)=dYY_Ci1(k)
5459          dZZ_Ctab(k,i)=dZZ_Ci(k)
5460          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5461          dXX_XYZtab(k,i)=dXX_XYZ(k)
5462          dYY_XYZtab(k,i)=dYY_XYZ(k)
5463          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5464        enddo
5465
5466        do k = 1,3
5467 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5468 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5469 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5470 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5471 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5472 c     &    dt_dci(k)
5473 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5474 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5475          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5476      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5477          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5478      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5479          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5480      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5481        enddo
5482 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5483 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5484
5485 C to check gradient call subroutine check_grad
5486
5487     1 continue
5488       enddo
5489       return
5490       end
5491 c------------------------------------------------------------------------------
5492       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5493       implicit none
5494       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5495      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5496       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5497      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5498      &   + x(10)*yy*zz
5499       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5500      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5501      & + x(20)*yy*zz
5502       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5503      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5504      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5505      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5506      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5507      &  +x(40)*xx*yy*zz
5508       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5509      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5510      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5511      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5512      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5513      &  +x(60)*xx*yy*zz
5514       dsc_i   = 0.743d0+x(61)
5515       dp2_i   = 1.9d0+x(62)
5516       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5517      &          *(xx*cost2+yy*sint2))
5518       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5519      &          *(xx*cost2-yy*sint2))
5520       s1=(1+x(63))/(0.1d0 + dscp1)
5521       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5522       s2=(1+x(65))/(0.1d0 + dscp2)
5523       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5524       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5525      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5526       enesc=sumene
5527       return
5528       end
5529 #endif
5530 c------------------------------------------------------------------------------
5531       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5532 C
5533 C This procedure calculates two-body contact function g(rij) and its derivative:
5534 C
5535 C           eps0ij                                     !       x < -1
5536 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5537 C            0                                         !       x > 1
5538 C
5539 C where x=(rij-r0ij)/delta
5540 C
5541 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5542 C
5543       implicit none
5544       double precision rij,r0ij,eps0ij,fcont,fprimcont
5545       double precision x,x2,x4,delta
5546 c     delta=0.02D0*r0ij
5547 c      delta=0.2D0*r0ij
5548       x=(rij-r0ij)/delta
5549       if (x.lt.-1.0D0) then
5550         fcont=eps0ij
5551         fprimcont=0.0D0
5552       else if (x.le.1.0D0) then  
5553         x2=x*x
5554         x4=x2*x2
5555         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5556         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5557       else
5558         fcont=0.0D0
5559         fprimcont=0.0D0
5560       endif
5561       return
5562       end
5563 c------------------------------------------------------------------------------
5564       subroutine splinthet(theti,delta,ss,ssder)
5565       implicit real*8 (a-h,o-z)
5566       include 'DIMENSIONS'
5567       include 'COMMON.VAR'
5568       include 'COMMON.GEO'
5569       thetup=pi-delta
5570       thetlow=delta
5571       if (theti.gt.pipol) then
5572         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5573       else
5574         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5575         ssder=-ssder
5576       endif
5577       return
5578       end
5579 c------------------------------------------------------------------------------
5580       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5581       implicit none
5582       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5583       double precision ksi,ksi2,ksi3,a1,a2,a3
5584       a1=fprim0*delta/(f1-f0)
5585       a2=3.0d0-2.0d0*a1
5586       a3=a1-2.0d0
5587       ksi=(x-x0)/delta
5588       ksi2=ksi*ksi
5589       ksi3=ksi2*ksi  
5590       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5591       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5592       return
5593       end
5594 c------------------------------------------------------------------------------
5595       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5596       implicit none
5597       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5598       double precision ksi,ksi2,ksi3,a1,a2,a3
5599       ksi=(x-x0)/delta  
5600       ksi2=ksi*ksi
5601       ksi3=ksi2*ksi
5602       a1=fprim0x*delta
5603       a2=3*(f1x-f0x)-2*fprim0x*delta
5604       a3=fprim0x*delta-2*(f1x-f0x)
5605       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5606       return
5607       end
5608 C-----------------------------------------------------------------------------
5609 #ifdef CRYST_TOR
5610 C-----------------------------------------------------------------------------
5611       subroutine etor(etors,edihcnstr)
5612       implicit real*8 (a-h,o-z)
5613       include 'DIMENSIONS'
5614       include 'COMMON.VAR'
5615       include 'COMMON.GEO'
5616       include 'COMMON.LOCAL'
5617       include 'COMMON.TORSION'
5618       include 'COMMON.INTERACT'
5619       include 'COMMON.DERIV'
5620       include 'COMMON.CHAIN'
5621       include 'COMMON.NAMES'
5622       include 'COMMON.IOUNITS'
5623       include 'COMMON.FFIELD'
5624       include 'COMMON.TORCNSTR'
5625       include 'COMMON.CONTROL'
5626       logical lprn
5627 C Set lprn=.true. for debugging
5628       lprn=.false.
5629 c      lprn=.true.
5630       etors=0.0D0
5631       do i=iphi_start,iphi_end
5632       etors_ii=0.0D0
5633         itori=itortyp(itype(i-2))
5634         itori1=itortyp(itype(i-1))
5635         phii=phi(i)
5636         gloci=0.0D0
5637 C Proline-Proline pair is a special case...
5638         if (itori.eq.3 .and. itori1.eq.3) then
5639           if (phii.gt.-dwapi3) then
5640             cosphi=dcos(3*phii)
5641             fac=1.0D0/(1.0D0-cosphi)
5642             etorsi=v1(1,3,3)*fac
5643             etorsi=etorsi+etorsi
5644             etors=etors+etorsi-v1(1,3,3)
5645             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5646             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5647           endif
5648           do j=1,3
5649             v1ij=v1(j+1,itori,itori1)
5650             v2ij=v2(j+1,itori,itori1)
5651             cosphi=dcos(j*phii)
5652             sinphi=dsin(j*phii)
5653             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5654             if (energy_dec) etors_ii=etors_ii+
5655      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5656             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5657           enddo
5658         else 
5659           do j=1,nterm_old
5660             v1ij=v1(j,itori,itori1)
5661             v2ij=v2(j,itori,itori1)
5662             cosphi=dcos(j*phii)
5663             sinphi=dsin(j*phii)
5664             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5665             if (energy_dec) etors_ii=etors_ii+
5666      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5667             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5668           enddo
5669         endif
5670         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5671      &        'etor',i,etors_ii
5672         if (lprn)
5673      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5674      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5675      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5676         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5677 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5678       enddo
5679 ! 6/20/98 - dihedral angle constraints
5680       edihcnstr=0.0d0
5681       do i=1,ndih_constr
5682         itori=idih_constr(i)
5683         phii=phi(itori)
5684         difi=phii-phi0(i)
5685         if (difi.gt.drange(i)) then
5686           difi=difi-drange(i)
5687           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5688           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5689         else if (difi.lt.-drange(i)) then
5690           difi=difi+drange(i)
5691           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5692           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5693         endif
5694 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5695 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5696       enddo
5697 !      write (iout,*) 'edihcnstr',edihcnstr
5698       return
5699       end
5700 c------------------------------------------------------------------------------
5701       subroutine etor_d(etors_d)
5702       etors_d=0.0d0
5703       return
5704       end
5705 c----------------------------------------------------------------------------
5706 #else
5707       subroutine etor(etors,edihcnstr)
5708       implicit real*8 (a-h,o-z)
5709       include 'DIMENSIONS'
5710       include 'COMMON.VAR'
5711       include 'COMMON.GEO'
5712       include 'COMMON.LOCAL'
5713       include 'COMMON.TORSION'
5714       include 'COMMON.INTERACT'
5715       include 'COMMON.DERIV'
5716       include 'COMMON.CHAIN'
5717       include 'COMMON.NAMES'
5718       include 'COMMON.IOUNITS'
5719       include 'COMMON.FFIELD'
5720       include 'COMMON.TORCNSTR'
5721       include 'COMMON.CONTROL'
5722       logical lprn
5723 C Set lprn=.true. for debugging
5724       lprn=.false.
5725 c     lprn=.true.
5726       etors=0.0D0
5727       do i=iphi_start,iphi_end
5728       etors_ii=0.0D0
5729         itori=itortyp(itype(i-2))
5730         itori1=itortyp(itype(i-1))
5731         phii=phi(i)
5732         gloci=0.0D0
5733 C Regular cosine and sine terms
5734         do j=1,nterm(itori,itori1)
5735           v1ij=v1(j,itori,itori1)
5736           v2ij=v2(j,itori,itori1)
5737           cosphi=dcos(j*phii)
5738           sinphi=dsin(j*phii)
5739           etors=etors+v1ij*cosphi+v2ij*sinphi
5740           if (energy_dec) etors_ii=etors_ii+
5741      &                v1ij*cosphi+v2ij*sinphi
5742           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5743         enddo
5744 C Lorentz terms
5745 C                         v1
5746 C  E = SUM ----------------------------------- - v1
5747 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5748 C
5749         cosphi=dcos(0.5d0*phii)
5750         sinphi=dsin(0.5d0*phii)
5751         do j=1,nlor(itori,itori1)
5752           vl1ij=vlor1(j,itori,itori1)
5753           vl2ij=vlor2(j,itori,itori1)
5754           vl3ij=vlor3(j,itori,itori1)
5755           pom=vl2ij*cosphi+vl3ij*sinphi
5756           pom1=1.0d0/(pom*pom+1.0d0)
5757           etors=etors+vl1ij*pom1
5758           if (energy_dec) etors_ii=etors_ii+
5759      &                vl1ij*pom1
5760           pom=-pom*pom1*pom1
5761           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5762         enddo
5763 C Subtract the constant term
5764         etors=etors-v0(itori,itori1)
5765           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5766      &         'etor',i,etors_ii-v0(itori,itori1)
5767         if (lprn)
5768      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5769      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5770      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5771         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5772 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5773       enddo
5774 ! 6/20/98 - dihedral angle constraints
5775       edihcnstr=0.0d0
5776 c      do i=1,ndih_constr
5777       do i=idihconstr_start,idihconstr_end
5778         itori=idih_constr(i)
5779         phii=phi(itori)
5780         difi=pinorm(phii-phi0(i))
5781         if (difi.gt.drange(i)) then
5782           difi=difi-drange(i)
5783           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5784           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5785         else if (difi.lt.-drange(i)) then
5786           difi=difi+drange(i)
5787           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5788           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5789         else
5790           difi=0.0
5791         endif
5792 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5793 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5794 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5795       enddo
5796 cd       write (iout,*) 'edihcnstr',edihcnstr
5797       return
5798       end
5799 c----------------------------------------------------------------------------
5800       subroutine etor_d(etors_d)
5801 C 6/23/01 Compute double torsional energy
5802       implicit real*8 (a-h,o-z)
5803       include 'DIMENSIONS'
5804       include 'COMMON.VAR'
5805       include 'COMMON.GEO'
5806       include 'COMMON.LOCAL'
5807       include 'COMMON.TORSION'
5808       include 'COMMON.INTERACT'
5809       include 'COMMON.DERIV'
5810       include 'COMMON.CHAIN'
5811       include 'COMMON.NAMES'
5812       include 'COMMON.IOUNITS'
5813       include 'COMMON.FFIELD'
5814       include 'COMMON.TORCNSTR'
5815       logical lprn
5816 C Set lprn=.true. for debugging
5817       lprn=.false.
5818 c     lprn=.true.
5819       etors_d=0.0D0
5820       do i=iphid_start,iphid_end
5821         itori=itortyp(itype(i-2))
5822         itori1=itortyp(itype(i-1))
5823         itori2=itortyp(itype(i))
5824         iblock=1
5825         if (iabs(itype(i+1)).eq.20) iblock=2
5826         phii=phi(i)
5827         phii1=phi(i+1)
5828         gloci1=0.0D0
5829         gloci2=0.0D0
5830 C Regular cosine and sine terms
5831         do j=1,ntermd_1(itori,itori1,itori2,iblock)
5832           v1cij=v1c(1,j,itori,itori1,itori2,iblock)
5833           v1sij=v1s(1,j,itori,itori1,itori2,iblock)
5834           v2cij=v1c(2,j,itori,itori1,itori2,iblock)
5835           v2sij=v1s(2,j,itori,itori1,itori2,iblock)
5836           cosphi1=dcos(j*phii)
5837           sinphi1=dsin(j*phii)
5838           cosphi2=dcos(j*phii1)
5839           sinphi2=dsin(j*phii1)
5840           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5841      &     v2cij*cosphi2+v2sij*sinphi2
5842           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5843           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5844         enddo
5845         do k=2,ntermd_2(itori,itori1,itori2,iblock)
5846           do l=1,k-1
5847             v1cdij = v2c(k,l,itori,itori1,itori2,iblock)
5848             v2cdij = v2c(l,k,itori,itori1,itori2,iblock)
5849             v1sdij = v2s(k,l,itori,itori1,itori2,iblock)
5850             v2sdij = v2s(l,k,itori,itori1,itori2,iblock)
5851             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5852             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5853             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5854             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5855             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5856      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5857             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5858      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5859             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5860      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5861           enddo
5862         enddo
5863         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5864         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5865       enddo
5866       return
5867       end
5868 #endif
5869 c------------------------------------------------------------------------------
5870       subroutine eback_sc_corr(esccor)
5871 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5872 c        conformational states; temporarily implemented as differences
5873 c        between UNRES torsional potentials (dependent on three types of
5874 c        residues) and the torsional potentials dependent on all 20 types
5875 c        of residues computed from AM1  energy surfaces of terminally-blocked
5876 c        amino-acid residues.
5877       implicit real*8 (a-h,o-z)
5878       include 'DIMENSIONS'
5879       include 'COMMON.VAR'
5880       include 'COMMON.GEO'
5881       include 'COMMON.LOCAL'
5882       include 'COMMON.TORSION'
5883       include 'COMMON.SCCOR'
5884       include 'COMMON.INTERACT'
5885       include 'COMMON.DERIV'
5886       include 'COMMON.CHAIN'
5887       include 'COMMON.NAMES'
5888       include 'COMMON.IOUNITS'
5889       include 'COMMON.FFIELD'
5890       include 'COMMON.CONTROL'
5891       logical lprn
5892 C Set lprn=.true. for debugging
5893       lprn=.false.
5894 c      lprn=.true.
5895 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5896       esccor=0.0D0
5897       do i=iphi_start,iphi_end
5898         esccor_ii=0.0D0
5899         itori=itype(i-2)
5900         itori1=itype(i-1)
5901         phii=phi(i)
5902         gloci=0.0D0
5903         do j=1,nterm_sccor
5904           v1ij=v1sccor(j,itori,itori1)
5905           v2ij=v2sccor(j,itori,itori1)
5906           cosphi=dcos(j*phii)
5907           sinphi=dsin(j*phii)
5908           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5909           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5910         enddo
5911         if (lprn)
5912      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5913      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5914      &  (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6)
5915         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
5916       enddo
5917       return
5918       end
5919 c----------------------------------------------------------------------------
5920       subroutine multibody(ecorr)
5921 C This subroutine calculates multi-body contributions to energy following
5922 C the idea of Skolnick et al. If side chains I and J make a contact and
5923 C at the same time side chains I+1 and J+1 make a contact, an extra 
5924 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
5925       implicit real*8 (a-h,o-z)
5926       include 'DIMENSIONS'
5927       include 'COMMON.IOUNITS'
5928       include 'COMMON.DERIV'
5929       include 'COMMON.INTERACT'
5930       include 'COMMON.CONTACTS'
5931 #ifdef MOMENT
5932       include 'COMMON.CONTACTS.MOMENT'
5933 #endif  
5934       double precision gx(3),gx1(3)
5935       logical lprn
5936
5937 C Set lprn=.true. for debugging
5938       lprn=.false.
5939
5940       if (lprn) then
5941         write (iout,'(a)') 'Contact function values:'
5942         do i=nnt,nct-2
5943           write (iout,'(i2,20(1x,i2,f10.5))') 
5944      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
5945         enddo
5946       endif
5947       ecorr=0.0D0
5948       do i=nnt,nct
5949         do j=1,3
5950           gradcorr(j,i)=0.0D0
5951           gradxorr(j,i)=0.0D0
5952         enddo
5953       enddo
5954       do i=nnt,nct-2
5955
5956         DO ISHIFT = 3,4
5957
5958         i1=i+ishift
5959         num_conti=num_cont(i)
5960         num_conti1=num_cont(i1)
5961         do jj=1,num_conti
5962           j=jcont(jj,i)
5963           do kk=1,num_conti1
5964             j1=jcont(kk,i1)
5965             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
5966 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5967 cd   &                   ' ishift=',ishift
5968 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
5969 C The system gains extra energy.
5970               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
5971             endif   ! j1==j+-ishift
5972           enddo     ! kk  
5973         enddo       ! jj
5974
5975         ENDDO ! ISHIFT
5976
5977       enddo         ! i
5978       return
5979       end
5980 c------------------------------------------------------------------------------
5981       double precision function esccorr(i,j,k,l,jj,kk)
5982       implicit real*8 (a-h,o-z)
5983       include 'DIMENSIONS'
5984       include 'COMMON.IOUNITS'
5985       include 'COMMON.DERIV'
5986       include 'COMMON.INTERACT'
5987       include 'COMMON.CONTACTS'
5988 #ifdef MOMENT
5989       include 'COMMON.CONTACTS.MOMENT'
5990 #endif  
5991       double precision gx(3),gx1(3)
5992       logical lprn
5993       lprn=.false.
5994       eij=facont(jj,i)
5995       ekl=facont(kk,k)
5996 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
5997 C Calculate the multi-body contribution to energy.
5998 C Calculate multi-body contributions to the gradient.
5999 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6000 cd   & k,l,(gacont(m,kk,k),m=1,3)
6001       do m=1,3
6002         gx(m) =ekl*gacont(m,jj,i)
6003         gx1(m)=eij*gacont(m,kk,k)
6004         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6005         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6006         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6007         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6008       enddo
6009       do m=i,j-1
6010         do ll=1,3
6011           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6012         enddo
6013       enddo
6014       do m=k,l-1
6015         do ll=1,3
6016           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6017         enddo
6018       enddo 
6019       esccorr=-eij*ekl
6020       return
6021       end
6022 c------------------------------------------------------------------------------
6023       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6024 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6025       implicit real*8 (a-h,o-z)
6026       include 'DIMENSIONS'
6027       include 'COMMON.IOUNITS'
6028 #ifdef MPI
6029       include "mpif.h"
6030       parameter (max_cont=maxconts)
6031       parameter (max_dim=26)
6032       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6033       double precision zapas(max_dim,maxconts,max_fg_procs),
6034      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6035       common /przechowalnia/ zapas
6036       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6037      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6038 #endif
6039       include 'COMMON.SETUP'
6040       include 'COMMON.FFIELD'
6041       include 'COMMON.DERIV'
6042       include 'COMMON.INTERACT'
6043       include 'COMMON.CONTACTS'
6044 #ifdef MOMENT
6045       include 'COMMON.CONTACTS.MOMENT'
6046 #endif  
6047       include 'COMMON.CONTROL'
6048       include 'COMMON.LOCAL'
6049       double precision gx(3),gx1(3),time00
6050       logical lprn,ldone
6051
6052 C Set lprn=.true. for debugging
6053       lprn=.false.
6054 #ifdef MPI
6055       n_corr=0
6056       n_corr1=0
6057       if (nfgtasks.le.1) goto 30
6058       if (lprn) then
6059         write (iout,'(a)') 'Contact function values before RECEIVE:'
6060         do i=nnt,nct-2
6061           write (iout,'(2i3,50(1x,i2,f5.2))') 
6062      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6063      &    j=1,num_cont_hb(i))
6064         enddo
6065       endif
6066       call flush(iout)
6067       do i=1,ntask_cont_from
6068         ncont_recv(i)=0
6069       enddo
6070       do i=1,ntask_cont_to
6071         ncont_sent(i)=0
6072       enddo
6073 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6074 c     & ntask_cont_to
6075 C Make the list of contacts to send to send to other procesors
6076 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6077 c      call flush(iout)
6078       do i=iturn3_start,iturn3_end
6079 c        write (iout,*) "make contact list turn3",i," num_cont",
6080 c     &    num_cont_hb(i)
6081         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6082       enddo
6083       do i=iturn4_start,iturn4_end
6084 c        write (iout,*) "make contact list turn4",i," num_cont",
6085 c     &   num_cont_hb(i)
6086         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6087       enddo
6088       do ii=1,nat_sent
6089         i=iat_sent(ii)
6090 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6091 c     &    num_cont_hb(i)
6092         do j=1,num_cont_hb(i)
6093         do k=1,4
6094           jjc=jcont_hb(j,i)
6095           iproc=iint_sent_local(k,jjc,ii)
6096 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6097           if (iproc.gt.0) then
6098             ncont_sent(iproc)=ncont_sent(iproc)+1
6099             nn=ncont_sent(iproc)
6100             zapas(1,nn,iproc)=i
6101             zapas(2,nn,iproc)=jjc
6102             zapas(3,nn,iproc)=facont_hb(j,i)
6103             zapas(4,nn,iproc)=ees0p(j,i)
6104             zapas(5,nn,iproc)=ees0m(j,i)
6105             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6106             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6107             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6108             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6109             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6110             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6111             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6112             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6113             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6114             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6115             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6116             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6117             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6118             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6119             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6120             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6121             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6122             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6123             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6124             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6125             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6126           endif
6127         enddo
6128         enddo
6129       enddo
6130       if (lprn) then
6131       write (iout,*) 
6132      &  "Numbers of contacts to be sent to other processors",
6133      &  (ncont_sent(i),i=1,ntask_cont_to)
6134       write (iout,*) "Contacts sent"
6135       do ii=1,ntask_cont_to
6136         nn=ncont_sent(ii)
6137         iproc=itask_cont_to(ii)
6138         write (iout,*) nn," contacts to processor",iproc,
6139      &   " of CONT_TO_COMM group"
6140         do i=1,nn
6141           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6142         enddo
6143       enddo
6144       call flush(iout)
6145       endif
6146       CorrelType=477
6147       CorrelID=fg_rank+1
6148       CorrelType1=478
6149       CorrelID1=nfgtasks+fg_rank+1
6150       ireq=0
6151 C Receive the numbers of needed contacts from other processors 
6152       do ii=1,ntask_cont_from
6153         iproc=itask_cont_from(ii)
6154         ireq=ireq+1
6155         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6156      &    FG_COMM,req(ireq),IERR)
6157       enddo
6158 c      write (iout,*) "IRECV ended"
6159 c      call flush(iout)
6160 C Send the number of contacts needed by other processors
6161       do ii=1,ntask_cont_to
6162         iproc=itask_cont_to(ii)
6163         ireq=ireq+1
6164         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6165      &    FG_COMM,req(ireq),IERR)
6166       enddo
6167 c      write (iout,*) "ISEND ended"
6168 c      write (iout,*) "number of requests (nn)",ireq
6169       call flush(iout)
6170       if (ireq.gt.0) 
6171      &  call MPI_Waitall(ireq,req,status_array,ierr)
6172 c      write (iout,*) 
6173 c     &  "Numbers of contacts to be received from other processors",
6174 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6175 c      call flush(iout)
6176 C Receive contacts
6177       ireq=0
6178       do ii=1,ntask_cont_from
6179         iproc=itask_cont_from(ii)
6180         nn=ncont_recv(ii)
6181 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6182 c     &   " of CONT_TO_COMM group"
6183         call flush(iout)
6184         if (nn.gt.0) then
6185           ireq=ireq+1
6186           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6187      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6188 c          write (iout,*) "ireq,req",ireq,req(ireq)
6189         endif
6190       enddo
6191 C Send the contacts to processors that need them
6192       do ii=1,ntask_cont_to
6193         iproc=itask_cont_to(ii)
6194         nn=ncont_sent(ii)
6195 c        write (iout,*) nn," contacts to processor",iproc,
6196 c     &   " of CONT_TO_COMM group"
6197         if (nn.gt.0) then
6198           ireq=ireq+1 
6199           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6200      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6201 c          write (iout,*) "ireq,req",ireq,req(ireq)
6202 c          do i=1,nn
6203 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6204 c          enddo
6205         endif  
6206       enddo
6207 c      write (iout,*) "number of requests (contacts)",ireq
6208 c      write (iout,*) "req",(req(i),i=1,4)
6209 c      call flush(iout)
6210       if (ireq.gt.0) 
6211      & call MPI_Waitall(ireq,req,status_array,ierr)
6212       do iii=1,ntask_cont_from
6213         iproc=itask_cont_from(iii)
6214         nn=ncont_recv(iii)
6215         if (lprn) then
6216         write (iout,*) "Received",nn," contacts from processor",iproc,
6217      &   " of CONT_FROM_COMM group"
6218         call flush(iout)
6219         do i=1,nn
6220           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6221         enddo
6222         call flush(iout)
6223         endif
6224         do i=1,nn
6225           ii=zapas_recv(1,i,iii)
6226 c Flag the received contacts to prevent double-counting
6227           jj=-zapas_recv(2,i,iii)
6228 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6229 c          call flush(iout)
6230           nnn=num_cont_hb(ii)+1
6231           num_cont_hb(ii)=nnn
6232           jcont_hb(nnn,ii)=jj
6233           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6234           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6235           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6236           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6237           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6238           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6239           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6240           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6241           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6242           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6243           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6244           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6245           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6246           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6247           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6248           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6249           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6250           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6251           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6252           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6253           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6254           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6255           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6256           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6257         enddo
6258       enddo
6259       call flush(iout)
6260       if (lprn) then
6261         write (iout,'(a)') 'Contact function values after receive:'
6262         do i=nnt,nct-2
6263           write (iout,'(2i3,50(1x,i3,f5.2))') 
6264      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6265      &    j=1,num_cont_hb(i))
6266         enddo
6267         call flush(iout)
6268       endif
6269    30 continue
6270 #endif
6271       if (lprn) then
6272         write (iout,'(a)') 'Contact function values:'
6273         do i=nnt,nct-2
6274           write (iout,'(2i3,50(1x,i3,f5.2))') 
6275      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6276      &    j=1,num_cont_hb(i))
6277         enddo
6278       endif
6279       ecorr=0.0D0
6280 C Remove the loop below after debugging !!!
6281       do i=nnt,nct
6282         do j=1,3
6283           gradcorr(j,i)=0.0D0
6284           gradxorr(j,i)=0.0D0
6285         enddo
6286       enddo
6287 C Calculate the local-electrostatic correlation terms
6288       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6289         i1=i+1
6290         num_conti=num_cont_hb(i)
6291         num_conti1=num_cont_hb(i+1)
6292         do jj=1,num_conti
6293           j=jcont_hb(jj,i)
6294           jp=iabs(j)
6295           do kk=1,num_conti1
6296             j1=jcont_hb(kk,i1)
6297             jp1=iabs(j1)
6298 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6299 c     &         ' jj=',jj,' kk=',kk
6300             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6301      &          .or. j.lt.0 .and. j1.gt.0) .and.
6302      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6303 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6304 C The system gains extra energy.
6305               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6306               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6307      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6308               n_corr=n_corr+1
6309             else if (j1.eq.j) then
6310 C Contacts I-J and I-(J+1) occur simultaneously. 
6311 C The system loses extra energy.
6312 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6313             endif
6314           enddo ! kk
6315           do kk=1,num_conti
6316             j1=jcont_hb(kk,i)
6317 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6318 c    &         ' jj=',jj,' kk=',kk
6319             if (j1.eq.j+1) then
6320 C Contacts I-J and (I+1)-J occur simultaneously. 
6321 C The system loses extra energy.
6322 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6323             endif ! j1==j+1
6324           enddo ! kk
6325         enddo ! jj
6326       enddo ! i
6327       return
6328       end
6329 c------------------------------------------------------------------------------
6330       subroutine add_hb_contact(ii,jj,itask)
6331       implicit real*8 (a-h,o-z)
6332       include "DIMENSIONS"
6333       include "COMMON.IOUNITS"
6334       integer max_cont
6335       integer max_dim
6336       parameter (max_cont=maxconts)
6337       parameter (max_dim=26)
6338       include "COMMON.CONTACTS"
6339 #ifdef MOMENT
6340       include 'COMMON.CONTACTS.MOMENT'
6341 #endif  
6342       double precision zapas(max_dim,maxconts,max_fg_procs),
6343      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6344       common /przechowalnia/ zapas
6345       integer i,j,ii,jj,iproc,itask(4),nn
6346 c      write (iout,*) "itask",itask
6347       do i=1,2
6348         iproc=itask(i)
6349         if (iproc.gt.0) then
6350           do j=1,num_cont_hb(ii)
6351             jjc=jcont_hb(j,ii)
6352 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6353             if (jjc.eq.jj) then
6354               ncont_sent(iproc)=ncont_sent(iproc)+1
6355               nn=ncont_sent(iproc)
6356               zapas(1,nn,iproc)=ii
6357               zapas(2,nn,iproc)=jjc
6358               zapas(3,nn,iproc)=facont_hb(j,ii)
6359               zapas(4,nn,iproc)=ees0p(j,ii)
6360               zapas(5,nn,iproc)=ees0m(j,ii)
6361               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6362               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6363               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6364               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6365               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6366               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6367               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6368               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6369               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6370               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6371               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6372               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6373               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6374               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6375               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6376               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6377               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6378               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6379               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6380               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6381               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6382               exit
6383             endif
6384           enddo
6385         endif
6386       enddo
6387       return
6388       end
6389 c------------------------------------------------------------------------------
6390       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6391      &  n_corr1)
6392 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6393       implicit real*8 (a-h,o-z)
6394       include 'DIMENSIONS'
6395       include 'COMMON.IOUNITS'
6396 #ifdef MPI
6397       include "mpif.h"
6398       parameter (max_cont=maxconts)
6399       parameter (max_dim=70)
6400       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6401       double precision zapas(max_dim,maxconts,max_fg_procs),
6402      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6403       common /przechowalnia/ zapas
6404       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6405      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6406 #endif
6407       include 'COMMON.SETUP'
6408       include 'COMMON.FFIELD'
6409       include 'COMMON.DERIV'
6410       include 'COMMON.LOCAL'
6411       include 'COMMON.INTERACT'
6412       include 'COMMON.CONTACTS'
6413 #ifdef MOMENT
6414       include 'COMMON.CONTACTS.MOMENT'
6415 #endif  
6416       include 'COMMON.CHAIN'
6417       include 'COMMON.CONTROL'
6418       double precision gx(3),gx1(3)
6419       integer num_cont_hb_old(maxres)
6420       logical lprn,ldone
6421       double precision eello4,eello5,eelo6,eello_turn6
6422       external eello4,eello5,eello6,eello_turn6
6423 C Set lprn=.true. for debugging
6424       lprn=.false.
6425       eturn6=0.0d0
6426 #ifdef MPI
6427       do i=1,nres
6428         num_cont_hb_old(i)=num_cont_hb(i)
6429       enddo
6430       n_corr=0
6431       n_corr1=0
6432       if (nfgtasks.le.1) goto 30
6433       if (lprn) then
6434         write (iout,'(a)') 'Contact function values before RECEIVE:'
6435         do i=nnt,nct-2
6436           write (iout,'(2i3,50(1x,i2,f5.2))') 
6437      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6438      &    j=1,num_cont_hb(i))
6439         enddo
6440       endif
6441       call flush(iout)
6442       do i=1,ntask_cont_from
6443         ncont_recv(i)=0
6444       enddo
6445       do i=1,ntask_cont_to
6446         ncont_sent(i)=0
6447       enddo
6448 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6449 c     & ntask_cont_to
6450 C Make the list of contacts to send to send to other procesors
6451       do i=iturn3_start,iturn3_end
6452 c        write (iout,*) "make contact list turn3",i," num_cont",
6453 c     &    num_cont_hb(i)
6454         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6455       enddo
6456       do i=iturn4_start,iturn4_end
6457 c        write (iout,*) "make contact list turn4",i," num_cont",
6458 c     &   num_cont_hb(i)
6459         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6460       enddo
6461       do ii=1,nat_sent
6462         i=iat_sent(ii)
6463 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6464 c     &    num_cont_hb(i)
6465         do j=1,num_cont_hb(i)
6466         do k=1,4
6467           jjc=jcont_hb(j,i)
6468           iproc=iint_sent_local(k,jjc,ii)
6469 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6470           if (iproc.ne.0) then
6471             ncont_sent(iproc)=ncont_sent(iproc)+1
6472             nn=ncont_sent(iproc)
6473             zapas(1,nn,iproc)=i
6474             zapas(2,nn,iproc)=jjc
6475             zapas(3,nn,iproc)=d_cont(j,i)
6476             ind=3
6477             do kk=1,3
6478               ind=ind+1
6479               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6480             enddo
6481             do kk=1,2
6482               do ll=1,2
6483                 ind=ind+1
6484                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6485               enddo
6486             enddo
6487             do jj=1,5
6488               do kk=1,3
6489                 do ll=1,2
6490                   do mm=1,2
6491                     ind=ind+1
6492                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6493                   enddo
6494                 enddo
6495               enddo
6496             enddo
6497           endif
6498         enddo
6499         enddo
6500       enddo
6501       if (lprn) then
6502       write (iout,*) 
6503      &  "Numbers of contacts to be sent to other processors",
6504      &  (ncont_sent(i),i=1,ntask_cont_to)
6505       write (iout,*) "Contacts sent"
6506       do ii=1,ntask_cont_to
6507         nn=ncont_sent(ii)
6508         iproc=itask_cont_to(ii)
6509         write (iout,*) nn," contacts to processor",iproc,
6510      &   " of CONT_TO_COMM group"
6511         do i=1,nn
6512           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6513         enddo
6514       enddo
6515       call flush(iout)
6516       endif
6517       CorrelType=477
6518       CorrelID=fg_rank+1
6519       CorrelType1=478
6520       CorrelID1=nfgtasks+fg_rank+1
6521       ireq=0
6522 C Receive the numbers of needed contacts from other processors 
6523       do ii=1,ntask_cont_from
6524         iproc=itask_cont_from(ii)
6525         ireq=ireq+1
6526         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6527      &    FG_COMM,req(ireq),IERR)
6528       enddo
6529 c      write (iout,*) "IRECV ended"
6530 c      call flush(iout)
6531 C Send the number of contacts needed by other processors
6532       do ii=1,ntask_cont_to
6533         iproc=itask_cont_to(ii)
6534         ireq=ireq+1
6535         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6536      &    FG_COMM,req(ireq),IERR)
6537       enddo
6538 c      write (iout,*) "ISEND ended"
6539 c      write (iout,*) "number of requests (nn)",ireq
6540       call flush(iout)
6541       if (ireq.gt.0) 
6542      &  call MPI_Waitall(ireq,req,status_array,ierr)
6543 c      write (iout,*) 
6544 c     &  "Numbers of contacts to be received from other processors",
6545 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6546 c      call flush(iout)
6547 C Receive contacts
6548       ireq=0
6549       do ii=1,ntask_cont_from
6550         iproc=itask_cont_from(ii)
6551         nn=ncont_recv(ii)
6552 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6553 c     &   " of CONT_TO_COMM group"
6554         call flush(iout)
6555         if (nn.gt.0) then
6556           ireq=ireq+1
6557           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6558      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6559 c          write (iout,*) "ireq,req",ireq,req(ireq)
6560         endif
6561       enddo
6562 C Send the contacts to processors that need them
6563       do ii=1,ntask_cont_to
6564         iproc=itask_cont_to(ii)
6565         nn=ncont_sent(ii)
6566 c        write (iout,*) nn," contacts to processor",iproc,
6567 c     &   " of CONT_TO_COMM group"
6568         if (nn.gt.0) then
6569           ireq=ireq+1 
6570           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6571      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6572 c          write (iout,*) "ireq,req",ireq,req(ireq)
6573 c          do i=1,nn
6574 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6575 c          enddo
6576         endif  
6577       enddo
6578 c      write (iout,*) "number of requests (contacts)",ireq
6579 c      write (iout,*) "req",(req(i),i=1,4)
6580 c      call flush(iout)
6581       if (ireq.gt.0) 
6582      & call MPI_Waitall(ireq,req,status_array,ierr)
6583       do iii=1,ntask_cont_from
6584         iproc=itask_cont_from(iii)
6585         nn=ncont_recv(iii)
6586         if (lprn) then
6587         write (iout,*) "Received",nn," contacts from processor",iproc,
6588      &   " of CONT_FROM_COMM group"
6589         call flush(iout)
6590         do i=1,nn
6591           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6592         enddo
6593         call flush(iout)
6594         endif
6595         do i=1,nn
6596           ii=zapas_recv(1,i,iii)
6597 c Flag the received contacts to prevent double-counting
6598           jj=-zapas_recv(2,i,iii)
6599 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6600 c          call flush(iout)
6601           nnn=num_cont_hb(ii)+1
6602           num_cont_hb(ii)=nnn
6603           jcont_hb(nnn,ii)=jj
6604           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6605           ind=3
6606           do kk=1,3
6607             ind=ind+1
6608             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6609           enddo
6610           do kk=1,2
6611             do ll=1,2
6612               ind=ind+1
6613               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6614             enddo
6615           enddo
6616           do jj=1,5
6617             do kk=1,3
6618               do ll=1,2
6619                 do mm=1,2
6620                   ind=ind+1
6621                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6622                 enddo
6623               enddo
6624             enddo
6625           enddo
6626         enddo
6627       enddo
6628       call flush(iout)
6629       if (lprn) then
6630         write (iout,'(a)') 'Contact function values after receive:'
6631         do i=nnt,nct-2
6632           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6633      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6634      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6635         enddo
6636         call flush(iout)
6637       endif
6638    30 continue
6639 #endif
6640       if (lprn) then
6641         write (iout,'(a)') 'Contact function values:'
6642         do i=nnt,nct-2
6643           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6644      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6645      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6646         enddo
6647       endif
6648       ecorr=0.0D0
6649       ecorr5=0.0d0
6650       ecorr6=0.0d0
6651 C Remove the loop below after debugging !!!
6652       do i=nnt,nct
6653         do j=1,3
6654           gradcorr(j,i)=0.0D0
6655           gradxorr(j,i)=0.0D0
6656         enddo
6657       enddo
6658 C Calculate the dipole-dipole interaction energies
6659       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6660       do i=iatel_s,iatel_e+1
6661         num_conti=num_cont_hb(i)
6662         do jj=1,num_conti
6663           j=jcont_hb(jj,i)
6664 #ifdef MOMENT
6665           call dipole(i,j,jj)
6666 #endif
6667         enddo
6668       enddo
6669       endif
6670 C Calculate the local-electrostatic correlation terms
6671 c                write (iout,*) "gradcorr5 in eello5 before loop"
6672 c                do iii=1,nres
6673 c                  write (iout,'(i5,3f10.5)') 
6674 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6675 c                enddo
6676       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6677 c        write (iout,*) "corr loop i",i
6678         i1=i+1
6679         num_conti=num_cont_hb(i)
6680         num_conti1=num_cont_hb(i+1)
6681         do jj=1,num_conti
6682           j=jcont_hb(jj,i)
6683           jp=iabs(j)
6684           do kk=1,num_conti1
6685             j1=jcont_hb(kk,i1)
6686             jp1=iabs(j1)
6687 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6688 c     &         ' jj=',jj,' kk=',kk
6689 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6690             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6691      &          .or. j.lt.0 .and. j1.gt.0) .and.
6692      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6693 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6694 C The system gains extra energy.
6695               n_corr=n_corr+1
6696               sqd1=dsqrt(d_cont(jj,i))
6697               sqd2=dsqrt(d_cont(kk,i1))
6698               sred_geom = sqd1*sqd2
6699               IF (sred_geom.lt.cutoff_corr) THEN
6700                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6701      &            ekont,fprimcont)
6702 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6703 cd     &         ' jj=',jj,' kk=',kk
6704                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6705                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6706                 do l=1,3
6707                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6708                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6709                 enddo
6710                 n_corr1=n_corr1+1
6711 cd               write (iout,*) 'sred_geom=',sred_geom,
6712 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6713 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6714 cd               write (iout,*) "g_contij",g_contij
6715 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6716 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6717                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6718                 if (wcorr4.gt.0.0d0) 
6719      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6720                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6721      1                 write (iout,'(a6,4i5,0pf7.3)')
6722      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6723 c                write (iout,*) "gradcorr5 before eello5"
6724 c                do iii=1,nres
6725 c                  write (iout,'(i5,3f10.5)') 
6726 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6727 c                enddo
6728                 if (wcorr5.gt.0.0d0)
6729      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6730 c                write (iout,*) "gradcorr5 after eello5"
6731 c                do iii=1,nres
6732 c                  write (iout,'(i5,3f10.5)') 
6733 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6734 c                enddo
6735                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6736      1                 write (iout,'(a6,4i5,0pf7.3)')
6737      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6738 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6739 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6740                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6741      &               .or. wturn6.eq.0.0d0))then
6742 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6743                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6744                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6745      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6746 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6747 cd     &            'ecorr6=',ecorr6
6748 cd                write (iout,'(4e15.5)') sred_geom,
6749 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6750 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6751 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6752                 else if (wturn6.gt.0.0d0
6753      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6754 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6755                   eturn6=eturn6+eello_turn6(i,jj,kk)
6756                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6757      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6758 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6759                 endif
6760               ENDIF
6761 1111          continue
6762             endif
6763           enddo ! kk
6764         enddo ! jj
6765       enddo ! i
6766       do i=1,nres
6767         num_cont_hb(i)=num_cont_hb_old(i)
6768       enddo
6769 c                write (iout,*) "gradcorr5 in eello5"
6770 c                do iii=1,nres
6771 c                  write (iout,'(i5,3f10.5)') 
6772 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6773 c                enddo
6774       return
6775       end
6776 c------------------------------------------------------------------------------
6777       subroutine add_hb_contact_eello(ii,jj,itask)
6778       implicit real*8 (a-h,o-z)
6779       include "DIMENSIONS"
6780       include "COMMON.IOUNITS"
6781       integer max_cont
6782       integer max_dim
6783       parameter (max_cont=maxconts)
6784       parameter (max_dim=70)
6785       include "COMMON.CONTACTS"
6786 #ifdef MOMENT
6787       include 'COMMON.CONTACTS.MOMENT'
6788 #endif  
6789       double precision zapas(max_dim,maxconts,max_fg_procs),
6790      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6791       common /przechowalnia/ zapas
6792       integer i,j,ii,jj,iproc,itask(4),nn
6793 c      write (iout,*) "itask",itask
6794       do i=1,2
6795         iproc=itask(i)
6796         if (iproc.gt.0) then
6797           do j=1,num_cont_hb(ii)
6798             jjc=jcont_hb(j,ii)
6799 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6800             if (jjc.eq.jj) then
6801               ncont_sent(iproc)=ncont_sent(iproc)+1
6802               nn=ncont_sent(iproc)
6803               zapas(1,nn,iproc)=ii
6804               zapas(2,nn,iproc)=jjc
6805               zapas(3,nn,iproc)=d_cont(j,ii)
6806               ind=3
6807               do kk=1,3
6808                 ind=ind+1
6809                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6810               enddo
6811               do kk=1,2
6812                 do ll=1,2
6813                   ind=ind+1
6814                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6815                 enddo
6816               enddo
6817               do jj=1,5
6818                 do kk=1,3
6819                   do ll=1,2
6820                     do mm=1,2
6821                       ind=ind+1
6822                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6823                     enddo
6824                   enddo
6825                 enddo
6826               enddo
6827               exit
6828             endif
6829           enddo
6830         endif
6831       enddo
6832       return
6833       end
6834 c------------------------------------------------------------------------------
6835       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6836       implicit real*8 (a-h,o-z)
6837       include 'DIMENSIONS'
6838       include 'COMMON.IOUNITS'
6839       include 'COMMON.DERIV'
6840       include 'COMMON.INTERACT'
6841       include 'COMMON.CONTACTS'
6842 #ifdef MOMENT
6843       include 'COMMON.CONTACTS.MOMENT'
6844 #endif  
6845       double precision gx(3),gx1(3)
6846       logical lprn
6847       lprn=.false.
6848       eij=facont_hb(jj,i)
6849       ekl=facont_hb(kk,k)
6850       ees0pij=ees0p(jj,i)
6851       ees0pkl=ees0p(kk,k)
6852       ees0mij=ees0m(jj,i)
6853       ees0mkl=ees0m(kk,k)
6854       ekont=eij*ekl
6855       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6856 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6857 C Following 4 lines for diagnostics.
6858 cd    ees0pkl=0.0D0
6859 cd    ees0pij=1.0D0
6860 cd    ees0mkl=0.0D0
6861 cd    ees0mij=1.0D0
6862 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6863 c     & 'Contacts ',i,j,
6864 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6865 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6866 c     & 'gradcorr_long'
6867 C Calculate the multi-body contribution to energy.
6868 c      ecorr=ecorr+ekont*ees
6869 C Calculate multi-body contributions to the gradient.
6870       coeffpees0pij=coeffp*ees0pij
6871       coeffmees0mij=coeffm*ees0mij
6872       coeffpees0pkl=coeffp*ees0pkl
6873       coeffmees0mkl=coeffm*ees0mkl
6874       do ll=1,3
6875 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6876         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6877      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6878      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6879         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6880      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6881      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6882 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6883         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6884      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6885      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6886         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6887      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6888      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6889         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6890      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6891      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6892         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6893         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6894         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6895      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6896      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6897         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6898         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6899 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6900       enddo
6901 c      write (iout,*)
6902 cgrad      do m=i+1,j-1
6903 cgrad        do ll=1,3
6904 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6905 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6906 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6907 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6908 cgrad        enddo
6909 cgrad      enddo
6910 cgrad      do m=k+1,l-1
6911 cgrad        do ll=1,3
6912 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6913 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6914 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6915 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6916 cgrad        enddo
6917 cgrad      enddo 
6918 c      write (iout,*) "ehbcorr",ekont*ees
6919       ehbcorr=ekont*ees
6920       return
6921       end
6922 #ifdef MOMENT
6923 C---------------------------------------------------------------------------
6924       subroutine dipole(i,j,jj)
6925       implicit real*8 (a-h,o-z)
6926       include 'DIMENSIONS'
6927       include 'COMMON.IOUNITS'
6928       include 'COMMON.CHAIN'
6929       include 'COMMON.FFIELD'
6930       include 'COMMON.DERIV'
6931       include 'COMMON.INTERACT'
6932       include 'COMMON.CONTACTS'
6933 #ifdef MOMENT
6934       include 'COMMON.CONTACTS.MOMENT'
6935 #endif  
6936       include 'COMMON.TORSION'
6937       include 'COMMON.VAR'
6938       include 'COMMON.GEO'
6939       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
6940      &  auxmat(2,2)
6941       iti1 = itortyp(itype(i+1))
6942       if (j.lt.nres-1) then
6943         itj1 = itortyp(itype(j+1))
6944       else
6945         itj1=ntortyp+1
6946       endif
6947       do iii=1,2
6948         dipi(iii,1)=Ub2(iii,i)
6949         dipderi(iii)=Ub2der(iii,i)
6950         dipi(iii,2)=b1(iii,iti1)
6951         dipj(iii,1)=Ub2(iii,j)
6952         dipderj(iii)=Ub2der(iii,j)
6953         dipj(iii,2)=b1(iii,itj1)
6954       enddo
6955       kkk=0
6956       do iii=1,2
6957         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
6958         do jjj=1,2
6959           kkk=kkk+1
6960           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6961         enddo
6962       enddo
6963       do kkk=1,5
6964         do lll=1,3
6965           mmm=0
6966           do iii=1,2
6967             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
6968      &        auxvec(1))
6969             do jjj=1,2
6970               mmm=mmm+1
6971               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6972             enddo
6973           enddo
6974         enddo
6975       enddo
6976       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
6977       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
6978       do iii=1,2
6979         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
6980       enddo
6981       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
6982       do iii=1,2
6983         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
6984       enddo
6985       return
6986       end
6987 #endif
6988 C---------------------------------------------------------------------------
6989       subroutine calc_eello(i,j,k,l,jj,kk)
6990
6991 C This subroutine computes matrices and vectors needed to calculate 
6992 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
6993 C
6994       implicit real*8 (a-h,o-z)
6995       include 'DIMENSIONS'
6996       include 'COMMON.IOUNITS'
6997       include 'COMMON.CHAIN'
6998       include 'COMMON.DERIV'
6999       include 'COMMON.INTERACT'
7000       include 'COMMON.CONTACTS'
7001 #ifdef MOMENT
7002       include 'COMMON.CONTACTS.MOMENT'
7003 #endif  
7004       include 'COMMON.TORSION'
7005       include 'COMMON.VAR'
7006       include 'COMMON.GEO'
7007       include 'COMMON.FFIELD'
7008       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7009      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7010       logical lprn
7011       common /kutas/ lprn
7012 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7013 cd     & ' jj=',jj,' kk=',kk
7014 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7015 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7016 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7017       do iii=1,2
7018         do jjj=1,2
7019           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7020           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7021         enddo
7022       enddo
7023       call transpose2(aa1(1,1),aa1t(1,1))
7024       call transpose2(aa2(1,1),aa2t(1,1))
7025       do kkk=1,5
7026         do lll=1,3
7027           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7028      &      aa1tder(1,1,lll,kkk))
7029           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7030      &      aa2tder(1,1,lll,kkk))
7031         enddo
7032       enddo 
7033       if (l.eq.j+1) then
7034 C parallel orientation of the two CA-CA-CA frames.
7035         if (i.gt.1) then
7036           iti=itortyp(itype(i))
7037         else
7038           iti=ntortyp+1
7039         endif
7040         itk1=itortyp(itype(k+1))
7041         itj=itortyp(itype(j))
7042         if (l.lt.nres-1) then
7043           itl1=itortyp(itype(l+1))
7044         else
7045           itl1=ntortyp+1
7046         endif
7047 C A1 kernel(j+1) A2T
7048 cd        do iii=1,2
7049 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7050 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7051 cd        enddo
7052         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7053      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7054      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7055 C Following matrices are needed only for 6-th order cumulants
7056         IF (wcorr6.gt.0.0d0) THEN
7057         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7058      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7059      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7060         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7061      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7062      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7063      &   ADtEAderx(1,1,1,1,1,1))
7064         lprn=.false.
7065         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7066      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7067      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7068      &   ADtEA1derx(1,1,1,1,1,1))
7069         ENDIF
7070 C End 6-th order cumulants
7071 cd        lprn=.false.
7072 cd        if (lprn) then
7073 cd        write (2,*) 'In calc_eello6'
7074 cd        do iii=1,2
7075 cd          write (2,*) 'iii=',iii
7076 cd          do kkk=1,5
7077 cd            write (2,*) 'kkk=',kkk
7078 cd            do jjj=1,2
7079 cd              write (2,'(3(2f10.5),5x)') 
7080 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7081 cd            enddo
7082 cd          enddo
7083 cd        enddo
7084 cd        endif
7085         call transpose2(EUgder(1,1,k),auxmat(1,1))
7086         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7087         call transpose2(EUg(1,1,k),auxmat(1,1))
7088         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7089         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7090         do iii=1,2
7091           do kkk=1,5
7092             do lll=1,3
7093               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7094      &          EAEAderx(1,1,lll,kkk,iii,1))
7095             enddo
7096           enddo
7097         enddo
7098 C A1T kernel(i+1) A2
7099         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7100      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7101      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7102 C Following matrices are needed only for 6-th order cumulants
7103         IF (wcorr6.gt.0.0d0) THEN
7104         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7105      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7106      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7107         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7108      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7109      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7110      &   ADtEAderx(1,1,1,1,1,2))
7111         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7112      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7113      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7114      &   ADtEA1derx(1,1,1,1,1,2))
7115         ENDIF
7116 C End 6-th order cumulants
7117         call transpose2(EUgder(1,1,l),auxmat(1,1))
7118         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7119         call transpose2(EUg(1,1,l),auxmat(1,1))
7120         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7121         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7122         do iii=1,2
7123           do kkk=1,5
7124             do lll=1,3
7125               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7126      &          EAEAderx(1,1,lll,kkk,iii,2))
7127             enddo
7128           enddo
7129         enddo
7130 C AEAb1 and AEAb2
7131 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7132 C They are needed only when the fifth- or the sixth-order cumulants are
7133 C indluded.
7134         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7135         call transpose2(AEA(1,1,1),auxmat(1,1))
7136         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7137         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7138         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7139         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7140         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7141         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7142         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7143         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7144         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7145         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7146         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7147         call transpose2(AEA(1,1,2),auxmat(1,1))
7148         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7149         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7150         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7151         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7152         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7153         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7154         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7155         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7156         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7157         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7158         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7159 C Calculate the Cartesian derivatives of the vectors.
7160         do iii=1,2
7161           do kkk=1,5
7162             do lll=1,3
7163               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7164               call matvec2(auxmat(1,1),b1(1,iti),
7165      &          AEAb1derx(1,lll,kkk,iii,1,1))
7166               call matvec2(auxmat(1,1),Ub2(1,i),
7167      &          AEAb2derx(1,lll,kkk,iii,1,1))
7168               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7169      &          AEAb1derx(1,lll,kkk,iii,2,1))
7170               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7171      &          AEAb2derx(1,lll,kkk,iii,2,1))
7172               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7173               call matvec2(auxmat(1,1),b1(1,itj),
7174      &          AEAb1derx(1,lll,kkk,iii,1,2))
7175               call matvec2(auxmat(1,1),Ub2(1,j),
7176      &          AEAb2derx(1,lll,kkk,iii,1,2))
7177               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7178      &          AEAb1derx(1,lll,kkk,iii,2,2))
7179               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7180      &          AEAb2derx(1,lll,kkk,iii,2,2))
7181             enddo
7182           enddo
7183         enddo
7184         ENDIF
7185 C End vectors
7186       else
7187 C Antiparallel orientation of the two CA-CA-CA frames.
7188         if (i.gt.1) then
7189           iti=itortyp(itype(i))
7190         else
7191           iti=ntortyp+1
7192         endif
7193         itk1=itortyp(itype(k+1))
7194         itl=itortyp(itype(l))
7195         itj=itortyp(itype(j))
7196         if (j.lt.nres-1) then
7197           itj1=itortyp(itype(j+1))
7198         else 
7199           itj1=ntortyp+1
7200         endif
7201 C A2 kernel(j-1)T A1T
7202         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7203      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7204      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7205 C Following matrices are needed only for 6-th order cumulants
7206         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7207      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7208         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7209      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7210      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7211         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7212      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7213      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7214      &   ADtEAderx(1,1,1,1,1,1))
7215         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7216      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7217      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7218      &   ADtEA1derx(1,1,1,1,1,1))
7219         ENDIF
7220 C End 6-th order cumulants
7221         call transpose2(EUgder(1,1,k),auxmat(1,1))
7222         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7223         call transpose2(EUg(1,1,k),auxmat(1,1))
7224         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7225         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7226         do iii=1,2
7227           do kkk=1,5
7228             do lll=1,3
7229               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7230      &          EAEAderx(1,1,lll,kkk,iii,1))
7231             enddo
7232           enddo
7233         enddo
7234 C A2T kernel(i+1)T A1
7235         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7236      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7237      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7238 C Following matrices are needed only for 6-th order cumulants
7239         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7240      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7241         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7242      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7243      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7244         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7245      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7246      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7247      &   ADtEAderx(1,1,1,1,1,2))
7248         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7249      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7250      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7251      &   ADtEA1derx(1,1,1,1,1,2))
7252         ENDIF
7253 C End 6-th order cumulants
7254         call transpose2(EUgder(1,1,j),auxmat(1,1))
7255         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7256         call transpose2(EUg(1,1,j),auxmat(1,1))
7257         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7258         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7259         do iii=1,2
7260           do kkk=1,5
7261             do lll=1,3
7262               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7263      &          EAEAderx(1,1,lll,kkk,iii,2))
7264             enddo
7265           enddo
7266         enddo
7267 C AEAb1 and AEAb2
7268 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7269 C They are needed only when the fifth- or the sixth-order cumulants are
7270 C indluded.
7271         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7272      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7273         call transpose2(AEA(1,1,1),auxmat(1,1))
7274         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7275         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7276         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7277         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7278         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7279         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7280         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7281         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7282         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7283         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7284         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7285         call transpose2(AEA(1,1,2),auxmat(1,1))
7286         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7287         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7288         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7289         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7290         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7291         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7292         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7293         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7294         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7295         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7296         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7297 C Calculate the Cartesian derivatives of the vectors.
7298         do iii=1,2
7299           do kkk=1,5
7300             do lll=1,3
7301               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7302               call matvec2(auxmat(1,1),b1(1,iti),
7303      &          AEAb1derx(1,lll,kkk,iii,1,1))
7304               call matvec2(auxmat(1,1),Ub2(1,i),
7305      &          AEAb2derx(1,lll,kkk,iii,1,1))
7306               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7307      &          AEAb1derx(1,lll,kkk,iii,2,1))
7308               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7309      &          AEAb2derx(1,lll,kkk,iii,2,1))
7310               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7311               call matvec2(auxmat(1,1),b1(1,itl),
7312      &          AEAb1derx(1,lll,kkk,iii,1,2))
7313               call matvec2(auxmat(1,1),Ub2(1,l),
7314      &          AEAb2derx(1,lll,kkk,iii,1,2))
7315               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7316      &          AEAb1derx(1,lll,kkk,iii,2,2))
7317               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7318      &          AEAb2derx(1,lll,kkk,iii,2,2))
7319             enddo
7320           enddo
7321         enddo
7322         ENDIF
7323 C End vectors
7324       endif
7325       return
7326       end
7327 C---------------------------------------------------------------------------
7328       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7329      &  KK,KKderg,AKA,AKAderg,AKAderx)
7330       implicit none
7331       integer nderg
7332       logical transp
7333       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7334      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7335      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7336       integer iii,kkk,lll
7337       integer jjj,mmm
7338       logical lprn
7339       common /kutas/ lprn
7340       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7341       do iii=1,nderg 
7342         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7343      &    AKAderg(1,1,iii))
7344       enddo
7345 cd      if (lprn) write (2,*) 'In kernel'
7346       do kkk=1,5
7347 cd        if (lprn) write (2,*) 'kkk=',kkk
7348         do lll=1,3
7349           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7350      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7351 cd          if (lprn) then
7352 cd            write (2,*) 'lll=',lll
7353 cd            write (2,*) 'iii=1'
7354 cd            do jjj=1,2
7355 cd              write (2,'(3(2f10.5),5x)') 
7356 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7357 cd            enddo
7358 cd          endif
7359           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7360      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7361 cd          if (lprn) then
7362 cd            write (2,*) 'lll=',lll
7363 cd            write (2,*) 'iii=2'
7364 cd            do jjj=1,2
7365 cd              write (2,'(3(2f10.5),5x)') 
7366 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7367 cd            enddo
7368 cd          endif
7369         enddo
7370       enddo
7371       return
7372       end
7373 C---------------------------------------------------------------------------
7374       double precision function eello4(i,j,k,l,jj,kk)
7375       implicit real*8 (a-h,o-z)
7376       include 'DIMENSIONS'
7377       include 'COMMON.IOUNITS'
7378       include 'COMMON.CHAIN'
7379       include 'COMMON.DERIV'
7380       include 'COMMON.INTERACT'
7381       include 'COMMON.CONTACTS'
7382 #ifdef MOMENT
7383       include 'COMMON.CONTACTS.MOMENT'
7384 #endif  
7385       include 'COMMON.TORSION'
7386       include 'COMMON.VAR'
7387       include 'COMMON.GEO'
7388       double precision pizda(2,2),ggg1(3),ggg2(3)
7389 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7390 cd        eello4=0.0d0
7391 cd        return
7392 cd      endif
7393 cd      print *,'eello4:',i,j,k,l,jj,kk
7394 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7395 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7396 cold      eij=facont_hb(jj,i)
7397 cold      ekl=facont_hb(kk,k)
7398 cold      ekont=eij*ekl
7399       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7400 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7401       gcorr_loc(k-1)=gcorr_loc(k-1)
7402      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7403       if (l.eq.j+1) then
7404         gcorr_loc(l-1)=gcorr_loc(l-1)
7405      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7406       else
7407         gcorr_loc(j-1)=gcorr_loc(j-1)
7408      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7409       endif
7410       do iii=1,2
7411         do kkk=1,5
7412           do lll=1,3
7413             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7414      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7415 cd            derx(lll,kkk,iii)=0.0d0
7416           enddo
7417         enddo
7418       enddo
7419 cd      gcorr_loc(l-1)=0.0d0
7420 cd      gcorr_loc(j-1)=0.0d0
7421 cd      gcorr_loc(k-1)=0.0d0
7422 cd      eel4=1.0d0
7423 cd      write (iout,*)'Contacts have occurred for peptide groups',
7424 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7425 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7426       if (j.lt.nres-1) then
7427         j1=j+1
7428         j2=j-1
7429       else
7430         j1=j-1
7431         j2=j-2
7432       endif
7433       if (l.lt.nres-1) then
7434         l1=l+1
7435         l2=l-1
7436       else
7437         l1=l-1
7438         l2=l-2
7439       endif
7440       do ll=1,3
7441 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7442 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7443         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7444         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7445 cgrad        ghalf=0.5d0*ggg1(ll)
7446         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7447         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7448         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7449         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7450         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7451         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7452 cgrad        ghalf=0.5d0*ggg2(ll)
7453         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7454         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7455         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7456         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7457         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7458         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7459       enddo
7460 cgrad      do m=i+1,j-1
7461 cgrad        do ll=1,3
7462 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7463 cgrad        enddo
7464 cgrad      enddo
7465 cgrad      do m=k+1,l-1
7466 cgrad        do ll=1,3
7467 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7468 cgrad        enddo
7469 cgrad      enddo
7470 cgrad      do m=i+2,j2
7471 cgrad        do ll=1,3
7472 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7473 cgrad        enddo
7474 cgrad      enddo
7475 cgrad      do m=k+2,l2
7476 cgrad        do ll=1,3
7477 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7478 cgrad        enddo
7479 cgrad      enddo 
7480 cd      do iii=1,nres-3
7481 cd        write (2,*) iii,gcorr_loc(iii)
7482 cd      enddo
7483       eello4=ekont*eel4
7484 cd      write (2,*) 'ekont',ekont
7485 cd      write (iout,*) 'eello4',ekont*eel4
7486       return
7487       end
7488 C---------------------------------------------------------------------------
7489       double precision function eello5(i,j,k,l,jj,kk)
7490       implicit real*8 (a-h,o-z)
7491       include 'DIMENSIONS'
7492       include 'COMMON.IOUNITS'
7493       include 'COMMON.CHAIN'
7494       include 'COMMON.DERIV'
7495       include 'COMMON.INTERACT'
7496       include 'COMMON.CONTACTS'
7497 #ifdef MOMENT
7498       include 'COMMON.CONTACTS.MOMENT'
7499 #endif  
7500       include 'COMMON.TORSION'
7501       include 'COMMON.VAR'
7502       include 'COMMON.GEO'
7503       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7504       double precision ggg1(3),ggg2(3)
7505 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7506 C                                                                              C
7507 C                            Parallel chains                                   C
7508 C                                                                              C
7509 C          o             o                   o             o                   C
7510 C         /l\           / \             \   / \           / \   /              C
7511 C        /   \         /   \             \ /   \         /   \ /               C
7512 C       j| o |l1       | o |              o| o |         | o |o                C
7513 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7514 C      \i/   \         /   \ /             /   \         /   \                 C
7515 C       o    k1             o                                                  C
7516 C         (I)          (II)                (III)          (IV)                 C
7517 C                                                                              C
7518 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7519 C                                                                              C
7520 C                            Antiparallel chains                               C
7521 C                                                                              C
7522 C          o             o                   o             o                   C
7523 C         /j\           / \             \   / \           / \   /              C
7524 C        /   \         /   \             \ /   \         /   \ /               C
7525 C      j1| o |l        | o |              o| o |         | o |o                C
7526 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7527 C      \i/   \         /   \ /             /   \         /   \                 C
7528 C       o     k1            o                                                  C
7529 C         (I)          (II)                (III)          (IV)                 C
7530 C                                                                              C
7531 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7532 C                                                                              C
7533 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7534 C                                                                              C
7535 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7536 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7537 cd        eello5=0.0d0
7538 cd        return
7539 cd      endif
7540 cd      write (iout,*)
7541 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7542 cd     &   ' and',k,l
7543       itk=itortyp(itype(k))
7544       itl=itortyp(itype(l))
7545       itj=itortyp(itype(j))
7546       eello5_1=0.0d0
7547       eello5_2=0.0d0
7548       eello5_3=0.0d0
7549       eello5_4=0.0d0
7550 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7551 cd     &   eel5_3_num,eel5_4_num)
7552       do iii=1,2
7553         do kkk=1,5
7554           do lll=1,3
7555             derx(lll,kkk,iii)=0.0d0
7556           enddo
7557         enddo
7558       enddo
7559 cd      eij=facont_hb(jj,i)
7560 cd      ekl=facont_hb(kk,k)
7561 cd      ekont=eij*ekl
7562 cd      write (iout,*)'Contacts have occurred for peptide groups',
7563 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7564 cd      goto 1111
7565 C Contribution from the graph I.
7566 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7567 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7568       call transpose2(EUg(1,1,k),auxmat(1,1))
7569       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7570       vv(1)=pizda(1,1)-pizda(2,2)
7571       vv(2)=pizda(1,2)+pizda(2,1)
7572       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7573      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7574 C Explicit gradient in virtual-dihedral angles.
7575       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7576      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7577      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7578       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7579       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7580       vv(1)=pizda(1,1)-pizda(2,2)
7581       vv(2)=pizda(1,2)+pizda(2,1)
7582       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7583      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7584      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7585       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7586       vv(1)=pizda(1,1)-pizda(2,2)
7587       vv(2)=pizda(1,2)+pizda(2,1)
7588       if (l.eq.j+1) then
7589         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7590      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7591      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7592       else
7593         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7594      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7595      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7596       endif 
7597 C Cartesian gradient
7598       do iii=1,2
7599         do kkk=1,5
7600           do lll=1,3
7601             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7602      &        pizda(1,1))
7603             vv(1)=pizda(1,1)-pizda(2,2)
7604             vv(2)=pizda(1,2)+pizda(2,1)
7605             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7606      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7607      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7608           enddo
7609         enddo
7610       enddo
7611 c      goto 1112
7612 c1111  continue
7613 C Contribution from graph II 
7614       call transpose2(EE(1,1,itk),auxmat(1,1))
7615       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7616       vv(1)=pizda(1,1)+pizda(2,2)
7617       vv(2)=pizda(2,1)-pizda(1,2)
7618       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7619      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7620 C Explicit gradient in virtual-dihedral angles.
7621       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7622      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7623       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7624       vv(1)=pizda(1,1)+pizda(2,2)
7625       vv(2)=pizda(2,1)-pizda(1,2)
7626       if (l.eq.j+1) then
7627         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7628      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7629      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7630       else
7631         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7632      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7633      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7634       endif
7635 C Cartesian gradient
7636       do iii=1,2
7637         do kkk=1,5
7638           do lll=1,3
7639             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7640      &        pizda(1,1))
7641             vv(1)=pizda(1,1)+pizda(2,2)
7642             vv(2)=pizda(2,1)-pizda(1,2)
7643             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7644      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7645      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7646           enddo
7647         enddo
7648       enddo
7649 cd      goto 1112
7650 cd1111  continue
7651       if (l.eq.j+1) then
7652 cd        goto 1110
7653 C Parallel orientation
7654 C Contribution from graph III
7655         call transpose2(EUg(1,1,l),auxmat(1,1))
7656         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7657         vv(1)=pizda(1,1)-pizda(2,2)
7658         vv(2)=pizda(1,2)+pizda(2,1)
7659         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7660      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7661 C Explicit gradient in virtual-dihedral angles.
7662         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7663      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7664      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7665         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7666         vv(1)=pizda(1,1)-pizda(2,2)
7667         vv(2)=pizda(1,2)+pizda(2,1)
7668         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7669      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7670      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7671         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7672         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7673         vv(1)=pizda(1,1)-pizda(2,2)
7674         vv(2)=pizda(1,2)+pizda(2,1)
7675         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7676      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7677      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7678 C Cartesian gradient
7679         do iii=1,2
7680           do kkk=1,5
7681             do lll=1,3
7682               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7683      &          pizda(1,1))
7684               vv(1)=pizda(1,1)-pizda(2,2)
7685               vv(2)=pizda(1,2)+pizda(2,1)
7686               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7687      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7688      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7689             enddo
7690           enddo
7691         enddo
7692 cd        goto 1112
7693 C Contribution from graph IV
7694 cd1110    continue
7695         call transpose2(EE(1,1,itl),auxmat(1,1))
7696         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7697         vv(1)=pizda(1,1)+pizda(2,2)
7698         vv(2)=pizda(2,1)-pizda(1,2)
7699         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7700      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7701 C Explicit gradient in virtual-dihedral angles.
7702         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7703      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7704         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7705         vv(1)=pizda(1,1)+pizda(2,2)
7706         vv(2)=pizda(2,1)-pizda(1,2)
7707         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7708      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7709      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7710 C Cartesian gradient
7711         do iii=1,2
7712           do kkk=1,5
7713             do lll=1,3
7714               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7715      &          pizda(1,1))
7716               vv(1)=pizda(1,1)+pizda(2,2)
7717               vv(2)=pizda(2,1)-pizda(1,2)
7718               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7719      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7720      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7721             enddo
7722           enddo
7723         enddo
7724       else
7725 C Antiparallel orientation
7726 C Contribution from graph III
7727 c        goto 1110
7728         call transpose2(EUg(1,1,j),auxmat(1,1))
7729         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7730         vv(1)=pizda(1,1)-pizda(2,2)
7731         vv(2)=pizda(1,2)+pizda(2,1)
7732         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7733      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7734 C Explicit gradient in virtual-dihedral angles.
7735         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7736      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7737      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7738         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7739         vv(1)=pizda(1,1)-pizda(2,2)
7740         vv(2)=pizda(1,2)+pizda(2,1)
7741         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7742      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7743      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7744         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7745         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7746         vv(1)=pizda(1,1)-pizda(2,2)
7747         vv(2)=pizda(1,2)+pizda(2,1)
7748         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7749      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7750      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7751 C Cartesian gradient
7752         do iii=1,2
7753           do kkk=1,5
7754             do lll=1,3
7755               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7756      &          pizda(1,1))
7757               vv(1)=pizda(1,1)-pizda(2,2)
7758               vv(2)=pizda(1,2)+pizda(2,1)
7759               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7760      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7761      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7762             enddo
7763           enddo
7764         enddo
7765 cd        goto 1112
7766 C Contribution from graph IV
7767 1110    continue
7768         call transpose2(EE(1,1,itj),auxmat(1,1))
7769         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7770         vv(1)=pizda(1,1)+pizda(2,2)
7771         vv(2)=pizda(2,1)-pizda(1,2)
7772         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7773      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7774 C Explicit gradient in virtual-dihedral angles.
7775         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7776      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7777         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7778         vv(1)=pizda(1,1)+pizda(2,2)
7779         vv(2)=pizda(2,1)-pizda(1,2)
7780         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7781      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7782      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7783 C Cartesian gradient
7784         do iii=1,2
7785           do kkk=1,5
7786             do lll=1,3
7787               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7788      &          pizda(1,1))
7789               vv(1)=pizda(1,1)+pizda(2,2)
7790               vv(2)=pizda(2,1)-pizda(1,2)
7791               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7792      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7793      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7794             enddo
7795           enddo
7796         enddo
7797       endif
7798 1112  continue
7799       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7800 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7801 cd        write (2,*) 'ijkl',i,j,k,l
7802 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7803 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7804 cd      endif
7805 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7806 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7807 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7808 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7809       if (j.lt.nres-1) then
7810         j1=j+1
7811         j2=j-1
7812       else
7813         j1=j-1
7814         j2=j-2
7815       endif
7816       if (l.lt.nres-1) then
7817         l1=l+1
7818         l2=l-1
7819       else
7820         l1=l-1
7821         l2=l-2
7822       endif
7823 cd      eij=1.0d0
7824 cd      ekl=1.0d0
7825 cd      ekont=1.0d0
7826 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7827 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7828 C        summed up outside the subrouine as for the other subroutines 
7829 C        handling long-range interactions. The old code is commented out
7830 C        with "cgrad" to keep track of changes.
7831       do ll=1,3
7832 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7833 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7834         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7835         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7836 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7837 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7838 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7839 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7840 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7841 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7842 c     &   gradcorr5ij,
7843 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7844 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7845 cgrad        ghalf=0.5d0*ggg1(ll)
7846 cd        ghalf=0.0d0
7847         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7848         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7849         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7850         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7851         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7852         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7853 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7854 cgrad        ghalf=0.5d0*ggg2(ll)
7855 cd        ghalf=0.0d0
7856         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7857         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7858         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7859         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7860         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7861         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7862       enddo
7863 cd      goto 1112
7864 cgrad      do m=i+1,j-1
7865 cgrad        do ll=1,3
7866 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7867 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7868 cgrad        enddo
7869 cgrad      enddo
7870 cgrad      do m=k+1,l-1
7871 cgrad        do ll=1,3
7872 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7873 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7874 cgrad        enddo
7875 cgrad      enddo
7876 c1112  continue
7877 cgrad      do m=i+2,j2
7878 cgrad        do ll=1,3
7879 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7880 cgrad        enddo
7881 cgrad      enddo
7882 cgrad      do m=k+2,l2
7883 cgrad        do ll=1,3
7884 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7885 cgrad        enddo
7886 cgrad      enddo 
7887 cd      do iii=1,nres-3
7888 cd        write (2,*) iii,g_corr5_loc(iii)
7889 cd      enddo
7890       eello5=ekont*eel5
7891 cd      write (2,*) 'ekont',ekont
7892 cd      write (iout,*) 'eello5',ekont*eel5
7893       return
7894       end
7895 c--------------------------------------------------------------------------
7896       double precision function eello6(i,j,k,l,jj,kk)
7897       implicit real*8 (a-h,o-z)
7898       include 'DIMENSIONS'
7899       include 'COMMON.IOUNITS'
7900       include 'COMMON.CHAIN'
7901       include 'COMMON.DERIV'
7902       include 'COMMON.INTERACT'
7903       include 'COMMON.CONTACTS'
7904 #ifdef MOMENT
7905       include 'COMMON.CONTACTS.MOMENT'
7906 #endif  
7907       include 'COMMON.TORSION'
7908       include 'COMMON.VAR'
7909       include 'COMMON.GEO'
7910       include 'COMMON.FFIELD'
7911       double precision ggg1(3),ggg2(3)
7912 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7913 cd        eello6=0.0d0
7914 cd        return
7915 cd      endif
7916 cd      write (iout,*)
7917 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7918 cd     &   ' and',k,l
7919       eello6_1=0.0d0
7920       eello6_2=0.0d0
7921       eello6_3=0.0d0
7922       eello6_4=0.0d0
7923       eello6_5=0.0d0
7924       eello6_6=0.0d0
7925 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7926 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7927       do iii=1,2
7928         do kkk=1,5
7929           do lll=1,3
7930             derx(lll,kkk,iii)=0.0d0
7931           enddo
7932         enddo
7933       enddo
7934 cd      eij=facont_hb(jj,i)
7935 cd      ekl=facont_hb(kk,k)
7936 cd      ekont=eij*ekl
7937 cd      eij=1.0d0
7938 cd      ekl=1.0d0
7939 cd      ekont=1.0d0
7940       if (l.eq.j+1) then
7941         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7942         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
7943         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
7944         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7945         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
7946         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
7947       else
7948         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7949         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
7950         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
7951         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7952         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
7953           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7954         else
7955           eello6_5=0.0d0
7956         endif
7957         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
7958       endif
7959 C If turn contributions are considered, they will be handled separately.
7960       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
7961 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
7962 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
7963 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
7964 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
7965 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
7966 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
7967 cd      goto 1112
7968       if (j.lt.nres-1) then
7969         j1=j+1
7970         j2=j-1
7971       else
7972         j1=j-1
7973         j2=j-2
7974       endif
7975       if (l.lt.nres-1) then
7976         l1=l+1
7977         l2=l-1
7978       else
7979         l1=l-1
7980         l2=l-2
7981       endif
7982       do ll=1,3
7983 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
7984 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
7985 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
7986 cgrad        ghalf=0.5d0*ggg1(ll)
7987 cd        ghalf=0.0d0
7988         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
7989         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
7990         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
7991         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
7992         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
7993         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
7994         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
7995         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
7996 cgrad        ghalf=0.5d0*ggg2(ll)
7997 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
7998 cd        ghalf=0.0d0
7999         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8000         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8001         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8002         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8003         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8004         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8005       enddo
8006 cd      goto 1112
8007 cgrad      do m=i+1,j-1
8008 cgrad        do ll=1,3
8009 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8010 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8011 cgrad        enddo
8012 cgrad      enddo
8013 cgrad      do m=k+1,l-1
8014 cgrad        do ll=1,3
8015 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8016 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8017 cgrad        enddo
8018 cgrad      enddo
8019 cgrad1112  continue
8020 cgrad      do m=i+2,j2
8021 cgrad        do ll=1,3
8022 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8023 cgrad        enddo
8024 cgrad      enddo
8025 cgrad      do m=k+2,l2
8026 cgrad        do ll=1,3
8027 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8028 cgrad        enddo
8029 cgrad      enddo 
8030 cd      do iii=1,nres-3
8031 cd        write (2,*) iii,g_corr6_loc(iii)
8032 cd      enddo
8033       eello6=ekont*eel6
8034 cd      write (2,*) 'ekont',ekont
8035 cd      write (iout,*) 'eello6',ekont*eel6
8036       return
8037       end
8038 c--------------------------------------------------------------------------
8039       double precision function eello6_graph1(i,j,k,l,imat,swap)
8040       implicit real*8 (a-h,o-z)
8041       include 'DIMENSIONS'
8042       include 'COMMON.IOUNITS'
8043       include 'COMMON.CHAIN'
8044       include 'COMMON.DERIV'
8045       include 'COMMON.INTERACT'
8046       include 'COMMON.CONTACTS'
8047 #ifdef MOMENT
8048       include 'COMMON.CONTACTS.MOMENT'
8049 #endif  
8050       include 'COMMON.TORSION'
8051       include 'COMMON.VAR'
8052       include 'COMMON.GEO'
8053       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8054       logical swap
8055       logical lprn
8056       common /kutas/ lprn
8057 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8058 C                                                                              C
8059 C      Parallel       Antiparallel                                             C
8060 C                                                                              C
8061 C          o             o                                                     C
8062 C         /l\           /j\                                                    C
8063 C        /   \         /   \                                                   C
8064 C       /| o |         | o |\                                                  C
8065 C     \ j|/k\|  /   \  |/k\|l /                                                C
8066 C      \ /   \ /     \ /   \ /                                                 C
8067 C       o     o       o     o                                                  C
8068 C       i             i                                                        C
8069 C                                                                              C
8070 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8071       itk=itortyp(itype(k))
8072       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8073       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8074       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8075       call transpose2(EUgC(1,1,k),auxmat(1,1))
8076       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8077       vv1(1)=pizda1(1,1)-pizda1(2,2)
8078       vv1(2)=pizda1(1,2)+pizda1(2,1)
8079       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8080       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8081       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8082       s5=scalar2(vv(1),Dtobr2(1,i))
8083 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8084       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8085       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8086      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8087      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8088      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8089      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8090      & +scalar2(vv(1),Dtobr2der(1,i)))
8091       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8092       vv1(1)=pizda1(1,1)-pizda1(2,2)
8093       vv1(2)=pizda1(1,2)+pizda1(2,1)
8094       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8095       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8096       if (l.eq.j+1) then
8097         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8098      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8099      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8100      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8101      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8102       else
8103         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8104      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8105      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8106      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8107      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8108       endif
8109       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8110       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8111       vv1(1)=pizda1(1,1)-pizda1(2,2)
8112       vv1(2)=pizda1(1,2)+pizda1(2,1)
8113       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8114      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8115      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8116      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8117       do iii=1,2
8118         if (swap) then
8119           ind=3-iii
8120         else
8121           ind=iii
8122         endif
8123         do kkk=1,5
8124           do lll=1,3
8125             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8126             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8127             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8128             call transpose2(EUgC(1,1,k),auxmat(1,1))
8129             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8130      &        pizda1(1,1))
8131             vv1(1)=pizda1(1,1)-pizda1(2,2)
8132             vv1(2)=pizda1(1,2)+pizda1(2,1)
8133             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8134             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8135      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8136             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8137      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8138             s5=scalar2(vv(1),Dtobr2(1,i))
8139             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8140           enddo
8141         enddo
8142       enddo
8143       return
8144       end
8145 c----------------------------------------------------------------------------
8146       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8147       implicit real*8 (a-h,o-z)
8148       include 'DIMENSIONS'
8149       include 'COMMON.IOUNITS'
8150       include 'COMMON.CHAIN'
8151       include 'COMMON.DERIV'
8152       include 'COMMON.INTERACT'
8153       include 'COMMON.CONTACTS'
8154 #ifdef MOMENT
8155       include 'COMMON.CONTACTS.MOMENT'
8156 #endif  
8157       include 'COMMON.TORSION'
8158       include 'COMMON.VAR'
8159       include 'COMMON.GEO'
8160       logical swap
8161       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8162      & auxvec1(2),auxvec2(1),auxmat1(2,2)
8163       logical lprn
8164       common /kutas/ lprn
8165 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8166 C                                                                              C
8167 C      Parallel       Antiparallel                                             C
8168 C                                                                              C 
8169 C          o             o                                                     C
8170 C     \   /l\           /j\   /                                                C
8171 C      \ /   \         /   \ /                                                 C
8172 C       o| o |         | o |o                                                  C                   
8173 C     \ j|/k\|      \  |/k\|l                                                  C
8174 C      \ /   \       \ /   \                                                   C
8175 C       o             o                                                        C
8176 C       i             i                                                        C 
8177 C                                                                              C
8178 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8179 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8180 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8181 C           but not in a cluster cumulant
8182 #ifdef MOMENT
8183       s1=dip(1,jj,i)*dip(1,kk,k)
8184 #endif
8185       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8186       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8187       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8188       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8189       call transpose2(EUg(1,1,k),auxmat(1,1))
8190       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8191       vv(1)=pizda(1,1)-pizda(2,2)
8192       vv(2)=pizda(1,2)+pizda(2,1)
8193       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8194 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8195 #ifdef MOMENT
8196       eello6_graph2=-(s1+s2+s3+s4)
8197 #else
8198       eello6_graph2=-(s2+s3+s4)
8199 #endif
8200 c      eello6_graph2=-s3
8201 C Derivatives in gamma(i-1)
8202       if (i.gt.1) then
8203 #ifdef MOMENT
8204         s1=dipderg(1,jj,i)*dip(1,kk,k)
8205 #endif
8206         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8207         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8208         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8209         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8210 #ifdef MOMENT
8211         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8212 #else
8213         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8214 #endif
8215 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8216       endif
8217 C Derivatives in gamma(k-1)
8218 #ifdef MOMENT
8219       s1=dip(1,jj,i)*dipderg(1,kk,k)
8220 #endif
8221       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8222       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8223       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8224       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8225       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8226       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8227       vv(1)=pizda(1,1)-pizda(2,2)
8228       vv(2)=pizda(1,2)+pizda(2,1)
8229       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8230 #ifdef MOMENT
8231       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8232 #else
8233       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8234 #endif
8235 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8236 C Derivatives in gamma(j-1) or gamma(l-1)
8237       if (j.gt.1) then
8238 #ifdef MOMENT
8239         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8240 #endif
8241         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8242         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8243         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8244         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8245         vv(1)=pizda(1,1)-pizda(2,2)
8246         vv(2)=pizda(1,2)+pizda(2,1)
8247         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8248 #ifdef MOMENT
8249         if (swap) then
8250           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8251         else
8252           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8253         endif
8254 #endif
8255         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8256 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8257       endif
8258 C Derivatives in gamma(l-1) or gamma(j-1)
8259       if (l.gt.1) then 
8260 #ifdef MOMENT
8261         s1=dip(1,jj,i)*dipderg(3,kk,k)
8262 #endif
8263         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8264         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8265         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8266         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8267         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8268         vv(1)=pizda(1,1)-pizda(2,2)
8269         vv(2)=pizda(1,2)+pizda(2,1)
8270         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8271 #ifdef MOMENT
8272         if (swap) then
8273           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8274         else
8275           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8276         endif
8277 #endif
8278         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8279 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8280       endif
8281 C Cartesian derivatives.
8282       if (lprn) then
8283         write (2,*) 'In eello6_graph2'
8284         do iii=1,2
8285           write (2,*) 'iii=',iii
8286           do kkk=1,5
8287             write (2,*) 'kkk=',kkk
8288             do jjj=1,2
8289               write (2,'(3(2f10.5),5x)') 
8290      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8291             enddo
8292           enddo
8293         enddo
8294       endif
8295       do iii=1,2
8296         do kkk=1,5
8297           do lll=1,3
8298 #ifdef MOMENT
8299             if (iii.eq.1) then
8300               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8301             else
8302               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8303             endif
8304 #endif
8305             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8306      &        auxvec(1))
8307             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8308             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8309      &        auxvec(1))
8310             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8311             call transpose2(EUg(1,1,k),auxmat(1,1))
8312             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8313      &        pizda(1,1))
8314             vv(1)=pizda(1,1)-pizda(2,2)
8315             vv(2)=pizda(1,2)+pizda(2,1)
8316             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8317 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8318 #ifdef MOMENT
8319             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8320 #else
8321             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8322 #endif
8323             if (swap) then
8324               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8325             else
8326               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8327             endif
8328           enddo
8329         enddo
8330       enddo
8331       return
8332       end
8333 c----------------------------------------------------------------------------
8334       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8335       implicit real*8 (a-h,o-z)
8336       include 'DIMENSIONS'
8337       include 'COMMON.IOUNITS'
8338       include 'COMMON.CHAIN'
8339       include 'COMMON.DERIV'
8340       include 'COMMON.INTERACT'
8341       include 'COMMON.CONTACTS'
8342 #ifdef MOMENT
8343       include 'COMMON.CONTACTS.MOMENT'
8344 #endif  
8345       include 'COMMON.TORSION'
8346       include 'COMMON.VAR'
8347       include 'COMMON.GEO'
8348       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8349       logical swap
8350 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8351 C                                                                              C
8352 C      Parallel       Antiparallel                                             C
8353 C                                                                              C
8354 C          o             o                                                     C
8355 C         /l\   /   \   /j\                                                    C
8356 C        /   \ /     \ /   \                                                   C
8357 C       /| o |o       o| o |\                                                  C
8358 C       j|/k\|  /      |/k\|l /                                                C
8359 C        /   \ /       /   \ /                                                 C
8360 C       /     o       /     o                                                  C
8361 C       i             i                                                        C
8362 C                                                                              C
8363 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8364 C
8365 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8366 C           energy moment and not to the cluster cumulant.
8367       iti=itortyp(itype(i))
8368       if (j.lt.nres-1) then
8369         itj1=itortyp(itype(j+1))
8370       else
8371         itj1=ntortyp+1
8372       endif
8373       itk=itortyp(itype(k))
8374       itk1=itortyp(itype(k+1))
8375       if (l.lt.nres-1) then
8376         itl1=itortyp(itype(l+1))
8377       else
8378         itl1=ntortyp+1
8379       endif
8380 #ifdef MOMENT
8381       s1=dip(4,jj,i)*dip(4,kk,k)
8382 #endif
8383       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8384       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8385       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8386       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8387       call transpose2(EE(1,1,itk),auxmat(1,1))
8388       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8389       vv(1)=pizda(1,1)+pizda(2,2)
8390       vv(2)=pizda(2,1)-pizda(1,2)
8391       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8392 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8393 cd     & "sum",-(s2+s3+s4)
8394 #ifdef MOMENT
8395       eello6_graph3=-(s1+s2+s3+s4)
8396 #else
8397       eello6_graph3=-(s2+s3+s4)
8398 #endif
8399 c      eello6_graph3=-s4
8400 C Derivatives in gamma(k-1)
8401       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8402       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8403       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8404       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8405 C Derivatives in gamma(l-1)
8406       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8407       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8408       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8409       vv(1)=pizda(1,1)+pizda(2,2)
8410       vv(2)=pizda(2,1)-pizda(1,2)
8411       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8412       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8413 C Cartesian derivatives.
8414       do iii=1,2
8415         do kkk=1,5
8416           do lll=1,3
8417 #ifdef MOMENT
8418             if (iii.eq.1) then
8419               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8420             else
8421               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8422             endif
8423 #endif
8424             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8425      &        auxvec(1))
8426             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8427             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8428      &        auxvec(1))
8429             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8430             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8431      &        pizda(1,1))
8432             vv(1)=pizda(1,1)+pizda(2,2)
8433             vv(2)=pizda(2,1)-pizda(1,2)
8434             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8435 #ifdef MOMENT
8436             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8437 #else
8438             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8439 #endif
8440             if (swap) then
8441               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8442             else
8443               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8444             endif
8445 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8446           enddo
8447         enddo
8448       enddo
8449       return
8450       end
8451 c----------------------------------------------------------------------------
8452       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8453       implicit real*8 (a-h,o-z)
8454       include 'DIMENSIONS'
8455       include 'COMMON.IOUNITS'
8456       include 'COMMON.CHAIN'
8457       include 'COMMON.DERIV'
8458       include 'COMMON.INTERACT'
8459       include 'COMMON.CONTACTS'
8460 #ifdef MOMENT
8461       include 'COMMON.CONTACTS.MOMENT'
8462 #endif  
8463       include 'COMMON.TORSION'
8464       include 'COMMON.VAR'
8465       include 'COMMON.GEO'
8466       include 'COMMON.FFIELD'
8467       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8468      & auxvec1(2),auxmat1(2,2)
8469       logical swap
8470 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8471 C                                                                              C
8472 C      Parallel       Antiparallel                                             C
8473 C                                                                              C
8474 C          o             o                                                     C
8475 C         /l\   /   \   /j\                                                    C
8476 C        /   \ /     \ /   \                                                   C
8477 C       /| o |o       o| o |\                                                  C
8478 C     \ j|/k\|      \  |/k\|l                                                  C
8479 C      \ /   \       \ /   \                                                   C
8480 C       o     \       o     \                                                  C
8481 C       i             i                                                        C
8482 C                                                                              C
8483 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8484 C
8485 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8486 C           energy moment and not to the cluster cumulant.
8487 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8488       iti=itortyp(itype(i))
8489       itj=itortyp(itype(j))
8490       if (j.lt.nres-1) then
8491         itj1=itortyp(itype(j+1))
8492       else
8493         itj1=ntortyp+1
8494       endif
8495       itk=itortyp(itype(k))
8496       if (k.lt.nres-1) then
8497         itk1=itortyp(itype(k+1))
8498       else
8499         itk1=ntortyp+1
8500       endif
8501       itl=itortyp(itype(l))
8502       if (l.lt.nres-1) then
8503         itl1=itortyp(itype(l+1))
8504       else
8505         itl1=ntortyp+1
8506       endif
8507 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8508 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8509 cd     & ' itl',itl,' itl1',itl1
8510 #ifdef MOMENT
8511       if (imat.eq.1) then
8512         s1=dip(3,jj,i)*dip(3,kk,k)
8513       else
8514         s1=dip(2,jj,j)*dip(2,kk,l)
8515       endif
8516 #endif
8517       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8518       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8519       if (j.eq.l+1) then
8520         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8521         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8522       else
8523         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8524         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8525       endif
8526       call transpose2(EUg(1,1,k),auxmat(1,1))
8527       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8528       vv(1)=pizda(1,1)-pizda(2,2)
8529       vv(2)=pizda(2,1)+pizda(1,2)
8530       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8531 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8532 #ifdef MOMENT
8533       eello6_graph4=-(s1+s2+s3+s4)
8534 #else
8535       eello6_graph4=-(s2+s3+s4)
8536 #endif
8537 C Derivatives in gamma(i-1)
8538       if (i.gt.1) then
8539 #ifdef MOMENT
8540         if (imat.eq.1) then
8541           s1=dipderg(2,jj,i)*dip(3,kk,k)
8542         else
8543           s1=dipderg(4,jj,j)*dip(2,kk,l)
8544         endif
8545 #endif
8546         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8547         if (j.eq.l+1) then
8548           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8549           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8550         else
8551           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8552           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8553         endif
8554         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8555         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8556 cd          write (2,*) 'turn6 derivatives'
8557 #ifdef MOMENT
8558           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8559 #else
8560           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8561 #endif
8562         else
8563 #ifdef MOMENT
8564           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8565 #else
8566           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8567 #endif
8568         endif
8569       endif
8570 C Derivatives in gamma(k-1)
8571 #ifdef MOMENT
8572       if (imat.eq.1) then
8573         s1=dip(3,jj,i)*dipderg(2,kk,k)
8574       else
8575         s1=dip(2,jj,j)*dipderg(4,kk,l)
8576       endif
8577 #endif
8578       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8579       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8580       if (j.eq.l+1) then
8581         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8582         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8583       else
8584         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8585         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8586       endif
8587       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8588       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8589       vv(1)=pizda(1,1)-pizda(2,2)
8590       vv(2)=pizda(2,1)+pizda(1,2)
8591       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8592       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8593 #ifdef MOMENT
8594         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8595 #else
8596         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8597 #endif
8598       else
8599 #ifdef MOMENT
8600         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8601 #else
8602         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8603 #endif
8604       endif
8605 C Derivatives in gamma(j-1) or gamma(l-1)
8606       if (l.eq.j+1 .and. l.gt.1) then
8607         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8608         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8609         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8610         vv(1)=pizda(1,1)-pizda(2,2)
8611         vv(2)=pizda(2,1)+pizda(1,2)
8612         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8613         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8614       else if (j.gt.1) then
8615         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8616         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8617         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8618         vv(1)=pizda(1,1)-pizda(2,2)
8619         vv(2)=pizda(2,1)+pizda(1,2)
8620         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8621         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8622           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8623         else
8624           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8625         endif
8626       endif
8627 C Cartesian derivatives.
8628       do iii=1,2
8629         do kkk=1,5
8630           do lll=1,3
8631 #ifdef MOMENT
8632             if (iii.eq.1) then
8633               if (imat.eq.1) then
8634                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8635               else
8636                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8637               endif
8638             else
8639               if (imat.eq.1) then
8640                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8641               else
8642                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8643               endif
8644             endif
8645 #endif
8646             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8647      &        auxvec(1))
8648             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8649             if (j.eq.l+1) then
8650               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8651      &          b1(1,itj1),auxvec(1))
8652               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8653             else
8654               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8655      &          b1(1,itl1),auxvec(1))
8656               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8657             endif
8658             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8659      &        pizda(1,1))
8660             vv(1)=pizda(1,1)-pizda(2,2)
8661             vv(2)=pizda(2,1)+pizda(1,2)
8662             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8663             if (swap) then
8664               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8665 #ifdef MOMENT
8666                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8667      &             -(s1+s2+s4)
8668 #else
8669                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8670      &             -(s2+s4)
8671 #endif
8672                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8673               else
8674 #ifdef MOMENT
8675                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8676 #else
8677                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8678 #endif
8679                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8680               endif
8681             else
8682 #ifdef MOMENT
8683               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8684 #else
8685               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8686 #endif
8687               if (l.eq.j+1) then
8688                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8689               else 
8690                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8691               endif
8692             endif 
8693           enddo
8694         enddo
8695       enddo
8696       return
8697       end
8698 c----------------------------------------------------------------------------
8699       double precision function eello_turn6(i,jj,kk)
8700       implicit real*8 (a-h,o-z)
8701       include 'DIMENSIONS'
8702       include 'COMMON.IOUNITS'
8703       include 'COMMON.CHAIN'
8704       include 'COMMON.DERIV'
8705       include 'COMMON.INTERACT'
8706       include 'COMMON.CONTACTS'
8707 #ifdef MOMENT
8708       include 'COMMON.CONTACTS.MOMENT'
8709 #endif  
8710       include 'COMMON.TORSION'
8711       include 'COMMON.VAR'
8712       include 'COMMON.GEO'
8713       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8714      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8715      &  ggg1(3),ggg2(3)
8716       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8717      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8718 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8719 C           the respective energy moment and not to the cluster cumulant.
8720       s1=0.0d0
8721       s8=0.0d0
8722       s13=0.0d0
8723 c
8724       eello_turn6=0.0d0
8725       j=i+4
8726       k=i+1
8727       l=i+3
8728       iti=itortyp(itype(i))
8729       itk=itortyp(itype(k))
8730       itk1=itortyp(itype(k+1))
8731       itl=itortyp(itype(l))
8732       itj=itortyp(itype(j))
8733 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8734 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8735 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8736 cd        eello6=0.0d0
8737 cd        return
8738 cd      endif
8739 cd      write (iout,*)
8740 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8741 cd     &   ' and',k,l
8742 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8743       do iii=1,2
8744         do kkk=1,5
8745           do lll=1,3
8746             derx_turn(lll,kkk,iii)=0.0d0
8747           enddo
8748         enddo
8749       enddo
8750 cd      eij=1.0d0
8751 cd      ekl=1.0d0
8752 cd      ekont=1.0d0
8753       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8754 cd      eello6_5=0.0d0
8755 cd      write (2,*) 'eello6_5',eello6_5
8756 #ifdef MOMENT
8757       call transpose2(AEA(1,1,1),auxmat(1,1))
8758       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8759       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8760       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8761 #endif
8762       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8763       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8764       s2 = scalar2(b1(1,itk),vtemp1(1))
8765 #ifdef MOMENT
8766       call transpose2(AEA(1,1,2),atemp(1,1))
8767       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8768       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8769       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8770 #endif
8771       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8772       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8773       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8774 #ifdef MOMENT
8775       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8776       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8777       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8778       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8779       ss13 = scalar2(b1(1,itk),vtemp4(1))
8780       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8781 #endif
8782 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8783 c      s1=0.0d0
8784 c      s2=0.0d0
8785 c      s8=0.0d0
8786 c      s12=0.0d0
8787 c      s13=0.0d0
8788       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8789 C Derivatives in gamma(i+2)
8790       s1d =0.0d0
8791       s8d =0.0d0
8792 #ifdef MOMENT
8793       call transpose2(AEA(1,1,1),auxmatd(1,1))
8794       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8795       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8796       call transpose2(AEAderg(1,1,2),atempd(1,1))
8797       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8798       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8799 #endif
8800       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8801       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8802       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8803 c      s1d=0.0d0
8804 c      s2d=0.0d0
8805 c      s8d=0.0d0
8806 c      s12d=0.0d0
8807 c      s13d=0.0d0
8808       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8809 C Derivatives in gamma(i+3)
8810 #ifdef MOMENT
8811       call transpose2(AEA(1,1,1),auxmatd(1,1))
8812       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8813       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8814       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8815 #endif
8816       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8817       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8818       s2d = scalar2(b1(1,itk),vtemp1d(1))
8819 #ifdef MOMENT
8820       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8821       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8822 #endif
8823       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8824 #ifdef MOMENT
8825       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8826       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8827       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8828 #endif
8829 c      s1d=0.0d0
8830 c      s2d=0.0d0
8831 c      s8d=0.0d0
8832 c      s12d=0.0d0
8833 c      s13d=0.0d0
8834 #ifdef MOMENT
8835       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8836      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8837 #else
8838       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8839      &               -0.5d0*ekont*(s2d+s12d)
8840 #endif
8841 C Derivatives in gamma(i+4)
8842       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8843       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8844       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8845 #ifdef MOMENT
8846       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8847       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8848       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8849 #endif
8850 c      s1d=0.0d0
8851 c      s2d=0.0d0
8852 c      s8d=0.0d0
8853 C      s12d=0.0d0
8854 c      s13d=0.0d0
8855 #ifdef MOMENT
8856       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8857 #else
8858       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8859 #endif
8860 C Derivatives in gamma(i+5)
8861 #ifdef MOMENT
8862       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8863       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8864       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8865 #endif
8866       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8867       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8868       s2d = scalar2(b1(1,itk),vtemp1d(1))
8869 #ifdef MOMENT
8870       call transpose2(AEA(1,1,2),atempd(1,1))
8871       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8872       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8873 #endif
8874       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8875       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8876 #ifdef MOMENT
8877       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8878       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8879       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8880 #endif
8881 c      s1d=0.0d0
8882 c      s2d=0.0d0
8883 c      s8d=0.0d0
8884 c      s12d=0.0d0
8885 c      s13d=0.0d0
8886 #ifdef MOMENT
8887       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8888      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8889 #else
8890       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8891      &               -0.5d0*ekont*(s2d+s12d)
8892 #endif
8893 C Cartesian derivatives
8894       do iii=1,2
8895         do kkk=1,5
8896           do lll=1,3
8897 #ifdef MOMENT
8898             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8899             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8900             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8901 #endif
8902             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8903             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8904      &          vtemp1d(1))
8905             s2d = scalar2(b1(1,itk),vtemp1d(1))
8906 #ifdef MOMENT
8907             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8908             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8909             s8d = -(atempd(1,1)+atempd(2,2))*
8910      &           scalar2(cc(1,1,itl),vtemp2(1))
8911 #endif
8912             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8913      &           auxmatd(1,1))
8914             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8915             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8916 c      s1d=0.0d0
8917 c      s2d=0.0d0
8918 c      s8d=0.0d0
8919 c      s12d=0.0d0
8920 c      s13d=0.0d0
8921 #ifdef MOMENT
8922             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8923      &        - 0.5d0*(s1d+s2d)
8924 #else
8925             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8926      &        - 0.5d0*s2d
8927 #endif
8928 #ifdef MOMENT
8929             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8930      &        - 0.5d0*(s8d+s12d)
8931 #else
8932             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8933      &        - 0.5d0*s12d
8934 #endif
8935           enddo
8936         enddo
8937       enddo
8938 #ifdef MOMENT
8939       do kkk=1,5
8940         do lll=1,3
8941           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8942      &      achuj_tempd(1,1))
8943           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8944           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8945           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8946           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8947           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8948      &      vtemp4d(1)) 
8949           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8950           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8951           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8952         enddo
8953       enddo
8954 #endif
8955 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
8956 cd     &  16*eel_turn6_num
8957 cd      goto 1112
8958       if (j.lt.nres-1) then
8959         j1=j+1
8960         j2=j-1
8961       else
8962         j1=j-1
8963         j2=j-2
8964       endif
8965       if (l.lt.nres-1) then
8966         l1=l+1
8967         l2=l-1
8968       else
8969         l1=l-1
8970         l2=l-2
8971       endif
8972       do ll=1,3
8973 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
8974 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
8975 cgrad        ghalf=0.5d0*ggg1(ll)
8976 cd        ghalf=0.0d0
8977         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
8978         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
8979         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
8980      &    +ekont*derx_turn(ll,2,1)
8981         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
8982         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
8983      &    +ekont*derx_turn(ll,4,1)
8984         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
8985         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
8986         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
8987 cgrad        ghalf=0.5d0*ggg2(ll)
8988 cd        ghalf=0.0d0
8989         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
8990      &    +ekont*derx_turn(ll,2,2)
8991         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
8992         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
8993      &    +ekont*derx_turn(ll,4,2)
8994         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
8995         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
8996         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
8997       enddo
8998 cd      goto 1112
8999 cgrad      do m=i+1,j-1
9000 cgrad        do ll=1,3
9001 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9002 cgrad        enddo
9003 cgrad      enddo
9004 cgrad      do m=k+1,l-1
9005 cgrad        do ll=1,3
9006 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9007 cgrad        enddo
9008 cgrad      enddo
9009 cgrad1112  continue
9010 cgrad      do m=i+2,j2
9011 cgrad        do ll=1,3
9012 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9013 cgrad        enddo
9014 cgrad      enddo
9015 cgrad      do m=k+2,l2
9016 cgrad        do ll=1,3
9017 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9018 cgrad        enddo
9019 cgrad      enddo 
9020 cd      do iii=1,nres-3
9021 cd        write (2,*) iii,g_corr6_loc(iii)
9022 cd      enddo
9023       eello_turn6=ekont*eel_turn6
9024 cd      write (2,*) 'ekont',ekont
9025 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9026       return
9027       end
9028
9029 C-----------------------------------------------------------------------------
9030       double precision function scalar(u,v)
9031 !DIR$ INLINEALWAYS scalar
9032 #ifndef OSF
9033 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9034 #endif
9035       implicit none
9036       double precision u(3),v(3)
9037 cd      double precision sc
9038 cd      integer i
9039 cd      sc=0.0d0
9040 cd      do i=1,3
9041 cd        sc=sc+u(i)*v(i)
9042 cd      enddo
9043 cd      scalar=sc
9044
9045       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9046       return
9047       end
9048 crc-------------------------------------------------
9049       SUBROUTINE MATVEC2(A1,V1,V2)
9050 !DIR$ INLINEALWAYS MATVEC2
9051 #ifndef OSF
9052 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9053 #endif
9054       implicit real*8 (a-h,o-z)
9055       include 'DIMENSIONS'
9056       DIMENSION A1(2,2),V1(2),V2(2)
9057 c      DO 1 I=1,2
9058 c        VI=0.0
9059 c        DO 3 K=1,2
9060 c    3     VI=VI+A1(I,K)*V1(K)
9061 c        Vaux(I)=VI
9062 c    1 CONTINUE
9063
9064       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9065       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9066
9067       v2(1)=vaux1
9068       v2(2)=vaux2
9069       END
9070 C---------------------------------------
9071       SUBROUTINE MATMAT2(A1,A2,A3)
9072 #ifndef OSF
9073 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9074 #endif
9075       implicit real*8 (a-h,o-z)
9076       include 'DIMENSIONS'
9077       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9078 c      DIMENSION AI3(2,2)
9079 c        DO  J=1,2
9080 c          A3IJ=0.0
9081 c          DO K=1,2
9082 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9083 c          enddo
9084 c          A3(I,J)=A3IJ
9085 c       enddo
9086 c      enddo
9087
9088       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9089       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9090       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9091       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9092
9093       A3(1,1)=AI3_11
9094       A3(2,1)=AI3_21
9095       A3(1,2)=AI3_12
9096       A3(2,2)=AI3_22
9097       END
9098
9099 c-------------------------------------------------------------------------
9100       double precision function scalar2(u,v)
9101 !DIR$ INLINEALWAYS scalar2
9102       implicit none
9103       double precision u(2),v(2)
9104       double precision sc
9105       integer i
9106       scalar2=u(1)*v(1)+u(2)*v(2)
9107       return
9108       end
9109
9110 C-----------------------------------------------------------------------------
9111
9112       subroutine transpose2(a,at)
9113 !DIR$ INLINEALWAYS transpose2
9114 #ifndef OSF
9115 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9116 #endif
9117       implicit none
9118       double precision a(2,2),at(2,2)
9119       at(1,1)=a(1,1)
9120       at(1,2)=a(2,1)
9121       at(2,1)=a(1,2)
9122       at(2,2)=a(2,2)
9123       return
9124       end
9125 c--------------------------------------------------------------------------
9126       subroutine transpose(n,a,at)
9127       implicit none
9128       integer n,i,j
9129       double precision a(n,n),at(n,n)
9130       do i=1,n
9131         do j=1,n
9132           at(j,i)=a(i,j)
9133         enddo
9134       enddo
9135       return
9136       end
9137 C---------------------------------------------------------------------------
9138       subroutine prodmat3(a1,a2,kk,transp,prod)
9139 !DIR$ INLINEALWAYS prodmat3
9140 #ifndef OSF
9141 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9142 #endif
9143       implicit none
9144       integer i,j
9145       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9146       logical transp
9147 crc      double precision auxmat(2,2),prod_(2,2)
9148
9149       if (transp) then
9150 crc        call transpose2(kk(1,1),auxmat(1,1))
9151 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9152 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9153         
9154            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9155      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9156            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9157      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9158            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9159      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9160            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9161      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9162
9163       else
9164 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9165 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9166
9167            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9168      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9169            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9170      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9171            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9172      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9173            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9174      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9175
9176       endif
9177 c      call transpose2(a2(1,1),a2t(1,1))
9178
9179 crc      print *,transp
9180 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9181 crc      print *,((prod(i,j),i=1,2),j=1,2)
9182
9183       return
9184       end
9185