Moved ifdef MOMENT part from COMMON.CONTACTS to COMMON.CONTACTS.MOMENT and aplied...
[unres.git] / source / unres / src_CSA / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD_'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31         time00=MPI_Wtime()
32 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
33         if (fg_rank.eq.0) then
34           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
35 c          print *,"Processor",myrank," BROADCAST iorder"
36 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
37 C FG slaves as WEIGHTS array.
38           weights_(1)=wsc
39           weights_(2)=wscp
40           weights_(3)=welec
41           weights_(4)=wcorr
42           weights_(5)=wcorr5
43           weights_(6)=wcorr6
44           weights_(7)=wel_loc
45           weights_(8)=wturn3
46           weights_(9)=wturn4
47           weights_(10)=wturn6
48           weights_(11)=wang
49           weights_(12)=wscloc
50           weights_(13)=wtor
51           weights_(14)=wtor_d
52           weights_(15)=wstrain
53           weights_(16)=wvdwpp
54           weights_(17)=wbond
55           weights_(18)=scal14
56           weights_(21)=wsccor
57           weights_(22)=wsct
58 C FG Master broadcasts the WEIGHTS_ array
59           call MPI_Bcast(weights_(1),n_ene,
60      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
61         else
62 C FG slaves receive the WEIGHTS array
63           call MPI_Bcast(weights(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65           wsc=weights(1)
66           wscp=weights(2)
67           welec=weights(3)
68           wcorr=weights(4)
69           wcorr5=weights(5)
70           wcorr6=weights(6)
71           wel_loc=weights(7)
72           wturn3=weights(8)
73           wturn4=weights(9)
74           wturn6=weights(10)
75           wang=weights(11)
76           wscloc=weights(12)
77           wtor=weights(13)
78           wtor_d=weights(14)
79           wstrain=weights(15)
80           wvdwpp=weights(16)
81           wbond=weights(17)
82           scal14=weights(18)
83           wsccor=weights(21)
84           wsct=weights(22)
85         endif
86         time_Bcast=time_Bcast+MPI_Wtime()-time00
87         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
88 c        call chainbuild_cart
89       endif
90 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
91 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
92 #else
93 c      if (modecalc.eq.12.or.modecalc.eq.14) then
94 c        call int_from_cart1(.false.)
95 c      endif
96 #endif     
97 #ifdef TIMING
98       time00=MPI_Wtime()
99 #endif
100
101 C Compute the side-chain and electrostatic interaction energy
102 C
103       goto (101,102,103,104,105,106) ipot
104 C Lennard-Jones potential.
105   101 call elj(evdw,evdw_p,evdw_m)
106 cd    print '(a)','Exit ELJ'
107       goto 107
108 C Lennard-Jones-Kihara potential (shifted).
109   102 call eljk(evdw,evdw_p,evdw_m)
110       goto 107
111 C Berne-Pechukas potential (dilated LJ, angular dependence).
112   103 call ebp(evdw,evdw_p,evdw_m)
113       goto 107
114 C Gay-Berne potential (shifted LJ, angular dependence).
115   104 call egb(evdw,evdw_p,evdw_m)
116       goto 107
117 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
118   105 call egbv(evdw,evdw_p,evdw_m)
119       goto 107
120 C Soft-sphere potential
121   106 call e_softsphere(evdw)
122 C
123 C Calculate electrostatic (H-bonding) energy of the main chain.
124 C
125   107 continue
126       
127 C     JUYONG for dfa test!
128       if (wdfa_dist.gt.0) call edfad(edfadis)
129 c      print*, 'edfad is finished!', edfadis
130       if (wdfa_tor.gt.0) call edfat(edfator)
131 c      print*, 'edfat is finished!', edfator
132       if (wdfa_nei.gt.0) call edfan(edfanei)
133 c      print*, 'edfan is finished!', edfanei
134       if (wdfa_beta.gt.0) call edfab(edfabet)
135 c      print*, 'edfab is finished!', edfabet
136 C      stop
137 C     JUYONG
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141       time01=MPI_Wtime() 
142 #endif
143       call vec_and_deriv
144 #ifdef TIMING
145       time_vec=time_vec+MPI_Wtime()-time01
146 #endif
147 c      print *,"Processor",myrank," left VEC_AND_DERIV"
148       if (ipot.lt.6) then
149 #ifdef SPLITELE
150          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
151      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
152      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
153      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
154 #else
155          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
156      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
157      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
158      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
159 #endif
160             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
161          else
162             ees=0.0d0
163             evdw1=0.0d0
164             eel_loc=0.0d0
165             eello_turn3=0.0d0
166             eello_turn4=0.0d0
167          endif
168       else
169 c        write (iout,*) "Soft-spheer ELEC potential"
170         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
171      &   eello_turn4)
172       endif
173 c      print *,"Processor",myrank," computed UELEC"
174 C
175 C Calculate excluded-volume interaction energy between peptide groups
176 C and side chains.
177 C
178       if (ipot.lt.6) then
179        if(wscp.gt.0d0) then
180         call escp(evdw2,evdw2_14)
181        else
182         evdw2=0
183         evdw2_14=0
184        endif
185       else
186 c        write (iout,*) "Soft-sphere SCP potential"
187         call escp_soft_sphere(evdw2,evdw2_14)
188       endif
189 c
190 c Calculate the bond-stretching energy
191 c
192       call ebond(estr)
193
194 C Calculate the disulfide-bridge and other energy and the contributions
195 C from other distance constraints.
196 cd    print *,'Calling EHPB'
197       call edis(ehpb)
198 cd    print *,'EHPB exitted succesfully.'
199 C
200 C Calculate the virtual-bond-angle energy.
201 C
202       if (wang.gt.0d0) then
203         call ebend(ebe)
204       else
205         ebe=0
206       endif
207 c      print *,"Processor",myrank," computed UB"
208 C
209 C Calculate the SC local energy.
210 C
211       call esc(escloc)
212 c      print *,"Processor",myrank," computed USC"
213 C
214 C Calculate the virtual-bond torsional energy.
215 C
216 cd    print *,'nterm=',nterm
217       if (wtor.gt.0) then
218        call etor(etors,edihcnstr)
219       else
220        etors=0
221        edihcnstr=0
222       endif
223 c      print *,"Processor",myrank," computed Utor"
224 C
225 C 6/23/01 Calculate double-torsional energy
226 C
227       if (wtor_d.gt.0) then
228        call etor_d(etors_d)
229       else
230        etors_d=0
231       endif
232 c      print *,"Processor",myrank," computed Utord"
233 C
234 C 21/5/07 Calculate local sicdechain correlation energy
235 C
236       if (wsccor.gt.0.0d0) then
237         call eback_sc_corr(esccor)
238       else
239         esccor=0.0d0
240       endif
241 c      print *,"Processor",myrank," computed Usccorr"
242
243 C 12/1/95 Multi-body terms
244 C
245       n_corr=0
246       n_corr1=0
247       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
248      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
249          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
250 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
251 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
252       else
253          ecorr=0.0d0
254          ecorr5=0.0d0
255          ecorr6=0.0d0
256          eturn6=0.0d0
257       endif
258       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
259          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
260 cd         write (iout,*) "multibody_hb ecorr",ecorr
261       endif
262 c      print *,"Processor",myrank," computed Ucorr"
263
264 C If performing constraint dynamics, call the constraint energy
265 C  after the equilibration time
266       if(usampl.and.totT.gt.eq_time) then
267 c         call EconstrQ   
268          call Econstr_back
269       else
270          Uconst=0.0d0
271          Uconst_back=0.0d0
272       endif
273 #ifdef TIMING
274       time_enecalc=time_enecalc+MPI_Wtime()-time00
275 #endif
276 c      print *,"Processor",myrank," computed Uconstr"
277 #ifdef TIMING
278       time00=MPI_Wtime()
279 #endif
280 c
281 C Sum the energies
282 C
283       energia(1)=evdw
284 #ifdef SCP14
285       energia(2)=evdw2-evdw2_14
286       energia(18)=evdw2_14
287 #else
288       energia(2)=evdw2
289       energia(18)=0.0d0
290 #endif
291 #ifdef SPLITELE
292       energia(3)=ees
293       energia(16)=evdw1
294 #else
295       energia(3)=ees+evdw1
296       energia(16)=0.0d0
297 #endif
298       energia(4)=ecorr
299       energia(5)=ecorr5
300       energia(6)=ecorr6
301       energia(7)=eel_loc
302       energia(8)=eello_turn3
303       energia(9)=eello_turn4
304       energia(10)=eturn6
305       energia(11)=ebe
306       energia(12)=escloc
307       energia(13)=etors
308       energia(14)=etors_d
309       energia(15)=ehpb
310       energia(19)=edihcnstr
311       energia(17)=estr
312       energia(20)=Uconst+Uconst_back
313       energia(21)=esccor
314       energia(22)=evdw_p
315       energia(23)=evdw_m
316       energia(24)=edfadis
317       energia(25)=edfator
318       energia(26)=edfanei
319       energia(27)=edfabet
320 c      print *," Processor",myrank," calls SUM_ENERGY"
321       call sum_energy(energia,.true.)
322 c      print *," Processor",myrank," left SUM_ENERGY"
323 #ifdef TIMING
324       time_sumene=time_sumene+MPI_Wtime()-time00
325 #endif
326       
327 c      print*, 'etot:',energia(0)
328       
329       return
330       end
331 c-------------------------------------------------------------------------------
332       subroutine sum_energy(energia,reduce)
333       implicit real*8 (a-h,o-z)
334       include 'DIMENSIONS'
335 #ifndef ISNAN
336       external proc_proc
337 #ifdef WINPGI
338 cMS$ATTRIBUTES C ::  proc_proc
339 #endif
340 #endif
341 #ifdef MPI
342       include "mpif.h"
343 #endif
344       include 'COMMON.SETUP'
345       include 'COMMON.IOUNITS'
346       double precision energia(0:n_ene),enebuff(0:n_ene+1)
347       include 'COMMON.FFIELD'
348       include 'COMMON.DERIV'
349       include 'COMMON.INTERACT'
350       include 'COMMON.SBRIDGE'
351       include 'COMMON.CHAIN'
352       include 'COMMON.VAR'
353       include 'COMMON.CONTROL'
354       include 'COMMON.TIME1'
355       logical reduce
356 #ifdef MPI
357       if (nfgtasks.gt.1 .and. reduce) then
358 #ifdef DEBUG
359         write (iout,*) "energies before REDUCE"
360         call enerprint(energia)
361         call flush(iout)
362 #endif
363         do i=0,n_ene
364           enebuff(i)=energia(i)
365         enddo
366         time00=MPI_Wtime()
367         call MPI_Barrier(FG_COMM,IERR)
368         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
369         time00=MPI_Wtime()
370         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
371      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
372 #ifdef DEBUG
373         write (iout,*) "energies after REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         time_Reduce=time_Reduce+MPI_Wtime()-time00
378       endif
379       if (fg_rank.eq.0) then
380 #endif
381 #ifdef TSCSC
382       evdw=energia(22)+wsct*energia(23)
383 #else
384       evdw=energia(1)
385 #endif
386 #ifdef SCP14
387       evdw2=energia(2)+energia(18)
388       evdw2_14=energia(18)
389 #else
390       evdw2=energia(2)
391 #endif
392 #ifdef SPLITELE
393       ees=energia(3)
394       evdw1=energia(16)
395 #else
396       ees=energia(3)
397       evdw1=0.0d0
398 #endif
399       ecorr=energia(4)
400       ecorr5=energia(5)
401       ecorr6=energia(6)
402       eel_loc=energia(7)
403       eello_turn3=energia(8)
404       eello_turn4=energia(9)
405       eturn6=energia(10)
406       ebe=energia(11)
407       escloc=energia(12)
408       etors=energia(13)
409       etors_d=energia(14)
410       ehpb=energia(15)
411       edihcnstr=energia(19)
412       estr=energia(17)
413       Uconst=energia(20)
414       esccor=energia(21)
415       edfadis=energia(24)
416       edfator=energia(25)
417       edfanei=energia(26)
418       edfabet=energia(27)
419 #ifdef SPLITELE
420       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
421      & +wang*ebe+wtor*etors+wscloc*escloc
422      & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
423      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
424      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
425      & +wbond*estr+Uconst+wsccor*esccor
426      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
427      & +wdfa_beta*edfabet    
428 #else
429       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
430      & +wang*ebe+wtor*etors+wscloc*escloc
431      & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
432      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
433      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
434      & +wbond*estr+Uconst+wsccor*esccor
435      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
436      & +wdfa_beta*edfabet    
437
438 #endif
439       energia(0)=etot
440 c detecting NaNQ
441 #ifdef ISNAN
442 #ifdef AIX
443       if (isnan(etot).ne.0) energia(0)=1.0d+99
444 #else
445       if (isnan(etot)) energia(0)=1.0d+99
446 #endif
447 #else
448       i=0
449 #ifdef WINPGI
450       idumm=proc_proc(etot,i)
451 #else
452       call proc_proc(etot,i)
453 #endif
454       if(i.eq.1)energia(0)=1.0d+99
455 #endif
456 #ifdef MPI
457       endif
458 #endif
459       return
460       end
461 c-------------------------------------------------------------------------------
462       subroutine sum_gradient
463       implicit real*8 (a-h,o-z)
464       include 'DIMENSIONS'
465 #ifndef ISNAN
466       external proc_proc
467 #ifdef WINPGI
468 cMS$ATTRIBUTES C ::  proc_proc
469 #endif
470 #endif
471 #ifdef MPI
472       include 'mpif.h'
473       double precision gradbufc(3,maxres),gradbufx(3,maxres),
474      &  glocbuf(4*maxres),gradbufc_sum(3,maxres)
475 #else
476       double precision gradbufc(3,maxres),gradbufx(3,maxres),
477      &  glocbuf(4*maxres),gradbufc_sum(3,maxres)
478 #endif
479       include 'COMMON.SETUP'
480       include 'COMMON.IOUNITS'
481       include 'COMMON.FFIELD'
482       include 'COMMON.DERIV'
483       include 'COMMON.INTERACT'
484       include 'COMMON.SBRIDGE'
485       include 'COMMON.CHAIN'
486       include 'COMMON.VAR'
487       include 'COMMON.CONTROL'
488       include 'COMMON.TIME1'
489       include 'COMMON.MAXGRAD'
490 #ifdef TIMING
491       time01=MPI_Wtime()
492 #endif
493 #ifdef DEBUG
494       write (iout,*) "sum_gradient gvdwc, gvdwx"
495       do i=1,nres
496         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
497      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
498      &   (gvdwcT(j,i),j=1,3)
499       enddo
500       call flush(iout)
501 #endif
502 #ifdef MPI
503 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
504         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
505      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
506 #endif
507 C
508 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
509 C            in virtual-bond-vector coordinates
510 C
511 #ifdef DEBUG
512 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
513 c      do i=1,nres-1
514 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
515 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
516 c      enddo
517 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
518 c      do i=1,nres-1
519 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
520 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
521 c      enddo
522       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
523       do i=1,nres
524         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
525      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
526      &   g_corr5_loc(i)
527       enddo
528       call flush(iout)
529 #endif
530 #ifdef SPLITELE
531 #ifdef TSCSC
532       do i=1,nct
533         do j=1,3
534           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
535      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
536      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
537      &                wel_loc*gel_loc_long(j,i)+
538      &                wcorr*gradcorr_long(j,i)+
539      &                wcorr5*gradcorr5_long(j,i)+
540      &                wcorr6*gradcorr6_long(j,i)+
541      &                wturn6*gcorr6_turn_long(j,i)+
542      &                wstrain*ghpbc(j,i)+
543      &                wdfa_dist*gdfad(j,i)+
544      &                wdfa_tor*gdfat(j,i)+
545      &                wdfa_nei*gdfan(j,i)+
546      &                wdfa_beta*gdfab(j,i)
547
548         enddo
549       enddo 
550 #else
551       do i=1,nct
552         do j=1,3
553           gradbufc(j,i)=wsc*gvdwc(j,i)+
554      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
555      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
556      &                wel_loc*gel_loc_long(j,i)+
557      &                wcorr*gradcorr_long(j,i)+
558      &                wcorr5*gradcorr5_long(j,i)+
559      &                wcorr6*gradcorr6_long(j,i)+
560      &                wturn6*gcorr6_turn_long(j,i)+
561      &                wstrain*ghpbc(j,i)+
562      &                wdfa_dist*gdfad(j,i)+
563      &                wdfa_tor*gdfat(j,i)+
564      &                wdfa_nei*gdfan(j,i)+
565      &                wdfa_beta*gdfab(j,i)
566
567         enddo
568       enddo 
569 #endif
570 #else
571       do i=1,nct
572         do j=1,3
573           gradbufc(j,i)=wsc*gvdwc(j,i)+
574      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
575      &                welec*gelc_long(j,i)+
576      &                wbond*gradb(j,i)+
577      &                wel_loc*gel_loc_long(j,i)+
578      &                wcorr*gradcorr_long(j,i)+
579      &                wcorr5*gradcorr5_long(j,i)+
580      &                wcorr6*gradcorr6_long(j,i)+
581      &                wturn6*gcorr6_turn_long(j,i)+
582      &                wstrain*ghpbc(j,i)+
583      &                wdfa_dist*gdfad(j,i)+
584      &                wdfa_tor*gdfat(j,i)+
585      &                wdfa_nei*gdfan(j,i)+
586      &                wdfa_beta*gdfab(j,i)
587
588
589         enddo
590       enddo 
591 #endif
592 #ifdef MPI
593       if (nfgtasks.gt.1) then
594       time00=MPI_Wtime()
595 #ifdef DEBUG
596       write (iout,*) "gradbufc before allreduce"
597       do i=1,nres
598         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
599       enddo
600       call flush(iout)
601 #endif
602       call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
603      &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
604       time_reduce=time_reduce+MPI_Wtime()-time00
605 #ifdef DEBUG
606       write (iout,*) "gradbufc_sum after allreduce"
607       do i=1,nres
608         write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
609       enddo
610       call flush(iout)
611 #endif
612 #ifdef TIMING
613       time_allreduce=time_allreduce+MPI_Wtime()-time00
614 #endif
615       do i=nnt,nres
616         do k=1,3
617           gradbufc(k,i)=0.0d0
618         enddo
619       enddo
620       do i=igrad_start,igrad_end
621         do j=jgrad_start(i),jgrad_end(i)
622           do k=1,3
623             gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
624           enddo
625         enddo
626       enddo
627       else
628 #endif
629 #ifdef DEBUG
630       write (iout,*) "gradbufc"
631       do i=1,nres
632         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
633       enddo
634       call flush(iout)
635 #endif
636       do i=nnt,nres-1
637         do k=1,3
638           gradbufc(k,i)=0.0d0
639         enddo
640         do j=i+1,nres
641           do k=1,3
642             gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
643           enddo
644         enddo
645       enddo
646 #ifdef MPI
647       endif
648 #endif
649       do k=1,3
650         gradbufc(k,nres)=0.0d0
651       enddo
652       do i=1,nct
653         do j=1,3
654 #ifdef SPLITELE
655           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
656      &                wel_loc*gel_loc(j,i)+
657      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
658      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
659      &                wel_loc*gel_loc_long(j,i)+
660      &                wcorr*gradcorr_long(j,i)+
661      &                wcorr5*gradcorr5_long(j,i)+
662      &                wcorr6*gradcorr6_long(j,i)+
663      &                wturn6*gcorr6_turn_long(j,i))+
664      &                wbond*gradb(j,i)+
665      &                wcorr*gradcorr(j,i)+
666      &                wturn3*gcorr3_turn(j,i)+
667      &                wturn4*gcorr4_turn(j,i)+
668      &                wcorr5*gradcorr5(j,i)+
669      &                wcorr6*gradcorr6(j,i)+
670      &                wturn6*gcorr6_turn(j,i)+
671      &                wsccor*gsccorc(j,i)
672      &               +wscloc*gscloc(j,i)
673 #else
674           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
675      &                wel_loc*gel_loc(j,i)+
676      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
677      &                welec*gelc_long(j,i)
678      &                wel_loc*gel_loc_long(j,i)+
679      &                wcorr*gcorr_long(j,i)+
680      &                wcorr5*gradcorr5_long(j,i)+
681      &                wcorr6*gradcorr6_long(j,i)+
682      &                wturn6*gcorr6_turn_long(j,i))+
683      &                wbond*gradb(j,i)+
684      &                wcorr*gradcorr(j,i)+
685      &                wturn3*gcorr3_turn(j,i)+
686      &                wturn4*gcorr4_turn(j,i)+
687      &                wcorr5*gradcorr5(j,i)+
688      &                wcorr6*gradcorr6(j,i)+
689      &                wturn6*gcorr6_turn(j,i)+
690      &                wsccor*gsccorc(j,i)
691      &               +wscloc*gscloc(j,i)
692 #endif
693 #ifdef TSCSC
694           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
695      &                  wscp*gradx_scp(j,i)+
696      &                  wbond*gradbx(j,i)+
697      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
698      &                  wsccor*gsccorx(j,i)
699      &                 +wscloc*gsclocx(j,i)
700 #else
701           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
702      &                  wbond*gradbx(j,i)+
703      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
704      &                  wsccor*gsccorx(j,i)
705      &                 +wscloc*gsclocx(j,i)
706 #endif
707         enddo
708       enddo 
709 #ifdef DEBUG
710       write (iout,*) "gloc before adding corr"
711       do i=1,4*nres
712         write (iout,*) i,gloc(i,icg)
713       enddo
714 #endif
715       do i=1,nres-3
716         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
717      &   +wcorr5*g_corr5_loc(i)
718      &   +wcorr6*g_corr6_loc(i)
719      &   +wturn4*gel_loc_turn4(i)
720      &   +wturn3*gel_loc_turn3(i)
721      &   +wturn6*gel_loc_turn6(i)
722      &   +wel_loc*gel_loc_loc(i)
723      &   +wsccor*gsccor_loc(i)
724       enddo
725 #ifdef DEBUG
726       write (iout,*) "gloc after adding corr"
727       do i=1,4*nres
728         write (iout,*) i,gloc(i,icg)
729       enddo
730 #endif
731 #ifdef MPI
732       if (nfgtasks.gt.1) then
733         do j=1,3
734           do i=1,nres
735             gradbufc(j,i)=gradc(j,i,icg)
736             gradbufx(j,i)=gradx(j,i,icg)
737           enddo
738         enddo
739         do i=1,4*nres
740           glocbuf(i)=gloc(i,icg)
741         enddo
742         time00=MPI_Wtime()
743         call MPI_Barrier(FG_COMM,IERR)
744         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
745         time00=MPI_Wtime()
746         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
747      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
748         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
749      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
750         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
751      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
752         time_reduce=time_reduce+MPI_Wtime()-time00
753 #ifdef DEBUG
754       write (iout,*) "gloc after reduce"
755       do i=1,4*nres
756         write (iout,*) i,gloc(i,icg)
757       enddo
758 #endif
759       endif
760 #endif
761       if (gnorm_check) then
762 c
763 c Compute the maximum elements of the gradient
764 c
765       gvdwc_max=0.0d0
766       gvdwc_scp_max=0.0d0
767       gelc_max=0.0d0
768       gvdwpp_max=0.0d0
769       gradb_max=0.0d0
770       ghpbc_max=0.0d0
771       gradcorr_max=0.0d0
772       gel_loc_max=0.0d0
773       gcorr3_turn_max=0.0d0
774       gcorr4_turn_max=0.0d0
775       gradcorr5_max=0.0d0
776       gradcorr6_max=0.0d0
777       gcorr6_turn_max=0.0d0
778       gsccorc_max=0.0d0
779       gscloc_max=0.0d0
780       gvdwx_max=0.0d0
781       gradx_scp_max=0.0d0
782       ghpbx_max=0.0d0
783       gradxorr_max=0.0d0
784       gsccorx_max=0.0d0
785       gsclocx_max=0.0d0
786       do i=1,nct
787         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
788         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
789 #ifdef TSCSC
790         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
791         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
792 #endif
793         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
794         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
795      &   gvdwc_scp_max=gvdwc_scp_norm
796         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
797         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
798         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
799         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
800         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
801         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
802         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
803         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
804         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
805         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
806         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
807         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
808         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
809      &    gcorr3_turn(1,i)))
810         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
811      &    gcorr3_turn_max=gcorr3_turn_norm
812         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
813      &    gcorr4_turn(1,i)))
814         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
815      &    gcorr4_turn_max=gcorr4_turn_norm
816         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
817         if (gradcorr5_norm.gt.gradcorr5_max) 
818      &    gradcorr5_max=gradcorr5_norm
819         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
820         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
821         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
822      &    gcorr6_turn(1,i)))
823         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
824      &    gcorr6_turn_max=gcorr6_turn_norm
825         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
826         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
827         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
828         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
829         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
830         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
831 #ifdef TSCSC
832         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
833         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
834 #endif
835         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
836         if (gradx_scp_norm.gt.gradx_scp_max) 
837      &    gradx_scp_max=gradx_scp_norm
838         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
839         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
840         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
841         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
842         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
843         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
844         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
845         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
846       enddo 
847       if (gradout) then
848 #ifdef AIX
849         open(istat,file=statname,position="append")
850 #else
851         open(istat,file=statname,access="append")
852 #endif
853         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
854      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
855      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
856      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
857      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
858      &     gsccorx_max,gsclocx_max
859         close(istat)
860         if (gvdwc_max.gt.1.0d4) then
861           write (iout,*) "gvdwc gvdwx gradb gradbx"
862           do i=nnt,nct
863             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
864      &        gradb(j,i),gradbx(j,i),j=1,3)
865           enddo
866           call pdbout(0.0d0,'cipiszcze',iout)
867           call flush(iout)
868         endif
869       endif
870       endif
871 #ifdef DEBUG
872       write (iout,*) "gradc gradx gloc"
873       do i=1,nres
874         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
875      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
876       enddo 
877 #endif
878 #ifdef TIMING
879       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
880 #endif
881       return
882       end
883 c-------------------------------------------------------------------------------
884       subroutine rescale_weights(t_bath)
885       implicit real*8 (a-h,o-z)
886       include 'DIMENSIONS'
887       include 'COMMON.IOUNITS'
888       include 'COMMON.FFIELD'
889       include 'COMMON.SBRIDGE'
890       double precision kfac /2.4d0/
891       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
892 c      facT=temp0/t_bath
893 c      facT=2*temp0/(t_bath+temp0)
894       if (rescale_mode.eq.0) then
895         facT=1.0d0
896         facT2=1.0d0
897         facT3=1.0d0
898         facT4=1.0d0
899         facT5=1.0d0
900       else if (rescale_mode.eq.1) then
901         facT=kfac/(kfac-1.0d0+t_bath/temp0)
902         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
903         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
904         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
905         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
906       else if (rescale_mode.eq.2) then
907         x=t_bath/temp0
908         x2=x*x
909         x3=x2*x
910         x4=x3*x
911         x5=x4*x
912         facT=licznik/dlog(dexp(x)+dexp(-x))
913         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
914         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
915         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
916         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
917       else
918         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
919         write (*,*) "Wrong RESCALE_MODE",rescale_mode
920 #ifdef MPI
921        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
922 #endif
923        stop 555
924       endif
925       welec=weights(3)*fact
926       wcorr=weights(4)*fact3
927       wcorr5=weights(5)*fact4
928       wcorr6=weights(6)*fact5
929       wel_loc=weights(7)*fact2
930       wturn3=weights(8)*fact2
931       wturn4=weights(9)*fact3
932       wturn6=weights(10)*fact5
933       wtor=weights(13)*fact
934       wtor_d=weights(14)*fact2
935       wsccor=weights(21)*fact
936 #ifdef TSCSC
937 c      wsct=t_bath/temp0
938       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
939 #endif
940       return
941       end
942 C------------------------------------------------------------------------
943       subroutine enerprint(energia)
944       implicit real*8 (a-h,o-z)
945       include 'DIMENSIONS'
946       include 'COMMON.IOUNITS'
947       include 'COMMON.FFIELD'
948       include 'COMMON.SBRIDGE'
949       include 'COMMON.MD_'
950       double precision energia(0:n_ene)
951       etot=energia(0)
952 #ifdef TSCSC
953       evdw=energia(22)+wsct*energia(23)
954 #else
955       evdw=energia(1)
956 #endif
957       evdw2=energia(2)
958 #ifdef SCP14
959       evdw2=energia(2)+energia(18)
960 #else
961       evdw2=energia(2)
962 #endif
963       ees=energia(3)
964 #ifdef SPLITELE
965       evdw1=energia(16)
966 #endif
967       ecorr=energia(4)
968       ecorr5=energia(5)
969       ecorr6=energia(6)
970       eel_loc=energia(7)
971       eello_turn3=energia(8)
972       eello_turn4=energia(9)
973       eello_turn6=energia(10)
974       ebe=energia(11)
975       escloc=energia(12)
976       etors=energia(13)
977       etors_d=energia(14)
978       ehpb=energia(15)
979       edihcnstr=energia(19)
980       estr=energia(17)
981       Uconst=energia(20)
982       esccor=energia(21)
983 C     Juyong
984       edfadis = energia(24)
985       edfator = energia(25)
986       edfanei = energia(26)
987       edfabet = energia(27)
988 C     
989 #ifdef SPLITELE
990       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
991      &  estr,wbond,ebe,wang,
992      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
993      &  ecorr,wcorr,
994      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
995      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
996      &  edihcnstr,ebr*nss,
997      &  Uconst,edfadis,edfator,edfanei,edfabet,etot
998    10 format (/'Virtual-chain energies:'//
999      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1000      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1001      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1002      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
1003      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1004      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1005      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1006      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1007      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1008      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1009      & ' (SS bridges & dist. cnstr.)'/
1010      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1011      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1012      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1013      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1014      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1015      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1016      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1017      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1018      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1019      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1020      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1021      & 'EDFAD= ',1pE16.6,' (DFA distance energy)'/ 
1022      & 'EDFAT= ',1pE16.6,' (DFA torsion energy)'/ 
1023      & 'EDFAN= ',1pE16.6,' (DFA NCa energy)'/ 
1024      & 'EDFAB= ',1pE16.6,' (DFA Beta energy)'/ 
1025      & 'ETOT=  ',1pE16.6,' (total)')
1026 #else
1027       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1028      &  estr,wbond,ebe,wang,
1029      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1030      &  ecorr,wcorr,
1031      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1032      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1033      &  ebr*nss,
1034      &  Uconst,edfadis,edfator,edfanei,edfabet,etot
1035    10 format (/'Virtual-chain energies:'//
1036      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1037      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1038      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1039      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1040      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1041      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1042      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1043      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1044      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1045      & ' (SS bridges & dist. cnstr.)'/
1046      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1047      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1048      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1049      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1050      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1051      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1052      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1053      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1054      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1055      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1056      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1057      & 'EDFAD= ',1pE16.6,' (DFA distance energy)'/ 
1058      & 'EDFAT= ',1pE16.6,' (DFA torsion energy)'/ 
1059      & 'EDFAN= ',1pE16.6,' (DFA NCa energy)'/ 
1060      & 'EDFAB= ',1pE16.6,' (DFA Beta energy)'/ 
1061      & 'ETOT=  ',1pE16.6,' (total)')
1062 #endif
1063       return
1064       end
1065 C-----------------------------------------------------------------------
1066       subroutine elj(evdw,evdw_p,evdw_m)
1067 C
1068 C This subroutine calculates the interaction energy of nonbonded side chains
1069 C assuming the LJ potential of interaction.
1070 C
1071       implicit real*8 (a-h,o-z)
1072       include 'DIMENSIONS'
1073       parameter (accur=1.0d-10)
1074       include 'COMMON.GEO'
1075       include 'COMMON.VAR'
1076       include 'COMMON.LOCAL'
1077       include 'COMMON.CHAIN'
1078       include 'COMMON.DERIV'
1079       include 'COMMON.INTERACT'
1080       include 'COMMON.TORSION'
1081       include 'COMMON.SBRIDGE'
1082       include 'COMMON.NAMES'
1083       include 'COMMON.IOUNITS'
1084       include 'COMMON.CONTACTS'
1085 #ifdef MOMENT
1086       include 'COMMON.CONTACTS.MOMENT'
1087 #endif  
1088       dimension gg(3)
1089 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1090       evdw=0.0D0
1091       do i=iatsc_s,iatsc_e
1092         itypi=itype(i)
1093         itypi1=itype(i+1)
1094         xi=c(1,nres+i)
1095         yi=c(2,nres+i)
1096         zi=c(3,nres+i)
1097 C Change 12/1/95
1098         num_conti=0
1099 C
1100 C Calculate SC interaction energy.
1101 C
1102         do iint=1,nint_gr(i)
1103 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1104 cd   &                  'iend=',iend(i,iint)
1105           do j=istart(i,iint),iend(i,iint)
1106             itypj=itype(j)
1107             xj=c(1,nres+j)-xi
1108             yj=c(2,nres+j)-yi
1109             zj=c(3,nres+j)-zi
1110 C Change 12/1/95 to calculate four-body interactions
1111             rij=xj*xj+yj*yj+zj*zj
1112             rrij=1.0D0/rij
1113 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1114             eps0ij=eps(itypi,itypj)
1115             fac=rrij**expon2
1116             e1=fac*fac*aa(itypi,itypj)
1117             e2=fac*bb(itypi,itypj)
1118             evdwij=e1+e2
1119 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1120 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1121 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1122 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1123 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1124 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1125 #ifdef TSCSC
1126             if (bb(itypi,itypj).gt.0) then
1127                evdw_p=evdw_p+evdwij
1128             else
1129                evdw_m=evdw_m+evdwij
1130             endif
1131 #else
1132             evdw=evdw+evdwij
1133 #endif
1134
1135 C Calculate the components of the gradient in DC and X
1136 C
1137             fac=-rrij*(e1+evdwij)
1138             gg(1)=xj*fac
1139             gg(2)=yj*fac
1140             gg(3)=zj*fac
1141 #ifdef TSCSC
1142             if (bb(itypi,itypj).gt.0.0d0) then
1143               do k=1,3
1144                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1145                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1146                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1147                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1148               enddo
1149             else
1150               do k=1,3
1151                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1152                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1153                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1154                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1155               enddo
1156             endif
1157 #else
1158             do k=1,3
1159               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1160               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1161               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1162               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1163             enddo
1164 #endif
1165 cgrad            do k=i,j-1
1166 cgrad              do l=1,3
1167 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1168 cgrad              enddo
1169 cgrad            enddo
1170 C
1171 C 12/1/95, revised on 5/20/97
1172 C
1173 C Calculate the contact function. The ith column of the array JCONT will 
1174 C contain the numbers of atoms that make contacts with the atom I (of numbers
1175 C greater than I). The arrays FACONT and GACONT will contain the values of
1176 C the contact function and its derivative.
1177 C
1178 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1179 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1180 C Uncomment next line, if the correlation interactions are contact function only
1181             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1182               rij=dsqrt(rij)
1183               sigij=sigma(itypi,itypj)
1184               r0ij=rs0(itypi,itypj)
1185 C
1186 C Check whether the SC's are not too far to make a contact.
1187 C
1188               rcut=1.5d0*r0ij
1189               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1190 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1191 C
1192               if (fcont.gt.0.0D0) then
1193 C If the SC-SC distance if close to sigma, apply spline.
1194 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1195 cAdam &             fcont1,fprimcont1)
1196 cAdam           fcont1=1.0d0-fcont1
1197 cAdam           if (fcont1.gt.0.0d0) then
1198 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1199 cAdam             fcont=fcont*fcont1
1200 cAdam           endif
1201 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1202 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1203 cga             do k=1,3
1204 cga               gg(k)=gg(k)*eps0ij
1205 cga             enddo
1206 cga             eps0ij=-evdwij*eps0ij
1207 C Uncomment for AL's type of SC correlation interactions.
1208 cadam           eps0ij=-evdwij
1209                 num_conti=num_conti+1
1210                 jcont(num_conti,i)=j
1211                 facont(num_conti,i)=fcont*eps0ij
1212                 fprimcont=eps0ij*fprimcont/rij
1213                 fcont=expon*fcont
1214 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1215 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1216 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1217 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1218                 gacont(1,num_conti,i)=-fprimcont*xj
1219                 gacont(2,num_conti,i)=-fprimcont*yj
1220                 gacont(3,num_conti,i)=-fprimcont*zj
1221 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1222 cd              write (iout,'(2i3,3f10.5)') 
1223 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1224               endif
1225             endif
1226           enddo      ! j
1227         enddo        ! iint
1228 C Change 12/1/95
1229         num_cont(i)=num_conti
1230       enddo          ! i
1231       do i=1,nct
1232         do j=1,3
1233           gvdwc(j,i)=expon*gvdwc(j,i)
1234           gvdwx(j,i)=expon*gvdwx(j,i)
1235         enddo
1236       enddo
1237 C******************************************************************************
1238 C
1239 C                              N O T E !!!
1240 C
1241 C To save time, the factor of EXPON has been extracted from ALL components
1242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1243 C use!
1244 C
1245 C******************************************************************************
1246       return
1247       end
1248 C-----------------------------------------------------------------------------
1249       subroutine eljk(evdw,evdw_p,evdw_m)
1250 C
1251 C This subroutine calculates the interaction energy of nonbonded side chains
1252 C assuming the LJK potential of interaction.
1253 C
1254       implicit real*8 (a-h,o-z)
1255       include 'DIMENSIONS'
1256       include 'COMMON.GEO'
1257       include 'COMMON.VAR'
1258       include 'COMMON.LOCAL'
1259       include 'COMMON.CHAIN'
1260       include 'COMMON.DERIV'
1261       include 'COMMON.INTERACT'
1262       include 'COMMON.IOUNITS'
1263       include 'COMMON.NAMES'
1264       dimension gg(3)
1265       logical scheck
1266 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1267       evdw=0.0D0
1268       do i=iatsc_s,iatsc_e
1269         itypi=itype(i)
1270         itypi1=itype(i+1)
1271         xi=c(1,nres+i)
1272         yi=c(2,nres+i)
1273         zi=c(3,nres+i)
1274 C
1275 C Calculate SC interaction energy.
1276 C
1277         do iint=1,nint_gr(i)
1278           do j=istart(i,iint),iend(i,iint)
1279             itypj=itype(j)
1280             xj=c(1,nres+j)-xi
1281             yj=c(2,nres+j)-yi
1282             zj=c(3,nres+j)-zi
1283             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1284             fac_augm=rrij**expon
1285             e_augm=augm(itypi,itypj)*fac_augm
1286             r_inv_ij=dsqrt(rrij)
1287             rij=1.0D0/r_inv_ij 
1288             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1289             fac=r_shift_inv**expon
1290             e1=fac*fac*aa(itypi,itypj)
1291             e2=fac*bb(itypi,itypj)
1292             evdwij=e_augm+e1+e2
1293 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1294 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1295 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1296 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1297 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1298 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1299 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1300 #ifdef TSCSC
1301             if (bb(itypi,itypj).gt.0) then
1302                evdw_p=evdw_p+evdwij
1303             else
1304                evdw_m=evdw_m+evdwij
1305             endif
1306 #else
1307             evdw=evdw+evdwij
1308 #endif
1309
1310 C Calculate the components of the gradient in DC and X
1311 C
1312             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1313             gg(1)=xj*fac
1314             gg(2)=yj*fac
1315             gg(3)=zj*fac
1316 #ifdef TSCSC
1317             if (bb(itypi,itypj).gt.0.0d0) then
1318               do k=1,3
1319                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1320                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1321                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1322                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1323               enddo
1324             else
1325               do k=1,3
1326                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1327                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1328                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1329                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1330               enddo
1331             endif
1332 #else
1333             do k=1,3
1334               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1335               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1336               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1337               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1338             enddo
1339 #endif
1340 cgrad            do k=i,j-1
1341 cgrad              do l=1,3
1342 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1343 cgrad              enddo
1344 cgrad            enddo
1345           enddo      ! j
1346         enddo        ! iint
1347       enddo          ! i
1348       do i=1,nct
1349         do j=1,3
1350           gvdwc(j,i)=expon*gvdwc(j,i)
1351           gvdwx(j,i)=expon*gvdwx(j,i)
1352         enddo
1353       enddo
1354       return
1355       end
1356 C-----------------------------------------------------------------------------
1357       subroutine ebp(evdw,evdw_p,evdw_m)
1358 C
1359 C This subroutine calculates the interaction energy of nonbonded side chains
1360 C assuming the Berne-Pechukas potential of interaction.
1361 C
1362       implicit real*8 (a-h,o-z)
1363       include 'DIMENSIONS'
1364       include 'COMMON.GEO'
1365       include 'COMMON.VAR'
1366       include 'COMMON.LOCAL'
1367       include 'COMMON.CHAIN'
1368       include 'COMMON.DERIV'
1369       include 'COMMON.NAMES'
1370       include 'COMMON.INTERACT'
1371       include 'COMMON.IOUNITS'
1372       include 'COMMON.CALC'
1373       common /srutu/ icall
1374 c     double precision rrsave(maxdim)
1375       logical lprn
1376       evdw=0.0D0
1377 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1378       evdw=0.0D0
1379 c     if (icall.eq.0) then
1380 c       lprn=.true.
1381 c     else
1382         lprn=.false.
1383 c     endif
1384       ind=0
1385       do i=iatsc_s,iatsc_e
1386         itypi=itype(i)
1387         itypi1=itype(i+1)
1388         xi=c(1,nres+i)
1389         yi=c(2,nres+i)
1390         zi=c(3,nres+i)
1391         dxi=dc_norm(1,nres+i)
1392         dyi=dc_norm(2,nres+i)
1393         dzi=dc_norm(3,nres+i)
1394 c        dsci_inv=dsc_inv(itypi)
1395         dsci_inv=vbld_inv(i+nres)
1396 C
1397 C Calculate SC interaction energy.
1398 C
1399         do iint=1,nint_gr(i)
1400           do j=istart(i,iint),iend(i,iint)
1401             ind=ind+1
1402             itypj=itype(j)
1403 c            dscj_inv=dsc_inv(itypj)
1404             dscj_inv=vbld_inv(j+nres)
1405             chi1=chi(itypi,itypj)
1406             chi2=chi(itypj,itypi)
1407             chi12=chi1*chi2
1408             chip1=chip(itypi)
1409             chip2=chip(itypj)
1410             chip12=chip1*chip2
1411             alf1=alp(itypi)
1412             alf2=alp(itypj)
1413             alf12=0.5D0*(alf1+alf2)
1414 C For diagnostics only!!!
1415 c           chi1=0.0D0
1416 c           chi2=0.0D0
1417 c           chi12=0.0D0
1418 c           chip1=0.0D0
1419 c           chip2=0.0D0
1420 c           chip12=0.0D0
1421 c           alf1=0.0D0
1422 c           alf2=0.0D0
1423 c           alf12=0.0D0
1424             xj=c(1,nres+j)-xi
1425             yj=c(2,nres+j)-yi
1426             zj=c(3,nres+j)-zi
1427             dxj=dc_norm(1,nres+j)
1428             dyj=dc_norm(2,nres+j)
1429             dzj=dc_norm(3,nres+j)
1430             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1431 cd          if (icall.eq.0) then
1432 cd            rrsave(ind)=rrij
1433 cd          else
1434 cd            rrij=rrsave(ind)
1435 cd          endif
1436             rij=dsqrt(rrij)
1437 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1438             call sc_angular
1439 C Calculate whole angle-dependent part of epsilon and contributions
1440 C to its derivatives
1441             fac=(rrij*sigsq)**expon2
1442             e1=fac*fac*aa(itypi,itypj)
1443             e2=fac*bb(itypi,itypj)
1444             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1445             eps2der=evdwij*eps3rt
1446             eps3der=evdwij*eps2rt
1447             evdwij=evdwij*eps2rt*eps3rt
1448 #ifdef TSCSC
1449             if (bb(itypi,itypj).gt.0) then
1450                evdw_p=evdw_p+evdwij
1451             else
1452                evdw_m=evdw_m+evdwij
1453             endif
1454 #else
1455             evdw=evdw+evdwij
1456 #endif
1457             if (lprn) then
1458             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1459             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1460 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1461 cd     &        restyp(itypi),i,restyp(itypj),j,
1462 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1463 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1464 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1465 cd     &        evdwij
1466             endif
1467 C Calculate gradient components.
1468             e1=e1*eps1*eps2rt**2*eps3rt**2
1469             fac=-expon*(e1+evdwij)
1470             sigder=fac/sigsq
1471             fac=rrij*fac
1472 C Calculate radial part of the gradient
1473             gg(1)=xj*fac
1474             gg(2)=yj*fac
1475             gg(3)=zj*fac
1476 C Calculate the angular part of the gradient and sum add the contributions
1477 C to the appropriate components of the Cartesian gradient.
1478 #ifdef TSCSC
1479             if (bb(itypi,itypj).gt.0) then
1480                call sc_grad
1481             else
1482                call sc_grad_T
1483             endif
1484 #else
1485             call sc_grad
1486 #endif
1487           enddo      ! j
1488         enddo        ! iint
1489       enddo          ! i
1490 c     stop
1491       return
1492       end
1493 C-----------------------------------------------------------------------------
1494       subroutine egb(evdw,evdw_p,evdw_m)
1495 C
1496 C This subroutine calculates the interaction energy of nonbonded side chains
1497 C assuming the Gay-Berne potential of interaction.
1498 C
1499       implicit real*8 (a-h,o-z)
1500       include 'DIMENSIONS'
1501       include 'COMMON.GEO'
1502       include 'COMMON.VAR'
1503       include 'COMMON.LOCAL'
1504       include 'COMMON.CHAIN'
1505       include 'COMMON.DERIV'
1506       include 'COMMON.NAMES'
1507       include 'COMMON.INTERACT'
1508       include 'COMMON.IOUNITS'
1509       include 'COMMON.CALC'
1510       include 'COMMON.CONTROL'
1511       logical lprn
1512       evdw=0.0D0
1513 ccccc      energy_dec=.false.
1514 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1515       evdw=0.0D0
1516       evdw_p=0.0D0
1517       evdw_m=0.0D0
1518       lprn=.false.
1519 c     if (icall.eq.0) lprn=.false.
1520       ind=0
1521       do i=iatsc_s,iatsc_e
1522         itypi=itype(i)
1523         itypi1=itype(i+1)
1524         xi=c(1,nres+i)
1525         yi=c(2,nres+i)
1526         zi=c(3,nres+i)
1527         dxi=dc_norm(1,nres+i)
1528         dyi=dc_norm(2,nres+i)
1529         dzi=dc_norm(3,nres+i)
1530 c        dsci_inv=dsc_inv(itypi)
1531         dsci_inv=vbld_inv(i+nres)
1532 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1533 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1534 C
1535 C Calculate SC interaction energy.
1536 C
1537         do iint=1,nint_gr(i)
1538           do j=istart(i,iint),iend(i,iint)
1539             ind=ind+1
1540             itypj=itype(j)
1541 c            dscj_inv=dsc_inv(itypj)
1542             dscj_inv=vbld_inv(j+nres)
1543 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1544 c     &       1.0d0/vbld(j+nres)
1545 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1546             sig0ij=sigma(itypi,itypj)
1547             chi1=chi(itypi,itypj)
1548             chi2=chi(itypj,itypi)
1549             chi12=chi1*chi2
1550             chip1=chip(itypi)
1551             chip2=chip(itypj)
1552             chip12=chip1*chip2
1553             alf1=alp(itypi)
1554             alf2=alp(itypj)
1555             alf12=0.5D0*(alf1+alf2)
1556 C For diagnostics only!!!
1557 c           chi1=0.0D0
1558 c           chi2=0.0D0
1559 c           chi12=0.0D0
1560 c           chip1=0.0D0
1561 c           chip2=0.0D0
1562 c           chip12=0.0D0
1563 c           alf1=0.0D0
1564 c           alf2=0.0D0
1565 c           alf12=0.0D0
1566             xj=c(1,nres+j)-xi
1567             yj=c(2,nres+j)-yi
1568             zj=c(3,nres+j)-zi
1569             dxj=dc_norm(1,nres+j)
1570             dyj=dc_norm(2,nres+j)
1571             dzj=dc_norm(3,nres+j)
1572 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1573 c            write (iout,*) "j",j," dc_norm",
1574 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1575             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1576             rij=dsqrt(rrij)
1577 C Calculate angle-dependent terms of energy and contributions to their
1578 C derivatives.
1579             call sc_angular
1580             sigsq=1.0D0/sigsq
1581             sig=sig0ij*dsqrt(sigsq)
1582             rij_shift=1.0D0/rij-sig+sig0ij
1583 c for diagnostics; uncomment
1584 c            rij_shift=1.2*sig0ij
1585 C I hate to put IF's in the loops, but here don't have another choice!!!!
1586             if (rij_shift.le.0.0D0) then
1587               evdw=1.0D20
1588 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1589 cd     &        restyp(itypi),i,restyp(itypj),j,
1590 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1591               return
1592             endif
1593             sigder=-sig*sigsq
1594 c---------------------------------------------------------------
1595             rij_shift=1.0D0/rij_shift 
1596             fac=rij_shift**expon
1597             e1=fac*fac*aa(itypi,itypj)
1598             e2=fac*bb(itypi,itypj)
1599             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1600             eps2der=evdwij*eps3rt
1601             eps3der=evdwij*eps2rt
1602 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1603 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1604             evdwij=evdwij*eps2rt*eps3rt
1605 #ifdef TSCSC
1606             if (bb(itypi,itypj).gt.0) then
1607                evdw_p=evdw_p+evdwij
1608             else
1609                evdw_m=evdw_m+evdwij
1610             endif
1611 #else
1612             evdw=evdw+evdwij
1613 #endif
1614             if (lprn) then
1615             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1616             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1617             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1618      &        restyp(itypi),i,restyp(itypj),j,
1619      &        epsi,sigm,chi1,chi2,chip1,chip2,
1620      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1621      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1622      &        evdwij
1623             endif
1624
1625             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1626      &                        'evdw',i,j,evdwij
1627
1628 C Calculate gradient components.
1629             e1=e1*eps1*eps2rt**2*eps3rt**2
1630             fac=-expon*(e1+evdwij)*rij_shift
1631             sigder=fac*sigder
1632             fac=rij*fac
1633 c            fac=0.0d0
1634 C Calculate the radial part of the gradient
1635             gg(1)=xj*fac
1636             gg(2)=yj*fac
1637             gg(3)=zj*fac
1638 C Calculate angular part of the gradient.
1639 #ifdef TSCSC
1640             if (bb(itypi,itypj).gt.0) then
1641                call sc_grad
1642             else
1643                call sc_grad_T
1644             endif
1645 #else
1646             call sc_grad
1647 #endif
1648           enddo      ! j
1649         enddo        ! iint
1650       enddo          ! i
1651 c      write (iout,*) "Number of loop steps in EGB:",ind
1652 cccc      energy_dec=.false.
1653       return
1654       end
1655 C-----------------------------------------------------------------------------
1656       subroutine egbv(evdw,evdw_p,evdw_m)
1657 C
1658 C This subroutine calculates the interaction energy of nonbonded side chains
1659 C assuming the Gay-Berne-Vorobjev potential of interaction.
1660 C
1661       implicit real*8 (a-h,o-z)
1662       include 'DIMENSIONS'
1663       include 'COMMON.GEO'
1664       include 'COMMON.VAR'
1665       include 'COMMON.LOCAL'
1666       include 'COMMON.CHAIN'
1667       include 'COMMON.DERIV'
1668       include 'COMMON.NAMES'
1669       include 'COMMON.INTERACT'
1670       include 'COMMON.IOUNITS'
1671       include 'COMMON.CALC'
1672       common /srutu/ icall
1673       logical lprn
1674       evdw=0.0D0
1675 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1676       evdw=0.0D0
1677       lprn=.false.
1678 c     if (icall.eq.0) lprn=.true.
1679       ind=0
1680       do i=iatsc_s,iatsc_e
1681         itypi=itype(i)
1682         itypi1=itype(i+1)
1683         xi=c(1,nres+i)
1684         yi=c(2,nres+i)
1685         zi=c(3,nres+i)
1686         dxi=dc_norm(1,nres+i)
1687         dyi=dc_norm(2,nres+i)
1688         dzi=dc_norm(3,nres+i)
1689 c        dsci_inv=dsc_inv(itypi)
1690         dsci_inv=vbld_inv(i+nres)
1691 C
1692 C Calculate SC interaction energy.
1693 C
1694         do iint=1,nint_gr(i)
1695           do j=istart(i,iint),iend(i,iint)
1696             ind=ind+1
1697             itypj=itype(j)
1698 c            dscj_inv=dsc_inv(itypj)
1699             dscj_inv=vbld_inv(j+nres)
1700             sig0ij=sigma(itypi,itypj)
1701             r0ij=r0(itypi,itypj)
1702             chi1=chi(itypi,itypj)
1703             chi2=chi(itypj,itypi)
1704             chi12=chi1*chi2
1705             chip1=chip(itypi)
1706             chip2=chip(itypj)
1707             chip12=chip1*chip2
1708             alf1=alp(itypi)
1709             alf2=alp(itypj)
1710             alf12=0.5D0*(alf1+alf2)
1711 C For diagnostics only!!!
1712 c           chi1=0.0D0
1713 c           chi2=0.0D0
1714 c           chi12=0.0D0
1715 c           chip1=0.0D0
1716 c           chip2=0.0D0
1717 c           chip12=0.0D0
1718 c           alf1=0.0D0
1719 c           alf2=0.0D0
1720 c           alf12=0.0D0
1721             xj=c(1,nres+j)-xi
1722             yj=c(2,nres+j)-yi
1723             zj=c(3,nres+j)-zi
1724             dxj=dc_norm(1,nres+j)
1725             dyj=dc_norm(2,nres+j)
1726             dzj=dc_norm(3,nres+j)
1727             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1728             rij=dsqrt(rrij)
1729 C Calculate angle-dependent terms of energy and contributions to their
1730 C derivatives.
1731             call sc_angular
1732             sigsq=1.0D0/sigsq
1733             sig=sig0ij*dsqrt(sigsq)
1734             rij_shift=1.0D0/rij-sig+r0ij
1735 C I hate to put IF's in the loops, but here don't have another choice!!!!
1736             if (rij_shift.le.0.0D0) then
1737               evdw=1.0D20
1738               return
1739             endif
1740             sigder=-sig*sigsq
1741 c---------------------------------------------------------------
1742             rij_shift=1.0D0/rij_shift 
1743             fac=rij_shift**expon
1744             e1=fac*fac*aa(itypi,itypj)
1745             e2=fac*bb(itypi,itypj)
1746             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1747             eps2der=evdwij*eps3rt
1748             eps3der=evdwij*eps2rt
1749             fac_augm=rrij**expon
1750             e_augm=augm(itypi,itypj)*fac_augm
1751             evdwij=evdwij*eps2rt*eps3rt
1752 #ifdef TSCSC
1753             if (bb(itypi,itypj).gt.0) then
1754                evdw_p=evdw_p+evdwij+e_augm
1755             else
1756                evdw_m=evdw_m+evdwij+e_augm
1757             endif
1758 #else
1759             evdw=evdw+evdwij+e_augm
1760 #endif
1761             if (lprn) then
1762             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1763             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1764             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1765      &        restyp(itypi),i,restyp(itypj),j,
1766      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1767      &        chi1,chi2,chip1,chip2,
1768      &        eps1,eps2rt**2,eps3rt**2,
1769      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1770      &        evdwij+e_augm
1771             endif
1772 C Calculate gradient components.
1773             e1=e1*eps1*eps2rt**2*eps3rt**2
1774             fac=-expon*(e1+evdwij)*rij_shift
1775             sigder=fac*sigder
1776             fac=rij*fac-2*expon*rrij*e_augm
1777 C Calculate the radial part of the gradient
1778             gg(1)=xj*fac
1779             gg(2)=yj*fac
1780             gg(3)=zj*fac
1781 C Calculate angular part of the gradient.
1782 #ifdef TSCSC
1783             if (bb(itypi,itypj).gt.0) then
1784                call sc_grad
1785             else
1786                call sc_grad_T
1787             endif
1788 #else
1789             call sc_grad
1790 #endif
1791           enddo      ! j
1792         enddo        ! iint
1793       enddo          ! i
1794       end
1795 C-----------------------------------------------------------------------------
1796       subroutine sc_angular
1797 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1798 C om12. Called by ebp, egb, and egbv.
1799       implicit none
1800       include 'COMMON.CALC'
1801       include 'COMMON.IOUNITS'
1802       erij(1)=xj*rij
1803       erij(2)=yj*rij
1804       erij(3)=zj*rij
1805       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1806       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1807       om12=dxi*dxj+dyi*dyj+dzi*dzj
1808       chiom12=chi12*om12
1809 C Calculate eps1(om12) and its derivative in om12
1810       faceps1=1.0D0-om12*chiom12
1811       faceps1_inv=1.0D0/faceps1
1812       eps1=dsqrt(faceps1_inv)
1813 C Following variable is eps1*deps1/dom12
1814       eps1_om12=faceps1_inv*chiom12
1815 c diagnostics only
1816 c      faceps1_inv=om12
1817 c      eps1=om12
1818 c      eps1_om12=1.0d0
1819 c      write (iout,*) "om12",om12," eps1",eps1
1820 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1821 C and om12.
1822       om1om2=om1*om2
1823       chiom1=chi1*om1
1824       chiom2=chi2*om2
1825       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1826       sigsq=1.0D0-facsig*faceps1_inv
1827       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1828       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1829       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1830 c diagnostics only
1831 c      sigsq=1.0d0
1832 c      sigsq_om1=0.0d0
1833 c      sigsq_om2=0.0d0
1834 c      sigsq_om12=0.0d0
1835 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1836 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1837 c     &    " eps1",eps1
1838 C Calculate eps2 and its derivatives in om1, om2, and om12.
1839       chipom1=chip1*om1
1840       chipom2=chip2*om2
1841       chipom12=chip12*om12
1842       facp=1.0D0-om12*chipom12
1843       facp_inv=1.0D0/facp
1844       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1845 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1846 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1847 C Following variable is the square root of eps2
1848       eps2rt=1.0D0-facp1*facp_inv
1849 C Following three variables are the derivatives of the square root of eps
1850 C in om1, om2, and om12.
1851       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1852       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1853       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1854 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1855       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1856 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1857 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1858 c     &  " eps2rt_om12",eps2rt_om12
1859 C Calculate whole angle-dependent part of epsilon and contributions
1860 C to its derivatives
1861       return
1862       end
1863
1864 C----------------------------------------------------------------------------
1865       subroutine sc_grad_T
1866       implicit real*8 (a-h,o-z)
1867       include 'DIMENSIONS'
1868       include 'COMMON.CHAIN'
1869       include 'COMMON.DERIV'
1870       include 'COMMON.CALC'
1871       include 'COMMON.IOUNITS'
1872       double precision dcosom1(3),dcosom2(3)
1873       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1874       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1875       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1876      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1877 c diagnostics only
1878 c      eom1=0.0d0
1879 c      eom2=0.0d0
1880 c      eom12=evdwij*eps1_om12
1881 c end diagnostics
1882 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1883 c     &  " sigder",sigder
1884 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1885 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1886       do k=1,3
1887         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1888         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1889       enddo
1890       do k=1,3
1891         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1892       enddo 
1893 c      write (iout,*) "gg",(gg(k),k=1,3)
1894       do k=1,3
1895         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1896      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1897      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1898         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1899      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1900      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1901 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1902 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1903 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1904 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1905       enddo
1906
1907 C Calculate the components of the gradient in DC and X
1908 C
1909 cgrad      do k=i,j-1
1910 cgrad        do l=1,3
1911 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1912 cgrad        enddo
1913 cgrad      enddo
1914       do l=1,3
1915         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1916         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1917       enddo
1918       return
1919       end
1920
1921 C----------------------------------------------------------------------------
1922       subroutine sc_grad
1923       implicit real*8 (a-h,o-z)
1924       include 'DIMENSIONS'
1925       include 'COMMON.CHAIN'
1926       include 'COMMON.DERIV'
1927       include 'COMMON.CALC'
1928       include 'COMMON.IOUNITS'
1929       double precision dcosom1(3),dcosom2(3)
1930       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1931       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1932       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1933      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1934 c diagnostics only
1935 c      eom1=0.0d0
1936 c      eom2=0.0d0
1937 c      eom12=evdwij*eps1_om12
1938 c end diagnostics
1939 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1940 c     &  " sigder",sigder
1941 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1942 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1943       do k=1,3
1944         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1945         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1946       enddo
1947       do k=1,3
1948         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1949       enddo 
1950 c      write (iout,*) "gg",(gg(k),k=1,3)
1951       do k=1,3
1952         gvdwx(k,i)=gvdwx(k,i)-gg(k)
1953      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1954      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1955         gvdwx(k,j)=gvdwx(k,j)+gg(k)
1956      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1957      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1958 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1959 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1960 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1961 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1962       enddo
1963
1964 C Calculate the components of the gradient in DC and X
1965 C
1966 cgrad      do k=i,j-1
1967 cgrad        do l=1,3
1968 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1969 cgrad        enddo
1970 cgrad      enddo
1971       do l=1,3
1972         gvdwc(l,i)=gvdwc(l,i)-gg(l)
1973         gvdwc(l,j)=gvdwc(l,j)+gg(l)
1974       enddo
1975       return
1976       end
1977 C-----------------------------------------------------------------------
1978       subroutine e_softsphere(evdw)
1979 C
1980 C This subroutine calculates the interaction energy of nonbonded side chains
1981 C assuming the LJ potential of interaction.
1982 C
1983       implicit real*8 (a-h,o-z)
1984       include 'DIMENSIONS'
1985       parameter (accur=1.0d-10)
1986       include 'COMMON.GEO'
1987       include 'COMMON.VAR'
1988       include 'COMMON.LOCAL'
1989       include 'COMMON.CHAIN'
1990       include 'COMMON.DERIV'
1991       include 'COMMON.INTERACT'
1992       include 'COMMON.TORSION'
1993       include 'COMMON.SBRIDGE'
1994       include 'COMMON.NAMES'
1995       include 'COMMON.IOUNITS'
1996       include 'COMMON.CONTACTS'
1997 #ifdef MOMENT
1998       include 'COMMON.CONTACTS.MOMENT'
1999 #endif  
2000       dimension gg(3)
2001 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2002       evdw=0.0D0
2003       do i=iatsc_s,iatsc_e
2004         itypi=itype(i)
2005         itypi1=itype(i+1)
2006         xi=c(1,nres+i)
2007         yi=c(2,nres+i)
2008         zi=c(3,nres+i)
2009 C
2010 C Calculate SC interaction energy.
2011 C
2012         do iint=1,nint_gr(i)
2013 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2014 cd   &                  'iend=',iend(i,iint)
2015           do j=istart(i,iint),iend(i,iint)
2016             itypj=itype(j)
2017             xj=c(1,nres+j)-xi
2018             yj=c(2,nres+j)-yi
2019             zj=c(3,nres+j)-zi
2020             rij=xj*xj+yj*yj+zj*zj
2021 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2022             r0ij=r0(itypi,itypj)
2023             r0ijsq=r0ij*r0ij
2024 c            print *,i,j,r0ij,dsqrt(rij)
2025             if (rij.lt.r0ijsq) then
2026               evdwij=0.25d0*(rij-r0ijsq)**2
2027               fac=rij-r0ijsq
2028             else
2029               evdwij=0.0d0
2030               fac=0.0d0
2031             endif
2032             evdw=evdw+evdwij
2033
2034 C Calculate the components of the gradient in DC and X
2035 C
2036             gg(1)=xj*fac
2037             gg(2)=yj*fac
2038             gg(3)=zj*fac
2039             do k=1,3
2040               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2041               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2042               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2043               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2044             enddo
2045 cgrad            do k=i,j-1
2046 cgrad              do l=1,3
2047 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2048 cgrad              enddo
2049 cgrad            enddo
2050           enddo ! j
2051         enddo ! iint
2052       enddo ! i
2053       return
2054       end
2055 C--------------------------------------------------------------------------
2056       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2057      &              eello_turn4)
2058 C
2059 C Soft-sphere potential of p-p interaction
2060
2061       implicit real*8 (a-h,o-z)
2062       include 'DIMENSIONS'
2063       include 'COMMON.CONTROL'
2064       include 'COMMON.IOUNITS'
2065       include 'COMMON.GEO'
2066       include 'COMMON.VAR'
2067       include 'COMMON.LOCAL'
2068       include 'COMMON.CHAIN'
2069       include 'COMMON.DERIV'
2070       include 'COMMON.INTERACT'
2071       include 'COMMON.CONTACTS'
2072 #ifdef MOMENT
2073       include 'COMMON.CONTACTS.MOMENT'
2074 #endif  
2075       include 'COMMON.TORSION'
2076       include 'COMMON.VECTORS'
2077       include 'COMMON.FFIELD'
2078       dimension ggg(3)
2079 cd      write(iout,*) 'In EELEC_soft_sphere'
2080       ees=0.0D0
2081       evdw1=0.0D0
2082       eel_loc=0.0d0 
2083       eello_turn3=0.0d0
2084       eello_turn4=0.0d0
2085       ind=0
2086       do i=iatel_s,iatel_e
2087         dxi=dc(1,i)
2088         dyi=dc(2,i)
2089         dzi=dc(3,i)
2090         xmedi=c(1,i)+0.5d0*dxi
2091         ymedi=c(2,i)+0.5d0*dyi
2092         zmedi=c(3,i)+0.5d0*dzi
2093         num_conti=0
2094 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2095         do j=ielstart(i),ielend(i)
2096           ind=ind+1
2097           iteli=itel(i)
2098           itelj=itel(j)
2099           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2100           r0ij=rpp(iteli,itelj)
2101           r0ijsq=r0ij*r0ij 
2102           dxj=dc(1,j)
2103           dyj=dc(2,j)
2104           dzj=dc(3,j)
2105           xj=c(1,j)+0.5D0*dxj-xmedi
2106           yj=c(2,j)+0.5D0*dyj-ymedi
2107           zj=c(3,j)+0.5D0*dzj-zmedi
2108           rij=xj*xj+yj*yj+zj*zj
2109           if (rij.lt.r0ijsq) then
2110             evdw1ij=0.25d0*(rij-r0ijsq)**2
2111             fac=rij-r0ijsq
2112           else
2113             evdw1ij=0.0d0
2114             fac=0.0d0
2115           endif
2116           evdw1=evdw1+evdw1ij
2117 C
2118 C Calculate contributions to the Cartesian gradient.
2119 C
2120           ggg(1)=fac*xj
2121           ggg(2)=fac*yj
2122           ggg(3)=fac*zj
2123           do k=1,3
2124             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2125             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2126           enddo
2127 *
2128 * Loop over residues i+1 thru j-1.
2129 *
2130 cgrad          do k=i+1,j-1
2131 cgrad            do l=1,3
2132 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2133 cgrad            enddo
2134 cgrad          enddo
2135         enddo ! j
2136       enddo   ! i
2137 cgrad      do i=nnt,nct-1
2138 cgrad        do k=1,3
2139 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2140 cgrad        enddo
2141 cgrad        do j=i+1,nct-1
2142 cgrad          do k=1,3
2143 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2144 cgrad          enddo
2145 cgrad        enddo
2146 cgrad      enddo
2147       return
2148       end
2149 c------------------------------------------------------------------------------
2150       subroutine vec_and_deriv
2151       implicit real*8 (a-h,o-z)
2152       include 'DIMENSIONS'
2153 #ifdef MPI
2154       include 'mpif.h'
2155 #endif
2156       include 'COMMON.IOUNITS'
2157       include 'COMMON.GEO'
2158       include 'COMMON.VAR'
2159       include 'COMMON.LOCAL'
2160       include 'COMMON.CHAIN'
2161       include 'COMMON.VECTORS'
2162       include 'COMMON.SETUP'
2163       include 'COMMON.TIME1'
2164       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2165 C Compute the local reference systems. For reference system (i), the
2166 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2167 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2168 #ifdef PARVEC
2169       do i=ivec_start,ivec_end
2170 #else
2171       do i=1,nres-1
2172 #endif
2173           if (i.eq.nres-1) then
2174 C Case of the last full residue
2175 C Compute the Z-axis
2176             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2177             costh=dcos(pi-theta(nres))
2178             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2179             do k=1,3
2180               uz(k,i)=fac*uz(k,i)
2181             enddo
2182 C Compute the derivatives of uz
2183             uzder(1,1,1)= 0.0d0
2184             uzder(2,1,1)=-dc_norm(3,i-1)
2185             uzder(3,1,1)= dc_norm(2,i-1) 
2186             uzder(1,2,1)= dc_norm(3,i-1)
2187             uzder(2,2,1)= 0.0d0
2188             uzder(3,2,1)=-dc_norm(1,i-1)
2189             uzder(1,3,1)=-dc_norm(2,i-1)
2190             uzder(2,3,1)= dc_norm(1,i-1)
2191             uzder(3,3,1)= 0.0d0
2192             uzder(1,1,2)= 0.0d0
2193             uzder(2,1,2)= dc_norm(3,i)
2194             uzder(3,1,2)=-dc_norm(2,i) 
2195             uzder(1,2,2)=-dc_norm(3,i)
2196             uzder(2,2,2)= 0.0d0
2197             uzder(3,2,2)= dc_norm(1,i)
2198             uzder(1,3,2)= dc_norm(2,i)
2199             uzder(2,3,2)=-dc_norm(1,i)
2200             uzder(3,3,2)= 0.0d0
2201 C Compute the Y-axis
2202             facy=fac
2203             do k=1,3
2204               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2205             enddo
2206 C Compute the derivatives of uy
2207             do j=1,3
2208               do k=1,3
2209                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2210      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2211                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2212               enddo
2213               uyder(j,j,1)=uyder(j,j,1)-costh
2214               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2215             enddo
2216             do j=1,2
2217               do k=1,3
2218                 do l=1,3
2219                   uygrad(l,k,j,i)=uyder(l,k,j)
2220                   uzgrad(l,k,j,i)=uzder(l,k,j)
2221                 enddo
2222               enddo
2223             enddo 
2224             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2225             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2226             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2227             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2228           else
2229 C Other residues
2230 C Compute the Z-axis
2231             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2232             costh=dcos(pi-theta(i+2))
2233             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2234             do k=1,3
2235               uz(k,i)=fac*uz(k,i)
2236             enddo
2237 C Compute the derivatives of uz
2238             uzder(1,1,1)= 0.0d0
2239             uzder(2,1,1)=-dc_norm(3,i+1)
2240             uzder(3,1,1)= dc_norm(2,i+1) 
2241             uzder(1,2,1)= dc_norm(3,i+1)
2242             uzder(2,2,1)= 0.0d0
2243             uzder(3,2,1)=-dc_norm(1,i+1)
2244             uzder(1,3,1)=-dc_norm(2,i+1)
2245             uzder(2,3,1)= dc_norm(1,i+1)
2246             uzder(3,3,1)= 0.0d0
2247             uzder(1,1,2)= 0.0d0
2248             uzder(2,1,2)= dc_norm(3,i)
2249             uzder(3,1,2)=-dc_norm(2,i) 
2250             uzder(1,2,2)=-dc_norm(3,i)
2251             uzder(2,2,2)= 0.0d0
2252             uzder(3,2,2)= dc_norm(1,i)
2253             uzder(1,3,2)= dc_norm(2,i)
2254             uzder(2,3,2)=-dc_norm(1,i)
2255             uzder(3,3,2)= 0.0d0
2256 C Compute the Y-axis
2257             facy=fac
2258             do k=1,3
2259               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2260             enddo
2261 C Compute the derivatives of uy
2262             do j=1,3
2263               do k=1,3
2264                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2265      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2266                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2267               enddo
2268               uyder(j,j,1)=uyder(j,j,1)-costh
2269               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2270             enddo
2271             do j=1,2
2272               do k=1,3
2273                 do l=1,3
2274                   uygrad(l,k,j,i)=uyder(l,k,j)
2275                   uzgrad(l,k,j,i)=uzder(l,k,j)
2276                 enddo
2277               enddo
2278             enddo 
2279             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2280             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2281             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2282             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2283           endif
2284       enddo
2285       do i=1,nres-1
2286         vbld_inv_temp(1)=vbld_inv(i+1)
2287         if (i.lt.nres-1) then
2288           vbld_inv_temp(2)=vbld_inv(i+2)
2289           else
2290           vbld_inv_temp(2)=vbld_inv(i)
2291           endif
2292         do j=1,2
2293           do k=1,3
2294             do l=1,3
2295               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2296               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2297             enddo
2298           enddo
2299         enddo
2300       enddo
2301 #if defined(PARVEC) && defined(MPI)
2302       if (nfgtasks1.gt.1) then
2303         time00=MPI_Wtime()
2304 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2305 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2306 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2307         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2308      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2309      &   FG_COMM1,IERR)
2310         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2311      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2312      &   FG_COMM1,IERR)
2313         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2314      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2315      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2316         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2317      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2318      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2319         time_gather=time_gather+MPI_Wtime()-time00
2320       endif
2321 c      if (fg_rank.eq.0) then
2322 c        write (iout,*) "Arrays UY and UZ"
2323 c        do i=1,nres-1
2324 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2325 c     &     (uz(k,i),k=1,3)
2326 c        enddo
2327 c      endif
2328 #endif
2329       return
2330       end
2331 C-----------------------------------------------------------------------------
2332       subroutine check_vecgrad
2333       implicit real*8 (a-h,o-z)
2334       include 'DIMENSIONS'
2335       include 'COMMON.IOUNITS'
2336       include 'COMMON.GEO'
2337       include 'COMMON.VAR'
2338       include 'COMMON.LOCAL'
2339       include 'COMMON.CHAIN'
2340       include 'COMMON.VECTORS'
2341       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2342       dimension uyt(3,maxres),uzt(3,maxres)
2343       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2344       double precision delta /1.0d-7/
2345       call vec_and_deriv
2346 cd      do i=1,nres
2347 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2348 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2349 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2350 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2351 cd     &     (dc_norm(if90,i),if90=1,3)
2352 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2353 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2354 cd          write(iout,'(a)')
2355 cd      enddo
2356       do i=1,nres
2357         do j=1,2
2358           do k=1,3
2359             do l=1,3
2360               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2361               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2362             enddo
2363           enddo
2364         enddo
2365       enddo
2366       call vec_and_deriv
2367       do i=1,nres
2368         do j=1,3
2369           uyt(j,i)=uy(j,i)
2370           uzt(j,i)=uz(j,i)
2371         enddo
2372       enddo
2373       do i=1,nres
2374 cd        write (iout,*) 'i=',i
2375         do k=1,3
2376           erij(k)=dc_norm(k,i)
2377         enddo
2378         do j=1,3
2379           do k=1,3
2380             dc_norm(k,i)=erij(k)
2381           enddo
2382           dc_norm(j,i)=dc_norm(j,i)+delta
2383 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2384 c          do k=1,3
2385 c            dc_norm(k,i)=dc_norm(k,i)/fac
2386 c          enddo
2387 c          write (iout,*) (dc_norm(k,i),k=1,3)
2388 c          write (iout,*) (erij(k),k=1,3)
2389           call vec_and_deriv
2390           do k=1,3
2391             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2392             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2393             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2394             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2395           enddo 
2396 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2397 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2398 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2399         enddo
2400         do k=1,3
2401           dc_norm(k,i)=erij(k)
2402         enddo
2403 cd        do k=1,3
2404 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2405 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2406 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2407 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2408 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2409 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2410 cd          write (iout,'(a)')
2411 cd        enddo
2412       enddo
2413       return
2414       end
2415 C--------------------------------------------------------------------------
2416       subroutine set_matrices
2417       implicit real*8 (a-h,o-z)
2418       include 'DIMENSIONS'
2419 #ifdef MPI
2420       include "mpif.h"
2421       include "COMMON.SETUP"
2422       integer IERR
2423       integer status(MPI_STATUS_SIZE)
2424 #endif
2425       include 'COMMON.IOUNITS'
2426       include 'COMMON.GEO'
2427       include 'COMMON.VAR'
2428       include 'COMMON.LOCAL'
2429       include 'COMMON.CHAIN'
2430       include 'COMMON.DERIV'
2431       include 'COMMON.INTERACT'
2432       include 'COMMON.CONTACTS'
2433 #ifdef MOMENT
2434       include 'COMMON.CONTACTS.MOMENT'
2435 #endif  
2436       include 'COMMON.TORSION'
2437       include 'COMMON.VECTORS'
2438       include 'COMMON.FFIELD'
2439       double precision auxvec(2),auxmat(2,2)
2440 C
2441 C Compute the virtual-bond-torsional-angle dependent quantities needed
2442 C to calculate the el-loc multibody terms of various order.
2443 C
2444 #ifdef PARMAT
2445       do i=ivec_start+2,ivec_end+2
2446 #else
2447       do i=3,nres+1
2448 #endif
2449         if (i .lt. nres+1) then
2450           sin1=dsin(phi(i))
2451           cos1=dcos(phi(i))
2452           sintab(i-2)=sin1
2453           costab(i-2)=cos1
2454           obrot(1,i-2)=cos1
2455           obrot(2,i-2)=sin1
2456           sin2=dsin(2*phi(i))
2457           cos2=dcos(2*phi(i))
2458           sintab2(i-2)=sin2
2459           costab2(i-2)=cos2
2460           obrot2(1,i-2)=cos2
2461           obrot2(2,i-2)=sin2
2462           Ug(1,1,i-2)=-cos1
2463           Ug(1,2,i-2)=-sin1
2464           Ug(2,1,i-2)=-sin1
2465           Ug(2,2,i-2)= cos1
2466           Ug2(1,1,i-2)=-cos2
2467           Ug2(1,2,i-2)=-sin2
2468           Ug2(2,1,i-2)=-sin2
2469           Ug2(2,2,i-2)= cos2
2470         else
2471           costab(i-2)=1.0d0
2472           sintab(i-2)=0.0d0
2473           obrot(1,i-2)=1.0d0
2474           obrot(2,i-2)=0.0d0
2475           obrot2(1,i-2)=0.0d0
2476           obrot2(2,i-2)=0.0d0
2477           Ug(1,1,i-2)=1.0d0
2478           Ug(1,2,i-2)=0.0d0
2479           Ug(2,1,i-2)=0.0d0
2480           Ug(2,2,i-2)=1.0d0
2481           Ug2(1,1,i-2)=0.0d0
2482           Ug2(1,2,i-2)=0.0d0
2483           Ug2(2,1,i-2)=0.0d0
2484           Ug2(2,2,i-2)=0.0d0
2485         endif
2486         if (i .gt. 3 .and. i .lt. nres+1) then
2487           obrot_der(1,i-2)=-sin1
2488           obrot_der(2,i-2)= cos1
2489           Ugder(1,1,i-2)= sin1
2490           Ugder(1,2,i-2)=-cos1
2491           Ugder(2,1,i-2)=-cos1
2492           Ugder(2,2,i-2)=-sin1
2493           dwacos2=cos2+cos2
2494           dwasin2=sin2+sin2
2495           obrot2_der(1,i-2)=-dwasin2
2496           obrot2_der(2,i-2)= dwacos2
2497           Ug2der(1,1,i-2)= dwasin2
2498           Ug2der(1,2,i-2)=-dwacos2
2499           Ug2der(2,1,i-2)=-dwacos2
2500           Ug2der(2,2,i-2)=-dwasin2
2501         else
2502           obrot_der(1,i-2)=0.0d0
2503           obrot_der(2,i-2)=0.0d0
2504           Ugder(1,1,i-2)=0.0d0
2505           Ugder(1,2,i-2)=0.0d0
2506           Ugder(2,1,i-2)=0.0d0
2507           Ugder(2,2,i-2)=0.0d0
2508           obrot2_der(1,i-2)=0.0d0
2509           obrot2_der(2,i-2)=0.0d0
2510           Ug2der(1,1,i-2)=0.0d0
2511           Ug2der(1,2,i-2)=0.0d0
2512           Ug2der(2,1,i-2)=0.0d0
2513           Ug2der(2,2,i-2)=0.0d0
2514         endif
2515 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2516         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2517           iti = itortyp(itype(i-2))
2518         else
2519           iti=ntortyp+1
2520         endif
2521 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2522         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2523           iti1 = itortyp(itype(i-1))
2524         else
2525           iti1=ntortyp+1
2526         endif
2527 cd        write (iout,*) '*******i',i,' iti1',iti
2528 cd        write (iout,*) 'b1',b1(:,iti)
2529 cd        write (iout,*) 'b2',b2(:,iti)
2530 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2531 c        if (i .gt. iatel_s+2) then
2532         if (i .gt. nnt+2) then
2533           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2534           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2535           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2536      &    then
2537           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2538           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2539           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2540           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2541           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2542           endif
2543         else
2544           do k=1,2
2545             Ub2(k,i-2)=0.0d0
2546             Ctobr(k,i-2)=0.0d0 
2547             Dtobr2(k,i-2)=0.0d0
2548             do l=1,2
2549               EUg(l,k,i-2)=0.0d0
2550               CUg(l,k,i-2)=0.0d0
2551               DUg(l,k,i-2)=0.0d0
2552               DtUg2(l,k,i-2)=0.0d0
2553             enddo
2554           enddo
2555         endif
2556         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2557         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2558         do k=1,2
2559           muder(k,i-2)=Ub2der(k,i-2)
2560         enddo
2561 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2562         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2563           iti1 = itortyp(itype(i-1))
2564         else
2565           iti1=ntortyp+1
2566         endif
2567         do k=1,2
2568           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2569         enddo
2570 cd        write (iout,*) 'mu ',mu(:,i-2)
2571 cd        write (iout,*) 'mu1',mu1(:,i-2)
2572 cd        write (iout,*) 'mu2',mu2(:,i-2)
2573         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2574      &  then  
2575         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2576         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2577         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2578         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2579         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2580 C Vectors and matrices dependent on a single virtual-bond dihedral.
2581         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2582         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2583         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2584         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2585         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2586         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2587         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2588         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2589         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2590         endif
2591       enddo
2592 C Matrices dependent on two consecutive virtual-bond dihedrals.
2593 C The order of matrices is from left to right.
2594       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2595      &then
2596 c      do i=max0(ivec_start,2),ivec_end
2597       do i=2,nres-1
2598         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2599         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2600         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2601         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2602         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2603         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2604         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2605         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2606       enddo
2607       endif
2608 #if defined(MPI) && defined(PARMAT)
2609 #ifdef DEBUG
2610 c      if (fg_rank.eq.0) then
2611         write (iout,*) "Arrays UG and UGDER before GATHER"
2612         do i=1,nres-1
2613           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2614      &     ((ug(l,k,i),l=1,2),k=1,2),
2615      &     ((ugder(l,k,i),l=1,2),k=1,2)
2616         enddo
2617         write (iout,*) "Arrays UG2 and UG2DER"
2618         do i=1,nres-1
2619           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2620      &     ((ug2(l,k,i),l=1,2),k=1,2),
2621      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2622         enddo
2623         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2624         do i=1,nres-1
2625           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2626      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2627      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2628         enddo
2629         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2630         do i=1,nres-1
2631           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2632      &     costab(i),sintab(i),costab2(i),sintab2(i)
2633         enddo
2634         write (iout,*) "Array MUDER"
2635         do i=1,nres-1
2636           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2637         enddo
2638 c      endif
2639 #endif
2640       if (nfgtasks.gt.1) then
2641         time00=MPI_Wtime()
2642 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2643 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2644 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2645 #ifdef MATGATHER
2646         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2647      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2648      &   FG_COMM1,IERR)
2649         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2650      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2651      &   FG_COMM1,IERR)
2652         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2653      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2654      &   FG_COMM1,IERR)
2655         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2656      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2657      &   FG_COMM1,IERR)
2658         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2659      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2660      &   FG_COMM1,IERR)
2661         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2662      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2663      &   FG_COMM1,IERR)
2664         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2665      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2666      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2667         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2668      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2669      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2670         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2671      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2672      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2673         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2674      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2675      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2676         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2677      &  then
2678         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2679      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2680      &   FG_COMM1,IERR)
2681         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2682      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2683      &   FG_COMM1,IERR)
2684         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2685      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2686      &   FG_COMM1,IERR)
2687        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2688      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2689      &   FG_COMM1,IERR)
2690         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2691      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2692      &   FG_COMM1,IERR)
2693         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2694      &   ivec_count(fg_rank1),
2695      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2696      &   FG_COMM1,IERR)
2697         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2698      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2699      &   FG_COMM1,IERR)
2700         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2701      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2702      &   FG_COMM1,IERR)
2703         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2704      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2705      &   FG_COMM1,IERR)
2706         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2707      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2708      &   FG_COMM1,IERR)
2709         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2710      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2711      &   FG_COMM1,IERR)
2712         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2713      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2714      &   FG_COMM1,IERR)
2715         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2716      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2717      &   FG_COMM1,IERR)
2718         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2719      &   ivec_count(fg_rank1),
2720      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2721      &   FG_COMM1,IERR)
2722         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2723      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2724      &   FG_COMM1,IERR)
2725        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2726      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2727      &   FG_COMM1,IERR)
2728         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2729      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2730      &   FG_COMM1,IERR)
2731        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2732      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2733      &   FG_COMM1,IERR)
2734         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2735      &   ivec_count(fg_rank1),
2736      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2737      &   FG_COMM1,IERR)
2738         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2739      &   ivec_count(fg_rank1),
2740      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2745      &   MPI_MAT2,FG_COMM1,IERR)
2746         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2747      &   ivec_count(fg_rank1),
2748      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2749      &   MPI_MAT2,FG_COMM1,IERR)
2750         endif
2751 #else
2752 c Passes matrix info through the ring
2753       isend=fg_rank1
2754       irecv=fg_rank1-1
2755       if (irecv.lt.0) irecv=nfgtasks1-1 
2756       iprev=irecv
2757       inext=fg_rank1+1
2758       if (inext.ge.nfgtasks1) inext=0
2759       do i=1,nfgtasks1-1
2760 c        write (iout,*) "isend",isend," irecv",irecv
2761 c        call flush(iout)
2762         lensend=lentyp(isend)
2763         lenrecv=lentyp(irecv)
2764 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2765 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2766 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2767 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2768 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2769 c        write (iout,*) "Gather ROTAT1"
2770 c        call flush(iout)
2771 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2772 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2773 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2774 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2775 c        write (iout,*) "Gather ROTAT2"
2776 c        call flush(iout)
2777         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2778      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2779      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2780      &   iprev,4400+irecv,FG_COMM,status,IERR)
2781 c        write (iout,*) "Gather ROTAT_OLD"
2782 c        call flush(iout)
2783         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2784      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2785      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2786      &   iprev,5500+irecv,FG_COMM,status,IERR)
2787 c        write (iout,*) "Gather PRECOMP11"
2788 c        call flush(iout)
2789         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2790      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2791      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2792      &   iprev,6600+irecv,FG_COMM,status,IERR)
2793 c        write (iout,*) "Gather PRECOMP12"
2794 c        call flush(iout)
2795         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2796      &  then
2797         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2798      &   MPI_ROTAT2(lensend),inext,7700+isend,
2799      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2800      &   iprev,7700+irecv,FG_COMM,status,IERR)
2801 c        write (iout,*) "Gather PRECOMP21"
2802 c        call flush(iout)
2803         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2804      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2805      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2806      &   iprev,8800+irecv,FG_COMM,status,IERR)
2807 c        write (iout,*) "Gather PRECOMP22"
2808 c        call flush(iout)
2809         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2810      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2811      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2812      &   MPI_PRECOMP23(lenrecv),
2813      &   iprev,9900+irecv,FG_COMM,status,IERR)
2814 c        write (iout,*) "Gather PRECOMP23"
2815 c        call flush(iout)
2816         endif
2817         isend=irecv
2818         irecv=irecv-1
2819         if (irecv.lt.0) irecv=nfgtasks1-1
2820       enddo
2821 #endif
2822         time_gather=time_gather+MPI_Wtime()-time00
2823       endif
2824 #ifdef DEBUG
2825 c      if (fg_rank.eq.0) then
2826         write (iout,*) "Arrays UG and UGDER"
2827         do i=1,nres-1
2828           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2829      &     ((ug(l,k,i),l=1,2),k=1,2),
2830      &     ((ugder(l,k,i),l=1,2),k=1,2)
2831         enddo
2832         write (iout,*) "Arrays UG2 and UG2DER"
2833         do i=1,nres-1
2834           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2835      &     ((ug2(l,k,i),l=1,2),k=1,2),
2836      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2837         enddo
2838         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2839         do i=1,nres-1
2840           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2841      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2842      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2843         enddo
2844         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2845         do i=1,nres-1
2846           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2847      &     costab(i),sintab(i),costab2(i),sintab2(i)
2848         enddo
2849         write (iout,*) "Array MUDER"
2850         do i=1,nres-1
2851           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2852         enddo
2853 c      endif
2854 #endif
2855 #endif
2856 cd      do i=1,nres
2857 cd        iti = itortyp(itype(i))
2858 cd        write (iout,*) i
2859 cd        do j=1,2
2860 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2861 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2862 cd        enddo
2863 cd      enddo
2864       return
2865       end
2866 C--------------------------------------------------------------------------
2867       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2868 C
2869 C This subroutine calculates the average interaction energy and its gradient
2870 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2871 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2872 C The potential depends both on the distance of peptide-group centers and on 
2873 C the orientation of the CA-CA virtual bonds.
2874
2875       implicit real*8 (a-h,o-z)
2876 #ifdef MPI
2877       include 'mpif.h'
2878 #endif
2879       include 'DIMENSIONS'
2880       include 'COMMON.CONTROL'
2881       include 'COMMON.SETUP'
2882       include 'COMMON.IOUNITS'
2883       include 'COMMON.GEO'
2884       include 'COMMON.VAR'
2885       include 'COMMON.LOCAL'
2886       include 'COMMON.CHAIN'
2887       include 'COMMON.DERIV'
2888       include 'COMMON.INTERACT'
2889       include 'COMMON.CONTACTS'
2890 #ifdef MOMENT
2891       include 'COMMON.CONTACTS.MOMENT'
2892 #endif  
2893       include 'COMMON.TORSION'
2894       include 'COMMON.VECTORS'
2895       include 'COMMON.FFIELD'
2896       include 'COMMON.TIME1'
2897       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2898      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2899       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2900      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2901       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2902      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2903      &    num_conti,j1,j2
2904 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2905 #ifdef MOMENT
2906       double precision scal_el /1.0d0/
2907 #else
2908       double precision scal_el /0.5d0/
2909 #endif
2910 C 12/13/98 
2911 C 13-go grudnia roku pamietnego... 
2912       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2913      &                   0.0d0,1.0d0,0.0d0,
2914      &                   0.0d0,0.0d0,1.0d0/
2915 cd      write(iout,*) 'In EELEC'
2916 cd      do i=1,nloctyp
2917 cd        write(iout,*) 'Type',i
2918 cd        write(iout,*) 'B1',B1(:,i)
2919 cd        write(iout,*) 'B2',B2(:,i)
2920 cd        write(iout,*) 'CC',CC(:,:,i)
2921 cd        write(iout,*) 'DD',DD(:,:,i)
2922 cd        write(iout,*) 'EE',EE(:,:,i)
2923 cd      enddo
2924 cd      call check_vecgrad
2925 cd      stop
2926       if (icheckgrad.eq.1) then
2927         do i=1,nres-1
2928           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2929           do k=1,3
2930             dc_norm(k,i)=dc(k,i)*fac
2931           enddo
2932 c          write (iout,*) 'i',i,' fac',fac
2933         enddo
2934       endif
2935       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2936      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2937      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2938 c        call vec_and_deriv
2939 #ifdef TIMING
2940         time01=MPI_Wtime()
2941 #endif
2942         call set_matrices
2943 #ifdef TIMING
2944         time_mat=time_mat+MPI_Wtime()-time01
2945 #endif
2946       endif
2947 cd      do i=1,nres-1
2948 cd        write (iout,*) 'i=',i
2949 cd        do k=1,3
2950 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2951 cd        enddo
2952 cd        do k=1,3
2953 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
2954 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
2955 cd        enddo
2956 cd      enddo
2957       t_eelecij=0.0d0
2958       ees=0.0D0
2959       evdw1=0.0D0
2960       eel_loc=0.0d0 
2961       eello_turn3=0.0d0
2962       eello_turn4=0.0d0
2963       ind=0
2964       do i=1,nres
2965         num_cont_hb(i)=0
2966       enddo
2967 cd      print '(a)','Enter EELEC'
2968 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
2969       do i=1,nres
2970         gel_loc_loc(i)=0.0d0
2971         gcorr_loc(i)=0.0d0
2972       enddo
2973 c
2974 c
2975 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
2976 C
2977 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
2978 C
2979       do i=iturn3_start,iturn3_end
2980         dxi=dc(1,i)
2981         dyi=dc(2,i)
2982         dzi=dc(3,i)
2983         dx_normi=dc_norm(1,i)
2984         dy_normi=dc_norm(2,i)
2985         dz_normi=dc_norm(3,i)
2986         xmedi=c(1,i)+0.5d0*dxi
2987         ymedi=c(2,i)+0.5d0*dyi
2988         zmedi=c(3,i)+0.5d0*dzi
2989         num_conti=0
2990         call eelecij(i,i+2,ees,evdw1,eel_loc)
2991         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
2992         num_cont_hb(i)=num_conti
2993       enddo
2994       do i=iturn4_start,iturn4_end
2995         dxi=dc(1,i)
2996         dyi=dc(2,i)
2997         dzi=dc(3,i)
2998         dx_normi=dc_norm(1,i)
2999         dy_normi=dc_norm(2,i)
3000         dz_normi=dc_norm(3,i)
3001         xmedi=c(1,i)+0.5d0*dxi
3002         ymedi=c(2,i)+0.5d0*dyi
3003         zmedi=c(3,i)+0.5d0*dzi
3004         num_conti=num_cont_hb(i)
3005         call eelecij(i,i+3,ees,evdw1,eel_loc)
3006         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3007         num_cont_hb(i)=num_conti
3008       enddo   ! i
3009 c
3010 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3011 c
3012       do i=iatel_s,iatel_e
3013         dxi=dc(1,i)
3014         dyi=dc(2,i)
3015         dzi=dc(3,i)
3016         dx_normi=dc_norm(1,i)
3017         dy_normi=dc_norm(2,i)
3018         dz_normi=dc_norm(3,i)
3019         xmedi=c(1,i)+0.5d0*dxi
3020         ymedi=c(2,i)+0.5d0*dyi
3021         zmedi=c(3,i)+0.5d0*dzi
3022 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3023         num_conti=num_cont_hb(i)
3024         do j=ielstart(i),ielend(i)
3025           call eelecij(i,j,ees,evdw1,eel_loc)
3026         enddo ! j
3027         num_cont_hb(i)=num_conti
3028       enddo   ! i
3029 c      write (iout,*) "Number of loop steps in EELEC:",ind
3030 cd      do i=1,nres
3031 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3032 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3033 cd      enddo
3034 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3035 ccc      eel_loc=eel_loc+eello_turn3
3036 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3037       return
3038       end
3039 C-------------------------------------------------------------------------------
3040       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3041       implicit real*8 (a-h,o-z)
3042       include 'DIMENSIONS'
3043 #ifdef MPI
3044       include "mpif.h"
3045 #endif
3046       include 'COMMON.CONTROL'
3047       include 'COMMON.IOUNITS'
3048       include 'COMMON.GEO'
3049       include 'COMMON.VAR'
3050       include 'COMMON.LOCAL'
3051       include 'COMMON.CHAIN'
3052       include 'COMMON.DERIV'
3053       include 'COMMON.INTERACT'
3054       include 'COMMON.CONTACTS'
3055 #ifdef MOMENT
3056       include 'COMMON.CONTACTS.MOMENT'
3057 #endif  
3058       include 'COMMON.TORSION'
3059       include 'COMMON.VECTORS'
3060       include 'COMMON.FFIELD'
3061       include 'COMMON.TIME1'
3062       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3063      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3064       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3065      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3066       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3067      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3068      &    num_conti,j1,j2
3069 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3070 #ifdef MOMENT
3071       double precision scal_el /1.0d0/
3072 #else
3073       double precision scal_el /0.5d0/
3074 #endif
3075 C 12/13/98 
3076 C 13-go grudnia roku pamietnego... 
3077       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3078      &                   0.0d0,1.0d0,0.0d0,
3079      &                   0.0d0,0.0d0,1.0d0/
3080 c          time00=MPI_Wtime()
3081 cd      write (iout,*) "eelecij",i,j
3082 c          ind=ind+1
3083           iteli=itel(i)
3084           itelj=itel(j)
3085           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3086           aaa=app(iteli,itelj)
3087           bbb=bpp(iteli,itelj)
3088           ael6i=ael6(iteli,itelj)
3089           ael3i=ael3(iteli,itelj) 
3090           dxj=dc(1,j)
3091           dyj=dc(2,j)
3092           dzj=dc(3,j)
3093           dx_normj=dc_norm(1,j)
3094           dy_normj=dc_norm(2,j)
3095           dz_normj=dc_norm(3,j)
3096           xj=c(1,j)+0.5D0*dxj-xmedi
3097           yj=c(2,j)+0.5D0*dyj-ymedi
3098           zj=c(3,j)+0.5D0*dzj-zmedi
3099           rij=xj*xj+yj*yj+zj*zj
3100           rrmij=1.0D0/rij
3101           rij=dsqrt(rij)
3102           rmij=1.0D0/rij
3103           r3ij=rrmij*rmij
3104           r6ij=r3ij*r3ij  
3105           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3106           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3107           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3108           fac=cosa-3.0D0*cosb*cosg
3109           ev1=aaa*r6ij*r6ij
3110 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3111           if (j.eq.i+2) ev1=scal_el*ev1
3112           ev2=bbb*r6ij
3113           fac3=ael6i*r6ij
3114           fac4=ael3i*r3ij
3115           evdwij=ev1+ev2
3116           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3117           el2=fac4*fac       
3118           eesij=el1+el2
3119 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3120           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3121           ees=ees+eesij
3122           evdw1=evdw1+evdwij
3123 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3124 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3125 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3126 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3127
3128           if (energy_dec) then 
3129               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3130               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3131           endif
3132
3133 C
3134 C Calculate contributions to the Cartesian gradient.
3135 C
3136 #ifdef SPLITELE
3137           facvdw=-6*rrmij*(ev1+evdwij)
3138           facel=-3*rrmij*(el1+eesij)
3139           fac1=fac
3140           erij(1)=xj*rmij
3141           erij(2)=yj*rmij
3142           erij(3)=zj*rmij
3143 *
3144 * Radial derivatives. First process both termini of the fragment (i,j)
3145 *
3146           ggg(1)=facel*xj
3147           ggg(2)=facel*yj
3148           ggg(3)=facel*zj
3149 c          do k=1,3
3150 c            ghalf=0.5D0*ggg(k)
3151 c            gelc(k,i)=gelc(k,i)+ghalf
3152 c            gelc(k,j)=gelc(k,j)+ghalf
3153 c          enddo
3154 c 9/28/08 AL Gradient compotents will be summed only at the end
3155           do k=1,3
3156             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3157             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3158           enddo
3159 *
3160 * Loop over residues i+1 thru j-1.
3161 *
3162 cgrad          do k=i+1,j-1
3163 cgrad            do l=1,3
3164 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3165 cgrad            enddo
3166 cgrad          enddo
3167           ggg(1)=facvdw*xj
3168           ggg(2)=facvdw*yj
3169           ggg(3)=facvdw*zj
3170 c          do k=1,3
3171 c            ghalf=0.5D0*ggg(k)
3172 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3173 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3174 c          enddo
3175 c 9/28/08 AL Gradient compotents will be summed only at the end
3176           do k=1,3
3177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3178             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3179           enddo
3180 *
3181 * Loop over residues i+1 thru j-1.
3182 *
3183 cgrad          do k=i+1,j-1
3184 cgrad            do l=1,3
3185 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3186 cgrad            enddo
3187 cgrad          enddo
3188 #else
3189           facvdw=ev1+evdwij 
3190           facel=el1+eesij  
3191           fac1=fac
3192           fac=-3*rrmij*(facvdw+facvdw+facel)
3193           erij(1)=xj*rmij
3194           erij(2)=yj*rmij
3195           erij(3)=zj*rmij
3196 *
3197 * Radial derivatives. First process both termini of the fragment (i,j)
3198
3199           ggg(1)=fac*xj
3200           ggg(2)=fac*yj
3201           ggg(3)=fac*zj
3202 c          do k=1,3
3203 c            ghalf=0.5D0*ggg(k)
3204 c            gelc(k,i)=gelc(k,i)+ghalf
3205 c            gelc(k,j)=gelc(k,j)+ghalf
3206 c          enddo
3207 c 9/28/08 AL Gradient compotents will be summed only at the end
3208           do k=1,3
3209             gelc_long(k,j)=gelc(k,j)+ggg(k)
3210             gelc_long(k,i)=gelc(k,i)-ggg(k)
3211           enddo
3212 *
3213 * Loop over residues i+1 thru j-1.
3214 *
3215 cgrad          do k=i+1,j-1
3216 cgrad            do l=1,3
3217 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3218 cgrad            enddo
3219 cgrad          enddo
3220 c 9/28/08 AL Gradient compotents will be summed only at the end
3221           ggg(1)=facvdw*xj
3222           ggg(2)=facvdw*yj
3223           ggg(3)=facvdw*zj
3224           do k=1,3
3225             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3226             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3227           enddo
3228 #endif
3229 *
3230 * Angular part
3231 *          
3232           ecosa=2.0D0*fac3*fac1+fac4
3233           fac4=-3.0D0*fac4
3234           fac3=-6.0D0*fac3
3235           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3236           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3237           do k=1,3
3238             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3239             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3240           enddo
3241 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3242 cd   &          (dcosg(k),k=1,3)
3243           do k=1,3
3244             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3245           enddo
3246 c          do k=1,3
3247 c            ghalf=0.5D0*ggg(k)
3248 c            gelc(k,i)=gelc(k,i)+ghalf
3249 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3250 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3251 c            gelc(k,j)=gelc(k,j)+ghalf
3252 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3253 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3254 c          enddo
3255 cgrad          do k=i+1,j-1
3256 cgrad            do l=1,3
3257 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3258 cgrad            enddo
3259 cgrad          enddo
3260           do k=1,3
3261             gelc(k,i)=gelc(k,i)
3262      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3263      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3264             gelc(k,j)=gelc(k,j)
3265      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3266      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3267             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3268             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3269           enddo
3270           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3271      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3272      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3273 C
3274 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3275 C   energy of a peptide unit is assumed in the form of a second-order 
3276 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3277 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3278 C   are computed for EVERY pair of non-contiguous peptide groups.
3279 C
3280           if (j.lt.nres-1) then
3281             j1=j+1
3282             j2=j-1
3283           else
3284             j1=j-1
3285             j2=j-2
3286           endif
3287           kkk=0
3288           do k=1,2
3289             do l=1,2
3290               kkk=kkk+1
3291               muij(kkk)=mu(k,i)*mu(l,j)
3292             enddo
3293           enddo  
3294 cd         write (iout,*) 'EELEC: i',i,' j',j
3295 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3296 cd          write(iout,*) 'muij',muij
3297           ury=scalar(uy(1,i),erij)
3298           urz=scalar(uz(1,i),erij)
3299           vry=scalar(uy(1,j),erij)
3300           vrz=scalar(uz(1,j),erij)
3301           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3302           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3303           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3304           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3305           fac=dsqrt(-ael6i)*r3ij
3306           a22=a22*fac
3307           a23=a23*fac
3308           a32=a32*fac
3309           a33=a33*fac
3310 cd          write (iout,'(4i5,4f10.5)')
3311 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3312 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3313 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3314 cd     &      uy(:,j),uz(:,j)
3315 cd          write (iout,'(4f10.5)') 
3316 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3317 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3318 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3319 cd           write (iout,'(9f10.5/)') 
3320 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3321 C Derivatives of the elements of A in virtual-bond vectors
3322           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3323           do k=1,3
3324             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3325             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3326             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3327             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3328             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3329             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3330             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3331             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3332             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3333             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3334             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3335             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3336           enddo
3337 C Compute radial contributions to the gradient
3338           facr=-3.0d0*rrmij
3339           a22der=a22*facr
3340           a23der=a23*facr
3341           a32der=a32*facr
3342           a33der=a33*facr
3343           agg(1,1)=a22der*xj
3344           agg(2,1)=a22der*yj
3345           agg(3,1)=a22der*zj
3346           agg(1,2)=a23der*xj
3347           agg(2,2)=a23der*yj
3348           agg(3,2)=a23der*zj
3349           agg(1,3)=a32der*xj
3350           agg(2,3)=a32der*yj
3351           agg(3,3)=a32der*zj
3352           agg(1,4)=a33der*xj
3353           agg(2,4)=a33der*yj
3354           agg(3,4)=a33der*zj
3355 C Add the contributions coming from er
3356           fac3=-3.0d0*fac
3357           do k=1,3
3358             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3359             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3360             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3361             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3362           enddo
3363           do k=1,3
3364 C Derivatives in DC(i) 
3365 cgrad            ghalf1=0.5d0*agg(k,1)
3366 cgrad            ghalf2=0.5d0*agg(k,2)
3367 cgrad            ghalf3=0.5d0*agg(k,3)
3368 cgrad            ghalf4=0.5d0*agg(k,4)
3369             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3370      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3371             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3372      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3373             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3374      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3375             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3376      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3377 C Derivatives in DC(i+1)
3378             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3379      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3380             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3381      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3382             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3383      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3384             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3385      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3386 C Derivatives in DC(j)
3387             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3388      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3389             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3390      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3391             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3392      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3393             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3394      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3395 C Derivatives in DC(j+1) or DC(nres-1)
3396             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3397      &      -3.0d0*vryg(k,3)*ury)
3398             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3399      &      -3.0d0*vrzg(k,3)*ury)
3400             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3401      &      -3.0d0*vryg(k,3)*urz)
3402             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3403      &      -3.0d0*vrzg(k,3)*urz)
3404 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3405 cgrad              do l=1,4
3406 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3407 cgrad              enddo
3408 cgrad            endif
3409           enddo
3410           acipa(1,1)=a22
3411           acipa(1,2)=a23
3412           acipa(2,1)=a32
3413           acipa(2,2)=a33
3414           a22=-a22
3415           a23=-a23
3416           do l=1,2
3417             do k=1,3
3418               agg(k,l)=-agg(k,l)
3419               aggi(k,l)=-aggi(k,l)
3420               aggi1(k,l)=-aggi1(k,l)
3421               aggj(k,l)=-aggj(k,l)
3422               aggj1(k,l)=-aggj1(k,l)
3423             enddo
3424           enddo
3425           if (j.lt.nres-1) then
3426             a22=-a22
3427             a32=-a32
3428             do l=1,3,2
3429               do k=1,3
3430                 agg(k,l)=-agg(k,l)
3431                 aggi(k,l)=-aggi(k,l)
3432                 aggi1(k,l)=-aggi1(k,l)
3433                 aggj(k,l)=-aggj(k,l)
3434                 aggj1(k,l)=-aggj1(k,l)
3435               enddo
3436             enddo
3437           else
3438             a22=-a22
3439             a23=-a23
3440             a32=-a32
3441             a33=-a33
3442             do l=1,4
3443               do k=1,3
3444                 agg(k,l)=-agg(k,l)
3445                 aggi(k,l)=-aggi(k,l)
3446                 aggi1(k,l)=-aggi1(k,l)
3447                 aggj(k,l)=-aggj(k,l)
3448                 aggj1(k,l)=-aggj1(k,l)
3449               enddo
3450             enddo 
3451           endif    
3452           ENDIF ! WCORR
3453           IF (wel_loc.gt.0.0d0) THEN
3454 C Contribution to the local-electrostatic energy coming from the i-j pair
3455           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3456      &     +a33*muij(4)
3457 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3458
3459           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3460      &            'eelloc',i,j,eel_loc_ij
3461
3462           eel_loc=eel_loc+eel_loc_ij
3463 C Partial derivatives in virtual-bond dihedral angles gamma
3464           if (i.gt.1)
3465      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3466      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3467      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3468           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3469      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3470      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3471 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3472           do l=1,3
3473             ggg(l)=agg(l,1)*muij(1)+
3474      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3475             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3476             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3477 cgrad            ghalf=0.5d0*ggg(l)
3478 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3479 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3480           enddo
3481 cgrad          do k=i+1,j2
3482 cgrad            do l=1,3
3483 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3484 cgrad            enddo
3485 cgrad          enddo
3486 C Remaining derivatives of eello
3487           do l=1,3
3488             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3489      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3490             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3491      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3492             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3493      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3494             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3495      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3496           enddo
3497           ENDIF
3498 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3499 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3500           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3501      &       .and. num_conti.le.maxconts) then
3502 c            write (iout,*) i,j," entered corr"
3503 C
3504 C Calculate the contact function. The ith column of the array JCONT will 
3505 C contain the numbers of atoms that make contacts with the atom I (of numbers
3506 C greater than I). The arrays FACONT and GACONT will contain the values of
3507 C the contact function and its derivative.
3508 c           r0ij=1.02D0*rpp(iteli,itelj)
3509 c           r0ij=1.11D0*rpp(iteli,itelj)
3510             r0ij=2.20D0*rpp(iteli,itelj)
3511 c           r0ij=1.55D0*rpp(iteli,itelj)
3512             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3513             if (fcont.gt.0.0D0) then
3514               num_conti=num_conti+1
3515               if (num_conti.gt.maxconts) then
3516                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3517      &                         ' will skip next contacts for this conf.'
3518               else
3519                 jcont_hb(num_conti,i)=j
3520 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3521 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3522                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3523      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3524 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3525 C  terms.
3526                 d_cont(num_conti,i)=rij
3527 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3528 C     --- Electrostatic-interaction matrix --- 
3529                 a_chuj(1,1,num_conti,i)=a22
3530                 a_chuj(1,2,num_conti,i)=a23
3531                 a_chuj(2,1,num_conti,i)=a32
3532                 a_chuj(2,2,num_conti,i)=a33
3533 C     --- Gradient of rij
3534                 do kkk=1,3
3535                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3536                 enddo
3537                 kkll=0
3538                 do k=1,2
3539                   do l=1,2
3540                     kkll=kkll+1
3541                     do m=1,3
3542                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3543                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3544                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3545                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3546                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3547                     enddo
3548                   enddo
3549                 enddo
3550                 ENDIF
3551                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3552 C Calculate contact energies
3553                 cosa4=4.0D0*cosa
3554                 wij=cosa-3.0D0*cosb*cosg
3555                 cosbg1=cosb+cosg
3556                 cosbg2=cosb-cosg
3557 c               fac3=dsqrt(-ael6i)/r0ij**3     
3558                 fac3=dsqrt(-ael6i)*r3ij
3559 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3560                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3561                 if (ees0tmp.gt.0) then
3562                   ees0pij=dsqrt(ees0tmp)
3563                 else
3564                   ees0pij=0
3565                 endif
3566 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3567                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3568                 if (ees0tmp.gt.0) then
3569                   ees0mij=dsqrt(ees0tmp)
3570                 else
3571                   ees0mij=0
3572                 endif
3573 c               ees0mij=0.0D0
3574                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3575                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3576 C Diagnostics. Comment out or remove after debugging!
3577 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3578 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3579 c               ees0m(num_conti,i)=0.0D0
3580 C End diagnostics.
3581 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3582 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3583 C Angular derivatives of the contact function
3584                 ees0pij1=fac3/ees0pij 
3585                 ees0mij1=fac3/ees0mij
3586                 fac3p=-3.0D0*fac3*rrmij
3587                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3588                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3589 c               ees0mij1=0.0D0
3590                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3591                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3592                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3593                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3594                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3595                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3596                 ecosap=ecosa1+ecosa2
3597                 ecosbp=ecosb1+ecosb2
3598                 ecosgp=ecosg1+ecosg2
3599                 ecosam=ecosa1-ecosa2
3600                 ecosbm=ecosb1-ecosb2
3601                 ecosgm=ecosg1-ecosg2
3602 C Diagnostics
3603 c               ecosap=ecosa1
3604 c               ecosbp=ecosb1
3605 c               ecosgp=ecosg1
3606 c               ecosam=0.0D0
3607 c               ecosbm=0.0D0
3608 c               ecosgm=0.0D0
3609 C End diagnostics
3610                 facont_hb(num_conti,i)=fcont
3611                 fprimcont=fprimcont/rij
3612 cd              facont_hb(num_conti,i)=1.0D0
3613 C Following line is for diagnostics.
3614 cd              fprimcont=0.0D0
3615                 do k=1,3
3616                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3617                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3618                 enddo
3619                 do k=1,3
3620                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3621                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3622                 enddo
3623                 gggp(1)=gggp(1)+ees0pijp*xj
3624                 gggp(2)=gggp(2)+ees0pijp*yj
3625                 gggp(3)=gggp(3)+ees0pijp*zj
3626                 gggm(1)=gggm(1)+ees0mijp*xj
3627                 gggm(2)=gggm(2)+ees0mijp*yj
3628                 gggm(3)=gggm(3)+ees0mijp*zj
3629 C Derivatives due to the contact function
3630                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3631                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3632                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3633                 do k=1,3
3634 c
3635 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3636 c          following the change of gradient-summation algorithm.
3637 c
3638 cgrad                  ghalfp=0.5D0*gggp(k)
3639 cgrad                  ghalfm=0.5D0*gggm(k)
3640                   gacontp_hb1(k,num_conti,i)=!ghalfp
3641      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3642      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3643                   gacontp_hb2(k,num_conti,i)=!ghalfp
3644      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3645      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3646                   gacontp_hb3(k,num_conti,i)=gggp(k)
3647                   gacontm_hb1(k,num_conti,i)=!ghalfm
3648      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3649      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3650                   gacontm_hb2(k,num_conti,i)=!ghalfm
3651      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3652      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3653                   gacontm_hb3(k,num_conti,i)=gggm(k)
3654                 enddo
3655 C Diagnostics. Comment out or remove after debugging!
3656 cdiag           do k=1,3
3657 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3658 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3659 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3660 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3661 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3662 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3663 cdiag           enddo
3664               ENDIF ! wcorr
3665               endif  ! num_conti.le.maxconts
3666             endif  ! fcont.gt.0
3667           endif    ! j.gt.i+1
3668           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3669             do k=1,4
3670               do l=1,3
3671                 ghalf=0.5d0*agg(l,k)
3672                 aggi(l,k)=aggi(l,k)+ghalf
3673                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3674                 aggj(l,k)=aggj(l,k)+ghalf
3675               enddo
3676             enddo
3677             if (j.eq.nres-1 .and. i.lt.j-2) then
3678               do k=1,4
3679                 do l=1,3
3680                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3681                 enddo
3682               enddo
3683             endif
3684           endif
3685 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3686       return
3687       end
3688 C-----------------------------------------------------------------------------
3689       subroutine eturn3(i,eello_turn3)
3690 C Third- and fourth-order contributions from turns
3691       implicit real*8 (a-h,o-z)
3692       include 'DIMENSIONS'
3693       include 'COMMON.IOUNITS'
3694       include 'COMMON.GEO'
3695       include 'COMMON.VAR'
3696       include 'COMMON.LOCAL'
3697       include 'COMMON.CHAIN'
3698       include 'COMMON.DERIV'
3699       include 'COMMON.INTERACT'
3700       include 'COMMON.CONTACTS'
3701 #ifdef MOMENT
3702       include 'COMMON.CONTACTS.MOMENT'
3703 #endif  
3704       include 'COMMON.TORSION'
3705       include 'COMMON.VECTORS'
3706       include 'COMMON.FFIELD'
3707       include 'COMMON.CONTROL'
3708       dimension ggg(3)
3709       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3710      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3711      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3712       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3713      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3714       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3715      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3716      &    num_conti,j1,j2
3717       j=i+2
3718 c      write (iout,*) "eturn3",i,j,j1,j2
3719       a_temp(1,1)=a22
3720       a_temp(1,2)=a23
3721       a_temp(2,1)=a32
3722       a_temp(2,2)=a33
3723 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3724 C
3725 C               Third-order contributions
3726 C        
3727 C                 (i+2)o----(i+3)
3728 C                      | |
3729 C                      | |
3730 C                 (i+1)o----i
3731 C
3732 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3733 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3734         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3735         call transpose2(auxmat(1,1),auxmat1(1,1))
3736         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3737         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3738         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3739      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3740 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3741 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3742 cd     &    ' eello_turn3_num',4*eello_turn3_num
3743 C Derivatives in gamma(i)
3744         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3745         call transpose2(auxmat2(1,1),auxmat3(1,1))
3746         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3747         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3748 C Derivatives in gamma(i+1)
3749         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3750         call transpose2(auxmat2(1,1),auxmat3(1,1))
3751         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3752         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3753      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3754 C Cartesian derivatives
3755         do l=1,3
3756 c            ghalf1=0.5d0*agg(l,1)
3757 c            ghalf2=0.5d0*agg(l,2)
3758 c            ghalf3=0.5d0*agg(l,3)
3759 c            ghalf4=0.5d0*agg(l,4)
3760           a_temp(1,1)=aggi(l,1)!+ghalf1
3761           a_temp(1,2)=aggi(l,2)!+ghalf2
3762           a_temp(2,1)=aggi(l,3)!+ghalf3
3763           a_temp(2,2)=aggi(l,4)!+ghalf4
3764           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3765           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3766      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3767           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3768           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3769           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3770           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3771           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3772           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3773      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3774           a_temp(1,1)=aggj(l,1)!+ghalf1
3775           a_temp(1,2)=aggj(l,2)!+ghalf2
3776           a_temp(2,1)=aggj(l,3)!+ghalf3
3777           a_temp(2,2)=aggj(l,4)!+ghalf4
3778           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3779           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3780      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3781           a_temp(1,1)=aggj1(l,1)
3782           a_temp(1,2)=aggj1(l,2)
3783           a_temp(2,1)=aggj1(l,3)
3784           a_temp(2,2)=aggj1(l,4)
3785           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3786           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3787      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3788         enddo
3789       return
3790       end
3791 C-------------------------------------------------------------------------------
3792       subroutine eturn4(i,eello_turn4)
3793 C Third- and fourth-order contributions from turns
3794       implicit real*8 (a-h,o-z)
3795       include 'DIMENSIONS'
3796       include 'COMMON.IOUNITS'
3797       include 'COMMON.GEO'
3798       include 'COMMON.VAR'
3799       include 'COMMON.LOCAL'
3800       include 'COMMON.CHAIN'
3801       include 'COMMON.DERIV'
3802       include 'COMMON.INTERACT'
3803       include 'COMMON.CONTACTS'
3804 #ifdef MOMENT
3805       include 'COMMON.CONTACTS.MOMENT'
3806 #endif  
3807       include 'COMMON.TORSION'
3808       include 'COMMON.VECTORS'
3809       include 'COMMON.FFIELD'
3810       include 'COMMON.CONTROL'
3811       dimension ggg(3)
3812       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3813      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3814      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3815       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3816      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3817       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3818      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3819      &    num_conti,j1,j2
3820       j=i+3
3821 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3822 C
3823 C               Fourth-order contributions
3824 C        
3825 C                 (i+3)o----(i+4)
3826 C                     /  |
3827 C               (i+2)o   |
3828 C                     \  |
3829 C                 (i+1)o----i
3830 C
3831 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3832 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3833 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3834         a_temp(1,1)=a22
3835         a_temp(1,2)=a23
3836         a_temp(2,1)=a32
3837         a_temp(2,2)=a33
3838         iti1=itortyp(itype(i+1))
3839         iti2=itortyp(itype(i+2))
3840         iti3=itortyp(itype(i+3))
3841 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3842         call transpose2(EUg(1,1,i+1),e1t(1,1))
3843         call transpose2(Eug(1,1,i+2),e2t(1,1))
3844         call transpose2(Eug(1,1,i+3),e3t(1,1))
3845         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3846         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3847         s1=scalar2(b1(1,iti2),auxvec(1))
3848         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3849         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3850         s2=scalar2(b1(1,iti1),auxvec(1))
3851         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3852         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3853         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3854         eello_turn4=eello_turn4-(s1+s2+s3)
3855         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3856      &      'eturn4',i,j,-(s1+s2+s3)
3857 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3858 cd     &    ' eello_turn4_num',8*eello_turn4_num
3859 C Derivatives in gamma(i)
3860         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3861         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3862         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3863         s1=scalar2(b1(1,iti2),auxvec(1))
3864         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3865         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3866         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3867 C Derivatives in gamma(i+1)
3868         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3869         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3870         s2=scalar2(b1(1,iti1),auxvec(1))
3871         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3872         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3873         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3874         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3875 C Derivatives in gamma(i+2)
3876         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3877         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3878         s1=scalar2(b1(1,iti2),auxvec(1))
3879         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3880         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3881         s2=scalar2(b1(1,iti1),auxvec(1))
3882         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3883         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3884         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3885         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3886 C Cartesian derivatives
3887 C Derivatives of this turn contributions in DC(i+2)
3888         if (j.lt.nres-1) then
3889           do l=1,3
3890             a_temp(1,1)=agg(l,1)
3891             a_temp(1,2)=agg(l,2)
3892             a_temp(2,1)=agg(l,3)
3893             a_temp(2,2)=agg(l,4)
3894             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3895             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3896             s1=scalar2(b1(1,iti2),auxvec(1))
3897             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3898             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3899             s2=scalar2(b1(1,iti1),auxvec(1))
3900             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3901             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3902             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903             ggg(l)=-(s1+s2+s3)
3904             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3905           enddo
3906         endif
3907 C Remaining derivatives of this turn contribution
3908         do l=1,3
3909           a_temp(1,1)=aggi(l,1)
3910           a_temp(1,2)=aggi(l,2)
3911           a_temp(2,1)=aggi(l,3)
3912           a_temp(2,2)=aggi(l,4)
3913           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3914           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3915           s1=scalar2(b1(1,iti2),auxvec(1))
3916           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3917           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3918           s2=scalar2(b1(1,iti1),auxvec(1))
3919           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3920           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3921           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3923           a_temp(1,1)=aggi1(l,1)
3924           a_temp(1,2)=aggi1(l,2)
3925           a_temp(2,1)=aggi1(l,3)
3926           a_temp(2,2)=aggi1(l,4)
3927           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3928           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3929           s1=scalar2(b1(1,iti2),auxvec(1))
3930           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3931           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3932           s2=scalar2(b1(1,iti1),auxvec(1))
3933           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3934           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3935           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3936           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3937           a_temp(1,1)=aggj(l,1)
3938           a_temp(1,2)=aggj(l,2)
3939           a_temp(2,1)=aggj(l,3)
3940           a_temp(2,2)=aggj(l,4)
3941           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3942           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3943           s1=scalar2(b1(1,iti2),auxvec(1))
3944           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3945           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3946           s2=scalar2(b1(1,iti1),auxvec(1))
3947           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3948           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3949           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3950           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3951           a_temp(1,1)=aggj1(l,1)
3952           a_temp(1,2)=aggj1(l,2)
3953           a_temp(2,1)=aggj1(l,3)
3954           a_temp(2,2)=aggj1(l,4)
3955           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3956           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3957           s1=scalar2(b1(1,iti2),auxvec(1))
3958           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3959           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3960           s2=scalar2(b1(1,iti1),auxvec(1))
3961           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3962           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3963           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3964 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
3965           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
3966         enddo
3967       return
3968       end
3969 C-----------------------------------------------------------------------------
3970       subroutine vecpr(u,v,w)
3971       implicit real*8(a-h,o-z)
3972       dimension u(3),v(3),w(3)
3973       w(1)=u(2)*v(3)-u(3)*v(2)
3974       w(2)=-u(1)*v(3)+u(3)*v(1)
3975       w(3)=u(1)*v(2)-u(2)*v(1)
3976       return
3977       end
3978 C-----------------------------------------------------------------------------
3979       subroutine unormderiv(u,ugrad,unorm,ungrad)
3980 C This subroutine computes the derivatives of a normalized vector u, given
3981 C the derivatives computed without normalization conditions, ugrad. Returns
3982 C ungrad.
3983       implicit none
3984       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
3985       double precision vec(3)
3986       double precision scalar
3987       integer i,j
3988 c      write (2,*) 'ugrad',ugrad
3989 c      write (2,*) 'u',u
3990       do i=1,3
3991         vec(i)=scalar(ugrad(1,i),u(1))
3992       enddo
3993 c      write (2,*) 'vec',vec
3994       do i=1,3
3995         do j=1,3
3996           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
3997         enddo
3998       enddo
3999 c      write (2,*) 'ungrad',ungrad
4000       return
4001       end
4002 C-----------------------------------------------------------------------------
4003       subroutine escp_soft_sphere(evdw2,evdw2_14)
4004 C
4005 C This subroutine calculates the excluded-volume interaction energy between
4006 C peptide-group centers and side chains and its gradient in virtual-bond and
4007 C side-chain vectors.
4008 C
4009       implicit real*8 (a-h,o-z)
4010       include 'DIMENSIONS'
4011       include 'COMMON.GEO'
4012       include 'COMMON.VAR'
4013       include 'COMMON.LOCAL'
4014       include 'COMMON.CHAIN'
4015       include 'COMMON.DERIV'
4016       include 'COMMON.INTERACT'
4017       include 'COMMON.FFIELD'
4018       include 'COMMON.IOUNITS'
4019       include 'COMMON.CONTROL'
4020       dimension ggg(3)
4021       evdw2=0.0D0
4022       evdw2_14=0.0d0
4023       r0_scp=4.5d0
4024 cd    print '(a)','Enter ESCP'
4025 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4026       do i=iatscp_s,iatscp_e
4027         iteli=itel(i)
4028         xi=0.5D0*(c(1,i)+c(1,i+1))
4029         yi=0.5D0*(c(2,i)+c(2,i+1))
4030         zi=0.5D0*(c(3,i)+c(3,i+1))
4031
4032         do iint=1,nscp_gr(i)
4033
4034         do j=iscpstart(i,iint),iscpend(i,iint)
4035           itypj=itype(j)
4036 C Uncomment following three lines for SC-p interactions
4037 c         xj=c(1,nres+j)-xi
4038 c         yj=c(2,nres+j)-yi
4039 c         zj=c(3,nres+j)-zi
4040 C Uncomment following three lines for Ca-p interactions
4041           xj=c(1,j)-xi
4042           yj=c(2,j)-yi
4043           zj=c(3,j)-zi
4044           rij=xj*xj+yj*yj+zj*zj
4045           r0ij=r0_scp
4046           r0ijsq=r0ij*r0ij
4047           if (rij.lt.r0ijsq) then
4048             evdwij=0.25d0*(rij-r0ijsq)**2
4049             fac=rij-r0ijsq
4050           else
4051             evdwij=0.0d0
4052             fac=0.0d0
4053           endif 
4054           evdw2=evdw2+evdwij
4055 C
4056 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4057 C
4058           ggg(1)=xj*fac
4059           ggg(2)=yj*fac
4060           ggg(3)=zj*fac
4061 cgrad          if (j.lt.i) then
4062 cd          write (iout,*) 'j<i'
4063 C Uncomment following three lines for SC-p interactions
4064 c           do k=1,3
4065 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4066 c           enddo
4067 cgrad          else
4068 cd          write (iout,*) 'j>i'
4069 cgrad            do k=1,3
4070 cgrad              ggg(k)=-ggg(k)
4071 C Uncomment following line for SC-p interactions
4072 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4073 cgrad            enddo
4074 cgrad          endif
4075 cgrad          do k=1,3
4076 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4077 cgrad          enddo
4078 cgrad          kstart=min0(i+1,j)
4079 cgrad          kend=max0(i-1,j-1)
4080 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4081 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4082 cgrad          do k=kstart,kend
4083 cgrad            do l=1,3
4084 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4085 cgrad            enddo
4086 cgrad          enddo
4087           do k=1,3
4088             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4089             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4090           enddo
4091         enddo
4092
4093         enddo ! iint
4094       enddo ! i
4095       return
4096       end
4097 C-----------------------------------------------------------------------------
4098       subroutine escp(evdw2,evdw2_14)
4099 C
4100 C This subroutine calculates the excluded-volume interaction energy between
4101 C peptide-group centers and side chains and its gradient in virtual-bond and
4102 C side-chain vectors.
4103 C
4104       implicit real*8 (a-h,o-z)
4105       include 'DIMENSIONS'
4106       include 'COMMON.GEO'
4107       include 'COMMON.VAR'
4108       include 'COMMON.LOCAL'
4109       include 'COMMON.CHAIN'
4110       include 'COMMON.DERIV'
4111       include 'COMMON.INTERACT'
4112       include 'COMMON.FFIELD'
4113       include 'COMMON.IOUNITS'
4114       include 'COMMON.CONTROL'
4115       dimension ggg(3)
4116       evdw2=0.0D0
4117       evdw2_14=0.0d0
4118 cd    print '(a)','Enter ESCP'
4119 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4120       do i=iatscp_s,iatscp_e
4121         iteli=itel(i)
4122         xi=0.5D0*(c(1,i)+c(1,i+1))
4123         yi=0.5D0*(c(2,i)+c(2,i+1))
4124         zi=0.5D0*(c(3,i)+c(3,i+1))
4125
4126         do iint=1,nscp_gr(i)
4127
4128         do j=iscpstart(i,iint),iscpend(i,iint)
4129           itypj=itype(j)
4130 C Uncomment following three lines for SC-p interactions
4131 c         xj=c(1,nres+j)-xi
4132 c         yj=c(2,nres+j)-yi
4133 c         zj=c(3,nres+j)-zi
4134 C Uncomment following three lines for Ca-p interactions
4135           xj=c(1,j)-xi
4136           yj=c(2,j)-yi
4137           zj=c(3,j)-zi
4138           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4139           fac=rrij**expon2
4140           e1=fac*fac*aad(itypj,iteli)
4141           e2=fac*bad(itypj,iteli)
4142           if (iabs(j-i) .le. 2) then
4143             e1=scal14*e1
4144             e2=scal14*e2
4145             evdw2_14=evdw2_14+e1+e2
4146           endif
4147           evdwij=e1+e2
4148           evdw2=evdw2+evdwij
4149           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4150      &        'evdw2',i,j,evdwij
4151 C
4152 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4153 C
4154           fac=-(evdwij+e1)*rrij
4155           ggg(1)=xj*fac
4156           ggg(2)=yj*fac
4157           ggg(3)=zj*fac
4158 cgrad          if (j.lt.i) then
4159 cd          write (iout,*) 'j<i'
4160 C Uncomment following three lines for SC-p interactions
4161 c           do k=1,3
4162 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4163 c           enddo
4164 cgrad          else
4165 cd          write (iout,*) 'j>i'
4166 cgrad            do k=1,3
4167 cgrad              ggg(k)=-ggg(k)
4168 C Uncomment following line for SC-p interactions
4169 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4170 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4171 cgrad            enddo
4172 cgrad          endif
4173 cgrad          do k=1,3
4174 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4175 cgrad          enddo
4176 cgrad          kstart=min0(i+1,j)
4177 cgrad          kend=max0(i-1,j-1)
4178 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4179 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4180 cgrad          do k=kstart,kend
4181 cgrad            do l=1,3
4182 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4183 cgrad            enddo
4184 cgrad          enddo
4185           do k=1,3
4186             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4187             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4188           enddo
4189         enddo
4190
4191         enddo ! iint
4192       enddo ! i
4193       do i=1,nct
4194         do j=1,3
4195           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4196           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4197           gradx_scp(j,i)=expon*gradx_scp(j,i)
4198         enddo
4199       enddo
4200 C******************************************************************************
4201 C
4202 C                              N O T E !!!
4203 C
4204 C To save time the factor EXPON has been extracted from ALL components
4205 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4206 C use!
4207 C
4208 C******************************************************************************
4209       return
4210       end
4211 C--------------------------------------------------------------------------
4212       subroutine edis(ehpb)
4213
4214 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4215 C
4216       implicit real*8 (a-h,o-z)
4217       include 'DIMENSIONS'
4218       include 'COMMON.SBRIDGE'
4219       include 'COMMON.CHAIN'
4220       include 'COMMON.DERIV'
4221       include 'COMMON.VAR'
4222       include 'COMMON.INTERACT'
4223       include 'COMMON.IOUNITS'
4224       dimension ggg(3)
4225       ehpb=0.0D0
4226 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4227 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4228       if (link_end.eq.0) return
4229       do i=link_start,link_end
4230 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4231 C CA-CA distance used in regularization of structure.
4232         ii=ihpb(i)
4233         jj=jhpb(i)
4234 C iii and jjj point to the residues for which the distance is assigned.
4235         if (ii.gt.nres) then
4236           iii=ii-nres
4237           jjj=jj-nres 
4238         else
4239           iii=ii
4240           jjj=jj
4241         endif
4242 cd        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj
4243 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4244 C    distance and angle dependent SS bond potential.
4245         if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4246           call ssbond_ene(iii,jjj,eij)
4247           ehpb=ehpb+2*eij
4248 cd          write (iout,*) "eij",eij
4249         else
4250 C Calculate the distance between the two points and its difference from the
4251 C target distance.
4252         dd=dist(ii,jj)
4253         rdis=dd-dhpb(i)
4254 C Get the force constant corresponding to this distance.
4255         waga=forcon(i)
4256 C Calculate the contribution to energy.
4257         ehpb=ehpb+waga*rdis*rdis
4258 C
4259 C Evaluate gradient.
4260 C
4261         fac=waga*rdis/dd
4262 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4263 cd   &   ' waga=',waga,' fac=',fac
4264         do j=1,3
4265           ggg(j)=fac*(c(j,jj)-c(j,ii))
4266         enddo
4267 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4268 C If this is a SC-SC distance, we need to calculate the contributions to the
4269 C Cartesian gradient in the SC vectors (ghpbx).
4270         if (iii.lt.ii) then
4271           do j=1,3
4272             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4273             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4274           enddo
4275         endif
4276 cgrad        do j=iii,jjj-1
4277 cgrad          do k=1,3
4278 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4279 cgrad          enddo
4280 cgrad        enddo
4281         do k=1,3
4282           ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4283           ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4284         enddo
4285         endif
4286       enddo
4287       ehpb=0.5D0*ehpb
4288       return
4289       end
4290 C--------------------------------------------------------------------------
4291       subroutine ssbond_ene(i,j,eij)
4292
4293 C Calculate the distance and angle dependent SS-bond potential energy
4294 C using a free-energy function derived based on RHF/6-31G** ab initio
4295 C calculations of diethyl disulfide.
4296 C
4297 C A. Liwo and U. Kozlowska, 11/24/03
4298 C
4299       implicit real*8 (a-h,o-z)
4300       include 'DIMENSIONS'
4301       include 'COMMON.SBRIDGE'
4302       include 'COMMON.CHAIN'
4303       include 'COMMON.DERIV'
4304       include 'COMMON.LOCAL'
4305       include 'COMMON.INTERACT'
4306       include 'COMMON.VAR'
4307       include 'COMMON.IOUNITS'
4308       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4309       itypi=itype(i)
4310       xi=c(1,nres+i)
4311       yi=c(2,nres+i)
4312       zi=c(3,nres+i)
4313       dxi=dc_norm(1,nres+i)
4314       dyi=dc_norm(2,nres+i)
4315       dzi=dc_norm(3,nres+i)
4316 c      dsci_inv=dsc_inv(itypi)
4317       dsci_inv=vbld_inv(nres+i)
4318       itypj=itype(j)
4319 c      dscj_inv=dsc_inv(itypj)
4320       dscj_inv=vbld_inv(nres+j)
4321       xj=c(1,nres+j)-xi
4322       yj=c(2,nres+j)-yi
4323       zj=c(3,nres+j)-zi
4324       dxj=dc_norm(1,nres+j)
4325       dyj=dc_norm(2,nres+j)
4326       dzj=dc_norm(3,nres+j)
4327       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4328       rij=dsqrt(rrij)
4329       erij(1)=xj*rij
4330       erij(2)=yj*rij
4331       erij(3)=zj*rij
4332       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4333       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4334       om12=dxi*dxj+dyi*dyj+dzi*dzj
4335       do k=1,3
4336         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4337         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4338       enddo
4339       rij=1.0d0/rij
4340       deltad=rij-d0cm
4341       deltat1=1.0d0-om1
4342       deltat2=1.0d0+om2
4343       deltat12=om2-om1+2.0d0
4344       cosphi=om12-om1*om2
4345       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4346      &  +akct*deltad*deltat12
4347      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4348 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4349 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4350 c     &  " deltat12",deltat12," eij",eij 
4351       ed=2*akcm*deltad+akct*deltat12
4352       pom1=akct*deltad
4353       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4354       eom1=-2*akth*deltat1-pom1-om2*pom2
4355       eom2= 2*akth*deltat2+pom1-om1*pom2
4356       eom12=pom2
4357       do k=1,3
4358         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4359         ghpbx(k,i)=ghpbx(k,i)-ggk
4360      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4361      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4362         ghpbx(k,j)=ghpbx(k,j)+ggk
4363      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4364      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4365         ghpbc(k,i)=ghpbc(k,i)-ggk
4366         ghpbc(k,j)=ghpbc(k,j)+ggk
4367       enddo
4368 C
4369 C Calculate the components of the gradient in DC and X
4370 C
4371 cgrad      do k=i,j-1
4372 cgrad        do l=1,3
4373 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4374 cgrad        enddo
4375 cgrad      enddo
4376       return
4377       end
4378 C--------------------------------------------------------------------------
4379       subroutine ebond(estr)
4380 c
4381 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4382 c
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.LOCAL'
4386       include 'COMMON.GEO'
4387       include 'COMMON.INTERACT'
4388       include 'COMMON.DERIV'
4389       include 'COMMON.VAR'
4390       include 'COMMON.CHAIN'
4391       include 'COMMON.IOUNITS'
4392       include 'COMMON.NAMES'
4393       include 'COMMON.FFIELD'
4394       include 'COMMON.CONTROL'
4395       include 'COMMON.SETUP'
4396       double precision u(3),ud(3)
4397       estr=0.0d0
4398       do i=ibondp_start,ibondp_end
4399         diff = vbld(i)-vbldp0
4400 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4401         estr=estr+diff*diff
4402         do j=1,3
4403           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4404         enddo
4405 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4406       enddo
4407       estr=0.5d0*AKP*estr
4408 c
4409 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4410 c
4411       do i=ibond_start,ibond_end
4412         iti=itype(i)
4413         if (iti.ne.10) then
4414           nbi=nbondterm(iti)
4415           if (nbi.eq.1) then
4416             diff=vbld(i+nres)-vbldsc0(1,iti)
4417 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4418 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4419             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4420             do j=1,3
4421               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4422             enddo
4423           else
4424             do j=1,nbi
4425               diff=vbld(i+nres)-vbldsc0(j,iti) 
4426               ud(j)=aksc(j,iti)*diff
4427               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4428             enddo
4429             uprod=u(1)
4430             do j=2,nbi
4431               uprod=uprod*u(j)
4432             enddo
4433             usum=0.0d0
4434             usumsqder=0.0d0
4435             do j=1,nbi
4436               uprod1=1.0d0
4437               uprod2=1.0d0
4438               do k=1,nbi
4439                 if (k.ne.j) then
4440                   uprod1=uprod1*u(k)
4441                   uprod2=uprod2*u(k)*u(k)
4442                 endif
4443               enddo
4444               usum=usum+uprod1
4445               usumsqder=usumsqder+ud(j)*uprod2   
4446             enddo
4447             estr=estr+uprod/usum
4448             do j=1,3
4449              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4450             enddo
4451           endif
4452         endif
4453       enddo
4454       return
4455       end 
4456 #ifdef CRYST_THETA
4457 C--------------------------------------------------------------------------
4458       subroutine ebend(etheta)
4459 C
4460 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4461 C angles gamma and its derivatives in consecutive thetas and gammas.
4462 C
4463       implicit real*8 (a-h,o-z)
4464       include 'DIMENSIONS'
4465       include 'COMMON.LOCAL'
4466       include 'COMMON.GEO'
4467       include 'COMMON.INTERACT'
4468       include 'COMMON.DERIV'
4469       include 'COMMON.VAR'
4470       include 'COMMON.CHAIN'
4471       include 'COMMON.IOUNITS'
4472       include 'COMMON.NAMES'
4473       include 'COMMON.FFIELD'
4474       include 'COMMON.CONTROL'
4475       common /calcthet/ term1,term2,termm,diffak,ratak,
4476      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4477      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4478       double precision y(2),z(2)
4479       delta=0.02d0*pi
4480 c      time11=dexp(-2*time)
4481 c      time12=1.0d0
4482       etheta=0.0D0
4483 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4484       do i=ithet_start,ithet_end
4485 C Zero the energy function and its derivative at 0 or pi.
4486         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4487         it=itype(i-1)
4488         if (i.gt.3) then
4489 #ifdef OSF
4490           phii=phi(i)
4491           if (phii.ne.phii) phii=150.0
4492 #else
4493           phii=phi(i)
4494 #endif
4495           y(1)=dcos(phii)
4496           y(2)=dsin(phii)
4497         else 
4498           y(1)=0.0D0
4499           y(2)=0.0D0
4500         endif
4501         if (i.lt.nres) then
4502 #ifdef OSF
4503           phii1=phi(i+1)
4504           if (phii1.ne.phii1) phii1=150.0
4505           phii1=pinorm(phii1)
4506           z(1)=cos(phii1)
4507 #else
4508           phii1=phi(i+1)
4509           z(1)=dcos(phii1)
4510 #endif
4511           z(2)=dsin(phii1)
4512         else
4513           z(1)=0.0D0
4514           z(2)=0.0D0
4515         endif  
4516 C Calculate the "mean" value of theta from the part of the distribution
4517 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4518 C In following comments this theta will be referred to as t_c.
4519         thet_pred_mean=0.0d0
4520         do k=1,2
4521           athetk=athet(k,it)
4522           bthetk=bthet(k,it)
4523           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4524         enddo
4525         dthett=thet_pred_mean*ssd
4526         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4527 C Derivatives of the "mean" values in gamma1 and gamma2.
4528         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4529         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4530         if (theta(i).gt.pi-delta) then
4531           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4532      &         E_tc0)
4533           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4534           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4535           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4536      &        E_theta)
4537           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4538      &        E_tc)
4539         else if (theta(i).lt.delta) then
4540           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4541           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4542           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4543      &        E_theta)
4544           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4545           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4546      &        E_tc)
4547         else
4548           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4549      &        E_theta,E_tc)
4550         endif
4551         etheta=etheta+ethetai
4552         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4553      &      'ebend',i,ethetai
4554         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4555         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4556         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4557       enddo
4558 C Ufff.... We've done all this!!! 
4559       return
4560       end
4561 C---------------------------------------------------------------------------
4562       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4563      &     E_tc)
4564       implicit real*8 (a-h,o-z)
4565       include 'DIMENSIONS'
4566       include 'COMMON.LOCAL'
4567       include 'COMMON.IOUNITS'
4568       common /calcthet/ term1,term2,termm,diffak,ratak,
4569      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4570      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4571 C Calculate the contributions to both Gaussian lobes.
4572 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4573 C The "polynomial part" of the "standard deviation" of this part of 
4574 C the distribution.
4575         sig=polthet(3,it)
4576         do j=2,0,-1
4577           sig=sig*thet_pred_mean+polthet(j,it)
4578         enddo
4579 C Derivative of the "interior part" of the "standard deviation of the" 
4580 C gamma-dependent Gaussian lobe in t_c.
4581         sigtc=3*polthet(3,it)
4582         do j=2,1,-1
4583           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4584         enddo
4585         sigtc=sig*sigtc
4586 C Set the parameters of both Gaussian lobes of the distribution.
4587 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4588         fac=sig*sig+sigc0(it)
4589         sigcsq=fac+fac
4590         sigc=1.0D0/sigcsq
4591 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4592         sigsqtc=-4.0D0*sigcsq*sigtc
4593 c       print *,i,sig,sigtc,sigsqtc
4594 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4595         sigtc=-sigtc/(fac*fac)
4596 C Following variable is sigma(t_c)**(-2)
4597         sigcsq=sigcsq*sigcsq
4598         sig0i=sig0(it)
4599         sig0inv=1.0D0/sig0i**2
4600         delthec=thetai-thet_pred_mean
4601         delthe0=thetai-theta0i
4602         term1=-0.5D0*sigcsq*delthec*delthec
4603         term2=-0.5D0*sig0inv*delthe0*delthe0
4604 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4605 C NaNs in taking the logarithm. We extract the largest exponent which is added
4606 C to the energy (this being the log of the distribution) at the end of energy
4607 C term evaluation for this virtual-bond angle.
4608         if (term1.gt.term2) then
4609           termm=term1
4610           term2=dexp(term2-termm)
4611           term1=1.0d0
4612         else
4613           termm=term2
4614           term1=dexp(term1-termm)
4615           term2=1.0d0
4616         endif
4617 C The ratio between the gamma-independent and gamma-dependent lobes of
4618 C the distribution is a Gaussian function of thet_pred_mean too.
4619         diffak=gthet(2,it)-thet_pred_mean
4620         ratak=diffak/gthet(3,it)**2
4621         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4622 C Let's differentiate it in thet_pred_mean NOW.
4623         aktc=ak*ratak
4624 C Now put together the distribution terms to make complete distribution.
4625         termexp=term1+ak*term2
4626         termpre=sigc+ak*sig0i
4627 C Contribution of the bending energy from this theta is just the -log of
4628 C the sum of the contributions from the two lobes and the pre-exponential
4629 C factor. Simple enough, isn't it?
4630         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4631 C NOW the derivatives!!!
4632 C 6/6/97 Take into account the deformation.
4633         E_theta=(delthec*sigcsq*term1
4634      &       +ak*delthe0*sig0inv*term2)/termexp
4635         E_tc=((sigtc+aktc*sig0i)/termpre
4636      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4637      &       aktc*term2)/termexp)
4638       return
4639       end
4640 c-----------------------------------------------------------------------------
4641       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4642       implicit real*8 (a-h,o-z)
4643       include 'DIMENSIONS'
4644       include 'COMMON.LOCAL'
4645       include 'COMMON.IOUNITS'
4646       common /calcthet/ term1,term2,termm,diffak,ratak,
4647      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4648      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4649       delthec=thetai-thet_pred_mean
4650       delthe0=thetai-theta0i
4651 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4652       t3 = thetai-thet_pred_mean
4653       t6 = t3**2
4654       t9 = term1
4655       t12 = t3*sigcsq
4656       t14 = t12+t6*sigsqtc
4657       t16 = 1.0d0
4658       t21 = thetai-theta0i
4659       t23 = t21**2
4660       t26 = term2
4661       t27 = t21*t26
4662       t32 = termexp
4663       t40 = t32**2
4664       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4665      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4666      & *(-t12*t9-ak*sig0inv*t27)
4667       return
4668       end
4669 #else
4670 C--------------------------------------------------------------------------
4671       subroutine ebend(etheta)
4672 C
4673 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4674 C angles gamma and its derivatives in consecutive thetas and gammas.
4675 C ab initio-derived potentials from 
4676 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4677 C
4678       implicit real*8 (a-h,o-z)
4679       include 'DIMENSIONS'
4680       include 'COMMON.LOCAL'
4681       include 'COMMON.GEO'
4682       include 'COMMON.INTERACT'
4683       include 'COMMON.DERIV'
4684       include 'COMMON.VAR'
4685       include 'COMMON.CHAIN'
4686       include 'COMMON.IOUNITS'
4687       include 'COMMON.NAMES'
4688       include 'COMMON.FFIELD'
4689       include 'COMMON.CONTROL'
4690       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4691      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4692      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4693      & sinph1ph2(maxdouble,maxdouble)
4694       logical lprn /.false./, lprn1 /.false./
4695       etheta=0.0D0
4696       do i=ithet_start,ithet_end
4697         dethetai=0.0d0
4698         dephii=0.0d0
4699         dephii1=0.0d0
4700         theti2=0.5d0*theta(i)
4701         ityp2=ithetyp(itype(i-1))
4702         do k=1,nntheterm
4703           coskt(k)=dcos(k*theti2)
4704           sinkt(k)=dsin(k*theti2)
4705         enddo
4706         if (i.gt.3) then
4707 #ifdef OSF
4708           phii=phi(i)
4709           if (phii.ne.phii) phii=150.0
4710 #else
4711           phii=phi(i)
4712 #endif
4713           ityp1=ithetyp(itype(i-2))
4714           do k=1,nsingle
4715             cosph1(k)=dcos(k*phii)
4716             sinph1(k)=dsin(k*phii)
4717           enddo
4718         else
4719           phii=0.0d0
4720           ityp1=nthetyp+1
4721           do k=1,nsingle
4722             cosph1(k)=0.0d0
4723             sinph1(k)=0.0d0
4724           enddo 
4725         endif
4726         if (i.lt.nres) then
4727 #ifdef OSF
4728           phii1=phi(i+1)
4729           if (phii1.ne.phii1) phii1=150.0
4730           phii1=pinorm(phii1)
4731 #else
4732           phii1=phi(i+1)
4733 #endif
4734           ityp3=ithetyp(itype(i))
4735           do k=1,nsingle
4736             cosph2(k)=dcos(k*phii1)
4737             sinph2(k)=dsin(k*phii1)
4738           enddo
4739         else
4740           phii1=0.0d0
4741           ityp3=nthetyp+1
4742           do k=1,nsingle
4743             cosph2(k)=0.0d0
4744             sinph2(k)=0.0d0
4745           enddo
4746         endif  
4747         ethetai=aa0thet(ityp1,ityp2,ityp3)
4748         do k=1,ndouble
4749           do l=1,k-1
4750             ccl=cosph1(l)*cosph2(k-l)
4751             ssl=sinph1(l)*sinph2(k-l)
4752             scl=sinph1(l)*cosph2(k-l)
4753             csl=cosph1(l)*sinph2(k-l)
4754             cosph1ph2(l,k)=ccl-ssl
4755             cosph1ph2(k,l)=ccl+ssl
4756             sinph1ph2(l,k)=scl+csl
4757             sinph1ph2(k,l)=scl-csl
4758           enddo
4759         enddo
4760         if (lprn) then
4761         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4762      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4763         write (iout,*) "coskt and sinkt"
4764         do k=1,nntheterm
4765           write (iout,*) k,coskt(k),sinkt(k)
4766         enddo
4767         endif
4768         do k=1,ntheterm
4769           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4770           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4771      &      *coskt(k)
4772           if (lprn)
4773      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4774      &     " ethetai",ethetai
4775         enddo
4776         if (lprn) then
4777         write (iout,*) "cosph and sinph"
4778         do k=1,nsingle
4779           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4780         enddo
4781         write (iout,*) "cosph1ph2 and sinph2ph2"
4782         do k=2,ndouble
4783           do l=1,k-1
4784             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4785      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4786           enddo
4787         enddo
4788         write(iout,*) "ethetai",ethetai
4789         endif
4790         do m=1,ntheterm2
4791           do k=1,nsingle
4792             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4793      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4794      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4795      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4796             ethetai=ethetai+sinkt(m)*aux
4797             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4798             dephii=dephii+k*sinkt(m)*(
4799      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4800      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4801             dephii1=dephii1+k*sinkt(m)*(
4802      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4803      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4804             if (lprn)
4805      &      write (iout,*) "m",m," k",k," bbthet",
4806      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4807      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4808      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4809      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4810           enddo
4811         enddo
4812         if (lprn)
4813      &  write(iout,*) "ethetai",ethetai
4814         do m=1,ntheterm3
4815           do k=2,ndouble
4816             do l=1,k-1
4817               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4818      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4819      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4820      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4821               ethetai=ethetai+sinkt(m)*aux
4822               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4823               dephii=dephii+l*sinkt(m)*(
4824      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4825      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4826      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4827      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4828               dephii1=dephii1+(k-l)*sinkt(m)*(
4829      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4830      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4831      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4832      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4833               if (lprn) then
4834               write (iout,*) "m",m," k",k," l",l," ffthet",
4835      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4836      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4837      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4838      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4839               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4840      &            cosph1ph2(k,l)*sinkt(m),
4841      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4842               endif
4843             enddo
4844           enddo
4845         enddo
4846 10      continue
4847         if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
4848      &   i,theta(i)*rad2deg,phii*rad2deg,
4849      &   phii1*rad2deg,ethetai
4850         etheta=etheta+ethetai
4851         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4852         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4853         gloc(nphi+i-2,icg)=wang*dethetai
4854       enddo
4855       return
4856       end
4857 #endif
4858 #ifdef CRYST_SC
4859 c-----------------------------------------------------------------------------
4860       subroutine esc(escloc)
4861 C Calculate the local energy of a side chain and its derivatives in the
4862 C corresponding virtual-bond valence angles THETA and the spherical angles 
4863 C ALPHA and OMEGA.
4864       implicit real*8 (a-h,o-z)
4865       include 'DIMENSIONS'
4866       include 'COMMON.GEO'
4867       include 'COMMON.LOCAL'
4868       include 'COMMON.VAR'
4869       include 'COMMON.INTERACT'
4870       include 'COMMON.DERIV'
4871       include 'COMMON.CHAIN'
4872       include 'COMMON.IOUNITS'
4873       include 'COMMON.NAMES'
4874       include 'COMMON.FFIELD'
4875       include 'COMMON.CONTROL'
4876       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4877      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4878       common /sccalc/ time11,time12,time112,theti,it,nlobit
4879       delta=0.02d0*pi
4880       escloc=0.0D0
4881 c     write (iout,'(a)') 'ESC'
4882       do i=loc_start,loc_end
4883         it=itype(i)
4884         if (it.eq.10) goto 1
4885         nlobit=nlob(it)
4886 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4887 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4888         theti=theta(i+1)-pipol
4889         x(1)=dtan(theti)
4890         x(2)=alph(i)
4891         x(3)=omeg(i)
4892
4893         if (x(2).gt.pi-delta) then
4894           xtemp(1)=x(1)
4895           xtemp(2)=pi-delta
4896           xtemp(3)=x(3)
4897           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4898           xtemp(2)=pi
4899           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4900           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4901      &        escloci,dersc(2))
4902           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4903      &        ddersc0(1),dersc(1))
4904           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4905      &        ddersc0(3),dersc(3))
4906           xtemp(2)=pi-delta
4907           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4908           xtemp(2)=pi
4909           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4910           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4911      &            dersc0(2),esclocbi,dersc02)
4912           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4913      &            dersc12,dersc01)
4914           call splinthet(x(2),0.5d0*delta,ss,ssd)
4915           dersc0(1)=dersc01
4916           dersc0(2)=dersc02
4917           dersc0(3)=0.0d0
4918           do k=1,3
4919             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4920           enddo
4921           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4922 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4923 c    &             esclocbi,ss,ssd
4924           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4925 c         escloci=esclocbi
4926 c         write (iout,*) escloci
4927         else if (x(2).lt.delta) then
4928           xtemp(1)=x(1)
4929           xtemp(2)=delta
4930           xtemp(3)=x(3)
4931           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4932           xtemp(2)=0.0d0
4933           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4934           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
4935      &        escloci,dersc(2))
4936           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4937      &        ddersc0(1),dersc(1))
4938           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
4939      &        ddersc0(3),dersc(3))
4940           xtemp(2)=delta
4941           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4942           xtemp(2)=0.0d0
4943           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4944           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
4945      &            dersc0(2),esclocbi,dersc02)
4946           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4947      &            dersc12,dersc01)
4948           dersc0(1)=dersc01
4949           dersc0(2)=dersc02
4950           dersc0(3)=0.0d0
4951           call splinthet(x(2),0.5d0*delta,ss,ssd)
4952           do k=1,3
4953             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4954           enddo
4955           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4956 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4957 c    &             esclocbi,ss,ssd
4958           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4959 c         write (iout,*) escloci
4960         else
4961           call enesc(x,escloci,dersc,ddummy,.false.)
4962         endif
4963
4964         escloc=escloc+escloci
4965         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4966      &     'escloc',i,escloci
4967 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
4968
4969         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
4970      &   wscloc*dersc(1)
4971         gloc(ialph(i,1),icg)=wscloc*dersc(2)
4972         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
4973     1   continue
4974       enddo
4975       return
4976       end
4977 C---------------------------------------------------------------------------
4978       subroutine enesc(x,escloci,dersc,ddersc,mixed)
4979       implicit real*8 (a-h,o-z)
4980       include 'DIMENSIONS'
4981       include 'COMMON.GEO'
4982       include 'COMMON.LOCAL'
4983       include 'COMMON.IOUNITS'
4984       common /sccalc/ time11,time12,time112,theti,it,nlobit
4985       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
4986       double precision contr(maxlob,-1:1)
4987       logical mixed
4988 c       write (iout,*) 'it=',it,' nlobit=',nlobit
4989         escloc_i=0.0D0
4990         do j=1,3
4991           dersc(j)=0.0D0
4992           if (mixed) ddersc(j)=0.0d0
4993         enddo
4994         x3=x(3)
4995
4996 C Because of periodicity of the dependence of the SC energy in omega we have
4997 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
4998 C To avoid underflows, first compute & store the exponents.
4999
5000         do iii=-1,1
5001
5002           x(3)=x3+iii*dwapi
5003  
5004           do j=1,nlobit
5005             do k=1,3
5006               z(k)=x(k)-censc(k,j,it)
5007             enddo
5008             do k=1,3
5009               Axk=0.0D0
5010               do l=1,3
5011                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5012               enddo
5013               Ax(k,j,iii)=Axk
5014             enddo 
5015             expfac=0.0D0 
5016             do k=1,3
5017               expfac=expfac+Ax(k,j,iii)*z(k)
5018             enddo
5019             contr(j,iii)=expfac
5020           enddo ! j
5021
5022         enddo ! iii
5023
5024         x(3)=x3
5025 C As in the case of ebend, we want to avoid underflows in exponentiation and
5026 C subsequent NaNs and INFs in energy calculation.
5027 C Find the largest exponent
5028         emin=contr(1,-1)
5029         do iii=-1,1
5030           do j=1,nlobit
5031             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5032           enddo 
5033         enddo
5034         emin=0.5D0*emin
5035 cd      print *,'it=',it,' emin=',emin
5036
5037 C Compute the contribution to SC energy and derivatives
5038         do iii=-1,1
5039
5040           do j=1,nlobit
5041 #ifdef OSF
5042             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5043             if(adexp.ne.adexp) adexp=1.0
5044             expfac=dexp(adexp)
5045 #else
5046             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5047 #endif
5048 cd          print *,'j=',j,' expfac=',expfac
5049             escloc_i=escloc_i+expfac
5050             do k=1,3
5051               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5052             enddo
5053             if (mixed) then
5054               do k=1,3,2
5055                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5056      &            +gaussc(k,2,j,it))*expfac
5057               enddo
5058             endif
5059           enddo
5060
5061         enddo ! iii
5062
5063         dersc(1)=dersc(1)/cos(theti)**2
5064         ddersc(1)=ddersc(1)/cos(theti)**2
5065         ddersc(3)=ddersc(3)
5066
5067         escloci=-(dlog(escloc_i)-emin)
5068         do j=1,3
5069           dersc(j)=dersc(j)/escloc_i
5070         enddo
5071         if (mixed) then
5072           do j=1,3,2
5073             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5074           enddo
5075         endif
5076       return
5077       end
5078 C------------------------------------------------------------------------------
5079       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5080       implicit real*8 (a-h,o-z)
5081       include 'DIMENSIONS'
5082       include 'COMMON.GEO'
5083       include 'COMMON.LOCAL'
5084       include 'COMMON.IOUNITS'
5085       common /sccalc/ time11,time12,time112,theti,it,nlobit
5086       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5087       double precision contr(maxlob)
5088       logical mixed
5089
5090       escloc_i=0.0D0
5091
5092       do j=1,3
5093         dersc(j)=0.0D0
5094       enddo
5095
5096       do j=1,nlobit
5097         do k=1,2
5098           z(k)=x(k)-censc(k,j,it)
5099         enddo
5100         z(3)=dwapi
5101         do k=1,3
5102           Axk=0.0D0
5103           do l=1,3
5104             Axk=Axk+gaussc(l,k,j,it)*z(l)
5105           enddo
5106           Ax(k,j)=Axk
5107         enddo 
5108         expfac=0.0D0 
5109         do k=1,3
5110           expfac=expfac+Ax(k,j)*z(k)
5111         enddo
5112         contr(j)=expfac
5113       enddo ! j
5114
5115 C As in the case of ebend, we want to avoid underflows in exponentiation and
5116 C subsequent NaNs and INFs in energy calculation.
5117 C Find the largest exponent
5118       emin=contr(1)
5119       do j=1,nlobit
5120         if (emin.gt.contr(j)) emin=contr(j)
5121       enddo 
5122       emin=0.5D0*emin
5123  
5124 C Compute the contribution to SC energy and derivatives
5125
5126       dersc12=0.0d0
5127       do j=1,nlobit
5128         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5129         escloc_i=escloc_i+expfac
5130         do k=1,2
5131           dersc(k)=dersc(k)+Ax(k,j)*expfac
5132         enddo
5133         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5134      &            +gaussc(1,2,j,it))*expfac
5135         dersc(3)=0.0d0
5136       enddo
5137
5138       dersc(1)=dersc(1)/cos(theti)**2
5139       dersc12=dersc12/cos(theti)**2
5140       escloci=-(dlog(escloc_i)-emin)
5141       do j=1,2
5142         dersc(j)=dersc(j)/escloc_i
5143       enddo
5144       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5145       return
5146       end
5147 #else
5148 c----------------------------------------------------------------------------------
5149       subroutine esc(escloc)
5150 C Calculate the local energy of a side chain and its derivatives in the
5151 C corresponding virtual-bond valence angles THETA and the spherical angles 
5152 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5153 C added by Urszula Kozlowska. 07/11/2007
5154 C
5155       implicit real*8 (a-h,o-z)
5156       include 'DIMENSIONS'
5157       include 'COMMON.GEO'
5158       include 'COMMON.LOCAL'
5159       include 'COMMON.VAR'
5160       include 'COMMON.SCROT'
5161       include 'COMMON.INTERACT'
5162       include 'COMMON.DERIV'
5163       include 'COMMON.CHAIN'
5164       include 'COMMON.IOUNITS'
5165       include 'COMMON.NAMES'
5166       include 'COMMON.FFIELD'
5167       include 'COMMON.CONTROL'
5168       include 'COMMON.VECTORS'
5169       double precision x_prime(3),y_prime(3),z_prime(3)
5170      &    , sumene,dsc_i,dp2_i,x(65),
5171      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5172      &    de_dxx,de_dyy,de_dzz,de_dt
5173       double precision s1_t,s1_6_t,s2_t,s2_6_t
5174       double precision 
5175      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5176      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5177      & dt_dCi(3),dt_dCi1(3)
5178       common /sccalc/ time11,time12,time112,theti,it,nlobit
5179       delta=0.02d0*pi
5180       escloc=0.0D0
5181       do i=loc_start,loc_end
5182         costtab(i+1) =dcos(theta(i+1))
5183         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5184         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5185         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5186         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5187         cosfac=dsqrt(cosfac2)
5188         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5189         sinfac=dsqrt(sinfac2)
5190         it=itype(i)
5191         if (it.eq.10) goto 1
5192 c
5193 C  Compute the axes of tghe local cartesian coordinates system; store in
5194 c   x_prime, y_prime and z_prime 
5195 c
5196         do j=1,3
5197           x_prime(j) = 0.00
5198           y_prime(j) = 0.00
5199           z_prime(j) = 0.00
5200         enddo
5201 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5202 C     &   dc_norm(3,i+nres)
5203         do j = 1,3
5204           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5205           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5206         enddo
5207         do j = 1,3
5208           z_prime(j) = -uz(j,i-1)
5209         enddo     
5210 c       write (2,*) "i",i
5211 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5212 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5213 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5214 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5215 c      & " xy",scalar(x_prime(1),y_prime(1)),
5216 c      & " xz",scalar(x_prime(1),z_prime(1)),
5217 c      & " yy",scalar(y_prime(1),y_prime(1)),
5218 c      & " yz",scalar(y_prime(1),z_prime(1)),
5219 c      & " zz",scalar(z_prime(1),z_prime(1))
5220 c
5221 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5222 C to local coordinate system. Store in xx, yy, zz.
5223 c
5224         xx=0.0d0
5225         yy=0.0d0
5226         zz=0.0d0
5227         do j = 1,3
5228           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5229           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5230           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5231         enddo
5232
5233         xxtab(i)=xx
5234         yytab(i)=yy
5235         zztab(i)=zz
5236 C
5237 C Compute the energy of the ith side cbain
5238 C
5239 c        write (2,*) "xx",xx," yy",yy," zz",zz
5240         it=itype(i)
5241         do j = 1,65
5242           x(j) = sc_parmin(j,it) 
5243         enddo
5244 #ifdef CHECK_COORD
5245 Cc diagnostics - remove later
5246         xx1 = dcos(alph(2))
5247         yy1 = dsin(alph(2))*dcos(omeg(2))
5248         zz1 = -dsin(alph(2))*dsin(omeg(2))
5249         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5250      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5251      &    xx1,yy1,zz1
5252 C,"  --- ", xx_w,yy_w,zz_w
5253 c end diagnostics
5254 #endif
5255         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5256      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5257      &   + x(10)*yy*zz
5258         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5259      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5260      & + x(20)*yy*zz
5261         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5262      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5263      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5264      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5265      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5266      &  +x(40)*xx*yy*zz
5267         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5268      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5269      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5270      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5271      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5272      &  +x(60)*xx*yy*zz
5273         dsc_i   = 0.743d0+x(61)
5274         dp2_i   = 1.9d0+x(62)
5275         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5276      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5277         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5278      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5279         s1=(1+x(63))/(0.1d0 + dscp1)
5280         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5281         s2=(1+x(65))/(0.1d0 + dscp2)
5282         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5283         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5284      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5285 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5286 c     &   sumene4,
5287 c     &   dscp1,dscp2,sumene
5288 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5289         escloc = escloc + sumene
5290 c        write (2,*) "i",i," escloc",sumene,escloc
5291 #ifdef DEBUG
5292 C
5293 C This section to check the numerical derivatives of the energy of ith side
5294 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5295 C #define DEBUG in the code to turn it on.
5296 C
5297         write (2,*) "sumene               =",sumene
5298         aincr=1.0d-7
5299         xxsave=xx
5300         xx=xx+aincr
5301         write (2,*) xx,yy,zz
5302         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5303         de_dxx_num=(sumenep-sumene)/aincr
5304         xx=xxsave
5305         write (2,*) "xx+ sumene from enesc=",sumenep
5306         yysave=yy
5307         yy=yy+aincr
5308         write (2,*) xx,yy,zz
5309         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5310         de_dyy_num=(sumenep-sumene)/aincr
5311         yy=yysave
5312         write (2,*) "yy+ sumene from enesc=",sumenep
5313         zzsave=zz
5314         zz=zz+aincr
5315         write (2,*) xx,yy,zz
5316         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5317         de_dzz_num=(sumenep-sumene)/aincr
5318         zz=zzsave
5319         write (2,*) "zz+ sumene from enesc=",sumenep
5320         costsave=cost2tab(i+1)
5321         sintsave=sint2tab(i+1)
5322         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5323         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5324         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5325         de_dt_num=(sumenep-sumene)/aincr
5326         write (2,*) " t+ sumene from enesc=",sumenep
5327         cost2tab(i+1)=costsave
5328         sint2tab(i+1)=sintsave
5329 C End of diagnostics section.
5330 #endif
5331 C        
5332 C Compute the gradient of esc
5333 C
5334         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5335         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5336         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5337         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5338         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5339         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5340         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5341         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5342         pom1=(sumene3*sint2tab(i+1)+sumene1)
5343      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5344         pom2=(sumene4*cost2tab(i+1)+sumene2)
5345      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5346         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5347         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5348      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5349      &  +x(40)*yy*zz
5350         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5351         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5352      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5353      &  +x(60)*yy*zz
5354         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5355      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5356      &        +(pom1+pom2)*pom_dx
5357 #ifdef DEBUG
5358         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5359 #endif
5360 C
5361         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5362         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5363      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5364      &  +x(40)*xx*zz
5365         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5366         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5367      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5368      &  +x(59)*zz**2 +x(60)*xx*zz
5369         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5370      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5371      &        +(pom1-pom2)*pom_dy
5372 #ifdef DEBUG
5373         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5374 #endif
5375 C
5376         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5377      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5378      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5379      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5380      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5381      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5382      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5383      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5384 #ifdef DEBUG
5385         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5386 #endif
5387 C
5388         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5389      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5390      &  +pom1*pom_dt1+pom2*pom_dt2
5391 #ifdef DEBUG
5392         write(2,*), "de_dt = ", de_dt,de_dt_num
5393 #endif
5394
5395 C
5396        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5397        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5398        cosfac2xx=cosfac2*xx
5399        sinfac2yy=sinfac2*yy
5400        do k = 1,3
5401          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5402      &      vbld_inv(i+1)
5403          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5404      &      vbld_inv(i)
5405          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5406          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5407 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5408 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5409 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5410 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5411          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5412          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5413          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5414          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5415          dZZ_Ci1(k)=0.0d0
5416          dZZ_Ci(k)=0.0d0
5417          do j=1,3
5418            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5419            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5420          enddo
5421           
5422          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5423          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5424          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5425 c
5426          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5427          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5428        enddo
5429
5430        do k=1,3
5431          dXX_Ctab(k,i)=dXX_Ci(k)
5432          dXX_C1tab(k,i)=dXX_Ci1(k)
5433          dYY_Ctab(k,i)=dYY_Ci(k)
5434          dYY_C1tab(k,i)=dYY_Ci1(k)
5435          dZZ_Ctab(k,i)=dZZ_Ci(k)
5436          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5437          dXX_XYZtab(k,i)=dXX_XYZ(k)
5438          dYY_XYZtab(k,i)=dYY_XYZ(k)
5439          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5440        enddo
5441
5442        do k = 1,3
5443 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5444 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5445 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5446 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5447 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5448 c     &    dt_dci(k)
5449 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5450 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5451          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5452      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5453          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5454      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5455          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5456      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5457        enddo
5458 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5459 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5460
5461 C to check gradient call subroutine check_grad
5462
5463     1 continue
5464       enddo
5465       return
5466       end
5467 c------------------------------------------------------------------------------
5468       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5469       implicit none
5470       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5471      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5472       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5473      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5474      &   + x(10)*yy*zz
5475       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5476      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5477      & + x(20)*yy*zz
5478       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5479      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5480      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5481      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5482      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5483      &  +x(40)*xx*yy*zz
5484       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5485      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5486      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5487      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5488      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5489      &  +x(60)*xx*yy*zz
5490       dsc_i   = 0.743d0+x(61)
5491       dp2_i   = 1.9d0+x(62)
5492       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5493      &          *(xx*cost2+yy*sint2))
5494       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5495      &          *(xx*cost2-yy*sint2))
5496       s1=(1+x(63))/(0.1d0 + dscp1)
5497       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5498       s2=(1+x(65))/(0.1d0 + dscp2)
5499       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5500       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5501      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5502       enesc=sumene
5503       return
5504       end
5505 #endif
5506 c------------------------------------------------------------------------------
5507       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5508 C
5509 C This procedure calculates two-body contact function g(rij) and its derivative:
5510 C
5511 C           eps0ij                                     !       x < -1
5512 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5513 C            0                                         !       x > 1
5514 C
5515 C where x=(rij-r0ij)/delta
5516 C
5517 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5518 C
5519       implicit none
5520       double precision rij,r0ij,eps0ij,fcont,fprimcont
5521       double precision x,x2,x4,delta
5522 c     delta=0.02D0*r0ij
5523 c      delta=0.2D0*r0ij
5524       x=(rij-r0ij)/delta
5525       if (x.lt.-1.0D0) then
5526         fcont=eps0ij
5527         fprimcont=0.0D0
5528       else if (x.le.1.0D0) then  
5529         x2=x*x
5530         x4=x2*x2
5531         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5532         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5533       else
5534         fcont=0.0D0
5535         fprimcont=0.0D0
5536       endif
5537       return
5538       end
5539 c------------------------------------------------------------------------------
5540       subroutine splinthet(theti,delta,ss,ssder)
5541       implicit real*8 (a-h,o-z)
5542       include 'DIMENSIONS'
5543       include 'COMMON.VAR'
5544       include 'COMMON.GEO'
5545       thetup=pi-delta
5546       thetlow=delta
5547       if (theti.gt.pipol) then
5548         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5549       else
5550         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5551         ssder=-ssder
5552       endif
5553       return
5554       end
5555 c------------------------------------------------------------------------------
5556       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5557       implicit none
5558       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5559       double precision ksi,ksi2,ksi3,a1,a2,a3
5560       a1=fprim0*delta/(f1-f0)
5561       a2=3.0d0-2.0d0*a1
5562       a3=a1-2.0d0
5563       ksi=(x-x0)/delta
5564       ksi2=ksi*ksi
5565       ksi3=ksi2*ksi  
5566       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5567       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5568       return
5569       end
5570 c------------------------------------------------------------------------------
5571       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5572       implicit none
5573       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5574       double precision ksi,ksi2,ksi3,a1,a2,a3
5575       ksi=(x-x0)/delta  
5576       ksi2=ksi*ksi
5577       ksi3=ksi2*ksi
5578       a1=fprim0x*delta
5579       a2=3*(f1x-f0x)-2*fprim0x*delta
5580       a3=fprim0x*delta-2*(f1x-f0x)
5581       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5582       return
5583       end
5584 C-----------------------------------------------------------------------------
5585 #ifdef CRYST_TOR
5586 C-----------------------------------------------------------------------------
5587       subroutine etor(etors,edihcnstr)
5588       implicit real*8 (a-h,o-z)
5589       include 'DIMENSIONS'
5590       include 'COMMON.VAR'
5591       include 'COMMON.GEO'
5592       include 'COMMON.LOCAL'
5593       include 'COMMON.TORSION'
5594       include 'COMMON.INTERACT'
5595       include 'COMMON.DERIV'
5596       include 'COMMON.CHAIN'
5597       include 'COMMON.NAMES'
5598       include 'COMMON.IOUNITS'
5599       include 'COMMON.FFIELD'
5600       include 'COMMON.TORCNSTR'
5601       include 'COMMON.CONTROL'
5602       logical lprn
5603 C Set lprn=.true. for debugging
5604       lprn=.false.
5605 c      lprn=.true.
5606       etors=0.0D0
5607       do i=iphi_start,iphi_end
5608       etors_ii=0.0D0
5609         itori=itortyp(itype(i-2))
5610         itori1=itortyp(itype(i-1))
5611         phii=phi(i)
5612         gloci=0.0D0
5613 C Proline-Proline pair is a special case...
5614         if (itori.eq.3 .and. itori1.eq.3) then
5615           if (phii.gt.-dwapi3) then
5616             cosphi=dcos(3*phii)
5617             fac=1.0D0/(1.0D0-cosphi)
5618             etorsi=v1(1,3,3)*fac
5619             etorsi=etorsi+etorsi
5620             etors=etors+etorsi-v1(1,3,3)
5621             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5622             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5623           endif
5624           do j=1,3
5625             v1ij=v1(j+1,itori,itori1)
5626             v2ij=v2(j+1,itori,itori1)
5627             cosphi=dcos(j*phii)
5628             sinphi=dsin(j*phii)
5629             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5630             if (energy_dec) etors_ii=etors_ii+
5631      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5632             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5633           enddo
5634         else 
5635           do j=1,nterm_old
5636             v1ij=v1(j,itori,itori1)
5637             v2ij=v2(j,itori,itori1)
5638             cosphi=dcos(j*phii)
5639             sinphi=dsin(j*phii)
5640             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5641             if (energy_dec) etors_ii=etors_ii+
5642      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5643             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5644           enddo
5645         endif
5646         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5647      &        'etor',i,etors_ii
5648         if (lprn)
5649      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5650      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5651      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5652         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5653 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5654       enddo
5655 ! 6/20/98 - dihedral angle constraints
5656       edihcnstr=0.0d0
5657       do i=1,ndih_constr
5658         itori=idih_constr(i)
5659         phii=phi(itori)
5660         difi=phii-phi0(i)
5661         if (difi.gt.drange(i)) then
5662           difi=difi-drange(i)
5663           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5664           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5665         else if (difi.lt.-drange(i)) then
5666           difi=difi+drange(i)
5667           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5668           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5669         endif
5670 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5671 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5672       enddo
5673 !      write (iout,*) 'edihcnstr',edihcnstr
5674       return
5675       end
5676 c------------------------------------------------------------------------------
5677       subroutine etor_d(etors_d)
5678       etors_d=0.0d0
5679       return
5680       end
5681 c----------------------------------------------------------------------------
5682 #else
5683       subroutine etor(etors,edihcnstr)
5684       implicit real*8 (a-h,o-z)
5685       include 'DIMENSIONS'
5686       include 'COMMON.VAR'
5687       include 'COMMON.GEO'
5688       include 'COMMON.LOCAL'
5689       include 'COMMON.TORSION'
5690       include 'COMMON.INTERACT'
5691       include 'COMMON.DERIV'
5692       include 'COMMON.CHAIN'
5693       include 'COMMON.NAMES'
5694       include 'COMMON.IOUNITS'
5695       include 'COMMON.FFIELD'
5696       include 'COMMON.TORCNSTR'
5697       include 'COMMON.CONTROL'
5698       logical lprn
5699 C Set lprn=.true. for debugging
5700       lprn=.false.
5701 c     lprn=.true.
5702       etors=0.0D0
5703       do i=iphi_start,iphi_end
5704       etors_ii=0.0D0
5705         itori=itortyp(itype(i-2))
5706         itori1=itortyp(itype(i-1))
5707         phii=phi(i)
5708         gloci=0.0D0
5709 C Regular cosine and sine terms
5710         do j=1,nterm(itori,itori1)
5711           v1ij=v1(j,itori,itori1)
5712           v2ij=v2(j,itori,itori1)
5713           cosphi=dcos(j*phii)
5714           sinphi=dsin(j*phii)
5715           etors=etors+v1ij*cosphi+v2ij*sinphi
5716           if (energy_dec) etors_ii=etors_ii+
5717      &                v1ij*cosphi+v2ij*sinphi
5718           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5719         enddo
5720 C Lorentz terms
5721 C                         v1
5722 C  E = SUM ----------------------------------- - v1
5723 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5724 C
5725         cosphi=dcos(0.5d0*phii)
5726         sinphi=dsin(0.5d0*phii)
5727         do j=1,nlor(itori,itori1)
5728           vl1ij=vlor1(j,itori,itori1)
5729           vl2ij=vlor2(j,itori,itori1)
5730           vl3ij=vlor3(j,itori,itori1)
5731           pom=vl2ij*cosphi+vl3ij*sinphi
5732           pom1=1.0d0/(pom*pom+1.0d0)
5733           etors=etors+vl1ij*pom1
5734           if (energy_dec) etors_ii=etors_ii+
5735      &                vl1ij*pom1
5736           pom=-pom*pom1*pom1
5737           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5738         enddo
5739 C Subtract the constant term
5740         etors=etors-v0(itori,itori1)
5741           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5742      &         'etor',i,etors_ii-v0(itori,itori1)
5743         if (lprn)
5744      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5745      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5746      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5747         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5748 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5749       enddo
5750 ! 6/20/98 - dihedral angle constraints
5751       edihcnstr=0.0d0
5752 c      do i=1,ndih_constr
5753       do i=idihconstr_start,idihconstr_end
5754         itori=idih_constr(i)
5755         phii=phi(itori)
5756         difi=pinorm(phii-phi0(i))
5757         if (difi.gt.drange(i)) then
5758           difi=difi-drange(i)
5759           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5760           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5761         else if (difi.lt.-drange(i)) then
5762           difi=difi+drange(i)
5763           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5764           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5765         else
5766           difi=0.0
5767         endif
5768 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5769 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5770 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5771       enddo
5772 cd       write (iout,*) 'edihcnstr',edihcnstr
5773       return
5774       end
5775 c----------------------------------------------------------------------------
5776       subroutine etor_d(etors_d)
5777 C 6/23/01 Compute double torsional energy
5778       implicit real*8 (a-h,o-z)
5779       include 'DIMENSIONS'
5780       include 'COMMON.VAR'
5781       include 'COMMON.GEO'
5782       include 'COMMON.LOCAL'
5783       include 'COMMON.TORSION'
5784       include 'COMMON.INTERACT'
5785       include 'COMMON.DERIV'
5786       include 'COMMON.CHAIN'
5787       include 'COMMON.NAMES'
5788       include 'COMMON.IOUNITS'
5789       include 'COMMON.FFIELD'
5790       include 'COMMON.TORCNSTR'
5791       logical lprn
5792 C Set lprn=.true. for debugging
5793       lprn=.false.
5794 c     lprn=.true.
5795       etors_d=0.0D0
5796       do i=iphid_start,iphid_end
5797         itori=itortyp(itype(i-2))
5798         itori1=itortyp(itype(i-1))
5799         itori2=itortyp(itype(i))
5800         phii=phi(i)
5801         phii1=phi(i+1)
5802         gloci1=0.0D0
5803         gloci2=0.0D0
5804 C Regular cosine and sine terms
5805         do j=1,ntermd_1(itori,itori1,itori2)
5806           v1cij=v1c(1,j,itori,itori1,itori2)
5807           v1sij=v1s(1,j,itori,itori1,itori2)
5808           v2cij=v1c(2,j,itori,itori1,itori2)
5809           v2sij=v1s(2,j,itori,itori1,itori2)
5810           cosphi1=dcos(j*phii)
5811           sinphi1=dsin(j*phii)
5812           cosphi2=dcos(j*phii1)
5813           sinphi2=dsin(j*phii1)
5814           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5815      &     v2cij*cosphi2+v2sij*sinphi2
5816           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5817           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5818         enddo
5819         do k=2,ntermd_2(itori,itori1,itori2)
5820           do l=1,k-1
5821             v1cdij = v2c(k,l,itori,itori1,itori2)
5822             v2cdij = v2c(l,k,itori,itori1,itori2)
5823             v1sdij = v2s(k,l,itori,itori1,itori2)
5824             v2sdij = v2s(l,k,itori,itori1,itori2)
5825             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5826             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5827             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5828             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5829             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5830      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5831             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5832      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5833             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5834      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5835           enddo
5836         enddo
5837         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5838         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5839       enddo
5840       return
5841       end
5842 #endif
5843 c------------------------------------------------------------------------------
5844       subroutine eback_sc_corr(esccor)
5845 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5846 c        conformational states; temporarily implemented as differences
5847 c        between UNRES torsional potentials (dependent on three types of
5848 c        residues) and the torsional potentials dependent on all 20 types
5849 c        of residues computed from AM1  energy surfaces of terminally-blocked
5850 c        amino-acid residues.
5851       implicit real*8 (a-h,o-z)
5852       include 'DIMENSIONS'
5853       include 'COMMON.VAR'
5854       include 'COMMON.GEO'
5855       include 'COMMON.LOCAL'
5856       include 'COMMON.TORSION'
5857       include 'COMMON.SCCOR'
5858       include 'COMMON.INTERACT'
5859       include 'COMMON.DERIV'
5860       include 'COMMON.CHAIN'
5861       include 'COMMON.NAMES'
5862       include 'COMMON.IOUNITS'
5863       include 'COMMON.FFIELD'
5864       include 'COMMON.CONTROL'
5865       logical lprn
5866 C Set lprn=.true. for debugging
5867       lprn=.false.
5868 c      lprn=.true.
5869 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5870       esccor=0.0D0
5871       do i=iphi_start,iphi_end
5872         esccor_ii=0.0D0
5873         itori=itype(i-2)
5874         itori1=itype(i-1)
5875         phii=phi(i)
5876         gloci=0.0D0
5877         do j=1,nterm_sccor
5878           v1ij=v1sccor(j,itori,itori1)
5879           v2ij=v2sccor(j,itori,itori1)
5880           cosphi=dcos(j*phii)
5881           sinphi=dsin(j*phii)
5882           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5883           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5884         enddo
5885         if (lprn)
5886      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5887      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5888      &  (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6)
5889         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
5890       enddo
5891       return
5892       end
5893 c----------------------------------------------------------------------------
5894       subroutine multibody(ecorr)
5895 C This subroutine calculates multi-body contributions to energy following
5896 C the idea of Skolnick et al. If side chains I and J make a contact and
5897 C at the same time side chains I+1 and J+1 make a contact, an extra 
5898 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
5899       implicit real*8 (a-h,o-z)
5900       include 'DIMENSIONS'
5901       include 'COMMON.IOUNITS'
5902       include 'COMMON.DERIV'
5903       include 'COMMON.INTERACT'
5904       include 'COMMON.CONTACTS'
5905 #ifdef MOMENT
5906       include 'COMMON.CONTACTS.MOMENT'
5907 #endif  
5908       double precision gx(3),gx1(3)
5909       logical lprn
5910
5911 C Set lprn=.true. for debugging
5912       lprn=.false.
5913
5914       if (lprn) then
5915         write (iout,'(a)') 'Contact function values:'
5916         do i=nnt,nct-2
5917           write (iout,'(i2,20(1x,i2,f10.5))') 
5918      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
5919         enddo
5920       endif
5921       ecorr=0.0D0
5922       do i=nnt,nct
5923         do j=1,3
5924           gradcorr(j,i)=0.0D0
5925           gradxorr(j,i)=0.0D0
5926         enddo
5927       enddo
5928       do i=nnt,nct-2
5929
5930         DO ISHIFT = 3,4
5931
5932         i1=i+ishift
5933         num_conti=num_cont(i)
5934         num_conti1=num_cont(i1)
5935         do jj=1,num_conti
5936           j=jcont(jj,i)
5937           do kk=1,num_conti1
5938             j1=jcont(kk,i1)
5939             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
5940 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5941 cd   &                   ' ishift=',ishift
5942 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
5943 C The system gains extra energy.
5944               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
5945             endif   ! j1==j+-ishift
5946           enddo     ! kk  
5947         enddo       ! jj
5948
5949         ENDDO ! ISHIFT
5950
5951       enddo         ! i
5952       return
5953       end
5954 c------------------------------------------------------------------------------
5955       double precision function esccorr(i,j,k,l,jj,kk)
5956       implicit real*8 (a-h,o-z)
5957       include 'DIMENSIONS'
5958       include 'COMMON.IOUNITS'
5959       include 'COMMON.DERIV'
5960       include 'COMMON.INTERACT'
5961       include 'COMMON.CONTACTS'
5962 #ifdef MOMENT
5963       include 'COMMON.CONTACTS.MOMENT'
5964 #endif  
5965       double precision gx(3),gx1(3)
5966       logical lprn
5967       lprn=.false.
5968       eij=facont(jj,i)
5969       ekl=facont(kk,k)
5970 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
5971 C Calculate the multi-body contribution to energy.
5972 C Calculate multi-body contributions to the gradient.
5973 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
5974 cd   & k,l,(gacont(m,kk,k),m=1,3)
5975       do m=1,3
5976         gx(m) =ekl*gacont(m,jj,i)
5977         gx1(m)=eij*gacont(m,kk,k)
5978         gradxorr(m,i)=gradxorr(m,i)-gx(m)
5979         gradxorr(m,j)=gradxorr(m,j)+gx(m)
5980         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
5981         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
5982       enddo
5983       do m=i,j-1
5984         do ll=1,3
5985           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
5986         enddo
5987       enddo
5988       do m=k,l-1
5989         do ll=1,3
5990           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
5991         enddo
5992       enddo 
5993       esccorr=-eij*ekl
5994       return
5995       end
5996 c------------------------------------------------------------------------------
5997       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
5998 C This subroutine calculates multi-body contributions to hydrogen-bonding 
5999       implicit real*8 (a-h,o-z)
6000       include 'DIMENSIONS'
6001       include 'COMMON.IOUNITS'
6002 #ifdef MPI
6003       include "mpif.h"
6004       parameter (max_cont=maxconts)
6005       parameter (max_dim=26)
6006       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6007       double precision zapas(max_dim,maxconts,max_fg_procs),
6008      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6009       common /przechowalnia/ zapas
6010       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6011      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6012 #endif
6013       include 'COMMON.SETUP'
6014       include 'COMMON.FFIELD'
6015       include 'COMMON.DERIV'
6016       include 'COMMON.INTERACT'
6017       include 'COMMON.CONTACTS'
6018 #ifdef MOMENT
6019       include 'COMMON.CONTACTS.MOMENT'
6020 #endif  
6021       include 'COMMON.CONTROL'
6022       include 'COMMON.LOCAL'
6023       double precision gx(3),gx1(3),time00
6024       logical lprn,ldone
6025
6026 C Set lprn=.true. for debugging
6027       lprn=.false.
6028 #ifdef MPI
6029       n_corr=0
6030       n_corr1=0
6031       if (nfgtasks.le.1) goto 30
6032       if (lprn) then
6033         write (iout,'(a)') 'Contact function values before RECEIVE:'
6034         do i=nnt,nct-2
6035           write (iout,'(2i3,50(1x,i2,f5.2))') 
6036      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6037      &    j=1,num_cont_hb(i))
6038         enddo
6039       endif
6040       call flush(iout)
6041       do i=1,ntask_cont_from
6042         ncont_recv(i)=0
6043       enddo
6044       do i=1,ntask_cont_to
6045         ncont_sent(i)=0
6046       enddo
6047 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6048 c     & ntask_cont_to
6049 C Make the list of contacts to send to send to other procesors
6050 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6051 c      call flush(iout)
6052       do i=iturn3_start,iturn3_end
6053 c        write (iout,*) "make contact list turn3",i," num_cont",
6054 c     &    num_cont_hb(i)
6055         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6056       enddo
6057       do i=iturn4_start,iturn4_end
6058 c        write (iout,*) "make contact list turn4",i," num_cont",
6059 c     &   num_cont_hb(i)
6060         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6061       enddo
6062       do ii=1,nat_sent
6063         i=iat_sent(ii)
6064 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6065 c     &    num_cont_hb(i)
6066         do j=1,num_cont_hb(i)
6067         do k=1,4
6068           jjc=jcont_hb(j,i)
6069           iproc=iint_sent_local(k,jjc,ii)
6070 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6071           if (iproc.gt.0) then
6072             ncont_sent(iproc)=ncont_sent(iproc)+1
6073             nn=ncont_sent(iproc)
6074             zapas(1,nn,iproc)=i
6075             zapas(2,nn,iproc)=jjc
6076             zapas(3,nn,iproc)=facont_hb(j,i)
6077             zapas(4,nn,iproc)=ees0p(j,i)
6078             zapas(5,nn,iproc)=ees0m(j,i)
6079             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6080             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6081             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6082             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6083             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6084             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6085             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6086             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6087             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6088             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6089             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6090             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6091             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6092             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6093             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6094             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6095             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6096             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6097             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6098             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6099             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6100           endif
6101         enddo
6102         enddo
6103       enddo
6104       if (lprn) then
6105       write (iout,*) 
6106      &  "Numbers of contacts to be sent to other processors",
6107      &  (ncont_sent(i),i=1,ntask_cont_to)
6108       write (iout,*) "Contacts sent"
6109       do ii=1,ntask_cont_to
6110         nn=ncont_sent(ii)
6111         iproc=itask_cont_to(ii)
6112         write (iout,*) nn," contacts to processor",iproc,
6113      &   " of CONT_TO_COMM group"
6114         do i=1,nn
6115           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6116         enddo
6117       enddo
6118       call flush(iout)
6119       endif
6120       CorrelType=477
6121       CorrelID=fg_rank+1
6122       CorrelType1=478
6123       CorrelID1=nfgtasks+fg_rank+1
6124       ireq=0
6125 C Receive the numbers of needed contacts from other processors 
6126       do ii=1,ntask_cont_from
6127         iproc=itask_cont_from(ii)
6128         ireq=ireq+1
6129         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6130      &    FG_COMM,req(ireq),IERR)
6131       enddo
6132 c      write (iout,*) "IRECV ended"
6133 c      call flush(iout)
6134 C Send the number of contacts needed by other processors
6135       do ii=1,ntask_cont_to
6136         iproc=itask_cont_to(ii)
6137         ireq=ireq+1
6138         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6139      &    FG_COMM,req(ireq),IERR)
6140       enddo
6141 c      write (iout,*) "ISEND ended"
6142 c      write (iout,*) "number of requests (nn)",ireq
6143       call flush(iout)
6144       if (ireq.gt.0) 
6145      &  call MPI_Waitall(ireq,req,status_array,ierr)
6146 c      write (iout,*) 
6147 c     &  "Numbers of contacts to be received from other processors",
6148 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6149 c      call flush(iout)
6150 C Receive contacts
6151       ireq=0
6152       do ii=1,ntask_cont_from
6153         iproc=itask_cont_from(ii)
6154         nn=ncont_recv(ii)
6155 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6156 c     &   " of CONT_TO_COMM group"
6157         call flush(iout)
6158         if (nn.gt.0) then
6159           ireq=ireq+1
6160           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6161      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6162 c          write (iout,*) "ireq,req",ireq,req(ireq)
6163         endif
6164       enddo
6165 C Send the contacts to processors that need them
6166       do ii=1,ntask_cont_to
6167         iproc=itask_cont_to(ii)
6168         nn=ncont_sent(ii)
6169 c        write (iout,*) nn," contacts to processor",iproc,
6170 c     &   " of CONT_TO_COMM group"
6171         if (nn.gt.0) then
6172           ireq=ireq+1 
6173           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6174      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6175 c          write (iout,*) "ireq,req",ireq,req(ireq)
6176 c          do i=1,nn
6177 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6178 c          enddo
6179         endif  
6180       enddo
6181 c      write (iout,*) "number of requests (contacts)",ireq
6182 c      write (iout,*) "req",(req(i),i=1,4)
6183 c      call flush(iout)
6184       if (ireq.gt.0) 
6185      & call MPI_Waitall(ireq,req,status_array,ierr)
6186       do iii=1,ntask_cont_from
6187         iproc=itask_cont_from(iii)
6188         nn=ncont_recv(iii)
6189         if (lprn) then
6190         write (iout,*) "Received",nn," contacts from processor",iproc,
6191      &   " of CONT_FROM_COMM group"
6192         call flush(iout)
6193         do i=1,nn
6194           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6195         enddo
6196         call flush(iout)
6197         endif
6198         do i=1,nn
6199           ii=zapas_recv(1,i,iii)
6200 c Flag the received contacts to prevent double-counting
6201           jj=-zapas_recv(2,i,iii)
6202 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6203 c          call flush(iout)
6204           nnn=num_cont_hb(ii)+1
6205           num_cont_hb(ii)=nnn
6206           jcont_hb(nnn,ii)=jj
6207           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6208           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6209           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6210           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6211           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6212           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6213           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6214           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6215           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6216           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6217           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6218           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6219           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6220           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6221           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6222           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6223           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6224           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6225           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6226           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6227           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6228           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6229           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6230           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6231         enddo
6232       enddo
6233       call flush(iout)
6234       if (lprn) then
6235         write (iout,'(a)') 'Contact function values after receive:'
6236         do i=nnt,nct-2
6237           write (iout,'(2i3,50(1x,i3,f5.2))') 
6238      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6239      &    j=1,num_cont_hb(i))
6240         enddo
6241         call flush(iout)
6242       endif
6243    30 continue
6244 #endif
6245       if (lprn) then
6246         write (iout,'(a)') 'Contact function values:'
6247         do i=nnt,nct-2
6248           write (iout,'(2i3,50(1x,i3,f5.2))') 
6249      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6250      &    j=1,num_cont_hb(i))
6251         enddo
6252       endif
6253       ecorr=0.0D0
6254 C Remove the loop below after debugging !!!
6255       do i=nnt,nct
6256         do j=1,3
6257           gradcorr(j,i)=0.0D0
6258           gradxorr(j,i)=0.0D0
6259         enddo
6260       enddo
6261 C Calculate the local-electrostatic correlation terms
6262       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6263         i1=i+1
6264         num_conti=num_cont_hb(i)
6265         num_conti1=num_cont_hb(i+1)
6266         do jj=1,num_conti
6267           j=jcont_hb(jj,i)
6268           jp=iabs(j)
6269           do kk=1,num_conti1
6270             j1=jcont_hb(kk,i1)
6271             jp1=iabs(j1)
6272 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6273 c     &         ' jj=',jj,' kk=',kk
6274             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6275      &          .or. j.lt.0 .and. j1.gt.0) .and.
6276      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6277 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6278 C The system gains extra energy.
6279               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6280               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6281      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6282               n_corr=n_corr+1
6283             else if (j1.eq.j) then
6284 C Contacts I-J and I-(J+1) occur simultaneously. 
6285 C The system loses extra energy.
6286 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6287             endif
6288           enddo ! kk
6289           do kk=1,num_conti
6290             j1=jcont_hb(kk,i)
6291 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6292 c    &         ' jj=',jj,' kk=',kk
6293             if (j1.eq.j+1) then
6294 C Contacts I-J and (I+1)-J occur simultaneously. 
6295 C The system loses extra energy.
6296 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6297             endif ! j1==j+1
6298           enddo ! kk
6299         enddo ! jj
6300       enddo ! i
6301       return
6302       end
6303 c------------------------------------------------------------------------------
6304       subroutine add_hb_contact(ii,jj,itask)
6305       implicit real*8 (a-h,o-z)
6306       include "DIMENSIONS"
6307       include "COMMON.IOUNITS"
6308       integer max_cont
6309       integer max_dim
6310       parameter (max_cont=maxconts)
6311       parameter (max_dim=26)
6312       include "COMMON.CONTACTS"
6313 #ifdef MOMENT
6314       include 'COMMON.CONTACTS.MOMENT'
6315 #endif  
6316       double precision zapas(max_dim,maxconts,max_fg_procs),
6317      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6318       common /przechowalnia/ zapas
6319       integer i,j,ii,jj,iproc,itask(4),nn
6320 c      write (iout,*) "itask",itask
6321       do i=1,2
6322         iproc=itask(i)
6323         if (iproc.gt.0) then
6324           do j=1,num_cont_hb(ii)
6325             jjc=jcont_hb(j,ii)
6326 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6327             if (jjc.eq.jj) then
6328               ncont_sent(iproc)=ncont_sent(iproc)+1
6329               nn=ncont_sent(iproc)
6330               zapas(1,nn,iproc)=ii
6331               zapas(2,nn,iproc)=jjc
6332               zapas(3,nn,iproc)=facont_hb(j,ii)
6333               zapas(4,nn,iproc)=ees0p(j,ii)
6334               zapas(5,nn,iproc)=ees0m(j,ii)
6335               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6336               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6337               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6338               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6339               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6340               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6341               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6342               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6343               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6344               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6345               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6346               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6347               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6348               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6349               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6350               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6351               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6352               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6353               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6354               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6355               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6356               exit
6357             endif
6358           enddo
6359         endif
6360       enddo
6361       return
6362       end
6363 c------------------------------------------------------------------------------
6364       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6365      &  n_corr1)
6366 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6367       implicit real*8 (a-h,o-z)
6368       include 'DIMENSIONS'
6369       include 'COMMON.IOUNITS'
6370 #ifdef MPI
6371       include "mpif.h"
6372       parameter (max_cont=maxconts)
6373       parameter (max_dim=70)
6374       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6375       double precision zapas(max_dim,maxconts,max_fg_procs),
6376      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6377       common /przechowalnia/ zapas
6378       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6379      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6380 #endif
6381       include 'COMMON.SETUP'
6382       include 'COMMON.FFIELD'
6383       include 'COMMON.DERIV'
6384       include 'COMMON.LOCAL'
6385       include 'COMMON.INTERACT'
6386       include 'COMMON.CONTACTS'
6387 #ifdef MOMENT
6388       include 'COMMON.CONTACTS.MOMENT'
6389 #endif  
6390       include 'COMMON.CHAIN'
6391       include 'COMMON.CONTROL'
6392       double precision gx(3),gx1(3)
6393       integer num_cont_hb_old(maxres)
6394       logical lprn,ldone
6395       double precision eello4,eello5,eelo6,eello_turn6
6396       external eello4,eello5,eello6,eello_turn6
6397 C Set lprn=.true. for debugging
6398       lprn=.false.
6399       eturn6=0.0d0
6400 #ifdef MPI
6401       do i=1,nres
6402         num_cont_hb_old(i)=num_cont_hb(i)
6403       enddo
6404       n_corr=0
6405       n_corr1=0
6406       if (nfgtasks.le.1) goto 30
6407       if (lprn) then
6408         write (iout,'(a)') 'Contact function values before RECEIVE:'
6409         do i=nnt,nct-2
6410           write (iout,'(2i3,50(1x,i2,f5.2))') 
6411      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6412      &    j=1,num_cont_hb(i))
6413         enddo
6414       endif
6415       call flush(iout)
6416       do i=1,ntask_cont_from
6417         ncont_recv(i)=0
6418       enddo
6419       do i=1,ntask_cont_to
6420         ncont_sent(i)=0
6421       enddo
6422 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6423 c     & ntask_cont_to
6424 C Make the list of contacts to send to send to other procesors
6425       do i=iturn3_start,iturn3_end
6426 c        write (iout,*) "make contact list turn3",i," num_cont",
6427 c     &    num_cont_hb(i)
6428         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6429       enddo
6430       do i=iturn4_start,iturn4_end
6431 c        write (iout,*) "make contact list turn4",i," num_cont",
6432 c     &   num_cont_hb(i)
6433         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6434       enddo
6435       do ii=1,nat_sent
6436         i=iat_sent(ii)
6437 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6438 c     &    num_cont_hb(i)
6439         do j=1,num_cont_hb(i)
6440         do k=1,4
6441           jjc=jcont_hb(j,i)
6442           iproc=iint_sent_local(k,jjc,ii)
6443 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6444           if (iproc.ne.0) then
6445             ncont_sent(iproc)=ncont_sent(iproc)+1
6446             nn=ncont_sent(iproc)
6447             zapas(1,nn,iproc)=i
6448             zapas(2,nn,iproc)=jjc
6449             zapas(3,nn,iproc)=d_cont(j,i)
6450             ind=3
6451             do kk=1,3
6452               ind=ind+1
6453               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6454             enddo
6455             do kk=1,2
6456               do ll=1,2
6457                 ind=ind+1
6458                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6459               enddo
6460             enddo
6461             do jj=1,5
6462               do kk=1,3
6463                 do ll=1,2
6464                   do mm=1,2
6465                     ind=ind+1
6466                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6467                   enddo
6468                 enddo
6469               enddo
6470             enddo
6471           endif
6472         enddo
6473         enddo
6474       enddo
6475       if (lprn) then
6476       write (iout,*) 
6477      &  "Numbers of contacts to be sent to other processors",
6478      &  (ncont_sent(i),i=1,ntask_cont_to)
6479       write (iout,*) "Contacts sent"
6480       do ii=1,ntask_cont_to
6481         nn=ncont_sent(ii)
6482         iproc=itask_cont_to(ii)
6483         write (iout,*) nn," contacts to processor",iproc,
6484      &   " of CONT_TO_COMM group"
6485         do i=1,nn
6486           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6487         enddo
6488       enddo
6489       call flush(iout)
6490       endif
6491       CorrelType=477
6492       CorrelID=fg_rank+1
6493       CorrelType1=478
6494       CorrelID1=nfgtasks+fg_rank+1
6495       ireq=0
6496 C Receive the numbers of needed contacts from other processors 
6497       do ii=1,ntask_cont_from
6498         iproc=itask_cont_from(ii)
6499         ireq=ireq+1
6500         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6501      &    FG_COMM,req(ireq),IERR)
6502       enddo
6503 c      write (iout,*) "IRECV ended"
6504 c      call flush(iout)
6505 C Send the number of contacts needed by other processors
6506       do ii=1,ntask_cont_to
6507         iproc=itask_cont_to(ii)
6508         ireq=ireq+1
6509         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6510      &    FG_COMM,req(ireq),IERR)
6511       enddo
6512 c      write (iout,*) "ISEND ended"
6513 c      write (iout,*) "number of requests (nn)",ireq
6514       call flush(iout)
6515       if (ireq.gt.0) 
6516      &  call MPI_Waitall(ireq,req,status_array,ierr)
6517 c      write (iout,*) 
6518 c     &  "Numbers of contacts to be received from other processors",
6519 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6520 c      call flush(iout)
6521 C Receive contacts
6522       ireq=0
6523       do ii=1,ntask_cont_from
6524         iproc=itask_cont_from(ii)
6525         nn=ncont_recv(ii)
6526 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6527 c     &   " of CONT_TO_COMM group"
6528         call flush(iout)
6529         if (nn.gt.0) then
6530           ireq=ireq+1
6531           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6532      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6533 c          write (iout,*) "ireq,req",ireq,req(ireq)
6534         endif
6535       enddo
6536 C Send the contacts to processors that need them
6537       do ii=1,ntask_cont_to
6538         iproc=itask_cont_to(ii)
6539         nn=ncont_sent(ii)
6540 c        write (iout,*) nn," contacts to processor",iproc,
6541 c     &   " of CONT_TO_COMM group"
6542         if (nn.gt.0) then
6543           ireq=ireq+1 
6544           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6545      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6546 c          write (iout,*) "ireq,req",ireq,req(ireq)
6547 c          do i=1,nn
6548 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6549 c          enddo
6550         endif  
6551       enddo
6552 c      write (iout,*) "number of requests (contacts)",ireq
6553 c      write (iout,*) "req",(req(i),i=1,4)
6554 c      call flush(iout)
6555       if (ireq.gt.0) 
6556      & call MPI_Waitall(ireq,req,status_array,ierr)
6557       do iii=1,ntask_cont_from
6558         iproc=itask_cont_from(iii)
6559         nn=ncont_recv(iii)
6560         if (lprn) then
6561         write (iout,*) "Received",nn," contacts from processor",iproc,
6562      &   " of CONT_FROM_COMM group"
6563         call flush(iout)
6564         do i=1,nn
6565           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6566         enddo
6567         call flush(iout)
6568         endif
6569         do i=1,nn
6570           ii=zapas_recv(1,i,iii)
6571 c Flag the received contacts to prevent double-counting
6572           jj=-zapas_recv(2,i,iii)
6573 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6574 c          call flush(iout)
6575           nnn=num_cont_hb(ii)+1
6576           num_cont_hb(ii)=nnn
6577           jcont_hb(nnn,ii)=jj
6578           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6579           ind=3
6580           do kk=1,3
6581             ind=ind+1
6582             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6583           enddo
6584           do kk=1,2
6585             do ll=1,2
6586               ind=ind+1
6587               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6588             enddo
6589           enddo
6590           do jj=1,5
6591             do kk=1,3
6592               do ll=1,2
6593                 do mm=1,2
6594                   ind=ind+1
6595                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6596                 enddo
6597               enddo
6598             enddo
6599           enddo
6600         enddo
6601       enddo
6602       call flush(iout)
6603       if (lprn) then
6604         write (iout,'(a)') 'Contact function values after receive:'
6605         do i=nnt,nct-2
6606           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6607      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6608      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6609         enddo
6610         call flush(iout)
6611       endif
6612    30 continue
6613 #endif
6614       if (lprn) then
6615         write (iout,'(a)') 'Contact function values:'
6616         do i=nnt,nct-2
6617           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6618      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6619      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6620         enddo
6621       endif
6622       ecorr=0.0D0
6623       ecorr5=0.0d0
6624       ecorr6=0.0d0
6625 C Remove the loop below after debugging !!!
6626       do i=nnt,nct
6627         do j=1,3
6628           gradcorr(j,i)=0.0D0
6629           gradxorr(j,i)=0.0D0
6630         enddo
6631       enddo
6632 C Calculate the dipole-dipole interaction energies
6633       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6634       do i=iatel_s,iatel_e+1
6635         num_conti=num_cont_hb(i)
6636         do jj=1,num_conti
6637           j=jcont_hb(jj,i)
6638 #ifdef MOMENT
6639           call dipole(i,j,jj)
6640 #endif
6641         enddo
6642       enddo
6643       endif
6644 C Calculate the local-electrostatic correlation terms
6645 c                write (iout,*) "gradcorr5 in eello5 before loop"
6646 c                do iii=1,nres
6647 c                  write (iout,'(i5,3f10.5)') 
6648 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6649 c                enddo
6650       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6651 c        write (iout,*) "corr loop i",i
6652         i1=i+1
6653         num_conti=num_cont_hb(i)
6654         num_conti1=num_cont_hb(i+1)
6655         do jj=1,num_conti
6656           j=jcont_hb(jj,i)
6657           jp=iabs(j)
6658           do kk=1,num_conti1
6659             j1=jcont_hb(kk,i1)
6660             jp1=iabs(j1)
6661 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6662 c     &         ' jj=',jj,' kk=',kk
6663 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6664             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6665      &          .or. j.lt.0 .and. j1.gt.0) .and.
6666      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6667 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6668 C The system gains extra energy.
6669               n_corr=n_corr+1
6670               sqd1=dsqrt(d_cont(jj,i))
6671               sqd2=dsqrt(d_cont(kk,i1))
6672               sred_geom = sqd1*sqd2
6673               IF (sred_geom.lt.cutoff_corr) THEN
6674                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6675      &            ekont,fprimcont)
6676 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6677 cd     &         ' jj=',jj,' kk=',kk
6678                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6679                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6680                 do l=1,3
6681                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6682                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6683                 enddo
6684                 n_corr1=n_corr1+1
6685 cd               write (iout,*) 'sred_geom=',sred_geom,
6686 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6687 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6688 cd               write (iout,*) "g_contij",g_contij
6689 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6690 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6691                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6692                 if (wcorr4.gt.0.0d0) 
6693      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6694                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6695      1                 write (iout,'(a6,4i5,0pf7.3)')
6696      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6697 c                write (iout,*) "gradcorr5 before eello5"
6698 c                do iii=1,nres
6699 c                  write (iout,'(i5,3f10.5)') 
6700 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6701 c                enddo
6702                 if (wcorr5.gt.0.0d0)
6703      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6704 c                write (iout,*) "gradcorr5 after eello5"
6705 c                do iii=1,nres
6706 c                  write (iout,'(i5,3f10.5)') 
6707 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6708 c                enddo
6709                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6710      1                 write (iout,'(a6,4i5,0pf7.3)')
6711      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6712 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6713 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6714                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6715      &               .or. wturn6.eq.0.0d0))then
6716 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6717                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6718                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6719      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6720 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6721 cd     &            'ecorr6=',ecorr6
6722 cd                write (iout,'(4e15.5)') sred_geom,
6723 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6724 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6725 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6726                 else if (wturn6.gt.0.0d0
6727      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6728 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6729                   eturn6=eturn6+eello_turn6(i,jj,kk)
6730                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6731      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6732 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6733                 endif
6734               ENDIF
6735 1111          continue
6736             endif
6737           enddo ! kk
6738         enddo ! jj
6739       enddo ! i
6740       do i=1,nres
6741         num_cont_hb(i)=num_cont_hb_old(i)
6742       enddo
6743 c                write (iout,*) "gradcorr5 in eello5"
6744 c                do iii=1,nres
6745 c                  write (iout,'(i5,3f10.5)') 
6746 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6747 c                enddo
6748       return
6749       end
6750 c------------------------------------------------------------------------------
6751       subroutine add_hb_contact_eello(ii,jj,itask)
6752       implicit real*8 (a-h,o-z)
6753       include "DIMENSIONS"
6754       include "COMMON.IOUNITS"
6755       integer max_cont
6756       integer max_dim
6757       parameter (max_cont=maxconts)
6758       parameter (max_dim=70)
6759       include "COMMON.CONTACTS"
6760 #ifdef MOMENT
6761       include 'COMMON.CONTACTS.MOMENT'
6762 #endif  
6763       double precision zapas(max_dim,maxconts,max_fg_procs),
6764      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6765       common /przechowalnia/ zapas
6766       integer i,j,ii,jj,iproc,itask(4),nn
6767 c      write (iout,*) "itask",itask
6768       do i=1,2
6769         iproc=itask(i)
6770         if (iproc.gt.0) then
6771           do j=1,num_cont_hb(ii)
6772             jjc=jcont_hb(j,ii)
6773 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6774             if (jjc.eq.jj) then
6775               ncont_sent(iproc)=ncont_sent(iproc)+1
6776               nn=ncont_sent(iproc)
6777               zapas(1,nn,iproc)=ii
6778               zapas(2,nn,iproc)=jjc
6779               zapas(3,nn,iproc)=d_cont(j,ii)
6780               ind=3
6781               do kk=1,3
6782                 ind=ind+1
6783                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6784               enddo
6785               do kk=1,2
6786                 do ll=1,2
6787                   ind=ind+1
6788                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6789                 enddo
6790               enddo
6791               do jj=1,5
6792                 do kk=1,3
6793                   do ll=1,2
6794                     do mm=1,2
6795                       ind=ind+1
6796                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6797                     enddo
6798                   enddo
6799                 enddo
6800               enddo
6801               exit
6802             endif
6803           enddo
6804         endif
6805       enddo
6806       return
6807       end
6808 c------------------------------------------------------------------------------
6809       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6810       implicit real*8 (a-h,o-z)
6811       include 'DIMENSIONS'
6812       include 'COMMON.IOUNITS'
6813       include 'COMMON.DERIV'
6814       include 'COMMON.INTERACT'
6815       include 'COMMON.CONTACTS'
6816 #ifdef MOMENT
6817       include 'COMMON.CONTACTS.MOMENT'
6818 #endif  
6819       double precision gx(3),gx1(3)
6820       logical lprn
6821       lprn=.false.
6822       eij=facont_hb(jj,i)
6823       ekl=facont_hb(kk,k)
6824       ees0pij=ees0p(jj,i)
6825       ees0pkl=ees0p(kk,k)
6826       ees0mij=ees0m(jj,i)
6827       ees0mkl=ees0m(kk,k)
6828       ekont=eij*ekl
6829       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6830 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6831 C Following 4 lines for diagnostics.
6832 cd    ees0pkl=0.0D0
6833 cd    ees0pij=1.0D0
6834 cd    ees0mkl=0.0D0
6835 cd    ees0mij=1.0D0
6836 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6837 c     & 'Contacts ',i,j,
6838 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6839 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6840 c     & 'gradcorr_long'
6841 C Calculate the multi-body contribution to energy.
6842 c      ecorr=ecorr+ekont*ees
6843 C Calculate multi-body contributions to the gradient.
6844       coeffpees0pij=coeffp*ees0pij
6845       coeffmees0mij=coeffm*ees0mij
6846       coeffpees0pkl=coeffp*ees0pkl
6847       coeffmees0mkl=coeffm*ees0mkl
6848       do ll=1,3
6849 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6850         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6851      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6852      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6853         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6854      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6855      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6856 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6857         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6858      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6859      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6860         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6861      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6862      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6863         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6864      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6865      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6866         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6867         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6868         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6869      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6870      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6871         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6872         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6873 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6874       enddo
6875 c      write (iout,*)
6876 cgrad      do m=i+1,j-1
6877 cgrad        do ll=1,3
6878 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6879 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6880 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6881 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6882 cgrad        enddo
6883 cgrad      enddo
6884 cgrad      do m=k+1,l-1
6885 cgrad        do ll=1,3
6886 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6887 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6888 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6889 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6890 cgrad        enddo
6891 cgrad      enddo 
6892 c      write (iout,*) "ehbcorr",ekont*ees
6893       ehbcorr=ekont*ees
6894       return
6895       end
6896 #ifdef MOMENT
6897 C---------------------------------------------------------------------------
6898       subroutine dipole(i,j,jj)
6899       implicit real*8 (a-h,o-z)
6900       include 'DIMENSIONS'
6901       include 'COMMON.IOUNITS'
6902       include 'COMMON.CHAIN'
6903       include 'COMMON.FFIELD'
6904       include 'COMMON.DERIV'
6905       include 'COMMON.INTERACT'
6906       include 'COMMON.CONTACTS'
6907 #ifdef MOMENT
6908       include 'COMMON.CONTACTS.MOMENT'
6909 #endif  
6910       include 'COMMON.TORSION'
6911       include 'COMMON.VAR'
6912       include 'COMMON.GEO'
6913       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
6914      &  auxmat(2,2)
6915       iti1 = itortyp(itype(i+1))
6916       if (j.lt.nres-1) then
6917         itj1 = itortyp(itype(j+1))
6918       else
6919         itj1=ntortyp+1
6920       endif
6921       do iii=1,2
6922         dipi(iii,1)=Ub2(iii,i)
6923         dipderi(iii)=Ub2der(iii,i)
6924         dipi(iii,2)=b1(iii,iti1)
6925         dipj(iii,1)=Ub2(iii,j)
6926         dipderj(iii)=Ub2der(iii,j)
6927         dipj(iii,2)=b1(iii,itj1)
6928       enddo
6929       kkk=0
6930       do iii=1,2
6931         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
6932         do jjj=1,2
6933           kkk=kkk+1
6934           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6935         enddo
6936       enddo
6937       do kkk=1,5
6938         do lll=1,3
6939           mmm=0
6940           do iii=1,2
6941             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
6942      &        auxvec(1))
6943             do jjj=1,2
6944               mmm=mmm+1
6945               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6946             enddo
6947           enddo
6948         enddo
6949       enddo
6950       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
6951       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
6952       do iii=1,2
6953         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
6954       enddo
6955       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
6956       do iii=1,2
6957         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
6958       enddo
6959       return
6960       end
6961 #endif
6962 C---------------------------------------------------------------------------
6963       subroutine calc_eello(i,j,k,l,jj,kk)
6964
6965 C This subroutine computes matrices and vectors needed to calculate 
6966 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
6967 C
6968       implicit real*8 (a-h,o-z)
6969       include 'DIMENSIONS'
6970       include 'COMMON.IOUNITS'
6971       include 'COMMON.CHAIN'
6972       include 'COMMON.DERIV'
6973       include 'COMMON.INTERACT'
6974       include 'COMMON.CONTACTS'
6975 #ifdef MOMENT
6976       include 'COMMON.CONTACTS.MOMENT'
6977 #endif  
6978       include 'COMMON.TORSION'
6979       include 'COMMON.VAR'
6980       include 'COMMON.GEO'
6981       include 'COMMON.FFIELD'
6982       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
6983      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
6984       logical lprn
6985       common /kutas/ lprn
6986 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
6987 cd     & ' jj=',jj,' kk=',kk
6988 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
6989 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
6990 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
6991       do iii=1,2
6992         do jjj=1,2
6993           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
6994           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
6995         enddo
6996       enddo
6997       call transpose2(aa1(1,1),aa1t(1,1))
6998       call transpose2(aa2(1,1),aa2t(1,1))
6999       do kkk=1,5
7000         do lll=1,3
7001           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7002      &      aa1tder(1,1,lll,kkk))
7003           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7004      &      aa2tder(1,1,lll,kkk))
7005         enddo
7006       enddo 
7007       if (l.eq.j+1) then
7008 C parallel orientation of the two CA-CA-CA frames.
7009         if (i.gt.1) then
7010           iti=itortyp(itype(i))
7011         else
7012           iti=ntortyp+1
7013         endif
7014         itk1=itortyp(itype(k+1))
7015         itj=itortyp(itype(j))
7016         if (l.lt.nres-1) then
7017           itl1=itortyp(itype(l+1))
7018         else
7019           itl1=ntortyp+1
7020         endif
7021 C A1 kernel(j+1) A2T
7022 cd        do iii=1,2
7023 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7024 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7025 cd        enddo
7026         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7027      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7028      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7029 C Following matrices are needed only for 6-th order cumulants
7030         IF (wcorr6.gt.0.0d0) THEN
7031         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7032      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7033      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7034         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7035      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7036      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7037      &   ADtEAderx(1,1,1,1,1,1))
7038         lprn=.false.
7039         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7040      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7041      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7042      &   ADtEA1derx(1,1,1,1,1,1))
7043         ENDIF
7044 C End 6-th order cumulants
7045 cd        lprn=.false.
7046 cd        if (lprn) then
7047 cd        write (2,*) 'In calc_eello6'
7048 cd        do iii=1,2
7049 cd          write (2,*) 'iii=',iii
7050 cd          do kkk=1,5
7051 cd            write (2,*) 'kkk=',kkk
7052 cd            do jjj=1,2
7053 cd              write (2,'(3(2f10.5),5x)') 
7054 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7055 cd            enddo
7056 cd          enddo
7057 cd        enddo
7058 cd        endif
7059         call transpose2(EUgder(1,1,k),auxmat(1,1))
7060         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7061         call transpose2(EUg(1,1,k),auxmat(1,1))
7062         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7063         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7064         do iii=1,2
7065           do kkk=1,5
7066             do lll=1,3
7067               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7068      &          EAEAderx(1,1,lll,kkk,iii,1))
7069             enddo
7070           enddo
7071         enddo
7072 C A1T kernel(i+1) A2
7073         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7074      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7075      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7076 C Following matrices are needed only for 6-th order cumulants
7077         IF (wcorr6.gt.0.0d0) THEN
7078         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7079      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7080      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7081         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7082      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7083      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7084      &   ADtEAderx(1,1,1,1,1,2))
7085         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7086      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7087      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7088      &   ADtEA1derx(1,1,1,1,1,2))
7089         ENDIF
7090 C End 6-th order cumulants
7091         call transpose2(EUgder(1,1,l),auxmat(1,1))
7092         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7093         call transpose2(EUg(1,1,l),auxmat(1,1))
7094         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7095         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7096         do iii=1,2
7097           do kkk=1,5
7098             do lll=1,3
7099               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7100      &          EAEAderx(1,1,lll,kkk,iii,2))
7101             enddo
7102           enddo
7103         enddo
7104 C AEAb1 and AEAb2
7105 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7106 C They are needed only when the fifth- or the sixth-order cumulants are
7107 C indluded.
7108         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7109         call transpose2(AEA(1,1,1),auxmat(1,1))
7110         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7111         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7112         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7113         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7114         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7115         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7116         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7117         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7118         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7119         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7120         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7121         call transpose2(AEA(1,1,2),auxmat(1,1))
7122         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7123         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7124         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7125         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7126         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7127         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7128         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7129         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7130         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7131         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7132         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7133 C Calculate the Cartesian derivatives of the vectors.
7134         do iii=1,2
7135           do kkk=1,5
7136             do lll=1,3
7137               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7138               call matvec2(auxmat(1,1),b1(1,iti),
7139      &          AEAb1derx(1,lll,kkk,iii,1,1))
7140               call matvec2(auxmat(1,1),Ub2(1,i),
7141      &          AEAb2derx(1,lll,kkk,iii,1,1))
7142               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7143      &          AEAb1derx(1,lll,kkk,iii,2,1))
7144               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7145      &          AEAb2derx(1,lll,kkk,iii,2,1))
7146               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7147               call matvec2(auxmat(1,1),b1(1,itj),
7148      &          AEAb1derx(1,lll,kkk,iii,1,2))
7149               call matvec2(auxmat(1,1),Ub2(1,j),
7150      &          AEAb2derx(1,lll,kkk,iii,1,2))
7151               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7152      &          AEAb1derx(1,lll,kkk,iii,2,2))
7153               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7154      &          AEAb2derx(1,lll,kkk,iii,2,2))
7155             enddo
7156           enddo
7157         enddo
7158         ENDIF
7159 C End vectors
7160       else
7161 C Antiparallel orientation of the two CA-CA-CA frames.
7162         if (i.gt.1) then
7163           iti=itortyp(itype(i))
7164         else
7165           iti=ntortyp+1
7166         endif
7167         itk1=itortyp(itype(k+1))
7168         itl=itortyp(itype(l))
7169         itj=itortyp(itype(j))
7170         if (j.lt.nres-1) then
7171           itj1=itortyp(itype(j+1))
7172         else 
7173           itj1=ntortyp+1
7174         endif
7175 C A2 kernel(j-1)T A1T
7176         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7177      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7178      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7179 C Following matrices are needed only for 6-th order cumulants
7180         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7181      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7182         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7183      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7184      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7185         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7186      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7187      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7188      &   ADtEAderx(1,1,1,1,1,1))
7189         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7190      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7191      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7192      &   ADtEA1derx(1,1,1,1,1,1))
7193         ENDIF
7194 C End 6-th order cumulants
7195         call transpose2(EUgder(1,1,k),auxmat(1,1))
7196         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7197         call transpose2(EUg(1,1,k),auxmat(1,1))
7198         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7199         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7200         do iii=1,2
7201           do kkk=1,5
7202             do lll=1,3
7203               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7204      &          EAEAderx(1,1,lll,kkk,iii,1))
7205             enddo
7206           enddo
7207         enddo
7208 C A2T kernel(i+1)T A1
7209         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7210      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7211      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7212 C Following matrices are needed only for 6-th order cumulants
7213         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7214      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7215         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7216      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7217      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7218         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7219      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7220      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7221      &   ADtEAderx(1,1,1,1,1,2))
7222         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7223      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7224      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7225      &   ADtEA1derx(1,1,1,1,1,2))
7226         ENDIF
7227 C End 6-th order cumulants
7228         call transpose2(EUgder(1,1,j),auxmat(1,1))
7229         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7230         call transpose2(EUg(1,1,j),auxmat(1,1))
7231         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7232         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7233         do iii=1,2
7234           do kkk=1,5
7235             do lll=1,3
7236               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7237      &          EAEAderx(1,1,lll,kkk,iii,2))
7238             enddo
7239           enddo
7240         enddo
7241 C AEAb1 and AEAb2
7242 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7243 C They are needed only when the fifth- or the sixth-order cumulants are
7244 C indluded.
7245         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7246      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7247         call transpose2(AEA(1,1,1),auxmat(1,1))
7248         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7249         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7250         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7251         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7252         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7253         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7254         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7255         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7256         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7257         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7258         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7259         call transpose2(AEA(1,1,2),auxmat(1,1))
7260         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7261         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7262         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7263         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7264         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7265         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7266         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7267         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7268         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7269         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7270         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7271 C Calculate the Cartesian derivatives of the vectors.
7272         do iii=1,2
7273           do kkk=1,5
7274             do lll=1,3
7275               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7276               call matvec2(auxmat(1,1),b1(1,iti),
7277      &          AEAb1derx(1,lll,kkk,iii,1,1))
7278               call matvec2(auxmat(1,1),Ub2(1,i),
7279      &          AEAb2derx(1,lll,kkk,iii,1,1))
7280               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7281      &          AEAb1derx(1,lll,kkk,iii,2,1))
7282               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7283      &          AEAb2derx(1,lll,kkk,iii,2,1))
7284               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7285               call matvec2(auxmat(1,1),b1(1,itl),
7286      &          AEAb1derx(1,lll,kkk,iii,1,2))
7287               call matvec2(auxmat(1,1),Ub2(1,l),
7288      &          AEAb2derx(1,lll,kkk,iii,1,2))
7289               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7290      &          AEAb1derx(1,lll,kkk,iii,2,2))
7291               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7292      &          AEAb2derx(1,lll,kkk,iii,2,2))
7293             enddo
7294           enddo
7295         enddo
7296         ENDIF
7297 C End vectors
7298       endif
7299       return
7300       end
7301 C---------------------------------------------------------------------------
7302       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7303      &  KK,KKderg,AKA,AKAderg,AKAderx)
7304       implicit none
7305       integer nderg
7306       logical transp
7307       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7308      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7309      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7310       integer iii,kkk,lll
7311       integer jjj,mmm
7312       logical lprn
7313       common /kutas/ lprn
7314       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7315       do iii=1,nderg 
7316         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7317      &    AKAderg(1,1,iii))
7318       enddo
7319 cd      if (lprn) write (2,*) 'In kernel'
7320       do kkk=1,5
7321 cd        if (lprn) write (2,*) 'kkk=',kkk
7322         do lll=1,3
7323           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7324      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7325 cd          if (lprn) then
7326 cd            write (2,*) 'lll=',lll
7327 cd            write (2,*) 'iii=1'
7328 cd            do jjj=1,2
7329 cd              write (2,'(3(2f10.5),5x)') 
7330 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7331 cd            enddo
7332 cd          endif
7333           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7334      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7335 cd          if (lprn) then
7336 cd            write (2,*) 'lll=',lll
7337 cd            write (2,*) 'iii=2'
7338 cd            do jjj=1,2
7339 cd              write (2,'(3(2f10.5),5x)') 
7340 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7341 cd            enddo
7342 cd          endif
7343         enddo
7344       enddo
7345       return
7346       end
7347 C---------------------------------------------------------------------------
7348       double precision function eello4(i,j,k,l,jj,kk)
7349       implicit real*8 (a-h,o-z)
7350       include 'DIMENSIONS'
7351       include 'COMMON.IOUNITS'
7352       include 'COMMON.CHAIN'
7353       include 'COMMON.DERIV'
7354       include 'COMMON.INTERACT'
7355       include 'COMMON.CONTACTS'
7356 #ifdef MOMENT
7357       include 'COMMON.CONTACTS.MOMENT'
7358 #endif  
7359       include 'COMMON.TORSION'
7360       include 'COMMON.VAR'
7361       include 'COMMON.GEO'
7362       double precision pizda(2,2),ggg1(3),ggg2(3)
7363 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7364 cd        eello4=0.0d0
7365 cd        return
7366 cd      endif
7367 cd      print *,'eello4:',i,j,k,l,jj,kk
7368 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7369 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7370 cold      eij=facont_hb(jj,i)
7371 cold      ekl=facont_hb(kk,k)
7372 cold      ekont=eij*ekl
7373       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7374 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7375       gcorr_loc(k-1)=gcorr_loc(k-1)
7376      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7377       if (l.eq.j+1) then
7378         gcorr_loc(l-1)=gcorr_loc(l-1)
7379      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7380       else
7381         gcorr_loc(j-1)=gcorr_loc(j-1)
7382      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7383       endif
7384       do iii=1,2
7385         do kkk=1,5
7386           do lll=1,3
7387             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7388      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7389 cd            derx(lll,kkk,iii)=0.0d0
7390           enddo
7391         enddo
7392       enddo
7393 cd      gcorr_loc(l-1)=0.0d0
7394 cd      gcorr_loc(j-1)=0.0d0
7395 cd      gcorr_loc(k-1)=0.0d0
7396 cd      eel4=1.0d0
7397 cd      write (iout,*)'Contacts have occurred for peptide groups',
7398 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7399 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7400       if (j.lt.nres-1) then
7401         j1=j+1
7402         j2=j-1
7403       else
7404         j1=j-1
7405         j2=j-2
7406       endif
7407       if (l.lt.nres-1) then
7408         l1=l+1
7409         l2=l-1
7410       else
7411         l1=l-1
7412         l2=l-2
7413       endif
7414       do ll=1,3
7415 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7416 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7417         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7418         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7419 cgrad        ghalf=0.5d0*ggg1(ll)
7420         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7421         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7422         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7423         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7424         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7425         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7426 cgrad        ghalf=0.5d0*ggg2(ll)
7427         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7428         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7429         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7430         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7431         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7432         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7433       enddo
7434 cgrad      do m=i+1,j-1
7435 cgrad        do ll=1,3
7436 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7437 cgrad        enddo
7438 cgrad      enddo
7439 cgrad      do m=k+1,l-1
7440 cgrad        do ll=1,3
7441 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7442 cgrad        enddo
7443 cgrad      enddo
7444 cgrad      do m=i+2,j2
7445 cgrad        do ll=1,3
7446 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7447 cgrad        enddo
7448 cgrad      enddo
7449 cgrad      do m=k+2,l2
7450 cgrad        do ll=1,3
7451 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7452 cgrad        enddo
7453 cgrad      enddo 
7454 cd      do iii=1,nres-3
7455 cd        write (2,*) iii,gcorr_loc(iii)
7456 cd      enddo
7457       eello4=ekont*eel4
7458 cd      write (2,*) 'ekont',ekont
7459 cd      write (iout,*) 'eello4',ekont*eel4
7460       return
7461       end
7462 C---------------------------------------------------------------------------
7463       double precision function eello5(i,j,k,l,jj,kk)
7464       implicit real*8 (a-h,o-z)
7465       include 'DIMENSIONS'
7466       include 'COMMON.IOUNITS'
7467       include 'COMMON.CHAIN'
7468       include 'COMMON.DERIV'
7469       include 'COMMON.INTERACT'
7470       include 'COMMON.CONTACTS'
7471 #ifdef MOMENT
7472       include 'COMMON.CONTACTS.MOMENT'
7473 #endif  
7474       include 'COMMON.TORSION'
7475       include 'COMMON.VAR'
7476       include 'COMMON.GEO'
7477       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7478       double precision ggg1(3),ggg2(3)
7479 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7480 C                                                                              C
7481 C                            Parallel chains                                   C
7482 C                                                                              C
7483 C          o             o                   o             o                   C
7484 C         /l\           / \             \   / \           / \   /              C
7485 C        /   \         /   \             \ /   \         /   \ /               C
7486 C       j| o |l1       | o |              o| o |         | o |o                C
7487 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7488 C      \i/   \         /   \ /             /   \         /   \                 C
7489 C       o    k1             o                                                  C
7490 C         (I)          (II)                (III)          (IV)                 C
7491 C                                                                              C
7492 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7493 C                                                                              C
7494 C                            Antiparallel chains                               C
7495 C                                                                              C
7496 C          o             o                   o             o                   C
7497 C         /j\           / \             \   / \           / \   /              C
7498 C        /   \         /   \             \ /   \         /   \ /               C
7499 C      j1| o |l        | o |              o| o |         | o |o                C
7500 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7501 C      \i/   \         /   \ /             /   \         /   \                 C
7502 C       o     k1            o                                                  C
7503 C         (I)          (II)                (III)          (IV)                 C
7504 C                                                                              C
7505 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7506 C                                                                              C
7507 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7508 C                                                                              C
7509 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7510 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7511 cd        eello5=0.0d0
7512 cd        return
7513 cd      endif
7514 cd      write (iout,*)
7515 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7516 cd     &   ' and',k,l
7517       itk=itortyp(itype(k))
7518       itl=itortyp(itype(l))
7519       itj=itortyp(itype(j))
7520       eello5_1=0.0d0
7521       eello5_2=0.0d0
7522       eello5_3=0.0d0
7523       eello5_4=0.0d0
7524 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7525 cd     &   eel5_3_num,eel5_4_num)
7526       do iii=1,2
7527         do kkk=1,5
7528           do lll=1,3
7529             derx(lll,kkk,iii)=0.0d0
7530           enddo
7531         enddo
7532       enddo
7533 cd      eij=facont_hb(jj,i)
7534 cd      ekl=facont_hb(kk,k)
7535 cd      ekont=eij*ekl
7536 cd      write (iout,*)'Contacts have occurred for peptide groups',
7537 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7538 cd      goto 1111
7539 C Contribution from the graph I.
7540 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7541 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7542       call transpose2(EUg(1,1,k),auxmat(1,1))
7543       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7544       vv(1)=pizda(1,1)-pizda(2,2)
7545       vv(2)=pizda(1,2)+pizda(2,1)
7546       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7547      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7548 C Explicit gradient in virtual-dihedral angles.
7549       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7550      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7551      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7552       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7553       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7554       vv(1)=pizda(1,1)-pizda(2,2)
7555       vv(2)=pizda(1,2)+pizda(2,1)
7556       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7557      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7558      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7559       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7560       vv(1)=pizda(1,1)-pizda(2,2)
7561       vv(2)=pizda(1,2)+pizda(2,1)
7562       if (l.eq.j+1) then
7563         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7564      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7565      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7566       else
7567         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7568      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7569      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7570       endif 
7571 C Cartesian gradient
7572       do iii=1,2
7573         do kkk=1,5
7574           do lll=1,3
7575             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7576      &        pizda(1,1))
7577             vv(1)=pizda(1,1)-pizda(2,2)
7578             vv(2)=pizda(1,2)+pizda(2,1)
7579             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7580      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7581      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7582           enddo
7583         enddo
7584       enddo
7585 c      goto 1112
7586 c1111  continue
7587 C Contribution from graph II 
7588       call transpose2(EE(1,1,itk),auxmat(1,1))
7589       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7590       vv(1)=pizda(1,1)+pizda(2,2)
7591       vv(2)=pizda(2,1)-pizda(1,2)
7592       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7593      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7594 C Explicit gradient in virtual-dihedral angles.
7595       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7596      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7597       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7598       vv(1)=pizda(1,1)+pizda(2,2)
7599       vv(2)=pizda(2,1)-pizda(1,2)
7600       if (l.eq.j+1) then
7601         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7602      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7603      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7604       else
7605         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7606      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7607      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7608       endif
7609 C Cartesian gradient
7610       do iii=1,2
7611         do kkk=1,5
7612           do lll=1,3
7613             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7614      &        pizda(1,1))
7615             vv(1)=pizda(1,1)+pizda(2,2)
7616             vv(2)=pizda(2,1)-pizda(1,2)
7617             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7618      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7619      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7620           enddo
7621         enddo
7622       enddo
7623 cd      goto 1112
7624 cd1111  continue
7625       if (l.eq.j+1) then
7626 cd        goto 1110
7627 C Parallel orientation
7628 C Contribution from graph III
7629         call transpose2(EUg(1,1,l),auxmat(1,1))
7630         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7631         vv(1)=pizda(1,1)-pizda(2,2)
7632         vv(2)=pizda(1,2)+pizda(2,1)
7633         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7634      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7635 C Explicit gradient in virtual-dihedral angles.
7636         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7637      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7638      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7639         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7640         vv(1)=pizda(1,1)-pizda(2,2)
7641         vv(2)=pizda(1,2)+pizda(2,1)
7642         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7643      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7644      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7645         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7646         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7647         vv(1)=pizda(1,1)-pizda(2,2)
7648         vv(2)=pizda(1,2)+pizda(2,1)
7649         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7650      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7651      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7652 C Cartesian gradient
7653         do iii=1,2
7654           do kkk=1,5
7655             do lll=1,3
7656               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7657      &          pizda(1,1))
7658               vv(1)=pizda(1,1)-pizda(2,2)
7659               vv(2)=pizda(1,2)+pizda(2,1)
7660               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7661      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7662      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7663             enddo
7664           enddo
7665         enddo
7666 cd        goto 1112
7667 C Contribution from graph IV
7668 cd1110    continue
7669         call transpose2(EE(1,1,itl),auxmat(1,1))
7670         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7671         vv(1)=pizda(1,1)+pizda(2,2)
7672         vv(2)=pizda(2,1)-pizda(1,2)
7673         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7674      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7675 C Explicit gradient in virtual-dihedral angles.
7676         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7677      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7678         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7679         vv(1)=pizda(1,1)+pizda(2,2)
7680         vv(2)=pizda(2,1)-pizda(1,2)
7681         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7682      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7683      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7684 C Cartesian gradient
7685         do iii=1,2
7686           do kkk=1,5
7687             do lll=1,3
7688               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7689      &          pizda(1,1))
7690               vv(1)=pizda(1,1)+pizda(2,2)
7691               vv(2)=pizda(2,1)-pizda(1,2)
7692               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7693      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7694      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7695             enddo
7696           enddo
7697         enddo
7698       else
7699 C Antiparallel orientation
7700 C Contribution from graph III
7701 c        goto 1110
7702         call transpose2(EUg(1,1,j),auxmat(1,1))
7703         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7704         vv(1)=pizda(1,1)-pizda(2,2)
7705         vv(2)=pizda(1,2)+pizda(2,1)
7706         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7707      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7708 C Explicit gradient in virtual-dihedral angles.
7709         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7710      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7711      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7712         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7713         vv(1)=pizda(1,1)-pizda(2,2)
7714         vv(2)=pizda(1,2)+pizda(2,1)
7715         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7716      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7717      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7718         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7719         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7720         vv(1)=pizda(1,1)-pizda(2,2)
7721         vv(2)=pizda(1,2)+pizda(2,1)
7722         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7723      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7724      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7725 C Cartesian gradient
7726         do iii=1,2
7727           do kkk=1,5
7728             do lll=1,3
7729               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7730      &          pizda(1,1))
7731               vv(1)=pizda(1,1)-pizda(2,2)
7732               vv(2)=pizda(1,2)+pizda(2,1)
7733               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7734      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7735      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7736             enddo
7737           enddo
7738         enddo
7739 cd        goto 1112
7740 C Contribution from graph IV
7741 1110    continue
7742         call transpose2(EE(1,1,itj),auxmat(1,1))
7743         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7744         vv(1)=pizda(1,1)+pizda(2,2)
7745         vv(2)=pizda(2,1)-pizda(1,2)
7746         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7747      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7748 C Explicit gradient in virtual-dihedral angles.
7749         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7750      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7751         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7752         vv(1)=pizda(1,1)+pizda(2,2)
7753         vv(2)=pizda(2,1)-pizda(1,2)
7754         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7755      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7756      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7757 C Cartesian gradient
7758         do iii=1,2
7759           do kkk=1,5
7760             do lll=1,3
7761               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7762      &          pizda(1,1))
7763               vv(1)=pizda(1,1)+pizda(2,2)
7764               vv(2)=pizda(2,1)-pizda(1,2)
7765               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7766      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7767      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7768             enddo
7769           enddo
7770         enddo
7771       endif
7772 1112  continue
7773       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7774 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7775 cd        write (2,*) 'ijkl',i,j,k,l
7776 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7777 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7778 cd      endif
7779 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7780 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7781 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7782 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7783       if (j.lt.nres-1) then
7784         j1=j+1
7785         j2=j-1
7786       else
7787         j1=j-1
7788         j2=j-2
7789       endif
7790       if (l.lt.nres-1) then
7791         l1=l+1
7792         l2=l-1
7793       else
7794         l1=l-1
7795         l2=l-2
7796       endif
7797 cd      eij=1.0d0
7798 cd      ekl=1.0d0
7799 cd      ekont=1.0d0
7800 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7801 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7802 C        summed up outside the subrouine as for the other subroutines 
7803 C        handling long-range interactions. The old code is commented out
7804 C        with "cgrad" to keep track of changes.
7805       do ll=1,3
7806 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7807 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7808         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7809         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7810 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7811 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7812 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7813 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7814 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7815 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7816 c     &   gradcorr5ij,
7817 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7818 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7819 cgrad        ghalf=0.5d0*ggg1(ll)
7820 cd        ghalf=0.0d0
7821         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7822         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7823         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7824         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7825         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7826         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7827 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7828 cgrad        ghalf=0.5d0*ggg2(ll)
7829 cd        ghalf=0.0d0
7830         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7831         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7832         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7833         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7834         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7835         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7836       enddo
7837 cd      goto 1112
7838 cgrad      do m=i+1,j-1
7839 cgrad        do ll=1,3
7840 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7841 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7842 cgrad        enddo
7843 cgrad      enddo
7844 cgrad      do m=k+1,l-1
7845 cgrad        do ll=1,3
7846 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7847 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7848 cgrad        enddo
7849 cgrad      enddo
7850 c1112  continue
7851 cgrad      do m=i+2,j2
7852 cgrad        do ll=1,3
7853 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7854 cgrad        enddo
7855 cgrad      enddo
7856 cgrad      do m=k+2,l2
7857 cgrad        do ll=1,3
7858 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7859 cgrad        enddo
7860 cgrad      enddo 
7861 cd      do iii=1,nres-3
7862 cd        write (2,*) iii,g_corr5_loc(iii)
7863 cd      enddo
7864       eello5=ekont*eel5
7865 cd      write (2,*) 'ekont',ekont
7866 cd      write (iout,*) 'eello5',ekont*eel5
7867       return
7868       end
7869 c--------------------------------------------------------------------------
7870       double precision function eello6(i,j,k,l,jj,kk)
7871       implicit real*8 (a-h,o-z)
7872       include 'DIMENSIONS'
7873       include 'COMMON.IOUNITS'
7874       include 'COMMON.CHAIN'
7875       include 'COMMON.DERIV'
7876       include 'COMMON.INTERACT'
7877       include 'COMMON.CONTACTS'
7878 #ifdef MOMENT
7879       include 'COMMON.CONTACTS.MOMENT'
7880 #endif  
7881       include 'COMMON.TORSION'
7882       include 'COMMON.VAR'
7883       include 'COMMON.GEO'
7884       include 'COMMON.FFIELD'
7885       double precision ggg1(3),ggg2(3)
7886 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7887 cd        eello6=0.0d0
7888 cd        return
7889 cd      endif
7890 cd      write (iout,*)
7891 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7892 cd     &   ' and',k,l
7893       eello6_1=0.0d0
7894       eello6_2=0.0d0
7895       eello6_3=0.0d0
7896       eello6_4=0.0d0
7897       eello6_5=0.0d0
7898       eello6_6=0.0d0
7899 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7900 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7901       do iii=1,2
7902         do kkk=1,5
7903           do lll=1,3
7904             derx(lll,kkk,iii)=0.0d0
7905           enddo
7906         enddo
7907       enddo
7908 cd      eij=facont_hb(jj,i)
7909 cd      ekl=facont_hb(kk,k)
7910 cd      ekont=eij*ekl
7911 cd      eij=1.0d0
7912 cd      ekl=1.0d0
7913 cd      ekont=1.0d0
7914       if (l.eq.j+1) then
7915         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7916         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
7917         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
7918         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7919         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
7920         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
7921       else
7922         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7923         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
7924         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
7925         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7926         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
7927           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7928         else
7929           eello6_5=0.0d0
7930         endif
7931         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
7932       endif
7933 C If turn contributions are considered, they will be handled separately.
7934       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
7935 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
7936 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
7937 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
7938 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
7939 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
7940 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
7941 cd      goto 1112
7942       if (j.lt.nres-1) then
7943         j1=j+1
7944         j2=j-1
7945       else
7946         j1=j-1
7947         j2=j-2
7948       endif
7949       if (l.lt.nres-1) then
7950         l1=l+1
7951         l2=l-1
7952       else
7953         l1=l-1
7954         l2=l-2
7955       endif
7956       do ll=1,3
7957 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
7958 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
7959 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
7960 cgrad        ghalf=0.5d0*ggg1(ll)
7961 cd        ghalf=0.0d0
7962         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
7963         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
7964         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
7965         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
7966         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
7967         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
7968         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
7969         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
7970 cgrad        ghalf=0.5d0*ggg2(ll)
7971 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
7972 cd        ghalf=0.0d0
7973         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
7974         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
7975         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
7976         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
7977         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
7978         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
7979       enddo
7980 cd      goto 1112
7981 cgrad      do m=i+1,j-1
7982 cgrad        do ll=1,3
7983 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
7984 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
7985 cgrad        enddo
7986 cgrad      enddo
7987 cgrad      do m=k+1,l-1
7988 cgrad        do ll=1,3
7989 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
7990 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
7991 cgrad        enddo
7992 cgrad      enddo
7993 cgrad1112  continue
7994 cgrad      do m=i+2,j2
7995 cgrad        do ll=1,3
7996 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
7997 cgrad        enddo
7998 cgrad      enddo
7999 cgrad      do m=k+2,l2
8000 cgrad        do ll=1,3
8001 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8002 cgrad        enddo
8003 cgrad      enddo 
8004 cd      do iii=1,nres-3
8005 cd        write (2,*) iii,g_corr6_loc(iii)
8006 cd      enddo
8007       eello6=ekont*eel6
8008 cd      write (2,*) 'ekont',ekont
8009 cd      write (iout,*) 'eello6',ekont*eel6
8010       return
8011       end
8012 c--------------------------------------------------------------------------
8013       double precision function eello6_graph1(i,j,k,l,imat,swap)
8014       implicit real*8 (a-h,o-z)
8015       include 'DIMENSIONS'
8016       include 'COMMON.IOUNITS'
8017       include 'COMMON.CHAIN'
8018       include 'COMMON.DERIV'
8019       include 'COMMON.INTERACT'
8020       include 'COMMON.CONTACTS'
8021 #ifdef MOMENT
8022       include 'COMMON.CONTACTS.MOMENT'
8023 #endif  
8024       include 'COMMON.TORSION'
8025       include 'COMMON.VAR'
8026       include 'COMMON.GEO'
8027       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8028       logical swap
8029       logical lprn
8030       common /kutas/ lprn
8031 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8032 C                                                                              C
8033 C      Parallel       Antiparallel                                             C
8034 C                                                                              C
8035 C          o             o                                                     C
8036 C         /l\           /j\                                                    C
8037 C        /   \         /   \                                                   C
8038 C       /| o |         | o |\                                                  C
8039 C     \ j|/k\|  /   \  |/k\|l /                                                C
8040 C      \ /   \ /     \ /   \ /                                                 C
8041 C       o     o       o     o                                                  C
8042 C       i             i                                                        C
8043 C                                                                              C
8044 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8045       itk=itortyp(itype(k))
8046       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8047       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8048       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8049       call transpose2(EUgC(1,1,k),auxmat(1,1))
8050       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8051       vv1(1)=pizda1(1,1)-pizda1(2,2)
8052       vv1(2)=pizda1(1,2)+pizda1(2,1)
8053       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8054       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8055       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8056       s5=scalar2(vv(1),Dtobr2(1,i))
8057 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8058       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8059       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8060      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8061      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8062      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8063      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8064      & +scalar2(vv(1),Dtobr2der(1,i)))
8065       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8066       vv1(1)=pizda1(1,1)-pizda1(2,2)
8067       vv1(2)=pizda1(1,2)+pizda1(2,1)
8068       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8069       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8070       if (l.eq.j+1) then
8071         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8072      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8073      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8074      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8075      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8076       else
8077         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8078      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8079      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8080      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8081      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8082       endif
8083       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8084       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8085       vv1(1)=pizda1(1,1)-pizda1(2,2)
8086       vv1(2)=pizda1(1,2)+pizda1(2,1)
8087       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8088      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8089      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8090      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8091       do iii=1,2
8092         if (swap) then
8093           ind=3-iii
8094         else
8095           ind=iii
8096         endif
8097         do kkk=1,5
8098           do lll=1,3
8099             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8100             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8101             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8102             call transpose2(EUgC(1,1,k),auxmat(1,1))
8103             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8104      &        pizda1(1,1))
8105             vv1(1)=pizda1(1,1)-pizda1(2,2)
8106             vv1(2)=pizda1(1,2)+pizda1(2,1)
8107             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8108             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8109      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8110             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8111      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8112             s5=scalar2(vv(1),Dtobr2(1,i))
8113             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8114           enddo
8115         enddo
8116       enddo
8117       return
8118       end
8119 c----------------------------------------------------------------------------
8120       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8121       implicit real*8 (a-h,o-z)
8122       include 'DIMENSIONS'
8123       include 'COMMON.IOUNITS'
8124       include 'COMMON.CHAIN'
8125       include 'COMMON.DERIV'
8126       include 'COMMON.INTERACT'
8127       include 'COMMON.CONTACTS'
8128 #ifdef MOMENT
8129       include 'COMMON.CONTACTS.MOMENT'
8130 #endif  
8131       include 'COMMON.TORSION'
8132       include 'COMMON.VAR'
8133       include 'COMMON.GEO'
8134       logical swap
8135       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8136      & auxvec1(2),auxvec2(1),auxmat1(2,2)
8137       logical lprn
8138       common /kutas/ lprn
8139 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8140 C                                                                              C
8141 C      Parallel       Antiparallel                                             C
8142 C                                                                              C 
8143 C          o             o                                                     C
8144 C     \   /l\           /j\   /                                                C
8145 C      \ /   \         /   \ /                                                 C
8146 C       o| o |         | o |o                                                  C                   
8147 C     \ j|/k\|      \  |/k\|l                                                  C
8148 C      \ /   \       \ /   \                                                   C
8149 C       o             o                                                        C
8150 C       i             i                                                        C 
8151 C                                                                              C
8152 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8153 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8154 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8155 C           but not in a cluster cumulant
8156 #ifdef MOMENT
8157       s1=dip(1,jj,i)*dip(1,kk,k)
8158 #endif
8159       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8160       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8161       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8162       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8163       call transpose2(EUg(1,1,k),auxmat(1,1))
8164       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8165       vv(1)=pizda(1,1)-pizda(2,2)
8166       vv(2)=pizda(1,2)+pizda(2,1)
8167       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8168 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8169 #ifdef MOMENT
8170       eello6_graph2=-(s1+s2+s3+s4)
8171 #else
8172       eello6_graph2=-(s2+s3+s4)
8173 #endif
8174 c      eello6_graph2=-s3
8175 C Derivatives in gamma(i-1)
8176       if (i.gt.1) then
8177 #ifdef MOMENT
8178         s1=dipderg(1,jj,i)*dip(1,kk,k)
8179 #endif
8180         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8181         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8182         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8183         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8184 #ifdef MOMENT
8185         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8186 #else
8187         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8188 #endif
8189 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8190       endif
8191 C Derivatives in gamma(k-1)
8192 #ifdef MOMENT
8193       s1=dip(1,jj,i)*dipderg(1,kk,k)
8194 #endif
8195       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8196       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8197       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8198       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8199       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8200       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8201       vv(1)=pizda(1,1)-pizda(2,2)
8202       vv(2)=pizda(1,2)+pizda(2,1)
8203       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8204 #ifdef MOMENT
8205       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8206 #else
8207       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8208 #endif
8209 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8210 C Derivatives in gamma(j-1) or gamma(l-1)
8211       if (j.gt.1) then
8212 #ifdef MOMENT
8213         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8214 #endif
8215         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8216         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8217         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8218         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8219         vv(1)=pizda(1,1)-pizda(2,2)
8220         vv(2)=pizda(1,2)+pizda(2,1)
8221         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8222 #ifdef MOMENT
8223         if (swap) then
8224           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8225         else
8226           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8227         endif
8228 #endif
8229         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8230 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8231       endif
8232 C Derivatives in gamma(l-1) or gamma(j-1)
8233       if (l.gt.1) then 
8234 #ifdef MOMENT
8235         s1=dip(1,jj,i)*dipderg(3,kk,k)
8236 #endif
8237         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8238         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8239         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8240         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8241         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8242         vv(1)=pizda(1,1)-pizda(2,2)
8243         vv(2)=pizda(1,2)+pizda(2,1)
8244         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8245 #ifdef MOMENT
8246         if (swap) then
8247           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8248         else
8249           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8250         endif
8251 #endif
8252         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8253 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8254       endif
8255 C Cartesian derivatives.
8256       if (lprn) then
8257         write (2,*) 'In eello6_graph2'
8258         do iii=1,2
8259           write (2,*) 'iii=',iii
8260           do kkk=1,5
8261             write (2,*) 'kkk=',kkk
8262             do jjj=1,2
8263               write (2,'(3(2f10.5),5x)') 
8264      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8265             enddo
8266           enddo
8267         enddo
8268       endif
8269       do iii=1,2
8270         do kkk=1,5
8271           do lll=1,3
8272 #ifdef MOMENT
8273             if (iii.eq.1) then
8274               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8275             else
8276               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8277             endif
8278 #endif
8279             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8280      &        auxvec(1))
8281             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8282             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8283      &        auxvec(1))
8284             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8285             call transpose2(EUg(1,1,k),auxmat(1,1))
8286             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8287      &        pizda(1,1))
8288             vv(1)=pizda(1,1)-pizda(2,2)
8289             vv(2)=pizda(1,2)+pizda(2,1)
8290             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8291 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8292 #ifdef MOMENT
8293             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8294 #else
8295             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8296 #endif
8297             if (swap) then
8298               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8299             else
8300               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8301             endif
8302           enddo
8303         enddo
8304       enddo
8305       return
8306       end
8307 c----------------------------------------------------------------------------
8308       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8309       implicit real*8 (a-h,o-z)
8310       include 'DIMENSIONS'
8311       include 'COMMON.IOUNITS'
8312       include 'COMMON.CHAIN'
8313       include 'COMMON.DERIV'
8314       include 'COMMON.INTERACT'
8315       include 'COMMON.CONTACTS'
8316 #ifdef MOMENT
8317       include 'COMMON.CONTACTS.MOMENT'
8318 #endif  
8319       include 'COMMON.TORSION'
8320       include 'COMMON.VAR'
8321       include 'COMMON.GEO'
8322       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8323       logical swap
8324 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8325 C                                                                              C
8326 C      Parallel       Antiparallel                                             C
8327 C                                                                              C
8328 C          o             o                                                     C
8329 C         /l\   /   \   /j\                                                    C
8330 C        /   \ /     \ /   \                                                   C
8331 C       /| o |o       o| o |\                                                  C
8332 C       j|/k\|  /      |/k\|l /                                                C
8333 C        /   \ /       /   \ /                                                 C
8334 C       /     o       /     o                                                  C
8335 C       i             i                                                        C
8336 C                                                                              C
8337 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8338 C
8339 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8340 C           energy moment and not to the cluster cumulant.
8341       iti=itortyp(itype(i))
8342       if (j.lt.nres-1) then
8343         itj1=itortyp(itype(j+1))
8344       else
8345         itj1=ntortyp+1
8346       endif
8347       itk=itortyp(itype(k))
8348       itk1=itortyp(itype(k+1))
8349       if (l.lt.nres-1) then
8350         itl1=itortyp(itype(l+1))
8351       else
8352         itl1=ntortyp+1
8353       endif
8354 #ifdef MOMENT
8355       s1=dip(4,jj,i)*dip(4,kk,k)
8356 #endif
8357       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8358       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8359       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8360       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8361       call transpose2(EE(1,1,itk),auxmat(1,1))
8362       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8363       vv(1)=pizda(1,1)+pizda(2,2)
8364       vv(2)=pizda(2,1)-pizda(1,2)
8365       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8366 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8367 cd     & "sum",-(s2+s3+s4)
8368 #ifdef MOMENT
8369       eello6_graph3=-(s1+s2+s3+s4)
8370 #else
8371       eello6_graph3=-(s2+s3+s4)
8372 #endif
8373 c      eello6_graph3=-s4
8374 C Derivatives in gamma(k-1)
8375       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8376       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8377       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8378       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8379 C Derivatives in gamma(l-1)
8380       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8381       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8382       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8383       vv(1)=pizda(1,1)+pizda(2,2)
8384       vv(2)=pizda(2,1)-pizda(1,2)
8385       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8386       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8387 C Cartesian derivatives.
8388       do iii=1,2
8389         do kkk=1,5
8390           do lll=1,3
8391 #ifdef MOMENT
8392             if (iii.eq.1) then
8393               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8394             else
8395               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8396             endif
8397 #endif
8398             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8399      &        auxvec(1))
8400             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8401             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8402      &        auxvec(1))
8403             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8404             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8405      &        pizda(1,1))
8406             vv(1)=pizda(1,1)+pizda(2,2)
8407             vv(2)=pizda(2,1)-pizda(1,2)
8408             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8409 #ifdef MOMENT
8410             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8411 #else
8412             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8413 #endif
8414             if (swap) then
8415               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8416             else
8417               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8418             endif
8419 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8420           enddo
8421         enddo
8422       enddo
8423       return
8424       end
8425 c----------------------------------------------------------------------------
8426       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8427       implicit real*8 (a-h,o-z)
8428       include 'DIMENSIONS'
8429       include 'COMMON.IOUNITS'
8430       include 'COMMON.CHAIN'
8431       include 'COMMON.DERIV'
8432       include 'COMMON.INTERACT'
8433       include 'COMMON.CONTACTS'
8434 #ifdef MOMENT
8435       include 'COMMON.CONTACTS.MOMENT'
8436 #endif  
8437       include 'COMMON.TORSION'
8438       include 'COMMON.VAR'
8439       include 'COMMON.GEO'
8440       include 'COMMON.FFIELD'
8441       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8442      & auxvec1(2),auxmat1(2,2)
8443       logical swap
8444 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8445 C                                                                              C
8446 C      Parallel       Antiparallel                                             C
8447 C                                                                              C
8448 C          o             o                                                     C
8449 C         /l\   /   \   /j\                                                    C
8450 C        /   \ /     \ /   \                                                   C
8451 C       /| o |o       o| o |\                                                  C
8452 C     \ j|/k\|      \  |/k\|l                                                  C
8453 C      \ /   \       \ /   \                                                   C
8454 C       o     \       o     \                                                  C
8455 C       i             i                                                        C
8456 C                                                                              C
8457 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8458 C
8459 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8460 C           energy moment and not to the cluster cumulant.
8461 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8462       iti=itortyp(itype(i))
8463       itj=itortyp(itype(j))
8464       if (j.lt.nres-1) then
8465         itj1=itortyp(itype(j+1))
8466       else
8467         itj1=ntortyp+1
8468       endif
8469       itk=itortyp(itype(k))
8470       if (k.lt.nres-1) then
8471         itk1=itortyp(itype(k+1))
8472       else
8473         itk1=ntortyp+1
8474       endif
8475       itl=itortyp(itype(l))
8476       if (l.lt.nres-1) then
8477         itl1=itortyp(itype(l+1))
8478       else
8479         itl1=ntortyp+1
8480       endif
8481 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8482 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8483 cd     & ' itl',itl,' itl1',itl1
8484 #ifdef MOMENT
8485       if (imat.eq.1) then
8486         s1=dip(3,jj,i)*dip(3,kk,k)
8487       else
8488         s1=dip(2,jj,j)*dip(2,kk,l)
8489       endif
8490 #endif
8491       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8492       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8493       if (j.eq.l+1) then
8494         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8495         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8496       else
8497         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8498         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8499       endif
8500       call transpose2(EUg(1,1,k),auxmat(1,1))
8501       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8502       vv(1)=pizda(1,1)-pizda(2,2)
8503       vv(2)=pizda(2,1)+pizda(1,2)
8504       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8505 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8506 #ifdef MOMENT
8507       eello6_graph4=-(s1+s2+s3+s4)
8508 #else
8509       eello6_graph4=-(s2+s3+s4)
8510 #endif
8511 C Derivatives in gamma(i-1)
8512       if (i.gt.1) then
8513 #ifdef MOMENT
8514         if (imat.eq.1) then
8515           s1=dipderg(2,jj,i)*dip(3,kk,k)
8516         else
8517           s1=dipderg(4,jj,j)*dip(2,kk,l)
8518         endif
8519 #endif
8520         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8521         if (j.eq.l+1) then
8522           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8523           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8524         else
8525           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8526           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8527         endif
8528         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8529         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8530 cd          write (2,*) 'turn6 derivatives'
8531 #ifdef MOMENT
8532           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8533 #else
8534           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8535 #endif
8536         else
8537 #ifdef MOMENT
8538           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8539 #else
8540           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8541 #endif
8542         endif
8543       endif
8544 C Derivatives in gamma(k-1)
8545 #ifdef MOMENT
8546       if (imat.eq.1) then
8547         s1=dip(3,jj,i)*dipderg(2,kk,k)
8548       else
8549         s1=dip(2,jj,j)*dipderg(4,kk,l)
8550       endif
8551 #endif
8552       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8553       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8554       if (j.eq.l+1) then
8555         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8556         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8557       else
8558         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8559         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8560       endif
8561       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8562       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8563       vv(1)=pizda(1,1)-pizda(2,2)
8564       vv(2)=pizda(2,1)+pizda(1,2)
8565       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8566       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8567 #ifdef MOMENT
8568         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8569 #else
8570         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8571 #endif
8572       else
8573 #ifdef MOMENT
8574         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8575 #else
8576         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8577 #endif
8578       endif
8579 C Derivatives in gamma(j-1) or gamma(l-1)
8580       if (l.eq.j+1 .and. l.gt.1) then
8581         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8582         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8583         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8584         vv(1)=pizda(1,1)-pizda(2,2)
8585         vv(2)=pizda(2,1)+pizda(1,2)
8586         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8587         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8588       else if (j.gt.1) then
8589         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8590         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8591         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8592         vv(1)=pizda(1,1)-pizda(2,2)
8593         vv(2)=pizda(2,1)+pizda(1,2)
8594         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8595         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8596           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8597         else
8598           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8599         endif
8600       endif
8601 C Cartesian derivatives.
8602       do iii=1,2
8603         do kkk=1,5
8604           do lll=1,3
8605 #ifdef MOMENT
8606             if (iii.eq.1) then
8607               if (imat.eq.1) then
8608                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8609               else
8610                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8611               endif
8612             else
8613               if (imat.eq.1) then
8614                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8615               else
8616                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8617               endif
8618             endif
8619 #endif
8620             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8621      &        auxvec(1))
8622             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8623             if (j.eq.l+1) then
8624               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8625      &          b1(1,itj1),auxvec(1))
8626               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8627             else
8628               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8629      &          b1(1,itl1),auxvec(1))
8630               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8631             endif
8632             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8633      &        pizda(1,1))
8634             vv(1)=pizda(1,1)-pizda(2,2)
8635             vv(2)=pizda(2,1)+pizda(1,2)
8636             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8637             if (swap) then
8638               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8639 #ifdef MOMENT
8640                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8641      &             -(s1+s2+s4)
8642 #else
8643                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8644      &             -(s2+s4)
8645 #endif
8646                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8647               else
8648 #ifdef MOMENT
8649                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8650 #else
8651                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8652 #endif
8653                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8654               endif
8655             else
8656 #ifdef MOMENT
8657               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8658 #else
8659               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8660 #endif
8661               if (l.eq.j+1) then
8662                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8663               else 
8664                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8665               endif
8666             endif 
8667           enddo
8668         enddo
8669       enddo
8670       return
8671       end
8672 c----------------------------------------------------------------------------
8673       double precision function eello_turn6(i,jj,kk)
8674       implicit real*8 (a-h,o-z)
8675       include 'DIMENSIONS'
8676       include 'COMMON.IOUNITS'
8677       include 'COMMON.CHAIN'
8678       include 'COMMON.DERIV'
8679       include 'COMMON.INTERACT'
8680       include 'COMMON.CONTACTS'
8681 #ifdef MOMENT
8682       include 'COMMON.CONTACTS.MOMENT'
8683 #endif  
8684       include 'COMMON.TORSION'
8685       include 'COMMON.VAR'
8686       include 'COMMON.GEO'
8687       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8688      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8689      &  ggg1(3),ggg2(3)
8690       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8691      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8692 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8693 C           the respective energy moment and not to the cluster cumulant.
8694       s1=0.0d0
8695       s8=0.0d0
8696       s13=0.0d0
8697 c
8698       eello_turn6=0.0d0
8699       j=i+4
8700       k=i+1
8701       l=i+3
8702       iti=itortyp(itype(i))
8703       itk=itortyp(itype(k))
8704       itk1=itortyp(itype(k+1))
8705       itl=itortyp(itype(l))
8706       itj=itortyp(itype(j))
8707 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8708 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8709 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8710 cd        eello6=0.0d0
8711 cd        return
8712 cd      endif
8713 cd      write (iout,*)
8714 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8715 cd     &   ' and',k,l
8716 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8717       do iii=1,2
8718         do kkk=1,5
8719           do lll=1,3
8720             derx_turn(lll,kkk,iii)=0.0d0
8721           enddo
8722         enddo
8723       enddo
8724 cd      eij=1.0d0
8725 cd      ekl=1.0d0
8726 cd      ekont=1.0d0
8727       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8728 cd      eello6_5=0.0d0
8729 cd      write (2,*) 'eello6_5',eello6_5
8730 #ifdef MOMENT
8731       call transpose2(AEA(1,1,1),auxmat(1,1))
8732       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8733       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8734       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8735 #endif
8736       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8737       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8738       s2 = scalar2(b1(1,itk),vtemp1(1))
8739 #ifdef MOMENT
8740       call transpose2(AEA(1,1,2),atemp(1,1))
8741       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8742       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8743       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8744 #endif
8745       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8746       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8747       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8748 #ifdef MOMENT
8749       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8750       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8751       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8752       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8753       ss13 = scalar2(b1(1,itk),vtemp4(1))
8754       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8755 #endif
8756 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8757 c      s1=0.0d0
8758 c      s2=0.0d0
8759 c      s8=0.0d0
8760 c      s12=0.0d0
8761 c      s13=0.0d0
8762       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8763 C Derivatives in gamma(i+2)
8764       s1d =0.0d0
8765       s8d =0.0d0
8766 #ifdef MOMENT
8767       call transpose2(AEA(1,1,1),auxmatd(1,1))
8768       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8769       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8770       call transpose2(AEAderg(1,1,2),atempd(1,1))
8771       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8772       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8773 #endif
8774       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8775       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8776       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8777 c      s1d=0.0d0
8778 c      s2d=0.0d0
8779 c      s8d=0.0d0
8780 c      s12d=0.0d0
8781 c      s13d=0.0d0
8782       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8783 C Derivatives in gamma(i+3)
8784 #ifdef MOMENT
8785       call transpose2(AEA(1,1,1),auxmatd(1,1))
8786       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8787       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8788       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8789 #endif
8790       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8791       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8792       s2d = scalar2(b1(1,itk),vtemp1d(1))
8793 #ifdef MOMENT
8794       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8795       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8796 #endif
8797       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8798 #ifdef MOMENT
8799       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8800       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8801       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8802 #endif
8803 c      s1d=0.0d0
8804 c      s2d=0.0d0
8805 c      s8d=0.0d0
8806 c      s12d=0.0d0
8807 c      s13d=0.0d0
8808 #ifdef MOMENT
8809       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8810      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8811 #else
8812       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8813      &               -0.5d0*ekont*(s2d+s12d)
8814 #endif
8815 C Derivatives in gamma(i+4)
8816       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8817       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8818       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8819 #ifdef MOMENT
8820       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8821       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8822       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8823 #endif
8824 c      s1d=0.0d0
8825 c      s2d=0.0d0
8826 c      s8d=0.0d0
8827 C      s12d=0.0d0
8828 c      s13d=0.0d0
8829 #ifdef MOMENT
8830       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8831 #else
8832       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8833 #endif
8834 C Derivatives in gamma(i+5)
8835 #ifdef MOMENT
8836       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8837       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8838       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8839 #endif
8840       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8841       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8842       s2d = scalar2(b1(1,itk),vtemp1d(1))
8843 #ifdef MOMENT
8844       call transpose2(AEA(1,1,2),atempd(1,1))
8845       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8846       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8847 #endif
8848       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8849       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8850 #ifdef MOMENT
8851       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8852       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8853       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8854 #endif
8855 c      s1d=0.0d0
8856 c      s2d=0.0d0
8857 c      s8d=0.0d0
8858 c      s12d=0.0d0
8859 c      s13d=0.0d0
8860 #ifdef MOMENT
8861       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8862      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8863 #else
8864       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8865      &               -0.5d0*ekont*(s2d+s12d)
8866 #endif
8867 C Cartesian derivatives
8868       do iii=1,2
8869         do kkk=1,5
8870           do lll=1,3
8871 #ifdef MOMENT
8872             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8873             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8874             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8875 #endif
8876             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8877             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8878      &          vtemp1d(1))
8879             s2d = scalar2(b1(1,itk),vtemp1d(1))
8880 #ifdef MOMENT
8881             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8882             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8883             s8d = -(atempd(1,1)+atempd(2,2))*
8884      &           scalar2(cc(1,1,itl),vtemp2(1))
8885 #endif
8886             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8887      &           auxmatd(1,1))
8888             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8889             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8890 c      s1d=0.0d0
8891 c      s2d=0.0d0
8892 c      s8d=0.0d0
8893 c      s12d=0.0d0
8894 c      s13d=0.0d0
8895 #ifdef MOMENT
8896             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8897      &        - 0.5d0*(s1d+s2d)
8898 #else
8899             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8900      &        - 0.5d0*s2d
8901 #endif
8902 #ifdef MOMENT
8903             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8904      &        - 0.5d0*(s8d+s12d)
8905 #else
8906             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8907      &        - 0.5d0*s12d
8908 #endif
8909           enddo
8910         enddo
8911       enddo
8912 #ifdef MOMENT
8913       do kkk=1,5
8914         do lll=1,3
8915           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8916      &      achuj_tempd(1,1))
8917           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8918           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8919           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8920           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8921           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8922      &      vtemp4d(1)) 
8923           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8924           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8925           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8926         enddo
8927       enddo
8928 #endif
8929 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
8930 cd     &  16*eel_turn6_num
8931 cd      goto 1112
8932       if (j.lt.nres-1) then
8933         j1=j+1
8934         j2=j-1
8935       else
8936         j1=j-1
8937         j2=j-2
8938       endif
8939       if (l.lt.nres-1) then
8940         l1=l+1
8941         l2=l-1
8942       else
8943         l1=l-1
8944         l2=l-2
8945       endif
8946       do ll=1,3
8947 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
8948 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
8949 cgrad        ghalf=0.5d0*ggg1(ll)
8950 cd        ghalf=0.0d0
8951         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
8952         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
8953         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
8954      &    +ekont*derx_turn(ll,2,1)
8955         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
8956         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
8957      &    +ekont*derx_turn(ll,4,1)
8958         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
8959         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
8960         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
8961 cgrad        ghalf=0.5d0*ggg2(ll)
8962 cd        ghalf=0.0d0
8963         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
8964      &    +ekont*derx_turn(ll,2,2)
8965         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
8966         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
8967      &    +ekont*derx_turn(ll,4,2)
8968         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
8969         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
8970         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
8971       enddo
8972 cd      goto 1112
8973 cgrad      do m=i+1,j-1
8974 cgrad        do ll=1,3
8975 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
8976 cgrad        enddo
8977 cgrad      enddo
8978 cgrad      do m=k+1,l-1
8979 cgrad        do ll=1,3
8980 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
8981 cgrad        enddo
8982 cgrad      enddo
8983 cgrad1112  continue
8984 cgrad      do m=i+2,j2
8985 cgrad        do ll=1,3
8986 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
8987 cgrad        enddo
8988 cgrad      enddo
8989 cgrad      do m=k+2,l2
8990 cgrad        do ll=1,3
8991 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
8992 cgrad        enddo
8993 cgrad      enddo 
8994 cd      do iii=1,nres-3
8995 cd        write (2,*) iii,g_corr6_loc(iii)
8996 cd      enddo
8997       eello_turn6=ekont*eel_turn6
8998 cd      write (2,*) 'ekont',ekont
8999 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9000       return
9001       end
9002
9003 C-----------------------------------------------------------------------------
9004       double precision function scalar(u,v)
9005 !DIR$ INLINEALWAYS scalar
9006 #ifndef OSF
9007 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9008 #endif
9009       implicit none
9010       double precision u(3),v(3)
9011 cd      double precision sc
9012 cd      integer i
9013 cd      sc=0.0d0
9014 cd      do i=1,3
9015 cd        sc=sc+u(i)*v(i)
9016 cd      enddo
9017 cd      scalar=sc
9018
9019       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9020       return
9021       end
9022 crc-------------------------------------------------
9023       SUBROUTINE MATVEC2(A1,V1,V2)
9024 !DIR$ INLINEALWAYS MATVEC2
9025 #ifndef OSF
9026 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9027 #endif
9028       implicit real*8 (a-h,o-z)
9029       include 'DIMENSIONS'
9030       DIMENSION A1(2,2),V1(2),V2(2)
9031 c      DO 1 I=1,2
9032 c        VI=0.0
9033 c        DO 3 K=1,2
9034 c    3     VI=VI+A1(I,K)*V1(K)
9035 c        Vaux(I)=VI
9036 c    1 CONTINUE
9037
9038       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9039       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9040
9041       v2(1)=vaux1
9042       v2(2)=vaux2
9043       END
9044 C---------------------------------------
9045       SUBROUTINE MATMAT2(A1,A2,A3)
9046 #ifndef OSF
9047 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9048 #endif
9049       implicit real*8 (a-h,o-z)
9050       include 'DIMENSIONS'
9051       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9052 c      DIMENSION AI3(2,2)
9053 c        DO  J=1,2
9054 c          A3IJ=0.0
9055 c          DO K=1,2
9056 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9057 c          enddo
9058 c          A3(I,J)=A3IJ
9059 c       enddo
9060 c      enddo
9061
9062       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9063       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9064       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9065       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9066
9067       A3(1,1)=AI3_11
9068       A3(2,1)=AI3_21
9069       A3(1,2)=AI3_12
9070       A3(2,2)=AI3_22
9071       END
9072
9073 c-------------------------------------------------------------------------
9074       double precision function scalar2(u,v)
9075 !DIR$ INLINEALWAYS scalar2
9076       implicit none
9077       double precision u(2),v(2)
9078       double precision sc
9079       integer i
9080       scalar2=u(1)*v(1)+u(2)*v(2)
9081       return
9082       end
9083
9084 C-----------------------------------------------------------------------------
9085
9086       subroutine transpose2(a,at)
9087 !DIR$ INLINEALWAYS transpose2
9088 #ifndef OSF
9089 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9090 #endif
9091       implicit none
9092       double precision a(2,2),at(2,2)
9093       at(1,1)=a(1,1)
9094       at(1,2)=a(2,1)
9095       at(2,1)=a(1,2)
9096       at(2,2)=a(2,2)
9097       return
9098       end
9099 c--------------------------------------------------------------------------
9100       subroutine transpose(n,a,at)
9101       implicit none
9102       integer n,i,j
9103       double precision a(n,n),at(n,n)
9104       do i=1,n
9105         do j=1,n
9106           at(j,i)=a(i,j)
9107         enddo
9108       enddo
9109       return
9110       end
9111 C---------------------------------------------------------------------------
9112       subroutine prodmat3(a1,a2,kk,transp,prod)
9113 !DIR$ INLINEALWAYS prodmat3
9114 #ifndef OSF
9115 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9116 #endif
9117       implicit none
9118       integer i,j
9119       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9120       logical transp
9121 crc      double precision auxmat(2,2),prod_(2,2)
9122
9123       if (transp) then
9124 crc        call transpose2(kk(1,1),auxmat(1,1))
9125 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9126 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9127         
9128            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9129      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9130            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9131      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9132            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9133      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9134            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9135      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9136
9137       else
9138 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9139 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9140
9141            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9142      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9143            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9144      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9145            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9146      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9147            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9148      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9149
9150       endif
9151 c      call transpose2(a2(1,1),a2t(1,1))
9152
9153 crc      print *,transp
9154 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9155 crc      print *,((prod(i,j),i=1,2),j=1,2)
9156
9157       return
9158       end
9159