Introduction to UNRES_MD_DFA (prepaired required fiels)
authorBartlomiej Zaborowski <bartek.zaborowski@chem.univ.gda.pl>
Sat, 17 Nov 2012 15:37:25 +0000 (10:37 -0500)
committerBartlomiej Zaborowski <bartek.zaborowski@chem.univ.gda.pl>
Sat, 17 Nov 2012 15:37:25 +0000 (10:37 -0500)
140 files changed:
source/unres/src_MD_DFA/CMakeLists.txt [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.BOUNDS [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.CACHE [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.CALC [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.CHAIN [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.CONTACTS [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.CONTACTS.moment [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.CONTROL [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.DBASE [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.DERIV [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.DISTFIT [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.FFIELD [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.GEO [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.HAIRPIN [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.HEADER [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.INFO [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.INTERACT [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.IOUNITS [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.LANGEVIN [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.LANGEVIN.lang0 [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.LOCAL [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.LOCMOVE [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.MAP [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.MAXGRAD [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.MCE [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.MCM [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.MD [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.MINIM [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.MUCA [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.NAMES [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.REFSYS [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.REMD [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.SBRIDGE [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.SCCOR [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.SCROT [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.SETUP [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.SPLITELE [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.THREAD [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.TIME1 [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.TORCNSTR [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.TORSION [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.VAR [new file with mode: 0644]
source/unres/src_MD_DFA/COMMON.VECTORS [new file with mode: 0644]
source/unres/src_MD_DFA/DIMENSIONS [new file with mode: 0644]
source/unres/src_MD_DFA/DIMENSIONS.2100 [new file with mode: 0644]
source/unres/src_MD_DFA/DIMENSIONS.4100 [new file with mode: 0644]
source/unres/src_MD_DFA/MD_A-MTS.F [new file with mode: 0644]
source/unres/src_MD_DFA/MP.F [new file with mode: 0644]
source/unres/src_MD_DFA/MREMD.F [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile-intrepid-with-tau [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile.tau-mpi-f77-pdt [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_MPICH_ifort [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_aix_xlf [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_bigben [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_bigben-oldparm [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_bigben-tau [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_galera [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_intrepid [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_lnx_ifc10_opteron [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_lnx_ifc10_opteron_oldparm [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_single_gfortran [new file with mode: 0644]
source/unres/src_MD_DFA/Makefile_single_ifort [new file with mode: 0644]
source/unres/src_MD_DFA/README [new file with mode: 0644]
source/unres/src_MD_DFA/add.f [new file with mode: 0644]
source/unres/src_MD_DFA/arcos.f [new file with mode: 0644]
source/unres/src_MD_DFA/banach.f [new file with mode: 0644]
source/unres/src_MD_DFA/blas.f [new file with mode: 0644]
source/unres/src_MD_DFA/bond_move.f [new file with mode: 0644]
source/unres/src_MD_DFA/cartder.F [new file with mode: 0644]
source/unres/src_MD_DFA/cartprint.f [new file with mode: 0644]
source/unres/src_MD_DFA/chainbuild.F [new file with mode: 0644]
source/unres/src_MD_DFA/change.awk [new file with mode: 0644]
source/unres/src_MD_DFA/check_bond.f [new file with mode: 0644]
source/unres/src_MD_DFA/check_sc_distr.f [new file with mode: 0644]
source/unres/src_MD_DFA/checkder_p.F [new file with mode: 0644]
source/unres/src_MD_DFA/compare_s1.F [new file with mode: 0644]
source/unres/src_MD_DFA/compinfo.c [new file with mode: 0644]
source/unres/src_MD_DFA/contact.f [new file with mode: 0644]
source/unres/src_MD_DFA/convert.f [new file with mode: 0644]
source/unres/src_MD_DFA/cored.f [new file with mode: 0644]
source/unres/src_MD_DFA/dihed_cons.F [new file with mode: 0644]
source/unres/src_MD_DFA/djacob.f [new file with mode: 0644]
source/unres/src_MD_DFA/econstr_local.F [new file with mode: 0644]
source/unres/src_MD_DFA/eigen.f [new file with mode: 0644]
source/unres/src_MD_DFA/elecont.f [new file with mode: 0644]
source/unres/src_MD_DFA/energy_p_new-sep_barrier.F [new file with mode: 0644]
source/unres/src_MD_DFA/energy_p_new_barrier.F [new file with mode: 0644]
source/unres/src_MD_DFA/energy_split-sep.F [new file with mode: 0644]
source/unres/src_MD_DFA/entmcm.F [new file with mode: 0644]
source/unres/src_MD_DFA/fitsq.f [new file with mode: 0644]
source/unres/src_MD_DFA/gauss.f [new file with mode: 0644]
source/unres/src_MD_DFA/gen_rand_conf.F [new file with mode: 0644]
source/unres/src_MD_DFA/geomout.F [new file with mode: 0644]
source/unres/src_MD_DFA/gnmr1.f [new file with mode: 0644]
source/unres/src_MD_DFA/gradient_p.F [new file with mode: 0644]
source/unres/src_MD_DFA/initialize_p.F [new file with mode: 0644]
source/unres/src_MD_DFA/int_to_cart.f [new file with mode: 0644]
source/unres/src_MD_DFA/intcartderiv.F [new file with mode: 0644]
source/unres/src_MD_DFA/intcor.f [new file with mode: 0644]
source/unres/src_MD_DFA/intlocal.f [new file with mode: 0644]
source/unres/src_MD_DFA/kinetic_lesyng.f [new file with mode: 0644]
source/unres/src_MD_DFA/lagrangian_lesyng.F [new file with mode: 0644]
source/unres/src_MD_DFA/local_move.f [new file with mode: 0644]
source/unres/src_MD_DFA/map.f [new file with mode: 0644]
source/unres/src_MD_DFA/matmult.f [new file with mode: 0644]
source/unres/src_MD_DFA/mc.F [new file with mode: 0644]
source/unres/src_MD_DFA/mcm.F [new file with mode: 0644]
source/unres/src_MD_DFA/minim_mcmf.F [new file with mode: 0644]
source/unres/src_MD_DFA/minimize_p.F [new file with mode: 0644]
source/unres/src_MD_DFA/misc.f [new file with mode: 0644]
source/unres/src_MD_DFA/moments.f [new file with mode: 0644]
source/unres/src_MD_DFA/muca_md.f [new file with mode: 0644]
source/unres/src_MD_DFA/parmread.F [new file with mode: 0644]
source/unres/src_MD_DFA/pinorm.f [new file with mode: 0644]
source/unres/src_MD_DFA/printmat.f [new file with mode: 0644]
source/unres/src_MD_DFA/prng.f [new file with mode: 0644]
source/unres/src_MD_DFA/prng_32.F [new file with mode: 0644]
source/unres/src_MD_DFA/proc_proc.c [new file with mode: 0644]
source/unres/src_MD_DFA/q_measure.F [new file with mode: 0644]
source/unres/src_MD_DFA/q_measure1.F [new file with mode: 0644]
source/unres/src_MD_DFA/q_measure3.F [new file with mode: 0644]
source/unres/src_MD_DFA/randgens.f [new file with mode: 0644]
source/unres/src_MD_DFA/rattle.F [new file with mode: 0644]
source/unres/src_MD_DFA/readpdb.F [new file with mode: 0644]
source/unres/src_MD_DFA/readrtns.F [new file with mode: 0644]
source/unres/src_MD_DFA/refsys.f [new file with mode: 0644]
source/unres/src_MD_DFA/regularize.F [new file with mode: 0644]
source/unres/src_MD_DFA/rescode.f [new file with mode: 0644]
source/unres/src_MD_DFA/rmdd.f [new file with mode: 0644]
source/unres/src_MD_DFA/rmsd.F [new file with mode: 0644]
source/unres/src_MD_DFA/sc_move.F [new file with mode: 0644]
source/unres/src_MD_DFA/sizes.i [new file with mode: 0644]
source/unres/src_MD_DFA/sort.f [new file with mode: 0644]
source/unres/src_MD_DFA/stochfric.F [new file with mode: 0644]
source/unres/src_MD_DFA/sumsld.f [new file with mode: 0644]
source/unres/src_MD_DFA/surfatom.f [new file with mode: 0644]
source/unres/src_MD_DFA/test.F [new file with mode: 0644]
source/unres/src_MD_DFA/thread.F [new file with mode: 0644]
source/unres/src_MD_DFA/timing.F [new file with mode: 0644]
source/unres/src_MD_DFA/unres.F [new file with mode: 0644]

diff --git a/source/unres/src_MD_DFA/CMakeLists.txt b/source/unres/src_MD_DFA/CMakeLists.txt
new file mode 100644 (file)
index 0000000..c56c706
--- /dev/null
@@ -0,0 +1,394 @@
+#
+# CMake project file for UNRES with MD for single chains
+# 
+
+enable_language (Fortran)
+
+
+#================================
+# Set source file lists
+#================================
+set(UNRES_MD_SRC0 
+       add.f 
+       arcos.f
+       banach.f 
+       blas.f 
+       bond_move.f 
+       cartder.F 
+       cartprint.f 
+       check_sc_distr.f
+       check_bond.f 
+       chainbuild.F 
+       checkder_p.F 
+       compare_s1.F 
+       contact.f 
+       convert.f 
+       cored.f 
+       dihed_cons.F 
+       djacob.f 
+       econstr_local.F
+       eigen.f 
+       elecont.f 
+       energy_split-sep.F 
+       entmcm.F
+       fitsq.f 
+       gauss.f 
+       gen_rand_conf.F
+       geomout.F 
+       gnmr1.f 
+       intcartderiv.F 
+       initialize_p.F 
+       int_to_cart.f 
+       intcor.f 
+       intlocal.f 
+       kinetic_lesyng.f 
+       lagrangian_lesyng.F 
+       local_move.f 
+       map.f 
+       matmult.f 
+       mc.F 
+       mcm.F 
+       MD_A-MTS.F 
+       minimize_p.F 
+       minim_mcmf.F 
+       misc.f 
+       moments.f
+       MP.F 
+       MREMD.F 
+       muca_md.f 
+       parmread.F 
+       pinorm.f 
+       printmat.f 
+       q_measure.F 
+       randgens.f 
+       rattle.F 
+       readpdb.F 
+       readrtns.F 
+       refsys.f 
+       regularize.F
+       rescode.f 
+       rmdd.f 
+       rmsd.F 
+       sc_move.F 
+       sort.f 
+       stochfric.F 
+       sumsld.f 
+       surfatom.f 
+       test.F
+       timing.F
+       thread.F 
+       unres.F
+)
+
+if(Fortran_COMPILER_NAME STREQUAL "ifort")
+  set(UNRES_MD_SRC0 ${UNRES_MD_SRC0} prng.f ) 
+else()
+  set(UNRES_MD_SRC0 ${UNRES_MD_SRC0} prng_32.F )
+endif (Fortran_COMPILER_NAME STREQUAL "ifort")
+
+
+set(UNRES_MD_SRC3 
+       energy_p_new_barrier.F 
+       energy_p_new-sep_barrier.F 
+       gradient_p.F )
+
+set(UNRES_MD_PP_SRC
+       cartder.F
+       chainbuild.F 
+       checkder_p.F 
+       compare_s1.F 
+       dihed_cons.F 
+       econstr_local.F 
+       energy_p_new_barrier.F 
+       energy_p_new-sep_barrier.F 
+       energy_split-sep.F 
+       entmcm.F 
+       gen_rand_conf.F
+       geomout.F 
+       gradient_p.F 
+       initialize_p.F 
+       intcartderiv.F 
+       lagrangian_lesyng.F 
+       mc.F 
+       mcm.F 
+       MD_A-MTS.F
+       minimize_p.F 
+       minim_mcmf.F 
+       MP.F 
+       MREMD.F 
+       parmread.F 
+       q_measure1.F 
+       q_measure3.F 
+       q_measure.F
+       rattle.F 
+       readpdb.F 
+       readrtns.F 
+       regularize.F 
+       rmsd.F 
+       sc_move.F 
+       stochfric.F 
+       test.F 
+       thread.F 
+       timing.F
+       unres.F 
+       proc_proc.c 
+) 
+
+
+if(NOT Fortran_COMPILER_NAME STREQUAL "ifort")
+  set(UNRES_MD_PP_SRC ${UNRES_MD_PP_SRC} prng_32.F) 
+endif(NOT Fortran_COMPILER_NAME STREQUAL "ifort")
+
+#================================================
+# Set comipiler flags for different sourcefiles  
+#================================================
+if (Fortran_COMPILER_NAME STREQUAL "ifort")
+  set(FFLAGS0 "-ip -w" ) 
+  set(FFLAGS1 "-w -g -d2 -CA -CB" ) 
+  set(FFLAGS2 "-w -g -00 ")
+  #set(FFLAGS3 "-c -w -O3 -ipo -ipo_obj -opt_report" )
+  set(FFLAGS3 "-w -ipo " )
+elseif (Fortran_COMPILER_NAME STREQUAL "gfortran")
+  set(FFLAGS0 "-I. " ) 
+  set(FFLAGS1 "-g -I. " ) 
+  set(FFLAGS2 "-I. ")
+  #set(FFLAGS3 "-c -w -O3 -ipo -ipo_obj -opt_report" )
+  set(FFLAGS3 "-I. " )
+endif (Fortran_COMPILER_NAME STREQUAL "ifort")
+
+
+# Add MPI compiler flags
+if(UNRES_WITH_MPI)
+  set(FFLAGS0 "${FFLAGS0} -I${MPIF_INCLUDE_DIRECTORIES}")
+  set(FFLAGS1 "${FFLAGS1} -I${MPIF_INCLUDE_DIRECTORIES}")
+  set(FFLAGS2 "${FFLAGS2} -I${MPIF_INCLUDE_DIRECTORIES}")
+  set(FFLAGS3 "${FFLAGS3} -I${MPIF_INCLUDE_DIRECTORIES}")
+endif(UNRES_WITH_MPI)
+
+set_property(SOURCE ${UNRES_MD_SRC0} APPEND PROPERTY COMPILE_FLAGS ${FFLAGS0} )
+#set_property(SOURCE ${UNRES_MD_SRC1} PROPERTY COMPILE_FLAGS ${FFLAGS1} )
+#set_property(SOURCE ${UNRES_MD_SRC2} PROPERTY COMPILE_FLAGS ${FFLAGS2} )
+set_property(SOURCE ${UNRES_MD_SRC3} PROPERTY COMPILE_FLAGS ${FFLAGS3} )
+
+#=========================================
+# Settings for GAB force field 
+#=========================================
+if(UNRES_MD_FF STREQUAL "GAB" )
+  # set preprocesor flags   
+  set(CPPFLAGS "PROCOR -DUNRES -DISNAN -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC" )
+
+#=========================================
+#  Settings for E0LL2Y force field
+#=========================================
+elseif(UNRES_MD_FF STREQUAL "E0LL2Y")
+  # set preprocesor flags   
+  set(CPPFLAGS "PROCOR -DUNRES -DISNAN -DSPLITELE -DLANG0" )
+endif(UNRES_MD_FF STREQUAL "GAB")
+
+#=========================================
+# System specific flags
+#=========================================
+if(${CMAKE_SYSTEM_NAME} MATCHES "Linux")
+  set(CPPFLAGS "${CPPFLAGS} -DLINUX") 
+endif(${CMAKE_SYSTEM_NAME} MATCHES "Linux")
+
+#=========================================
+# Compiler specific flags
+#=========================================
+
+if (Fortran_COMPILER_NAME STREQUAL "ifort")
+  # Add ifort preprocessor flags
+  set(CPPFLAGS "${CPPFLAGS} -DPGI") 
+elseif (Fortran_COMPILER_NAME STREQUAL "f95")
+  # Add new gfortran flags
+  set(CPPFLAGS "${CPPFLAGS} -DG77") 
+elseif (Fortran_COMPILER_NAME STREQUAL "gfortran")
+  # Add old gfortran flags
+  set(CPPFLAGS "${CPPFLAGS} -DG77") 
+endif (Fortran_COMPILER_NAME STREQUAL "ifort")
+
+#=========================================
+# Add MPI preprocessor flags
+#=========================================
+if (UNRES_WITH_MPI)
+  set(CPPFLAGS "${CPPFLAGS} -DMP -DMPI") 
+endif(UNRES_WITH_MPI)
+
+#=========================================
+# Apply preprocesor flags to *.F files
+#=========================================
+set_property(SOURCE ${UNRES_MD_PP_SRC} PROPERTY COMPILE_DEFINITIONS ${CPPFLAGS} )  
+
+
+#========================================
+#  Setting binary name
+#========================================
+if(UNRES_WITH_MPI) 
+  # binary with mpi
+  set(UNRES_BIN "unres_${Fortran_COMPILER_NAME}_MPICH_${UNRES_MD_FF}.exe")
+else(UNRES_WITH_MPI)
+  # binary without mpi
+  set(UNRES_BIN "unres_${Fortran_COMPILER_NAME}_single_${UNRES_MD_FF}.exe")
+endif(UNRES_WITH_MPI)  
+
+#=========================================
+# cinfo.f workaround for cmake
+#=========================================
+# get the current date  
+TODAY(DATE)
+# generate cinfo.f
+
+set(CINFO "${CMAKE_CURRENT_BINARY_DIR}/cinfo.f")
+FILE(WRITE ${CINFO}
+"C CMake generated file
+       subroutine cinfo
+       include 'COMMON.IOUNITS'
+       write(iout,*)'++++ Compile info ++++'
+       write(iout,*)'Version ${UNRES_MAJOR}.${UNRES_MINOR} build ${UNRES_PATCH}'
+")
+
+CINFO_FORMAT(${CINFO} "Compiled" "${DATE}" )
+CINFO_FORMAT(${CINFO} "Compiled by" "$ENV{USER}@$ENV{HOST}" )
+CINFO_FORMAT(${CINFO} "OS name:" "${CMAKE_SYSTEM_NAME}" )
+CINFO_FORMAT(${CINFO} "OS release:" "${CMAKE_SYSTEM}" )
+CINFO_FORMAT(${CINFO} "Fortran Compiler:" "${CMAKE_Fortran_COMPILER}" )
+CINFO_FORMAT(${CINFO} "MD Force field:" "${UNRES_MD_FF}" )
+CINFO_FORMAT(${CINFO} "CPPFLAGS =" "${CPPFLAGS}")
+
+FILE(APPEND ${CINFO} 
+"       write(iout,*)'++++ End of compile info ++++'  
+       return 
+       end ")
+
+#FILE(APPEND ${CMAKE_CURRENT_BINARY_DIR}/cinfo.f
+#      CINFO_FORMAT(CPPFLAGS)
+#)
+# add include path
+set_property(SOURCE ${CMAKE_CURRENT_BINARY_DIR}/cinfo.f PROPERTY COMPILE_FLAGS "${FFLAGS0} -I${CMAKE_CURRENT_SOURCE_DIR}")
+
+#=========================================
+# Set full unres MD sources
+#=========================================
+set(UNRES_MD_SRCS ${UNRES_MD_SRC0} ${UNRES_MD_SRC3} ${CMAKE_CURRENT_BINARY_DIR}/cinfo.f )
+
+
+#=========================================
+# Build the binary
+#=========================================
+add_executable(UNRES_BIN-MD ${UNRES_MD_SRCS} )
+set_target_properties(UNRES_BIN-MD PROPERTIES OUTPUT_NAME ${UNRES_BIN})
+#set_property(TARGET ${UNRES_BIN} PROPERTY RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin/unres/MD )
+#add_dependencies (${UNRES_BIN} ${UNRES_XDRFLIB})
+
+
+#=========================================
+# Link libraries
+#=========================================
+# link MPI library (libmpich.a)  
+if(UNRES_WITH_MPI)
+  target_link_libraries( UNRES_BIN-MD ${MPIF_LIBRARIES} )
+endif(UNRES_WITH_MPI)
+# link libxdrf.a 
+#message("UNRES_XDRFLIB=${UNRES_XDRFLIB}")
+target_link_libraries( UNRES_BIN-MD xdrf )
+
+#=========================================
+# TESTS 
+#=========================================
+
+#-- Copy all the data files from the test directory into the source directory
+#SET(UNRES_TEST_FILES
+#      ala10.inp
+#    )
+
+#FOREACH (UNRES_TEST_FILE ${UNRES_TEST_FILES})
+#      SET (unres_test_dest "${CMAKE_CURRENT_BINARY_DIR}/${UNRES_TEST_FILE}")
+#      MESSAGE (STATUS " Copying ${UNRES_TEST_FILE} from ${CMAKE_SOURCE_DIR}/examples/unres/MD/ff_gab/${UNRES_TEST_FILE} to ${unres_test_dest}")
+#      ADD_CUSTOM_COMMAND (
+#          TARGET     ${UNRES_BIN}
+#          POST_BUILD
+#          COMMAND    ${CMAKE_COMMAND} -E copy ${CMAKE_SOURCE_DIR}/examples/unres/MD/ff_gab/${UNRES_TEST_FILE} ${unres_test_dest}
+#      )
+#ENDFOREACH (UNRES_TEST_FILE ${UNRES_TEST_FILES})
+
+#=========================================
+# Generate data test files
+#=========================================
+#  test_single_ala.sh
+#=========================================
+
+FILE(WRITE ${CMAKE_CURRENT_BINARY_DIR}/scripts/test_single_ala.sh
+"#!/bin/sh
+export POT=GB
+export PREFIX=ala10
+#-----------------------------------------------------------------------------
+UNRES_BIN=./${UNRES_BIN}
+#-----------------------------------------------------------------------------
+DD=${CMAKE_SOURCE_DIR}/PARAM
+export BONDPAR=$DD/bond.parm
+export THETPAR=$DD/thetaml.5parm
+export ROTPAR=$DD/scgauss.parm
+export TORPAR=$DD/torsion_631Gdp.parm
+export TORDPAR=$DD/torsion_double_631Gdp.parm
+export ELEPAR=$DD/electr_631Gdp.parm
+export SIDEPAR=$DD/sc_GB_opt.1gab_3S_qclass5no310-shan2-sc-16-10-8k
+export FOURIER=$DD/fourier_opt.parm.1igd_hc_iter3_3
+export SCPPAR=$DD/scp.parm
+export SCCORPAR=$DD/rotcorr_AM1.parm
+export PATTERN=$DD/patterns.cart
+#-----------------------------------------------------------------------------
+$UNRES_BIN
+")
+
+#
+# File permissions workaround
+#
+FILE(  COPY ${CMAKE_CURRENT_BINARY_DIR}/scripts/test_single_ala.sh 
+       DESTINATION ${CMAKE_CURRENT_BINARY_DIR}
+       FILE_PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE GROUP_READ GROUP_EXECUTE WORLD_READ WORLD_EXECUTE
+)
+
+
+
+#=========================================
+#  ala10.inp
+#=========================================
+
+file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/ala10.inp
+"ala10 unblocked
+SEED=-1111333 MD ONE_LETTER rescale_mode=2 
+nstep=15000 ntwe=100 ntwx=1000 dt=0.1 lang=0 tbf t_bath=300 damax=1.0          &
+reset_moment=1000 reset_vel=1000
+WLONG=1.35279 WSCP=1.59304 WELEC=0.71534 WBOND=1.00000 WANG=1.13873            &
+WSCLOC=0.16258 WTOR=1.98599 WTORD=1.57069 WCORRH=0.42887 WCORR5=0.00000        &
+WCORR6=0.00000 WEL_LOC=0.16036 WTURN3=1.68722 WTURN4=0.66230 WTURN6=0.00000    &
+WVDWPP=0.11371 WHPB=1.00000                                                    &
+CUTOFF=7.00000 WCORR4=0.00000
+12
+XAAAAAAAAAAX 
+ 0
+ 0
+   90.0000   90.0000   90.0000  90.000   90.000   90.000   90.000   90.000 
+   90.0000   90.0000
+  180.0000  180.0000  180.0000 180.000  180.000  180.000  180.000  180.000
+  180.0000
+  110.0000  110.0000  110.0000 100.000  110.000  100.000  110.000  110.000 
+  110.0000  110.0000
+ -120.0000 -120.0000 -120.000 -120.000 -120.000 -120.000 -120.000 -120.000
+ -120.0000 -120.0000
+")
+
+
+# Add tests
+
+if(NOT UNRES_WITH_MPI)
+                  
+  add_test(NAME UNRES_MD_Ala10 COMMAND sh ${CMAKE_CURRENT_BINARY_DIR}/test_single_ala.sh )
+
+else(NOT UNRES_WITH_MPI)
+
+
+  add_test(NAME UNRES_MD_MPI_Ala10 COMMAND mpiexec -boot ${CMAKE_CURRENT_BINARY_DIR}/test_single_ala.sh )
+
+endif(NOT UNRES_WITH_MPI)
diff --git a/source/unres/src_MD_DFA/COMMON.BOUNDS b/source/unres/src_MD_DFA/COMMON.BOUNDS
new file mode 100644 (file)
index 0000000..f3859ae
--- /dev/null
@@ -0,0 +1,2 @@
+      double precision phibound(2,maxres)
+      common /bounds/ phibound
diff --git a/source/unres/src_MD_DFA/COMMON.CACHE b/source/unres/src_MD_DFA/COMMON.CACHE
new file mode 100644 (file)
index 0000000..8cb0cbc
--- /dev/null
@@ -0,0 +1,6 @@
+      integer ncache,CachSrc(max_cache),isent(max_cache),
+     & iused(max_cache)
+      logical cache_update
+      double precision ecache(max_cache),xcache(maxvar,max_cache)
+      common /cache/ ecache,xcache,ncache,CachSrc,isent,iused,
+     & cache_update
diff --git a/source/unres/src_MD_DFA/COMMON.CALC b/source/unres/src_MD_DFA/COMMON.CALC
new file mode 100644 (file)
index 0000000..67b4bb9
--- /dev/null
@@ -0,0 +1,15 @@
+      integer i,j,k,l 
+      double precision erij,rij,xj,yj,zj,dxi,dyi,dzi,dxj,dyj,dzj,
+     & chi1,chi2,chi12,chip1,chip2,chip12,alf1,alf2,alf12,om1,om2,om12,
+     & om1om2,chiom1,chiom2,chiom12,chipom1,chipom2,chipom12,eps1,
+     & faceps1,faceps1_inv,eps1_om12,facsig,sigsq,sigsq_om1,sigsq_om2,
+     & sigsq_om12,facp,facp_inv,facp1,eps2rt,eps2rt_om1,eps2rt_om2,
+     & eps2rt_om12,eps3rt,eom1,eom2,eom12,evdwij,eps2der,eps3der,sigder,
+     & dsci_inv,dscj_inv,gg
+      common /calc/ erij(3),rij,xj,yj,zj,dxi,dyi,dzi,dxj,dyj,dzj,
+     & chi1,chi2,chi12,chip1,chip2,chip12,alf1,alf2,alf12,om1,om2,om12,
+     & om1om2,chiom1,chiom2,chiom12,chipom1,chipom2,chipom12,eps1,
+     & faceps1,faceps1_inv,eps1_om12,facsig,sigsq,sigsq_om1,sigsq_om2,
+     & sigsq_om12,facp,facp_inv,facp1,eps2rt,eps2rt_om1,eps2rt_om2,
+     & eps2rt_om12,eps3rt,eom1,eom2,eom12,evdwij,eps2der,eps3der,sigder,
+     & dsci_inv,dscj_inv,gg(3),i,j
diff --git a/source/unres/src_MD_DFA/COMMON.CHAIN b/source/unres/src_MD_DFA/COMMON.CHAIN
new file mode 100644 (file)
index 0000000..6e19f8d
--- /dev/null
@@ -0,0 +1,13 @@
+      integer nres,nsup,nstart_sup,nz_start,nz_end,iz_sc,
+     &  nres0,nstart_seq
+      double precision c,dc,dc_old,d_c_work,xloc,xrot,dc_norm,t,r,
+     & prod,rt,dc_work,cref,crefjlee,dc_norm2
+      common /chain/ c(3,maxres2+2),dc(3,0:maxres2),dc_old(3,0:maxres2),
+     & xloc(3,maxres),xrot(3,maxres),dc_norm(3,0:maxres2),
+     & dc_norm2(3,0:maxres2),
+     & dc_work(MAXRES6),nres,nres0
+      common /rotmat/ t(3,3,maxres),r(3,3,maxres),prod(3,3,maxres),
+     &                rt(3,3,maxres) 
+      common /refstruct/ cref(3,maxres2+2),crefjlee(3,maxres2+2),
+     & nsup,nstart_sup,nstart_seq
+      common /from_zscore/ nz_start,nz_end,iz_sc
diff --git a/source/unres/src_MD_DFA/COMMON.CONTACTS b/source/unres/src_MD_DFA/COMMON.CONTACTS
new file mode 100644 (file)
index 0000000..5b3a90d
--- /dev/null
@@ -0,0 +1,82 @@
+C Change 12/1/95 - common block CONTACTS1 included.
+      integer ncont,ncont_ref,icont,icont_ref,num_cont,jcont
+      double precision facont,gacont
+      common /contacts/ ncont,ncont_ref,icont(2,maxcont),
+     &                  icont_ref(2,maxcont)
+      common /contacts1/ facont(maxconts,maxres),
+     &                  gacont(3,maxconts,maxres),
+     &                  num_cont(maxres),jcont(maxconts,maxres)
+C 12/26/95 - H-bonding contacts
+      common /contacts_hb/ 
+     &  gacontp_hb1(3,maxconts,maxres),gacontp_hb2(3,maxconts,maxres),
+     &  gacontp_hb3(3,maxconts,maxres),
+     &  gacontm_hb1(3,maxconts,maxres),gacontm_hb2(3,maxconts,maxres),
+     &  gacontm_hb3(3,maxconts,maxres),
+     &  gacont_hbr(3,maxconts,maxres),
+     &  grij_hb_cont(3,maxconts,maxres),
+     &  facont_hb(maxconts,maxres),ees0p(maxconts,maxres),
+     &  ees0m(maxconts,maxres),d_cont(maxconts,maxres),
+     &  num_cont_hb(maxres),jcont_hb(maxconts,maxres)
+C 9/23/99 Added improper rotation matrices and matrices of dipole-dipole 
+C         interactions     
+c 7/25/08 Commented out; not needed when cumulants used
+C Interactions of pseudo-dipoles generated by loc-el interactions.
+c      double precision dip,dipderg,dipderx
+c      common /dipint/ dip(4,maxconts,maxres),dipderg(4,maxconts,maxres),
+c     &  dipderx(3,5,4,maxconts,maxres)
+C 10/30/99 Added other pre-computed vectors and matrices needed 
+C          to calculate three - six-order el-loc correlation terms
+      double precision Ug,Ugder,Ug2,Ug2der,obrot,obrot2,obrot_der,
+     &  obrot2_der,Ub2,Ub2der,mu,muder,EUg,EUgder,CUg,CUgder,
+     &  DUg,DUgder,DtUg2,DtUg2der,Ctobr,Ctobrder,Dtobr2,Dtobr2der
+      common /rotat/ Ug(2,2,maxres),Ugder(2,2,maxres),Ug2(2,2,maxres),
+     &  Ug2der(2,2,maxres),obrot(2,maxres),obrot2(2,maxres),
+     &  obrot_der(2,maxres),obrot2_der(2,maxres)
+C This common block contains vectors and matrices dependent on a single
+C amino-acid residue.
+      common /precomp1/ mu(2,maxres),muder(2,maxres),Ub2(2,maxres),
+     &  Ub2der(2,maxres),Ctobr(2,maxres),Ctobrder(2,maxres),
+     &  Dtobr2(2,maxres),Dtobr2der(2,maxres),
+     &  EUg(2,2,maxres),EUgder(2,2,maxres),CUg(2,2,maxres),
+     &  CUgder(2,2,maxres),DUg(2,2,maxres),Dugder(2,2,maxres),
+     &  DtUg2(2,2,maxres),DtUg2der(2,2,maxres)
+C This common block contains vectors and matrices dependent on two
+C consecutive amino-acid residues.
+      double precision Ug2Db1t,Ug2Db1tder,CUgb2,CUgb2der,EUgC,
+     &  EUgCder,EUgD,EUgDder,DtUg2EUg,DtUg2EUgder
+      common /precomp2/ Ug2Db1t(2,maxres),Ug2Db1tder(2,maxres),
+     &  CUgb2(2,maxres),CUgb2der(2,maxres),EUgC(2,2,maxres),
+     &  EUgCder(2,2,maxres),EUgD(2,2,maxres),EUgDder(2,2,maxres),
+     &  DtUg2EUg(2,2,maxres),Ug2DtEUg(2,2,maxres),
+     &  Ug2DtEUgder(2,2,2,maxres),DtUg2EUgder(2,2,2,maxres)
+      double precision costab,sintab,costab2,sintab2
+      common /rotat_old/ costab(maxres),sintab(maxres),
+     &  costab2(maxres),sintab2(maxres)
+C This common block contains dipole-interaction matrices and their 
+C Cartesian derivatives.
+      double precision a_chuj,a_chuj_der
+      common /dipmat/ a_chuj(2,2,maxconts,maxres),
+     &  a_chuj_der(2,2,3,5,maxconts,maxres)
+      double precision AEA,AEAderg,AEAderx,AECA,AECAderg,AECAderx,
+     &  ADtEA,ADtEAderg,ADtEAderx,AEAb1,AEAb1derg,AEAb1derx,
+     &  AEAb2,AEAb2derg,AEAb2derx,g_contij,ekont
+      common /diploc/ AEA(2,2,2),AEAderg(2,2,2),AEAderx(2,2,3,5,2,2),
+     &  EAEA(2,2,2), EAEAderg(2,2,2,2), EAEAderx(2,2,3,5,2,2),
+     &  AECA(2,2,2),AECAderg(2,2,2),AECAderx(2,2,3,5,2,2),
+     &  ADtEA(2,2,2),ADtEAderg(2,2,2,2),ADtEAderx(2,2,3,5,2,2),
+     &  ADtEA1(2,2,2),ADtEA1derg(2,2,2,2),ADtEA1derx(2,2,3,5,2,2),
+     &  AEAb1(2,2,2),AEAb1derg(2,2,2),AEAb1derx(2,3,5,2,2,2),
+     &  AEAb2(2,2,2),AEAb2derg(2,2,2,2),AEAb2derx(2,3,5,2,2,2),
+     &  g_contij(3,2),ekont
+C 12/13/2008 (again Poland-Jaruzel war anniversary)
+C   RE: Parallelization of 4th and higher order loc-el correlations
+      integer ncont_sent,ncont_recv,iint_sent,iisent_local,
+     &  itask_cont_from,itask_cont_to,ntask_cont_from,ntask_cont_to,
+     &  nat_sent,iat_sent,iturn3_sent,iturn4_sent,iturn3_sent_local,
+     &  iturn4_sent_local
+      common /contdistrib/ ncont_sent(maxres),ncont_recv(maxres),
+     &  iint_sent(4,maxres,maxres),iint_sent_local(4,maxres,maxres),
+     &  iturn3_sent(4,maxres),iturn4_sent(4,maxres),
+     &  iturn3_sent_local(4,maxres),iturn4_sent_local(4,maxres),
+     &  nat_sent,iat_sent(maxres),itask_cont_from(0:max_fg_procs-1),
+     &   itask_cont_to(0:max_fg_procs-1),ntask_cont_from,ntask_cont_to
diff --git a/source/unres/src_MD_DFA/COMMON.CONTACTS.moment b/source/unres/src_MD_DFA/COMMON.CONTACTS.moment
new file mode 100644 (file)
index 0000000..d07a0f0
--- /dev/null
@@ -0,0 +1,68 @@
+C Change 12/1/95 - common block CONTACTS1 included.
+      integer ncont,ncont_ref,icont,icont_ref,num_cont,jcont
+      double precision facont,gacont
+      common /contacts/ ncont,ncont_ref,icont(2,maxcont),
+     &                  icont_ref(2,maxcont)
+      common /contacts1/ facont(maxconts,maxres),
+     &                  gacont(3,maxconts,maxres),
+     &                  num_cont(maxres),jcont(maxconts,maxres)
+C 12/26/95 - H-bonding contacts
+      common /contacts_hb/ 
+     &  gacontp_hb1(3,maxconts,maxres),gacontp_hb2(3,maxconts,maxres),
+     &  gacontp_hb3(3,maxconts,maxres),
+     &  gacontm_hb1(3,maxconts,maxres),gacontm_hb2(3,maxconts,maxres),
+     &  gacontm_hb3(3,maxconts,maxres),
+     &  gacont_hbr(3,maxconts,maxres),
+     &  grij_hb_cont(3,maxconts,maxres),
+     &  facont_hb(maxconts,maxres),ees0p(maxconts,maxres),
+     &  ees0m(maxconts,maxres),d_cont(maxconts,maxres),
+     &  num_cont_hb(maxres),jcont_hb(maxconts,maxres)
+C 9/23/99 Added improper rotation matrices and matrices of dipole-dipole 
+C         interactions     
+C Interactions of pseudo-dipoles generated by loc-el interactions.
+      double precision dip,dipderg,dipderx
+      common /dipint/ dip(4,maxconts,maxres),dipderg(4,maxconts,maxres),
+     &  dipderx(3,5,4,maxconts,maxres)
+C 10/30/99 Added other pre-computed vectors and matrices needed 
+C          to calculate three - six-order el-loc correlation terms
+      double precision Ug,Ugder,Ug2,Ug2der,obrot,obrot2,obrot_der,
+     &  obrot2_der,Ub2,Ub2der,mu,muder,EUg,EUgder,CUg,CUgder,
+     &  DUg,DUgder,DtUg2,DtUg2der,Ctobr,Ctobrder,Dtobr2,Dtobr2der
+      common /rotat/ Ug(2,2,maxres),Ugder(2,2,maxres),Ug2(2,2,maxres),
+     &  Ug2der(2,2,maxres),obrot(2,maxres),obrot2(2,maxres),
+     &  obrot_der(2,maxres),obrot2_der(2,maxres)
+C This common block contains vectors and matrices dependent on a single
+C amino-acid residue.
+      common /precomp1/ Ub2(2,maxres),Ub2der(2,maxres),mu(2,maxres),
+     &  EUg(2,2,maxres),EUgder(2,2,maxres),CUg(2,2,maxres),
+     &  CUgder(2,2,maxres),DUg(2,2,maxres),Dugder(2,2,maxres),
+     &  DtUg2(2,2,maxres),DtUg2der(2,2,maxres),Ctobr(2,maxres),
+     &  Ctobrder(2,maxres),Dtobr2(2,maxres),Dtobr2der(2,maxres)
+C This common block contains vectors and matrices dependent on two
+C consecutive amino-acid residues.
+      double precision Ug2Db1t,Ug2Db1tder,CUgb2,CUgb2der,EUgC,
+     &  EUgCder,EUgD,EUgDder,DtUg2EUg,DtUg2EUgder
+      common /precomp2/ Ug2Db1t(2,maxres),Ug2Db1tder(2,maxres),
+     &  CUgb2(2,maxres),CUgb2der(2,maxres),EUgC(2,2,maxres),
+     &  EUgCder(2,2,maxres),EUgD(2,2,maxres),EUgDder(2,2,maxres),
+     &  DtUg2EUg(2,2,maxres),DtUg2EUgder(2,2,2,maxres),
+     &  Ug2DtEUg(2,2,maxres),Ug2DtEUgder(2,2,2,maxres)
+      double precision costab,sintab,costab2,sintab2
+      common /rotat_old/ costab(maxres),sintab(maxres),
+     &  costab2(maxres),sintab2(maxres),muder(2,maxres)
+C This common block contains dipole-interaction matrices and their 
+C Cartesian derivatives.
+      double precision a_chuj,a_chuj_der
+      common /dipmat/ a_chuj(2,2,maxconts,maxres),
+     &  a_chuj_der(2,2,3,5,maxconts,maxres)
+      double precision AEA,AEAderg,AEAderx,AECA,AECAderg,AECAderx,
+     &  ADtEA,ADtEAderg,ADtEAderx,AEAb1,AEAb1derg,AEAb1derx,
+     &  AEAb2,AEAb2derg,AEAb2derx
+      common /diploc/ AEA(2,2,2),AEAderg(2,2,2),AEAderx(2,2,3,5,2,2),
+     &  EAEA(2,2,2), EAEAderg(2,2,2,2), EAEAderx(2,2,3,5,2,2),
+     &  AECA(2,2,2),AECAderg(2,2,2),AECAderx(2,2,3,5,2,2),
+     &  ADtEA(2,2,2),ADtEAderg(2,2,2,2),ADtEAderx(2,2,3,5,2,2),
+     &  ADtEA1(2,2,2),ADtEA1derg(2,2,2,2),ADtEA1derx(2,2,3,5,2,2),
+     &  AEAb1(2,2,2),AEAb1derg(2,2,2),AEAb1derx(2,3,5,2,2,2),
+     &  AEAb2(2,2,2),AEAb2derg(2,2,2,2),AEAb2derx(2,3,5,2,2,2),
+     &  g_contij(3,2),ekont
diff --git a/source/unres/src_MD_DFA/COMMON.CONTROL b/source/unres/src_MD_DFA/COMMON.CONTROL
new file mode 100644 (file)
index 0000000..c12ef3a
--- /dev/null
@@ -0,0 +1,13 @@
+      integer modecalc,iscode,indpdb,indback,indphi,iranconf,icheckgrad,
+     & inprint,i2ndstr,mucadyn,constr_dist
+      logical minim,refstr,pdbref,outpdb,outmol2,overlapsc,energy_dec,
+     &                 sideadd,lsecondary,read_cart,unres_pdb,
+     &                 vdisulf,searchsc,lmuca,dccart,extconf,out1file,
+     &                 gnorm_check,gradout,split_ene
+      common /cntrl/ modecalc,iscode,indpdb,indback,indphi,iranconf,
+     & icheckgrad,minim,i2ndstr,refstr,pdbref,outpdb,outmol2,iprint,
+     & overlapsc,energy_dec,sideadd,lsecondary,read_cart,unres_pdb
+     & ,vdisulf,searchsc,lmuca,dccart,mucadyn,extconf,out1file,
+     & constr_dist,gnorm_check,gradout,split_ene
+C... minim = .true. means DO minimization.
+C... energy_dec = .true. means print energy decomposition matrix
diff --git a/source/unres/src_MD_DFA/COMMON.DBASE b/source/unres/src_MD_DFA/COMMON.DBASE
new file mode 100644 (file)
index 0000000..4f07780
--- /dev/null
@@ -0,0 +1,3 @@
+      common /struct/ cart_base(3,maxres_base,maxseq),str_nam(maxseq),
+     &     nres_base(3,maxseq),nseq
+      character*8 str_nam
diff --git a/source/unres/src_MD_DFA/COMMON.DERIV b/source/unres/src_MD_DFA/COMMON.DERIV
new file mode 100644 (file)
index 0000000..2a5ddcf
--- /dev/null
@@ -0,0 +1,36 @@
+      double precision dcdv,dxdv,dxds,gradx,gradc,gvdwc,gelc,gelc_long,
+     & gvdwpp,gel_loc,gel_loc_long,gvdwc_scpp,
+     & gradx_scp,gvdwc_scp,ghpbx,ghpbc,gloc,gloc_x,dtheta,dphi,dalpha,
+     & domega,gscloc,gsclocx,gradcorr,gradcorr_long,gradcorr5_long,
+     & gradcorr6_long,gcorr6_turn_long,gvdwcT,gvdwxT
+      integer nfl,icg
+      common /derivatT/ gvdwcT(3,maxres),gvdwxT(3,maxres)
+      common /derivat/ dcdv(6,maxdim),dxdv(6,maxdim),dxds(6,maxres),
+     & gradx(3,maxres,2),gradc(3,maxres,2),gvdwx(3,maxres),
+     & gvdwc(3,maxres),gelc(3,maxres),gelc_long(3,maxres),
+     & gvdwpp(3,maxres),gvdwc_scpp(3,maxres),
+     & gradx_scp(3,maxres),gvdwc_scp(3,maxres),ghpbx(3,maxres),
+     & ghpbc(3,maxres),gloc(maxvar,2),gradcorr(3,maxres),
+     & gradcorr_long(3,maxres),gradcorr5_long(3,maxres),
+     & gradcorr6_long(3,maxres),gcorr6_turn_long(3,maxres),
+     & gradxorr(3,maxres),gradcorr5(3,maxres),gradcorr6(3,maxres),
+     & gloc_x(maxvar,2),gel_loc(3,maxres),gel_loc_long(3,maxres),
+     & gcorr3_turn(3,maxres),
+     & gcorr4_turn(3,maxres),gcorr6_turn(3,maxres),gradb(3,maxres),
+     & gradbx(3,maxres),gel_loc_loc(maxvar),gel_loc_turn3(maxvar),
+     & gel_loc_turn4(maxvar),gel_loc_turn6(maxvar),gcorr_loc(maxvar),
+     & g_corr5_loc(maxvar),g_corr6_loc(maxvar),gsccorc(3,maxres),
+     & gsccorx(3,maxres),gsccor_loc(maxres),dtheta(3,2,maxres),
+     & gscloc(3,maxres),gsclocx(3,maxres),
+     & dphi(3,3,maxres),dalpha(3,3,maxres),domega(3,3,maxres),nfl,icg
+      double precision derx,derx_turn
+      common /deriv_loc/ derx(3,5,2),derx_turn(3,5,2)
+      double precision dXX_C1tab(3,maxres),dYY_C1tab(3,maxres),
+     &  dZZ_C1tab(3,maxres),dXX_Ctab(3,maxres),dYY_Ctab(3,maxres),
+     &  dZZ_Ctab(3,maxres),dXX_XYZtab(3,maxres),dYY_XYZtab(3,maxres),
+     &  dZZ_XYZtab(3,maxres)
+      common /deriv_scloc/ dXX_C1tab,dYY_C1tab,dZZ_C1tab,dXX_Ctab,
+     &  dYY_Ctab,dZZ_Ctab,dXX_XYZtab,dYY_XYZtab,dZZ_XYZtab
+      integer igrad_start,igrad_end,jgrad_start(maxres),
+     &  jgrad_end(maxres)
+      common /mpgrad/ igrad_start,igrad_end,jgrad_start,jgrad_end
diff --git a/source/unres/src_MD_DFA/COMMON.DISTFIT b/source/unres/src_MD_DFA/COMMON.DISTFIT
new file mode 100644 (file)
index 0000000..683228a
--- /dev/null
@@ -0,0 +1,14 @@
+c      parameter (maxres22=maxres*(maxres+1)/2)
+      parameter (maxres22=1)
+      double precision w,d0,DRDG,DD,H,XX
+      integer nbfrag,bfrag,nhfrag,hfrag,bvar_frag,hvar_frag,nhpb0,
+     1        lvar_frag,svar_frag,avar_frag
+      COMMON /c_frag/ nbfrag,bfrag(4,maxres/3),nhfrag,hfrag(2,maxres/3)
+csa      COMMON /frag/ bvar_frag(mxio,6),hvar_frag(mxio,3),
+csa     1              lvar_frag(mxio,3),svar_frag(mxio,3),
+csa     2              avar_frag(mxio,5)
+      COMMON /WAGI/ w(MAXRES22),d0(MAXRES22)
+      COMMON /POCHODNE/ NX,NY,DRDG(MAXRES22,MAXRES),DD(MAXRES22),                 
+     1 H(MAXRES,MAXRES),XX(MAXRES)         
+      COMMON /frozen/ mask(maxres)
+      COMMON /store0/ nhpb0
diff --git a/source/unres/src_MD_DFA/COMMON.FFIELD b/source/unres/src_MD_DFA/COMMON.FFIELD
new file mode 100644 (file)
index 0000000..2deca8e
--- /dev/null
@@ -0,0 +1,25 @@
+C-----------------------------------------------------------------------
+C The following COMMON block selects the type of the force field used in
+C calculations and defines weights of various energy terms.
+C 12/1/95 wcorr added
+C-----------------------------------------------------------------------
+      integer n_ene_comp,rescale_mode
+      common /ffield/ wsc,wscp,welec,wbond,wstrain,wtor,wtor_d,wang,
+     &  wscloc,wcorr,wcorr4,wcorr5,wcorr6,wsccor,wel_loc,wturn3,wturn4,
+     &  wturn6,wvdwpp,wsct,weights(n_ene),temp0,
+     &  scal14,cutoff_corr,delt_corr,r0_corr,ipot,n_ene_comp,
+     &  rescale_mode
+      common /potentials/ potname(5)
+      character*3 potname
+C-----------------------------------------------------------------------
+C wlong,welec,wtor,wang,wscloc are the weight of the energy terms 
+C corresponding to side-chain, electrostatic, torsional, valence-angle,
+C and local side-chain terms.
+C
+C IPOT determines which SC...SC interaction potential will be used:
+C 1 - LJ:  2n-n Lennard-Jones
+C 2 - LJK: 2n-n Kihara type (shifted Lennard-Jones) 
+C 3 - BP;  Berne-Pechukas (angular dependence)
+C 4 - GB;  Gay-Berne (angular dependence)
+C 5 - GBV; Gay-Berne-Vorobjev; angularly-dependent Kihara potential
+C------------------------------------------------------------------------
diff --git a/source/unres/src_MD_DFA/COMMON.GEO b/source/unres/src_MD_DFA/COMMON.GEO
new file mode 100644 (file)
index 0000000..8cfbbde
--- /dev/null
@@ -0,0 +1,2 @@
+      double precision pi,dwapi,pipol,pi3,dwapi3,deg2rad,rad2deg,angmin
+      common /geo/ pi,dwapi,pipol,pi3,dwapi3,deg2rad,rad2deg,angmin
diff --git a/source/unres/src_MD_DFA/COMMON.HAIRPIN b/source/unres/src_MD_DFA/COMMON.HAIRPIN
new file mode 100644 (file)
index 0000000..f103268
--- /dev/null
@@ -0,0 +1,5 @@
+      integer nharp_seed(max_seed),nharp_tot,
+     & iharp_seed(4,maxres/3,max_seed),iharp_use(0:4,maxres/3,max_seed),
+     & nharp_use(max_seed)
+      common /spinka/ nharp_seed,nharp_tot,iharp_seed,iharp_use,
+     & nharp_use
diff --git a/source/unres/src_MD_DFA/COMMON.HEADER b/source/unres/src_MD_DFA/COMMON.HEADER
new file mode 100644 (file)
index 0000000..7154812
--- /dev/null
@@ -0,0 +1,2 @@
+      character*80 titel
+      common /header/ titel
diff --git a/source/unres/src_MD_DFA/COMMON.INFO b/source/unres/src_MD_DFA/COMMON.INFO
new file mode 100644 (file)
index 0000000..4f63708
--- /dev/null
@@ -0,0 +1,21 @@
+c NPROCS   - total number of processors;
+c MyID     - processor's ID;
+c MasterID - master processor's ID.
+      integer MyId,AllGrp,DontCare,MasterId,WhatsUp,ifinish
+      logical koniec
+      integer tag,status(MPI_STATUS_SIZE)
+      common /info/ myid,masterid,allgrp,dontcare,
+     &    koniec(0:maxprocs-1),WhatsUp,ifinish(maxprocs-1)
+c... 5/12/96 - added variables for collective communication
+c FGPROCS - Number of fine-grain processors per coarse-grain task;
+c NCTASKS - Number of coarse-grain tasks;
+c MYGROUP - label of the processor's FG group id;
+c BOSSID  - ID of group's master;
+c FGLIST  - list of group's FG processors.
+c MSGLEN_VAR - length of the vector of variables passed to the fine-grain 
+c              slave processors
+      integer fgprocs,nctasks,mygroup,bossid,cglabel,
+     &        cglist(max_cg_procs),cgGroupID,fglist(max_fg_procs),
+     &        fgGroupID,MyRank
+      common /info1/ fgprocs,nctasks,mygroup,bossid,cglabel,cglist,
+     &        cgGroupID,fglist,fgGroupID,MyRank,msglen_var
diff --git a/source/unres/src_MD_DFA/COMMON.INTERACT b/source/unres/src_MD_DFA/COMMON.INTERACT
new file mode 100644 (file)
index 0000000..fabad93
--- /dev/null
@@ -0,0 +1,34 @@
+      double precision aa,bb,augm,aad,bad,app,bpp,ale6,ael3,ael6
+      integer expon,expon2
+      integer nnt,nct,nint_gr,istart,iend,itype,itel,itypro,
+     & ielstart,ielend,ielstart_vdw,ielend_vdw,nscp_gr,iscpstart,
+     & iscpend,iatsc_s,iatsc_e,
+     & iatel_s,iatel_e,iatscp_s,iatscp_e,iatel_s_vdw,iatel_e_vdw,
+     & ispp,iscp
+      common /interact/aa(ntyp,ntyp),bb(ntyp,ntyp),augm(ntyp,ntyp),
+     & aad(ntyp,2),bad(ntyp,2),app(2,2),bpp(2,2),ael6(2,2),ael3(2,2),
+     & expon,expon2,nnt,nct,nint_gr(maxres),istart(maxres,maxint_gr),
+     & iend(maxres,maxint_gr),itype(maxres),itel(maxres),itypro,
+     & ielstart(maxres),ielend(maxres),ielstart_vdw(maxres),
+     & ielend_vdw(maxres),nscp_gr(maxres),
+     & iscpstart(maxres,maxint_gr),iscpend(maxres,maxint_gr),
+     & iatsc_s,iatsc_e,iatel_s,iatel_e,iatel_s_vdw,iatel_e_vdw,
+     & iatscp_s,iatscp_e,ispp,iscp
+C 12/1/95 Array EPS included in the COMMON block.
+      double precision eps,sigma,sigmaii,rs0,chi,chip,alp,sigma0,sigii,
+     & rr0,r0,r0e,r0d,rpp,epp,elpp6,elpp3,eps_scp,rscp
+      common /body/eps(ntyp,ntyp),sigma(0:ntyp1,0:ntyp1),
+     & sigmaii(ntyp,ntyp),
+     & rs0(ntyp,ntyp),chi(ntyp,ntyp),chip(ntyp),alp(ntyp),sigma0(ntyp),
+     & sigii(ntyp),rr0(ntyp),r0(ntyp,ntyp),r0e(ntyp,ntyp),r0d(ntyp,2),
+     & rpp(2,2),epp(2,2),elpp6(2,2),elpp3(2,2),eps_scp(20,2),rscp(20,2)
+c 12/5/03 modified 09/18/03 Bond stretching parameters.
+      double precision vbldp0,vbldsc0,akp,aksc,abond0
+      integer nbondterm
+      common /stretch/ vbldp0,vbldsc0(maxbondterm,ntyp),akp,
+     & aksc(maxbondterm,ntyp),abond0(maxbondterm,ntyp),nbondterm(ntyp)
+      double precision wdti,wdti2,wdti4,wdti8,
+     &                 wdtii,wdtii2,wdtii4,wdtii8 
+      common /nosehoover_dt/ 
+     &   wdti(maxyosh),wdti2(maxyosh),wdti4(maxyosh),wdti8(maxyosh),
+     &   wdtii(maxyosh),wdtii2(maxyosh),wdtii4(maxyosh),wdtii8(maxyosh)
diff --git a/source/unres/src_MD_DFA/COMMON.IOUNITS b/source/unres/src_MD_DFA/COMMON.IOUNITS
new file mode 100644 (file)
index 0000000..49b6db3
--- /dev/null
@@ -0,0 +1,69 @@
+C-----------------------------------------------------------------------
+C I/O units used by the program
+C-----------------------------------------------------------------------
+C 9/18/99 - unit ifourier and filename fouriername included to identify
+C the file from which the coefficients of second-order Fourier expansion
+C of the local-interaction energy are read.
+C 8/9/01 - file for SCP interaction constants named scpname (unit iscpp)
+C included.
+C-----------------------------------------------------------------------
+C General I/O units & files
+      integer inp,iout,igeom,intin,ipdb,imol2,ipdbin,ithep,irotam,
+     &        itorp,itordp,ifourier,ielep,isidep,iscpp,icbase,istat,
+     &        ientin,ientout,izs1,isecpred,ibond,irest2,iifrag,icart,
+     &        irest1,isccor,ithep_pdb,irotam_pdb
+      common /iounits/ inp,iout,igeom,intin,ipdb,imol2,ipdbin,ithep,
+     &        irotam,itorp,itordp,ifourier,ielep,isidep,iscpp,icbase,
+     &        istat,ientin,ientout,izs1,isecpred,ibond,irest2,iifrag,
+     &        icart,irest1,isccor,ithep_pdb,irotam_pdb
+      character*256 outname,intname,pdbname,mol2name,statname,intinname,
+     &        entname,prefix,secpred,rest2name,qname,cartname,tmpdir,
+     &        mremd_rst_name,curdir,pref_orig
+      character*4 liczba
+      common /fnames/ outname,intname,pdbname,mol2name,statname,
+     &       intinname,entname,prefix,pot,secpred,rest2name,qname,
+     &       cartname,tmpdir,mremd_rst_name,curdir,pref_orig,liczba
+C CSA I/O units & files
+      character*256 csa_rbank,csa_seed,csa_history,csa_bank,
+     & csa_bank1,csa_alpha,csa_alpha1,csa_bankt,csa_int,
+     & csa_bank_reminimized,csa_native_int,csa_in
+      common /csafiles/ csa_rbank,csa_seed,csa_history,csa_bank,
+     & csa_bank1,csa_alpha,csa_alpha1,csa_bankt,csa_int,
+     & csa_bank_reminimized,csa_native_int,csa_in
+      integer icsa_rbank,icsa_seed,icsa_history,icsa_bank,
+     & icsa_bank1,icsa_alpha,icsa_alpha1,icsa_bankt,icsa_int,
+     & icsa_bank_reminimized,icsa_native_int,icsa_in,icsa_pdb
+      common /csaunits/ icsa_rbank,icsa_seed,icsa_history,icsa_bank,
+     & icsa_bank1,icsa_alpha,icsa_alpha1,icsa_bankt,icsa_int,
+     & icsa_bank_reminimized,icsa_native_int,icsa_in,icsa_pdb
+C Parameter files
+      character*256 bondname,thetname,rotname,torname,tordname,
+     &       fouriername,elename,sidename,scpname,sccorname,patname,
+     &       thetname_pdb,rotname_pdb
+      common /parfiles/ bondname,thetname,rotname,torname,tordname,
+     &       fouriername,elename,sidename,scpname,sccorname,patname,
+     &       thetname_pdb,rotname_pdb
+      character*3 pot
+C-----------------------------------------------------------------------
+C INP    - main input file
+C IOUT   - list file
+C IGEOM  - geometry output in the form of virtual-chain internal coordinates
+C INTIN  - geometry input (for multiple conformation processing) in int. coords.
+C IPDB   - Cartesian-coordinate output in PDB format
+C IMOL2  - Cartesian-coordinate output in Tripos mol2 format
+C IPDBIN - PDB input file
+C ITHEP  - virtual-bond torsional angle parametrs
+C IROTAM - side-chain geometry and local-interaction parameters
+C ITORP  - torsional parameters
+C ITORDP  - double torsional parameters
+C IFOURIER - coefficients of the expansion of local-interaction energy 
+C IELEP  - electrostatic-interaction parameters
+C ISIDEP - side-chain interaction parameters.
+C ISCPP  - SCp interaction parameters.
+C IBOND  - virtual-bond constant parameters and moments of inertia.
+C ISCCOR - parameters of the potential of SCCOR term
+C ICBASE - data base with Cartesian coords of known structures.
+C ISTAT  - energies and other conf. characteristics from an MCM run.
+C IENTIN - entropy from preceeding simulation(s) to be read in.
+C SECPRED - SECONDARY STRUCTURE PREDICTION for dihedral constraint generation.
+C-----------------------------------------------------------------------
diff --git a/source/unres/src_MD_DFA/COMMON.LANGEVIN b/source/unres/src_MD_DFA/COMMON.LANGEVIN
new file mode 100644 (file)
index 0000000..6a703e2
--- /dev/null
@@ -0,0 +1,21 @@
+       double precision friction(3,0:MAXRES2),stochforc(3,0:MAXRES2),
+     & fricmat(MAXRES2,MAXRES2),fric_work(MAXRES6),
+     & stoch_work(MAXRES6),
+     & fricgam(MAXRES6),fricvec(MAXRES2,MAXRES2),
+     & pfric_mat(MAXRES2,MAXRES2),vfric_mat(MAXRES2,MAXRES2),
+     & afric_mat(MAXRES2,MAXRES2),prand_mat(MAXRES2,MAXRES2),
+     & vrand_mat1(MAXRES2,MAXRES2),vrand_mat2(MAXRES2,MAXRES2),
+     & pfric0_mat(MAXRES2,MAXRES2,0:maxflag_stoch),
+     & afric0_mat(MAXRES2,MAXRES2,0:maxflag_stoch),
+     & vfric0_mat(MAXRES2,MAXRES2,0:maxflag_stoch),
+     & prand0_mat(MAXRES2,MAXRES2,0:maxflag_stoch),
+     & vrand0_mat1(MAXRES2,MAXRES2,0:maxflag_stoch),
+     & vrand0_mat2(MAXRES2,MAXRES2,0:maxflag_stoch),
+     & mt1(maxres2,maxres2),mt2(maxres2,maxres2),mt3(maxres2,maxres2)
+       logical flag_stoch(0:maxflag_stoch)
+      common /langforc/ friction,stochforc,
+     & fricmat,fric_work,fricgam,stoch_work,fricvec,vrand_mat1,
+     & vrand_mat2,prand_mat,vfric_mat,afric_mat,pfric_mat,
+     & pfric0_mat,afric0_mat,vfric0_mat,prand0_mat,vrand0_mat1,
+     & vrand0_mat2,flag_stoch
+      common /langmat/ mt1,mt2,mt3
diff --git a/source/unres/src_MD_DFA/COMMON.LANGEVIN.lang0 b/source/unres/src_MD_DFA/COMMON.LANGEVIN.lang0
new file mode 100644 (file)
index 0000000..354a0c4
--- /dev/null
@@ -0,0 +1,11 @@
+       double precision friction(3,0:MAXRES2),stochforc(3,0:MAXRES2),
+     & fricmat(MAXRES2,MAXRES2),fric_work(MAXRES6),
+     & stoch_work(MAXRES6),
+     & fricgam(MAXRES6),fricvec(MAXRES2,MAXRES2)
+       logical flag_stoch(0:maxflag_stoch)
+      common /langforc/ friction,stochforc,
+     & fricmat,fric_work,fricgam,stoch_work,fricvec,vrand_mat1,
+     & vrand_mat2,prand_mat,vfric_mat,afric_mat,pfric_mat,
+     & pfric0_mat,afric0_mat,vfric0_mat,prand0_mat,vrand0_mat1,
+     & vrand0_mat2,flag_stoch
+      common /langmat/ mt1,mt2,mt3
diff --git a/source/unres/src_MD_DFA/COMMON.LOCAL b/source/unres/src_MD_DFA/COMMON.LOCAL
new file mode 100644 (file)
index 0000000..a3f68dc
--- /dev/null
@@ -0,0 +1,55 @@
+      double precision a0thet,athet,bthet,polthet,gthet,theta0,sig0,
+     &  sigc0,dsc,dsc_inv,bsc,censc,gaussc,dsc0
+      integer nlob
+C Parameters of the virtual-bond-angle probability distribution
+      common /thetas/ a0thet(ntyp),athet(2,ntyp),bthet(2,ntyp),
+     &  polthet(0:3,ntyp),gthet(3,ntyp),theta0(ntyp),sig0(ntyp),
+     &  sigc0(ntyp)
+C Parameters of the side-chain probability distribution
+      common /sclocal/ dsc(ntyp1),dsc_inv(ntyp1),bsc(maxlob,ntyp),
+     &  censc(3,maxlob,ntyp),gaussc(3,3,maxlob,ntyp),dsc0(ntyp1),
+     &    nlob(ntyp1)
+C Parameters of ab initio-derived potential of virtual-bond-angle bending
+      integer nthetyp,ntheterm,ntheterm2,ntheterm3,nsingle,ndouble,
+     & ithetyp(ntyp1),nntheterm
+      double precision aa0thet(maxthetyp1,maxthetyp1,maxthetyp1),
+     & aathet(maxtheterm,maxthetyp1,maxthetyp1,maxthetyp1),
+     & bbthet(maxsingle,maxtheterm2,maxthetyp1,maxthetyp1,maxthetyp1),
+     & ccthet(maxsingle,maxtheterm2,maxthetyp1,maxthetyp1,maxthetyp1),
+     & ddthet(maxsingle,maxtheterm2,maxthetyp1,maxthetyp1,maxthetyp1),
+     & eethet(maxsingle,maxtheterm2,maxthetyp1,maxthetyp1,maxthetyp1),
+     & ffthet(maxdouble,maxdouble,maxtheterm3,maxthetyp1,maxthetyp1,
+     &  maxthetyp1),
+     & ggthet(maxdouble,maxdouble,maxtheterm3,maxthetyp1,maxthetyp1,
+     &  maxthetyp1)
+      common /theta_abinitio/aa0thet,aathet,bbthet,ccthet,ddthet,eethet,
+     &  ffthet,
+     &  ggthet,ithetyp,nthetyp,ntheterm,ntheterm2,ntheterm3,nsingle,
+     &  ndouble,nntheterm
+C Virtual-bond lenghts
+      double precision vbl,vblinv,vblinv2,vbl_cis,vbl0,vbld_inv
+      integer loc_start,loc_end,ithet_start,ithet_end,iphi_start,
+     & iphi_end,iphid_start,iphid_end,itau_start,itau_end,ibond_start,
+     & ibond_end,
+     & ibondp_start,ibondp_end,ivec_start,ivec_end,iset_start,iset_end,
+     & iturn3_start,iturn3_end,iturn4_start,iturn4_end,iint_start,
+     & iint_end,iphi1_start,iphi1_end,
+     & ibond_displ(0:max_fg_procs-1),ibond_count(0:max_fg_procs-1),
+     & ithet_displ(0:max_fg_procs-1),ithet_count(0:max_fg_procs-1),
+     & iphi_displ(0:max_fg_procs-1),iphi_count(0:max_fg_procs-1),
+     & iphi1_displ(0:max_fg_procs-1),iphi1_count(0:max_fg_procs-1),
+     & ivec_displ(0:max_fg_procs-1),ivec_count(0:max_fg_procs-1),
+     & iset_displ(0:max_fg_procs-1),iset_count(0:max_fg_procs-1),
+     & iint_count(0:max_fg_procs-1),iint_displ(0:max_fg_procs-1)
+      common /peptbond/ vbl,vblinv,vblinv2,vbl_cis,vbl0
+      common /indices/ loc_start,loc_end,ithet_start,ithet_end,
+     & iphi_start,iphi_end,iphid_start,iphid_end,itau_start,itau_end,
+     & ibond_start,ibond_end,
+     & ibondp_start,ibondp_end,ivec_start,ivec_end,iset_start,iset_end,
+     & iturn3_start,iturn3_end,iturn4_start,iturn4_end,iint_start,
+     & iint_end,iphi1_start,iphi1_end,iint_count,iint_displ,ivec_displ,
+     & ivec_count,iset_displ,
+     & iset_count,ibond_displ,ibond_count,ithet_displ,ithet_count,
+     & iphi_displ,iphi_count,iphi1_displ,iphi1_count
+C Inverses of the actual virtual bond lengths
+      common /invlen/ vbld_inv(maxres2)
diff --git a/source/unres/src_MD_DFA/COMMON.LOCMOVE b/source/unres/src_MD_DFA/COMMON.LOCMOVE
new file mode 100644 (file)
index 0000000..211516d
--- /dev/null
@@ -0,0 +1,19 @@
+c     Variables (set in init routine) never modified by local_move
+      integer init_called
+      logical locmove_output
+      double precision min_theta, max_theta
+      double precision dmin2,dmax2
+      double precision flag,small,small2
+
+      common /loc_const/ init_called,locmove_output,min_theta,
+     +     max_theta,dmin2,dmax2,flag,small,small2
+
+c     Workspace for local_move
+      integer a_n,b_n,res_n
+      double precision a_ang,b_ang,res_ang
+      logical a_tab,b_tab,res_tab
+
+      common /loc_work/ res_ang(0:11),a_ang(0:7),b_ang(0:3),
+     +     res_n,res_tab(0:2,0:2,0:11),
+     +     a_n,a_tab(0:2,0:7),
+     +     b_n,b_tab(0:2,0:3)
diff --git a/source/unres/src_MD_DFA/COMMON.MAP b/source/unres/src_MD_DFA/COMMON.MAP
new file mode 100644 (file)
index 0000000..77e97e7
--- /dev/null
@@ -0,0 +1,4 @@
+      integer nmap,res1,res2,nstep
+      double precision ang_from,ang_to
+      common /mapp/ ang_from(maxvar),ang_to(maxvar),nmap,kang(maxvar),
+     &  res1(maxvar),res2(maxvar),nstep(maxvar)
diff --git a/source/unres/src_MD_DFA/COMMON.MAXGRAD b/source/unres/src_MD_DFA/COMMON.MAXGRAD
new file mode 100644 (file)
index 0000000..285241a
--- /dev/null
@@ -0,0 +1,12 @@
+      double precision 
+     & gvdwc_max,gvdwc_scp_max,gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
+     & gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
+     & gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
+     & gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
+     & gsccorx_max,gsclocx_max
+      common /maxgrad/
+     & gvdwc_max,gvdwc_scp_max,gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
+     & gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
+     & gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
+     & gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
+     & gsccorx_max,gsclocx_max
diff --git a/source/unres/src_MD_DFA/COMMON.MCE b/source/unres/src_MD_DFA/COMMON.MCE
new file mode 100644 (file)
index 0000000..2d79184
--- /dev/null
@@ -0,0 +1,13 @@
+      double precision entropy(-max_ene-4:max_ene),nminima(maxsave),
+     &        nhist(-max_ene:max_ene)
+      logical ent_read,multican
+      common /mce/ entropy,emin,emax,nhist,nminima,ent_read,multican,
+     & indminn,indmaxx
+      integer npool
+      double precision xpool,epool,pool_fraction
+      common /pool/ xpool(maxvar,max_pool),epool(max_pool),
+     & pool_fraction,npool
+      integer save_frequency,message_frequency,pool_read_freq,
+     & pool_save_freq,print_freq
+      common /mce_counters/ save_frequency,message_frequency,
+     & pool_read_freq,pool_save_freq,print_freq
diff --git a/source/unres/src_MD_DFA/COMMON.MCM b/source/unres/src_MD_DFA/COMMON.MCM
new file mode 100644 (file)
index 0000000..576f912
--- /dev/null
@@ -0,0 +1,70 @@
+C... Following COMMON block contains general variables controlling the MC/MCM
+C... procedure
+c-----------------------------------------------------------------------------
+      double precision Tcur,Tmin,Tmax,TstepH,TstepC,RanFract,
+     &        overlap_cut,e_up,delte
+      integer nstepH,nstepC,maxacc,maxgen,maxtrial,maxtrial_iter,
+     &        maxrepm,ngen,ntrial,ntherm,nrepm,neneval,nsave,maxoverlap,
+     &        nsave_part,max_mcm_it,nsweep,print_mc
+      logical print_stat,print_int
+      common /mcm/ Tcur,Tmin,Tmax,TstepH,TstepC,Rbol,betbol,RanFract,
+     & overlap_cut,e_up,delte,
+     & nstepH,nstepC,maxacc,maxgen,maxtrial,maxtrial_iter,maxrepm,
+     & maxoverlap,ntrial,max_mcm_it,
+     & ngen,ntherm,nrepm,neneval,nsave,nsave_part(max_cg_procs),nsweep,
+     & print_mc,print_stat,print_int
+c-----------------------------------------------------------------------------
+C... The meaning of the above variables is as follows:
+C... Tcur,Tmin,Tmax - Current,minimum and maximum temperature, respectively;
+C... NstepC,NStepH - Number of cooling and heating steps, respectively;
+C... TstepH,TstepC - factors by which T is multiplied in order to be
+C...                 increased or decreased.
+C... betbol - Boltzmann's inverse temperature (1/(Rbol*Tcur));
+C... Rbol - the gas constant;
+C... RanFract - the chance that a new conformation will be random-generated;
+C... maxacc - maximum number of accepted conformations;
+C... maxgen,ngen - Maximum and current number of generated conformations;
+C... maxtrial,ntrial - maximum number of trials before temperature is increased
+C...                   and current number of trials, respectively;
+C... maxrepm,nrepm - maximum number of allowed minima repetition and current
+C...                 number of minima repetitions, respectively;
+C... maxoverlap - max. # of overlapping confs generated in a single iteration;
+C... neneval - number of energy evaluations;
+C... nsave - number of confs. in the backup array;
+C... nsweep - the number of macroiterations in generating the distributions.
+c------------------------------------------------------------------------------
+C... Following COMMON block contains variables controlling motion.
+c------------------------------------------------------------------------------
+      double precision sumpro_type,sumpro_bond
+      integer koniecl, Nbm,MaxSideMove,nmove,moves(-1:MaxMoveType+1),
+     &   moves_acc(-1:MaxMoveType+1),nacc_tot,nacc_part(0:MaxProcs)
+      common /move/ sumpro_type(0:MaxMoveType),sumpro_bond(0:maxres),
+     & koniecl,Nbm,MaxSideMove,nmove,nbond_move(maxres),
+     & nbond_acc(maxres),moves,moves_acc
+      common /accept_stats/ nacc_tot,nacc_part 
+      integer nwindow,winstart,winend,winlen
+      common /windows/ nwindow,winstart(maxres),winend(maxres),
+     &        winlen(maxres)
+      character*16 MovTypID
+      common /moveID/ MovTypID(-1:MaxMoveType+1)
+c------------------------------------------------------------------------------
+C... koniecl - the number of bonds to be considered "end bonds" subjected to
+C...          end moves;
+C... Nbm - The maximum length of N-bond segment to be moved;
+C... MaxSideMove - maximum number of side chains subjected to local moves
+C...               simultaneously;
+C... nmove - the current number of attempted moves;
+C... nbond_move(*) array that stores the total numbers of 2-bond,3-bond,...
+C...            moves; 
+C... nendmove - number of endmoves;
+C... nbackmove - number of backbone moves;
+C... nsidemove - number of local side chain moves;
+C... sumpro_type(*) - array that stores the lower and upper boundary of the
+C...                  random-number range that determines the type of move
+C...                  (N-bond, backbone or side chain);
+C... sumpro_bond(*) - array that stores the probabilities to perform bond
+C...                  moves of consecutive segment length. 
+C... winstart(*) - the starting position of the perturbation window;
+C... winend(*) -  the end position of the perturbation window;
+C... winlen(*) - length of the perturbation window;
+C... nwindow - the number of perturbation windows (0 - entire chain).
diff --git a/source/unres/src_MD_DFA/COMMON.MD b/source/unres/src_MD_DFA/COMMON.MD
new file mode 100644 (file)
index 0000000..6ce6a3f
--- /dev/null
@@ -0,0 +1,77 @@
+      double precision  gcart, gxcart, gradcag,gradxag
+      common /mdgrad/ gcart(3,0:MAXRES), gxcart(3,0:MAXRES),
+     & gradcag(3,MAXRES),gradxag(3,MAXRES)
+       integer dimen,dimen1, dimen3, ifrag(2,50,maxprocs/20), 
+     &                       ipair(2,100,maxprocs/20),iset,
+     &                       mset(maxprocs/20),nset
+       double precision IP,ISC(ntyp+1),mp,
+     & msc(ntyp+1),d_t_work(MAXRES6),
+     & d_t_work_new(MAXRES6),d_t(3,0:MAXRES2),d_t_new(3,0:MAXRES2),
+     & d_af_work(MAXRES6),d_as_work(MAXRES6),
+     & d_t_old(3,0:MAXRES2),d_a_old(3,0:MAXRES2),d_a_short(3,0:MAXRES2),
+     & Gmat(MAXRES2,MAXRES2),Ginv(MAXRES2,MAXRES2),A(MAXRES2,MAXRES2),
+     & d_a(3,0:MAXRES2),d_a_work(6*MAXRES),kinetic_force(MAXRES6),
+     & Gsqrp(MAXRES2,MAXRES2),Gsqrm(MAXRES2,MAXRES2),
+     & vtot(MAXRES2),Gvec(maxres2,maxres2),Geigen(maxres2)
+       double precision v_ini,d_time,d_time0,t_bath,tau_bath,
+     & EK,potE,potEcomp(0:n_ene+4),totE,totT,amax,kinetic_T,dvmax,damax,
+     & edriftmax,
+     & eq_time,wfrag(50,maxprocs/20),wpair(100,maxprocs/20),
+     & qfrag(50),qpair(100),
+     & qinfrag(50,maxprocs/20),qinpair(100,maxprocs/20),
+     & Ucdfrag,Ucdpair,dUdconst(3,0:MAXRES),Uconst,
+     & dUdxconst(3,0:MAXRES),dqwol(3,0:MAXRES),dxqwol(3,0:MAXRES),
+     & utheta(maxfrag_back),ugamma(maxfrag_back),uscdiff(maxfrag_back),
+     & dutheta(maxres),dugamma(maxres),duscdiff(3,maxres),
+     & duscdiffx(3,maxres),wfrag_back(3,maxfrag_back,maxprocs/20),
+     & uconst_back
+      integer n_timestep,ntwx,ntwe,lang,count_reset_moment,
+     & count_reset_vel,reset_fricmat,nfrag,npair,nfrag_back,
+     & ifrag_back(3,maxfrag_back,maxprocs/20),ntime_split,ntime_split0,
+     & maxtime_split
+      integer nresn,nyosh,nnos
+      double precision glogs,qmass,vlogs,xlogs
+      logical large,print_compon,tbf,rest,reset_moment,reset_vel,
+     & surfarea,rattle,usampl,mdpdb,RESPA,tnp,tnp1,tnh,xiresp
+      integer igmult_start,igmult_end,my_ng_count,ng_start,ng_counts,
+     & nginv_start,nginv_counts,myginv_ng_count
+      common /back_constr/ uconst_back,utheta,ugamma,uscdiff,
+     & dutheta,dugamma,duscdiff,duscdiffx,
+     & wfrag_back,nfrag_back,ifrag_back
+      common /qmeas/ qfrag,qpair,qinfrag,qinpair,wfrag,wpair,eq_time,
+     & Ucdfrag,Ucdpair,dUdconst,dUdxconst,dqwol,dxqwol,Uconst,
+     & iset,mset,nset,usampl,ifrag,ipair,npair,nfrag
+      common /mdpar/ v_ini,d_time,d_time0,scal_fric,
+     & t_bath,tau_bath,dvmax,damax,n_timestep,mdpdb,
+     & ntime_split,ntime_split0,maxtime_split,
+     & ntwx,ntwe,large,print_compon,tbf,rest,tnp,tnp1,tnh
+      common /MDcalc/ totT,totE,potE,potEcomp,EK,amax,edriftmax,
+     & kinetic_T
+      common /lagrange/ d_t,d_t_old,d_t_new,d_t_work,
+     & d_t_work_new,d_a,d_a_old,d_a_work,d_af_work,d_as_work,d_a_short,
+     & kinetic_force,
+     & A,Ginv,Gmat,Gvec,Geigen,Gsqrp,Gsqrm,
+     & vtot,dimen,dimen1,dimen3,lang,
+     & reset_moment,reset_vel,count_reset_moment,count_reset_vel,
+     & rattle,RESPA
+      common /inertia/ IP,ISC,MP,MSC
+      double precision scal_fric,rwat,etawat,gamp,
+     & gamsc(ntyp),stdfp,stdfsc(ntyp),stdforcp(MAXRES),
+     & stdforcsc(MAXRES),pstok,restok(ntyp+1),cPoise,Rb
+      common /langevin/ pstok,restok,gamp,gamsc,
+     & stdfp,stdfsc,stdforcp,stdforcsc,rwat,etawat,cPoise,Rb,surfarea,
+     & reset_fricmat
+      common /mdpmpi/ igmult_start,igmult_end,my_ng_count,
+     & myginv_ng_count,
+     & ng_start(0:MaxProcs-1),ng_counts(0:MaxProcs-1),
+     & nginv_start(0:MaxProcs),nginv_counts(0:MaxProcs-1)
+      double precision pi_np,pistar,s_np,s12_np,Q_np,E_old,H0,E_long,
+     & sold_np,d_t_half,Csplit,hhh
+      common /nosepoincare/ pi_np,pistar,s_np,s12_np,Q_np,E_old,H0,
+     & E_long,sold_np,d_t_half(3,0:MAXRES2),Csplit,hhh
+      common /nosehoover/ glogs(maxmnh),qmass(maxmnh),
+     &                    vlogs(maxmnh),xlogs(maxmnh),
+     &                    nresn,nyosh,nnos,xiresp
+      integer hmc,hmc_acc
+      double precision dc_hmc,hmc_etot,totThmc
+      common /hmc_md/ dc_hmc(3,0:maxres2),hmc_etot,hmc,totThmc,hmc_acc
diff --git a/source/unres/src_MD_DFA/COMMON.MINIM b/source/unres/src_MD_DFA/COMMON.MINIM
new file mode 100644 (file)
index 0000000..e44f9cd
--- /dev/null
@@ -0,0 +1,5 @@
+      double precision tolf,rtolf
+      integer maxfun,maxmin,minfun,minmin,
+     &  print_min_ini,print_min_stat,print_min_res
+      common /minimm/ tolf,rtolf,maxfun,maxmin,minfun,minmin,
+     &  print_min_ini,print_min_stat,print_min_res
diff --git a/source/unres/src_MD_DFA/COMMON.MUCA b/source/unres/src_MD_DFA/COMMON.MUCA
new file mode 100644 (file)
index 0000000..7529c15
--- /dev/null
@@ -0,0 +1,10 @@
+      double precision emuca(4*maxres),nemuca(4*maxres),
+     &        nemuca2(4*maxres),elow,ehigh,factor,
+     &        elowi(maxprocs),ehighi(maxprocs),hbin,
+     &        hist(4*maxres),factor_min
+      integer nmuca,imtime,muca_smooth
+      common /double_muca/ emuca,nemuca,
+     &        nemuca2,elow,ehigh,factor,hbin,hist,factor_min
+      common /integer_muca/ nmuca,imtime,muca_smooth
+      common /mucarem/ elowi,ehighi
+
diff --git a/source/unres/src_MD_DFA/COMMON.NAMES b/source/unres/src_MD_DFA/COMMON.NAMES
new file mode 100644 (file)
index 0000000..e6f926b
--- /dev/null
@@ -0,0 +1,7 @@
+      character*3 restyp
+      character*1 onelet
+      common /names/ restyp(ntyp+1),onelet(ntyp+1)
+      character*10 ename,wname
+      integer nprint_ene,print_order
+      common /namterm/ ename(n_ene),wname(n_ene),nprint_ene,
+     &   print_order(n_ene)
diff --git a/source/unres/src_MD_DFA/COMMON.REFSYS b/source/unres/src_MD_DFA/COMMON.REFSYS
new file mode 100644 (file)
index 0000000..9eaa3c3
--- /dev/null
@@ -0,0 +1,3 @@
+      double precision e1,e2,e3,u,z,s1,s2
+      integer i1,i2,i3,i4
+      common /refer/ e1(3),e2(3),e3(3),u(3),z(3),s1,s2,i1,i2,i3,i4
diff --git a/source/unres/src_MD_DFA/COMMON.REMD b/source/unres/src_MD_DFA/COMMON.REMD
new file mode 100644 (file)
index 0000000..182acae
--- /dev/null
@@ -0,0 +1,36 @@
+      integer nrep,nstex,hremd
+      logical remd_tlist,remd_mlist,mremdsync,restart1file,traj1file
+      double precision retmin,retmax,remd_t(maxprocs)
+      double precision hweights(maxprocs/20,n_ene)
+      integer remd_m(maxprocs),i_sync_step
+      integer*2 i2rep(0:maxprocs),i2set(0:maxprocs)
+      integer*2 ifirst(maxprocs)
+      integer*2 nupa(0:maxprocs/4,0:maxprocs),
+     &          ndowna(0:maxprocs/4,0:maxprocs)
+      real t_restart1(5,maxprocs)
+      integer iset_restart1(maxprocs)
+      logical t_exchange_only
+      common /remdcommon/ nrep,nstex,retmin,retmax,remd_t,remd_tlist,
+     &                    remd_mlist,remd_m,mremdsync,restart1file,
+     &                    traj1file,i_sync_step,t_exchange_only
+      common /hamilt_remd/ hweights,hremd
+      common /remdrestart/ i2rep,i2set,ifirst,nupa,ndowna,t_restart1,
+     &                    iset_restart1
+      real totT_cache,EK_cache,potE_cache,t_bath_cache,Uconst_cache,
+     &     qfrag_cache,qpair_cache,c_cache,
+     &     ugamma_cache,utheta_cache
+      integer ntwx_cache,ii_write,max_cache_traj_use
+      common /traj1cache/ totT_cache(max_cache_traj),
+     &                    EK_cache(max_cache_traj),
+     &                    potE_cache(max_cache_traj),
+     &                    t_bath_cache(max_cache_traj),
+     &                    Uconst_cache(max_cache_traj),
+     &                    qfrag_cache(50,max_cache_traj),
+     &                    qpair_cache(100,max_cache_traj),
+     &                    ugamma_cache(maxfrag_back,max_cache_traj),
+     &                    utheta_cache(maxfrag_back,max_cache_traj),
+     &                    uscdiff_cache(maxfrag_back,max_cache_traj),
+     &                    c_cache(3,maxres2+2,max_cache_traj),
+     &                    iset_cache(max_cache_traj),ntwx_cache,
+     &                    ii_write,max_cache_traj_use
+
diff --git a/source/unres/src_MD_DFA/COMMON.SBRIDGE b/source/unres/src_MD_DFA/COMMON.SBRIDGE
new file mode 100644 (file)
index 0000000..d75482c
--- /dev/null
@@ -0,0 +1,12 @@
+      double precision ebr,d0cm,akcm,akth,akct,v1ss,v2ss,v3ss
+      integer ns,nss,nfree,iss
+      common /sbridge/ ebr,d0cm,akcm,akth,akct,v1ss,v2ss,v3ss,
+     & ns,nss,nfree,iss(maxss)
+      double precision dhpb,dhpb1,forcon
+      integer ihpb,jhpb,nhpb
+      common /links/ dhpb(maxdim),dhpb1(maxdim),forcon(maxdim),
+     & ihpb(maxdim),jhpb(maxdim),ibecarb(maxdim),nhpb
+      double precision weidis
+      common /restraints/ weidis
+      integer link_start,link_end
+      common /links_split/ link_start,link_end
diff --git a/source/unres/src_MD_DFA/COMMON.SCCOR b/source/unres/src_MD_DFA/COMMON.SCCOR
new file mode 100644 (file)
index 0000000..ccfe0c4
--- /dev/null
@@ -0,0 +1,16 @@
+cc Parameters of the SCCOR term
+      double precision v1sccor,v2sccor,vlor1sccor,
+     &                 vlor2sccor,vlor3sccor,gloc_sc,
+     &                 dcostau,dsintau,dtauangle,dcosomicron,
+     &                 domicron
+      integer nterm_sccor,isccortyp,nsccortyp,nlor_sccor
+      common/sccor/v1sccor(maxterm_sccor,3,20,20),
+     &    v2sccor(maxterm_sccor,3,20,20),
+     &    v0sccor(ntyp,ntyp),
+     &    nterm_sccor(ntyp,ntyp),isccortyp(ntyp),nsccortyp,
+     &    nlor_sccor(ntyp,ntyp),vlor1sccor(maxterm_sccor,20,20),
+     &    vlor2sccor(maxterm_sccor,20,20),
+     &    vlor3sccor(maxterm_sccor,20,20),gloc_sc(3,0:maxres2,10),
+     &    dcostau(3,3,3,maxres2),dsintau(3,3,3,maxres2),
+     &    dtauangle(3,3,3,maxres2),dcosomicron(3,3,3,maxres2),
+     &    domicron(3,3,3,maxres2)
diff --git a/source/unres/src_MD_DFA/COMMON.SCROT b/source/unres/src_MD_DFA/COMMON.SCROT
new file mode 100644 (file)
index 0000000..2da7b8f
--- /dev/null
@@ -0,0 +1,3 @@
+C Parameters of the SC rotamers (local) term
+      double precision sc_parmin
+      common/scrot/sc_parmin(maxsccoef,20)
diff --git a/source/unres/src_MD_DFA/COMMON.SETUP b/source/unres/src_MD_DFA/COMMON.SETUP
new file mode 100644 (file)
index 0000000..5039116
--- /dev/null
@@ -0,0 +1,21 @@
+      integer king,idint,idreal,idchar,is_done
+      parameter (king=0,idint=1105,idreal=1729,idchar=1597,is_done=1)
+      integer me,cg_rank,fg_rank,fg_rank1,nodes,Nprocs,nfgtasks,kolor,
+     & koniec(0:maxprocs-1),WhatsUp,ifinish(maxprocs-1),CG_COMM,FG_COMM,
+     & FG_COMM1,CONT_FROM_COMM,CONT_TO_COMM,lentyp(0:maxprocs-1),
+     & kolor1,key1,nfgtasks1,MyRank,
+     & max_gs_size
+      logical yourjob, finished, cgdone
+      common/setup/me,MyRank,cg_rank,fg_rank,fg_rank1,nodes,Nprocs,
+     & nfgtasks,nfgtasks1,
+     & max_gs_size,kolor,koniec,WhatsUp,ifinish,CG_COMM,FG_COMM,
+     & FG_COMM1,CONT_FROM_COMM,CONT_TO_COMM,lentyp
+      integer MPI_UYZ,MPI_UYZGRAD,MPI_MU,MPI_MAT1,MPI_MAT2,
+     & MPI_THET,MPI_GAM,
+     & MPI_ROTAT1(0:1),MPI_ROTAT2(0:1),MPI_ROTAT_OLD(0:1),
+     & MPI_PRECOMP11(0:1),MPI_PRECOMP12(0:1),MPI_PRECOMP22(0:1),
+     & MPI_PRECOMP23(0:1)
+      common /types/ MPI_UYZ,MPI_UYZGRAD,MPI_MU,MPI_MAT1,MPI_MAT2,
+     & MPI_THET,MPI_GAM,
+     & MPI_ROTAT1,MPI_ROTAT2,MPI_ROTAT_OLD,MPI_PRECOMP11,MPI_PRECOMP12,
+     & MPI_PRECOMP22,MPI_PRECOMP23
diff --git a/source/unres/src_MD_DFA/COMMON.SPLITELE b/source/unres/src_MD_DFA/COMMON.SPLITELE
new file mode 100644 (file)
index 0000000..a2f0447
--- /dev/null
@@ -0,0 +1,2 @@
+      double precision r_cut,rlamb
+      common /splitele/ r_cut,rlamb
diff --git a/source/unres/src_MD_DFA/COMMON.THREAD b/source/unres/src_MD_DFA/COMMON.THREAD
new file mode 100644 (file)
index 0000000..5c814cc
--- /dev/null
@@ -0,0 +1,7 @@
+      integer nthread,nexcl,iexam,ipatt
+      double precision ener0,ener,max_time_for_thread,
+     &  ave_time_for_thread
+      common /thread/ nthread,nexcl,iexam(2,maxthread),
+     &  ipatt(2,maxthread)
+      common /thread1/ ener0(n_ene+2,maxthread),ener(n_ene+2,maxthread),
+     &  max_time_for_thread,ave_time_for_thread
diff --git a/source/unres/src_MD_DFA/COMMON.TIME1 b/source/unres/src_MD_DFA/COMMON.TIME1
new file mode 100644 (file)
index 0000000..d6203a6
--- /dev/null
@@ -0,0 +1,28 @@
+      DOUBLE PRECISION BATIME,TIMLIM,STIME,PREVTIM,SAFETY
+      DOUBLE PRECISION WALLTIME
+      INTEGER ISTOP
+c     FOUND_NAN - set by calcf to stop sumsl via stopx
+      logical FOUND_NAN
+      COMMON/TIME1/STIME,TIMLIM,BATIME,PREVTIM,SAFETY,WALLTIME
+      COMMON/STOPTIM/ISTOP
+      common /sumsl_flag/ FOUND_NAN
+      double precision t_init,t_MDsetup,t_langsetup,t_MD,
+     & t_enegrad,t_sdsetup,time_bcast,time_reduce,time_gather,
+     & time_sendrecv,time_barrier_e,time_barrier_g,time_scatter,
+     & t_eelecij,time_bcast7,time_bcastc,time_bcastw,time_allreduce,
+     & time_enecalc,time_sumene,time_lagrangian,time_cartgrad,
+     & time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart,
+     & time_vec,time_mat,time_ginvmult,time_fricmatmult,time_fric,
+     & time_scatter_fmat,time_scatter_ginv,
+     & time_fsample,time_scatter_fmatmult,time_scatter_ginvmult,
+     & time_stoch,t_eshort,t_elong,t_etotal
+      common /timing/ t_init,t_MDsetup,t_langsetup,
+     & t_MD,t_enegrad,t_sdsetup,time_bcast,time_reduce,time_gather,
+     & time_sendrecv,time_scatter,time_barrier_e,time_barrier_g,
+     & time_bcast7,time_bcastc,time_bcastw,time_allreduce,
+     & t_eelecij,time_enecalc,time_sumene,time_lagrangian,time_cartgrad,
+     & time_sumgradient,time_intcartderiv,time_inttocart,time_intfcart,
+     & time_vec,time_mat,time_ginvmult,time_fricmatmult,time_fric,
+     & time_fsample,time_scatter_fmatmult,time_scatter_ginvmult,
+     & time_scatter_fmat,time_scatter_ginv,
+     & time_stoch,t_eshort,t_elong,t_etotal
diff --git a/source/unres/src_MD_DFA/COMMON.TORCNSTR b/source/unres/src_MD_DFA/COMMON.TORCNSTR
new file mode 100644 (file)
index 0000000..e4af17c
--- /dev/null
@@ -0,0 +1,6 @@
+      integer ndih_constr,idih_constr(maxdih_constr)
+      integer ndih_nconstr,idih_nconstr(maxdih_constr)
+      integer idihconstr_start,idihconstr_end
+      double precision phi0(maxdih_constr),drange(maxdih_constr),ftors
+      common /torcnstr/ phi0,drange,ftors,ndih_constr,idih_constr,
+     &  ndih_nconstr,idih_nconstr,idihconstr_start,idihconstr_end
diff --git a/source/unres/src_MD_DFA/COMMON.TORSION b/source/unres/src_MD_DFA/COMMON.TORSION
new file mode 100644 (file)
index 0000000..6b6605f
--- /dev/null
@@ -0,0 +1,23 @@
+C Torsional constants of the rotation about virtual-bond dihedral angles
+      double precision v1,v2,vlor1,vlor2,vlor3,v0
+      integer itortyp,ntortyp,nterm,nlor,nterm_old
+      common/torsion/v0(maxtor,maxtor),v1(maxterm,maxtor,maxtor),
+     &    v2(maxterm,maxtor,maxtor),vlor1(maxlor,maxtor,maxtor),
+     &    vlor2(maxlor,maxtor,maxtor),vlor3(maxlor,maxtor,maxtor),
+     &    itortyp(ntyp),ntortyp,nterm(maxtor,maxtor),nlor(maxtor,maxtor) 
+     &    ,nterm_old
+C 6/23/01 - constants for double torsionals
+      double precision v1c,v1s,v2c,v2s
+      integer ntermd_1,ntermd_2
+      common /torsiond/ v1c(2,maxtermd_1,maxtor,maxtor,maxtor),
+     &    v1s(2,maxtermd_1,maxtor,maxtor,maxtor),
+     &    v2c(maxtermd_2,maxtermd_2,maxtor,maxtor,maxtor),
+     &    v2s(maxtermd_2,maxtermd_2,maxtor,maxtor,maxtor),
+     &    ntermd_1(maxtor,maxtor,maxtor),ntermd_2(maxtor,maxtor,maxtor)
+C 9/18/99 - added Fourier coeffficients of the expansion of local energy 
+C           surface
+      double precision b1,b2,cc,dd,ee,ctilde,dtilde,b2tilde
+      integer nloctyp
+      common/fourier/ b1(2,maxtor),b2(2,maxtor),cc(2,2,maxtor),
+     &    dd(2,2,maxtor),ee(2,2,maxtor),ctilde(2,2,maxtor),
+     &    dtilde(2,2,maxtor),b1tilde(2,maxtor),nloctyp
diff --git a/source/unres/src_MD_DFA/COMMON.VAR b/source/unres/src_MD_DFA/COMMON.VAR
new file mode 100644 (file)
index 0000000..edc81d7
--- /dev/null
@@ -0,0 +1,21 @@
+C Store the geometric variables in the following COMMON block.
+      integer ntheta,nphi,nside,nvar,Origin,nstore,ialph,ivar,
+     &        mask_theta,mask_phi,mask_side
+      double precision theta,phi,alph,omeg,varsave,esave,varall,vbld,
+     &          thetaref,phiref,costtab,sinttab,cost2tab,sint2tab,
+     &          xxtab,yytab,zztab,xxref,yyref,zzref,tauangle,omicron
+      common /var/ theta(maxres),phi(maxres),alph(maxres),omeg(maxres),
+     &          omicron(2,maxres),tauangle(3,maxres),
+     &          vbld(2*maxres),thetaref(maxres),phiref(maxres),
+     &          costtab(maxres), sinttab(maxres), cost2tab(maxres),
+     &          sint2tab(maxres),xxtab(maxres),yytab(maxres),
+     &          zztab(maxres),xxref(maxres),yyref(maxres),zzref(maxres),
+     &          ialph(maxres,2),ivar(4*maxres2),ntheta,nphi,nside,nvar
+C Store the angles and variables corresponding to old conformations (for use
+C in MCM).
+      common /oldgeo/ varsave(maxvar,maxsave),esave(maxsave),
+     &  Origin(maxsave),nstore
+C freeze some variables
+      logical mask_r
+      common /restr/ varall(maxvar),mask_r,mask_theta(maxres),
+     &               mask_phi(maxres),mask_side(maxres)
diff --git a/source/unres/src_MD_DFA/COMMON.VECTORS b/source/unres/src_MD_DFA/COMMON.VECTORS
new file mode 100644 (file)
index 0000000..d880c24
--- /dev/null
@@ -0,0 +1,3 @@
+      common /vectors/ uy(3,maxres),uz(3,maxres),
+     &          uygrad(3,3,2,maxres),uzgrad(3,3,2,maxres)
+
diff --git a/source/unres/src_MD_DFA/DIMENSIONS b/source/unres/src_MD_DFA/DIMENSIONS
new file mode 100644 (file)
index 0000000..5151ff7
--- /dev/null
@@ -0,0 +1,139 @@
+********************************************************************************
+* Settings for the program of united-residue peptide simulation in real space  *
+*                                                                              *
+*                -------  As of 6/23/01 -----------                            *
+*                                                                              *
+********************************************************************************
+C Max. number of processors.
+      integer maxprocs
+      parameter (maxprocs=2048)
+C Max. number of fine-grain processors
+      integer max_fg_procs
+c      parameter (max_fg_procs=maxprocs)
+      parameter (max_fg_procs=512)
+C Max. number of coarse-grain processors
+      integer max_cg_procs
+      parameter (max_cg_procs=maxprocs)
+C Max. number of AA residues
+      integer maxres
+      parameter (maxres=800)
+C Appr. max. number of interaction sites
+      integer maxres2,maxres6,mmaxres2
+      parameter (maxres2=2*maxres,maxres6=6*maxres)
+      parameter (mmaxres2=(maxres2*(maxres2+1)/2))
+C Max. number of variables
+      integer maxvar
+      parameter (maxvar=6*maxres)
+C Max. number of groups of interactions that a given SC is involved in
+      integer maxint_gr
+      parameter (maxint_gr=2)
+C Max. number of derivatives of virtual-bond and side-chain vectors in theta
+C or phi.
+      integer maxdim
+      parameter (maxdim=(maxres-1)*(maxres-2)/2)
+C Max. number of SC contacts
+      integer maxcont
+      parameter (maxcont=12*maxres)
+C Max. number of contacts per residue
+      integer maxconts
+      parameter (maxconts=maxres/4)
+c      parameter (maxconts=50)
+C Number of AA types (at present only natural AA's will be handled
+      integer ntyp,ntyp1
+      parameter (ntyp=20,ntyp1=ntyp+1)
+C Max. number of types of dihedral angles & multiplicity of torsional barriers
+C and the number of terms in double torsionals
+      integer maxtor,maxterm,maxlor,maxtermd_1,maxtermd_2
+      parameter (maxtor=4,maxterm=10,maxlor=3,maxtermd_1=8,maxtermd_2=8)
+C Max. number of residue types and parameters in expressions for 
+C virtual-bond angle bending potentials
+      integer maxthetyp,maxthetyp1,maxtheterm,maxtheterm2,maxtheterm3,
+     &  maxsingle,maxdouble,mmaxtheterm
+      parameter (maxthetyp=3,maxthetyp1=maxthetyp+1,maxtheterm=20,
+     & maxtheterm2=6,maxtheterm3=4,maxsingle=6,maxdouble=4,
+     & mmaxtheterm=maxtheterm)
+c Max number of torsional terms in SCCOR
+      integer maxterm_sccor
+      parameter (maxterm_sccor=6)
+C Max. number of lobes in SC distribution
+      integer maxlob
+      parameter (maxlob=4)
+C Max. number of S-S bridges
+      integer maxss
+      parameter (maxss=20)
+C Max. number of dihedral angle constraints
+      integer maxdih_constr
+      parameter (maxdih_constr=maxres)
+C Max. number of patterns in the pattern database
+      integer maxseq
+      parameter (maxseq=10)
+C Max. number of residues in a peptide in the database
+      integer maxres_base
+      parameter (maxres_base=10)
+C Max. number of threading attempts
+      integer maxthread
+      parameter (maxthread=20)
+C Max. number of move types in MCM
+      integer maxmovetype
+      parameter (maxmovetype=4)
+C Max. number of stored confs. in MC/MCM simulation
+      integer maxsave
+      parameter (maxsave=20)
+C Max. number of energy intervals
+      integer max_ene
+      parameter (max_ene=10)
+C Max. number of conformations in Master's cache array
+      integer max_cache
+      parameter (max_cache=10)
+C Max. number of conformations in the pool
+      integer max_pool
+      parameter (max_pool=10)
+C Number of energy components
+      integer n_ene,n_ene2
+      parameter (n_ene=23,n_ene2=2*n_ene)
+C Number of threads in deformation
+      integer max_thread,max_thread2
+      parameter (max_thread=4,max_thread2=2*max_thread)     
+C Number of structures to compare at t=0
+      integer max_threadss,max_threadss2
+      parameter (max_threadss=8,max_threadss2=2*max_threadss)
+C Maxmimum number of angles per residue
+      integer mxang
+      parameter (mxang=4)
+C Maximum number of groups of angles
+      integer mxgr
+      parameter (mxgr=2*maxres)
+C Maximum number of chains
+      integer mxch
+      parameter (mxch=1)
+csaC Maximum number of generated conformations
+csa      integer mxio
+csa      parameter (mxio=2)
+csaC Maximum number of n7 generated conformations
+csa      integer mxio2
+csa      parameter (mxio2=2)
+csaC Maximum number of moves (n1-n8)
+csa      integer mxmv
+csa      parameter (mxmv=18)
+csaC Maximum number of seed
+csa      integer max_seed
+csa      parameter (max_seed=1)
+C Maximum number of timesteps for which stochastic MD matrices can be stored
+      integer maxflag_stoch
+      parameter (maxflag_stoch=0)
+C Maximum number of backbone fragments in restraining
+      integer maxfrag_back
+      parameter (maxfrag_back=4)
+C Maximum number of SC local term fitting function coefficiants
+      integer maxsccoef
+      parameter (maxsccoef=65)
+C Maximum number of terms in SC bond-stretching potential
+      integer maxbondterm
+      parameter (maxbondterm=3)
+C Maximum number of conformation stored in cache on each CPU before sending
+C to master; depends on nstex / ntwx ratio
+      integer max_cache_traj
+      parameter (max_cache_traj=10)
+C Nose-Hoover chain - chain length and order of Yoshida algorithm
+      integer maxmnh,maxyosh
+      parameter(maxmnh=10,maxyosh=5)
diff --git a/source/unres/src_MD_DFA/DIMENSIONS.2100 b/source/unres/src_MD_DFA/DIMENSIONS.2100
new file mode 100644 (file)
index 0000000..ea1d287
--- /dev/null
@@ -0,0 +1,80 @@
+********************************************************************************
+* Settings for the program of united-residue peptide simulation in real space  *
+*                                                                              *
+*                -------  As of 6/23/01 -----------                            *
+*                                                                              *
+********************************************************************************
+C Max. number of processors.
+      parameter (maxprocs=2100)
+C Max. number of fine-grain processors
+      parameter (max_fg_procs=maxprocs)
+C Max. number of coarse-grain processors
+      parameter (max_cg_procs=maxprocs)
+C Max. number of AA residues
+      parameter (maxres=150)
+C Appr. max. number of interaction sites
+      parameter (maxres2=2*maxres,maxres6=6*maxres)
+      parameter (mmaxres6=(maxres6*(maxres6+1)/2))
+C Max. number of variables
+      parameter (maxvar=6*maxres)
+C Max. number of groups of interactions that a given SC is involved in
+      parameter (maxint_gr=2)
+C Max. number of derivatives of virtual-bond and side-chain vectors in theta
+C or phi.
+      parameter (maxdim=(maxres-1)*(maxres-2)/2)
+C Max. number of SC contacts
+      parameter (maxcont=12*maxres)
+C Max. number of contacts per residue
+      parameter (maxconts=maxres)
+C Number of AA types (at present only natural AA's will be handled
+      parameter (ntyp=20,ntyp1=ntyp+1)
+C Max. number of types of dihedral angles & multiplicity of torsional barriers
+C and the number of terms in double torsionals
+      parameter (maxtor=4,maxterm=10,maxlor=3,maxtermd_1=8,maxtermd_2=8)
+C Max. number of lobes in SC distribution
+      parameter (maxlob=4)
+C Max. number of S-S bridges
+      parameter (maxss=20)
+C Max. number of dihedral angle constraints
+      parameter (maxdih_constr=maxres)
+C Max. number of patterns in the pattern database
+      parameter (maxseq=10)
+C Max. number of residues in a peptide in the database
+      parameter (maxres_base=10)
+C Max. number of threading attempts
+      parameter (maxthread=20)
+C Max. number of move types in MCM
+      parameter (maxmovetype=4)
+C Max. number of stored confs. in MC/MCM simulation
+      parameter (maxsave=20)
+C Max. number of energy intervals
+      parameter (max_ene=10)
+C Max. number of conformations in Master's cache array
+      parameter (max_cache=10)
+C Max. number of conformations in the pool
+      parameter (max_pool=10)
+C Number of energy components
+      parameter (n_ene=21,n_ene2=2*n_ene)
+C Number of threads in deformation
+      integer max_thread,max_thread2
+      parameter (max_thread=4,max_thread2=2*max_thread)     
+C Number of structures to compare at t=0
+      integer max_threadss,max_threadss2
+      parameter (max_threadss=8,max_threadss2=2*max_threadss)
+C Maxmimum number of angles per residue
+      parameter (mxang=4)
+C Maximum number of groups of angles
+      parameter (mxgr=2*maxres)
+C Maximum number of chains
+      parameter (mxch=1)
+C Maximum number of generated conformations
+      parameter (mxio=2)
+C Maximum number of n7 generated conformations
+      parameter (mxio2=2)
+C Maximum number of moves (n1-n8)
+      parameter (mxmv=18)
+C Maximum number of seed
+       parameter (max_seed=1)
+C Maximum number of timesteps for which stochastic MD matrices can be stored
+      integer maxflag_stoch
+      parameter (maxflag_stoch=0)
diff --git a/source/unres/src_MD_DFA/DIMENSIONS.4100 b/source/unres/src_MD_DFA/DIMENSIONS.4100
new file mode 100644 (file)
index 0000000..a4558b9
--- /dev/null
@@ -0,0 +1,80 @@
+********************************************************************************
+* Settings for the program of united-residue peptide simulation in real space  *
+*                                                                              *
+*                -------  As of 6/23/01 -----------                            *
+*                                                                              *
+********************************************************************************
+C Max. number of processors.
+      parameter (maxprocs=4100)
+C Max. number of fine-grain processors
+      parameter (max_fg_procs=maxprocs)
+C Max. number of coarse-grain processors
+      parameter (max_cg_procs=maxprocs)
+C Max. number of AA residues
+      parameter (maxres=150)
+C Appr. max. number of interaction sites
+      parameter (maxres2=2*maxres,maxres6=6*maxres)
+      parameter (mmaxres6=(maxres6*(maxres6+1)/2))
+C Max. number of variables
+      parameter (maxvar=6*maxres)
+C Max. number of groups of interactions that a given SC is involved in
+      parameter (maxint_gr=2)
+C Max. number of derivatives of virtual-bond and side-chain vectors in theta
+C or phi.
+      parameter (maxdim=(maxres-1)*(maxres-2)/2)
+C Max. number of SC contacts
+      parameter (maxcont=12*maxres)
+C Max. number of contacts per residue
+      parameter (maxconts=maxres)
+C Number of AA types (at present only natural AA's will be handled
+      parameter (ntyp=20,ntyp1=ntyp+1)
+C Max. number of types of dihedral angles & multiplicity of torsional barriers
+C and the number of terms in double torsionals
+      parameter (maxtor=4,maxterm=10,maxlor=3,maxtermd_1=8,maxtermd_2=8)
+C Max. number of lobes in SC distribution
+      parameter (maxlob=4)
+C Max. number of S-S bridges
+      parameter (maxss=20)
+C Max. number of dihedral angle constraints
+      parameter (maxdih_constr=maxres)
+C Max. number of patterns in the pattern database
+      parameter (maxseq=10)
+C Max. number of residues in a peptide in the database
+      parameter (maxres_base=10)
+C Max. number of threading attempts
+      parameter (maxthread=20)
+C Max. number of move types in MCM
+      parameter (maxmovetype=4)
+C Max. number of stored confs. in MC/MCM simulation
+      parameter (maxsave=20)
+C Max. number of energy intervals
+      parameter (max_ene=10)
+C Max. number of conformations in Master's cache array
+      parameter (max_cache=10)
+C Max. number of conformations in the pool
+      parameter (max_pool=10)
+C Number of energy components
+      parameter (n_ene=21,n_ene2=2*n_ene)
+C Number of threads in deformation
+      integer max_thread,max_thread2
+      parameter (max_thread=4,max_thread2=2*max_thread)     
+C Number of structures to compare at t=0
+      integer max_threadss,max_threadss2
+      parameter (max_threadss=8,max_threadss2=2*max_threadss)
+C Maxmimum number of angles per residue
+      parameter (mxang=4)
+C Maximum number of groups of angles
+      parameter (mxgr=2*maxres)
+C Maximum number of chains
+      parameter (mxch=1)
+C Maximum number of generated conformations
+      parameter (mxio=2)
+C Maximum number of n7 generated conformations
+      parameter (mxio2=2)
+C Maximum number of moves (n1-n8)
+      parameter (mxmv=18)
+C Maximum number of seed
+       parameter (max_seed=1)
+C Maximum number of timesteps for which stochastic MD matrices can be stored
+      integer maxflag_stoch
+      parameter (maxflag_stoch=0)
diff --git a/source/unres/src_MD_DFA/MD_A-MTS.F b/source/unres/src_MD_DFA/MD_A-MTS.F
new file mode 100644 (file)
index 0000000..acbffa9
--- /dev/null
@@ -0,0 +1,3461 @@
+      subroutine MD
+c------------------------------------------------
+c  The driver for molecular dynamics subroutines
+c------------------------------------------------
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+      integer IERROR,ERRCODE
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision cm(3),L(3),vcm(3)
+#ifdef VOUT
+      double precision v_work(maxres6),v_transf(maxres6)
+#endif
+      integer ilen,rstcount
+      external ilen
+      character*50 tytul
+      common /gucio/ cm
+      integer itime
+c
+#ifdef MPI
+      if (ilen(tmpdir).gt.0)
+     &  call copy_to_tmp(pref_orig(:ilen(pref_orig))//"_"
+     &        //liczba(:ilen(liczba))//'.rst')
+#else
+      if (ilen(tmpdir).gt.0)
+     &  call copy_to_tmp(pref_orig(:ilen(pref_orig))//"_"//'.rst')
+#endif
+      t_MDsetup=0.0d0
+      t_langsetup=0.0d0
+      t_MD=0.0d0
+      t_enegrad=0.0d0
+      t_sdsetup=0.0d0
+      write (iout,'(20(1h=),a20,20(1h=))') "MD calculation started"
+#ifdef MPI
+      tt0=MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+c Determine the inverse of the inertia matrix.
+      call setup_MD_matrices
+c Initialize MD
+      call init_MD
+#ifdef MPI
+      t_MDsetup = MPI_Wtime()-tt0
+#else
+      t_MDsetup = tcpu()-tt0
+#endif
+      rstcount=0 
+c   Entering the MD loop       
+#ifdef MPI
+      tt0 = MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+      if (lang.eq.2 .or. lang.eq.3) then
+#ifndef   LANG0
+        call setup_fricmat
+        if (lang.eq.2) then
+          call sd_verlet_p_setup       
+        else
+          call sd_verlet_ciccotti_setup
+        endif
+        do i=1,dimen3
+          do j=1,dimen3
+            pfric0_mat(i,j,0)=pfric_mat(i,j)
+            afric0_mat(i,j,0)=afric_mat(i,j)
+            vfric0_mat(i,j,0)=vfric_mat(i,j)
+            prand0_mat(i,j,0)=prand_mat(i,j)
+            vrand0_mat1(i,j,0)=vrand_mat1(i,j)
+            vrand0_mat2(i,j,0)=vrand_mat2(i,j)
+          enddo
+        enddo
+        flag_stoch(0)=.true.
+        do i=1,maxflag_stoch
+          flag_stoch(i)=.false.
+        enddo  
+#else
+        write (iout,*) 
+     &   "LANG=2 or 3 NOT SUPPORTED. Recompile without -DLANG0"
+#ifdef MPI
+        call MPI_Abort(MPI_COMM_WORLD,IERROR,ERRCODE)
+#endif
+        stop
+#endif
+      else if (lang.eq.1 .or. lang.eq.4) then
+        call setup_fricmat
+      endif
+#ifdef MPI
+      t_langsetup=MPI_Wtime()-tt0
+      tt0=MPI_Wtime()
+#else
+      t_langsetup=tcpu()-tt0
+      tt0=tcpu()
+#endif
+      do itime=1,n_timestep
+        rstcount=rstcount+1
+        if (lang.gt.0 .and. surfarea .and. 
+     &      mod(itime,reset_fricmat).eq.0) then
+          if (lang.eq.2 .or. lang.eq.3) then
+#ifndef LANG0
+            call setup_fricmat
+            if (lang.eq.2) then
+              call sd_verlet_p_setup
+            else
+              call sd_verlet_ciccotti_setup
+            endif
+            do i=1,dimen3
+              do j=1,dimen3
+                pfric0_mat(i,j,0)=pfric_mat(i,j)
+                afric0_mat(i,j,0)=afric_mat(i,j)
+                vfric0_mat(i,j,0)=vfric_mat(i,j)
+                prand0_mat(i,j,0)=prand_mat(i,j)
+                vrand0_mat1(i,j,0)=vrand_mat1(i,j)
+                vrand0_mat2(i,j,0)=vrand_mat2(i,j)
+              enddo
+            enddo
+            flag_stoch(0)=.true.
+            do i=1,maxflag_stoch
+              flag_stoch(i)=.false.
+            enddo   
+#endif
+          else if (lang.eq.1 .or. lang.eq.4) then
+            call setup_fricmat
+          endif
+          write (iout,'(a,i10)') 
+     &      "Friction matrix reset based on surface area, itime",itime
+        endif
+        if (reset_vel .and. tbf .and. lang.eq.0 
+     &      .and. mod(itime,count_reset_vel).eq.0) then
+          call random_vel
+          write(iout,'(a,f20.2)') 
+     &     "Velocities reset to random values, time",totT      
+          do i=0,2*nres
+            do j=1,3
+              d_t_old(j,i)=d_t(j,i)
+            enddo
+          enddo
+        endif
+               if (reset_moment .and. mod(itime,count_reset_moment).eq.0) then
+          call inertia_tensor  
+          call vcm_vel(vcm)
+          do j=1,3
+             d_t(j,0)=d_t(j,0)-vcm(j)
+          enddo
+          call kinetic(EK)
+          kinetic_T=2.0d0/(dimen3*Rb)*EK
+          scalfac=dsqrt(T_bath/kinetic_T)
+          write(iout,'(a,f20.2)') "Momenta zeroed out, time",totT      
+          do i=0,2*nres
+            do j=1,3
+              d_t_old(j,i)=scalfac*d_t(j,i)
+            enddo
+          enddo
+        endif  
+        if (lang.ne.4) then
+          if (RESPA) then
+c Time-reversible RESPA algorithm 
+c (Tuckerman et al., J. Chem. Phys., 97, 1990, 1992)
+            call RESPA_step(itime)
+          else
+c Variable time step algorithm.
+            call velverlet_step(itime)
+          endif
+        else
+#ifdef BROWN
+          call brown_step(itime)
+#else
+          print *,"Brown dynamics not here!"
+#ifdef MPI
+          call MPI_Abort(MPI_COMM_WORLD,IERROR,ERRCODE)
+#endif
+          stop
+#endif
+        endif
+        if (ntwe.ne.0) then
+         if (mod(itime,ntwe).eq.0) call statout(itime)
+#ifdef VOUT
+        do j=1,3
+          v_work(j)=d_t(j,0)
+        enddo
+        ind=3
+        do i=nnt,nct-1
+          do j=1,3
+            ind=ind+1
+            v_work(ind)=d_t(j,i)
+          enddo
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            do j=1,3
+              ind=ind+1
+              v_work(ind)=d_t(j,i+nres)
+            enddo
+          endif
+        enddo
+
+        write (66,'(80f10.5)') 
+     &    ((d_t(j,i),j=1,3),i=0,nres-1),((d_t(j,i+nres),j=1,3),i=1,nres)
+        do i=1,ind
+          v_transf(i)=0.0d0
+          do j=1,ind
+            v_transf(i)=v_transf(i)+gvec(j,i)*v_work(j)
+          enddo
+           v_transf(i)= v_transf(i)*dsqrt(geigen(i))
+        enddo
+        write (67,'(80f10.5)') (v_transf(i),i=1,ind)
+#endif
+        endif
+        if (mod(itime,ntwx).eq.0) then
+          write (tytul,'("time",f8.2)') totT
+          if(mdpdb) then
+             call pdbout(potE,tytul,ipdb)
+          else 
+             call cartout(totT)
+          endif
+        endif
+        if (rstcount.eq.1000.or.itime.eq.n_timestep) then
+           open(irest2,file=rest2name,status='unknown')
+           write(irest2,*) totT,EK,potE,totE,t_bath
+           do i=1,2*nres
+            write (irest2,'(3e15.5)') (d_t(j,i),j=1,3)
+           enddo
+           do i=1,2*nres
+            write (irest2,'(3e15.5)') (dc(j,i),j=1,3)
+           enddo
+          close(irest2)
+          rstcount=0
+        endif 
+      enddo
+#ifdef MPI
+      t_MD=MPI_Wtime()-tt0
+#else
+      t_MD=tcpu()-tt0
+#endif
+      write (iout,'(//35(1h=),a10,35(1h=)/10(/a40,1pe15.5))') 
+     &  '  Timing  ',
+     & 'MD calculations setup:',t_MDsetup,
+     & 'Energy & gradient evaluation:',t_enegrad,
+     & 'Stochastic MD setup:',t_langsetup,
+     & 'Stochastic MD step setup:',t_sdsetup,
+     & 'MD steps:',t_MD
+      write (iout,'(/28(1h=),a25,27(1h=))') 
+     & '  End of MD calculation  '
+#ifdef TIMING_ENE
+      write (iout,*) "time for etotal",t_etotal," elong",t_elong,
+     &  " eshort",t_eshort
+      write (iout,*) "time_fric",time_fric," time_stoch",time_stoch,
+     & " time_fricmatmult",time_fricmatmult," time_fsample ",
+     & time_fsample
+#endif
+      return
+      end  
+c-------------------------------------------------------------------------------
+      subroutine velverlet_step(itime)
+c-------------------------------------------------------------------------------
+c  Perform a single velocity Verlet step; the time step can be rescaled if 
+c  increments in accelerations exceed the threshold
+c-------------------------------------------------------------------------------
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      integer ierror,ierrcode
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      include 'COMMON.MUCA'
+      double precision vcm(3),incr(3)
+      double precision cm(3),L(3)
+      integer ilen,count,rstcount
+      external ilen
+      character*50 tytul
+      integer maxcount_scale /20/
+      common /gucio/ cm
+      double precision stochforcvec(MAXRES6)
+      common /stochcalc/ stochforcvec
+      integer itime
+      logical scale
+      double precision HNose1,HNose,HNose_nh,H,vtnp(maxres6)
+      double precision vtnp_(maxres6),vtnp_a(maxres6)
+c
+      scale=.true.
+      icount_scale=0
+      if (lang.eq.1) then
+        call sddir_precalc
+      else if (lang.eq.2 .or. lang.eq.3) then
+#ifndef LANG0
+        call stochastic_force(stochforcvec)
+#else
+        write (iout,*) 
+     &   "LANG=2 or 3 NOT SUPPORTED. Recompile without -DLANG0"
+#ifdef MPI
+        call MPI_Abort(MPI_COMM_WORLD,IERROR,ERRCODE)
+#endif
+        stop
+#endif
+      endif
+      itime_scal=0
+      do while (scale)
+        icount_scale=icount_scale+1
+        if (icount_scale.gt.maxcount_scale) then
+          write (iout,*) 
+     &      "ERROR: too many attempts at scaling down the time step. ",
+     &      "amax=",amax,"epdrift=",epdrift,
+     &      "damax=",damax,"edriftmax=",edriftmax,
+     &      "d_time=",d_time
+          call flush(iout)
+#ifdef MPI
+          call MPI_Abort(MPI_COMM_WORLD,IERROR,IERRCODE)
+#endif
+          stop
+        endif
+c First step of the velocity Verlet algorithm
+        if (lang.eq.2) then
+#ifndef LANG0
+          call sd_verlet1
+#endif
+        else if (lang.eq.3) then
+#ifndef LANG0
+          call sd_verlet1_ciccotti
+#endif
+        else if (lang.eq.1) then
+          call sddir_verlet1
+        else if (tnp1) then
+          call tnp1_step1
+        else if (tnp) then
+          call tnp_step1
+        else    
+          if (tnh) then
+            call nhcint(EK,scale_nh,wdti,wdti2,wdti4,wdti8)
+            do i=0,2*nres
+             do j=1,3
+              d_t_old(j,i)=d_t_old(j,i)*scale_nh
+             enddo
+            enddo 
+          endif
+          call verlet1
+        endif    
+c Build the chain from the newly calculated coordinates        
+        call chainbuild_cart
+        if (rattle) call rattle1
+        if (ntwe.ne.0) then
+        if (large.and. mod(itime,ntwe).eq.0) then
+          write (iout,*) "Cartesian and internal coordinates: step 1"
+          call cartprint
+          call intout
+          write (iout,*) "dC"
+          do i=0,nres
+           write (iout,'(i3,3f10.5,3x,3f10.5)') i,(dc(j,i),j=1,3),
+     &      (dc(j,i+nres),j=1,3)
+          enddo
+          write (iout,*) "Accelerations"
+          do i=0,nres
+           write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3),
+     &      (d_a(j,i+nres),j=1,3)
+          enddo
+          write (iout,*) "Velocities, step 1"
+          do i=0,nres
+           write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &      (d_t(j,i+nres),j=1,3)
+          enddo
+        endif
+        endif
+#ifdef MPI
+        tt0 = MPI_Wtime()
+#else
+        tt0 = tcpu()
+#endif
+c Calculate energy and forces
+        call zerograd
+        call etotal(potEcomp)
+#ifdef TIMING_ENE
+#ifdef MPI
+        t_etotal=t_etotal+MPI_Wtime()-tt0
+#else
+        t_etotal=t_etotal+tcpu()-tt0
+#endif
+#endif
+        E_old=potE
+        potE=potEcomp(0)-potEcomp(20)
+        call cartgrad
+c Get the new accelerations
+        call lagrangian
+#ifdef MPI
+        t_enegrad=t_enegrad+MPI_Wtime()-tt0
+#else
+        t_enegrad=t_enegrad+tcpu()-tt0
+#endif
+c Determine maximum acceleration and scale down the timestep if needed
+        call max_accel
+        amax=amax/(itime_scal+1)**2
+        call predict_edrift(epdrift)
+        if (amax/(itime_scal+1).gt.damax .or. epdrift.gt.edriftmax) then
+c Maximum acceleration or maximum predicted energy drift exceeded, rescale the time step
+          scale=.true.
+          ifac_time=dmax1(dlog(amax/damax),dlog(epdrift/edriftmax))
+     &      /dlog(2.0d0)+1
+          itime_scal=itime_scal+ifac_time
+c          fac_time=dmin1(damax/amax,0.5d0)
+          fac_time=0.5d0**ifac_time
+          d_time=d_time*fac_time
+          if (lang.eq.2 .or. lang.eq.3) then 
+#ifndef LANG0
+c            write (iout,*) "Calling sd_verlet_setup: 1"
+c Rescale the stochastic forces and recalculate or restore 
+c the matrices of tinker integrator
+            if (itime_scal.gt.maxflag_stoch) then
+              if (large) write (iout,'(a,i5,a)') 
+     &         "Calculate matrices for stochastic step;",
+     &         " itime_scal ",itime_scal
+              if (lang.eq.2) then
+                call sd_verlet_p_setup
+              else
+                call sd_verlet_ciccotti_setup
+              endif
+              write (iout,'(2a,i3,a,i3,1h.)') 
+     &         "Warning: cannot store matrices for stochastic",
+     &         " integration because the index",itime_scal,
+     &         " is greater than",maxflag_stoch
+              write (iout,'(2a)')"Increase MAXFLAG_STOCH or use direct",
+     &         " integration Langevin algorithm for better efficiency."
+            else if (flag_stoch(itime_scal)) then
+              if (large) write (iout,'(a,i5,a,l1)') 
+     &         "Restore matrices for stochastic step; itime_scal ",
+     &         itime_scal," flag ",flag_stoch(itime_scal)
+              do i=1,dimen3
+                do j=1,dimen3
+                  pfric_mat(i,j)=pfric0_mat(i,j,itime_scal)
+                  afric_mat(i,j)=afric0_mat(i,j,itime_scal)
+                  vfric_mat(i,j)=vfric0_mat(i,j,itime_scal)
+                  prand_mat(i,j)=prand0_mat(i,j,itime_scal)
+                  vrand_mat1(i,j)=vrand0_mat1(i,j,itime_scal)
+                  vrand_mat2(i,j)=vrand0_mat2(i,j,itime_scal)
+                enddo
+              enddo
+            else
+              if (large) write (iout,'(2a,i5,a,l1)') 
+     &         "Calculate & store matrices for stochastic step;",
+     &         " itime_scal ",itime_scal," flag ",flag_stoch(itime_scal)
+              if (lang.eq.2) then
+                call sd_verlet_p_setup 
+              else
+                call sd_verlet_ciccotti_setup
+              endif
+              flag_stoch(ifac_time)=.true.
+              do i=1,dimen3
+                do j=1,dimen3
+                  pfric0_mat(i,j,itime_scal)=pfric_mat(i,j)
+                  afric0_mat(i,j,itime_scal)=afric_mat(i,j)
+                  vfric0_mat(i,j,itime_scal)=vfric_mat(i,j)
+                  prand0_mat(i,j,itime_scal)=prand_mat(i,j)
+                  vrand0_mat1(i,j,itime_scal)=vrand_mat1(i,j)
+                  vrand0_mat2(i,j,itime_scal)=vrand_mat2(i,j)
+                enddo
+              enddo
+            endif
+            fac_time=1.0d0/dsqrt(fac_time)
+            do i=1,dimen3
+              stochforcvec(i)=fac_time*stochforcvec(i)
+            enddo
+#endif
+          else if (lang.eq.1) then
+c Rescale the accelerations due to stochastic forces
+            fac_time=1.0d0/dsqrt(fac_time)
+            do i=1,dimen3
+              d_as_work(i)=d_as_work(i)*fac_time
+            enddo
+          endif
+          if (large) write (iout,'(a,i10,a,f8.6,a,i3,a,i3)')  
+     &      "itime",itime," Timestep scaled down to ",
+     &      d_time," ifac_time",ifac_time," itime_scal",itime_scal
+        else 
+c Second step of the velocity Verlet algorithm
+          if (lang.eq.2) then  
+#ifndef LANG0
+            call sd_verlet2
+#endif
+          else if (lang.eq.3) then
+#ifndef LANG0
+            call sd_verlet2_ciccotti
+#endif
+          else if (lang.eq.1) then
+            call sddir_verlet2
+          else if (tnp1) then
+            call tnp1_step2
+          else if (tnp) then
+            call tnp_step2
+          else
+           call verlet2
+            if (tnh) then
+              call kinetic(EK)
+              call nhcint(EK,scale_nh,wdti,wdti2,wdti4,wdti8)
+              do i=0,2*nres
+               do j=1,3
+                d_t(j,i)=d_t(j,i)*scale_nh
+               enddo
+              enddo 
+            endif
+          endif                    
+          if (rattle) call rattle2
+          totT=totT+d_time
+          if (d_time.ne.d_time0) then
+            d_time=d_time0
+#ifndef   LANG0
+            if (lang.eq.2 .or. lang.eq.3) then
+              if (large) write (iout,'(a)') 
+     &         "Restore original matrices for stochastic step"
+c              write (iout,*) "Calling sd_verlet_setup: 2"
+c Restore the matrices of tinker integrator if the time step has been restored
+              do i=1,dimen3
+                do j=1,dimen3
+                  pfric_mat(i,j)=pfric0_mat(i,j,0)
+                  afric_mat(i,j)=afric0_mat(i,j,0)
+                  vfric_mat(i,j)=vfric0_mat(i,j,0)
+                  prand_mat(i,j)=prand0_mat(i,j,0)
+                  vrand_mat1(i,j)=vrand0_mat1(i,j,0)
+                  vrand_mat2(i,j)=vrand0_mat2(i,j,0)
+                enddo
+              enddo
+            endif
+#endif
+          endif
+          scale=.false.
+        endif
+      enddo
+c Calculate the kinetic and the total energy and the kinetic temperature
+      if (tnp .or. tnp1) then 
+       do i=0,2*nres
+        do j=1,3
+          d_t_old(j,i)=d_t(j,i)
+          d_t(j,i)=d_t(j,i)/s_np
+        enddo
+       enddo 
+      endif
+      call kinetic(EK)
+      totE=EK+potE
+c diagnostics
+c      call kinetic1(EK1)
+c      write (iout,*) "step",itime," EK",EK," EK1",EK1
+c end diagnostics
+c Couple the system to Berendsen bath if needed
+      if (tbf .and. lang.eq.0) then
+        call verlet_bath
+      endif
+      kinetic_T=2.0d0/(dimen3*Rb)*EK
+c Backup the coordinates, velocities, and accelerations
+      do i=0,2*nres
+        do j=1,3
+          dc_old(j,i)=dc(j,i)
+          if(.not.(tnp .or. tnp1)) d_t_old(j,i)=d_t(j,i)
+          d_a_old(j,i)=d_a(j,i)
+        enddo
+      enddo 
+      if (ntwe.ne.0) then
+      if (mod(itime,ntwe).eq.0) then
+
+       if(tnp .or. tnp1) then
+        HNose1=Hnose(EK,s_np,potE,pi_np,Q_np,t_bath,dimen3)
+        H=(HNose1-H0)*s_np
+cd        write (iout,'(a,10f)') "hhh",EK,s_np,potE,pi_np,H0
+cd     &   ,EK+potE+pi_np**2/(2*Q_np)+dimen3*0.001986d0*t_bath*log(s_np)
+cd        write (iout,*) "HHH H=",H,abs(HNose1-H0)/H0
+          hhh=h
+       endif
+
+       if(tnh) then
+        HNose1=Hnose_nh(EK,potE)
+        H=HNose1-H0
+        hhh=h
+cd        write (iout,*) "HHH H=",H,abs(HNose1-H0)/H0
+       endif
+
+       if (large) then
+        itnp=0
+        do j=1,3
+         itnp=itnp+1
+         vtnp(itnp)=d_t(j,0)
+        enddo
+        do i=nnt,nct-1 
+         do j=1,3    
+          itnp=itnp+1
+          vtnp(itnp)=d_t(j,i)
+         enddo
+        enddo
+        do i=nnt,nct
+         if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3  
+           itnp=itnp+1  
+           vtnp(itnp)=d_t(j,inres)
+          enddo
+         endif      
+        enddo 
+
+c Transform velocities from UNRES coordinate space to cartesian and Gvec
+c eigenvector space
+
+        do i=1,dimen3
+          vtnp_(i)=0.0d0
+          vtnp_a(i)=0.0d0
+          do j=1,dimen3
+            vtnp_(i)=vtnp_(i)+Gvec(j,i)*vtnp(j)
+            vtnp_a(i)=vtnp_a(i)+A(i,j)*vtnp(j)
+          enddo
+          vtnp_(i)=vtnp_(i)*dsqrt(geigen(i))
+        enddo
+
+        do i=1,dimen3
+         write (iout,'("WWW",i3,3f10.5)') i,vtnp(i),vtnp_(i),vtnp_a(i)
+        enddo
+
+        write (iout,*) "Velocities, step 2"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &      (d_t(j,i+nres),j=1,3)
+        enddo
+       endif
+      endif
+      endif
+      return
+      end
+c-------------------------------------------------------------------------------
+      subroutine RESPA_step(itime)
+c-------------------------------------------------------------------------------
+c  Perform a single RESPA step.
+c-------------------------------------------------------------------------------
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      integer IERROR,ERRCODE
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision energia_short(0:n_ene),
+     & energia_long(0:n_ene)
+      double precision cm(3),L(3),vcm(3),incr(3)
+      double precision dc_old0(3,0:maxres2),d_t_old0(3,0:maxres2),
+     & d_a_old0(3,0:maxres2)
+      integer ilen,count,rstcount
+      external ilen
+      character*50 tytul
+      integer maxcount_scale /10/
+      common /gucio/ cm,energia_short
+      double precision stochforcvec(MAXRES6)
+      common /stochcalc/ stochforcvec
+      integer itime
+      logical scale
+      double precision vtnp(maxres6), vtnp_(maxres6), vtnp_a(maxres6)
+      common /cipiszcze/ itt
+      itt=itime
+      if (ntwe.ne.0) then
+      if (large.and. mod(itime,ntwe).eq.0) then
+        write (iout,*) "***************** RESPA itime",itime
+        write (iout,*) "Cartesian and internal coordinates: step 0"
+c        call cartprint
+        call pdbout(0.0d0,"cipiszcze",iout)
+        call intout
+        write (iout,*) "Accelerations from long-range forces"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3),
+     &      (d_a(j,i+nres),j=1,3)
+        enddo
+        write (iout,*) "Velocities, step 0"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &      (d_t(j,i+nres),j=1,3)
+        enddo
+      endif
+      endif
+c
+c Perform the initial RESPA step (increment velocities)
+c      write (iout,*) "*********************** RESPA ini"
+      if (tnp1) then
+          call tnp_respa_step1
+      else if (tnp) then
+          call tnp_respa_step1
+      else
+          if (tnh.and..not.xiresp) then
+            call nhcint(EK,scale_nh,wdti,wdti2,wdti4,wdti8)
+            do i=0,2*nres
+             do j=1,3
+              d_t(j,i)=d_t(j,i)*scale_nh
+             enddo
+            enddo 
+          endif
+          call RESPA_vel
+      endif
+
+cd       if(tnp .or. tnp1) then
+cd        write (iout,'(a,3f)') "EE1 NP S, pi",totT, s_np, pi_np
+cd       endif
+
+      if (ntwe.ne.0) then
+      if (mod(itime,ntwe).eq.0 .and. large) then
+        write (iout,*) "Velocities, end"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &      (d_t(j,i+nres),j=1,3)
+        enddo
+      endif
+      endif
+c Compute the short-range forces
+#ifdef MPI
+      tt0 =MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+C 7/2/2009 commented out
+c      call zerograd
+c      call etotal_short(energia_short)
+      if (tnp.or.tnp1) potE=energia_short(0)
+c      call cartgrad
+c      call lagrangian
+C 7/2/2009 Copy accelerations due to short-lange forces from previous MD step
+        do i=0,2*nres
+          do j=1,3
+            d_a(j,i)=d_a_short(j,i)
+          enddo
+        enddo
+      if (ntwe.ne.0) then
+      if (large.and. mod(itime,ntwe).eq.0) then
+        write (iout,*) "energia_short",energia_short(0)
+        write (iout,*) "Accelerations from short-range forces"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3),
+     &      (d_a(j,i+nres),j=1,3)
+        enddo
+      endif
+      endif
+#ifdef MPI
+        t_enegrad=t_enegrad+MPI_Wtime()-tt0
+#else
+        t_enegrad=t_enegrad+tcpu()-tt0
+#endif
+      do i=0,2*nres
+        do j=1,3
+          dc_old(j,i)=dc(j,i)
+          if(.not.(tnp .or. tnp1)) d_t_old(j,i)=d_t(j,i)
+          d_a_old(j,i)=d_a(j,i)
+        enddo
+      enddo 
+c 6/30/08 A-MTS: attempt at increasing the split number
+      do i=0,2*nres
+        do j=1,3
+          dc_old0(j,i)=dc_old(j,i)
+          d_t_old0(j,i)=d_t_old(j,i)
+          d_a_old0(j,i)=d_a_old(j,i)
+        enddo
+      enddo 
+      if (ntime_split.gt.ntime_split0) ntime_split=ntime_split/2
+      if (ntime_split.lt.ntime_split0) ntime_split=ntime_split0
+c
+      scale=.true.
+      d_time0=d_time
+      do while (scale)
+
+      scale=.false.
+c      write (iout,*) "itime",itime," ntime_split",ntime_split
+c Split the time step
+      d_time=d_time0/ntime_split 
+c Perform the short-range RESPA steps (velocity Verlet increments of
+c positions and velocities using short-range forces)
+c      write (iout,*) "*********************** RESPA split"
+      do itsplit=1,ntime_split
+        if (lang.eq.1) then
+          call sddir_precalc
+        else if (lang.eq.2 .or. lang.eq.3) then
+#ifndef LANG0
+          call stochastic_force(stochforcvec)
+#else
+          write (iout,*) 
+     &      "LANG=2 or 3 NOT SUPPORTED. Recompile without -DLANG0"
+#ifdef MPI
+          call MPI_Abort(MPI_COMM_WORLD,IERROR,ERRCODE)
+#endif
+          stop
+#endif
+        endif
+c First step of the velocity Verlet algorithm
+        if (lang.eq.2) then
+#ifndef LANG0
+          call sd_verlet1
+#endif
+        else if (lang.eq.3) then
+#ifndef LANG0
+          call sd_verlet1_ciccotti
+#endif
+        else if (lang.eq.1) then
+          call sddir_verlet1
+        else if (tnp1) then
+          call tnp1_respa_i_step1
+        else if (tnp) then
+          call tnp_respa_i_step1
+        else
+          if (tnh.and.xiresp) then
+            call kinetic(EK)
+            call nhcint(EK,scale_nh,wdtii,wdtii2,wdtii4,wdtii8)
+            do i=0,2*nres
+             do j=1,3
+              d_t_old(j,i)=d_t_old(j,i)*scale_nh
+             enddo
+            enddo 
+cd            write(iout,*) "SSS1",itsplit,EK,scale_nh
+          endif
+          call verlet1
+        endif
+c Build the chain from the newly calculated coordinates        
+        call chainbuild_cart
+        if (rattle) call rattle1
+        if (ntwe.ne.0) then
+        if (large.and. mod(itime,ntwe).eq.0) then
+          write (iout,*) "***** ITSPLIT",itsplit
+          write (iout,*) "Cartesian and internal coordinates: step 1"
+          call pdbout(0.0d0,"cipiszcze",iout)
+c          call cartprint
+          call intout
+          write (iout,*) "Velocities, step 1"
+          do i=0,nres
+            write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &        (d_t(j,i+nres),j=1,3)
+          enddo
+        endif
+        endif
+#ifdef MPI
+        tt0 = MPI_Wtime()
+#else
+        tt0 = tcpu()
+#endif
+c Calculate energy and forces
+        call zerograd
+        call etotal_short(energia_short)
+        E_old=potE
+        potE=energia_short(0)
+#ifdef TIMING_ENE
+#ifdef MPI
+        t_eshort=t_eshort+MPI_Wtime()-tt0
+#else
+        t_eshort=t_eshort+tcpu()-tt0
+#endif
+#endif
+        call cartgrad
+c Get the new accelerations
+        call lagrangian
+C 7/2/2009 Copy accelerations due to short-lange forces to an auxiliary array
+        do i=0,2*nres
+          do j=1,3
+            d_a_short(j,i)=d_a(j,i)
+          enddo
+        enddo
+        if (ntwe.ne.0) then
+        if (large.and. mod(itime,ntwe).eq.0) then
+          write (iout,*)"energia_short",energia_short(0)
+          write (iout,*) "Accelerations from short-range forces"
+          do i=0,nres
+            write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3),
+     &        (d_a(j,i+nres),j=1,3)
+          enddo
+        endif
+        endif
+c 6/30/08 A-MTS
+c Determine maximum acceleration and scale down the timestep if needed
+        call max_accel
+        amax=amax/ntime_split**2
+        call predict_edrift(epdrift)
+        if (ntwe.gt.0 .and. large .and. mod(itime,ntwe).eq.0) 
+     &   write (iout,*) "amax",amax," damax",damax,
+     &   " epdrift",epdrift," epdriftmax",epdriftmax
+c Exit loop and try with increased split number if the change of
+c acceleration is too big
+        if (amax.gt.damax .or. epdrift.gt.edriftmax) then
+          if (ntime_split.lt.maxtime_split) then
+            scale=.true.
+            ntime_split=ntime_split*2
+            do i=0,2*nres
+              do j=1,3
+                dc_old(j,i)=dc_old0(j,i)
+                d_t_old(j,i)=d_t_old0(j,i)
+                d_a_old(j,i)=d_a_old0(j,i)
+              enddo
+            enddo 
+            write (iout,*) "acceleration/energy drift too large",amax,
+     &      epdrift," split increased to ",ntime_split," itime",itime,
+     &       " itsplit",itsplit
+            exit
+          else
+            write (iout,*) 
+     &      "Uh-hu. Bumpy landscape. Maximum splitting number",
+     &       maxtime_split,
+     &      " already reached!!! Trying to carry on!"
+          endif
+        endif
+#ifdef MPI
+        t_enegrad=t_enegrad+MPI_Wtime()-tt0
+#else
+        t_enegrad=t_enegrad+tcpu()-tt0
+#endif
+c Second step of the velocity Verlet algorithm
+        if (lang.eq.2) then
+#ifndef LANG0
+          call sd_verlet2
+#endif
+        else if (lang.eq.3) then
+#ifndef LANG0
+          call sd_verlet2_ciccotti
+#endif
+        else if (lang.eq.1) then
+          call sddir_verlet2
+        else if (tnp1) then
+            call tnp1_respa_i_step2
+        else if (tnp) then
+            call tnp_respa_i_step2
+        else
+          call verlet2
+          if (tnh.and.xiresp) then
+            call kinetic(EK)
+            call nhcint(EK,scale_nh,wdtii,wdtii2,wdtii4,wdtii8)
+            do i=0,2*nres
+             do j=1,3
+              d_t(j,i)=d_t(j,i)*scale_nh
+             enddo
+            enddo 
+cd            write(iout,*) "SSS2",itsplit,EK,scale_nh
+          endif
+        endif
+        if (rattle) call rattle2
+c Backup the coordinates, velocities, and accelerations
+        if (tnp .or. tnp1) then 
+         do i=0,2*nres
+          do j=1,3
+            d_t_old(j,i)=d_t(j,i)
+            if (tnp) d_t(j,i)=d_t(j,i)/s_np
+            if (tnp1) d_t(j,i)=d_t(j,i)/s_np
+          enddo
+         enddo 
+        endif
+
+        do i=0,2*nres
+          do j=1,3
+            dc_old(j,i)=dc(j,i)
+            if(.not.(tnp .or. tnp1)) d_t_old(j,i)=d_t(j,i)
+            d_a_old(j,i)=d_a(j,i)
+          enddo
+        enddo 
+      enddo
+
+      enddo ! while scale
+
+c Restore the time step
+      d_time=d_time0
+c Compute long-range forces
+#ifdef MPI
+      tt0 =MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+      call zerograd
+      call etotal_long(energia_long)
+      E_long=energia_long(0)
+      potE=energia_short(0)+energia_long(0)
+#ifdef TIMING_ENE
+#ifdef MPI
+        t_elong=t_elong+MPI_Wtime()-tt0
+#else
+        t_elong=t_elong+tcpu()-tt0
+#endif
+#endif
+      call cartgrad
+      call lagrangian
+#ifdef MPI
+        t_enegrad=t_enegrad+MPI_Wtime()-tt0
+#else
+        t_enegrad=t_enegrad+tcpu()-tt0
+#endif
+c Compute accelerations from long-range forces
+      if (ntwe.ne.0) then
+      if (large.and. mod(itime,ntwe).eq.0) then
+        write (iout,*) "energia_long",energia_long(0)
+        write (iout,*) "Cartesian and internal coordinates: step 2"
+c        call cartprint
+        call pdbout(0.0d0,"cipiszcze",iout)
+        call intout
+        write (iout,*) "Accelerations from long-range forces"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3),
+     &      (d_a(j,i+nres),j=1,3)
+        enddo
+        write (iout,*) "Velocities, step 2"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &      (d_t(j,i+nres),j=1,3)
+        enddo
+      endif
+      endif
+c Compute the final RESPA step (increment velocities)
+c      write (iout,*) "*********************** RESPA fin"
+      if (tnp1) then
+          call tnp_respa_step2
+      else if (tnp) then
+          call tnp_respa_step2
+      else
+          call RESPA_vel
+          if (tnh.and..not.xiresp) then
+            call kinetic(EK)
+            call nhcint(EK,scale_nh,wdti,wdti2,wdti4,wdti8)
+            do i=0,2*nres
+             do j=1,3
+              d_t(j,i)=d_t(j,i)*scale_nh
+             enddo
+            enddo 
+          endif
+      endif
+
+        if (tnp .or. tnp1) then 
+         do i=0,2*nres
+          do j=1,3
+            d_t(j,i)=d_t_old(j,i)/s_np
+          enddo
+         enddo 
+        endif
+
+c Compute the complete potential energy
+      do i=0,n_ene
+        potEcomp(i)=energia_short(i)+energia_long(i)
+      enddo
+      potE=potEcomp(0)-potEcomp(20)
+c      potE=energia_short(0)+energia_long(0)
+      totT=totT+d_time
+c Calculate the kinetic and the total energy and the kinetic temperature
+      call kinetic(EK)
+      totE=EK+potE
+c Couple the system to Berendsen bath if needed
+      if (tbf .and. lang.eq.0) then
+        call verlet_bath
+      endif
+      kinetic_T=2.0d0/(dimen3*Rb)*EK
+c Backup the coordinates, velocities, and accelerations
+      if (ntwe.ne.0) then
+      if (mod(itime,ntwe).eq.0 .and. large) then
+        write (iout,*) "Velocities, end"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &      (d_t(j,i+nres),j=1,3)
+        enddo
+      endif
+
+      if (mod(itime,ntwe).eq.0) then
+
+       if(tnp .or. tnp1) then
+#ifndef G77
+        write (iout,'(a3,7f)') "TTT",EK,s_np,potE,pi_np,Csplit,
+     &                          E_long,energia_short(0)
+#else
+        write (iout,'(a3,7f20.10)') "TTT",EK,s_np,potE,pi_np,Csplit,
+     &                          E_long,energia_short(0)
+#endif
+        HNose1=Hnose(EK,s_np,potE,pi_np,Q_np,t_bath,dimen3)
+        H=(HNose1-H0)*s_np
+cd        write (iout,'(a,10f)') "hhh",EK,s_np,potE,pi_np,H0
+cd     &   ,EK+potE+pi_np**2/(2*Q_np)+dimen3*0.001986d0*t_bath*log(s_np)
+cd        write (iout,*) "HHH H=",H,abs(HNose1-H0)/H0
+          hhh=h
+cd        write (iout,'(a,3f)') "EE2 NP S, pi",totT, s_np, pi_np
+       endif
+
+       if(tnh) then
+        HNose1=Hnose_nh(EK,potE)
+        H=HNose1-H0
+cd        write (iout,*) "HHH H=",H,abs(HNose1-H0)/H0
+        hhh=h
+       endif
+
+
+       if (large) then
+       itnp=0
+       do j=1,3
+        itnp=itnp+1
+        vtnp(itnp)=d_t(j,0)
+       enddo
+       do i=nnt,nct-1  
+        do j=1,3    
+          itnp=itnp+1
+          vtnp(itnp)=d_t(j,i)
+        enddo
+       enddo
+       do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3  
+           itnp=itnp+1  
+           vtnp(itnp)=d_t(j,inres)
+          enddo
+        endif      
+       enddo 
+
+c Transform velocities from UNRES coordinate space to cartesian and Gvec
+c eigenvector space
+
+        do i=1,dimen3
+          vtnp_(i)=0.0d0
+          vtnp_a(i)=0.0d0
+          do j=1,dimen3
+            vtnp_(i)=vtnp_(i)+Gvec(j,i)*vtnp(j)
+            vtnp_a(i)=vtnp_a(i)+A(i,j)*vtnp(j)
+          enddo
+          vtnp_(i)=vtnp_(i)*dsqrt(geigen(i))
+        enddo
+
+        do i=1,dimen3
+         write (iout,'("WWW",i3,3f10.5)') i,vtnp(i),vtnp_(i),vtnp_a(i)
+        enddo
+
+       endif
+      endif
+      endif
+
+
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine RESPA_vel
+c  First and last RESPA step (incrementing velocities using long-range
+c  forces).
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      do j=1,3
+        d_t(j,0)=d_t(j,0)+0.5d0*d_a(j,0)*d_time
+      enddo
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t(j,i)+0.5d0*d_a(j,i)*d_time
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t(j,inres)+0.5d0*d_a(j,inres)*d_time
+          enddo
+        endif
+      enddo 
+      return
+      end
+c-----------------------------------------------------------------
+      subroutine verlet1
+c Applying velocity Verlet algorithm - step 1 to coordinates
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision adt,adt2
+        
+#ifdef DEBUG
+      write (iout,*) "VELVERLET1 START: DC"
+      do i=0,nres
+        write (iout,'(i3,3f10.5,5x,3f10.5)') i,(dc(j,i),j=1,3),
+     &   (dc(j,i+nres),j=1,3)
+      enddo 
+#endif
+      do j=1,3
+        adt=d_a_old(j,0)*d_time
+        adt2=0.5d0*adt
+        dc(j,0)=dc_old(j,0)+(d_t_old(j,0)+adt2)*d_time
+        d_t_new(j,0)=d_t_old(j,0)+adt2
+        d_t(j,0)=d_t_old(j,0)+adt
+      enddo
+      do i=nnt,nct-1   
+        do j=1,3    
+          adt=d_a_old(j,i)*d_time
+          adt2=0.5d0*adt
+          dc(j,i)=dc_old(j,i)+(d_t_old(j,i)+adt2)*d_time
+          d_t_new(j,i)=d_t_old(j,i)+adt2
+          d_t(j,i)=d_t_old(j,i)+adt
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+            adt=d_a_old(j,inres)*d_time
+            adt2=0.5d0*adt
+            dc(j,inres)=dc_old(j,inres)+(d_t_old(j,inres)+adt2)*d_time
+            d_t_new(j,inres)=d_t_old(j,inres)+adt2
+            d_t(j,inres)=d_t_old(j,inres)+adt
+          enddo
+        endif      
+      enddo 
+#ifdef DEBUG
+      write (iout,*) "VELVERLET1 END: DC"
+      do i=0,nres
+        write (iout,'(i3,3f10.5,5x,3f10.5)') i,(dc(j,i),j=1,3),
+     &   (dc(j,i+nres),j=1,3)
+      enddo 
+#endif
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine verlet2
+c  Step 2 of the velocity Verlet algorithm: update velocities
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      do j=1,3
+        d_t(j,0)=d_t_new(j,0)+0.5d0*d_a(j,0)*d_time
+      enddo
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t_new(j,i)+0.5d0*d_a(j,i)*d_time
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t_new(j,inres)+0.5d0*d_a(j,inres)*d_time
+          enddo
+        endif
+      enddo 
+      return
+      end
+c-----------------------------------------------------------------
+      subroutine sddir_precalc
+c Applying velocity Verlet algorithm - step 1 to coordinates        
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision stochforcvec(MAXRES6)
+      common /stochcalc/ stochforcvec
+c
+c Compute friction and stochastic forces
+c
+#ifdef MPI
+      time00=MPI_Wtime()
+#else
+      time00=tcpu()
+#endif
+      call friction_force
+#ifdef MPI
+      time_fric=time_fric+MPI_Wtime()-time00
+      time00=MPI_Wtime()
+#else
+      time_fric=time_fric+tcpu()-time00
+      time00=tcpu()
+#endif
+      call stochastic_force(stochforcvec) 
+#ifdef MPI
+      time_stoch=time_stoch+MPI_Wtime()-time00
+#else
+      time_stoch=time_stoch+tcpu()-time00
+#endif
+c
+c Compute the acceleration due to friction forces (d_af_work) and stochastic
+c forces (d_as_work)
+c
+      call ginv_mult(fric_work, d_af_work)
+      call ginv_mult(stochforcvec, d_as_work)
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine sddir_verlet1
+c Applying velocity Verlet algorithm - step 1 to velocities        
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+c Revised 3/31/05 AL: correlation between random contributions to 
+c position and velocity increments included.
+      double precision sqrt13 /0.57735026918962576451d0/ ! 1/sqrt(3)
+      double precision adt,adt2
+c
+c Add the contribution from BOTH friction and stochastic force to the
+c coordinates, but ONLY the contribution from the friction forces to velocities
+c
+      do j=1,3
+        adt=(d_a_old(j,0)+d_af_work(j))*d_time
+        adt2=0.5d0*adt+sqrt13*d_as_work(j)*d_time
+        dc(j,0)=dc_old(j,0)+(d_t_old(j,0)+adt2)*d_time
+        d_t_new(j,0)=d_t_old(j,0)+0.5d0*adt
+        d_t(j,0)=d_t_old(j,0)+adt
+      enddo
+      ind=3
+      do i=nnt,nct-1   
+        do j=1,3    
+          adt=(d_a_old(j,i)+d_af_work(ind+j))*d_time
+          adt2=0.5d0*adt+sqrt13*d_as_work(ind+j)*d_time
+          dc(j,i)=dc_old(j,i)+(d_t_old(j,i)+adt2)*d_time
+          d_t_new(j,i)=d_t_old(j,i)+0.5d0*adt
+          d_t(j,i)=d_t_old(j,i)+adt
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+            adt=(d_a_old(j,inres)+d_af_work(ind+j))*d_time
+            adt2=0.5d0*adt+sqrt13*d_as_work(ind+j)*d_time
+            dc(j,inres)=dc_old(j,inres)+(d_t_old(j,inres)+adt2)*d_time
+            d_t_new(j,inres)=d_t_old(j,inres)+0.5d0*adt
+            d_t(j,inres)=d_t_old(j,inres)+adt
+          enddo
+          ind=ind+3
+        endif      
+      enddo 
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine sddir_verlet2
+c  Calculating the adjusted velocities for accelerations
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision stochforcvec(MAXRES6),d_as_work1(MAXRES6)
+      double precision cos60 /0.5d0/, sin60 /0.86602540378443864676d0/
+c Revised 3/31/05 AL: correlation between random contributions to 
+c position and velocity increments included.
+c The correlation coefficients are calculated at low-friction limit.
+c Also, friction forces are now not calculated with new velocities.
+
+c      call friction_force
+      call stochastic_force(stochforcvec) 
+c
+c Compute the acceleration due to friction forces (d_af_work) and stochastic
+c forces (d_as_work)
+c
+      call ginv_mult(stochforcvec, d_as_work1)
+
+c
+c Update velocities
+c
+      do j=1,3
+        d_t(j,0)=d_t_new(j,0)+(0.5d0*(d_a(j,0)+d_af_work(j))
+     &    +sin60*d_as_work(j)+cos60*d_as_work1(j))*d_time
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t_new(j,i)+(0.5d0*(d_a(j,i)+d_af_work(ind+j))
+     &     +sin60*d_as_work(ind+j)+cos60*d_as_work1(ind+j))*d_time
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t_new(j,inres)+(0.5d0*(d_a(j,inres)
+     &       +d_af_work(ind+j))+sin60*d_as_work(ind+j)
+     &       +cos60*d_as_work1(ind+j))*d_time
+          enddo
+          ind=ind+3
+        endif
+      enddo 
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine max_accel
+c
+c Find the maximum difference in the accelerations of the the sites
+c at the beginning and the end of the time step.
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      double precision aux(3),accel(3),accel_old(3),dacc
+      do j=1,3
+c        aux(j)=d_a(j,0)-d_a_old(j,0)
+         accel_old(j)=d_a_old(j,0)
+         accel(j)=d_a(j,0)
+      enddo 
+      amax=0.0d0
+      do i=nnt,nct
+c Backbone
+        if (i.lt.nct) then
+c 7/3/08 changed to asymmetric difference
+          do j=1,3
+c            accel(j)=aux(j)+0.5d0*(d_a(j,i)-d_a_old(j,i))
+            accel_old(j)=accel_old(j)+0.5d0*d_a_old(j,i)
+            accel(j)=accel(j)+0.5d0*d_a(j,i)
+c            if (dabs(accel(j)).gt.amax) amax=dabs(accel(j))
+            if (dabs(accel(j)).gt.dabs(accel_old(j))) then
+              dacc=dabs(accel(j)-accel_old(j))
+              if (dacc.gt.amax) amax=dacc
+            endif
+          enddo
+        endif
+      enddo
+c Side chains
+      do j=1,3
+c        accel(j)=aux(j)
+        accel_old(j)=d_a_old(j,0)
+        accel(j)=d_a(j,0)
+      enddo
+      if (nnt.eq.2) then
+        do j=1,3
+          accel_old(j)=accel_old(j)+d_a_old(j,1)
+          accel(j)=accel(j)+d_a(j,1)
+        enddo
+      endif
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3 
+c            accel(j)=accel(j)+d_a(j,i+nres)-d_a_old(j,i+nres)
+            accel_old(j)=accel_old(j)+d_a_old(j,i+nres)
+            accel(j)=accel(j)+d_a(j,i+nres)
+          enddo
+        endif
+        do j=1,3
+c          if (dabs(accel(j)).gt.amax) amax=dabs(accel(j))
+          if (dabs(accel(j)).gt.dabs(accel_old(j))) then
+            dacc=dabs(accel(j)-accel_old(j))
+            if (dacc.gt.amax) amax=dacc
+          endif
+        enddo
+        do j=1,3
+          accel_old(j)=accel_old(j)+d_a_old(j,i)
+          accel(j)=accel(j)+d_a(j,i)
+c          aux(j)=aux(j)+d_a(j,i)-d_a_old(j,i)
+        enddo
+      enddo
+      return
+      end      
+c---------------------------------------------------------------------
+      subroutine predict_edrift(epdrift)
+c
+c Predict the drift of the potential energy
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MUCA'
+      double precision epdrift,epdriftij
+c Drift of the potential energy
+      epdrift=0.0d0
+      do i=nnt,nct
+c Backbone
+        if (i.lt.nct) then
+          do j=1,3
+            epdriftij=dabs((d_a(j,i)-d_a_old(j,i))*gcart(j,i))
+            if (lmuca) epdriftij=epdriftij*factor
+c            write (iout,*) "back",i,j,epdriftij
+            if (epdriftij.gt.epdrift) epdrift=epdriftij 
+          enddo
+        endif
+c Side chains
+        if (itype(i).ne.10) then
+          do j=1,3 
+            epdriftij=
+     &       dabs((d_a(j,i+nres)-d_a_old(j,i+nres))*gxcart(j,i))
+            if (lmuca) epdriftij=epdriftij*factor
+c            write (iout,*) "side",i,j,epdriftij
+            if (epdriftij.gt.epdrift) epdrift=epdriftij
+          enddo
+        endif
+      enddo
+      epdrift=0.5d0*epdrift*d_time*d_time
+c      write (iout,*) "epdrift",epdrift
+      return
+      end      
+c-----------------------------------------------------------------------
+      subroutine verlet_bath
+c
+c  Coupling to the thermostat by using the Berendsen algorithm
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision T_half,fact
+c 
+      T_half=2.0d0/(dimen3*Rb)*EK
+      fact=dsqrt(1.0d0+(d_time/tau_bath)*(t_bath/T_half-1.0d0))
+c      write(iout,*) "T_half", T_half
+c      write(iout,*) "EK", EK
+c      write(iout,*) "fact", fact                              
+      do j=1,3
+        d_t(j,0)=fact*d_t(j,0)
+      enddo
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=fact*d_t(j,i)
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=fact*d_t(j,inres)
+          enddo
+        endif
+      enddo 
+      return
+      end
+c---------------------------------------------------------
+      subroutine init_MD
+c  Set up the initial conditions of a MD simulation
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MP
+      include 'mpif.h'
+      character*16 form
+      integer IERROR,ERRCODE
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.REMD'
+      real*8 energia_long(0:n_ene),
+     &  energia_short(0:n_ene),vcm(3),incr(3),E_short
+      double precision cm(3),L(3),xv,sigv,lowb,highb
+      double precision varia(maxvar)
+      character*256 qstr
+      integer ilen
+      external ilen
+      character*50 tytul
+      logical file_exist
+      common /gucio/ cm
+      d_time0=d_time
+c      write(iout,*) "d_time", d_time
+c Compute the standard deviations of stochastic forces for Langevin dynamics
+c if the friction coefficients do not depend on surface area
+      if (lang.gt.0 .and. .not.surfarea) then
+        do i=nnt,nct-1
+          stdforcp(i)=stdfp*dsqrt(gamp)
+        enddo
+        do i=nnt,nct
+          stdforcsc(i)=stdfsc(itype(i))*dsqrt(gamsc(itype(i)))
+        enddo
+      endif
+c Open the pdb file for snapshotshots
+#ifdef MPI
+      if(mdpdb) then
+        if (ilen(tmpdir).gt.0) 
+     &    call copy_to_tmp(pref_orig(:ilen(pref_orig))//"_MD"//
+     &      liczba(:ilen(liczba))//".pdb")
+        open(ipdb,
+     &  file=prefix(:ilen(prefix))//"_MD"//liczba(:ilen(liczba))
+     &  //".pdb")
+      else
+#ifdef NOXDR
+        if (ilen(tmpdir).gt.0 .and. (me.eq.king .or. .not.traj1file)) 
+     &    call copy_to_tmp(pref_orig(:ilen(pref_orig))//"_MD"//
+     &      liczba(:ilen(liczba))//".x")
+        cartname=prefix(:ilen(prefix))//"_MD"//liczba(:ilen(liczba))
+     &  //".x"
+#else
+        if (ilen(tmpdir).gt.0 .and. (me.eq.king .or. .not.traj1file)) 
+     &    call copy_to_tmp(pref_orig(:ilen(pref_orig))//"_MD"//
+     &      liczba(:ilen(liczba))//".cx")
+        cartname=prefix(:ilen(prefix))//"_MD"//liczba(:ilen(liczba))
+     &  //".cx"
+#endif
+      endif
+#else
+      if(mdpdb) then
+         if (ilen(tmpdir).gt.0) 
+     &     call copy_to_tmp(pref_orig(:ilen(pref_orig))//"_MD.pdb")
+         open(ipdb,file=prefix(:ilen(prefix))//"_MD.pdb")
+      else
+         if (ilen(tmpdir).gt.0) 
+     &     call copy_to_tmp(pref_orig(:ilen(pref_orig))//"_MD.cx")
+         cartname=prefix(:ilen(prefix))//"_MD.cx"
+      endif
+#endif
+      if (usampl) then
+        write (qstr,'(256(1h ))')
+        ipos=1
+        do i=1,nfrag
+          iq = qinfrag(i,iset)*10
+          iw = wfrag(i,iset)/100
+          if (iw.gt.0) then
+            if(me.eq.king.or..not.out1file)
+     &       write (iout,*) "Frag",qinfrag(i,iset),wfrag(i,iset),iq,iw
+            write (qstr(ipos:ipos+6),'(2h_f,i1,1h_,i1,1h_,i1)') i,iq,iw
+            ipos=ipos+7
+          endif
+        enddo
+        do i=1,npair
+          iq = qinpair(i,iset)*10
+          iw = wpair(i,iset)/100
+          if (iw.gt.0) then
+            if(me.eq.king.or..not.out1file)
+     &       write (iout,*) "Pair",i,qinpair(i,iset),wpair(i,iset),iq,iw
+            write (qstr(ipos:ipos+6),'(2h_p,i1,1h_,i1,1h_,i1)') i,iq,iw
+            ipos=ipos+7
+          endif
+        enddo
+c        pdbname=pdbname(:ilen(pdbname)-4)//qstr(:ipos-1)//'.pdb'
+#ifdef NOXDR
+c        cartname=cartname(:ilen(cartname)-2)//qstr(:ipos-1)//'.x'
+#else
+c        cartname=cartname(:ilen(cartname)-3)//qstr(:ipos-1)//'.cx'
+#endif
+c        statname=statname(:ilen(statname)-5)//qstr(:ipos-1)//'.stat'
+      endif
+      icg=1
+      if (rest) then
+       if (restart1file) then
+         if (me.eq.king)
+     &     inquire(file=mremd_rst_name,exist=file_exist)
+           write (*,*) me," Before broadcast: file_exist",file_exist
+#ifdef MPI
+         call MPI_Bcast(file_exist,1,MPI_LOGICAL,king,CG_COMM,
+     &          IERR)
+         write (*,*) me," After broadcast: file_exist",file_exist
+#endif
+c        inquire(file=mremd_rst_name,exist=file_exist)
+        if(me.eq.king.or..not.out1file)
+     &   write(iout,*) "Initial state read by master and distributed"
+       else
+         if (ilen(tmpdir).gt.0)
+     &     call copy_to_tmp(pref_orig(:ilen(pref_orig))//'_'
+     &      //liczba(:ilen(liczba))//'.rst')
+        inquire(file=rest2name,exist=file_exist)
+       endif
+       if(file_exist) then
+         if(.not.restart1file) then
+           if(me.eq.king.or..not.out1file)
+     &      write(iout,*) "Initial state will be read from file ",
+     &      rest2name(:ilen(rest2name))
+           call readrst
+         endif  
+         call rescale_weights(t_bath)
+       else
+        if(me.eq.king.or..not.out1file)then
+         if (restart1file) then
+          write(iout,*) "File ",mremd_rst_name(:ilen(mremd_rst_name)),
+     &       " does not exist"
+         else
+          write(iout,*) "File ",rest2name(:ilen(rest2name)),
+     &       " does not exist"
+         endif
+         write(iout,*) "Initial velocities randomly generated"
+        endif
+        call random_vel
+        totT=0.0d0
+       endif
+      else
+c Generate initial velocities
+        if(me.eq.king.or..not.out1file)
+     &   write(iout,*) "Initial velocities randomly generated"
+        call random_vel
+        totT=0.0d0
+      endif
+c      rest2name = prefix(:ilen(prefix))//'.rst'
+      if(me.eq.king.or..not.out1file)then
+       write (iout,*) "Initial velocities"
+       do i=0,nres
+         write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &   (d_t(j,i+nres),j=1,3)
+       enddo                    
+       call flush(iout)
+c  Zeroing the total angular momentum of the system
+       write(iout,*) "Calling the zero-angular 
+     & momentum subroutine"
+      endif
+      call inertia_tensor  
+c  Getting the potential energy and forces and velocities and accelerations
+      call vcm_vel(vcm)
+c      write (iout,*) "velocity of the center of the mass:"
+c      write (iout,*) (vcm(j),j=1,3)
+      do j=1,3
+        d_t(j,0)=d_t(j,0)-vcm(j)
+      enddo
+c Removing the velocity of the center of mass
+      call vcm_vel(vcm)
+      if(me.eq.king.or..not.out1file)then
+       write (iout,*) "vcm right after adjustment:"
+       write (iout,*) (vcm(j),j=1,3) 
+       call flush(iout)
+      endif
+      if (.not.rest) then              
+         call chainbuild
+         if(iranconf.ne.0) then
+          if (overlapsc) then 
+           print *, 'Calling OVERLAP_SC'
+           call overlap_sc(fail)
+          endif 
+
+          if (searchsc) then 
+           call sc_move(2,nres-1,10,1d10,nft_sc,etot)
+           print *,'SC_move',nft_sc,etot
+           if(me.eq.king.or..not.out1file)
+     &      write(iout,*) 'SC_move',nft_sc,etot
+          endif 
+
+          if(dccart)then
+           print *, 'Calling MINIM_DC'
+           call minim_dc(etot,iretcode,nfun)
+          else
+           call geom_to_var(nvar,varia)
+           print *,'Calling MINIMIZE.'
+           call minimize(etot,varia,iretcode,nfun)
+           call var_to_geom(nvar,varia)
+          endif
+          if(me.eq.king.or..not.out1file)
+     &       write(iout,*) 'SUMSL return code is',iretcode,' eval ',nfun
+         endif
+      endif      
+      call chainbuild_cart
+      call kinetic(EK)
+      if (tbf) then
+        call verlet_bath(EK)
+      endif      
+      kinetic_T=2.0d0/(dimen3*Rb)*EK
+      if(me.eq.king.or..not.out1file)then
+       call cartprint
+       call intout
+      endif
+#ifdef MPI
+      tt0=MPI_Wtime()
+#else
+      tt0=tcpu()
+#endif
+      call zerograd
+      call etotal(potEcomp)
+#ifdef TIMING_ENE
+#ifdef MPI
+      t_etotal=t_etotal+MPI_Wtime()-tt0
+#else
+      t_etotal=t_etotal+tcpu()-tt0
+#endif
+#endif
+      potE=potEcomp(0)
+
+      if(tnp .or. tnp1) then
+       s_np=1.0
+       pi_np=0.0
+       HNose1=Hnose(EK,s_np,potE,pi_np,Q_np,t_bath,dimen3)
+       H0=Hnose1
+       write(iout,*) 'H0= ',H0
+      endif
+
+      if(tnh) then
+       HNose1=Hnose_nh(EK,potE)
+       H0=HNose1
+       write (iout,*) 'H0= ',H0
+      endif
+
+      if (hmc.gt.0) then
+         hmc_acc=0
+         hmc_etot=potE+EK
+          if(me.eq.king.or..not.out1file)
+     &       write(iout,*) 'HMC',hmc_etot,potE,EK
+         do i=1,2*nres
+           do j=1,3
+            dc_hmc(j,i)=dc(j,i)
+           enddo
+         enddo
+      endif
+
+      call cartgrad
+      call lagrangian
+      call max_accel
+      if (amax*d_time .gt. dvmax) then
+        d_time=d_time*dvmax/amax
+        if(me.eq.king.or..not.out1file) write (iout,*) 
+     &   "Time step reduced to",d_time,
+     &   " because of too large initial acceleration."
+      endif
+      if(me.eq.king.or..not.out1file)then 
+       write(iout,*) "Potential energy and its components"
+       call enerprint(potEcomp)
+c       write(iout,*) (potEcomp(i),i=0,n_ene)
+      endif
+      potE=potEcomp(0)-potEcomp(20)
+      totE=EK+potE
+      itime=0
+      if (ntwe.ne.0) call statout(itime)
+      if(me.eq.king.or..not.out1file)
+     &  write (iout,'(/a/3(a25,1pe14.5/))') "Initial:",
+     &   " Kinetic energy",EK," potential energy",potE, 
+     &   " total energy",totE," maximum acceleration ",
+     &   amax
+      if (large) then
+        write (iout,*) "Initial coordinates"
+        do i=1,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(c(j,i),j=1,3),
+     &    (c(j,i+nres),j=1,3)
+        enddo
+        write (iout,*) "Initial dC"
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(dc(j,i),j=1,3),
+     &    (dc(j,i+nres),j=1,3)
+        enddo
+        write (iout,*) "Initial velocities"
+        write (iout,"(13x,' backbone ',23x,' side chain')")
+        do i=0,nres
+          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_t(j,i),j=1,3),
+     &    (d_t(j,i+nres),j=1,3)
+        enddo
+        write (iout,*) "Initial accelerations"
+        do i=0,nres
+c          write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3),
+          write (iout,'(i3,3f15.10,3x,3f15.10)') i,(d_a(j,i),j=1,3),
+     &    (d_a(j,i+nres),j=1,3)
+        enddo
+      endif
+      do i=0,2*nres
+        do j=1,3
+          dc_old(j,i)=dc(j,i)
+          d_t_old(j,i)=d_t(j,i)
+          d_a_old(j,i)=d_a(j,i)
+        enddo
+c        write (iout,*) "dc_old",i,(dc_old(j,i),j=1,3)
+      enddo 
+      if (RESPA) then
+#ifdef MPI
+      tt0 =MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+        call zerograd
+        call etotal_short(energia_short)
+#ifdef TIMING_ENE
+#ifdef MPI
+        t_eshort=t_eshort+MPI_Wtime()-tt0
+#else
+        t_eshort=t_eshort+tcpu()-tt0
+#endif
+#endif
+
+        if(tnp .or. tnp1) then
+         E_short=energia_short(0)
+         HNose1=Hnose(EK,s_np,E_short,pi_np,Q_np,t_bath,dimen3)
+         Csplit=Hnose1
+c         Csplit =110
+c_new_var_csplit          Csplit=H0-E_long 
+c          Csplit = H0-energia_short(0)
+          write(iout,*) 'Csplit= ',Csplit
+        endif
+
+
+        call cartgrad
+        call lagrangian
+        if(.not.out1file .and. large) then
+          write (iout,*) "energia_long",energia_long(0),
+     &     " energia_short",energia_short(0),
+     &     " total",energia_long(0)+energia_short(0)
+          write (iout,*) "Initial fast-force accelerations"
+          do i=0,nres
+            write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3),
+     &      (d_a(j,i+nres),j=1,3)
+          enddo
+        endif
+C 7/2/2009 Copy accelerations due to short-lange forces to an auxiliary array
+        do i=0,2*nres
+          do j=1,3
+            d_a_short(j,i)=d_a(j,i)
+          enddo
+        enddo
+#ifdef MPI
+        tt0=MPI_Wtime()
+#else
+        tt0=tcpu()
+#endif
+        call zerograd
+        call etotal_long(energia_long)
+#ifdef TIMING_ENE
+#ifdef MPI
+        t_elong=t_elong+MPI_Wtime()-tt0
+#else
+        t_elong=t_elong+tcpu()-tt0
+#endif
+#endif
+        call cartgrad
+        call lagrangian
+        if(.not.out1file .and. large) then
+          write (iout,*) "energia_long",energia_long(0)
+          write (iout,*) "Initial slow-force accelerations"
+          do i=0,nres
+            write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3),
+     &      (d_a(j,i+nres),j=1,3)
+          enddo
+        endif
+#ifdef MPI
+        t_enegrad=t_enegrad+MPI_Wtime()-tt0
+#else
+        t_enegrad=t_enegrad+tcpu()-tt0
+#endif
+      endif
+
+
+
+      return
+      end
+c-----------------------------------------------------------
+      subroutine random_vel
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision xv,sigv,lowb,highb
+c Generate random velocities from Gaussian distribution of mean 0 and std of KT/m 
+c First generate velocities in the eigenspace of the G matrix
+c      write (iout,*) "Calling random_vel dimen dimen3",dimen,dimen3
+c      call flush(iout)
+c      write (iout,*) "RANDOM_VEL dimen",dimen
+      xv=0.0d0
+      ii=0
+      do i=1,dimen
+        do k=1,3
+          ii=ii+1
+          sigv=dsqrt((Rb*t_bath)/geigen(i))
+          lowb=-5*sigv
+          highb=5*sigv
+          d_t_work_new(ii)=anorm_distr(xv,sigv,lowb,highb)
+c          write (iout,*) "i",i," ii",ii," geigen",geigen(i),
+c     &      " d_t_work_new",d_t_work_new(ii)
+        enddo
+      enddo
+      call flush(iout)
+c diagnostics
+c      Ek1=0.0d0
+c      ii=0
+c      do i=1,dimen
+c        do k=1,3
+c          ii=ii+1
+c          Ek1=Ek1+0.5d0*geigen(i)*d_t_work_new(ii)**2
+c        enddo
+c      enddo
+c      write (iout,*) "Ek from eigenvectors",Ek1
+c end diagnostics
+c Transform velocities to UNRES coordinate space
+      do k=0,2       
+        do i=1,dimen
+          ind=(i-1)*3+k+1
+          d_t_work(ind)=0.0d0
+          do j=1,dimen
+            d_t_work(ind)=d_t_work(ind)
+     &                      +Gvec(i,j)*d_t_work_new((j-1)*3+k+1)
+          enddo
+c          write (iout,*) "i",i," ind",ind," d_t_work",d_t_work(ind)
+c          call flush(iout)
+        enddo
+      enddo
+c Transfer to the d_t vector
+      do j=1,3
+        d_t(j,0)=d_t_work(j)
+      enddo 
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3 
+          ind=ind+1
+          d_t(j,i)=d_t_work(ind)
+        enddo
+      enddo
+c      do i=0,nres-1
+c        write (iout,*) "d_t",i,(d_t(j,i),j=1,3)
+c      enddo
+c      call flush(iout)
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            ind=ind+1
+            d_t(j,i+nres)=d_t_work(ind)
+          enddo
+        endif
+      enddo
+c      call kinetic(EK)
+c      write (iout,*) "Kinetic energy",Ek,EK1," kinetic temperature",
+c     &  2.0d0/(dimen3*Rb)*EK,2.0d0/(dimen3*Rb)*EK1
+c      call flush(iout)
+      return
+      end
+#ifndef LANG0
+c-----------------------------------------------------------
+      subroutine sd_verlet_p_setup
+c Sets up the parameters of stochastic Verlet algorithm       
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision emgdt(MAXRES6),
+     & pterm,vterm,rho,rhoc,vsig,
+     & pfric_vec(MAXRES6),vfric_vec(MAXRES6),
+     & afric_vec(MAXRES6),prand_vec(MAXRES6),
+     & vrand_vec1(MAXRES6),vrand_vec2(MAXRES6)
+      logical lprn /.false./
+      double precision zero /1.0d-8/, gdt_radius /0.05d0/ 
+      double precision ktm
+#ifdef MPI
+      tt0 = MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+c
+c AL 8/17/04 Code adapted from tinker
+c
+c Get the frictional and random terms for stochastic dynamics in the
+c eigenspace of mass-scaled UNRES friction matrix
+c
+      do i = 1, dimen
+            gdt = fricgam(i) * d_time
+c
+c Stochastic dynamics reduces to simple MD for zero friction
+c
+            if (gdt .le. zero) then
+               pfric_vec(i) = 1.0d0
+               vfric_vec(i) = d_time
+               afric_vec(i) = 0.5d0 * d_time * d_time
+               prand_vec(i) = 0.0d0
+               vrand_vec1(i) = 0.0d0
+               vrand_vec2(i) = 0.0d0
+c
+c Analytical expressions when friction coefficient is large
+c
+            else 
+               if (gdt .ge. gdt_radius) then
+                  egdt = dexp(-gdt)
+                  pfric_vec(i) = egdt
+                  vfric_vec(i) = (1.0d0-egdt) / fricgam(i)
+                  afric_vec(i) = (d_time-vfric_vec(i)) / fricgam(i)
+                  pterm = 2.0d0*gdt - 3.0d0 + (4.0d0-egdt)*egdt
+                  vterm = 1.0d0 - egdt**2
+                  rho = (1.0d0-egdt)**2 / sqrt(pterm*vterm)
+c
+c Use series expansions when friction coefficient is small
+c
+               else
+                  gdt2 = gdt * gdt
+                  gdt3 = gdt * gdt2
+                  gdt4 = gdt2 * gdt2
+                  gdt5 = gdt2 * gdt3
+                  gdt6 = gdt3 * gdt3
+                  gdt7 = gdt3 * gdt4
+                  gdt8 = gdt4 * gdt4
+                  gdt9 = gdt4 * gdt5
+                  afric_vec(i) = (gdt2/2.0d0 - gdt3/6.0d0 + gdt4/24.0d0
+     &                          - gdt5/120.0d0 + gdt6/720.0d0
+     &                          - gdt7/5040.0d0 + gdt8/40320.0d0
+     &                          - gdt9/362880.0d0) / fricgam(i)**2
+                  vfric_vec(i) = d_time - fricgam(i)*afric_vec(i)
+                  pfric_vec(i) = 1.0d0 - fricgam(i)*vfric_vec(i)
+                  pterm = 2.0d0*gdt3/3.0d0 - gdt4/2.0d0
+     &                       + 7.0d0*gdt5/30.0d0 - gdt6/12.0d0
+     &                       + 31.0d0*gdt7/1260.0d0 - gdt8/160.0d0
+     &                       + 127.0d0*gdt9/90720.0d0
+                  vterm = 2.0d0*gdt - 2.0d0*gdt2 + 4.0d0*gdt3/3.0d0
+     &                       - 2.0d0*gdt4/3.0d0 + 4.0d0*gdt5/15.0d0
+     &                       - 4.0d0*gdt6/45.0d0 + 8.0d0*gdt7/315.0d0
+     &                       - 2.0d0*gdt8/315.0d0 + 4.0d0*gdt9/2835.0d0
+                  rho = sqrt(3.0d0) * (0.5d0 - 3.0d0*gdt/16.0d0
+     &                       - 17.0d0*gdt2/1280.0d0
+     &                       + 17.0d0*gdt3/6144.0d0
+     &                       + 40967.0d0*gdt4/34406400.0d0
+     &                       - 57203.0d0*gdt5/275251200.0d0
+     &                       - 1429487.0d0*gdt6/13212057600.0d0)
+               end if
+c
+c Compute the scaling factors of random terms for the nonzero friction case
+c
+               ktm = 0.5d0*d_time/fricgam(i)
+               psig = dsqrt(ktm*pterm) / fricgam(i)
+               vsig = dsqrt(ktm*vterm)
+               rhoc = dsqrt(1.0d0 - rho*rho)
+               prand_vec(i) = psig 
+               vrand_vec1(i) = vsig * rho 
+               vrand_vec2(i) = vsig * rhoc
+            end if
+      end do
+      if (lprn) then
+      write (iout,*) 
+     &  "pfric_vec, vfric_vec, afric_vec, prand_vec, vrand_vec1,",
+     &  " vrand_vec2"
+      do i=1,dimen
+        write (iout,'(i5,6e15.5)') i,pfric_vec(i),vfric_vec(i),
+     &      afric_vec(i),prand_vec(i),vrand_vec1(i),vrand_vec2(i)
+      enddo
+      endif
+c
+c Transform from the eigenspace of mass-scaled friction matrix to UNRES variables
+c
+#ifndef   LANG0
+      call eigtransf(dimen,maxres2,mt3,mt2,pfric_vec,pfric_mat)
+      call eigtransf(dimen,maxres2,mt3,mt2,vfric_vec,vfric_mat)
+      call eigtransf(dimen,maxres2,mt3,mt2,afric_vec,afric_mat)
+      call eigtransf(dimen,maxres2,mt3,mt1,prand_vec,prand_mat)
+      call eigtransf(dimen,maxres2,mt3,mt1,vrand_vec1,vrand_mat1)
+      call eigtransf(dimen,maxres2,mt3,mt1,vrand_vec2,vrand_mat2)
+#endif
+#ifdef MPI
+      t_sdsetup=t_sdsetup+MPI_Wtime()
+#else
+      t_sdsetup=t_sdsetup+tcpu()-tt0
+#endif
+      return
+      end
+c-------------------------------------------------------------      
+      subroutine eigtransf1(n,ndim,ab,d,c)
+      implicit none
+      integer n,ndim
+      double precision ab(ndim,ndim,n),c(ndim,n),d(ndim)
+      integer i,j,k
+      do i=1,n
+        do j=1,n
+          c(i,j)=0.0d0
+          do k=1,n
+            c(i,j)=c(i,j)+ab(k,j,i)*d(k)
+          enddo
+        enddo
+      enddo
+      return
+      end
+c-------------------------------------------------------------      
+      subroutine eigtransf(n,ndim,a,b,d,c)
+      implicit none
+      integer n,ndim
+      double precision a(ndim,n),b(ndim,n),c(ndim,n),d(ndim)
+      integer i,j,k
+      do i=1,n
+        do j=1,n
+          c(i,j)=0.0d0
+          do k=1,n
+            c(i,j)=c(i,j)+a(i,k)*b(k,j)*d(k)
+          enddo
+        enddo
+      enddo
+      return
+      end
+c-------------------------------------------------------------      
+      subroutine sd_verlet1
+c Applying stochastic velocity Verlet algorithm - step 1 to velocities        
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision stochforcvec(MAXRES6)
+      common /stochcalc/ stochforcvec
+      logical lprn /.false./
+
+c      write (iout,*) "dc_old"
+c      do i=0,nres
+c        write (iout,'(i5,3f10.5,5x,3f10.5)') 
+c     &   i,(dc_old(j,i),j=1,3),(dc_old(j,i+nres),j=1,3)
+c      enddo
+      do j=1,3
+        dc_work(j)=dc_old(j,0)
+        d_t_work(j)=d_t_old(j,0)
+        d_a_work(j)=d_a_old(j,0)
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3
+          dc_work(ind+j)=dc_old(j,i)
+          d_t_work(ind+j)=d_t_old(j,i)
+          d_a_work(ind+j)=d_a_old(j,i)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            dc_work(ind+j)=dc_old(j,i+nres)
+            d_t_work(ind+j)=d_t_old(j,i+nres)
+            d_a_work(ind+j)=d_a_old(j,i+nres)
+          enddo
+          ind=ind+3
+        endif
+      enddo
+#ifndef LANG0
+      if (lprn) then
+      write (iout,*) 
+     &  "pfric_mat, vfric_mat, afric_mat, prand_mat, vrand_mat1,",
+     &  " vrand_mat2"
+      do i=1,dimen
+        do j=1,dimen
+          write (iout,'(2i5,6e15.5)') i,j,pfric_mat(i,j),
+     &      vfric_mat(i,j),afric_mat(i,j),
+     &      prand_mat(i,j),vrand_mat1(i,j),vrand_mat2(i,j)
+        enddo
+      enddo
+      endif
+      do i=1,dimen
+        ddt1=0.0d0
+        ddt2=0.0d0
+        do j=1,dimen
+          dc_work(i)=dc_work(i)+vfric_mat(i,j)*d_t_work(j)
+     &      +afric_mat(i,j)*d_a_work(j)+prand_mat(i,j)*stochforcvec(j)
+          ddt1=ddt1+pfric_mat(i,j)*d_t_work(j)
+          ddt2=ddt2+vfric_mat(i,j)*d_a_work(j)
+        enddo
+        d_t_work_new(i)=ddt1+0.5d0*ddt2
+        d_t_work(i)=ddt1+ddt2
+      enddo
+#endif
+      do j=1,3
+        dc(j,0)=dc_work(j)
+        d_t(j,0)=d_t_work(j)
+      enddo
+      ind=3    
+      do i=nnt,nct-1   
+        do j=1,3
+          dc(j,i)=dc_work(ind+j)
+          d_t(j,i)=d_t_work(ind+j)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            dc(j,inres)=dc_work(ind+j)
+            d_t(j,inres)=d_t_work(ind+j)
+          enddo
+          ind=ind+3
+        endif      
+      enddo 
+      return
+      end
+c--------------------------------------------------------------------------
+      subroutine sd_verlet2
+c  Calculating the adjusted velocities for accelerations
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision stochforcvec(MAXRES6),stochforcvecV(MAXRES6)
+      common /stochcalc/ stochforcvec
+c
+c Compute the stochastic forces which contribute to velocity change
+c
+      call stochastic_force(stochforcvecV)
+
+#ifndef LANG0
+      do i=1,dimen
+        ddt1=0.0d0
+        ddt2=0.0d0
+        do j=1,dimen
+          ddt1=ddt1+vfric_mat(i,j)*d_a_work(j)
+          ddt2=ddt2+vrand_mat1(i,j)*stochforcvec(j)+
+     &     vrand_mat2(i,j)*stochforcvecV(j)
+        enddo
+        d_t_work(i)=d_t_work_new(i)+0.5d0*ddt1+ddt2
+      enddo
+#endif
+      do j=1,3
+        d_t(j,0)=d_t_work(j)
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t_work(ind+j)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t_work(ind+j)
+          enddo
+          ind=ind+3
+        endif
+      enddo 
+      return
+      end
+c-----------------------------------------------------------
+      subroutine sd_verlet_ciccotti_setup
+c Sets up the parameters of stochastic velocity Verlet algorithmi; Ciccotti's 
+c version 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision emgdt(MAXRES6),
+     & pterm,vterm,rho,rhoc,vsig,
+     & pfric_vec(MAXRES6),vfric_vec(MAXRES6),
+     & afric_vec(MAXRES6),prand_vec(MAXRES6),
+     & vrand_vec1(MAXRES6),vrand_vec2(MAXRES6)
+      logical lprn /.false./
+      double precision zero /1.0d-8/, gdt_radius /0.05d0/ 
+      double precision ktm
+#ifdef MPI
+      tt0 = MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+c
+c AL 8/17/04 Code adapted from tinker
+c
+c Get the frictional and random terms for stochastic dynamics in the
+c eigenspace of mass-scaled UNRES friction matrix
+c
+      do i = 1, dimen
+            write (iout,*) "i",i," fricgam",fricgam(i)
+            gdt = fricgam(i) * d_time
+c
+c Stochastic dynamics reduces to simple MD for zero friction
+c
+            if (gdt .le. zero) then
+               pfric_vec(i) = 1.0d0
+               vfric_vec(i) = d_time
+               afric_vec(i) = 0.5d0*d_time*d_time
+               prand_vec(i) = afric_vec(i)
+               vrand_vec2(i) = vfric_vec(i)
+c
+c Analytical expressions when friction coefficient is large
+c
+            else 
+               egdt = dexp(-gdt)
+               pfric_vec(i) = egdt
+               vfric_vec(i) = dexp(-0.5d0*gdt)*d_time
+               afric_vec(i) = 0.5d0*dexp(-0.25d0*gdt)*d_time*d_time
+               prand_vec(i) = afric_vec(i)
+               vrand_vec2(i) = vfric_vec(i)
+c
+c Compute the scaling factors of random terms for the nonzero friction case
+c
+c               ktm = 0.5d0*d_time/fricgam(i)
+c               psig = dsqrt(ktm*pterm) / fricgam(i)
+c               vsig = dsqrt(ktm*vterm)
+c               prand_vec(i) = psig*afric_vec(i) 
+c               vrand_vec2(i) = vsig*vfric_vec(i)
+            end if
+      end do
+      if (lprn) then
+      write (iout,*) 
+     &  "pfric_vec, vfric_vec, afric_vec, prand_vec, vrand_vec1,",
+     &  " vrand_vec2"
+      do i=1,dimen
+        write (iout,'(i5,6e15.5)') i,pfric_vec(i),vfric_vec(i),
+     &      afric_vec(i),prand_vec(i),vrand_vec1(i),vrand_vec2(i)
+      enddo
+      endif
+c
+c Transform from the eigenspace of mass-scaled friction matrix to UNRES variables
+c
+      call eigtransf(dimen,maxres2,mt3,mt2,pfric_vec,pfric_mat)
+      call eigtransf(dimen,maxres2,mt3,mt2,vfric_vec,vfric_mat)
+      call eigtransf(dimen,maxres2,mt3,mt2,afric_vec,afric_mat)
+      call eigtransf(dimen,maxres2,mt3,mt1,prand_vec,prand_mat)
+      call eigtransf(dimen,maxres2,mt3,mt1,vrand_vec2,vrand_mat2)
+#ifdef MPI
+      t_sdsetup=t_sdsetup+MPI_Wtime()
+#else
+      t_sdsetup=t_sdsetup+tcpu()-tt0
+#endif
+      return
+      end
+c-------------------------------------------------------------      
+      subroutine sd_verlet1_ciccotti
+c Applying stochastic velocity Verlet algorithm - step 1 to velocities        
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision stochforcvec(MAXRES6)
+      common /stochcalc/ stochforcvec
+      logical lprn /.false./
+
+c      write (iout,*) "dc_old"
+c      do i=0,nres
+c        write (iout,'(i5,3f10.5,5x,3f10.5)') 
+c     &   i,(dc_old(j,i),j=1,3),(dc_old(j,i+nres),j=1,3)
+c      enddo
+      do j=1,3
+        dc_work(j)=dc_old(j,0)
+        d_t_work(j)=d_t_old(j,0)
+        d_a_work(j)=d_a_old(j,0)
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3
+          dc_work(ind+j)=dc_old(j,i)
+          d_t_work(ind+j)=d_t_old(j,i)
+          d_a_work(ind+j)=d_a_old(j,i)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            dc_work(ind+j)=dc_old(j,i+nres)
+            d_t_work(ind+j)=d_t_old(j,i+nres)
+            d_a_work(ind+j)=d_a_old(j,i+nres)
+          enddo
+          ind=ind+3
+        endif
+      enddo
+
+#ifndef LANG0
+      if (lprn) then
+      write (iout,*) 
+     &  "pfric_mat, vfric_mat, afric_mat, prand_mat, vrand_mat1,",
+     &  " vrand_mat2"
+      do i=1,dimen
+        do j=1,dimen
+          write (iout,'(2i5,6e15.5)') i,j,pfric_mat(i,j),
+     &      vfric_mat(i,j),afric_mat(i,j),
+     &      prand_mat(i,j),vrand_mat1(i,j),vrand_mat2(i,j)
+        enddo
+      enddo
+      endif
+      do i=1,dimen
+        ddt1=0.0d0
+        ddt2=0.0d0
+        do j=1,dimen
+          dc_work(i)=dc_work(i)+vfric_mat(i,j)*d_t_work(j)
+     &      +afric_mat(i,j)*d_a_work(j)+prand_mat(i,j)*stochforcvec(j)
+          ddt1=ddt1+pfric_mat(i,j)*d_t_work(j)
+          ddt2=ddt2+vfric_mat(i,j)*d_a_work(j)
+        enddo
+        d_t_work_new(i)=ddt1+0.5d0*ddt2
+        d_t_work(i)=ddt1+ddt2
+      enddo
+#endif
+      do j=1,3
+        dc(j,0)=dc_work(j)
+        d_t(j,0)=d_t_work(j)
+      enddo
+      ind=3    
+      do i=nnt,nct-1   
+        do j=1,3
+          dc(j,i)=dc_work(ind+j)
+          d_t(j,i)=d_t_work(ind+j)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            dc(j,inres)=dc_work(ind+j)
+            d_t(j,inres)=d_t_work(ind+j)
+          enddo
+          ind=ind+3
+        endif      
+      enddo 
+      return
+      end
+c--------------------------------------------------------------------------
+      subroutine sd_verlet2_ciccotti
+c  Calculating the adjusted velocities for accelerations
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision stochforcvec(MAXRES6),stochforcvecV(MAXRES6)
+      common /stochcalc/ stochforcvec
+c
+c Compute the stochastic forces which contribute to velocity change
+c
+      call stochastic_force(stochforcvecV)
+#ifndef LANG0
+      do i=1,dimen
+        ddt1=0.0d0
+        ddt2=0.0d0
+        do j=1,dimen
+
+          ddt1=ddt1+vfric_mat(i,j)*d_a_work(j)
+c          ddt2=ddt2+vrand_mat2(i,j)*stochforcvecV(j)
+          ddt2=ddt2+vrand_mat2(i,j)*stochforcvec(j)
+        enddo
+        d_t_work(i)=d_t_work_new(i)+0.5d0*ddt1+ddt2
+      enddo
+#endif
+      do j=1,3
+        d_t(j,0)=d_t_work(j)
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t_work(ind+j)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t_work(ind+j)
+          enddo
+          ind=ind+3
+        endif
+      enddo 
+      return
+      end
+#endif
+c------------------------------------------------------
+      double precision function HNose(ek,s,e,pi,Q,t_bath,dimenl)
+      implicit none
+      double precision ek,s,e,pi,Q,t_bath,Rb
+      integer dimenl
+      Rb=0.001986d0
+      HNose=ek+e+pi**2/(2*Q)+dimenl*Rb*t_bath*log(s)
+c      print '(6f15.5,i5,a2,2f15.5)',ek,s,e,pi,Q,t_bath,dimenl,"--",
+c     &      pi**2/(2*Q),dimenl*Rb*t_bath*log(s)
+      return
+      end
+c-----------------------------------------------------------------
+      double precision function HNose_nh(eki,e)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MD'
+      HNose_nh=eki+e+dimen3*Rb*t_bath*xlogs(1)+qmass(1)*vlogs(1)**2/2
+      do i=2,nnos
+        HNose_nh=HNose_nh+qmass(i)*vlogs(i)**2/2+Rb*t_bath*xlogs(i)
+      enddo
+c      write(4,'(5e15.5)') 
+c     &       vlogs(1),xlogs(1),HNose,eki,e
+      return
+      end
+c-----------------------------------------------------------------
+      SUBROUTINE NHCINT(akin,scale,wdti,wdti2,wdti4,wdti8)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MD'
+      double precision akin,gnkt,dt,aa,gkt,scale
+      double precision wdti(maxyosh),wdti2(maxyosh),
+     &                 wdti4(maxyosh),wdti8(maxyosh)
+      integer i,iresn,iyosh,inos,nnos1
+
+      dt=d_time
+      nnos1=nnos+1
+      GKT = Rb*t_bath
+      GNKT = dimen3*GKT
+      akin=akin*2
+
+      
+C THIS ROUTINE DOES THE NOSE-HOOVER PART OF THE
+C INTEGRATION FROM t=0 TO t=DT/2
+C GET THE TOTAL KINETIC ENERGY
+      SCALE = 1.D0
+c      CALL GETKINP(MASS,VX,VY,VZ,AKIN)
+C UPDATE THE FORCES
+      GLOGS(1) = (AKIN - GNKT)/QMASS(1)
+C START THE MULTIPLE TIME STEP PROCEDURE
+      DO IRESN = 1,NRESN
+       DO IYOSH = 1,NYOSH
+C UPDATE THE THERMOSTAT VELOCITIES
+        VLOGS(NNOS) = VLOGS(NNOS) + GLOGS(NNOS)*WDTI4(IYOSH)
+        DO INOS = 1,NNOS-1
+         AA = EXP(-WDTI8(IYOSH)*VLOGS(NNOS1-INOS) )
+         VLOGS(NNOS-INOS) = VLOGS(NNOS-INOS)*AA*AA
+     &          + WDTI4(IYOSH)*GLOGS(NNOS-INOS)*AA
+        ENDDO
+C UPDATE THE PARTICLE VELOCITIES
+        AA = EXP(-WDTI2(IYOSH)*VLOGS(1) )
+        SCALE = SCALE*AA
+C UPDATE THE FORCES
+        GLOGS(1) = (SCALE*SCALE*AKIN - GNKT)/QMASS(1)
+C UPDATE THE THERMOSTAT POSITIONS
+        DO INOS = 1,NNOS
+         XLOGS(INOS) = XLOGS(INOS) + VLOGS(INOS)*WDTI2(IYOSH)
+        ENDDO
+C UPDATE THE THERMOSTAT VELOCITIES
+        DO INOS = 1,NNOS-1
+         AA = EXP(-WDTI8(IYOSH)*VLOGS(INOS+1) )
+         VLOGS(INOS) = VLOGS(INOS)*AA*AA
+     &      + WDTI4(IYOSH)*GLOGS(INOS)*AA
+         GLOGS(INOS+1) = (QMASS(INOS)*VLOGS(INOS)*VLOGS(INOS)
+     &      -GKT)/QMASS(INOS+1)
+        ENDDO
+        VLOGS(NNOS) = VLOGS(NNOS) + GLOGS(NNOS)*WDTI4(IYOSH)
+       ENDDO
+      ENDDO
+C UPDATE THE PARTICLE VELOCITIES
+c outside of this subroutine
+c      DO I = 1,N
+c       VX(I) = VX(I)*SCALE
+c       VY(I) = VY(I)*SCALE
+c       VZ(I) = VZ(I)*SCALE
+c      ENDDO
+      RETURN
+      END
+c-----------------------------------------------------------------
+      subroutine tnp1_respa_i_step1
+c Applying Nose-Poincare algorithm - step 1 to coordinates
+c JPSJ 70 75 (2001) S. Nose
+c
+c d_t is not updated here
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision adt,adt2,tmp
+        
+      tmp=1+pi_np/(2*Q_np)*0.5*d_time
+      s12_np=s_np*tmp**2
+      pistar=pi_np/tmp
+      s12_dt=d_time/s12_np
+      d_time_s12=d_time*0.5*s12_np
+
+      do j=1,3
+        d_t_new(j,0)=d_t_old(j,0)+d_a_old(j,0)*d_time_s12
+        dc(j,0)=dc_old(j,0)+d_t_new(j,0)*s12_dt
+      enddo
+      do i=nnt,nct-1   
+        do j=1,3    
+          d_t_new(j,i)=d_t_old(j,i)+d_a_old(j,i)*d_time_s12
+          dc(j,i)=dc_old(j,i)+d_t_new(j,i)*s12_dt
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+           d_t_new(j,inres)=d_t_old(j,inres)+d_a_old(j,inres)*d_time_s12
+           dc(j,inres)=dc_old(j,inres)+d_t_new(j,inres)*s12_dt
+          enddo
+        endif      
+      enddo 
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine tnp1_respa_i_step2
+c  Step 2 of the velocity Verlet algorithm: update velocities
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+
+      double precision d_time_s12
+
+      do i=0,2*nres
+       do j=1,3
+        d_t(j,i)=d_t_new(j,i)
+       enddo
+      enddo
+
+      call kinetic(EK)
+      EK=EK/s12_np**2
+
+      d_time_s12=0.5d0*s12_np*d_time
+
+      do j=1,3
+        d_t(j,0)=d_t_new(j,0)+d_a(j,0)*d_time_s12
+      enddo
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t_new(j,i)+d_a(j,i)*d_time_s12
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t_new(j,inres)+d_a(j,inres)*d_time_s12
+          enddo
+        endif
+      enddo 
+
+      pistar=pistar+(EK-0.5*(E_old+potE)
+     &       -dimen3*Rb*t_bath*log(s12_np)+Csplit-dimen3*Rb*t_bath)*d_time
+      tmp=1+pistar/(2*Q_np)*0.5*d_time
+      s_np=s12_np*tmp**2
+      pi_np=pistar/tmp
+
+      return
+      end
+c-------------------------------------------------------
+
+      subroutine tnp1_step1
+c Applying Nose-Poincare algorithm - step 1 to coordinates
+c JPSJ 70 75 (2001) S. Nose
+c
+c d_t is not updated here
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision adt,adt2,tmp
+        
+      tmp=1+pi_np/(2*Q_np)*0.5*d_time
+      s12_np=s_np*tmp**2
+      pistar=pi_np/tmp
+      s12_dt=d_time/s12_np
+      d_time_s12=d_time*0.5*s12_np
+
+      do j=1,3
+        d_t_new(j,0)=d_t_old(j,0)+d_a_old(j,0)*d_time_s12
+        dc(j,0)=dc_old(j,0)+d_t_new(j,0)*s12_dt
+      enddo
+      do i=nnt,nct-1   
+        do j=1,3    
+          d_t_new(j,i)=d_t_old(j,i)+d_a_old(j,i)*d_time_s12
+          dc(j,i)=dc_old(j,i)+d_t_new(j,i)*s12_dt
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+           d_t_new(j,inres)=d_t_old(j,inres)+d_a_old(j,inres)*d_time_s12
+           dc(j,inres)=dc_old(j,inres)+d_t_new(j,inres)*s12_dt
+          enddo
+        endif      
+      enddo 
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine tnp1_step2
+c  Step 2 of the velocity Verlet algorithm: update velocities
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+
+      double precision d_time_s12
+
+      do i=0,2*nres
+       do j=1,3
+        d_t(j,i)=d_t_new(j,i)
+       enddo
+      enddo
+
+      call kinetic(EK)
+      EK=EK/s12_np**2
+
+      d_time_s12=0.5d0*s12_np*d_time
+
+      do j=1,3
+        d_t(j,0)=d_t_new(j,0)+d_a(j,0)*d_time_s12
+      enddo
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t_new(j,i)+d_a(j,i)*d_time_s12
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t_new(j,inres)+d_a(j,inres)*d_time_s12
+          enddo
+        endif
+      enddo 
+
+cd      write(iout,*) 'pistar',pistar,EK,E_old,potE,s12_np
+      pistar=pistar+(EK-0.5*(E_old+potE)
+     &       -dimen3*Rb*t_bath*log(s12_np)+H0-dimen3*Rb*t_bath)*d_time
+      tmp=1+pistar/(2*Q_np)*0.5*d_time
+      s_np=s12_np*tmp**2
+      pi_np=pistar/tmp
+
+      return
+      end
+
+c-----------------------------------------------------------------
+      subroutine tnp_respa_i_step1
+c Applying Nose-Poincare algorithm - step 1 to coordinates
+c J.Comput.Phys. 151 114 (1999) S.D.Bond B.J.Leimkuhler B.B.Laird
+c
+c d_t is not updated here, it is destroyed
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision C_np,d_time_s,tmp,d_time_ss
+
+      d_time_s=d_time*0.5*s_np        
+ct2      d_time_s=d_time*0.5*s12_np
+
+      do j=1,3
+        d_t_new(j,0)=d_t_old(j,0)+d_a_old(j,0)*d_time_s
+      enddo
+      do i=nnt,nct-1   
+        do j=1,3    
+          d_t_new(j,i)=d_t_old(j,i)+d_a_old(j,i)*d_time_s
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+           d_t_new(j,inres)=d_t_old(j,inres)+d_a_old(j,inres)*d_time_s
+          enddo
+        endif      
+      enddo 
+
+      do i=0,2*nres
+       do j=1,3
+        d_t(j,i)=d_t_new(j,i)
+       enddo
+      enddo
+
+      call kinetic(EK)
+      EK=EK/s_np**2
+
+      C_np=0.5*d_time*(dimen3*Rb*t_bath*(1.0+log(s_np))-EK+potE-Csplit)
+     &                     -pi_np
+
+      pistar=-2.0*C_np/(1.0+sqrt(1.0-C_np*d_time/Q_np))
+      tmp=0.5*d_time*pistar/Q_np
+      s12_np=s_np*(1.0+tmp)/(1.0-tmp)
+
+      d_time_ss=0.5*d_time*(1.0/s12_np+1.0/s_np)
+ct2      d_time_ss=d_time/s12_np
+c      d_time_ss=0.5*d_time*(1.0/sold_np+1.0/s_np) 
+
+      do j=1,3
+        dc(j,0)=dc_old(j,0)+d_t_new(j,0)*d_time_ss
+      enddo
+      do i=nnt,nct-1   
+        do j=1,3    
+          dc(j,i)=dc_old(j,i)+d_t_new(j,i)*d_time_ss
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+           dc(j,inres)=dc_old(j,inres)+d_t_new(j,inres)*d_time_ss
+          enddo
+        endif      
+      enddo 
+
+      return
+      end
+c---------------------------------------------------------------------
+
+      subroutine tnp_respa_i_step2
+c  Step 2 of the velocity Verlet algorithm: update velocities
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+
+      double precision d_time_s
+
+      EK=EK*(s_np/s12_np)**2
+      HNose1=Hnose(EK,s12_np,potE,pistar,Q_np,t_bath,dimen3)
+      pi_np=pistar+0.5*d_time*(2*EK-dimen3*Rb*t_bath
+     &                              -HNose1+Csplit)         
+
+cr      print '(a,5f)','i_step2',EK,potE,HNose1,pi_np,E_long
+      d_time_s=d_time*0.5*s12_np
+c      d_time_s=d_time*0.5*s_np
+
+      do j=1,3
+        d_t(j,0)=d_t_new(j,0)+d_a(j,0)*d_time_s
+      enddo
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t_new(j,i)+d_a(j,i)*d_time_s
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t_new(j,inres)+d_a(j,inres)*d_time_s
+          enddo
+        endif
+      enddo 
+
+      s_np=s12_np
+
+      return
+      end
+c-----------------------------------------------------------------
+      subroutine tnp_respa_step1
+c Applying Nose-Poincare algorithm - step 1 to vel for RESPA
+c J.Comput.Phys. 151 114 (1999) S.D.Bond B.J.Leimkuhler B.B.Laird
+c
+c d_t is not updated here, it is destroyed
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision C_np,d_time_s,tmp,d_time_ss
+      double precision energia(0:n_ene)
+
+      d_time_s=d_time*0.5*s_np        
+
+      do j=1,3
+        d_t_old(j,0)=d_t_old(j,0)+d_a(j,0)*d_time_s
+      enddo
+      do i=nnt,nct-1   
+        do j=1,3    
+          d_t_old(j,i)=d_t_old(j,i)+d_a(j,i)*d_time_s
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+           d_t_old(j,inres)=d_t_old(j,inres)+d_a(j,inres)*d_time_s
+          enddo
+        endif      
+      enddo 
+
+
+c      C_np=0.5*d_time*(dimen3*Rb*t_bath*(1.0+log(s_np))-EK+potE-H0)
+c     &                     -pi_np
+c
+c      pistar=-2.0*C_np/(1.0+sqrt(1.0-C_np*d_time/Q_np))
+c      tmp=0.5*d_time*pistar/Q_np
+c      s12_np=s_np*(1.0+tmp)/(1.0-tmp)
+c      write(iout,*) 'tnp_respa_step1',s_np,s12_np,EK,potE,C_np,pistar,tmp
+
+ct1      pi_np=pistar
+c      sold_np=s_np
+c      s_np=s12_np
+
+c-------------------------------------
+c test of reviewer's comment
+       pi_np=pi_np-0.5*d_time*(E_long+Csplit-H0)
+cr       print '(a,3f)','1 pi_np,s_np',pi_np,s_np,E_long
+c-------------------------------------
+
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine tnp_respa_step2
+c  Step 2 of the velocity Verlet algorithm: update velocities for RESPA
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+
+      double precision d_time_s
+
+ct1      s12_np=s_np
+ct2      pistar=pi_np
+
+ct      call kinetic(EK)
+ct      HNose1=Hnose(EK,s12_np,potE,pistar,Q_np,t_bath,dimen3)
+ct      pi_np=pistar+0.5*d_time*(2*EK-dimen3*Rb*t_bath)
+ct     &                              -0.5*d_time*(HNose1-H0)         
+
+c-------------------------------------
+c test of reviewer's comment
+      pi_np=pi_np-0.5*d_time*(E_long+Csplit-H0)
+cr      print '(a,3f)','2 pi_np,s_np',pi_np,s_np,E_long
+c-------------------------------------
+      d_time_s=d_time*0.5*s_np
+
+      do j=1,3
+        d_t_old(j,0)=d_t_old(j,0)+d_a(j,0)*d_time_s
+      enddo
+      do i=nnt,nct-1
+        do j=1,3
+          d_t_old(j,i)=d_t_old(j,i)+d_a(j,i)*d_time_s
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t_old(j,inres)=d_t_old(j,inres)+d_a(j,inres)*d_time_s
+          enddo
+        endif
+      enddo 
+
+cd      s_np=s12_np
+
+      return
+      end
+c---------------------------------------------------------------------
+      subroutine tnp_step1
+c Applying Nose-Poincare algorithm - step 1 to coordinates
+c J.Comput.Phys. 151 114 (1999) S.D.Bond B.J.Leimkuhler B.B.Laird
+c
+c d_t is not updated here, it is destroyed
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision C_np,d_time_s,tmp,d_time_ss
+
+      d_time_s=d_time*0.5*s_np        
+
+      do j=1,3
+        d_t_new(j,0)=d_t_old(j,0)+d_a_old(j,0)*d_time_s
+      enddo
+      do i=nnt,nct-1   
+        do j=1,3    
+          d_t_new(j,i)=d_t_old(j,i)+d_a_old(j,i)*d_time_s
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+           d_t_new(j,inres)=d_t_old(j,inres)+d_a_old(j,inres)*d_time_s
+          enddo
+        endif      
+      enddo 
+
+      do i=0,2*nres
+       do j=1,3
+        d_t(j,i)=d_t_new(j,i)
+       enddo
+      enddo
+
+      call kinetic(EK)
+      EK=EK/s_np**2
+
+      C_np=0.5*d_time*(dimen3*Rb*t_bath*(1.0+log(s_np))-EK+potE-H0)
+     &                     -pi_np
+
+      pistar=-2.0*C_np/(1.0+sqrt(1.0-C_np*d_time/Q_np))
+      tmp=0.5*d_time*pistar/Q_np
+      s12_np=s_np*(1.0+tmp)/(1.0-tmp)
+c      write(iout,*) 'tnp_step1',s_np,s12_np,EK,potE,C_np,pistar,tmp
+
+      d_time_ss=0.5*d_time*(1.0/s12_np+1.0/s_np)
+
+      do j=1,3
+        dc(j,0)=dc_old(j,0)+d_t_new(j,0)*d_time_ss
+      enddo
+      do i=nnt,nct-1   
+        do j=1,3    
+          dc(j,i)=dc_old(j,i)+d_t_new(j,i)*d_time_ss
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3    
+           dc(j,inres)=dc_old(j,inres)+d_t_new(j,inres)*d_time_ss
+          enddo
+        endif      
+      enddo 
+
+      return
+      end
+c-----------------------------------------------------------------
+      subroutine tnp_step2
+c  Step 2 of the velocity Verlet algorithm: update velocities
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+
+      double precision d_time_s
+
+      EK=EK*(s_np/s12_np)**2
+      HNose1=Hnose(EK,s12_np,potE,pistar,Q_np,t_bath,dimen3)
+      pi_np=pistar+0.5*d_time*(2*EK-dimen3*Rb*t_bath)
+     &                              -0.5*d_time*(HNose1-H0)         
+
+cd      write(iout,'(a,4f)') 'mmm',EK,potE,HNose1,pi_np
+      d_time_s=d_time*0.5*s12_np
+
+      do j=1,3
+        d_t(j,0)=d_t_new(j,0)+d_a(j,0)*d_time_s
+      enddo
+      do i=nnt,nct-1
+        do j=1,3
+          d_t(j,i)=d_t_new(j,i)+d_a(j,i)*d_time_s
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          inres=i+nres
+          do j=1,3
+            d_t(j,inres)=d_t_new(j,inres)+d_a(j,inres)*d_time_s
+          enddo
+        endif
+      enddo 
+
+      s_np=s12_np
+
+      return
+      end
+
+      subroutine hmc_test(itime)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.MD'
+      include 'COMMON.CHAIN'
+
+           hmc_acc=hmc_acc+1
+           delta=-(potE+EK-hmc_etot)/(Rb*t_bath)
+           if (delta .lt. -50.0d0) then
+                delta=0.0d0
+           else
+                delta=dexp(delta)
+           endif
+           xxx=ran_number(0.0d0,1.0d0)
+
+           if (me.eq.king .or. .not. out1file)
+     &       write(iout,'(a8,i5,6f10.4)') 
+     &        'HMC',itime,potE+EK,potE,EK,hmc_etot,delta,xxx
+
+           if (delta .le. xxx) then
+            do i=1,2*nres
+             do j=1,3
+              dc(j,i)=dc_hmc(j,i)
+             enddo
+            enddo
+            itime=itime-hmc
+            totT=totThmc
+           else
+            if (me.eq.king .or. .not. out1file)
+     &       write(iout,*) 'HMC accepting new'
+            totThmc=totT
+            do i=1,2*nres
+             do j=1,3
+              dc_hmc(j,i)=dc(j,i)
+             enddo
+            enddo
+           endif
+
+           call chainbuild_cart
+           call random_vel
+           do i=0,2*nres
+            do j=1,3
+              d_t_old(j,i)=d_t(j,i)
+            enddo
+           enddo
+           call kinetic(EK)
+           kinetic_T=2.0d0/(dimen3*Rb)*EK
+           call etotal(potEcomp)
+           potE=potEcomp(0)
+           hmc_etot=potE+EK
+           if (me.eq.king .or. .not. out1file)
+     &      write(iout,'(a8,i5,3f10.4)')'HMC new',itime,potE+EK,potE,EK
+
+
+      return
+      end
diff --git a/source/unres/src_MD_DFA/MP.F b/source/unres/src_MD_DFA/MP.F
new file mode 100644 (file)
index 0000000..b08897c
--- /dev/null
@@ -0,0 +1,516 @@
+#ifdef MPI
+      subroutine init_task
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.IOUNITS'
+      logical lprn /.false./
+c      real*8 text1 /'group_i '/,text2/'group_f '/,
+c     & text3/'initialb'/,text4/'initiale'/,
+c     & text5/'openb'/,text6/'opene'/
+      integer cgtasks(0:max_cg_procs)
+      character*3 cfgprocs 
+      integer cg_size,fg_size,fg_size1
+c  start parallel processing
+c      print *,'Initializing MPI'
+      call mpi_init(ierr)
+      if (ierr.ne.0) then
+        print *, ' cannot initialize MPI'
+        stop
+      endif
+c  determine # of nodes and current node
+      call MPI_Comm_rank( MPI_COMM_WORLD, me, ierr )
+      if (ierr.ne.0) then
+        print *, ' cannot determine rank of all processes'
+        call MPI_Finalize( MPI_COMM_WORLD, IERR )
+        stop
+      endif
+      call MPI_Comm_size( MPI_Comm_world, nodes, ierr )
+      if (ierr.ne.0) then
+        print *, ' cannot determine number of processes'
+        stop
+      endif
+      Nprocs=nodes
+      MyRank=me
+C Determine the number of "fine-grain" tasks
+      call getenv_loc("FGPROCS",cfgprocs)
+      read (cfgprocs,'(i3)') nfgtasks
+      if (nfgtasks.eq.0) nfgtasks=1
+      call getenv_loc("MAXGSPROCS",cfgprocs)
+      read (cfgprocs,'(i3)') max_gs_size
+      if (max_gs_size.eq.0) max_gs_size=2
+      if (lprn) 
+     &  print *,"Processor",me," nfgtasks",nfgtasks,
+     & " max_gs_size",max_gs_size
+      if (nfgtasks.eq.1) then
+        CG_COMM = MPI_COMM_WORLD
+        fg_size=1
+        fg_rank=0
+        nfgtasks1=1
+        fg_rank1=0
+      else
+        nodes=nprocs/nfgtasks
+        if (nfgtasks*nodes.ne.nprocs) then
+          write (*,'(a)') 'ERROR: Number of processors assigned',
+     &     ' to coarse-grained tasks must be divisor',
+     &     ' of the total number of processors.'
+          call MPI_Finalize( MPI_COMM_WORLD, IERR )
+          stop
+        endif
+C Put the ranks of coarse-grain processes in one table and create
+C the respective communicator. The processes with ranks "in between" 
+C the ranks of CG processes will perform fine graining for the CG
+C process with the next lower rank.
+        do i=0,nprocs-1,nfgtasks
+          cgtasks(i/nfgtasks)=i
+        enddo
+        if (lprn) then
+        print*,"Processor",me," cgtasks",(cgtasks(i),i=0,nodes-1)
+c        print "(a,i5,a)","Processor",myrank," Before MPI_Comm_group"
+        endif
+c        call memmon_print_usage()
+        call MPI_Comm_group(MPI_COMM_WORLD,world_group,IERR)
+        call MPI_Group_incl(world_group,nodes,cgtasks,cg_group,IERR)
+        call MPI_Comm_create(MPI_COMM_WORLD,cg_group,CG_COMM,IERR)
+        call MPI_Group_rank(cg_group,me,ierr)
+        call MPI_Group_free(world_group,ierr)
+        call MPI_Group_free(cg_group,ierr)
+c        print "(a,i5,a)","Processor",myrank," After MPI_Comm_group"
+c        call memmon_print_usage()
+        if (me.ne.MPI_UNDEFINED) call MPI_Comm_Rank(CG_COMM,me,ierr)
+        if (lprn) print *," Processor",myrank," CG rank",me
+C Create communicators containig processes doing "fine grain" tasks. 
+C The processes within each FG_COMM should have fast communication.
+        kolor=MyRank/nfgtasks
+        key=mod(MyRank,nfgtasks)
+        call MPI_Comm_split(MPI_COMM_WORLD,kolor,key,FG_COMM,ierr)
+        call MPI_Comm_size(FG_COMM,fg_size,ierr)
+        if (fg_size.ne.nfgtasks) then
+          write (*,*) "OOOOps... the number of fg tasks is",fg_size,
+     &      " but",nfgtasks," was requested. MyRank=",MyRank
+        endif
+        call MPI_Comm_rank(FG_COMM,fg_rank,ierr)
+        if (fg_size.gt.max_gs_size) then
+          kolor1=fg_rank/max_gs_size
+          key1=mod(fg_rank,max_gs_size)
+          call MPI_Comm_split(FG_COMM,kolor1,key1,FG_COMM1,ierr)
+          call MPI_Comm_size(FG_COMM1,nfgtasks1,ierr)
+          call MPI_Comm_rank(FG_COMM1,fg_rank1,ierr)
+        else
+          FG_COMM1=FG_COMM
+          nfgtasks1=nfgtasks
+          fg_rank1=fg_rank
+        endif
+      endif
+      if (fg_rank.eq.0) then
+      write (*,*) "Processor",MyRank," out of",nprocs,
+     & " rank in CG_COMM",me," size of CG_COMM",nodes,
+     & " size of FG_COMM",fg_size,
+     & " rank in FG_COMM1",fg_rank1," size of FG_COMM1",nfgtasks1
+      else
+      write (*,*) "Processor",MyRank," out of",nprocs,
+     & " rank in FG_COMM",fg_rank," size of FG_COMM",fg_size,
+     & " rank in FG_COMM1",fg_rank1," size of FG_COMM1",nfgtasks1
+      endif
+C Initialize other variables.
+c      print '(a)','Before initialize'
+c      call memmon_print_usage()
+      call initialize
+c      print '(a,i5,a)','Processor',myrank,' After initialize'
+c      call memmon_print_usage()
+C Open task-dependent files.
+c      print '(a,i5,a)','Processor',myrank,' Before openunits'
+c      call memmon_print_usage()
+      call openunits
+c      print '(a,i5,a)','Processor',myrank,' After openunits'
+c      call memmon_print_usage()
+      if (me.eq.king .or. fg_rank.eq.0 .and. .not. out1file) 
+     &  write (iout,'(80(1h*)/a/80(1h*))') 
+     & 'United-residue force field calculation - parallel job.'
+c      print *,"Processor",myrank," exited OPENUNITS"
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine finish_task
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.REMD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TIME1'
+      include 'COMMON.MD'
+      integer ilen
+      external ilen
+c
+      call MPI_Barrier(CG_COMM,ierr)
+      if (nfgtasks.gt.1) 
+     &    call MPI_Bcast(-1,1,MPI_INTEGER,king,FG_COMM,IERROR)
+      time1=MPI_WTIME()
+      if (me.eq.king .or. .not. out1file) then
+       write (iout,'(a,i4,a)') 'CG processor',me,' is finishing work.'
+       write (iout,*) 'Total wall clock time',time1-walltime,' sec'
+       if (nfgtasks.gt.1) then
+         write (iout,'(80(1h=)/a/(80(1h=)))') 
+     &    "Details of FG communication time"
+          write (iout,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') 
+     &    "BROADCAST:",time_bcast,"REDUCE:",time_reduce,
+     &    "GATHER:",time_gather,
+     &    "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv,
+     &    "BARRIER ene",time_barrier_e,
+     &    "BARRIER grad",time_barrier_g,"TOTAL:",
+     &    time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv
+     &    +time_barrier_e+time_barrier_g
+          write (*,*) 'Total wall clock time',time1-walltime,' sec'
+          write (*,*) "Processor",me," BROADCAST time",time_bcast,
+     &      " REDUCE time",
+     &      time_reduce," GATHER time",time_gather," SCATTER time",
+     &      time_scatter," SENDRECV",time_sendrecv,
+     &      " BARRIER ene",time_barrier_e," BARRIER grad",time_barrier_g
+      endif
+      endif
+      write (*,'(a,i4,a)') 'CG processor',me,' is finishing work.'
+      if (ilen(tmpdir).gt.0) then
+        write (*,*) "Processor",me,
+     &   ": moving output files to the parent directory..."
+        close(inp)
+        close(istat,status='keep')
+        if (ntwe.gt.0) call move_from_tmp(statname)
+        close(irest2,status='keep')
+        if (modecalc.eq.12.or.
+     &     (modecalc.eq.14 .and. .not.restart1file)) then
+          call move_from_tmp(rest2name) 
+        else if (modecalc.eq.14.and. me.eq.king) then
+          call move_from_tmp(mremd_rst_name)
+        endif
+        if (mdpdb) then
+         close(ipdb,status='keep')
+         call move_from_tmp(pdbname)
+        else if (me.eq.king .or. .not.traj1file) then
+         close(icart,status='keep')
+         call move_from_tmp(cartname)
+        endif
+        if (me.eq.king .or. .not. out1file) then
+          close (iout,status='keep')
+          call move_from_tmp(outname)
+        endif
+      endif
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine pattern_receive      
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+      include 'COMMON.THREAD'
+      include 'COMMON.IOUNITS'
+      integer tag,status(MPI_STATUS_SIZE)
+      integer source,ThreadType
+      logical flag
+      ThreadType=45
+      source=mpi_any_source
+      call mpi_iprobe(source,ThreadType,
+     &                 CG_COMM,flag,status,ierr)
+      do while (flag)
+        write (iout,*) 'Processor ',Me,' is receiving threading',
+     & ' pattern from processor',status(mpi_source)
+        write (*,*) 'Processor ',Me,' is receiving threading',
+     & ' pattern from processor',status(mpi_source)
+        nexcl=nexcl+1
+        call mpi_irecv(iexam(1,nexcl),2,mpi_integer,status(mpi_source),
+     &    ThreadType, CG_COMM,ireq,ierr)
+        write (iout,*) 'Received pattern:',nexcl,iexam(1,nexcl),
+     &    iexam(2,nexcl)
+        source=mpi_any_source
+      call mpi_iprobe(source,ThreadType,               
+     &                 CG_COMM,flag,status,ierr)
+      enddo
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine pattern_send
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.INFO'
+      include 'COMMON.THREAD'
+      include 'COMMON.IOUNITS'
+      integer source,ThreadType,ireq
+      ThreadType=45 
+      do iproc=0,nprocs-1
+        if (iproc.ne.me .and. .not.Koniec(iproc) ) then
+          call mpi_isend(iexam(1,nexcl),2,mpi_integer,iproc,
+     &                  ThreadType, CG_COMM, ireq, ierr)
+          write (iout,*) 'CG processor ',me,' has sent pattern ',
+     &    'to processor',iproc
+          write (*,*) 'CG processor ',me,' has sent pattern ',
+     &    'to processor',iproc
+          write (iout,*) 'Pattern:',nexcl,iexam(1,nexcl),iexam(2,nexcl)
+        endif
+      enddo
+      return
+      end
+c-----------------------------------------------------------------------------
+      subroutine send_stop_sig(Kwita)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.INFO'
+      include 'COMMON.IOUNITS'
+      integer StopType,StopId,iproc,Kwita,NBytes
+      StopType=66
+c     Kwita=-1
+C     print *,'CG processor',me,' StopType=',StopType
+      Koniec(me)=.true.
+      if (me.eq.king) then
+C Master sends the STOP signal to everybody.
+        write (iout,'(a,a)') 
+     &   'Master is sending STOP signal to other processors.'
+        do iproc=1,nprocs-1
+          print *,'Koniec(',iproc,')=',Koniec(iproc)
+          if (.not. Koniec(iproc)) then
+            call mpi_send(Kwita,1,mpi_integer,iproc,StopType,
+     &          mpi_comm_world,ierr)
+            write (iout,*) 'Iproc=',iproc,' StopID=',StopID
+            write (*,*) 'Iproc=',iproc,' StopID=',StopID
+          endif
+        enddo
+      else
+C Else send the STOP signal to Master.
+        call mpi_send(Kwita,1,mpi_integer,MasterID,StopType,
+     &          mpi_comm_world,ierr)
+        write (iout,*) 'CG processor=',me,' StopID=',StopID
+        write (*,*) 'CG processor=',me,' StopID=',StopID
+      endif
+      return
+      end 
+c-----------------------------------------------------------------------------
+      subroutine recv_stop_sig(Kwita)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS' 
+      include 'mpif.h'
+      include 'COMMON.INFO'
+      include 'COMMON.IOUNITS'
+      integer source,StopType,StopId,iproc,Kwita
+      logical flag
+      StopType=66
+      Kwita=0
+      source=mpi_any_source
+c     print *,'CG processor:',me,' StopType=',StopType
+      call mpi_iprobe(source,StopType,
+     &                 mpi_comm_world,flag,status,ierr)
+      do while (flag)
+        Koniec(status(mpi_source))=.true.
+        write (iout,*) 'CG processor ',me,' is receiving STOP signal',
+     & ' from processor',status(mpi_source)
+        write (*,*) 'CG processor ',me,' is receiving STOP signal',
+     & ' from processor',status(mpi_source)
+        call mpi_irecv(Kwita,1,mpi_integer,status(mpi_source),StopType,
+     &           mpi_comm_world,ireq,ierr)
+        call mpi_iprobe(source,StopType,
+     &                 mpi_comm_world,flag,status,ierr)
+      enddo       
+      return
+      end
+c-----------------------------------------------------------------------------
+      subroutine send_MCM_info(ione)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+      include 'COMMON.MCM'
+      include 'COMMON.IOUNITS'
+      integer tag,status(MPI_STATUS_SIZE)
+      integer MCM_info_Type,MCM_info_ID,iproc,one,NBytes
+      common /aaaa/ isend,irecv
+      integer nsend
+      save nsend
+      nsend=nsend+1
+      MCM_info_Type=77
+cd    write (iout,'(a,i4,a)') 'CG Processor',me,
+cd   & ' is sending MCM info to Master.'
+      write (*,'(a,i4,a,i8)') 'CG processor',me,
+     & ' is sending MCM info to Master, MCM_info_ID=',MCM_info_ID
+      call mpi_isend(ione,1,mpi_integer,MasterID,
+     &               MCM_info_Type,mpi_comm_world, MCM_info_ID, ierr)
+cd    write (iout,*) 'CG processor',me,' has sent info to the master;',
+cd   &    ' MCM_info_ID=',MCM_info_ID
+      write (*,*) 'CG processor',me,' has sent info to the master;',
+     &    ' MCM_info_ID=',MCM_info_ID,' ierr ',ierr
+      isend=0
+      irecv=0
+      return
+      end 
+c----------------------------------------------------------------------------
+      subroutine receive_MCM_info
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+      include 'COMMON.MCM'
+      include 'COMMON.IOUNITS'
+      integer tag,status(MPI_STATUS_SIZE)
+      integer source,MCM_info_Type,MCM_info_ID,iproc,ione
+      logical flag
+      MCM_info_Type=77
+      source=mpi_any_source
+c     print *,'source=',source,' dontcare=',dontcare
+      call mpi_iprobe(source,MCM_info_Type,
+     &                mpi_comm_world,flag,status,ierr)
+      do while (flag)
+        source=status(mpi_source)
+        itask=source/fgProcs+1
+cd      write (iout,*) 'Master is receiving MCM info from processor ',
+cd   &                 source,' itask',itask
+        write (*,*) 'Master is receiving MCM info from processor ',
+     &                 source,' itask',itask
+        call mpi_irecv(ione,1,mpi_integer,source,MCM_info_type,
+     &                  mpi_comm_world,MCM_info_ID,ierr)
+cd      write (iout,*) 'Received from processor',source,' IONE=',ione 
+        write (*,*) 'Received from processor',source,' IONE=',ione 
+        nacc_tot=nacc_tot+1
+        if (ione.eq.2) nsave_part(itask)=nsave_part(itask)+1
+cd      print *,'nsave_part(',itask,')=',nsave_part(itask)
+cd      write (iout,*) 'Nacc_tot=',Nacc_tot
+cd      write (*,*) 'Nacc_tot=',Nacc_tot
+        source=mpi_any_source
+              call mpi_iprobe(source,MCM_info_Type,
+     &                mpi_comm_world,flag,status,ierr)
+      enddo
+      return
+      end 
+c---------------------------------------------------------------------------
+      subroutine send_thread_results
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+      include 'COMMON.THREAD'
+      include 'COMMON.IOUNITS'
+      integer tag,status(MPI_STATUS_SIZE)
+      integer ibuffer(2*maxthread+2),ThreadType,ThreadID,EnerType,
+     &   EnerID,msglen,nbytes
+      double precision buffer(20*maxthread+2) 
+      ThreadType=444
+      EnerType=555
+      ipatt(1,nthread+1)=nthread
+      ipatt(2,nthread+1)=nexcl
+      do i=1,nthread
+        do j=1,n_ene
+          ener(j,i+nthread)=ener0(j,i)
+        enddo
+      enddo
+      ener(1,2*nthread+1)=max_time_for_thread
+      ener(2,2*nthread+1)=ave_time_for_thread
+C Send the IPATT array
+      write (iout,*) 'CG processor',me,
+     & ' is sending IPATT array to master: NTHREAD=',nthread
+      write (*,*) 'CG processor',me,
+     & ' is sending IPATT array to master: NTHREAD=',nthread
+      msglen=2*nthread+2
+      call mpi_send(ipatt(1,1),msglen,MPI_INTEGER,MasterID,
+     & ThreadType,mpi_comm_world,ierror)
+      write (iout,*) 'CG processor',me,
+     & ' has sent IPATT array to master MSGLEN',msglen
+      write (*,*) 'CG processor',me,
+     & ' has sent IPATT array to master MSGLEN',msglen
+C Send the energies.
+      msglen=n_ene2*nthread+2
+      write (iout,*) 'CG processor',me,' is sending energies to master.'
+      write (*,*) 'CG processor',me,' is sending energies to master.'
+      call mpi_send(ener(1,1),msglen,MPI_DOUBLE_PRECISION,MasterID,
+     & EnerType,mpi_comm_world,ierror)
+      write (iout,*) 'CG processor',me,' has sent energies to master.'
+      write (*,*) 'CG processor',me,' has sent energies to master.'
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine receive_thread_results(iproc)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.INFO'
+      include 'COMMON.THREAD'
+      include 'COMMON.IOUNITS'
+      integer ibuffer(2*maxthread+2),ThreadType,ThreadID,EnerType,
+     &   EnerID,ReadyType,ReadyID,Ready,msglen,nbytes,nthread_temp
+      double precision buffer(20*maxthread+2),max_time_for_thread_t,
+     & ave_time_for_thread_t
+      logical flag
+      ThreadType=444
+      EnerType=555
+C Receive the IPATT array
+      call mpi_probe(iproc,ThreadType,
+     &                 mpi_comm_world,status,ierr)
+      call MPI_GET_COUNT(STATUS, MPI_INTEGER, MSGLEN, IERROR)
+      write (iout,*) 'Master is receiving IPATT array from processor:',
+     &    iproc,' MSGLEN',msglen
+      write (*,*) 'Master is receiving IPATT array from processor:',
+     &    iproc,' MSGLEN',msglen
+      call mpi_recv(ipatt(1,nthread+1),msglen,mpi_integer,iproc,
+     & ThreadType,
+     & mpi_comm_world,status,ierror)
+      write (iout,*) 'Master has received IPATT array from processor:',
+     &    iproc,' MSGLEN=',msglen
+      write (*,*) 'Master has received IPATT array from processor:',
+     &    iproc,' MSGLEN=',msglen
+      nthread_temp=ipatt(1,nthread+msglen/2)
+      nexcl_temp=ipatt(2,nthread+msglen/2)
+C Receive the energies.
+      call mpi_probe(iproc,EnerType,
+     &                 mpi_comm_world,status,ierr)
+      call MPI_GET_COUNT(STATUS, MPI_DOUBLE_PRECISION, MSGLEN, IERROR)
+      write (iout,*) 'Master is receiving energies from processor:',
+     &    iproc,' MSGLEN=',MSGLEN
+      write (*,*) 'Master is receiving energies from processor:',
+     &    iproc,' MSGLEN=',MSGLEN
+      call mpi_recv(ener(1,nthread+1),msglen,
+     & MPI_DOUBLE_PRECISION,iproc,
+     & EnerType,MPI_COMM_WORLD,status,ierror)
+      write (iout,*) 'Msglen=',Msglen
+      write (*,*) 'Msglen=',Msglen
+      write (iout,*) 'Master has received energies from processor',iproc
+      write (*,*) 'Master has received energies from processor',iproc
+      write (iout,*) 'NTHREAD_TEMP=',nthread_temp,' NEXCL=',nexcl_temp
+      write (*,*) 'NTHREAD_TEMP=',nthread_temp,' NEXCL=',nexcl_temp
+      do i=1,nthread_temp
+        do j=1,n_ene
+          ener0(j,nthread+i)=ener(j,nthread+nthread_temp+i)
+        enddo
+      enddo
+      max_time_for_thread_t=ener(1,nthread+2*nthread_temp+1)
+      ave_time_for_thread_t=ener(2,nthread+2*nthread_temp+1)
+      write (iout,*) 'MAX_TIME_FOR_THREAD:',max_time_for_thread_t
+      write (iout,*) 'AVE_TIME_FOR_THREAD:',ave_time_for_thread_t
+      write (*,*) 'MAX_TIME_FOR_THREAD:',max_time_for_thread_t
+      write (*,*) 'AVE_TIME_FOR_THREAD:',ave_time_for_thread_t
+      if (max_time_for_thread_t.gt.max_time_for_thread)
+     & max_time_for_thread=max_time_for_thread_t
+      ave_time_for_thread=(nthread*ave_time_for_thread+
+     & nthread_temp*ave_time_for_thread_t)/(nthread+nthread_temp)
+      nthread=nthread+nthread_temp
+      return
+      end
+#else
+      subroutine init_task
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.SETUP'
+      me=0
+      myrank=0
+      fg_rank=0
+      fg_size=1
+      nodes=1
+      nprocs=1
+      call initialize
+      call openunits
+      write (iout,'(80(1h*)/a/80(1h*))') 
+     & 'United-residue force field calculation - serial job.'
+      return
+      end
+#endif
diff --git a/source/unres/src_MD_DFA/MREMD.F b/source/unres/src_MD_DFA/MREMD.F
new file mode 100644 (file)
index 0000000..576e43d
--- /dev/null
@@ -0,0 +1,2102 @@
+#ifdef MPI
+      subroutine MREMD
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      include 'COMMON.MUCA'
+      integer ERRCODE
+      double precision cm(3),L(3),vcm(3)
+      double precision energia(0:n_ene)
+      double precision remd_t_bath(maxprocs)
+      integer iremd_iset(maxprocs)
+      integer*2 i_index
+     &            (maxprocs/4,maxprocs/20,maxprocs/200,maxprocs/200)
+      double precision remd_ene(0:n_ene+4,maxprocs),t_bath_old
+      integer iremd_acc(maxprocs),iremd_tot(maxprocs)
+      integer iremd_acc_usa(maxprocs),iremd_tot_usa(maxprocs)
+      integer ilen,rstcount
+      external ilen
+      character*50 tytul
+      common /gucio/ cm
+      integer itime
+cold      integer nup(0:maxprocs),ndown(0:maxprocs)
+      integer rep2i(0:maxprocs),ireqi(maxprocs)
+      integer icache_all(maxprocs)
+      integer status(MPI_STATUS_SIZE),statusi(MPI_STATUS_SIZE,maxprocs)
+      logical synflag,end_of_run,file_exist /.false./,ovrtim
+      real ene_tol /1.0e-5/
+
+cdeb      imin_itime_old=0
+      ntwx_cache=0
+      time00=MPI_WTIME()
+      time01=time00
+      if(me.eq.king.or..not.out1file) then
+       write  (iout,*) 'MREMD',nodes,'time before',time00-walltime
+       write (iout,*) "NREP=",nrep
+      endif
+
+      synflag=.false.
+      if (ilen(tmpdir).gt.0 .and. (me.eq.king)) then
+        call copy_to_tmp(pref_orig(:ilen(pref_orig))//"_mremd.rst")
+      endif
+      mremd_rst_name=prefix(:ilen(prefix))//"_mremd.rst"
+
+cd      print *,'MREMD',nodes
+cd      print *,'mmm',me,remd_mlist,(remd_m(i),i=1,nrep)
+cde      write (iout,*) "Start MREMD: me",me," t_bath",t_bath
+
+      if(hremd.gt.0) then
+         nset=hremd
+         do i=1,nset
+          mset(i)=1
+         enddo
+      endif
+
+      k=0
+      rep2i(k)=-1
+      do il=1,max0(nset,1)
+       do il1=1,max0(mset(il),1)
+        do i=1,nrep
+         iremd_acc(i)=0
+         iremd_acc_usa(i)=0
+         iremd_tot(i)=0
+         do j=1,remd_m(i)
+          i2rep(k)=i
+          i2set(k)=il
+          rep2i(i)=k
+          k=k+1
+          i_index(i,j,il,il1)=k
+         enddo
+        enddo
+       enddo
+      enddo
+
+      if(me.eq.king.or..not.out1file) then
+       write(iout,*) "i2rep",(i2rep(i),i=0,nodes-1)
+       write(iout,*) "i2set",(i2set(i),i=0,nodes-1)
+       write(iout,*) "i,j,il,il1,i_index(i,j,il,il1)"
+       do il=1,nset
+        do il1=1,mset(il)
+         do i=1,nrep
+          do j=1,remd_m(i)
+           write(iout,*) i,j,il,il1,i_index(i,j,il,il1)
+          enddo
+         enddo
+        enddo
+       enddo
+      endif
+
+c      print *,'i2rep',me,i2rep(me)
+c      print *,'rep2i',(rep2i(i),i=0,nrep)
+
+cold       if (i2rep(me).eq.nrep) then
+cold        nup(0)=0
+cold       else
+cold        nup(0)=remd_m(i2rep(me)+1)
+cold        k=rep2i(int(i2rep(me)))+1
+cold        do i=1,nup(0)
+cold         nup(i)=k
+cold         k=k+1
+cold        enddo
+cold       endif
+
+cd       print '(i4,a4,100i4)',me,' nup',(nup(i),i=0,nup(0))
+
+cold       if (i2rep(me).eq.1) then
+cold        ndown(0)=0
+cold       else
+cold        ndown(0)=remd_m(i2rep(me)-1)
+cold        k=rep2i(i2rep(me)-2)+1
+cold        do i=1,ndown(0)
+cold         ndown(i)=k
+cold         k=k+1
+cold        enddo
+cold       endif
+
+cd       print '(i4,a6,100i4)',me,' ndown',(ndown(i),i=0,ndown(0))
+
+       
+       write (*,*) "Processor",me," rest",rest,"
+     &   restart1fie",restart1file
+       if(rest.and.restart1file) then 
+           if (me.eq.king)
+     &     inquire(file=mremd_rst_name,exist=file_exist)
+cd           write (*,*) me," Before broadcast: file_exist",file_exist
+           call MPI_Bcast(file_exist,1,MPI_LOGICAL,king,CG_COMM,
+     &          IERR)
+cd           write (*,*) me," After broadcast: file_exist",file_exist
+           if(file_exist) then 
+             if(me.eq.king.or..not.out1file)
+     &            write  (iout,*) 'Master is reading restart1file'
+             call read1restart(i_index)
+           else
+             if(me.eq.king.or..not.out1file)
+     &            write  (iout,*) 'WARNING : no restart1file'
+           endif
+
+           if(me.eq.king.or..not.out1file) then
+              write(iout,*) "i2set",(i2set(i),i=0,nodes-1)
+              write(iout,*) "i_index"
+              do il=1,nset
+               do il1=1,mset(il)
+                do i=1,nrep
+                 do j=1,remd_m(i)
+                  write(iout,*) i,j,il,il1,i_index(i,j,il,il1)
+                 enddo
+                enddo
+               enddo
+              enddo
+           endif 
+       endif
+
+       if(me.eq.king) then
+        if (rest.and..not.restart1file) 
+     &          inquire(file=mremd_rst_name,exist=file_exist)
+        if(.not.file_exist.and.rest.and..not.restart1file) 
+     &       write(iout,*) 'WARNING : no restart file',mremd_rst_name
+        IF (rest.and.file_exist.and..not.restart1file) THEN
+             write  (iout,*) 'Master is reading restart file',
+     &                        mremd_rst_name
+             open(irest2,file=mremd_rst_name,status='unknown')
+             read (irest2,*) 
+             read (irest2,*) (i2rep(i),i=0,nodes-1)
+             read (irest2,*) 
+             read (irest2,*) (ifirst(i),i=1,remd_m(1))
+             do il=1,nodes
+              read (irest2,*) 
+              read (irest2,*) nupa(0,il),(nupa(i,il),i=1,nupa(0,il))
+              read (irest2,*) 
+              read (irest2,*) ndowna(0,il),
+     &                    (ndowna(i,il),i=1,ndowna(0,il))
+             enddo
+             if(usampl.or.hremd.gt.0) then
+              read (irest2,*)
+              read (irest2,*) nset
+              read (irest2,*) 
+              read (irest2,*) (mset(i),i=1,nset)
+              read (irest2,*) 
+              read (irest2,*) (i2set(i),i=0,nodes-1)
+              read (irest2,*) 
+              do il=1,nset
+               do il1=1,mset(il)
+                do i=1,nrep
+                  read(irest2,*) (i_index(i,j,il,il1),j=1,remd_m(i))
+                enddo
+               enddo
+              enddo
+
+              write(iout,*) "i2set",(i2set(i),i=0,nodes-1)
+              write(iout,*) "i_index"
+              do il=1,nset
+               do il1=1,mset(il)
+                do i=1,nrep
+                 do j=1,remd_m(i)
+                  write(iout,*) i,j,il,il1,i_index(i,j,il,il1)
+                 enddo
+                enddo
+               enddo
+              enddo
+             endif
+
+             close(irest2)
+
+             write (iout,'(a6,1000i5)') "i2rep",(i2rep(i),i=0,nodes-1)
+             write (iout,'(a6,1000i5)') "ifirst",
+     &                    (ifirst(i),i=1,remd_m(1))
+             do il=1,nodes
+              write (iout,'(a6,i4,a1,100i4)') "nupa",il,":",
+     &                    (nupa(i,il),i=1,nupa(0,il))
+              write (iout,'(a6,i4,a1,100i4)') "ndowna",il,":",
+     &                    (ndowna(i,il),i=1,ndowna(0,il))
+             enddo
+        ELSE IF (.not.(rest.and.file_exist)) THEN
+         do il=1,remd_m(1)
+          ifirst(il)=il
+         enddo
+
+         do il=1,nodes
+          if (i2rep(il-1).eq.nrep) then
+           nupa(0,il)=0
+          else
+           nupa(0,il)=remd_m(i2rep(il-1)+1)
+           k=rep2i(int(i2rep(il-1)))+1
+           do i=1,nupa(0,il)
+            nupa(i,il)=k+1
+            k=k+1
+           enddo
+          endif
+          if (i2rep(il-1).eq.1) then
+           ndowna(0,il)=0
+          else
+           ndowna(0,il)=remd_m(i2rep(il-1)-1)
+           k=rep2i(i2rep(il-1)-2)+1
+           do i=1,ndowna(0,il)
+            ndowna(i,il)=k+1
+            k=k+1
+           enddo
+          endif
+         enddo
+        
+        write (iout,'(a6,100i4)') "ifirst",
+     &                    (ifirst(i),i=1,remd_m(1))
+        do il=1,nodes
+         write (iout,'(a6,i4,a1,100i4)') "nupa",il,":",
+     &                    (nupa(i,il),i=1,nupa(0,il))
+         write (iout,'(a6,i4,a1,100i4)') "ndowna",il,":",
+     &                    (ndowna(i,il),i=1,ndowna(0,il))
+        enddo
+        
+        ENDIF
+       endif
+c
+c      t_bath=retmin+(retmax-retmin)*me/(nodes-1)
+       if(.not.(rest.and.file_exist.and.restart1file)) then
+         if (me .eq. king) then 
+           t_bath=retmin
+         else 
+            t_bath=retmin+(retmax-retmin)*exp(float(i2rep(me)-nrep))
+         endif
+cd       print *,'ttt',me,remd_tlist,(remd_t(i),i=1,nrep)
+         if (remd_tlist) t_bath=remd_t(int(i2rep(me)))
+
+       endif
+       if(usampl.or.hremd.gt.0) then
+          iset=i2set(me)
+          if (hremd.gt.0) call set_hweights(iset)
+          if(me.eq.king.or..not.out1file) 
+     &     write(iout,*) me,"iset=",iset,"t_bath=",t_bath
+       endif        
+c
+       stdfp=dsqrt(2*Rb*t_bath/d_time)
+       do i=1,ntyp
+          stdfsc(i)=dsqrt(2*Rb*t_bath/d_time)
+       enddo 
+
+c      print *,'irep',me,t_bath
+       if (.not.rest) then  
+        if (me.eq.king .or. .not. out1file)
+     &   write (iout,'(a60,f10.5)') "REMD Temperature:",t_bath
+        call rescale_weights(t_bath)
+       endif
+
+
+c------copy MD--------------
+c  The driver for molecular dynamics subroutines
+c------------------------------------------------
+      t_MDsetup=0.0d0
+      t_langsetup=0.0d0
+      t_MD=0.0d0
+      t_enegrad=0.0d0
+      t_sdsetup=0.0d0
+      if(me.eq.king.or..not.out1file)
+     & write (iout,'(20(1h=),a20,20(1h=))') "MD calculation started"
+#ifdef MPI
+      tt0 = MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+c Determine the inverse of the inertia matrix.
+      call setup_MD_matrices
+c Initialize MD
+      call init_MD
+      if (rest) then  
+       if (me.eq.king .or. .not. out1file)
+     &  write (iout,'(a60,f10.5)') "REMD restart Temperature:",t_bath
+       stdfp=dsqrt(2*Rb*t_bath/d_time)
+       do i=1,ntyp
+          stdfsc(i)=dsqrt(2*Rb*t_bath/d_time)
+       enddo 
+       if (lang.gt.0 .and. .not.surfarea) then
+         do i=nnt,nct-1
+          stdforcp(i)=stdfp*dsqrt(gamp)
+         enddo
+         do i=nnt,nct
+          stdforcsc(i)=stdfsc(itype(i))*dsqrt(gamsc(itype(i)))
+         enddo
+       elseif (lang.gt.0 .and. surfarea ) then
+          call setup_fricmat
+       endif
+       call rescale_weights(t_bath)
+      endif
+
+#ifdef MPI
+      t_MDsetup = MPI_Wtime()-tt0
+#else
+      t_MDsetup = tcpu()-tt0
+#endif
+      rstcount=0 
+c   Entering the MD loop       
+#ifdef MPI
+      tt0 = MPI_Wtime()
+#else
+      tt0 = tcpu()
+#endif
+      if (lang.eq.2 .or. lang.eq.3) then
+#ifndef   LANG0
+        call setup_fricmat
+        if (lang.eq.2) then
+          call sd_verlet_p_setup
+        else
+          call sd_verlet_ciccotti_setup
+        endif
+        do i=1,dimen
+          do j=1,dimen
+            pfric0_mat(i,j,0)=pfric_mat(i,j)
+            afric0_mat(i,j,0)=afric_mat(i,j)
+            vfric0_mat(i,j,0)=vfric_mat(i,j)
+            prand0_mat(i,j,0)=prand_mat(i,j)
+            vrand0_mat1(i,j,0)=vrand_mat1(i,j)
+            vrand0_mat2(i,j,0)=vrand_mat2(i,j)
+          enddo
+        enddo
+        flag_stoch(0)=.true.
+        do i=1,maxflag_stoch
+          flag_stoch(i)=.false.
+        enddo
+#else
+        write (iout,*)
+     &   "LANG=2 or 3 NOT SUPPORTED. Recompile without -DLANG0"
+#ifdef MPI
+        call MPI_Abort(MPI_COMM_WORLD,IERROR,ERRCODE)
+#endif
+        stop
+#endif
+      else if (lang.eq.1 .or. lang.eq.4) then
+        call setup_fricmat
+      endif
+      time00=MPI_WTIME()
+      if (me.eq.king .or. .not. out1file)
+     & write(iout,*) 'Setup time',time00-walltime
+ctime      call flush(iout)
+#ifdef MPI
+      t_langsetup=MPI_Wtime()-tt0
+      tt0=MPI_Wtime()
+#else
+      t_langsetup=tcpu()-tt0
+      tt0=tcpu()
+#endif
+      itime=0
+      end_of_run=.false.
+      do while(.not.end_of_run)
+        itime=itime+1
+        if(itime.eq.n_timestep.and.me.eq.king) end_of_run=.true.
+        if(mremdsync.and.itime.eq.n_timestep) end_of_run=.true.
+        rstcount=rstcount+1
+        if (lang.gt.0 .and. surfarea .and. 
+     &      mod(itime,reset_fricmat).eq.0) then
+          if (lang.eq.2 .or. lang.eq.3) then
+#ifndef   LANG0
+            call setup_fricmat
+            if (lang.eq.2) then
+              call sd_verlet_p_setup
+            else
+              call sd_verlet_ciccotti_setup
+            endif
+            do i=1,dimen
+              do j=1,dimen
+                pfric0_mat(i,j,0)=pfric_mat(i,j)
+                afric0_mat(i,j,0)=afric_mat(i,j)
+                vfric0_mat(i,j,0)=vfric_mat(i,j)
+                prand0_mat(i,j,0)=prand_mat(i,j)
+                vrand0_mat1(i,j,0)=vrand_mat1(i,j)
+                vrand0_mat2(i,j,0)=vrand_mat2(i,j)
+              enddo
+            enddo
+            flag_stoch(0)=.true.
+            do i=1,maxflag_stoch
+              flag_stoch(i)=.false.
+            enddo   
+#endif
+          else if (lang.eq.1 .or. lang.eq.4) then
+            call setup_fricmat
+          endif
+          write (iout,'(a,i10)') 
+     &      "Friction matrix reset based on surface area, itime",itime
+        endif
+        if (reset_vel .and. tbf .and. lang.eq.0 
+     &      .and. mod(itime,count_reset_vel).eq.0) then
+          call random_vel
+          if (me.eq.king .or. .not. out1file)
+     &     write(iout,'(a,f20.2)') 
+     &     "Velocities reset to random values, time",totT      
+          do i=0,2*nres
+            do j=1,3
+              d_t_old(j,i)=d_t(j,i)
+            enddo
+          enddo
+        endif
+               if (reset_moment .and. mod(itime,count_reset_moment).eq.0) then
+          call inertia_tensor  
+          call vcm_vel(vcm)
+          do j=1,3
+             d_t(j,0)=d_t(j,0)-vcm(j)
+          enddo
+          call kinetic(EK)
+          kinetic_T=2.0d0/(dimen3*Rb)*EK
+          scalfac=dsqrt(T_bath/kinetic_T)
+cd          write(iout,'(a,f20.2)') "Momenta zeroed out, time",totT    
+          do i=0,2*nres
+            do j=1,3
+              d_t_old(j,i)=scalfac*d_t(j,i)
+            enddo
+          enddo
+        endif  
+        if (lang.ne.4) then
+          if (RESPA) then
+c Time-reversible RESPA algorithm 
+c (Tuckerman et al., J. Chem. Phys., 97, 1990, 1992)
+            call RESPA_step(itime)
+          else
+c Variable time step algorithm.
+            call velverlet_step(itime)
+          endif
+        else
+#ifdef BROWN
+          call brown_step(itime)
+#else
+          print *,"Brown dynamics not here!"
+#ifdef MPI
+          call MPI_Abort(MPI_COMM_WORLD,IERROR,ERRCODE)
+#endif
+          stop
+#endif
+        endif
+        if(hmc.gt.0 .and. mod(itime,hmc).eq.0) then
+          call statout(itime)
+          call hmc_test(itime)
+        endif
+        if(ntwe.ne.0) then
+          if (mod(itime,ntwe).eq.0) call statout(itime)
+        endif
+        if (mod(itime,ntwx).eq.0.and..not.traj1file) then
+          write (tytul,'("time",f8.2," temp",f8.1)') totT,t_bath
+          if(mdpdb) then
+             call pdbout(potE,tytul,ipdb)
+          else 
+             call cartout(totT)
+          endif
+        endif
+        if (mod(itime,ntwx).eq.0.and.traj1file) then
+          if(ntwx_cache.lt.max_cache_traj_use) then
+            ntwx_cache=ntwx_cache+1
+          else
+           if (max_cache_traj_use.ne.1)
+     &      print *,itime,"processor ",me," over cache ",ntwx_cache
+           do i=1,ntwx_cache-1
+
+            totT_cache(i)=totT_cache(i+1)
+            EK_cache(i)=EK_cache(i+1)
+            potE_cache(i)=potE_cache(i+1)
+            t_bath_cache(i)=t_bath_cache(i+1)
+            Uconst_cache(i)=Uconst_cache(i+1)
+            iset_cache(i)=iset_cache(i+1)
+
+            do ii=1,nfrag
+             qfrag_cache(ii,i)=qfrag_cache(ii,i+1)
+            enddo
+            do ii=1,npair
+             qpair_cache(ii,i)=qpair_cache(ii,i+1)
+            enddo
+            do ii=1,nfrag_back
+              utheta_cache(ii,i)=utheta_cache(ii,i+1)
+              ugamma_cache(ii,i)=ugamma_cache(ii,i+1)
+              uscdiff_cache(ii,i)=uscdiff_cache(ii,i+1)
+            enddo
+
+
+            do ii=1,nres*2
+             do j=1,3
+              c_cache(j,ii,i)=c_cache(j,ii,i+1)
+             enddo
+            enddo
+           enddo
+          endif
+
+            totT_cache(ntwx_cache)=totT
+            EK_cache(ntwx_cache)=EK
+            potE_cache(ntwx_cache)=potE
+            t_bath_cache(ntwx_cache)=t_bath
+            Uconst_cache(ntwx_cache)=Uconst
+            iset_cache(ntwx_cache)=iset
+
+            do i=1,nfrag
+             qfrag_cache(i,ntwx_cache)=qfrag(i)
+            enddo
+            do i=1,npair
+             qpair_cache(i,ntwx_cache)=qpair(i)
+            enddo
+            do i=1,nfrag_back
+              utheta_cache(i,ntwx_cache)=utheta(i)
+              ugamma_cache(i,ntwx_cache)=ugamma(i)
+              uscdiff_cache(i,ntwx_cache)=uscdiff(i)
+            enddo
+
+            do i=1,nres*2
+             do j=1,3
+              c_cache(j,i,ntwx_cache)=c(j,i)
+             enddo
+            enddo
+
+        endif
+        if ((rstcount.eq.1000.or.itime.eq.n_timestep)
+     &                         .and..not.restart1file) then
+
+           if(me.eq.king) then
+             open(irest1,file=mremd_rst_name,status='unknown')
+             write (irest1,*) "i2rep"
+             write (irest1,*) (i2rep(i),i=0,nodes-1)
+             write (irest1,*) "ifirst"
+             write (irest1,*) (ifirst(i),i=1,remd_m(1))
+             do il=1,nodes
+              write (irest1,*) "nupa",il
+              write (irest1,*) nupa(0,il),(nupa(i,il),i=1,nupa(0,il))
+              write (irest1,*) "ndowna",il
+              write (irest1,*) ndowna(0,il),
+     &                   (ndowna(i,il),i=1,ndowna(0,il))
+             enddo
+             if(usampl.or.hremd.gt.0) then
+              write (irest1,*) "nset"
+              write (irest1,*) nset
+              write (irest1,*) "mset"
+              write (irest1,*) (mset(i),i=1,nset)
+              write (irest1,*) "i2set"
+              write (irest1,*) (i2set(i),i=0,nodes-1)
+              write (irest1,*) "i_index"
+              do il=1,nset
+               do il1=1,mset(il)
+                do i=1,nrep
+                  write(irest1,*) (i_index(i,j,il,il1),j=1,remd_m(i))
+                enddo
+               enddo
+              enddo
+
+             endif
+             close(irest1)
+           endif
+           open(irest2,file=rest2name,status='unknown')
+           write(irest2,*) totT,EK,potE,totE,t_bath
+           do i=1,2*nres
+            write (irest2,'(3e15.5)') (d_t(j,i),j=1,3)
+           enddo
+           do i=1,2*nres
+            write (irest2,'(3e15.5)') (dc(j,i),j=1,3)
+           enddo
+           if(usampl.or.hremd.gt.0) then
+             write (irest2,*) iset
+           endif
+          close(irest2)
+          rstcount=0
+        endif 
+
+c REMD - exchange
+c forced synchronization
+        if (mod(itime,i_sync_step).eq.0 .and. me.ne.king 
+     &                                .and. .not. mremdsync) then 
+            synflag=.false.
+            call mpi_iprobe(0,101,CG_COMM,synflag,status,ierr)
+            if (synflag) then 
+               call mpi_recv(itime_master, 1, MPI_INTEGER,
+     &                             0,101,CG_COMM, status, ierr)
+               call mpi_barrier(CG_COMM, ierr)
+cdeb               if (out1file.or.traj1file) then
+cdeb                call mpi_gather(itime,1,mpi_integer,
+cdeb     &             icache_all,1,mpi_integer,king,
+cdeb     &             CG_COMM,ierr)                 
+               if(traj1file)
+     &          call mpi_gather(ntwx_cache,1,mpi_integer,
+     &             icache_all,1,mpi_integer,king,
+     &             CG_COMM,ierr)
+               if (.not.out1file)
+     &               write(iout,*) 'REMD synchro at',itime_master,itime
+               if (itime_master.ge.n_timestep .or. ovrtim()) 
+     &            end_of_run=.true.
+ctime               call flush(iout)
+            endif
+        endif
+
+c REMD - exchange
+        if ((mod(itime,nstex).eq.0.and.me.eq.king
+     &                  .or.end_of_run.and.me.eq.king )
+     &       .and. .not. mremdsync ) then
+           synflag=.true.
+           time01_=MPI_WTIME()
+           do i=1,nodes-1
+              call mpi_isend(itime,1,MPI_INTEGER,i,101,
+     &                                CG_COMM, ireqi(i), ierr)
+cd            write(iout,*) 'REMD synchro with',i
+cd            call flush(iout)
+           enddo
+           call mpi_waitall(nodes-1,ireqi,statusi,ierr)
+           call mpi_barrier(CG_COMM, ierr)
+           time01=MPI_WTIME()
+           write(iout,*) 'REMD synchro at',itime,'time=',time01-time01_
+           if (out1file.or.traj1file) then
+cdeb            call mpi_gather(itime,1,mpi_integer,
+cdeb     &             itime_all,1,mpi_integer,king,
+cdeb     &             CG_COMM,ierr)
+cdeb            write(iout,'(a19,8000i8)') ' REMD synchro itime',
+cdeb     &                    (itime_all(i),i=1,nodes)
+            if(traj1file) then
+cdeb             imin_itime=itime_all(1)
+cdeb             do i=2,nodes
+cdeb               if(itime_all(i).lt.imin_itime) imin_itime=itime_all(i)
+cdeb             enddo
+cdeb             ii_write=(imin_itime-imin_itime_old)/ntwx
+cdeb             imin_itime_old=int(imin_itime/ntwx)*ntwx
+cdeb             write(iout,*) imin_itime,imin_itime_old,ii_write
+             call mpi_gather(ntwx_cache,1,mpi_integer,
+     &             icache_all,1,mpi_integer,king,
+     &             CG_COMM,ierr)
+c             write(iout,'(a19,8000i8)') '     ntwx_cache',
+c     &                    (icache_all(i),i=1,nodes)
+             ii_write=icache_all(1)
+             do i=2,nodes
+               if(icache_all(i).lt.ii_write) ii_write=icache_all(i)
+             enddo
+c             write(iout,*) "MIN ii_write=",ii_write
+            endif
+           endif
+ctime           call flush(iout)
+        endif
+        if(mremdsync .and. mod(itime,nstex).eq.0) then
+           synflag=.true.
+           if (me.eq.king .or. .not. out1file)
+     &      write(iout,*) 'REMD synchro at',itime
+
+            if(traj1file) then
+             call mpi_gather(ntwx_cache,1,mpi_integer,
+     &             icache_all,1,mpi_integer,king,
+     &             CG_COMM,ierr)
+             if (me.eq.king) then
+               write(iout,'(a19,8000i8)') '     ntwx_cache',
+     &                    (icache_all(i),i=1,nodes)
+               ii_write=icache_all(1)
+               do i=2,nodes
+                 if(icache_all(i).lt.ii_write) ii_write=icache_all(i)
+               enddo
+               write(iout,*) "MIN ii_write=",ii_write
+             endif
+            endif
+ctest           call flush(iout)
+        endif
+        if (synflag) then
+c Update the time safety limiy
+          if (time001-time00.gt.safety) then
+            safety=time001-time00+600
+             if (me.eq.king .or. .not. out1file)
+     &       write (iout,*) "****** SAFETY increased to",safety," s"
+          endif
+          if (ovrtim()) end_of_run=.true.
+        endif
+        if(synflag.and..not.end_of_run) then
+           time02=MPI_WTIME()
+           synflag=.false.
+
+c           write(iout,*) 'REMD before',me,t_bath
+
+c           call mpi_gather(t_bath,1,mpi_double_precision,
+c     &             remd_t_bath,1,mpi_double_precision,king,
+c     &             CG_COMM,ierr)
+           potEcomp(n_ene+1)=t_bath
+           t_bath_old=t_bath
+           if (usampl) then
+             potEcomp(n_ene+2)=iset
+             if (iset.lt.nset) then
+               i_set_temp=iset
+               iset=iset+1
+               call EconstrQ
+               potEcomp(n_ene+3)=Uconst
+               iset=i_set_temp
+             endif
+             if (iset.gt.1) then
+               i_set_temp=iset
+               iset=iset-1
+               call EconstrQ
+               potEcomp(n_ene+4)=Uconst 
+               iset=i_set_temp
+             endif
+           endif
+           if(hremd.gt.0) potEcomp(n_ene+2)=iset   
+           call mpi_gather(potEcomp(0),n_ene+5,mpi_double_precision,
+     &             remd_ene(0,1),n_ene+5,mpi_double_precision,king,
+     &             CG_COMM,ierr)
+           if(lmuca) then 
+            call mpi_gather(elow,1,mpi_double_precision,
+     &             elowi,1,mpi_double_precision,king,
+     &             CG_COMM,ierr)
+            call mpi_gather(ehigh,1,mpi_double_precision,
+     &             ehighi,1,mpi_double_precision,king,
+     &             CG_COMM,ierr)
+           endif
+
+          time03=MPI_WTIME()
+          if (me.eq.king .or. .not. out1file) then
+            write(iout,*) 'REMD gather times=',time03-time01
+     &                                        ,time03-time02
+          endif
+
+          if (restart1file) call write1rst(i_index)
+
+          time04=MPI_WTIME()
+          if (me.eq.king .or. .not. out1file) then
+            write(iout,*) 'REMD writing rst time=',time04-time03
+          endif
+
+          if (traj1file) call write1traj
+cd debugging
+cdeb            call mpi_gather(ntwx_cache,1,mpi_integer,
+cdeb     &             icache_all,1,mpi_integer,king,
+cdeb     &             CG_COMM,ierr)
+cdeb            write(iout,'(a19,8000i8)') '  ntwx_cache after traj1file',
+cdeb     &                    (icache_all(i),i=1,nodes)
+cd end
+
+
+          time05=MPI_WTIME()
+          if (me.eq.king .or. .not. out1file) then
+            write(iout,*) 'REMD writing traj time=',time05-time04
+ctime            call flush(iout)
+          endif
+
+
+          if (me.eq.king) then
+            do i=1,nodes
+               remd_t_bath(i)=remd_ene(n_ene+1,i)
+               iremd_iset(i)=remd_ene(n_ene+2,i)
+            enddo
+#ifdef DEBUG
+            if(lmuca) then
+co             write(iout,*) 'REMD exchange temp,ene,elow,ehigh'
+             do i=1,nodes
+               write(iout,'(i4,4f12.5)') i,remd_t_bath(i),remd_ene(0,i),
+     &            elowi(i),ehighi(i)       
+             enddo
+            else
+              write(iout,*) 'REMD exchange temp,ene'
+              do i=1,nodes
+                write(iout,'(i4,2f12.5)') i,remd_t_bath(i),remd_ene(0,i)
+                write(iout,'(6f12.5)') (remd_ene(j,i),j=1,n_ene)
+              enddo
+            endif
+#endif
+c-------------------------------------           
+           IF(.not.usampl.and.hremd.eq.0) THEN
+#ifdef DEBUG
+            write (iout,*) "Enter exchnge, remd_m",remd_m(1),
+     &        " nodes",nodes
+ctime            call flush(iout)
+            write (iout,*) "remd_m(1)",remd_m(1)
+#endif
+            do irr=1,remd_m(1)
+               i=ifirst(iran_num(1,remd_m(1)))
+#ifdef DEBUG
+             write (iout,*) "i",i
+#endif
+ctime             call flush(iout)
+
+             do ii=1,nodes-1
+
+#ifdef DEBUG
+              write (iout,*) "i",i," nupa(0,i)",int(nupa(0,i))
+#endif
+             if(i.gt.0.and.nupa(0,i).gt.0) then
+              iex=i
+c              if (i.eq.1 .and. int(nupa(0,i)).eq.1) then
+c                write (iout,*) 
+c     &  "CHUJ ABSOLUTNY!!! No way to sample a distinct replica in MREMD"
+c                call flush(iout)
+c                call MPI_Abort(MPI_COMM_WORLD,ERRCODE,ierr)
+c              endif
+c              do while (iex.eq.i)
+c                write (iout,*) "upper",nupa(int(nupa(0,i)),i)
+                iex=nupa(iran_num(1,int(nupa(0,i))),i)
+c              enddo
+c              write (iout,*) "nupa(0,i)",nupa(0,i)," iex",iex
+              if (lmuca) then
+               call muca_delta(remd_t_bath,remd_ene,i,iex,delta)
+              else
+c Swap temperatures between conformations i and iex with recalculating the free energies
+c following temperature changes.
+               ene_iex_iex=remd_ene(0,iex)
+               ene_i_i=remd_ene(0,i)
+c               write (iout,*) "i",i," ene_i_i",ene_i_i,
+c     &          " iex",iex," ene_iex_iex",ene_iex_iex
+c               write (iout,*) "rescaling weights with temperature",
+c     &          remd_t_bath(i)
+c               call flush(iout)
+               call rescale_weights(remd_t_bath(i))
+
+c               write (iout,*) "0,iex",remd_t_bath(i)
+c               call enerprint(remd_ene(0,iex))
+
+               call sum_energy(remd_ene(0,iex),.false.)
+               ene_iex_i=remd_ene(0,iex)
+c               write (iout,*) "ene_iex_i",remd_ene(0,iex)
+
+c               write (iout,*) "0,i",remd_t_bath(i)
+c               call enerprint(remd_ene(0,i))
+
+               call sum_energy(remd_ene(0,i),.false.)
+c               write (iout,*) "ene_i_i",remd_ene(0,i)
+c               call flush(iout)
+c               write (iout,*) "rescaling weights with temperature",
+c     &          remd_t_bath(iex)
+               if (abs(ene_i_i-remd_ene(0,i)).gt.ene_tol) then
+                write (iout,*) "ERROR: inconsistent energies:",i,
+     &            ene_i_i,remd_ene(0,i)
+               endif
+               call rescale_weights(remd_t_bath(iex))
+
+c               write (iout,*) "0,i",remd_t_bath(iex)
+c               call enerprint(remd_ene(0,i))
+
+               call sum_energy(remd_ene(0,i),.false.)
+c               write (iout,*) "ene_i_iex",remd_ene(0,i)
+c               call flush(iout)
+               ene_i_iex=remd_ene(0,i)
+
+c               write (iout,*) "0,iex",remd_t_bath(iex)
+c               call enerprint(remd_ene(0,iex))
+
+               call sum_energy(remd_ene(0,iex),.false.)
+               if (abs(ene_iex_iex-remd_ene(0,iex)).gt.ene_tol) then
+                write (iout,*) "ERROR: inconsistent energies:",iex,
+     &            ene_iex_iex,remd_ene(0,iex)
+               endif
+c               write (iout,*) "ene_iex_iex",remd_ene(0,iex)
+c               write (iout,*) "i",i," iex",iex
+c               write (iout,'(4(a,e15.5))') "ene_i_i",ene_i_i,
+c     &           " ene_i_iex",ene_i_iex,
+c     &           " ene_iex_i",ene_iex_i," ene_iex_iex",ene_iex_iex
+c               call flush(iout)
+               delta=(ene_iex_iex-ene_i_iex)/(Rb*remd_t_bath(iex))-
+     &              (ene_iex_i-ene_i_i)/(Rb*remd_t_bath(i))
+               delta=-delta
+c               write(iout,*) 'delta',delta
+c              delta=(remd_t_bath(i)-remd_t_bath(iex))*
+c     &              (remd_ene(i)-remd_ene(iex))/Rb/
+c     &              (remd_t_bath(i)*remd_t_bath(iex))
+              endif
+              if (delta .gt. 50.0d0) then
+                delta=0.0d0
+              else
+#ifdef OSF 
+                if(isnan(delta))then
+                  delta=0.0d0
+                else if (delta.lt.-50.0d0) then
+                  delta=dexp(50.0d0)
+                else
+                  delta=dexp(-delta)
+                endif
+#else
+                delta=dexp(-delta)
+#endif
+              endif
+              iremd_tot(int(i2rep(i-1)))=iremd_tot(int(i2rep(i-1)))+1
+              xxx=ran_number(0.0d0,1.0d0)
+c              write(iout,'(2i4,a6,2f12.5)') i,iex,' delta',delta,xxx
+c              call flush(iout)
+              if (delta .gt. xxx) then
+                tmp=remd_t_bath(i)       
+                remd_t_bath(i)=remd_t_bath(iex)
+                remd_t_bath(iex)=tmp
+                remd_ene(0,i)=ene_i_iex
+                remd_ene(0,iex)=ene_iex_i
+                if(lmuca) then
+                  tmp=elowi(i)
+                  elowi(i)=elowi(iex)
+                  elowi(iex)=tmp  
+                  tmp=ehighi(i)
+                  ehighi(i)=ehighi(iex)
+                  ehighi(iex)=tmp  
+                endif
+
+
+                do k=0,nodes
+                  itmp=nupa(k,i)
+                  nupa(k,i)=nupa(k,iex)
+                  nupa(k,iex)=itmp
+                  itmp=ndowna(k,i)
+                  ndowna(k,i)=ndowna(k,iex)
+                  ndowna(k,iex)=itmp
+                enddo
+                do il=1,nodes
+                 if (ifirst(il).eq.i) ifirst(il)=iex
+                 do k=1,nupa(0,il)
+                  if (nupa(k,il).eq.i) then 
+                     nupa(k,il)=iex
+                  elseif (nupa(k,il).eq.iex) then 
+                     nupa(k,il)=i
+                  endif
+                 enddo
+                 do k=1,ndowna(0,il)
+                  if (ndowna(k,il).eq.i) then 
+                     ndowna(k,il)=iex
+                  elseif (ndowna(k,il).eq.iex) then 
+                     ndowna(k,il)=i
+                  endif
+                 enddo
+                enddo
+
+                iremd_acc(int(i2rep(i-1)))=iremd_acc(int(i2rep(i-1)))+1
+                itmp=i2rep(i-1)
+                i2rep(i-1)=i2rep(iex-1)
+                i2rep(iex-1)=itmp
+
+c                write(iout,*) 'exchange',i,iex
+c                write (iout,'(a8,100i4)') "@ ifirst",
+c     &                    (ifirst(k),k=1,remd_m(1))
+c                do il=1,nodes
+c                 write (iout,'(a8,i4,a1,100i4)') "@ nupa",il,":",
+c     &                    (nupa(k,il),k=1,nupa(0,il))
+c                 write (iout,'(a8,i4,a1,100i4)') "@ ndowna",il,":",
+c     &                    (ndowna(k,il),k=1,ndowna(0,il))
+c                enddo
+c                call flush(iout) 
+
+              else
+               remd_ene(0,iex)=ene_iex_iex
+               remd_ene(0,i)=ene_i_i
+               i=iex
+              endif 
+            endif
+           enddo
+           enddo
+cd           write (iout,*) "exchange completed"
+cd           call flush(iout) 
+        ELSEIF (usampl) THEN
+          do ii=1,nodes  
+cd            write(iout,*) "########",ii
+
+            i_temp=iran_num(1,nrep)
+            i_mult=iran_num(1,remd_m(i_temp))
+            i_iset=iran_num(1,nset)
+            i_mset=iran_num(1,mset(i_iset))
+            i=i_index(i_temp,i_mult,i_iset,i_mset)
+
+cd            write(iout,*) "i=",i,i_temp,i_mult,i_iset,i_mset
+
+            if(t_exchange_only)then
+             i_dir=1
+            else
+             i_dir=iran_num(1,3)
+            endif
+cd            write(iout,*) "i_dir=",i_dir
+
+            if(i_dir.eq.1 .and. remd_m(i_temp+1).gt.0 )then            
+               
+               i_temp1=i_temp+1
+               i_mult1=iran_num(1,remd_m(i_temp1))
+               i_iset1=i_iset
+               i_mset1=iran_num(1,mset(i_iset1))
+               iex=i_index(i_temp1,i_mult1,i_iset1,i_mset1)
+
+            elseif(i_dir.eq.2 .and. mset(i_iset+1).gt.0)then
+
+               i_temp1=i_temp
+               i_mult1=iran_num(1,remd_m(i_temp1))
+               i_iset1=i_iset+1
+               i_mset1=iran_num(1,mset(i_iset1))
+               iex=i_index(i_temp1,i_mult1,i_iset1,i_mset1)
+               econstr_temp_i=remd_ene(20,i)
+               econstr_temp_iex=remd_ene(20,iex)
+               remd_ene(20,i)=remd_ene(n_ene+3,i)
+               remd_ene(20,iex)=remd_ene(n_ene+4,iex)
+
+            elseif(remd_m(i_temp+1).gt.0.and.mset(i_iset+1).gt.0)then
+
+               i_temp1=i_temp+1
+               i_mult1=iran_num(1,remd_m(i_temp1))
+               i_iset1=i_iset+1
+               i_mset1=iran_num(1,mset(i_iset1))
+               iex=i_index(i_temp1,i_mult1,i_iset1,i_mset1)
+               econstr_temp_i=remd_ene(20,i)
+               econstr_temp_iex=remd_ene(20,iex)
+               remd_ene(20,i)=remd_ene(n_ene+3,i)
+               remd_ene(20,iex)=remd_ene(n_ene+4,iex)
+
+            else
+               goto 444 
+            endif
+cd            write(iout,*) "iex=",iex,i_temp1,i_mult1,i_iset1,i_mset1
+ctime            call flush(iout)
+
+c Swap temperatures between conformations i and iex with recalculating the free energies
+c following temperature changes.
+              ene_iex_iex=remd_ene(0,iex)
+              ene_i_i=remd_ene(0,i)
+co              write (iout,*) "rescaling weights with temperature",
+co     &          remd_t_bath(i)
+              call rescale_weights(remd_t_bath(i))
+              
+              call sum_energy(remd_ene(0,iex),.false.)
+              ene_iex_i=remd_ene(0,iex)
+cd              write (iout,*) "ene_iex_i",remd_ene(0,iex)
+c              call sum_energy(remd_ene(0,i),.false.)
+cd              write (iout,*) "ene_i_i",remd_ene(0,i)
+c              write (iout,*) "rescaling weights with temperature",
+c     &          remd_t_bath(iex)
+c              if (real(ene_i_i).ne.real(remd_ene(0,i))) then
+c                write (iout,*) "ERROR: inconsistent energies:",i,
+c     &            ene_i_i,remd_ene(0,i)
+c              endif
+              call rescale_weights(remd_t_bath(iex))
+              call sum_energy(remd_ene(0,i),.false.)
+cd              write (iout,*) "ene_i_iex",remd_ene(0,i)
+              ene_i_iex=remd_ene(0,i)
+c              call sum_energy(remd_ene(0,iex),.false.)
+c              if (real(ene_iex_iex).ne.real(remd_ene(0,iex))) then
+c                write (iout,*) "ERROR: inconsistent energies:",iex,
+c     &            ene_iex_iex,remd_ene(0,iex)
+c              endif
+cd              write (iout,*) "ene_iex_iex",remd_ene(0,iex)
+c              write (iout,*) "i",i," iex",iex
+cd              write (iout,'(4(a,e15.5))') "ene_i_i",ene_i_i,
+cd     &           " ene_i_iex",ene_i_iex,
+cd     &           " ene_iex_i",ene_iex_i," ene_iex_iex",ene_iex_iex
+              delta=(ene_iex_iex-ene_i_iex)/(Rb*remd_t_bath(iex))-
+     &              (ene_iex_i-ene_i_i)/(Rb*remd_t_bath(i))
+              delta=-delta
+cd              write(iout,*) 'delta',delta
+c              delta=(remd_t_bath(i)-remd_t_bath(iex))*
+c     &              (remd_ene(i)-remd_ene(iex))/Rb/
+c     &              (remd_t_bath(i)*remd_t_bath(iex))
+              if (delta .gt. 50.0d0) then
+                delta=0.0d0
+              else
+                delta=dexp(-delta)
+              endif
+              if (i_dir.eq.1.or.i_dir.eq.3)
+     &         iremd_tot(int(i2rep(i-1)))=iremd_tot(int(i2rep(i-1)))+1
+              if (i_dir.eq.2.or.i_dir.eq.3)
+     &          iremd_tot_usa(int(i2set(i-1)))=
+     &                 iremd_tot_usa(int(i2set(i-1)))+1
+              xxx=ran_number(0.0d0,1.0d0)
+cd              write(iout,'(2i4,a6,2f12.5)') i,iex,' delta',delta,xxx
+              if (delta .gt. xxx) then
+                tmp=remd_t_bath(i)       
+                remd_t_bath(i)=remd_t_bath(iex)
+                remd_t_bath(iex)=tmp
+
+                itmp=iremd_iset(i)       
+                iremd_iset(i)=iremd_iset(iex)
+                iremd_iset(iex)=itmp
+
+                remd_ene(0,i)=ene_i_iex
+                remd_ene(0,iex)=ene_iex_i
+
+                if (i_dir.eq.1.or.i_dir.eq.3) 
+     &           iremd_acc(int(i2rep(i-1)))=iremd_acc(int(i2rep(i-1)))+1
+
+                itmp=i2rep(i-1)
+                i2rep(i-1)=i2rep(iex-1)
+                i2rep(iex-1)=itmp
+
+                if (i_dir.eq.2.or.i_dir.eq.3) 
+     &           iremd_acc_usa(int(i2set(i-1)))=
+     &                 iremd_acc_usa(int(i2set(i-1)))+1
+
+                itmp=i2set(i-1)
+                i2set(i-1)=i2set(iex-1)
+                i2set(iex-1)=itmp
+        
+                itmp=i_index(i_temp,i_mult,i_iset,i_mset)
+                i_index(i_temp,i_mult,i_iset,i_mset)=
+     &                i_index(i_temp1,i_mult1,i_iset1,i_mset1)
+                i_index(i_temp1,i_mult1,i_iset1,i_mset1)=itmp
+
+              else
+               remd_ene(0,iex)=ene_iex_iex
+               remd_ene(0,i)=ene_i_i
+               remd_ene(20,iex)=econstr_temp_iex
+               remd_ene(20,i)=econstr_temp_i
+              endif
+
+cd      do il=1,nset
+cd       do il1=1,mset(il)
+cd        do i=1,nrep
+cd         do j=1,remd_m(i)
+cd          write(iout,*) i,j,il,il1,i_index(i,j,il,il1)
+cd         enddo
+cd        enddo
+cd       enddo
+cd      enddo
+
+ 444      continue           
+
+          enddo
+
+        ELSEIF (hremd.gt.0) THEN
+          do ii=1,nodes  
+cd            write(iout,*) "########",ii
+
+            i_temp=iran_num(1,nrep)
+            i_mult=iran_num(1,remd_m(i_temp))
+            i_iset=iran_num(1,nset)
+            i_mset=1
+            i=i_index(i_temp,i_mult,i_iset,i_mset)
+
+cd            write(iout,*) "i=",i,i_temp,i_mult,i_iset,i_mset
+
+            if(t_exchange_only)then
+             i_dir=1
+            else
+             i_dir=iran_num(1,3)
+            endif
+
+cd            write(iout,*) "i_dir=",i_dir
+
+            if(i_dir.eq.1 .and. remd_m(i_temp+1).gt.0 )then            
+               
+               i_temp1=i_temp+1
+               i_mult1=iran_num(1,remd_m(i_temp1))
+               i_iset1=i_iset
+               i_mset1=1
+               iex=i_index(i_temp1,i_mult1,i_iset1,i_mset1)
+
+            elseif(i_dir.eq.2)then
+
+               i_temp1=i_temp
+               i_mult1=iran_num(1,remd_m(i_temp1))
+               i_iset1=iran_num(1,hremd)
+               do while(i_iset1.eq.i_iset)
+                 i_iset1=iran_num(1,hremd)
+               enddo
+               i_mset1=1
+               iex=i_index(i_temp1,i_mult1,i_iset1,i_mset1)
+
+            elseif(remd_m(i_temp+1).gt.0)then
+
+               i_temp1=i_temp+1
+               i_mult1=iran_num(1,remd_m(i_temp1))
+               i_iset1=iran_num(1,hremd)
+               do while(i_iset1.eq.i_iset)
+                 i_iset1=iran_num(1,hremd)
+               enddo
+               i_mset1=1
+               iex=i_index(i_temp1,i_mult1,i_iset1,i_mset1)
+
+            else
+               goto 445 
+            endif
+cd            write(iout,*) "iex=",iex,i_temp1,i_mult1,i_iset1,i_mset1
+ctime            call flush(iout)
+
+c Swap temperatures between conformations i and iex with recalculating the free energies
+c following temperature changes.
+              ene_iex_iex=remd_ene(0,iex)
+              ene_i_i=remd_ene(0,i)
+
+              call set_hweights(i_iset)
+              call rescale_weights(remd_t_bath(i))
+              call sum_energy(remd_ene(0,iex),.false.)
+              ene_iex_i=remd_ene(0,iex)
+
+              call set_hweights(i_iset1)
+              call rescale_weights(remd_t_bath(iex))
+              call sum_energy(remd_ene(0,i),.false.)
+              ene_i_iex=remd_ene(0,i)
+
+cd              write(iout,*)  ene_iex_iex,ene_i_i,ene_iex_i,ene_i_iex
+
+              delta=(ene_iex_iex-ene_i_iex)/(Rb*remd_t_bath(iex))-
+     &              (ene_iex_i-ene_i_i)/(Rb*remd_t_bath(i))
+              delta=-delta
+
+              if (delta .gt. 50.0d0) then
+                delta=0.0d0
+              else
+                delta=dexp(-delta)
+              endif
+
+              if (i_dir.eq.1.or.i_dir.eq.3)
+     &         iremd_tot(int(i2rep(i-1)))=iremd_tot(int(i2rep(i-1)))+1
+              if (i_dir.eq.2.or.i_dir.eq.3)
+     &          iremd_tot_usa(int(i2set(i-1)))=
+     &                 iremd_tot_usa(int(i2set(i-1)))+1
+              xxx=ran_number(0.0d0,1.0d0)
+cd              write(iout,'(2i4,a6,2f12.5)') i,iex,' delta',delta,xxx
+              if (delta .gt. xxx) then
+
+cd                write (iout,*) "exchange"
+                tmp=remd_t_bath(i)       
+                remd_t_bath(i)=remd_t_bath(iex)
+                remd_t_bath(iex)=tmp
+
+                itmp=iremd_iset(i)       
+                iremd_iset(i)=iremd_iset(iex)
+                iremd_iset(iex)=itmp
+
+                remd_ene(0,i)=ene_i_iex
+                remd_ene(0,iex)=ene_iex_i
+
+                if (i_dir.eq.1.or.i_dir.eq.3) 
+     &           iremd_acc(int(i2rep(i-1)))=iremd_acc(int(i2rep(i-1)))+1
+
+                itmp=i2rep(i-1)
+                i2rep(i-1)=i2rep(iex-1)
+                i2rep(iex-1)=itmp
+
+                if (i_dir.eq.2.or.i_dir.eq.3) 
+     &           iremd_acc_usa(int(i2set(i-1)))=
+     &                 iremd_acc_usa(int(i2set(i-1)))+1
+
+                itmp=i2set(i-1)
+                i2set(i-1)=i2set(iex-1)
+                i2set(iex-1)=itmp
+        
+                itmp=i_index(i_temp,i_mult,i_iset,i_mset)
+                i_index(i_temp,i_mult,i_iset,i_mset)=
+     &                i_index(i_temp1,i_mult1,i_iset1,i_mset1)
+                i_index(i_temp1,i_mult1,i_iset1,i_mset1)=itmp
+
+cd       do il=1,nset
+cd        do il1=1,mset(il)
+cd         do i=1,nrep
+cd          do j=1,remd_m(i)
+cd            write(iout,*) i,j,il,il1,i_index(i,j,il,il1)
+cd          enddo
+cd         enddo
+cd        enddo
+cd       enddo
+
+              else
+               remd_ene(0,iex)=ene_iex_iex
+               remd_ene(0,i)=ene_i_i
+              endif
+
+
+
+ 445      continue           
+
+          enddo
+
+        ENDIF
+
+c-------------------------------------
+             write (iout,*) "NREP",nrep
+             do i=1,nrep
+              if(iremd_tot(i).ne.0)
+     &          write(iout,'(a3,i4,2f12.5,i5)') 'ACC',i,remd_t(i)
+     &           ,iremd_acc(i)/(1.0*iremd_tot(i)),iremd_tot(i)
+             enddo
+
+             if(usampl) then
+              do i=1,nset
+               if(iremd_tot_usa(i).ne.0)
+     &           write(iout,'(a10,i4,f12.5,i8)') 'ACC_usampl',i,
+     &         iremd_acc_usa(i)/(1.0*iremd_tot_usa(i)),iremd_tot_usa(i)
+              enddo
+             endif
+
+             if(hremd.gt.0) then
+              do i=1,nset
+               if(iremd_tot_usa(i).ne.0)
+     &           write(iout,'(a10,i4,f12.5,i8)') 'ACC_hremd',i,
+     &         iremd_acc_usa(i)/(1.0*iremd_tot_usa(i)),iremd_tot_usa(i)
+              enddo
+             endif
+
+
+ctime             call flush(iout)
+
+cd              write (iout,'(a6,100i4)') "ifirst",
+cd     &                    (ifirst(i),i=1,remd_m(1))
+cd              do il=1,nodes
+cd               write (iout,'(a5,i4,a1,100i4)') "nup",il,":",
+cd     &                    (nupa(i,il),i=1,nupa(0,il))
+cd               write (iout,'(a5,i4,a1,100i4)') "ndown",il,":",
+cd     &                    (ndowna(i,il),i=1,ndowna(0,il))
+cd              enddo
+            endif
+
+         time06=MPI_WTIME()
+cd         write (iout,*) "Before scatter"
+cd         call flush(iout)
+         call mpi_scatter(remd_t_bath,1,mpi_double_precision,
+     &           t_bath,1,mpi_double_precision,king,
+     &           CG_COMM,ierr) 
+cd         write (iout,*) "After scatter"
+cd         call flush(iout)
+         if(usampl.or.hremd.gt.0)
+     &    call mpi_scatter(iremd_iset,1,mpi_integer,
+     &           iset,1,mpi_integer,king,
+     &           CG_COMM,ierr) 
+
+         time07=MPI_WTIME()
+          if (me.eq.king .or. .not. out1file) then
+            write(iout,*) 'REMD scatter time=',time07-time06
+          endif
+
+         if(lmuca) then
+           call mpi_scatter(elowi,1,mpi_double_precision,
+     &           elow,1,mpi_double_precision,king,
+     &           CG_COMM,ierr) 
+           call mpi_scatter(ehighi,1,mpi_double_precision,
+     &           ehigh,1,mpi_double_precision,king,
+     &           CG_COMM,ierr) 
+         endif
+
+         if(hremd.gt.0) call set_hweights(iset)
+         call rescale_weights(t_bath)
+co         write (iout,*) "Processor",me,
+co     &    " rescaling weights with temperature",t_bath
+
+         stdfp=dsqrt(2*Rb*t_bath/d_time)
+         do i=1,ntyp
+           stdfsc(i)=dsqrt(2*Rb*t_bath/d_time)
+         enddo
+         if (lang.gt.0) then
+           do i=nnt,nct-1
+            stdforcp(i)=stdforcp(i)*sqrt(t_bath/t_bath_old)
+           enddo
+           do i=nnt,nct
+            stdforcsc(i)=stdforcsc(i)*sqrt(t_bath/t_bath_old)
+           enddo
+         endif
+cde         write(iout,*) 'REMD after',me,t_bath
+           time08=MPI_WTIME()
+           if (me.eq.king .or. .not. out1file) then
+            write(iout,*) 'REMD exchange time=',time08-time02
+ctime            call flush(iout)
+           endif
+        endif
+      enddo
+
+      if (restart1file) then 
+          if (me.eq.king .or. .not. out1file)
+     &      write(iout,*) 'writing restart at the end of run'
+           call write1rst(i_index)
+      endif
+
+      if (traj1file) call write1traj
+cd debugging
+cdeb            call mpi_gather(ntwx_cache,1,mpi_integer,
+cdeb     &             icache_all,1,mpi_integer,king,
+cdeb     &             CG_COMM,ierr)
+cdeb            write(iout,'(a40,8000i8)') 
+cdeb     &             '  ntwx_cache after traj1file at the end',
+cdeb     &             (icache_all(i),i=1,nodes)
+cd end
+
+
+#ifdef MPI
+      t_MD=MPI_Wtime()-tt0
+#else
+      t_MD=tcpu()-tt0
+#endif
+      if (me.eq.king .or. .not. out1file) then
+       write (iout,'(//35(1h=),a10,35(1h=)/10(/a40,1pe15.5))') 
+     &  '  Timing  ',
+     & 'MD calculations setup:',t_MDsetup,
+     & 'Energy & gradient evaluation:',t_enegrad,
+     & 'Stochastic MD setup:',t_langsetup,
+     & 'Stochastic MD step setup:',t_sdsetup,
+     & 'MD steps:',t_MD
+       write (iout,'(/28(1h=),a25,27(1h=))') 
+     & '  End of MD calculation  '
+       if(hmc.gt.0) write (iout,*) 'HMC acceptance ratio',
+     &         n_timestep*1.0d0/hmc/hmc_acc
+      endif
+      return
+      end
+
+c-----------------------------------------------------------------------
+      subroutine write1rst(i_index)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.INTERACT'
+               
+      real d_restart1(3,2*maxres*maxprocs),r_d(3,2*maxres),
+     &     d_restart2(3,2*maxres*maxprocs)
+      real t5_restart1(5)
+      integer iret,itmp
+      integer*2 i_index
+     &            (maxprocs/4,maxprocs/20,maxprocs/200,maxprocs/200)
+       common /przechowalnia/ d_restart1,d_restart2
+
+       t5_restart1(1)=totT
+       t5_restart1(2)=EK
+       t5_restart1(3)=potE
+       t5_restart1(4)=t_bath
+       t5_restart1(5)=Uconst
+       
+       call mpi_gather(t5_restart1,5,mpi_real,
+     &      t_restart1,5,mpi_real,king,CG_COMM,ierr)
+
+
+       do i=1,2*nres
+         do j=1,3
+           r_d(j,i)=d_t(j,i)
+         enddo
+       enddo
+       call mpi_gather(r_d,3*2*nres,mpi_real,
+     &           d_restart1,3*2*nres,mpi_real,king,
+     &           CG_COMM,ierr)
+
+
+       do i=1,2*nres
+         do j=1,3
+           r_d(j,i)=dc(j,i)
+         enddo
+       enddo
+       call mpi_gather(r_d,3*2*nres,mpi_real,
+     &           d_restart2,3*2*nres,mpi_real,king,
+     &           CG_COMM,ierr)
+
+       if(me.eq.king) then
+#ifdef AIX
+         call xdrfopen_(ixdrf,mremd_rst_name, "w", iret)
+         do i=0,nodes-1
+          call xdrfint_(ixdrf, i2rep(i), iret)
+         enddo
+         do i=1,remd_m(1)
+          call xdrfint_(ixdrf, ifirst(i), iret)
+         enddo
+         do il=1,nodes
+              do i=0,nupa(0,il)
+               call xdrfint_(ixdrf, nupa(i,il), iret)
+              enddo
+
+              do i=0,ndowna(0,il)
+               call xdrfint_(ixdrf, ndowna(i,il), iret)
+              enddo
+         enddo
+
+         do il=1,nodes
+           do j=1,4
+            call xdrffloat_(ixdrf, t_restart1(j,il), iret)
+           enddo
+         enddo
+
+         do il=0,nodes-1
+           do i=1,2*nres
+            do j=1,3
+             call xdrffloat_(ixdrf, d_restart1(j,i+2*nres*il), iret)
+            enddo
+           enddo
+         enddo
+         do il=0,nodes-1
+           do i=1,2*nres
+            do j=1,3
+             call xdrffloat_(ixdrf, d_restart2(j,i+2*nres*il), iret)
+            enddo
+           enddo
+         enddo
+
+         if(usampl) then
+           call xdrfint_(ixdrf, nset, iret)
+           do i=1,nset
+             call xdrfint_(ixdrf,mset(i), iret)
+           enddo
+           do i=0,nodes-1
+             call xdrfint_(ixdrf,i2set(i), iret)
+           enddo
+           do il=1,nset
+             do il1=1,mset(il)
+               do i=1,nrep
+                 do j=1,remd_m(i)
+                   itmp=i_index(i,j,il,il1)
+                   call xdrfint_(ixdrf,itmp, iret)
+                 enddo
+               enddo
+             enddo
+           enddo
+           
+         endif
+         call xdrfclose_(ixdrf, iret)
+#else
+         call xdrfopen(ixdrf,mremd_rst_name, "w", iret)
+         do i=0,nodes-1
+          call xdrfint(ixdrf, i2rep(i), iret)
+         enddo
+         do i=1,remd_m(1)
+          call xdrfint(ixdrf, ifirst(i), iret)
+         enddo
+         do il=1,nodes
+              do i=0,nupa(0,il)
+               call xdrfint(ixdrf, nupa(i,il), iret)
+              enddo
+
+              do i=0,ndowna(0,il)
+               call xdrfint(ixdrf, ndowna(i,il), iret)
+              enddo
+         enddo
+
+         do il=1,nodes
+           do j=1,4
+            call xdrffloat(ixdrf, t_restart1(j,il), iret)
+           enddo
+         enddo
+
+         do il=0,nodes-1
+           do i=1,2*nres
+            do j=1,3
+             call xdrffloat(ixdrf, d_restart1(j,i+2*nres*il), iret)
+            enddo
+           enddo
+         enddo
+         do il=0,nodes-1
+           do i=1,2*nres
+            do j=1,3
+             call xdrffloat(ixdrf, d_restart2(j,i+2*nres*il), iret)
+            enddo
+           enddo
+         enddo
+
+
+             if(usampl) then
+              call xdrfint(ixdrf, nset, iret)
+              do i=1,nset
+                call xdrfint(ixdrf,mset(i), iret)
+              enddo
+              do i=0,nodes-1
+                call xdrfint(ixdrf,i2set(i), iret)
+              enddo
+              do il=1,nset
+               do il1=1,mset(il)
+                do i=1,nrep
+                 do j=1,remd_m(i)
+                   itmp=i_index(i,j,il,il1)
+                   call xdrfint(ixdrf,itmp, iret)
+                 enddo
+                enddo
+               enddo
+              enddo
+           
+             endif
+         call xdrfclose(ixdrf, iret)
+#endif
+       endif
+      return
+      end
+
+
+      subroutine write1traj
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.INTERACT'
+               
+      real t5_restart1(5)
+      integer iret,itmp
+      real xcoord(3,maxres2+2),prec
+      real r_qfrag(50),r_qpair(100)
+      real r_utheta(50),r_ugamma(100),r_uscdiff(100)
+      real p_qfrag(50*maxprocs),p_qpair(100*maxprocs)
+      real p_utheta(50*maxprocs),p_ugamma(100*maxprocs),
+     &     p_uscdiff(100*maxprocs)
+      real p_c(3,(maxres2+2)*maxprocs),r_c(3,maxres2+2)
+      common /przechowalnia/ p_c
+
+      call mpi_bcast(ii_write,1,mpi_integer,
+     &           king,CG_COMM,ierr)
+
+c debugging
+      print *,'traj1file',me,ii_write,ntwx_cache
+c end debugging
+
+#ifdef AIX
+      if(me.eq.king) call xdrfopen_(ixdrf,cartname, "a", iret)
+#else
+      if(me.eq.king) call xdrfopen(ixdrf,cartname, "a", iret)
+#endif
+      do ii=1,ii_write
+       t5_restart1(1)=totT_cache(ii)
+       t5_restart1(2)=EK_cache(ii)
+       t5_restart1(3)=potE_cache(ii)
+       t5_restart1(4)=t_bath_cache(ii)
+       t5_restart1(5)=Uconst_cache(ii)
+       call mpi_gather(t5_restart1,5,mpi_real,
+     &      t_restart1,5,mpi_real,king,CG_COMM,ierr)
+
+       call mpi_gather(iset_cache(ii),1,mpi_integer,
+     &      iset_restart1,1,mpi_integer,king,CG_COMM,ierr)
+
+          do i=1,nfrag
+           r_qfrag(i)=qfrag_cache(i,ii)
+          enddo
+          do i=1,npair
+           r_qpair(i)=qpair_cache(i,ii)
+          enddo
+          do i=1,nfrag_back
+           r_utheta(i)=utheta_cache(i,ii)
+           r_ugamma(i)=ugamma_cache(i,ii)
+           r_uscdiff(i)=uscdiff_cache(i,ii)
+          enddo
+
+        call mpi_gather(r_qfrag,nfrag,mpi_real,
+     &           p_qfrag,nfrag,mpi_real,king,
+     &           CG_COMM,ierr)
+        call mpi_gather(r_qpair,npair,mpi_real,
+     &           p_qpair,npair,mpi_real,king,
+     &           CG_COMM,ierr)
+        call mpi_gather(r_utheta,nfrag_back,mpi_real,
+     &           p_utheta,nfrag_back,mpi_real,king,
+     &           CG_COMM,ierr)
+        call mpi_gather(r_ugamma,nfrag_back,mpi_real,
+     &           p_ugamma,nfrag_back,mpi_real,king,
+     &           CG_COMM,ierr)
+        call mpi_gather(r_uscdiff,nfrag_back,mpi_real,
+     &           p_uscdiff,nfrag_back,mpi_real,king,
+     &           CG_COMM,ierr)
+
+#ifdef DEBUG
+        write (iout,*) "p_qfrag"
+        do i=1,nodes
+          write (iout,*) i,(p_qfrag((i-1)*nfrag+j),j=1,nfrag)
+        enddo
+        write (iout,*) "p_qpair"
+        do i=1,nodes
+          write (iout,*) i,(p_qpair((i-1)*npair+j),j=1,npair)
+        enddo
+ctime        call flush(iout)
+#endif
+        do i=1,nres*2
+         do j=1,3
+          r_c(j,i)=c_cache(j,i,ii)
+         enddo
+        enddo
+
+        call mpi_gather(r_c,3*2*nres,mpi_real,
+     &           p_c,3*2*nres,mpi_real,king,
+     &           CG_COMM,ierr)
+
+       if(me.eq.king) then
+#ifdef AIX
+         do il=1,nodes
+          call xdrffloat_(ixdrf, real(t_restart1(1,il)), iret)
+          call xdrffloat_(ixdrf, real(t_restart1(3,il)), iret)
+          call xdrffloat_(ixdrf, real(t_restart1(5,il)), iret)
+          call xdrffloat_(ixdrf, real(t_restart1(4,il)), iret)
+          call xdrfint_(ixdrf, nss, iret) 
+          do j=1,nss
+           call xdrfint_(ixdrf, ihpb(j), iret)
+           call xdrfint_(ixdrf, jhpb(j), iret)
+          enddo
+          call xdrfint_(ixdrf, nfrag+npair+3*nfrag_back, iret)
+          call xdrfint_(ixdrf, iset_restart1(il), iret)
+          do i=1,nfrag
+           call xdrffloat_(ixdrf, p_qfrag(i+(il-1)*nfrag), iret)
+          enddo
+          do i=1,npair
+           call xdrffloat_(ixdrf, p_qpair(i+(il-1)*npair), iret)
+          enddo
+          do i=1,nfrag_back
+           call xdrffloat_(ixdrf, p_utheta(i+(il-1)*nfrag_back), iret)
+           call xdrffloat_(ixdrf, p_ugamma(i+(il-1)*nfrag_back), iret)
+           call xdrffloat_(ixdrf, p_uscdiff(i+(il-1)*nfrag_back), iret)
+          enddo
+          prec=10000.0
+          do i=1,nres
+           do j=1,3
+            xcoord(j,i)=p_c(j,i+(il-1)*nres*2)
+           enddo
+          enddo
+          do i=nnt,nct
+           do j=1,3
+            xcoord(j,nres+i-nnt+1)=p_c(j,i+nres+(il-1)*nres*2)
+           enddo
+          enddo
+          itmp=nres+nct-nnt+1
+          call xdrf3dfcoord_(ixdrf, xcoord, itmp, prec, iret)
+         enddo
+#else
+         do il=1,nodes
+          call xdrffloat(ixdrf, real(t_restart1(1,il)), iret)
+          call xdrffloat(ixdrf, real(t_restart1(3,il)), iret)
+          call xdrffloat(ixdrf, real(t_restart1(5,il)), iret)
+          call xdrffloat(ixdrf, real(t_restart1(4,il)), iret)
+          call xdrfint(ixdrf, nss, iret) 
+          do j=1,nss
+           call xdrfint(ixdrf, ihpb(j), iret)
+           call xdrfint(ixdrf, jhpb(j), iret)
+          enddo
+          call xdrfint(ixdrf, nfrag+npair+3*nfrag_back, iret)
+          call xdrfint(ixdrf, iset_restart1(il), iret)
+          do i=1,nfrag
+           call xdrffloat(ixdrf, p_qfrag(i+(il-1)*nfrag), iret)
+          enddo
+          do i=1,npair
+           call xdrffloat(ixdrf, p_qpair(i+(il-1)*npair), iret)
+          enddo
+          do i=1,nfrag_back
+           call xdrffloat(ixdrf, p_utheta(i+(il-1)*nfrag_back), iret)
+           call xdrffloat(ixdrf, p_ugamma(i+(il-1)*nfrag_back), iret)
+           call xdrffloat(ixdrf, p_uscdiff(i+(il-1)*nfrag_back), iret)
+          enddo
+          prec=10000.0
+          do i=1,nres
+           do j=1,3
+            xcoord(j,i)=p_c(j,i+(il-1)*nres*2)
+           enddo
+          enddo
+          do i=nnt,nct
+           do j=1,3
+            xcoord(j,nres+i-nnt+1)=p_c(j,i+nres+(il-1)*nres*2)
+           enddo
+          enddo
+          itmp=nres+nct-nnt+1
+          call xdrf3dfcoord(ixdrf, xcoord, itmp, prec, iret)
+         enddo
+#endif
+       endif
+      enddo
+#ifdef AIX
+      if(me.eq.king) call xdrfclose_(ixdrf, iret)
+#else
+      if(me.eq.king) call xdrfclose(ixdrf, iret)
+#endif
+      do i=1,ntwx_cache-ii_write
+
+            totT_cache(i)=totT_cache(ii_write+i)
+            EK_cache(i)=EK_cache(ii_write+i)
+            potE_cache(i)=potE_cache(ii_write+i)
+            t_bath_cache(i)=t_bath_cache(ii_write+i)
+            Uconst_cache(i)=Uconst_cache(ii_write+i)
+            iset_cache(i)=iset_cache(ii_write+i)
+
+            do ii=1,nfrag
+             qfrag_cache(ii,i)=qfrag_cache(ii,ii_write+i)
+            enddo
+            do ii=1,npair
+             qpair_cache(ii,i)=qpair_cache(ii,ii_write+i)
+            enddo
+            do ii=1,nfrag_back
+              utheta_cache(ii,i)=utheta_cache(ii,ii_write+i)
+              ugamma_cache(ii,i)=ugamma_cache(ii,ii_write+i)
+              uscdiff_cache(ii,i)=uscdiff_cache(ii,ii_write+i)
+            enddo
+
+            do ii=1,nres*2
+             do j=1,3
+              c_cache(j,ii,i)=c_cache(j,ii,ii_write+i)
+             enddo
+            enddo
+      enddo
+      ntwx_cache=ntwx_cache-ii_write
+      return
+      end
+
+
+      subroutine read1restart(i_index)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.INTERACT'
+      real d_restart1(3,2*maxres*maxprocs),r_d(3,2*maxres),
+     &                 t5_restart1(5)
+      integer*2 i_index
+     &            (maxprocs/4,maxprocs/20,maxprocs/200,maxprocs/200)
+      common /przechowalnia/ d_restart1
+      write (*,*) "Processor",me," called read1restart"
+
+         if(me.eq.king)then
+              open(irest2,file=mremd_rst_name,status='unknown')
+              read(irest2,*,err=334) i
+              write(iout,*) "Reading old rst in ASCI format"
+              close(irest2)
+               call read1restart_old
+               return
+ 334          continue
+#ifdef AIX
+              call xdrfopen_(ixdrf,mremd_rst_name, "r", iret)
+
+              do i=0,nodes-1
+               call xdrfint_(ixdrf, i2rep(i), iret)
+              enddo
+              do i=1,remd_m(1)
+               call xdrfint_(ixdrf, ifirst(i), iret)
+              enddo
+             do il=1,nodes
+              call xdrfint_(ixdrf, nupa(0,il), iret)
+              do i=1,nupa(0,il)
+               call xdrfint_(ixdrf, nupa(i,il), iret)
+              enddo
+
+              call xdrfint_(ixdrf, ndowna(0,il), iret)
+              do i=1,ndowna(0,il)
+               call xdrfint_(ixdrf, ndowna(i,il), iret)
+              enddo
+             enddo
+             do il=1,nodes
+               do j=1,4
+                call xdrffloat_(ixdrf, t_restart1(j,il), iret)
+               enddo
+             enddo
+#else
+              call xdrfopen(ixdrf,mremd_rst_name, "r", iret)
+
+              do i=0,nodes-1
+               call xdrfint(ixdrf, i2rep(i), iret)
+              enddo
+              do i=1,remd_m(1)
+               call xdrfint(ixdrf, ifirst(i), iret)
+              enddo
+             do il=1,nodes
+              call xdrfint(ixdrf, nupa(0,il), iret)
+              do i=1,nupa(0,il)
+               call xdrfint(ixdrf, nupa(i,il), iret)
+              enddo
+
+              call xdrfint(ixdrf, ndowna(0,il), iret)
+              do i=1,ndowna(0,il)
+               call xdrfint(ixdrf, ndowna(i,il), iret)
+              enddo
+             enddo
+             do il=1,nodes
+               do j=1,4
+                call xdrffloat(ixdrf, t_restart1(j,il), iret)
+               enddo
+             enddo
+#endif
+         endif
+         call mpi_scatter(t_restart1,5,mpi_real,
+     &           t5_restart1,5,mpi_real,king,CG_COMM,ierr)
+         totT=t5_restart1(1)              
+         EK=t5_restart1(2)
+         potE=t5_restart1(3)
+         t_bath=t5_restart1(4)
+
+         if(me.eq.king)then
+              do il=0,nodes-1
+               do i=1,2*nres
+c                read(irest2,'(3e15.5)') 
+c     &                (d_restart1(j,i+2*nres*il),j=1,3)
+            do j=1,3
+#ifdef AIX
+             call xdrffloat_(ixdrf, d_restart1(j,i+2*nres*il), iret)
+#else
+             call xdrffloat(ixdrf, d_restart1(j,i+2*nres*il), iret)
+#endif
+            enddo
+               enddo
+              enddo
+         endif
+         call mpi_scatter(d_restart1,3*2*nres,mpi_real,
+     &           r_d,3*2*nres,mpi_real,king,CG_COMM,ierr)
+
+         do i=1,2*nres
+           do j=1,3
+            d_t(j,i)=r_d(j,i)
+           enddo
+         enddo
+         if(me.eq.king)then 
+              do il=0,nodes-1
+               do i=1,2*nres
+c                read(irest2,'(3e15.5)') 
+c     &                (d_restart1(j,i+2*nres*il),j=1,3)
+            do j=1,3
+#ifdef AIX
+             call xdrffloat_(ixdrf, d_restart1(j,i+2*nres*il), iret)
+#else
+             call xdrffloat(ixdrf, d_restart1(j,i+2*nres*il), iret)
+#endif
+            enddo
+               enddo
+              enddo
+         endif
+         call mpi_scatter(d_restart1,3*2*nres,mpi_real,
+     &           r_d,3*2*nres,mpi_real,king,CG_COMM,ierr)
+         do i=1,2*nres
+           do j=1,3
+            dc(j,i)=r_d(j,i)
+           enddo
+         enddo
+       
+
+           if(usampl) then
+#ifdef AIX
+             if(me.eq.king)then
+              call xdrfint_(ixdrf, nset, iret)
+              do i=1,nset
+                call xdrfint_(ixdrf,mset(i), iret)
+              enddo
+              do i=0,nodes-1
+                call xdrfint_(ixdrf,i2set(i), iret)
+              enddo
+              do il=1,nset
+               do il1=1,mset(il)
+                do i=1,nrep
+                 do j=1,remd_m(i)
+                   call xdrfint_(ixdrf,itmp, iret)
+                   i_index(i,j,il,il1)=itmp
+                 enddo
+                enddo
+               enddo
+              enddo
+             endif
+#else
+             if(me.eq.king)then
+              call xdrfint(ixdrf, nset, iret)
+              do i=1,nset
+                call xdrfint(ixdrf,mset(i), iret)
+              enddo
+              do i=0,nodes-1
+                call xdrfint(ixdrf,i2set(i), iret)
+              enddo
+              do il=1,nset
+               do il1=1,mset(il)
+                do i=1,nrep
+                 do j=1,remd_m(i)
+                   call xdrfint(ixdrf,itmp, iret)
+                   i_index(i,j,il,il1)=itmp
+                 enddo
+                enddo
+               enddo
+              enddo
+             endif
+#endif
+              call mpi_scatter(i2set,1,mpi_integer,
+     &           iset,1,mpi_integer,king,
+     &           CG_COMM,ierr) 
+
+           endif
+
+
+        if(me.eq.king) close(irest2)
+        return
+        end
+
+      subroutine read1restart_old
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.INTERACT'
+      real d_restart1(3,2*maxres*maxprocs),r_d(3,2*maxres),
+     &                 t5_restart1(5)
+      common /przechowalnia/ d_restart1
+         if(me.eq.king)then
+             open(irest2,file=mremd_rst_name,status='unknown')
+             read (irest2,*) (i2rep(i),i=0,nodes-1)
+             read (irest2,*) (ifirst(i),i=1,remd_m(1))
+             do il=1,nodes
+              read (irest2,*) nupa(0,il),(nupa(i,il),i=1,nupa(0,il))
+              read (irest2,*) ndowna(0,il),
+     &                    (ndowna(i,il),i=1,ndowna(0,il))
+             enddo
+             do il=1,nodes
+               read(irest2,*) (t_restart1(j,il),j=1,4)
+             enddo
+         endif
+         call mpi_scatter(t_restart1,5,mpi_real,
+     &           t5_restart1,5,mpi_real,king,CG_COMM,ierr)
+         totT=t5_restart1(1)              
+         EK=t5_restart1(2)
+         potE=t5_restart1(3)
+         t_bath=t5_restart1(4)
+
+         if(me.eq.king)then
+              do il=0,nodes-1
+               do i=1,2*nres
+                read(irest2,'(3e15.5)') 
+     &                (d_restart1(j,i+2*nres*il),j=1,3)
+               enddo
+              enddo
+         endif
+         call mpi_scatter(d_restart1,3*2*nres,mpi_real,
+     &           r_d,3*2*nres,mpi_real,king,CG_COMM,ierr)
+
+         do i=1,2*nres
+           do j=1,3
+            d_t(j,i)=r_d(j,i)
+           enddo
+         enddo
+         if(me.eq.king)then 
+              do il=0,nodes-1
+               do i=1,2*nres
+                read(irest2,'(3e15.5)') 
+     &                (d_restart1(j,i+2*nres*il),j=1,3)
+               enddo
+              enddo
+         endif
+         call mpi_scatter(d_restart1,3*2*nres,mpi_real,
+     &           r_d,3*2*nres,mpi_real,king,CG_COMM,ierr)
+         do i=1,2*nres
+           do j=1,3
+            dc(j,i)=r_d(j,i)
+           enddo
+         enddo
+        if(me.eq.king) close(irest2)
+        return
+        end
+c-------------------------------------------------------------------
+        subroutine set_hweights(iiset)          
+        implicit real*8 (a-h,o-z)
+        integer i  
+        include 'DIMENSIONS'    
+        include 'COMMON.FFIELD'
+        include 'COMMON.REMD'    
+
+         do i=1,n_ene
+          weights(i)=hweights(iiset,i)
+         enddo
+
+         wsc    =weights(1) 
+         wscp   =weights(2) 
+         welec  =weights(3) 
+         wcorr  =weights(4) 
+         wcorr5 =weights(5) 
+         wcorr6 =weights(6) 
+         wel_loc=weights(7) 
+         wturn3 =weights(8) 
+         wturn4 =weights(9) 
+         wturn6 =weights(10)
+         wang   =weights(11)
+         wscloc =weights(12)
+         wtor   =weights(13)
+         wtor_d =weights(14)
+         wstrain=weights(15)
+         wvdwpp =weights(16)
+         wbond  =weights(17)
+         scal14 =weights(18)
+         wsccor =weights(21)
+
+        return
+        end
+#endif
diff --git a/source/unres/src_MD_DFA/Makefile-intrepid-with-tau b/source/unres/src_MD_DFA/Makefile-intrepid-with-tau
new file mode 100644 (file)
index 0000000..eae1cc5
--- /dev/null
@@ -0,0 +1,154 @@
+#
+FC1=/bgsys/drivers/ppcfloor/comm/bin/mpixlf77
+FC=tau_f90.sh
+OPT =  -O3 -qarch=450 -qtune=450 -qfixed 
+#OPT =  -O3 -qarch=450 -qtune=450 -qdebug=function_trace -qfixed
+#OPT =  -O -qarch=450 -qtune=450 -qfixed
+#-Minline=name:scalar2,scalar,transpose2,matvec2,prodmat3 \
+#-Mprefetch=distance:8,nta
+
+#OPT = -O0 -C -g -qarch=450 -qtune=450 -qfixed
+OPT1 = -O0 -g -qarch=450 -qtune=450 -qfixed
+OPT2 = -O2 -qarch=450 -qtune=450 -qfixed
+#OPT2 = -O2 -qarch=450 -qtune=450 -qdebug=function_trace -qfixed
+#OPT2 = ${OPT}
+OPTE = -O4 -qarch=450 -qtune=450 -qfixed
+#OPTE = -O4 -qarch=450 -qtune=450 -qdebug=function_trace -qfixed
+#OPTE=${OPT}
+
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include
+FFLAGS1 = -c ${OPT1} -I$(INSTALL_DIR)/include
+FFLAGS2 = -c ${OPT2} -I$(INSTALL_DIR)/include
+FFLAGSE = -c ${OPTE} -I$(INSTALL_DIR)/include
+
+BIN = ../bin/unres_MD_Tc_procor-newparm-gnivpar-O4-test.exe
+#LIBS = xdrf/libxdrf.a  /home/liwo/UNRES/LIB/libmemmon.a
+LIBS = xdrf/libxdrf.a
+
+CPPFLAGS = -WF,-DAIX -WF,-DISNAN -WF,-DUNRES -WF,-DMP -WF,-DMPI -WF,-DPGI \
+           -WF,-DSPLITELE -WF,-DPROCOR -WF,-DAMD64 -WF,-DLANG0
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS}  ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new.o \
+       energy_p_new-sep.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+unres: ${object} 
+       ${CC} -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} --print-map ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o; /bin/rm *.pp.*
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.f
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.f
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} rmdd.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} eigen.f
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} add.f
+
+energy_p_new.o : energy_p_new.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new.F
+
+energy_p_new-sep.o : energy_p_new-sep.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+compinfo: compinfo.o
+       ${CC} ${CFLAGS} compfinfo.c
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
+
+prng_32.o: prng_32.F
+       ${FC} -qfixed -O0 prng_32.F
+
+prng.o: prng.f
+       ${FC1} ${FFLAGS} prng.f
+
+readrtns_CSA.o: readrtns_CSA.F
+       ${FC1} ${FFLAGS} ${CPPFLAGS} readrtns_CSA.F
+
+gen_rand_conf.o: gen_rand_conf.F
+       ${FC1} ${FFLAGS} ${CPPFLAGS} gen_rand_conf.F
diff --git a/source/unres/src_MD_DFA/Makefile.tau-mpi-f77-pdt b/source/unres/src_MD_DFA/Makefile.tau-mpi-f77-pdt
new file mode 100644 (file)
index 0000000..c8dc5fe
--- /dev/null
@@ -0,0 +1,860 @@
+#****************************************************************************
+#*                     TAU Portable Profiling Package                     **
+#*                     http://www.cs.uoregon.edu/research/tau             **
+#****************************************************************************
+#*    Copyright 1997-2002                                                 **
+#*    Department of Computer and Information Science, University of Oregon **
+#*    Advanced Computing Laboratory, Los Alamos National Laboratory        **
+#****************************************************************************
+#######################################################################
+##                  pC++/Sage++  Copyright (C) 1993,1995             ##
+##  Indiana University  University of Oregon  University of Rennes   ##
+#######################################################################
+#######################################################################
+# This is a sample Makefile that contains the Profiling and Tracing 
+# options. Makefiles of other applications and libraries (not included 
+# in this distribution) should include this Makefile.
+# It defines the following variables that should be added to CFLAGS
+# TAU_INCLUDE          -  Include path for tau headers
+# TAU_DEFS      -  Defines that are needed for tracing and profiling only.
+# And for linking add to LIBS 
+# TAU_LIBS     -  TAU Tracing and Profiling library libprof.a 
+# 
+# When the user needs to turn off tracing and profiling and run the 
+# application without any runtime overhead of instrumentation, simply
+# remove TAUDEFS and TAULIBS from CFLAGS and LIBS respectively but keep
+# TAUINC.
+#######################################################################
+
+########### Automatically modified by the configure script ############
+CONFIG_ARCH=bgp
+TAU_ARCH=bgp
+CONFIG_CC=bgxlc_r
+CONFIG_CXX=bgxlC_r
+TAU_CC_FE=$(CONFIG_CC)
+TAU_CXX_FE=$(CONFIG_CXX)
+
+# Front end C/C++ Compilers
+#BGL#TAU_CC_FE=xlc #ENDIF#
+#BGL#TAU_CXX_FE=xlC #ENDIF#
+TAU_CC_FE=xlc #ENDIF##BGP#
+TAU_CXX_FE=xlC #ENDIF##BGP#
+#CATAMOUNT#TAU_CC_FE=gcc #ENDIF#
+#CATAMOUNT#TAU_CXX_FE=g++ #ENDIF#
+#SC_GFORTRAN#TAU_CC_FE=gcc #ENDIF#
+#SC_GFORTRAN#TAU_CXX_FE=g++ #ENDIF#
+#SC_PATHSCALE#TAU_CC_FE=gcc #ENDIF#
+#SC_PATHSCALE#TAU_CXX_FE=g++ #ENDIF#
+
+PCXX_OPT=-g
+USER_OPT=
+EXTRADIR=/opt/ibmcmp/xlf/bg/11.1/bin/..
+EXTRADIRCXX=/opt/ibmcmp/vacpp/bg/9.0/bin/..
+TAUROOT=/soft/apps/tau/tau_latest
+TULIPDIR=
+TAUEXTRASHLIBOPTS=
+TAUGCCLIBOPTS=
+TAUGCCLIBDIR=
+TAUGFORTRANLIBDIR=
+PCLDIR=
+PAPIDIR=
+PAPISUBDIR=
+CHARMDIR=
+PDTDIR=/soft/apps/tau/pdtoolkit-3.12
+PDTCOMPDIR=
+DYNINSTDIR=
+JDKDIR=
+SLOG2DIR=
+OPARIDIR=
+TAU_OPARI_TOOL=
+EPILOGDIR=
+EPILOGBINDIR=
+EPILOGINCDIR=
+EPILOGLIBDIR=
+EPILOGEXTRALINKCMD=
+VAMPIRTRACEDIR=
+KTAU_INCDIR=
+KTAU_INCUSERDIR=
+KTAU_LIB=
+KTAU_KALLSYMS_PATH=
+PYTHON_INCDIR=
+PYTHON_LIBDIR=
+PERFINCDIR=
+PERFLIBDIR=
+PERFLIBRARY=
+TAU_SHMEM_INC=
+TAU_SHMEM_LIB=
+TAU_CONFIG=-mpi-pdt
+TAU_MPI_INC=-I/bgsys/drivers/ppcfloor/comm/include
+TAU_MPI_LIB=-L/soft/apps/tau/tau_latest/bgp/lib -lTauMpi$(TAU_CONFIG) -L/bgsys/drivers/ppcfloor/comm/lib
+TAU_MPI_FLIB=-lfmpich.cnk -L/soft/apps/tau/tau_latest/bgp/lib -lTauMpi$(TAU_CONFIG) -L/bgsys/drivers/ppcfloor/comm/lib
+TAU_MPILIB_DIR=/bgsys/drivers/ppcfloor/comm/lib
+TAU_MPI_NOWRAP_LIB= -L/bgsys/drivers/ppcfloor/comm/lib
+TAU_MPI_NOWRAP_FLIB=-lfmpich.cnk  -L/bgsys/drivers/ppcfloor/comm/lib
+FULL_CXX=mpixlcxx_r
+FULL_CC=mpixlc_r
+TAU_PREFIX_INSTALL_DIR=/soft/apps/tau/tau_latest
+
+TAU_BIN_DIR=$(TAU_PREFIX_INSTALL_DIR)/$(CONFIG_ARCH)/bin
+TAU_INC_DIR=$(TAU_PREFIX_INSTALL_DIR)/include
+TAU_LIB_DIR=$(TAU_PREFIX_INSTALL_DIR)/$(CONFIG_ARCH)/lib
+
+#######################################################################
+
+#OPARI#TAU_OPARI_TOOL=$(TAU_BIN_DIR)/opari        #ENDIF#
+#ENABLE64BIT#ABI            = -64                #ENDIF#
+#ENABLEN32BIT#ABI           = -n32               #ENDIF#
+#ENABLE32BIT#ABI            = -32                #ENDIF#
+
+#######################################################################
+#SP1#IBM_XLC_ABI            = -q32               #ENDIF#
+#SP1#IBM_GNU_ABI            = -maix32            #ENDIF#
+#IBM64#IBM_XLC_ABI          = -q64               #ENDIF#
+#IBM64#IBM_GNU_ABI          = -maix64            #ENDIF#
+#IBM64LINUX#IBM_XLC_ABI             = -q64               #ENDIF#
+#IBM64LINUX#IBM_GNU_ABI             = -m64               #ENDIF#
+#SUNX86_64#SUN_GNU_ABI       = -m64              #ENDIF#
+#SUNX86_64#SUN_CC_ABI        = -xarch=amd64       #ENDIF#
+#MIPS32LINUX#SC_GNU_ABI             = -mabi=n32          #ENDIF#
+#MIPS32LINUX#SC_PATH_ABI     = -n32               #ENDIF#
+#MIPS64LINUX#SC_GNU_ABI             = -mabi=64           #ENDIF#
+#MIPS64LINUX#SC_PATH_ABI     = -64               #ENDIF#
+#GNU#SC_ABI                 = $(SC_GNU_ABI)      #ENDIF#
+#USE_PATHCC#SC_ABI                  = $(SC_PATH_ABI)     #ENDIF#
+#MIPS32#ABI                  = $(SC_ABI)         #ENDIF#
+#MIPS64#ABI                  = $(SC_ABI)         #ENDIF#
+
+IBM_ABI             = $(IBM_XLC_ABI)     #ENDIF##USE_IBMXLC#
+#GNU#IBM_ABI                = $(IBM_GNU_ABI)     #ENDIF#
+#SP1# ABI                   = $(IBM_ABI)         #ENDIF#
+#PPC64# ABI                 = $(IBM_ABI)         #ENDIF#
+#SOLARIS64#SUN_GNU_ABI      = -mcpu=v9 -m64      #ENDIF#
+#SOLARIS64#SUN_CC_ABI       = -xarch=v9 -xcode=pic32     #ENDIF#
+#SOL2CC#SUN_ABI                     = $(SUN_CC_ABI)      #ENDIF#
+#GNU#SUN_ABI                = $(SUN_GNU_ABI)     #ENDIF#
+#SOL2#ABI                   = $(SUN_ABI)         #ENDIF#
+#SUNX86_64#ABI              = $(SUN_ABI)         #ENDIF#
+#FORCEIA32#ABI               = -m32#ENDIF#
+#######################################################################
+F90_ABI        = $(ABI) 
+#IBM64_FORTRAN#F90_ABI      = -q64               #ENDIF#
+#######################################################################
+
+############# Standard Defines ##############
+TAU_CC = $(CONFIG_CC) $(ABI) $(ISA)
+TAU_CXX = $(CONFIG_CXX) $(ABI) $(ISA) $(USER_OPT)
+TAU_RUN_CC = $(FULL_CC) $(ABI) $(ISA)
+TAU_RUN_CXX = $(FULL_CXX) $(ABI) $(ISA)
+TAU_INSTALL = /bin/cp
+TAU_SHELL = /bin/sh
+LSX = .a
+#############################################
+# JAVA DEFAULT ARCH 
+#############################################
+JDKARCH                 = linux
+#COMPAQ_ALPHA#JDKARCH   = alpha      #ENDIF#
+#SOL2#JDKARCH           = solaris    #ENDIF#
+#SGIMP#JDKARCH          = irix       #ENDIF#
+#SP1#JDKARCH            = aix        #ENDIF#
+#T3E#JDKARCH            = cray       #ENDIF#
+#############################################
+# JAVA OBJECTS
+#############################################
+#JAVA#TAU_JAVA_O       = TauJava.o TauJAPI.o  #ENDIF#
+#JAVA#TAUJAPI  = Profile.class        #ENDIF#
+
+
+#############################################
+# OpenMP OBJECTS
+#############################################
+#OPENMP#OPENMP_O       = OpenMPLayer.o #ENDIF#
+
+#############################################
+# Opari OBJECTS
+#############################################
+#OPARI#OPARI_O         = TauOpari.o #ENDIF#
+#KOJAKOPARI#OPARI_O    = TauKojakOpari.o #ENDIF#
+#EPILOG#OPARI_O        =  #ENDIF#
+#VAMPIRTRACE#OPARI_O   =  #ENDIF#
+#GNU#OPARI_O   = #ENDIF#
+
+#############################################
+# CallPath OBJECTS
+#############################################
+#PROFILECALLPATH#CALLPATH_O  = TauCallPath.o #ENDIF#
+#PROFILEPARAM#PARAM_O  = ProfileParam.o #ENDIF#
+
+#############################################
+# Python Binding OBJECTS
+#############################################
+#PYTHON#PYTHON_O  = PyGroups.o PyExceptions.o PyDatabase.o PyBindings.o PyTimer.o PyTau.o #ENDIF#
+
+#############################################
+# DYNINST DEFAULT ARCH
+#############################################
+DYNINST_PLATFORM       = $(PLATFORM)
+
+
+#PCL##include $(TAU_INC_DIR)/makefiles/PCLMakefile.stub          #ENDIF#
+
+############# OpenMP Fortran Option ########
+#OPENMP#TAU_F90_OPT = -mp                   #ENDIF#
+#SOL2CC_OPENMP#TAU_F90_OPT = -xopenmp       #ENDIF#
+#SUNCC_OPENMP#TAU_F90_OPT = -xopenmp=parallel       #ENDIF#
+#COMPAQCXX_OPENMP#TAU_F90_OPT = -omp        #ENDIF#
+#IBMXLC_OPENMP#TAU_F90_OPT = -qsmp=omp      #ENDIF#
+#GUIDE#TAU_F90_OPT =                        #ENDIF#
+#PGIOPENMP#TAU_F90_OPT = -mp                #ENDIF#
+#INTELOPENMP#TAU_F90_OPT = -openmp          #ENDIF#
+#HITACHI_OPENMP#TAU_F90_OPT =               #ENDIF#
+
+TAU_R         =_r     #ENDIF##THREADSAFE_COMPILERS#
+
+############# Fortran Compiler #############
+#GNU_FORTRAN#TAU_F90         = g77              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#GNU_GFORTRAN#TAU_F90         = gfortran              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#G95_FORTRAN#TAU_F90         = g95              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#SC_GFORTRAN#TAU_F90         = scgfortran              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#SGI_FORTRAN#TAU_F90         = f90              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+TAU_F90         = xlf77$(TAU_R)    $(F90_ABI) $(TAU_F90_OPT)   #ENDIF##IBM_FORTRAN#
+TAU_F90         = mpixlf77$(TAU_R)    $(F90_ABI) $(TAU_F90_OPT)   #ENDIF##BGP#
+#BGL#TAU_F90         = blrts_xlf90$(TAU_R)    $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#IBM64_FORTRAN#TAU_F90       = xlf90$(TAU_R)    $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#IBMXLFAPPLE#TAU_F90       = xlf90$(TAU_R)    $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#CRAY_FORTRAN#TAU_F90        = f90              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#CRAY_X1_FORTRAN#TAU_F90     = ftn              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#PGI_FORTRAN#TAU_F90         = pgf90            $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#CRAYCNL#TAU_F90         = ftn            $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#PGI_CATAMOUNT#TAU_F90         = qk-pgf90         $(F90_ABI) $(TAU_F90_OPT) #ENDIF#
+#ABSOFT_FORTRAN#TAU_F90      = f90              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#LAHEY_FORTRAN#TAU_F90      = lf95              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#LAHEY64_FORTRAN#TAU_F90      = lf95              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#NAGWARE_FORTRAN#TAU_F90      = f95              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#FUJITSU_FORTRAN#TAU_F90     = F90              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#FUJITSU_SOLARIS#TAU_F90     = f90              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#SUN_FORTRAN#TAU_F90         = f90              $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#COMPAQ_FORTRAN#TAU_F90      = f90              $(F90_ABI)  $(TAU_F90_OPT)  #ENDIF#
+#KAI_FORTRAN#TAU_F90         = guidef90         $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#HP_FORTRAN#TAU_F90          = f90             $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#HITACHI_FORTRAN#TAU_F90     = f90             $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#INTEL_FORTRAN#TAU_F90       = efc             $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#INTEL32_FORTRAN#TAU_F90     = ifc             $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#INTELIFORT#TAU_F90     = ifort                $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#PATHSCALE_FORTRAN#TAU_F90     = pathf90         $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#SC_PATHSCALE#TAU_F90     = scpathf95         $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#OPEN64ORC_FORTRAN#TAU_F90     = orf90         $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+#NEC_FORTRAN#TAU_F90         = f90             $(F90_ABI) $(TAU_F90_OPT)   #ENDIF#
+
+
+############# Portable F90 Options #############
+#IBM64_FORTRAN#TAU_F90_FIXED      = -qfixed  #ENDIF#
+TAU_F90_FIXED      = -qfixed  #ENDIF##IBM_FORTRAN#
+TAU_F90_SUFFIX     = -qsuffix=f=f90  #ENDIF##IBM_FORTRAN#
+#IBMXLFAPPLE#TAU_F90_FIXED      = -qfixed  #ENDIF#
+#IBMXLFAPPLE#TAU_F90_SUFFIX     = -qsuffix=f=f90  #ENDIF#
+#IBM64_FORTRAN#TAU_F90_SUFFIX     = -qsuffix=f=f90  #ENDIF#
+
+############# Profiling Options #############
+PROFILEOPT1           = -DPROFILING_ON        #ENDIF##PROFILE#
+#PCL#PROFILEOPT3                      = -DTAU_PCL -I$(PCLDIR)/include #ENDIF#
+#PAPI#PROFILEOPT3              = -DTAU_PAPI -I$(PAPIDIR)/src -I$(PAPIDIR)/include #ENDIF#
+#PCL#PCL_O                    = PclLayer.o            #ENDIF#
+#PAPI#PAPI_O                  = PapiLayer.o           #ENDIF#
+#MULTIPLECOUNTERS#MULT_O       = MultipleCounters.o    #ENDIF#
+#PROFILECALLS#PROFILEOPT4      = -DPROFILE_CALLS       #ENDIF#
+#PROFILESTATS#PROFILEOPT5      = -DPROFILE_STATS       #ENDIF#
+#DEBUGPROF#PROFILEOPT6         = -DDEBUG_PROF          #ENDIF#
+PROFILEOPT7         = -DTAU_STDCXXLIB       #ENDIF##STDCXXLIB#
+#CRAYX1CC#PROFILEOPT7         = #ENDIF#
+#CRAYCC#PROFILEOPT7         = #ENDIF#
+#INTELTFLOP#PROFILEOPT8        = -DPOOMA_TFLOP         #ENDIF#
+#NORTTI#PROFILEOPT9            = -DNO_RTTI             #ENDIF#
+#RTTI#PROFILEOPT9              = -DRTTI             #ENDIF#
+#GNU#PROFILEOPT10              = -DTAU_GNU  -DTAU_DOT_H_LESS_HEADERS  -fPIC #ENDIF#
+#APPLECXX#PROFILEOPT10              = -DTAU_GNU  -DTAU_DOT_H_LESS_HEADERS -fPIC #ENDIF#
+#SOL2CC#PROFILEOPT10              = -DTAU_SOL2CC  -DTAU_DOT_H_LESS_HEADERS #ENDIF#
+#SUNCC#PROFILEOPT10              = -DTAU_SOL2CC  -DTAU_DOT_H_LESS_HEADERS #ENDIF#
+#USE_PATHCC#PROFILEOPT10       = -DTAU_DOT_H_LESS_HEADERS -fPIC -DTAU_PATHSCALE #ENDIF#
+#OPEN64ORC#PROFILEOPT10       = -DTAU_DOT_H_LESS_HEADERS -DTAU_OPEN64ORC -fpic  #ENDIF#
+#CALLSTACK#PROFILEOPT11        = -DPROFILE_CALLSTACK   #ENDIF#
+#PGI1.7#PROFILEOPT12          = -DPGI                 #ENDIF#
+#CRAYKAI#PROFILEOPT12         = -DCRAYKAI             #ENDIF#
+#HP_FORTRAN#PROFILEOPT12       = -DHP_FORTRAN         #ENDIF#
+#CRAYCC#PROFILEOPT13          = -h instantiate=used -DCRAYCC -DTAU_DOT_H_LESS_HEADERS  #ENDIF#
+#CRAYX1CC#PROFILEOPT13        = -DTAU_DOT_H_LESS_HEADERS #ENDIF#
+#SGICC#TAU_CXX = $(CONFIG_CXX) $(ABI) $(ISA) $(USER_OPT) -LANG:std  #ENDIF#
+#INTELCXXLIBICC#TAU_CXX = $(CONFIG_CXX) $(ABI) $(ISA) $(USER_OPT) -cxxlib-icc #ENDIF#
+#PTHREAD_AVAILABLE#PROFILEOPT15 = -DPTHREADS          #ENDIF#
+#COMPAQCXX_PTHREAD#PROFILEOPT15 = -DPTHREADS -pthread  #ENDIF#
+#TAU_SPROC#PROFILEOPT15        = -DTAU_SPROC          #ENDIF#
+#TAU_PAPI_THREADS#PROFILEOPT15         = -DTAU_PAPI_THREADS           #ENDIF#
+#TULIPTHREADS#PROFILEOPT16 = -DTULIPTHREADS            #ENDIF#
+#TRACE#TRACEOPT                       = -DTRACING_ON          #ENDIF#
+#TRACE#EVENTS_O                = Tracer.o              #ENDIF#
+#KTAU#KTAU_O                   = TauKtau.o KtauProfiler.o KtauSymbols.o  #ENDIF#
+#KTAU_MERGE#KTAU_MERGE_O       = KtauFuncInfo.o KtauMergeInfo.o ktau_syscall.o  #ENDIF#
+#KTAU_SHCTR#KTAU_SHCTR_O       = KtauCounters.o  #ENDIF#
+#MPITRACE#TRACEOPT      = -DTAU_MPITRACE -DTRACING_ON #ENDIF#
+#MPITRACE#EVENTS_O                = Tracer.o              #ENDIF#
+#MUSE#MUSE_O                  = TauMuse.o TauMuseFilters.o TauMuseHandlers.o TauMusePackages.o #ENDIF#
+#MUSE_EVENT#MUSE_O                  = TauMuse.o TauMuseFilters.o TauMuseHandlers.o TauMusePackages.o #ENDIF#
+#MUSE_MULTIPLE#MUSE_O                  = TauMuse.o TauMuseFilters.o TauMuseHandlers.o TauMusePackages.o #ENDIF#
+#COMPENSATE#COMPENSATE_O      = TauCompensate.o #ENDIF#
+#PTHREAD_AVAILABLE#THR_O       = PthreadLayer.o        #ENDIF#
+#TAU_PAPI_THREADS#THR_O       = PapiThreadLayer.o        #ENDIF#
+#TAU_SPROC#THR_O                      = SprocLayer.o        #ENDIF#
+#JAVA#THR_O                   = JavaThreadLayer.o     #ENDIF#
+#TULIPTHREADS#THR_O       = TulipThreadLayer.o         #ENDIF#
+#LINUXTIMERS#PLATFORM_O       = TauLinuxTimers.o       #ENDIF#
+#TULIPTHREADS#PROFILEOPT17  = -I$(TULIPDIR)/include -I$(TULIPDIR)/Tuliplib   #ENDIF#
+#SMARTS#PROFILEOPT17  = -I$(TULIPDIR)/include -I$(TULIPDIR)/lib -I$(TULIPDIR)/machine-specific/$(HOSTTYPE)  #ENDIF#
+#SMARTS#PROFILEOPT18  = -DSMARTS   #ENDIF#
+#KAI#PROFILEOPT19             = -DKAI  -DTAU_DOT_H_LESS_HEADERS #ENDIF#
+#USE_DECCXX#PROFILEOPT19              = -DTAU_DOT_H_LESS_HEADERS   #ENDIF#
+#SGICC#PROFILEOPT19           = -DTAU_DOT_H_LESS_HEADERS   #ENDIF#
+#USE_INTELCXX#PROFILEOPT19     = -DTAU_DOT_H_LESS_HEADERS   -fPIC #ENDIF#
+#USE_NECCXX#PROFILEOPT19     = -DTAU_DOT_H_LESS_HEADERS   #ENDIF#
+#PGI#PROFILEOPT19             = -DTAU_DOT_H_LESS_HEADERS   -fPIC #ENDIF#
+#ACC#PROFILEOPT19             = -AA +z -DTAU_DOT_H_LESS_HEADERS -DTAU_HPUX #ENDIF#
+#FUJITSU#PROFILEOPT19                 = -DFUJITSU -DTAU_DOT_H_LESS_HEADERS   #ENDIF#
+#KAINOEX#PROFILEOPT20                 = --no_exceptions   #ENDIF#
+#SGICCNOEX#PROFILEOPT20               = -LANG:exceptions=off  #ENDIF#
+#HPGNU#PROFILEOPT21           = -fPIC #ENDIF#
+#HITACHI#PROFILEOPT21         = -DTAU_HITACHI #ENDIF#
+#SP1#PROFILEOPT21             = -D_POSIX_SOURCE -DTAU_AIX #ENDIF#
+#PPC64#TAU_PIC_PROFILEOPT21           = -qpic=large #ENDIF#
+#BGL#TAU_PIC_PROFILEOPT21           = #ENDIF#
+PROFILEOPT21          = -DTAU_DOT_H_LESS_HEADERS -DTAU_XLC $(TAU_PIC_PROFILEOPT21) #ENDIF##USE_IBMXLC#
+#IBMXLCAPPLE#PROFILEOPT21             = -DTAU_DOT_H_LESS_HEADERS -DTAU_XLC -DTAU_APPLE_XLC #ENDIF#
+#PCLPTHREAD#PROFILEOPT22              = -DPCL_MUTEX_LOCK #ENDIF#
+#JAVA#PROFILEOPT23            = -DJAVA                 #ENDIF#
+#MONITOR#PROFILEOPT24         = -DMONITORING_ON        #ENDIF#
+#JAVA#PROFILEOPT25 = -I$(JDKDIR)/include -I$(JDKDIR)/include/$(JDKARCH) #ENDIF#
+PROFILEOPT26 = -DTAU_MPI #ENDIF##MPI#
+PROFILEOPT26 = -DTAU_MPI -DTAU_MPI_THREADED #ENDIF##MPI_THREADED#
+#OPENMP#PROFILEOPT27 = -mp -DTAU_OPENMP#ENDIF#
+#GNU#PROFILEOPT27 = #ENDIF#
+#SOL2CC_OPENMP#PROFILEOPT27 = -xopenmp -DTAU_OPENMP#ENDIF#
+#SUNCC_OPENMP#PROFILEOPT27 = -xopenmp=parallel -DTAU_OPENMP#ENDIF#
+#SUNCC_OPENMP#PROFILEOPT27 = -xopenmp=parallel -DTAU_OPENMP#ENDIF#
+#HITACHI_OPENMP#PROFILEOPT27 = -DTAU_OPENMP#ENDIF#
+#COMPAQCXX_OPENMP#PROFILEOPT27 = -omp -DTAU_OPENMP#ENDIF#
+#IBMXLC_OPENMP#PROFILEOPT27 = -qsmp=omp -DTAU_OPENMP #ENDIF#
+#OPEN64_OPENMP#PROFILEOPT27 = -mp -DTAU_OPENMP #ENDIF#
+#GUIDE#PROFILEOPT27 = -DTAU_OPENMP #ENDIF#
+#PGIOPENMP#PROFILEOPT27 = -mp -D_OPENMP -DTAU_OPENMP -U_RWSTD_MULTI_THREAD -U_REENTRANT #ENDIF#
+#INTELOPENMP#PROFILEOPT27 = -openmp -DTAU_OPENMP #ENDIF#
+#GNUOPENMP#PROFILEOPT27 = -fopenmp -DTAU_OPENMP #ENDIF#
+#OPARI#PROFILEOPT28 = -I$(OPARIDIR)/lib -I$(OPARIDIR)/include #ENDIF#
+#OPARI_REGION#PROFILEOPT28 = -DTAU_OPARI_REGION -I$(OPARIDIR)/lib -I$(OPARIDIR)/include #ENDIF#
+#OPARI_CONSTRUCT#PROFILEOPT28 = -DTAU_OPARI_CONSTRUCT -I$(OPARIDIR)/lib -I$(OPARIDIR)/include #ENDIF#
+#MULTIPLECOUNTERS#PROFILEOPT29 = -DTAU_MULTIPLE_COUNTERS #ENDIF#
+#SGITIMERS#PROFILEOPT30         = -DSGI_TIMERS          #ENDIF#
+#BGLTIMERS#PROFILEOPT30         = -DBGL_TIMERS -I/bgl/BlueLight/ppcfloor/bglsys/include #ENDIF#
+#BGPTIMERS#PROFILEOPT30         = -DBGP_TIMERS -I/bgsys/drivers/ppcfloor/arch/include/common -I/bgsys/drivers/ppcfloor/arch/include -I/bgsys/drivers/ppcfloor/arch/include/spi #ENDIF#
+#CRAYTIMERS#PROFILEOPT30         = -DCRAY_TIMERS          #ENDIF#
+#LINUXTIMERS#PROFILEOPT31       = -DTAU_LINUX_TIMERS    #ENDIF#
+#ALPHATIMERS#PROFILEOPT31       = -DTAU_ALPHA_TIMERS    #ENDIF#
+#CPUTIME#PROFILEOPT32           = -DCPU_TIME          #ENDIF#
+#PAPIWALLCLOCK#PROFILEOPT33     = -DTAU_PAPI_WALLCLOCKTIME    #ENDIF#
+#PAPIVIRTUAL#PROFILEOPT34       = -DTAU_PAPI_VIRTUAL    #ENDIF#
+#SGICOUNTERS#PROFILEOPT35      = -DSGI_HW_COUNTERS     #ENDIF#
+#EPILOG#PROFILEOPT36          = -DTAU_EPILOG -I$(EPILOGINCDIR) #ENDIF#
+#SCALASCA#PROFILEOPT36        = -DTAU_SCALASCA -DTAU_EPILOG -I$(EPILOGINCDIR)  #ENDIF#
+#VAMPIRTRACEINTS#TAU_VAMPIRTRACEOPTS = -DTAU_64BITTYPES_NEEDED -DHAVE_INTTYPES_H #ENDIF#
+#VAMPIRTRACE#PROFILEOPT36             = -DTAU_VAMPIRTRACE -I$(VAMPIRTRACEDIR)/vtlib -I$(VAMPIRTRACEDIR)/include $(TAU_VAMPIRTRACEOPTS)#ENDIF#
+#PROFILECALLPATH#PROFILEOPT36  = -DTAU_CALLPATH #ENDIF#
+#PROFILEPHASE#PROFILEOPT36  = -DTAU_CALLPATH -DTAU_PROFILEPHASE#ENDIF#
+#PYTHON#PROFILEOPT37  = -I$(PYTHON_INCDIR) #ENDIF#
+#NOCOMM#PROFILEOPT38  = -DTAU_NOCOMM #ENDIF#
+#MUSE#PROFILEOPT39  = -DTAU_MUSE #ENDIF#
+#SETNODE0#PROFILEOPT40  = -DTAU_SETNODE0 #ENDIF#
+#COMPENSATE#PROFILEOPT41  = -DTAU_COMPENSATE #ENDIF#
+#MUSE_EVENT#PROFILEOPT42  = -DTAU_MUSE_EVENT #ENDIF#
+#MUSE_MULTIPLE#PROFILEOPT43  = -DTAU_MUSE_MULTIPLE #ENDIF#
+#DYNINST41##PROFILEOPT44  = -DTAU_DYNINST41BUGFIX #ENDIF#
+# DyninstAPI v4.2.1 fixes the bug, so we don't need OPT44 anymore
+#PROFILEMEMORY#PROFILEOPT45  = -DTAU_PROFILEMEMORY   #ENDIF#
+PROFILEOPT46  = -DTAU_MPIGREQUEST   #ENDIF##MPIGREQUEST#
+#MPIOREQUEST#PROFILEOPT47  = -DTAU_MPIOREQUEST   #ENDIF#
+PROFILEOPT48  = -DTAU_MPIDATAREP   #ENDIF##MPIDATAREP#
+PROFILEOPT49  = -DTAU_MPIERRHANDLER  #ENDIF##MPIERRHANDLER#
+#CATAMOUNT#PROFILEOPT50  = -DTAU_CATAMOUNT  #ENDIF#
+#MPICONSTCHAR#PROFILEOPT51  = -DTAU_MPICONSTCHAR  #ENDIF#
+PROFILEOPT52  = -DTAU_MPIATTRFUNCTION   #ENDIF##MPIATTR#
+PROFILEOPT53  = -DTAU_MPITYPEEX   #ENDIF##MPITYPEEX#
+PROFILEOPT54  = -DTAU_MPIADDERROR   #ENDIF##MPIADDERROR#
+#MPINEEDSTATUSCONV#PROFILEOPT55  = -DTAU_MPI_NEEDS_STATUS   #ENDIF#
+
+#DEPTHLIMIT#PROFILEOPT56      = -DTAU_DEPTH_LIMIT       #ENDIF#
+#TAU_CHARM#PROFILEOPT57 = -DTAU_CHARM -I$(CHARMDIR)/include #ENDIF#
+#PROFILEHEADROOM#PROFILEOPT58  = -DTAU_PROFILEHEADROOM   #ENDIF#
+#JAVACPUTIME#PROFILEOPT59           = -DJAVA_CPU_TIME          #ENDIF#
+PROFILEOPT60           = -DTAU_LARGEFILE -D_LARGEFILE64_SOURCE     #ENDIF##TAU_LARGEFILE#
+PROFILEOPT60           = -DTAU_LARGEFILE -D_LARGEFILE64_SOURCE -D__xlc__ #ENDIF##BGP#
+# Omit the -D_LARGETFILE64_SOURCE till we can check the IBM crash
+#SHMEM#PROFILEOPT61           = -DTAU_SHMEM #ENDIF#
+#KTAU#PROFILEOPT62  = -DTAUKTAU -DKTAU_USER_SRC_COMPILE -I$(KTAU_INCDIR) -I$(KTAU_INCUSERDIR) -DKTAU_INCUSERDIR=\"$(KTAU_INCUSERDIR)\" -DKTAU_KALLSYMS_PATH=\"$(KTAU_KALLSYMS_PATH)\" #ENDIF#
+#KTAU_MERGE#PROFILEOPT63  = -DTAUKTAU_MERGE -DKTAU_USER_SRC_COMPILE -I$(KTAU_INCDIR) -DKTAU_INCUSERDIR=\"$(KTAU_INCUSERDIR)\" -DKTAU_KALLSYMS_PATH=\"$(KTAU_KALLSYMS_PATH)\" #ENDIF#
+#FREEBSD#PROFILEOPT64  = -DTAU_FREEBSD #ENDIF#
+#PROFILEPARAM#PROFILEOPT65  = -DTAU_PROFILEPARAM #ENDIF#
+#IBMMPI#PROFILEOPT66  = -DTAU_IBM_MPI #ENDIF#
+#WEAKMPIINIT#PROFILEOPT67  = -DTAU_WEAK_MPI_INIT   #ENDIF#
+#LAMPI#PROFILEOPT68 = -DTAU_LAMPI #ENDIF#
+#MPICH_IGNORE_CXX_SEEK#PROFILEOPT68 = -DMPICH_IGNORE_CXX_SEEK #ENDIF#
+PROFILEOPT68 = -DMPICH_IGNORE_CXX_SEEK #ENDIF##BGP#
+#MPICH2_MPI_INPLACE#PROFILEOPT73 = -DTAU_MPICH2_MPI_IN_PLACE #ENDIF#
+
+
+############# RENCI Scalable Trace Lib Options #############
+STFF_DIR=
+SDDF_DIR=
+#RENCI_STFF#PROFILEOPT69 = -DRENCI_STFF -I$(STFF_DIR)/include #ENDIF#
+#RENCI_STFF#TAU_LINKER_OPT11 = -L$(STFF_DIR)/lib -lstff -L$(SDDF_DIR)/lib -lPablo $(TAU_MPI_LIB) #ENDIF#
+#RENCI_STFF#RENCI_STFF_O = RenciSTFF.o    #ENDIF#
+
+############# KTAU (again) #############
+#KTAU_SHCTR#PROFILEOPT70  = -DTAUKTAU_SHCTR -DKTAU_USER_SRC_COMPILE -I$(KTAU_INCDIR) -DKTAU_INCUSERDIR=\"$(KTAU_INCUSERDIR)\" -DKTAU_KALLSYMS_PATH=\"$(KTAU_KALLSYMS_PATH)\" #ENDIF#
+#KTAU#TAU_LINKER_OPT12 = -L$(KTAU_LIB) -lktau #ENDIF#
+
+#MIPS32LINUX#PROFILEOPT71 =  -D_ABIN32=2 -D_MIPS_SIM=_ABIN32 #ENDIF#
+
+#BGL#PROFILEOPT72 = -DTAU_BGL -I/bgl/BlueLight/ppcfloor/bglsys/include #ENDIF#
+PROFILEOPT72 = -DTAU_BGP -I/bgsys/drivers/ppcfloor/arch/include/common -I/bgsys/drivers/ppcfloor/arch/include -I/bgsys/drivers/ppcfloor/arch/include/spi #ENDIF##BGP#
+
+#For F90 support for all platforms
+FWRAPPER              = TauFMpi.o       
+MPI2EXTENSIONS        = TauMpiExtensions.o       #ENDIF##MPI2#
+MPI2EXTENSIONS        =  #ENDIF##BGP#
+#CRAYX1CC#MPI2EXTENSIONS              =        #ENDIF#
+
+#SGICOUNTERS#LEXTRA           = -lperfex              #ENDIF#
+#ALPHATIMERS#LEXTRA           = -lrt          #ENDIF#
+#SOL2#PCL_EXTRA_LIBS = -lcpc #ENDIF#
+#PCL#LEXTRA                   = -L$(PCLDIR)/lib -lpcl $(PCL_EXTRA_LIBS)      #ENDIF#
+#PAPI#LEXTRA                  = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a #ENDIF#
+#IA64PAPI#LEXTRA              = -L$(PAPIDIR)/$(PAPISUBDIR) -lpapi #ENDIF#
+#Due to some problems with older versions of libpfm, we are using the static lib
+#IA64PAPI#LEXTRA              =   $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a #ENDIF#
+#PAPIPFM##LEXTRA              = -L$(PAPIDIR)/$(PAPISUBDIR) -lpfm -lpapi -lpfm #ENDIF#
+#X86_64PAPI#LEXTRA  = -L$(PAPIDIR)/$(PAPISUBDIR)/ -L$(PAPIDIR)/lib64/ -lpapi -lperfctr #ENDIF#
+#SOL2PAPI#LEXTRA              = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a -lcpc #ENDIF#
+#IBMPAPI#LEXTRA  = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a -L/usr/lpp/pmtoolkit/lib -L/usr/pmapi/lib -lpmapi#ENDIF#
+#PPC64PAPI#LEXTRA  = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a #ENDIF#
+#BGLPAPI_RTS#LEXTRA  = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.rts.a -L/bgl/BlueLight/ppcfloor/bglsys/lib -lbgl_perfctr.rts -lrts.rts -ldevices.rts #ENDIF#
+#BGLPAPI#LEXTRA  = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a -L/bgl/BlueLight/ppcfloor/bglsys/lib -lbgl_perfctr.rts -lrts.rts -ldevices.rts #ENDIF#
+#BGPPAPI#LEXTRA  = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a  -L/bgsys/drivers/ppcfloor/runtime/SPI -lSPI.cna #ENDIF#
+#IBM64PAPI#LEXTRA = $(PAPIDIR)/$(PAPISUBDIR)/libpapi64.a -L/usr/lpp/pmtoolkit/lib  -L/usr/pmapi/lib -lpmapi #ENDIF#
+#IBM64PAPILINUX#LEXTRA = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a #ENDIF#
+#SGI64PAPI#LEXTRA  = -L$(PAPIDIR)/$(PAPISUBDIR) -lpapi64 #ENDIF#
+#ALPHAPAPI#LEXTRA                     = $(PAPIDIR)/$(PAPISUBDIR)/libpapi.a /usr/lib/dcpi/dadd.a -lclu -lrt #ENDIF#
+
+TAU_PAPI_EXTRA_FLAGS          = $(LEXTRA)
+#IA64PAPI#TAU_PAPI_EXTRA_FLAGS        = -L$(PAPIDIR)/$(PAPISUBDIR) -lpapi #ENDIF#
+
+
+# By default make TAU_PAPI_RPATH null. Support it on a compiler by compiler basis.
+#PAPI###TAU_PAPI_RPATH = -rpath $(PAPIDIR)/$(PAPISUBDIR) #ENDIF#
+#PAPI##TAU_PAPI_RPATH  =  #ENDIF#
+#PPC64PAPI#TAU_PAPI_RPATH = #ENDIF#
+#BGLPAPI#TAU_PAPI_RPATH = #ENDIF#
+#BGPPAPI#TAU_PAPI_RPATH = #ENDIF#
+#USE_INTELCXX#TAU_PAPI_RPATH   =  #ENDIF#
+#CRAYX1CC#TAU_PAPI_RPATH = #ENDIF#
+#PGI#TAU_PAPI_RPATH    = -R$(PAPIDIR)/$(PAPISUBDIR) #ENDIF#
+#GNU#TAU_PAPI_RPATH    = -Wl,-rpath $(PAPIDIR)/$(PAPISUBDIR) #ENDIF#
+#USE_PATHCC#TAU_PAPI_RPATH     = #ENDIF#
+
+# if the user has specified -cc=gcc -c++=g++ -fortran=intel, we shouldn't use -rpath
+# because they are likely going to link with ifort
+#INTEL32_FORTRAN#TAU_PAPI_RPATH        =  #ENDIF#
+#SOL2PAPI#TAU_PAPI_RPATH       = #ENDIF#
+#IBMPAPI#TAU_PAPI_RPATH        = #ENDIF#
+#IBM64PAPI#TAU_PAPI_RPATH      = #ENDIF#
+#PAPI#TAU_LINKER_OPT1 = $(TAU_PAPI_RPATH) #ENDIF#
+
+#PTHREAD_AVAILABLE#LEXTRA1     = -lpthread            #ENDIF#
+#TULIPTHREADS#LEXTRA1     = -L$(TULIPDIR)/Tuliplib  -ltulip           #ENDIF#
+#SMARTS##include $(TAU_INC_DIR)/makefiles/GNUmakefile-$(HOSTTYPE)  #ENDIF#
+#SMARTS#LEXTRA1            = $(LSMARTS)        #ENDIF#
+
+TAU_GCCLIB     = -lgcc_s 
+TAU_GCCLIB     = #ENDIF##BGP#
+#INTEL32_ON_64#TAU_GCCLIB      = -lgcc #ENDIF#
+#FREEBSD#TAU_GCCLIB    = -lgcc #ENDIF#
+#BGL#TAU_GCCLIB        = -lgcc #ENDIF#
+#GNU#TAU_FORTRANLIBS       = -L$(TAUGCCLIBDIR) $(TAUGCCLIBOPTS) -lstdc++ $(TAU_GCCLIB) #ENDIF#
+#OPEN64ORC_FORTRAN#TAU_FORTRANLIBS       = -lfortran -lffio #ENDIF#
+#PATHSCALE_FORTRAN#TAU_FORTRANLIBS       = -lpathfstart -lpathfortran #ENDIF#
+#SC_PATHSCALE#TAU_FORTRANLIBS       = -lpathfstart -lpathfortran #ENDIF#
+#NAGWARE_FORTRAN#TAU_FORTRANLIBS               = $(EXTRADIR)/lib/quickfit.o -L$(EXTRADIR)/lib -lf96 #ENDIF#
+#G95_FORTRAN#TAU_FORTRANLIBS          = -L$(EXTRADIR) -lf95 #ENDIF#
+#GNU_FORTRAN#TAU_FORTRANLIBS          = -lg2c       #ENDIF#
+#GNU_GFORTRAN#TAU_FORTRANLIBS         = -L$(TAUGFORTRANLIBDIR) -lgfortran -lgfortranbegin       #ENDIF#
+#SC_GFORTRAN#TAU_FORTRANLIBS          = -lgfortran -lgfortranbegin       #ENDIF#
+#SGI_FORTRAN#TAU_FORTRANLIBS          = -lfortran -lftn       #ENDIF#
+TAU_IBM_FORTRANLIBS           =  -bh:4 -bpT:0x10000000 -bpD:0x20000000 /lib/crt0.o -lxlf90 -lm -lc #ENDIF##USE_IBMXLC#
+#GNU#TAU_IBM_FORTRANLIBS              =  -Wl,-bh:4 -Wl,-bpT:0x10000000 -Wl,-bpD:0x20000000 /lib/crt0.o -lxlf90 -lm -lc #ENDIF#
+#KAI#TAU_IBM_FORTRANLIBS              =  --backend -bh:4 --backend -bpT:0x10000000 --backend -bpD:0x20000000 /lib/crt0.o -lxlf90 -lm -lc #ENDIF#
+TAU_FORTRANLIBS = $(TAU_IBM_FORTRANLIBS) #ENDIF##IBM_FORTRAN#
+
+TAU_IBM64_FORTRANLIBS      =  -bh:4 -bpT:0x10000000 -bpD:0x20000000 -b64 /lib/crt0_64.o -lxlf90 -lm -lc #ENDIF##USE_IBMXLC#
+#GNU#TAU_IBM64_FORTRANLIBS      =  -Wl,-bh:4 -Wl,-bpT:0x10000000 -Wl,-bpD:0x20000000 -Wl,-b64 /lib/crt0_64.o -lxlf90 -lm -lc #ENDIF#
+#KAI#TAU_IBM64_FORTRANLIBS      =  --backend -bh:4 --backend -bpT:0x10000000 --backend -bpD:0x20000000 --backend -b64 /lib/crt0_64.o -lxlf90 -lm -lc #ENDIF#
+#IBM64_FORTRAN#TAU_FORTRANLIBS = $(TAU_IBM64_FORTRANLIBS) #ENDIF#
+#IBM64_FORTRAN#TAU_FORLIBDIR=lib64 #ENDIF#
+TAU_FORLIBDIR=lib #ENDIF##IBM_FORTRAN#
+#BGL#TAU_FORLIBDIR=blrts_dev_lib #ENDIF#
+TAU_FORLIBDIR=bglib #ENDIF##BGP#
+#PPC64#TAU_FORTRANLIBS = -L$(EXTRADIR)/$(TAU_FORLIBDIR) -lxlf90 -lxlfmath -lxl #ENDIF#
+#BGL#TAU_FORTRANLIBS = -L$(EXTRADIR)/$(TAU_FORLIBDIR) -L$(EXTRADIR)/blrts_lib -lxlf90 -lxlfmath -lxl #ENDIF#
+
+TAU_BGL_OMP_SERIAL= -lxlomp_ser #ENDIF##BGP#
+#OPENMP#TAU_BGL_OMP_SERIAL= #ENDIF#
+TAU_OMP_SERIAL=$(TAU_BGL_OMP_SERIAL) #ENDIF##BGP#
+TAU_FORTRANLIBS = -L$(EXTRADIR)/$(TAU_FORLIBDIR) -lxlf90 -lxlfmath $(TAU_OMP_SERIAL) #ENDIF##BGP#
+
+#IBMXLFAPPLE#TAU_FORTRANLIBS          = -L$(EXTRADIR)/lib -lxlf90 -lxlfmath -lxl      #ENDIF#
+
+#CRAY_FORTRAN#TAU_FORTRANLIBS         =        #ENDIF#
+#CRAY_X1_FORTRAN#TAU_FORTRANLIBS              =        #ENDIF#
+#PGI_FORTRAN#TAU_FORTRANLIBS          = $(EXTRADIR)/lib/f90main.o -lpgf90 -lpgf90rtl -lpgf90_rpm1 -lpgf902 -lpgftnrtl -lrt #ENDIF#
+#HP_FORTRAN#TAU_FORTRANLIBS           = -L$(EXTRADIR)/lib/pa2.0 -lF90 -lcl        #ENDIF#
+#INTEL_FORTRAN#TAU_FORTRANLIBS         = -lcprts -lPEPCF90   #ENDIF#
+#INTEL32_FORTRAN#TAU_FORTRANLIBS       = -lcprts -lCEPCF90 -lF90 #ENDIF#
+#INTELIFORT#TAU_FORTRANLIBS       = -lcprts #ENDIF#
+#INTEL81FIX#TAU_FORTRANLIBS       = -L$(TAUGCCLIBDIR) $(TAUGCCLIBOPTS) -lstdc++ $(TAU_GCCLIB) -lcxa -lunwind -L$(EXTRADIR)/lib -lifcore $(EXTRADIR)/lib/for_main.o #ENDIF#
+#INTEL10FIX#TAU_FORTRANLIBS       = -L$(TAUGCCLIBDIR) $(TAUGCCLIBOPTS) -lstdc++ $(TAU_GCCLIB) -L$(EXTRADIR)/lib -lifcore $(EXTRADIR)/lib/for_main.o #ENDIF#
+#INTELCXXLIBICC#TAU_FORTRANLIBS       = -lcprts -L$(EXTRADIR)/lib -lifcore $(EXTRADIR)/lib/for_main.o #ENDIF#
+#PGI1.7#LEXTRA = -lstd -lstrm#ENDIF#
+#PGI1.7#TAUHELPER = $(TAUROOT)/src/Profile/TauPGIHelper.cpp #ENDIF#
+# LINKER OPTIONS
+TAU_LINKER_OPT2 = $(LEXTRA)
+
+
+#ACC#TAUHELPER = -AA #ENDIF#
+#FUJITSU_FORTRAN#TAU_FORTRANLIBS              = $(EXTRADIR)/lib/fj90rt0.o -L$(EXTRADIR)/lib -lfj9i6 -lfj9f6 -lfj9e6        #ENDIF#
+#FUJITSU_SOLARIS#TAU_FORTRANLIBS              = $(EXTRADIR)/lib/fj90rt0.o -L$(EXTRADIR)/lib -lfj90l -lfj90f #ENDIF#
+#SUN_FORTRAN#TAU_FORTRANLIBS          = -lfui -lfsumai -lfprodai -lfminlai -lfmaxlai -lfminvai -lfmaxvai -lfsu -lsunmath        #ENDIF#
+#SUN_FORTRAN#TAU_FORTRANLIBS_SUN_OPTERON   = -lfsu -lsunmath #ENDIF#
+#SUN_FORTRAN#TAU_FORTRANLIBS_SUNCC   = -lfsu #ENDIF#
+#SUN386I#TAU_FORTRANLIBS              = $(TAU_FORTRANLIBS_SUN_OPTERON) #ENDIF#
+#SUNX86_64#TAU_FORTRANLIBS            = $(TAU_FORTRANLIBS_SUN_OPTERON) #ENDIF#
+#SUNCC#TAU_FORTRANLIBS        = $(TAU_FORTRANLIBS_SUNCC) #ENDIF#
+#SOL2#EXTRALIBS = -lsocket -lnsl      #ENDIF#
+#SUN386I#EXTRALIBS = -lsocket -lnsl -lrt     #ENDIF#
+#SUNX86_64#EXTRALIBS = -lsocket -lnsl -lrt     #ENDIF#
+#COMPAQ_FORTRAN#TAU_FORTRANLIBS =  $(EXTRADIR)/lib/cmplrs/fort90/for_main.o -L$(EXTRADIR)/lib -L$(EXTRADIR)/lib/cmplrs/fort90 -L$(EXTRADIR)/lib/cmplrs/fort90 -lUfor -lfor -lFutil -lm -lmld -lexc -lc #ENDIF#
+#ABSOFT_FORTRAN#TAU_FORTRANLIBS =  -L$(EXTRADIR)/lib -lfio -lf90math -lU77 -lf77math -lfio #ENDIF#
+#LAHEY_FORTRAN#TAU_FORTRANLIBS        = $(EXTRADIR)/lib/fj90rt0.o -L$(EXTRADIR)/lib -lfj9i6 -lfj9f6 -lfj9e6 -lfccx86_6a #ENDIF#
+#LAHEY64_FORTRAN#TAU_FORTRANLIBS             = $(EXTRADIR)/lib64/fj90rt0.o -L$(EXTRADIR)/lib64  -lfj90f -lfj90i -lelf #ENDIF#
+#HITACHI_FORTRAN#TAU_FORTRANLIBS =  -lf90 -lhf90math #ENDIF#
+#NEC_FORTRAN#TAU_FORTRANLIBS =  -f90lib #ENDIF#
+#COMPAQ_GUIDEF90#TAU_FORTRANLIBS = $(EXTRADIR)/lib/cmplrs/fort90/for_main.o -lfor #ENDIF#
+
+
+#HITACHI#TAU_HITACHI_EXTRA     =  -L/usr/local/lib -llrz32 #ENDIF#
+
+## To use the standard F90 linker instead of TAU_LINKER + TAU_FORTRANLIBS, add
+#GNU#TAU_CXXLIBS               = -L$(TAUGCCLIBDIR)  $(TAUGCCLIBOPTS) -lstdc++ $(TAU_GCCLIB) #ENDIF#
+#GNU#TAU_GNUCXXLIBS            = -L$(TAUGCCLIBDIR) -lstdc++ $(TAU_GCCLIB) #ENDIF#
+#OPEN64ORC#TAU_CXXLIBS         = -lstdc++ #ENDIF#
+#PATHSCALE_FORTRAN#TAU_CXXLIBS         = -lstdc++ #ENDIF#
+#LAHEY_FORTRAN#TAU_CXXLIBS             = $(TAU_GNUCXXLIBS) /usr/lib/libc.a #ENDIF#
+#NAGWARE_FORTRAN#TAU_CXXLIBS           = $(TAU_GNUCXXLIBS) /usr/lib/libc.a #ENDIF#
+#PGI#TAU_CXXLIBS               = -lstd -lC       #ENDIF#
+#CRAYCNL#TAU_CXXLIBS           = -L$(EXTRADIR)/lib -lstd -lC -lpgc     #ENDIF#
+#CRAYX1CC#TAU_CXXLIBS          = -L/opt/ctl/CC/CC/lib -lC       #ENDIF#
+
+TAU_SGI_INIT = /usr/lib32/c++init.o 
+#ENABLE64BIT#TAU_SGI_INIT  = /usr/lib64/c++init.o #ENDIF#
+#ENABLEN32BIT#TAU_SGI_INIT = /usr/lib32/c++init.o #ENDIF#
+#ENABLE32BIT#TAU_SGI_INIT  = /usr/lib/c++init.o   #ENDIF#
+
+#SGICC#TAU_CXXLIBS             = $(TAU_SGI_INIT) -lC #ENDIF#
+#APPLECXX#TAU_CXXLIBS          = -lstd -lC #ENDIF#
+#SOL2#TAU_CXXLIBS               = -lCstd -lCrun #ENDIF#
+#SOL2CC#TAU_CXXLIBS_SUN_OPTERON   = -lCstd -lCrun -lm #ENDIF#
+#SUNCC#TAU_CXXLIBS_SUNCC   = -lCstd -lCrun #ENDIF#
+#SUN386I#TAU_CXXLIBS   = $(TAU_CXXLIBS_SUN_OPTERON) #ENDIF#
+#SUNCC#TAU_CXXLIBS   = $(TAU_CXXLIBS_SUNCC) #ENDIF#
+#SUNX86_64#TAU_CXXLIBS   = $(TAU_CXXLIBS_SUN_OPTERON) #ENDIF#
+#FUJITSU_SOLARIS#TAU_CXXLIBS               = -lstd -lstdm #ENDIF#
+#PPC64#TAU_XLCLIBS         = -L$(EXTRADIRCXX)/$(TAU_FORLIBDIR) -libmc++ -lstdc++       #ENDIF#
+#IBMXLCAPPLE#TAU_FORLIBDIR =lib       #ENDIF#
+#IBMXLCAPPLE#TAU_XLCLIBS         = -L$(EXTRADIRCXX)/$(TAU_FORLIBDIR) -libmc++ -lstdc++       #ENDIF#
+#BGL#TAU_XLCLIBS         = -L$(EXTRADIRCXX)/blrts_dev_lib -L$(EXTRADIRCXX)/blrts_lib -libmc++ -L/bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib -lstdc++      #ENDIF#
+TAU_XLCLIBS         = -L$(EXTRADIRCXX)/bglib -libmc++ -lstdc++      #ENDIF##BGP#
+#SP1#TAU_XLCLIBS         = -lC            #ENDIF#
+TAU_CXXLIBS         = $(TAU_XLCLIBS) #ENDIF##USE_IBMXLC#
+#USE_DECCXX#TAU_CXXLIBS         = -lcxxstd -lcxx #ENDIF#
+#USE_INTELCXX#TAU_CXXLIBS_INTEL        = -lcprts -lPEPCF90 #ENDIF#
+#USE_INTELCXX#TAU_CXXLIBS_INTEL        = -lcprts #ENDIF#
+#INTELIFORT#TAU_CXXLIBS_INTEL        = -lcprts #ENDIF#
+#INTEL81FIX#TAU_CXXLIBS_INTEL        = -L$(TAUGCCLIBDIR) $(TAUGCCLIBOPTS) -lstdc++ $(TAU_GCCLIB) -lcxa -lunwind#ENDIF#
+#INTEL10FIX#TAU_CXXLIBS_INTEL        = -L$(TAUGCCLIBDIR) $(TAUGCCLIBOPTS) -lstdc++ $(TAU_GCCLIB) #ENDIF#
+#INTELCXXLIBICC#TAU_CXXLIBS_INTEL        = -lcprts #ENDIF#
+#USE_INTELCXX#TAU_CXXLIBS        = $(TAU_CXXLIBS_INTEL) #ENDIF#
+#APPLECXX#TAU_CXXLIBS          = -lstdc++ -L$(TAUGCCLIBDIR)  $(TAUGCCLIBOPTS) -lgcc_s.1 -lSystemStubs #ENDIF#
+
+# EXTERNAL PACKAGES: VAMPIRTRACE
+#VAMPIRTRACE#TAU_LINKER_OPT3   =  -L$(VAMPIRTRACEDIR)/lib -L$(VAMPIRTRACEDIR)/vtlib -lvt -lotf -lz $(TAU_HITACHI_EXTRA) #ENDIF#
+#VAMPIRTRACEMPI#TAU_LINKER_OPT3        =  -L$(VAMPIRTRACEDIR)/lib -L$(VAMPIRTRACEDIR)/vtlib -lvt.mpi -lotf -lz  $(TAU_HITACHI_EXTRA) #ENDIF#
+#VAMPIRTRACEOMPI#TAU_LINKER_OPT3       =  -L$(VAMPIRTRACEDIR)/lib -L$(VAMPIRTRACEDIR)/vtlib -lvt.ompi -lotf -lz $(TAU_HITACHI_EXTRA) #ENDIF#
+#VAMPIRTRACEOMP#TAU_LINKER_OPT3        =  -L$(VAMPIRTRACEDIR)/lib -L$(VAMPIRTRACEDIR)/vtlib -lvt.omp  -lotf -lz $(TAU_HITACHI_EXTRA) #ENDIF#
+
+# EXTERNAL PACKAGES: EPILOG
+#SCALASCA#TAU_ELG_SERIAL_SUFFIX =.ser #ENDIF#
+#EPILOG#TAU_LINKER_OPT3        =  -L$(EPILOGLIBDIR) -lelg$(TAU_ELG_SERIAL_SUFFIX) $(EPILOGEXTRALINKCMD) $(TAU_HITACHI_EXTRA) #ENDIF#
+#EPILOGMPI#TAU_LINKER_OPT3     =  -L$(EPILOGLIBDIR) -lelg.mpi $(EPILOGEXTRALINKCMD) $(TAU_HITACHI_EXTRA) #ENDIF#
+#EPILOGOMPI#TAU_LINKER_OPT3    =  -L$(EPILOGLIBDIR) -lelg.ompi $(EPILOGEXTRALINKCMD) $(TAU_HITACHI_EXTRA) #ENDIF#
+#EPILOGOMP#TAU_LINKER_OPT3     =  -L$(EPILOGLIBDIR) -lelg.omp $(EPILOGEXTRALINKCMD) $(TAU_HITACHI_EXTRA) #ENDIF#
+
+# When using shared, we don't want -lelg.mpi or -lvt.mpi showing up
+#FORCESHARED#TAU_LINKER_OPT3=#ENDIF#
+
+TAU_LINKER_OPT4 = $(LEXTRA1)
+#HITACHI_OPENMP#TAU_LINKER_OPT4 = -lcompas -lpthreads -lc_r #ENDIF#
+#OPENMP#TAU_LINKER_OPT5 = -mp #ENDIF#
+#SOL2CC_OPENMP#TAU_LINKER_OPT5 = -xopenmp #ENDIF#
+#SUNCC_OPENMP#TAU_LINKER_OPT5 = -xopenmp=parallel #ENDIF#
+#GNU#TAU_LINKER_OPT5 = #ENDIF#
+#COMPAQCXX_OPENMP#TAU_LINKER_OPT5 = -omp #ENDIF#
+#IBMXLC_OPENMP#TAU_LINKER_OPT5 = -qsmp=omp #ENDIF#
+#OPEN64_OPENMP#TAU_LINKER_OPT5 = -mp #ENDIF#
+#GUIDE#TAU_LINKER_OPT5 = #ENDIF#
+#PGIOPENMP#TAU_LINKER_OPT5 = -mp #ENDIF#
+#INTELOPENMP#TAU_LINKER_OPT5 = -openmp #ENDIF#
+
+# MALLINFO needs -lmalloc on sgi, sun 
+#SGIMP#TAU_LINKER_OPT6 = -lmalloc #ENDIF#
+#SOL2#TAU_LINKER_OPT6 = #ENDIF#
+#SUN386I#TAU_LINKER_OPT6 = -lmalloc #ENDIF#
+#SUNX86_64#TAU_LINKER_OPT6 = -lmalloc #ENDIF#
+
+# We need -lCio with SGI CC 7.4+
+#SGICC#TAU_LINKER_OPT7 = -lCio #ENDIF#
+
+# charm
+#TAU_CHARM#TAU_LINKER_OPT8 = -lconv-core #ENDIF#
+
+# extra libs
+#SUN386I#TAU_LINKER_OPT9 = $(EXTRALIBS) #ENDIF#
+#SUNX86_64#TAU_LINKER_OPT9 = $(EXTRALIBS) #ENDIF#
+#SOL2#TAU_LINKER_OPT9 = $(ExTRALIBS)    #ENDIF#
+
+#BGL#TAU_LINKER_OPT10 = -L/bgl/BlueLight/ppcfloor/bglsys/lib -lrts.rts #ENDIF#
+
+TAU_IBM_PYTHON_SHFLAG = -Wl,-bI:$(PYTHON_LIBDIR)/config/python.exp -Wl,-einitpytau#ENDIF##USE_IBMXLC#
+#GNU#TAU_IBM_PYTHON_SHFLAG = -Wl,-bI:$(PYTHON_LIBDIR)/config/python.exp -Wl,-einitpytau#ENDIF#
+#KAI#TAU_IBM_PYTHON_SHFLAG = --backend -Wl,-bI:$(PYTHON_LIBDIR)/config/python.exp --backend -Wl,-einitpytau#ENDIF#
+#ACC#TAU_HPUX_PYTHON_SHFLAG = -lstd_v2 -lCsup_v2 -lm -lcl -lc #ENDIF#
+
+TAU_IBM_LD_FLAGS = -binitfini:poe_remote_main #ENDIF##USE_IBMXLC#
+#GNU#TAU_IBM_LD_FLAGS = -Wl,-binitfini:poe_remote_main #ENDIF#
+#KAI#TAU_IBM_LD_FLAGS = --backend -binitfini:poe_remote_main #ENDIF#
+
+
+#PYTHON#TAU_IBM_SHFLAGS = $(TAU_IBM_PYTHON_SHFLAG) #ENDIF#
+#PYTHON#TAU_HPUX_SHFLAGS = $(TAU_HPUX_PYTHON_SHFLAG) #ENDIF#
+#SP1#TAU_EXTRA_LIBRARY_FLAGS = $(TAU_IBM_SHFLAGS)  #ENDIF#
+#SOL2#TAU_EXTRA_LIBRARY_FLAGS = #ENDIF#
+#SGIMP#TAU_EXTRA_LIBRARY_FLAGS = -lmalloc  #ENDIF#
+#HP#TAU_EXTRA_LIBRARY_FLAGS  = $(TAU_HPUX_SHFLAGS) #ENDIF#
+
+TAU_MPI_WRAPPER_LIB= -L$(TAU_LIB_DIR) -lTauMpi$(TAU_CONFIG) #ENDIF##MPI#
+#EPILOGMPI#TAU_MPI_WRAPPER_LIB= #ENDIF#
+#EPILOGOMPI#TAU_MPI_WRAPPER_LIB= #ENDIF#
+
+##############################################
+# Build TAU_LINKER_SHOPTS
+#GNU#TAU_IBM_LINKER_SHOPTS=-Wl,-brtl -Wl,-bexpall #ENDIF#
+TAU_IBM_LINKER_SHOPTS= -brtl -bexpall #ENDIF##USE_IBMXLC#
+#KAI#TAU_IBM_LINKER_SHOPTS= --backend -brtl #ENDIF#
+#SP1#TAU_LINKER_SHOPTS= $(TAU_IBM_LINKER_SHOPTS) #ENDIF#
+
+##############################################
+# MPI _r suffix check (as in libmpi_r)
+#MPI_R_SUFFIX#TAU_MPI_R_SUFFIX=_r    #ENDIF#
+
+##############################################
+# Flags to build a shared object: TAU_SHFLAGS
+#GNU#AR_SHFLAGS                 = -shared       #ENDIF#
+#PGI#AR_SHFLAGS                 = -shared       #ENDIF#
+#SGICC#AR_SHFLAGS               = -shared       #ENDIF#
+#APPLECXX#AR_SHFLAGS = -dynamiclib -flat_namespace -undefined suppress #ENDIF#
+#SOL2#AR_SHFLAGS                = -G            #ENDIF#
+#SUN386I#AR_SHFLAGS                = -G            #ENDIF#
+#SUNX86_64#AR_SHFLAGS                = -G            #ENDIF#
+AR_SHFLAGS          = -G                #ENDIF##USE_IBMXLC#
+#USE_DECCXX#AR_SHFLAGS          = -shared               #ENDIF#
+#USE_INTELCXX#AR_SHFLAGS        = -shared               #ENDIF#
+#ACC#AR_SHFLAGS                 = -b            #ENDIF#
+TAU_SHFLAGS = $(AR_SHFLAGS) -o
+
+############# RANLIB Options #############
+TAU_RANLIB = echo "Built" 
+#APPLECXX#TAU_RANLIB      = ranlib  #ENDIF#
+#IBMXLCAPPLE#TAU_RANLIB      = ranlib  #ENDIF#
+
+##############################################
+TAU_AR                 = ar             #ENDIF#
+#SP1#TAU_AR            = ar -X32        #ENDIF#
+#IBM64#TAU_AR          = ar -X64        #ENDIF#
+#PPC64#TAU_AR          = ar            #ENDIF#
+#IBM64LINUX#TAU_AR     = ar             #ENDIF#
+
+
+##############################################
+# PDT OPTIONS
+# You can specify -pdtcompdir=intel -pdtarchdir=x86_64
+# If nothing is specified, PDTARCHDIR uses TAU_ARCH
+PDTARCHDIRORIG=$(TAU_ARCH)
+PDTARCHITECTURE=x86_64
+PDTARCHDIRFINAL=$(PDTARCHDIRORIG)
+#PDTARCHITECTURE#PDTARCHDIRFINAL=$(PDTARCHITECTURE)#ENDIF#
+PDTARCHDIR=$(PDTARCHDIRFINAL)
+#PDTARCH#PDTARCHDIR=$(PDTARCHDIRFINAL)/$(PDTCOMPDIR)#ENDIF#
+
+
+##############################################
+
+PROFILEOPTS = $(PROFILEOPT1)  $(PROFILEOPT2)  $(PROFILEOPT3)  $(PROFILEOPT4)  \
+              $(PROFILEOPT5)  $(PROFILEOPT6)  $(PROFILEOPT7)  $(PROFILEOPT8)  \
+             $(PROFILEOPT9)  $(PROFILEOPT10) $(PROFILEOPT11) $(PROFILEOPT12) \
+             $(PROFILEOPT13) $(PROFILEOPT14) $(PROFILEOPT15) $(PROFILEOPT16) \
+             $(PROFILEOPT17) $(PROFILEOPT18) $(PROFILEOPT19) $(PROFILEOPT20) \
+             $(PROFILEOPT21) $(PROFILEOPT22) $(PROFILEOPT23) $(PROFILEOPT24) \
+             $(PROFILEOPT25) $(PROFILEOPT26) $(PROFILEOPT27) $(PROFILEOPT28) \
+             $(PROFILEOPT29) $(PROFILEOPT30) $(PROFILEOPT31) $(PROFILEOPT32) \
+             $(PROFILEOPT33) $(PROFILEOPT34) $(PROFILEOPT35) $(PROFILEOPT36) \
+              $(PROFILEOPT37) $(PROFILEOPT38) $(PROFILEOPT39) $(PROFILEOPT40) \
+              $(PROFILEOPT41) $(PROFILEOPT42) $(PROFILEOPT43) $(PROFILEOPT44) \
+              $(PROFILEOPT45) $(PROFILEOPT46) $(PROFILEOPT47) $(PROFILEOPT48) \
+              $(PROFILEOPT49) $(PROFILEOPT50) $(PROFILEOPT51) $(PROFILEOPT52) \
+              $(PROFILEOPT53) $(PROFILEOPT54) $(PROFILEOPT55) $(PROFILEOPT56) \
+             $(PROFILEOPT57) $(PROFILEOPT58) $(PROFILEOPT59) $(PROFILEOPT60) \
+             $(PROFILEOPT61) $(PROFILEOPT62) $(PROFILEOPT63) $(PROFILEOPT64) \
+             $(PROFILEOPT65) $(PROFILEOPT66) $(PROFILEOPT67) $(PROFILEOPT68) \
+             $(PROFILEOPT69) $(PROFILEOPT70) $(PROFILEOPT71) $(PROFILEOPT72) \
+             $(PROFILEOPT73) $(PROFILEOPT74) $(PROFILEOPT75) $(PROFILEOPT76) \
+             $(TRACEOPT)
+
+##############################################
+
+TAU_LINKER_OPTS = $(TAU_LINKER_OPT1) $(TAU_LINKER_OPT2) $(TAU_LINKER_OPT3) \
+                  $(TAU_LINKER_OPT4) $(TAU_LINKER_OPT5) $(TAU_LINKER_OPT6) \
+                  $(TAU_LINKER_OPT7) $(TAU_LINKER_OPT8) $(TAU_LINKER_OPT9) \
+                  $(TAU_LINKER_OPT10) $(TAU_LINKER_OPT11) $(TAU_LINKER_OPT12)
+
+##############################################
+
+############# TAU Fortran ####################
+TAU_LINKER=$(TAU_CXX)
+#INTEL_FORTRAN##TAU_LINKER=$(TAU_F90) #ENDIF#
+#INTEL32_FORTRAN##TAU_LINKER=$(TAU_F90) #ENDIF#
+# Intel efc compiler acts as a linker - NO. Let C++ be the linker. 
+
+##############################################
+############# TAU Options ####################
+TAUDEFS        = $(PROFILEOPTS) 
+
+TAUINC         = -I$(TAU_INC_DIR)
+
+TAULIBS                = $(TAUHELPER) -L$(TAU_LIB_DIR) -ltau$(TAU_CONFIG)  $(TAU_LINKER_OPTS)
+
+TAUMPILIBS     = $(TAU_MPI_LIB)
+
+TAUMPIFLIBS    = $(TAU_MPI_FLIB)
+
+### ACL S/W requirement
+TAU_DEFS       = $(TAUDEFS)
+
+TAU_INCLUDE    = -I$(TAU_INC_DIR)
+#PERFLIB#TAU_INCLUDE = -I$(PERFINCDIR) #ENDIF#
+#PERFLIB#TAU_DEFS = #ENDIF#
+#PERFLIB#TAU_COMPILER_EXTRA_OPTIONS=-optTau=-p #ENDIF#
+
+TAU_INCLUDE_MEMORY = -I$(TAU_INC_DIR)/Memory
+#IBMXLCAPPLE#TAU_INCLUDE_MEMORY = -I$(TAU_INC_DIR)/MemoryWrapper #ENDIF#
+#APPLECXX#TAU_INCLUDE_MEMORY = -I$(TAU_INC_DIR)/MemoryWrapper #ENDIF#
+
+TAU_LIBS       = $(TAUHELPER) -L$(TAU_LIB_DIR) -ltau$(TAU_CONFIG)   $(TAU_LINKER_OPTS) 
+#PERFLIB#TAU_LIBS = #ENDIF#
+
+TAU_SHLIBS     = $(TAUHELPER) -L$(TAU_LIB_DIR) -lTAUsh$(TAU_CONFIG) $(TAU_LINKER_OPTS) $(TAU_LINKER_SHOPTS) $(TAU_MPI_LIB)
+#PERFLIB#TAU_SHLIBS = #ENDIF#
+TAU_EXLIBS     = $(TAUHELPER) -L$(TAU_LIB_DIR) -lTAU $(TAU_LINKER_OPTS) $(TAU_LINKER_SHOPTS) $(TAU_MPI_LIB)
+
+TAU_SHLIBS_NOSHOPTS = $(TAUHELPER) -L$(TAU_LIB_DIR) -lTAUsh$(TAU_CONFIG) $(TAU_LINKER_OPTS)
+
+TAU_DISABLE    = $(TAUHELPER) -L$(TAU_LIB_DIR) -lTauDisable
+
+TAU_MPI_INCLUDE        = $(TAU_MPI_INC)
+
+TAU_MPI_LIBS   = $(TAU_MPI_LIB)
+
+TAU_MPI_FLIBS  = $(TAU_MPI_FLIB)
+
+## TAU TRACE INPUT LIBRARY (can build a trace converter using TAU TIL)
+TAU_TRACE_INPUT_LIB = -L$(TAU_LIB_DIR) -lTAU_traceinput$(TAU_CONFIG)
+
+## Don't include -lpthread or -lsmarts. Let app. do that. 
+#############################################
+## IBM SPECIFIC CHANGES TO TAU_MPI_LIBS
+#SP1#TAU_MPI_LDFLAGS  = $(TAU_IBM_LD_FLAGS) #ENDIF#
+TAU_LDFLAGS  = $(TAU_MPI_LDFLAGS) #ENDIF##MPI#
+#SP1#TAU_IBM_MPI_LIBS    = $(TAU_MPI_LIB)  -L$(TAU_MPILIB_DIR)/ip  -lvtd$(TAU_MPI_R_SUFFIX) #ENDIF#
+#SP1#TAU_IBM_FMPI_LIBS    = $(TAU_MPI_FLIB)  -L$(TAU_MPILIB_DIR)/ip  -lvtd$(TAU_MPI_R_SUFFIX) #ENDIF#
+#SP1#TAU_MPI_LIBS_FLAGS= $(TAU_IBM_MPI_LIBS) #ENDIF#
+#SP1#TAU_MPI_FLIBS_FLAGS   = $(TAU_IBM_MPI_FLIBS) #ENDIF#
+TAU_MPI_LIBS_FLAGS = $(TAU_MPI_LIB) #ENDIF##MPI#
+TAU_MPI_FLIBS_FLAGS  = $(TAU_MPI_FLIB) #ENDIF##MPI#
+TAU_MPI_LIBS = $(TAU_MPI_LIBS_FLAGS) #ENDIF##MPI#
+TAU_MPI_FLIBS  = $(TAU_MPI_FLIBS_FLAGS) #ENDIF##MPI#
+
+#SP1#TAUMPILIBS      = $(TAU_MPI_LIBS)         #ENDIF#
+#SP1#TAUMPIFLIBS     = $(TAU_MPI_FLIBS)        #ENDIF#
+#############################################
+#SHMEM#TAU_SHMEM_OBJS               = TauShmemCray.o     #ENDIF#
+#SP1#TAU_SHMEM_OBJS                 = TauShmemTurbo.o    #ENDIF#
+#GPSHMEM#TAU_SHMEM_OBJS                     = TauShmemGpshmem.o  #ENDIF#
+
+TAU_SHMEM_INCLUDE      = $(TAU_SHMEM_INC)
+
+TAU_SHMEM_LIBS = -L$(TAU_PREFIX_INSTALL_DIR)/$(CONFIG_ARCH)/ -lTauShmem$(TAU_CONFIG) $(TAU_SHMEM_LIB)
+#############################################
+# TAU COMPILER SHELL SCRIPT OPTIONS
+TAUCOMPILEROPTS=  -optPdtDir="$(PDTDIR)/${PDTARCHDIR}"\
+        -optPdtCOpts="$(TAU_INCLUDE) $(TAU_DEFS) $(TAU_MPI_INCLUDE)"\
+        -optPdtCxxOpts="$(TAU_INCLUDE) $(TAU_DEFS) $(TAU_MPI_INCLUDE)"\
+        -optTauInstr="$(TAU_BIN_DIR)/tau_instrumentor" \
+        -optNoMpi \
+       -optOpariDir="$(OPARIDIR)" -optOpariTool="$(TAU_OPARI_TOOL)" \
+       -optTauCC="$(TAU_CC)" \
+       -optTauIncludes="$(TAU_INCLUDE) $(TAU_MPI_INCLUDE)" \
+       -optTauDefs="$(TAU_DEFS)" \
+        -optTauCompile="$(TAU_INCLUDE) $(TAU_MPI_INCLUDE) $(TAU_DEFS) "\
+        -optLinking="$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_LDFLAGS) $(TAU_CXXLIBS)"\
+        -optSharedLinking="$(TAU_MPI_FLIBS) $(TAU_EXLIBS) $(TAU_LDFLAGS) $(TAU_CXXLIBS)"\
+       $(TAU_COMPILER_EXTRA_OPTIONS) \
+        -optIncludeMemory="$(TAU_INCLUDE_MEMORY)"
+#############################################
+
+TAU_SHAREDLIBS=$(TAUHELPER) -L$(TAU_LIB_DIR) -lTAU $(TAU_LINKER_OPTS) $(TAU_LINKER_SHOPTS)
+SHAREDEXTRAS=
+#FORCESHARED#SHAREDEXTRAS=-optSharedLinkReset="$(TAU_SHAREDLIBS) $(TAU_LDFLAGS) $(TAU_CXXLIBS) $(TAU_MPI_NOWRAP_FLIB)" -optShared #ENDIF#
+TAU_COMPILER=$(TAU_BIN_DIR)/tau_compiler.sh $(TAUCOMPILEROPTS) $(SHAREDEXTRAS)
+#############################################
+# These options could be included in the application Makefile as 
+#CFLAGS                = $(TAUDEFS) $(TAUINC)
+#
+#LIBS          = $(TAULIBS)
+#
+# To run the application without Profiling/Tracing use
+#CFLAGS                = $(TAUINC)   
+# Don't use TAUDEFS but do include TAUINC
+# Also ignore TAULIBS when Profiling/Tracing is not used.
+#############################################
+
diff --git a/source/unres/src_MD_DFA/Makefile_MPICH_ifort b/source/unres/src_MD_DFA/Makefile_MPICH_ifort
new file mode 100644 (file)
index 0000000..4505541
--- /dev/null
@@ -0,0 +1,124 @@
+###################################################################
+INSTALL_DIR = /users/software/mpich-1.2.7p1_intel-10.1_em64_ssh
+
+
+FC= ifort
+
+OPT =  -g -ip -w -CB 
+
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include 
+FFLAGS1 = -c -w -g -d2 -CA -CB -I$(INSTALL_DIR)/include 
+FFLAGS2 = -c -w -g -O0 -I$(INSTALL_DIR)/include  
+FFLAGSE = -c -w -O3 -ipo -ipo_obj  -opt_report -I$(INSTALL_DIR)/include
+
+
+LIBS = -L$(INSTALL_DIR)/lib -lmpich xdrf/libxdrf.a
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS} ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        MP.o compare_s1.o prng.o \
+        banach.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o test.o
+
+GAB: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DUNRES -DISNAN -DMP -DMPI \
+       -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC
+GAB: BIN = ../../../bin/unres/MD/unres_ifort_MPICH_GAB.exe
+GAB: ${object} xdrf/libxdrf.a
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+E0LL2Y: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DUNRES -DISNAN -DMP -DMPI \
+       -DSPLITELE -DLANG0
+E0LL2Y: BIN = ../../../bin/unres/MD/unres_ifort_MPICH_E0LL2Y.exe
+E0LL2Y: ${object} xdrf/libxdrf.a
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+xdrf/libxdrf.a:
+       cd xdrf && make
+
+
+clean:
+       /bin/rm -f *.o && /bin/rm -f compinfo && cd xdrf && make clean
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.F
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.F
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new_barrier.o : energy_p_new_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new_barrier.F
+
+gradient_p.o : gradient_p.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} gradient_p.F
+
+energy_p_new-sep_barrier.o : energy_p_new-sep_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep_barrier.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+MD_A-MTS.o : MD_A-MTS.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} MD_A-MTS.F
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} add.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS2} eigen.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/Makefile_aix_xlf b/source/unres/src_MD_DFA/Makefile_aix_xlf
new file mode 100644 (file)
index 0000000..b226425
--- /dev/null
@@ -0,0 +1,113 @@
+CPPFLAGS =  -WF,-DUNRES -WF,-DMP -WF,-DMPI -WF,-DSPLITELE -WF,-DISNAN -WF,-DAIX
+#-DPROCOR
+## -DMOMENT
+#-DCO_BIAS
+#-DCRYST_TOR
+#-DDEBUG
+
+INSTALL_DIR = 
+#
+FC= mpxlf90  -qfixed -w
+
+OPT =  -q64 
+
+FFLAGS = -c ${OPT} -O3
+FFLAGS1 = -c ${OPT} -O2
+FFLAGS2 = -c ${OPT} -O
+FFLAGSE = -c ${OPT} -O4  
+
+
+BIN = ${HOME}/UNRES/bin/unres_MD.exe
+LIBS = -qipa
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+all: unresCSA
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS}  ${CPPFLAGS} $*.F
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng_32.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+
+unresCSA: ${objectCSA}
+       cc -o compinfo compinfo.c
+       ./compinfo
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${objectCSA} cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o
+       /bin/rm *.il
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.f
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.f
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new.o : energy_p_new.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new.F
diff --git a/source/unres/src_MD_DFA/Makefile_bigben b/source/unres/src_MD_DFA/Makefile_bigben
new file mode 100644 (file)
index 0000000..261dd8e
--- /dev/null
@@ -0,0 +1,138 @@
+#
+FC= ftn
+OPT =  -fast  \
+-Minline=name:scalar2,scalar,transpose2,matvec2,prodmat3 \
+-Mprefetch=distance:8,nta
+
+#OPT = -C -g
+#OPT1 = -g -fast
+OPT1 = ${OPT}
+OPT2 = -fast
+OPT2 = ${OPT}
+OPTE = ${OPT}
+
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include
+FFLAGS1 = -c ${OPT1} -I$(INSTALL_DIR)/include
+FFLAGS2 = -c ${OPT2} -I$(INSTALL_DIR)/include
+FFLAGSE = ${FFLAGS} 
+
+CFLAGS = -DSGI -c
+
+BIN = ../bin/unres_MD_Tc_procor-newmat-novec-noparint_barrier_corr-split.exe
+LIBS = xdrf/libxdrf.a
+
+CPPFLAGS = -DLINUX -DUNRES -DMP -DMPI -DPGI \
+           -DSPLITELE -DPROCOR -DAMD64 -DLANG0 \
+#-DTIMING \
+#   -DCRYST_BOND -DCRYST_THETA -DCRYST_SC 
+#-DPARVEC #-DPARINT -DPARINTDER  
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS}  ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+unres: ${object} proc_proc.o
+       cc -o compinfo compinfo.c 
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} proc_proc.o cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.f
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.f
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new.o : energy_p_new.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new.F
+
+energy_p_new-sep.o : energy_p_new-sep.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} add.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS1} eigen.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/Makefile_bigben-oldparm b/source/unres/src_MD_DFA/Makefile_bigben-oldparm
new file mode 100644 (file)
index 0000000..87d66c7
--- /dev/null
@@ -0,0 +1,136 @@
+#
+FC= ftn
+OPT =  -fast  \
+-Minline=name:scalar2,scalar,transpose2,matvec2,prodmat3 \
+-Mprefetch=distance:8,nta
+
+#OPT = -C -g
+#OPT1 = -g -fast
+OPT1 = -fast
+OPT2 = -fast
+OPT2 = ${OPT}
+OPTE = ${OPT}
+
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include
+FFLAGS1 = -c ${OPT1} -I$(INSTALL_DIR)/include
+FFLAGS2 = -c ${OPT2} -I$(INSTALL_DIR)/include
+FFLAGSE = ${FFLAGS} 
+
+CFLAGS = -DSGI -c
+
+BIN = ../bin/unres_MD_Tc_procor-newmat-matgather-oldparm.exe
+LIBS = xdrf/libxdrf.a
+
+CPPFLAGS = -DLINUX -DUNRES -DMP -DMPI -DPGI \
+           -DSPLITELE -DPROCOR -DAMD64 -DLANG0 -DPARVEC -DPARINT -DPARINTDER \
+          -DCRYST_BOND -DCRYST_THETA -DCRYST_SC
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS}  ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new.o \
+       energy_p_new-sep.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+unres: ${object} proc_proc.o
+       cc -o compinfo compinfo.c 
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} proc_proc.o cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.f
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.f
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new.o : energy_p_new.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new.F
+
+energy_p_new-sep.o : energy_p_new-sep.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} add.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS1} eigen.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/Makefile_bigben-tau b/source/unres/src_MD_DFA/Makefile_bigben-tau
new file mode 100644 (file)
index 0000000..ee02905
--- /dev/null
@@ -0,0 +1,137 @@
+#
+#FC= ftn
+TAU_MAKEFILE=/usr/local/packages/TAU-2.17/tau-2.17/xt3/lib/Makefile.tau-mpi-pdt-pgi
+FC=tau_f90.sh
+OPT =  -fast  \
+-Minline=name:scalar2,scalar,transpose2,matvec2,prodmat3 \
+-Mprefetch=distance:8,nta
+
+#OPT = -C -g
+#OPT1 = -g -fast
+OPT1 = -fast
+OPT2 = -fast
+OPT2 = ${OPT}
+OPTE = ${OPT}
+
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include
+FFLAGS1 = -c ${OPT1} -I$(INSTALL_DIR)/include
+FFLAGS2 = -c ${OPT2} -I$(INSTALL_DIR)/include
+FFLAGSE = ${FFLAGS} 
+
+CFLAGS = -DSGI -c
+
+BIN = ../bin/unres_MD_Tc_procor-newmat-noparint-barrier-tau.exe
+LIBS = xdrf/libxdrf.a
+
+CPPFLAGS = -DLINUX -DUNRES -DMP -DMPI -DPGI \
+       -DSPLITELE -DPROCOR -DAMD64 -DLANG0 -DPARVEC
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS}  ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+unres: ${object} proc_proc.o
+       cc -o compinfo compinfo.c 
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} proc_proc.o cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o *.pp.[fF] *.pp.inst.[fF]
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.f
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.f
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new.o : energy_p_new.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new.F
+
+energy_p_new-sep.o : energy_p_new-sep.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} add.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS1} eigen.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/Makefile_galera b/source/unres/src_MD_DFA/Makefile_galera
new file mode 100644 (file)
index 0000000..899ec63
--- /dev/null
@@ -0,0 +1,147 @@
+CPPFLAGS = -DPROCOR -DLINUX -DUNRES -DMP -DMPI -DPGI -DISNAN \
+           -DSPLITELE -DAMD64 -DLANG0 
+#           -DCRYST_BOND -DCRYST_THETA -DCRYST_SC 
+#-DCRYST_TOR
+# -DPROCOR
+#           -DTSCSC
+#-DTIMING \
+# -DCRYST_BOND -DCRYST_THETA -DCRYST_SC 
+# -DMOMENT
+#-DPARVEC 
+#-DPARINT -DPARINTDER  
+
+#INSTALL_DIR = /users/local/mpi64/mpich-1.2.7p1/
+#INSTALL_DIR = /users/software/mpich-1.2.7p1_intel-10.1_em64_ssh
+#INSTALL_DIR = /users/software/mpich2.x86_64/
+#INSTALL_DIR = /opt/mpi/mvapich2
+INSTALL_DIR = /opt/mpi/mvapich
+
+FC= ifort
+FCL= ${INSTALL_DIR}/bin/mpif77
+
+OPT =  -O3 -ip -w -xHost
+
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include 
+FFLAGS1 = -c -w -g -d2 -CA -CB -I$(INSTALL_DIR)/include 
+FFLAGS2 = -c -w -g -O0 -I$(INSTALL_DIR)/include  
+FFLAGSE = -c -w -xHost -O3 -ipo -ipo_obj -no-prec-div -opt_report -I$(INSTALL_DIR)/include
+
+
+BIN = ../bin/unres_Tc_procor_new_em64_hremd_mpich1.exe
+LIBS = -L$(INSTALL_DIR)/lib -lmpich xdrf_em64/libxdrf.a -lpthread 
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS} ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng_32.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+unres: ${object} 
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FCL} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o *.il
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.F
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.F
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new_barrier.o : energy_p_new_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new_barrier.F
+
+gradient_p.o : gradient_p.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} gradient_p.F
+
+energy_p_new-sep_barrier.o : energy_p_new-sep_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep_barrier.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+MD_A-MTS.o : MD_A-MTS.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} MD_A-MTS.F
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} add.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS2} eigen.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/Makefile_intrepid b/source/unres/src_MD_DFA/Makefile_intrepid
new file mode 100644 (file)
index 0000000..2b57f9e
--- /dev/null
@@ -0,0 +1,151 @@
+#
+FC=/bgsys/drivers/ppcfloor/comm/bin/mpixlf77
+OPT =  -O4 -qarch=450 -qtune=450 
+#OPT =  -O3 -qarch=450 -qtune=450 -qdebug=function_trace
+#OPT =  -O -qarch=450 -qtune=450 
+#OPT = -O0 -C -g -qarch=450 -qtune=450 #-qdebug=function_trace
+#-Minline=name:scalar2,scalar,transpose2,matvec2,prodmat3 \
+#-Mprefetch=distance:8,nta
+
+#OPT1 = -O -g -qarch=450 -qtune=450
+#OPT1 = -O -g -qarch=450 -qtune=450 -qdebug=function_trace
+OPT1 = ${OPT}
+#OPT2 = -O2 -qarch=450 -qtune=450
+#OPT2 = -O2 -qarch=450 -qtune=450 -qdebug=function_trace
+OPT2 = ${OPT}
+#OPTE = -O4 -qarch=450 -qtune=450
+#OPTE = -O4 -qarch=450 -qtune=450 
+OPTE=${OPT}
+
+CFLAGS = -c
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include
+FFLAGS1 = -c ${OPT1} -I$(INSTALL_DIR)/include
+FFLAGS2 = -c ${OPT2} -I$(INSTALL_DIR)/include
+FFLAGSE = -c ${OPTE} -I$(INSTALL_DIR)/include
+
+BIN = ../bin/unres_MD_Tc_procor-newparm-O4-parcorr.exe
+#BIN = ../bin/unres_MD_Tc_procor-newparm-O4-PARINT-parcorr.exe
+#BIN = ../bin/unres_MD_Tc_procor-newparm-parvecmatint-O4-notau1.exe
+#BIN = ../bin/unres_MD_Tc_procor-newparm-O4-notau1.exe
+#LIBS = xdrf/libxdrf.a  /home/liwo/UNRES/LIB/libmemmon.a
+LIBS = xdrf/libxdrf.a
+
+CPPFLAGS = -WF,-DAIX -WF,-DISNAN -WF,-DUNRES -WF,-DMP -WF,-DMPI -WF,-DPGI \
+           -WF,-DSPLITELE -WF,-DPROCOR -WF,-DAMD64 -WF,-DLANG0
+#-WF,-DPARINT -WF,-DPARINTDER 
+#-WF,-DPARVEC -WF,-DPARMAT -WF,-DMATGATHER
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+obj: ${object}
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS}  ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+unres: ${object} 
+       ${CC} -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.f
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.f
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} eigen.f
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} add.f
+
+energy_p_new.o : energy_p_new.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new.F
+
+energy_p_new-sep.o : energy_p_new-sep.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
+
+compinfo: compinfo.c 
+       ${CC} ${CFLAGS} compinfo.c
diff --git a/source/unres/src_MD_DFA/Makefile_lnx_ifc10_opteron b/source/unres/src_MD_DFA/Makefile_lnx_ifc10_opteron
new file mode 100644 (file)
index 0000000..13c3249
--- /dev/null
@@ -0,0 +1,143 @@
+CPPFLAGS = -DPROCOR -DLINUX -DUNRES -DMP -DMPI -DPGI -DISNAN \
+           -DSPLITELE -DAMD64 -DLANG0 
+#           -DCRYST_BOND -DCRYST_THETA -DCRYST_SC 
+#-DCRYST_TOR
+# -DPROCOR
+#           -DTSCSC
+#-DTIMING \
+# -DCRYST_BOND -DCRYST_THETA -DCRYST_SC 
+# -DMOMENT
+#-DPARVEC 
+#-DPARINT -DPARINTDER  
+
+INSTALL_DIR = /users/software/mpich-1.2.7p1_intel-10.1_em64_ssh
+
+
+FC= ifort
+
+OPT =  -O3 -ip -w 
+
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include 
+FFLAGS1 = -c -w -g -d2 -CA -CB -I$(INSTALL_DIR)/include 
+FFLAGS2 = -c -w -g -O0 -I$(INSTALL_DIR)/include  
+FFLAGSE = -c -w -O3 -ipo -ipo_obj  -opt_report -I$(INSTALL_DIR)/include
+
+
+BIN = ../bin/unres_Tc_procor_new_em64_nh_hremd_92110.exe
+LIBS = -L$(INSTALL_DIR)/lib -lmpich xdrf_em64/libxdrf.a -lpthread 
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS} ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng_32.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+unres: ${object} 
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o *.il
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.F
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.F
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new_barrier.o : energy_p_new_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new_barrier.F
+
+gradient_p.o : gradient_p.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} gradient_p.F
+
+energy_p_new-sep_barrier.o : energy_p_new-sep_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep_barrier.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+MD_A-MTS.o : MD_A-MTS.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} MD_A-MTS.F
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} add.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS2} eigen.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/Makefile_lnx_ifc10_opteron_oldparm b/source/unres/src_MD_DFA/Makefile_lnx_ifc10_opteron_oldparm
new file mode 100644 (file)
index 0000000..d155fa2
--- /dev/null
@@ -0,0 +1,143 @@
+CPPFLAGS = -DPROCOR -DLINUX -DUNRES -DMP -DMPI -DPGI -DISNAN \
+           -DSPLITELE -DAMD64 -DLANG0 \
+       -DCRYST_BOND -DCRYST_THETA -DCRYST_SC 
+#-DCRYST_TOR
+# -DPROCOR
+#           -DTSCSC
+#-DTIMING \
+# -DCRYST_BOND -DCRYST_THETA -DCRYST_SC 
+# -DMOMENT
+#-DPARVEC 
+#-DPARINT -DPARINTDER  
+
+INSTALL_DIR = /users/software/mpich-1.2.7p1_intel-10.1_em64_ssh
+
+
+FC= ifort
+
+OPT =  -O3 -ip -w 
+
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include 
+FFLAGS1 = -c -w -g -d2 -CA -CB -I$(INSTALL_DIR)/include 
+FFLAGS2 = -c -w -g -O0 -I$(INSTALL_DIR)/include  
+FFLAGSE = -c -w -O3 -ipo -ipo_obj  -opt_report -I$(INSTALL_DIR)/include
+
+
+BIN = ../bin/unres_Tc_procor_old_em64_nh_hremd_92110.exe
+LIBS = -L$(INSTALL_DIR)/lib -lmpich xdrf_em64/libxdrf.a -lpthread 
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+
+all: unres
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS} ${CPPFLAGS} $*.F
+
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns_CSA.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        together.o csa.o minim_jlee.o shift.o diff12.o bank.o newconf.o ran.o \
+        indexx.o MP.o compare_s1.o prng_32.o \
+        test.o banach.o distfit.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o
+
+unres: ${object} 
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+
+clean:
+       /bin/rm *.o *.il
+
+newconf.o: newconf.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.f
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.F
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.F
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new_barrier.o : energy_p_new_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new_barrier.F
+
+gradient_p.o : gradient_p.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} gradient_p.F
+
+energy_p_new-sep_barrier.o : energy_p_new-sep_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep_barrier.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+MD_A-MTS.o : MD_A-MTS.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} MD_A-MTS.F
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} add.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS2} eigen.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/Makefile_single_gfortran b/source/unres/src_MD_DFA/Makefile_single_gfortran
new file mode 100644 (file)
index 0000000..8e393f8
--- /dev/null
@@ -0,0 +1,130 @@
+FC= gfortran
+FFLAGS = -c ${OPT} -I.
+FFLAGS1 = -c ${OPT1} -I.
+
+CC = cc
+
+CFLAGS = -DLINUX -DPGI -c
+
+OPT =  -O
+#OPT1 = -fbounds-check -g -O
+
+#OPT =  -fbounds-check -g
+OPT1 = -g
+
+# -Mvect <---slows down
+#        -Minline=name:matmat2 <---false convergence
+
+LIBS = -Lxdrf -lxdrf
+#-DMOMENT
+#-DCO_BIAS
+#-DCRYST_TOR
+#-DDEBUG
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+all: 
+       @echo "Specify force field: GAB or E0LL2Y"
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS} ${CPPFLAGS} $*.F
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        MP.o compare_s1.o prng_32.o \
+        banach.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o test.o
+
+GAB: CPPFLAGS = -DPROCOR -DLINUX -DUNRES -DISNAN \
+       -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC
+GAB: BIN = ../../../bin/unres/MD/unres_gfortran_single_GAB.exe
+GAB: ${object} xdrf/libxdrf.a
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+E0LL2Y: CPPFLAGS = -DPROCOR -DLINUX -DUNRES -DISNAN \
+       -DSPLITELE -DLANG0
+E0LL2Y: BIN = ../../../bin/unres/MD/unres_gfortran_single_E0LL2Y.exe
+E0LL2Y: ${object} xdrf/libxdrf.a
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+xdrf/libxdrf.a:
+       cd xdrf && make
+
+clean:
+       /bin/rm -f *.o && /bin/rm -f compinfo && cd xdrf && make clean
+
+newconf.o: newconf.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} newconf.F
+
+bank.o: bank.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} bank.F
+
+diff12.o: diff12.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} diff12.f
+
+csa.o: csa.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} csa.f
+
+shift.o: shift.F
+       ${FC} ${FFLAGS1} ${CPPFLAGS} shift.F
+
+ran.o: ran.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} ran.f
+
+together.o: together.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} together.F
+
+fitsq.o: fitsq.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} fitsq.f
+
+rmsd.o: rmsd.F
+       ${FC} ${FFLAGS1} ${CPPFLAGS} rmsd.F
+
+contact.o: contact.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} contact.f
+
+minim_jlee.o:  minim_jlee.F
+       ${FC} ${FFLAGS1} ${CPPFLAGS}  minim_jlee.F
+
+minimize_p.o:  minimize_p.F
+       ${FC} ${FFLAGS1} ${CPPFLAGS}  minimize_p.F
+
+gen_rand_conf.o:  gen_rand_conf.F
+       ${FC} ${FFLAGS} ${CPPFLAGS}  gen_rand_conf.F
+
+
+test.o: test.F
+       ${FC} ${FFLAGS1} ${CPPFLAGS} test.F
+
+elecont.o: elecont.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} elecont.f
+
+eigen.o: eigen.f
+       ${FC} ${FFLAGS1} eigen.f
+
+blas.o: blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o: add.f
+       ${FC} ${FFLAGS1} add.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/Makefile_single_ifort b/source/unres/src_MD_DFA/Makefile_single_ifort
new file mode 100644 (file)
index 0000000..bc66bba
--- /dev/null
@@ -0,0 +1,127 @@
+FC = ifort
+FFLAGS = -c ${OPT} -I$(INSTALL_DIR)/include
+FFLAGS1 = -c -w -g -d2 -CA -CB -I$(INSTALL_DIR)/include
+FFLAGS2 = -c -w -g -O0 -I$(INSTALL_DIR)/include
+FFLAGSE = -c -w -O3 -ipo -ipo_obj  -opt_report -I$(INSTALL_DIR)/include
+
+CC = cc
+
+CFLAGS = -DLINUX -DPGI -c
+
+OPT =  -O3 -ip -w
+
+# -Mvect <---slows down
+#        -Minline=name:matmat2 <---false convergence
+
+LIBS = -Lxdrf -lxdrf
+#-DMOMENT
+#-DCO_BIAS
+#-DCRYST_TOR
+#-DDEBUG
+
+ARCH = LINUX
+PP = /lib/cpp -P
+
+all: 
+       @echo "Specify force field: GAB or E0LL2Y"
+
+.SUFFIXES: .F
+.F.o:
+       ${FC} ${FFLAGS} ${CPPFLAGS} $*.F
+
+object = unres.o arcos.o cartprint.o chainbuild.o convert.o initialize_p.o \
+        matmult.o readrtns.o parmread.o gen_rand_conf.o printmat.o map.o \
+        pinorm.o randgens.o rescode.o intcor.o timing.o misc.o intlocal.o \
+        cartder.o checkder_p.o econstr_local.o energy_p_new_barrier.o \
+       energy_p_new-sep_barrier.o gradient_p.o minimize_p.o sumsld.o \
+        cored.o rmdd.o geomout.o readpdb.o regularize.o thread.o fitsq.o mcm.o \
+        mc.o bond_move.o refsys.o check_sc_distr.o check_bond.o contact.o djacob.o \
+        eigen.o blas.o add.o entmcm.o minim_mcmf.o \
+        MP.o compare_s1.o prng_32.o \
+        banach.o rmsd.o elecont.o dihed_cons.o \
+        sc_move.o local_move.o \
+        intcartderiv.o lagrangian_lesyng.o\
+       stochfric.o kinetic_lesyng.o MD_A-MTS.o moments.o int_to_cart.o \
+        surfatom.o sort.o muca_md.o MREMD.o rattle.o gauss.o energy_split-sep.o \
+        q_measure.o gnmr1.o test.o
+
+GAB: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DUNRES -DISNAN \
+       -DSPLITELE -DLANG0 -DCRYST_BOND -DCRYST_THETA -DCRYST_SC
+GAB: BIN = ../../../bin/unres/MD/unres_ifort_single_GAB.exe
+GAB: ${object} xdrf/libxdrf.a
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+E0LL2Y: CPPFLAGS = -DPROCOR -DLINUX -DPGI -DUNRES -DISNAN \
+       -DSPLITELE -DLANG0
+E0LL2Y: BIN = ../../../bin/unres/MD/unres_ifort_single_E0LL2Y.exe
+E0LL2Y: ${object} xdrf/libxdrf.a
+       cc -o compinfo compinfo.c
+       ./compinfo | true
+       ${FC} ${FFLAGS} cinfo.f
+       ${FC} ${OPT} ${object} cinfo.o ${LIBS}  -o ${BIN}
+
+xdrf/libxdrf.a:
+       cd xdrf && make
+
+clean:
+       /bin/rm -f *.o && /bin/rm -f compinfo && cd xdrf && make clean
+
+test.o: test.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} test.F
+
+chainbuild.o: chainbuild.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} chainbuild.F
+
+matmult.o: matmult.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} matmult.f
+
+parmread.o : parmread.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} parmread.F
+
+intcor.o : intcor.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} intcor.f
+
+cartder.o : cartder.F
+       ${FC} ${FFLAGS} ${CPPFLAGS} cartder.F
+
+readpdb.o : readpdb.F
+       ${FC} ${FFLAGS2} ${CPPFLAGS} readpdb.F
+
+sumsld.o : sumsld.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} sumsld.f
+        
+cored.o : cored.f
+       ${FC} ${FFLAGS1} ${CPPFLAGS} cored.f
+rmdd.o : rmdd.f
+       ${FC} ${FFLAGS} ${CPPFLAGS} rmdd.f
+
+energy_p_new_barrier.o : energy_p_new_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new_barrier.F
+
+gradient_p.o : gradient_p.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} gradient_p.F
+
+energy_p_new-sep_barrier.o : energy_p_new-sep_barrier.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} energy_p_new-sep_barrier.F
+
+lagrangian_lesyng.o : lagrangian_lesyng.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} lagrangian_lesyng.F
+
+MD_A-MTS.o : MD_A-MTS.F
+       ${FC} ${FFLAGSE} ${CPPFLAGS} MD_A-MTS.F
+
+blas.o : blas.f
+       ${FC} ${FFLAGS1} blas.f
+
+add.o : add.f
+       ${FC} ${FFLAGS1} add.f
+
+eigen.o : eigen.f
+       ${FC} ${FFLAGS2} eigen.f
+
+proc_proc.o: proc_proc.c
+       ${CC} ${CFLAGS} proc_proc.c
diff --git a/source/unres/src_MD_DFA/README b/source/unres/src_MD_DFA/README
new file mode 100644 (file)
index 0000000..2b1d2be
--- /dev/null
@@ -0,0 +1,2 @@
+The program will fail if there is no "Makefile" file.\r
+You must copy (cp MakeXXXX Makefile)  or use a symbolic link (ln -s MakeXXXX Makefile) before compiling.\r
diff --git a/source/unres/src_MD_DFA/add.f b/source/unres/src_MD_DFA/add.f
new file mode 100644 (file)
index 0000000..fd91a70
--- /dev/null
@@ -0,0 +1,28 @@
+      SUBROUTINE ABRT
+      STOP 'IN ABRT'
+      END     
+C*MODULE MTHLIB  *DECK VCLR
+      SUBROUTINE VCLR(A,INCA,N)
+C
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+C
+      DIMENSION A(*)
+C
+      PARAMETER (ZERO=0.0D+00)
+C
+C     ----- ZERO OUT VECTOR -A-, USING INCREMENT -INCA- -----
+C
+      IF (INCA .NE. 1) GO TO 200
+      DO 110 L=1,N
+         A(L) = ZERO
+  110 CONTINUE
+      RETURN
+C
+  200 CONTINUE
+      LA=1-INCA
+      DO 210 L=1,N
+         LA=LA+INCA
+         A(LA) = ZERO
+  210 CONTINUE
+      RETURN
+      END
diff --git a/source/unres/src_MD_DFA/arcos.f b/source/unres/src_MD_DFA/arcos.f
new file mode 100644 (file)
index 0000000..69810ea
--- /dev/null
@@ -0,0 +1,9 @@
+      FUNCTION ARCOS(X)
+      implicit real*8 (a-h,o-z)
+      include 'COMMON.GEO'
+      IF (DABS(X).LT.1.0D0) GOTO 1
+      ARCOS=0.5D0*(PI+DSIGN(1.0D0,X)*PI)
+      RETURN
+    1 ARCOS=DACOS(X)
+      RETURN
+      END
diff --git a/source/unres/src_MD_DFA/banach.f b/source/unres/src_MD_DFA/banach.f
new file mode 100644 (file)
index 0000000..7c43d77
--- /dev/null
@@ -0,0 +1,99 @@
+C
+C**********************
+      SUBROUTINE BANACH(N,NMAX,A,X,osob)
+C**********************
+C     Banachiewicz
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      DIMENSION A(NMAX,NMAX),X(NMAX),D(MAXRES6)
+      COMMON /BANII/ D
+      logical osob
+      osob=.false.
+      if (dabs(a(1,1)).lt.1.0d-15) then
+        osob=.true.
+        return
+      endif
+      D(1)=1./A(1,1)
+      DO 80 I=2,N
+      A(I,1)=A(1,I)
+      DO 81 J=2,I-1
+      XX=A(J,I)
+      DO 82 K=1,J-1
+      XX=XX-A(I,K)*A(J,K)
+   82 CONTINUE
+      A(I,J)=XX
+   81 CONTINUE
+      XX=A(I,I)
+      JJJJ=I-1
+      DO 83 J=1,JJJJ
+      AIJ=A(I,J)
+      AIJD=AIJ*D(J)
+      A(I,J)=AIJD
+      XX=XX-AIJ*AIJD
+   83 CONTINUE 
+      if (dabs(xx).lt.1.0d-15) then
+        osob=.true.
+        return
+      endif
+      D(I)=1./XX
+   80 CONTINUE
+C
+      CALL BANAII(N,NMAX,A,X)
+      RETURN
+      END
+C************************
+      SUBROUTINE BANAII(N,NMAX,A,X)
+C************************
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      DIMENSION A(NMAX,NMAX),X(NMAX),D(MAXRES6)
+      COMMON /BANII/ D
+      DO 90 I=1,N
+      Z=X(I)
+      JJJJ=I-1
+      DO 91 J=JJJJ,1,-1
+      Z=Z-A(I,J)*X(J)
+   91 CONTINUE
+      X(I)=Z
+   90 CONTINUE
+      DO 92 I=N,1,-1
+      Z=X(I)*D(I)
+      JJJJ=I+1
+      DO 93 J=JJJJ,N
+      Z=Z-A(J,I)*X(J)
+   93 CONTINUE
+      X(I)=Z
+   92 CONTINUE
+      RETURN
+      END
+C
+      SUBROUTINE MATINVERT(N,NMAX,A,A1,osob)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS' 
+      DIMENSION A(NMAX,NMAX),A1(NMAX,NMAX),D(MAXRES6)
+      COMMON /BANII/ D
+      DIMENSION X(NMAX)
+      logical osob
+      DO I=1,N
+        X(I)=0.0
+      ENDDO
+      X(1)=1.0
+      CALL BANACH(N,NMAX,A,X,osob)
+      if (osob) return
+      DO I=1,N
+        A1(I,1)=X(I)
+      ENDDO
+      DO I=2,N
+        DO J=1,N
+          X(J)=0.0
+        ENDDO
+        X(I)=1.0
+        CALL BANAII(N,NMAX,A,X)
+        DO J=1,N
+          A1(J,I)=X(J)
+        ENDDO
+      ENDDO
+      RETURN
+      END
+
+    
diff --git a/source/unres/src_MD_DFA/blas.f b/source/unres/src_MD_DFA/blas.f
new file mode 100644 (file)
index 0000000..142d821
--- /dev/null
@@ -0,0 +1,575 @@
+C 10 NOV 94 - MWS - DNRM2: REMOVE FTNCHECK WARNINGS
+C 11 JUN 94 - MWS - INCLUDE A COPY OF DGEMV (LEVEL TWO ROUTINE)
+C 11 AUG 87 - MWS - SANITIZE FLOATING POINT CONSTANTS IN DNRM2
+C 26 MAR 87 - MWS - USE GENERIC SIGN IN DROTG
+C 28 NOV 86 - STE - SUPPLY ALL LEVEL ONE BLAS
+C  7 JUL 86 - JAB - SANITIZE FLOATING POINT CONSTANTS
+C
+C BASIC LINEAR ALGEBRA SUBPROGRAMS (BLAS) FROM LINPACK  (LEVEL 1)
+C
+C   THIS MODULE SHOULD BE COMPILED ONLY IF SPECIALLY CODED
+C   VERSIONS OF THESE ROUTINES ARE NOT AVAILABLE ON THE TARGET MACHINE
+C
+C*MODULE BLAS1   *DECK DASUM
+      DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
+C
+C     TAKES THE SUM OF THE ABSOLUTE VALUES.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      DOUBLE PRECISION DX(1),DTEMP
+      INTEGER I,INCX,M,MP1,N,NINCX
+C
+      DASUM = 0.0D+00
+      DTEMP = 0.0D+00
+      IF(N.LE.0)RETURN
+      IF(INCX.EQ.1)GO TO 20
+C
+C        CODE FOR INCREMENT NOT EQUAL TO 1
+C
+      NINCX = N*INCX
+      DO 10 I = 1,NINCX,INCX
+        DTEMP = DTEMP + ABS(DX(I))
+   10 CONTINUE
+      DASUM = DTEMP
+      RETURN
+C
+C        CODE FOR INCREMENT EQUAL TO 1
+C
+C
+C        CLEAN-UP LOOP
+C
+   20 M = MOD(N,6)
+      IF( M .EQ. 0 ) GO TO 40
+      DO 30 I = 1,M
+        DTEMP = DTEMP + ABS(DX(I))
+   30 CONTINUE
+      IF( N .LT. 6 ) GO TO 60
+   40 MP1 = M + 1
+      DO 50 I = MP1,N,6
+        DTEMP = DTEMP + ABS(DX(I)) + ABS(DX(I + 1)) + ABS(DX(I + 2))
+     *  + ABS(DX(I + 3)) + ABS(DX(I + 4)) + ABS(DX(I + 5))
+   50 CONTINUE
+   60 DASUM = DTEMP
+      RETURN
+      END
+C*MODULE BLAS1   *DECK DAXPY
+      SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION DX(1),DY(1)
+C
+C     CONSTANT TIMES A VECTOR PLUS A VECTOR.
+C           DY(I) = DY(I) + DA * DX(I)
+C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      IF(N.LE.0)RETURN
+      IF (DA .EQ. 0.0D+00) RETURN
+      IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
+C
+C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
+C          NOT EQUAL TO 1
+C
+      IX = 1
+      IY = 1
+      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
+      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
+      DO 10 I = 1,N
+        DY(IY) = DY(IY) + DA*DX(IX)
+        IX = IX + INCX
+        IY = IY + INCY
+   10 CONTINUE
+      RETURN
+C
+C        CODE FOR BOTH INCREMENTS EQUAL TO 1
+C
+C
+C        CLEAN-UP LOOP
+C
+   20 M = MOD(N,4)
+      IF( M .EQ. 0 ) GO TO 40
+      DO 30 I = 1,M
+        DY(I) = DY(I) + DA*DX(I)
+   30 CONTINUE
+      IF( N .LT. 4 ) RETURN
+   40 MP1 = M + 1
+      DO 50 I = MP1,N,4
+        DY(I) = DY(I) + DA*DX(I)
+        DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
+        DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
+        DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
+   50 CONTINUE
+      RETURN
+      END
+C*MODULE BLAS1   *DECK DCOPY
+      SUBROUTINE  DCOPY(N,DX,INCX,DY,INCY)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION DX(*),DY(*)
+C
+C     COPIES A VECTOR.
+C           DY(I) <== DX(I)
+C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      IF(N.LE.0)RETURN
+      IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
+C
+C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
+C          NOT EQUAL TO 1
+C
+      IX = 1
+      IY = 1
+      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
+      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
+      DO 10 I = 1,N
+        DY(IY) = DX(IX)
+        IX = IX + INCX
+        IY = IY + INCY
+   10 CONTINUE
+      RETURN
+C
+C        CODE FOR BOTH INCREMENTS EQUAL TO 1
+C
+C
+C        CLEAN-UP LOOP
+C
+   20 M = MOD(N,7)
+      IF( M .EQ. 0 ) GO TO 40
+      DO 30 I = 1,M
+        DY(I) = DX(I)
+   30 CONTINUE
+      IF( N .LT. 7 ) RETURN
+   40 MP1 = M + 1
+      DO 50 I = MP1,N,7
+        DY(I) = DX(I)
+        DY(I + 1) = DX(I + 1)
+        DY(I + 2) = DX(I + 2)
+        DY(I + 3) = DX(I + 3)
+        DY(I + 4) = DX(I + 4)
+        DY(I + 5) = DX(I + 5)
+        DY(I + 6) = DX(I + 6)
+   50 CONTINUE
+      RETURN
+      END
+C*MODULE BLAS1   *DECK DDOT
+      DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION DX(1),DY(1)
+C
+C     FORMS THE DOT PRODUCT OF TWO VECTORS.
+C           DOT = DX(I) * DY(I)
+C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      DDOT = 0.0D+00
+      DTEMP = 0.0D+00
+      IF(N.LE.0)RETURN
+      IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
+C
+C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
+C          NOT EQUAL TO 1
+C
+      IX = 1
+      IY = 1
+      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
+      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
+      DO 10 I = 1,N
+        DTEMP = DTEMP + DX(IX)*DY(IY)
+        IX = IX + INCX
+        IY = IY + INCY
+   10 CONTINUE
+      DDOT = DTEMP
+      RETURN
+C
+C        CODE FOR BOTH INCREMENTS EQUAL TO 1
+C
+C
+C        CLEAN-UP LOOP
+C
+   20 M = MOD(N,5)
+      IF( M .EQ. 0 ) GO TO 40
+      DO 30 I = 1,M
+        DTEMP = DTEMP + DX(I)*DY(I)
+   30 CONTINUE
+      IF( N .LT. 5 ) GO TO 60
+   40 MP1 = M + 1
+      DO 50 I = MP1,N,5
+        DTEMP = DTEMP + DX(I)*DY(I) + DX(I + 1)*DY(I + 1) +
+     *   DX(I + 2)*DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + 4)
+   50 CONTINUE
+   60 DDOT = DTEMP
+      RETURN
+      END
+C*MODULE BLAS1   *DECK DNRM2
+      DOUBLE PRECISION FUNCTION DNRM2 ( N, DX, INCX)
+      INTEGER          NEXT
+      DOUBLE PRECISION   DX(1), CUTLO, CUTHI, HITEST, SUM, XMAX,ZERO,ONE
+      DATA   ZERO, ONE /0.0D+00, 1.0D+00/
+C
+C     EUCLIDEAN NORM OF THE N-VECTOR STORED IN DX() WITH STORAGE
+C     INCREMENT INCX .
+C     IF    N .LE. 0 RETURN WITH RESULT = 0.
+C     IF N .GE. 1 THEN INCX MUST BE .GE. 1
+C
+C           C.L.LAWSON, 1978 JAN 08
+C
+C     FOUR PHASE METHOD     USING TWO BUILT-IN CONSTANTS THAT ARE
+C     HOPEFULLY APPLICABLE TO ALL MACHINES.
+C         CUTLO = MAXIMUM OF  SQRT(U/EPS)  OVER ALL KNOWN MACHINES.
+C         CUTHI = MINIMUM OF  SQRT(V)      OVER ALL KNOWN MACHINES.
+C     WHERE
+C         EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1.
+C         U   = SMALLEST POSITIVE NO.   (UNDERFLOW LIMIT)
+C         V   = LARGEST  NO.            (OVERFLOW  LIMIT)
+C
+C     BRIEF OUTLINE OF ALGORITHM..
+C
+C     PHASE 1    SCANS ZERO COMPONENTS.
+C     MOVE TO PHASE 2 WHEN A COMPONENT IS NONZERO AND .LE. CUTLO
+C     MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUTLO
+C     MOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M
+C     WHERE M = N FOR X() REAL AND M = 2*N FOR COMPLEX.
+C
+C     VALUES FOR CUTLO AND CUTHI..
+C     FROM THE ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER
+C     DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS..
+C     CUTLO, S.P.   U/EPS = 2**(-102) FOR  HONEYWELL.  CLOSE SECONDS ARE
+C                   UNIVAC AND DEC AT 2**(-103)
+C                   THUS CUTLO = 2**(-51) = 4.44089E-16
+C     CUTHI, S.P.   V = 2**127 FOR UNIVAC, HONEYWELL, AND DEC.
+C                   THUS CUTHI = 2**(63.5) = 1.30438E19
+C     CUTLO, D.P.   U/EPS = 2**(-67) FOR HONEYWELL AND DEC.
+C                   THUS CUTLO = 2**(-33.5) = 8.23181D-11
+C     CUTHI, D.P.   SAME AS S.P.  CUTHI = 1.30438D+19
+C     DATA CUTLO, CUTHI / 8.232D-11,  1.304D+19 /
+C     DATA CUTLO, CUTHI / 4.441E-16,  1.304E19 /
+      DATA CUTLO, CUTHI / 8.232D-11,  1.304D+19 /
+C
+      J=0
+      IF(N .GT. 0) GO TO 10
+         DNRM2  = ZERO
+         GO TO 300
+C
+   10 ASSIGN 30 TO NEXT
+      SUM = ZERO
+      NN = N * INCX
+C                                                 BEGIN MAIN LOOP
+      I = 1
+   20    GO TO NEXT,(30, 50, 70, 110)
+   30 IF( ABS(DX(I)) .GT. CUTLO) GO TO 85
+      ASSIGN 50 TO NEXT
+      XMAX = ZERO
+C
+C                        PHASE 1.  SUM IS ZERO
+C
+   50 IF( DX(I) .EQ. ZERO) GO TO 200
+      IF( ABS(DX(I)) .GT. CUTLO) GO TO 85
+C
+C                                PREPARE FOR PHASE 2.
+      ASSIGN 70 TO NEXT
+      GO TO 105
+C
+C                                PREPARE FOR PHASE 4.
+C
+  100 I = J
+      ASSIGN 110 TO NEXT
+      SUM = (SUM / DX(I)) / DX(I)
+  105 XMAX = ABS(DX(I))
+      GO TO 115
+C
+C                   PHASE 2.  SUM IS SMALL.
+C                             SCALE TO AVOID DESTRUCTIVE UNDERFLOW.
+C
+   70 IF( ABS(DX(I)) .GT. CUTLO ) GO TO 75
+C
+C                     COMMON CODE FOR PHASES 2 AND 4.
+C                     IN PHASE 4 SUM IS LARGE.  SCALE TO AVOID OVERFLOW.
+C
+  110 IF( ABS(DX(I)) .LE. XMAX ) GO TO 115
+         SUM = ONE + SUM * (XMAX / DX(I))**2
+         XMAX = ABS(DX(I))
+         GO TO 200
+C
+  115 SUM = SUM + (DX(I)/XMAX)**2
+      GO TO 200
+C
+C
+C                  PREPARE FOR PHASE 3.
+C
+   75 SUM = (SUM * XMAX) * XMAX
+C
+C
+C     FOR REAL OR D.P. SET HITEST = CUTHI/N
+C     FOR COMPLEX      SET HITEST = CUTHI/(2*N)
+C
+   85 HITEST = CUTHI/N
+C
+C                   PHASE 3.  SUM IS MID-RANGE.  NO SCALING.
+C
+      DO 95 J =I,NN,INCX
+      IF(ABS(DX(J)) .GE. HITEST) GO TO 100
+   95    SUM = SUM + DX(J)**2
+      DNRM2 = SQRT( SUM )
+      GO TO 300
+C
+  200 CONTINUE
+      I = I + INCX
+      IF ( I .LE. NN ) GO TO 20
+C
+C              END OF MAIN LOOP.
+C
+C              COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.
+C
+      DNRM2 = XMAX * SQRT(SUM)
+  300 CONTINUE
+      RETURN
+      END
+C*MODULE BLAS1   *DECK DROT
+      SUBROUTINE  DROT (N,DX,INCX,DY,INCY,C,S)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION DX(1),DY(1)
+C
+C     APPLIES A PLANE ROTATION.
+C           DX(I) =  C*DX(I) + S*DY(I)
+C           DY(I) = -S*DX(I) + C*DY(I)
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      IF(N.LE.0)RETURN
+      IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
+C
+C       CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
+C         TO 1
+C
+      IX = 1
+      IY = 1
+      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
+      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
+      DO 10 I = 1,N
+        DTEMP = C*DX(IX) + S*DY(IY)
+        DY(IY) = C*DY(IY) - S*DX(IX)
+        DX(IX) = DTEMP
+        IX = IX + INCX
+        IY = IY + INCY
+   10 CONTINUE
+      RETURN
+C
+C       CODE FOR BOTH INCREMENTS EQUAL TO 1
+C
+   20 DO 30 I = 1,N
+        DTEMP = C*DX(I) + S*DY(I)
+        DY(I) = C*DY(I) - S*DX(I)
+        DX(I) = DTEMP
+   30 CONTINUE
+      RETURN
+      END
+C*MODULE BLAS1   *DECK DROTG
+      SUBROUTINE DROTG(DA,DB,C,S)
+C
+C     CONSTRUCT GIVENS PLANE ROTATION.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      DOUBLE PRECISION DA,DB,C,S,ROE,SCALE,R,Z
+      DOUBLE PRECISION ZERO, ONE
+C
+      PARAMETER (ZERO=0.0D+00, ONE=1.0D+00)
+C
+C-----------------------------------------------------------------------
+C
+C
+      ROE = DB
+      IF( ABS(DA) .GT. ABS(DB) ) ROE = DA
+      SCALE = ABS(DA) + ABS(DB)
+      IF( SCALE .NE. ZERO ) GO TO 10
+         C = ONE
+         S = ZERO
+         R = ZERO
+         GO TO 20
+C
+   10 R = SCALE*SQRT((DA/SCALE)**2 + (DB/SCALE)**2)
+      R = SIGN(ONE,ROE)*R
+      C = DA/R
+      S = DB/R
+   20 Z = ONE
+      IF( ABS(DA) .GT. ABS(DB) ) Z = S
+      IF( ABS(DB) .GE. ABS(DA) .AND. C .NE. ZERO ) Z = ONE/C
+      DA = R
+      DB = Z
+      RETURN
+      END
+C*MODULE BLAS1   *DECK DSCAL
+      SUBROUTINE  DSCAL(N,DA,DX,INCX)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION DX(1)
+C
+C     SCALES A VECTOR BY A CONSTANT.
+C           DX(I) = DA * DX(I)
+C     USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      IF(N.LE.0)RETURN
+      IF(INCX.EQ.1)GO TO 20
+C
+C        CODE FOR INCREMENT NOT EQUAL TO 1
+C
+      NINCX = N*INCX
+      DO 10 I = 1,NINCX,INCX
+        DX(I) = DA*DX(I)
+   10 CONTINUE
+      RETURN
+C
+C        CODE FOR INCREMENT EQUAL TO 1
+C
+C
+C        CLEAN-UP LOOP
+C
+   20 M = MOD(N,5)
+      IF( M .EQ. 0 ) GO TO 40
+      DO 30 I = 1,M
+        DX(I) = DA*DX(I)
+   30 CONTINUE
+      IF( N .LT. 5 ) RETURN
+   40 MP1 = M + 1
+      DO 50 I = MP1,N,5
+        DX(I) = DA*DX(I)
+        DX(I + 1) = DA*DX(I + 1)
+        DX(I + 2) = DA*DX(I + 2)
+        DX(I + 3) = DA*DX(I + 3)
+        DX(I + 4) = DA*DX(I + 4)
+   50 CONTINUE
+      RETURN
+      END
+C*MODULE BLAS1   *DECK DSWAP
+      SUBROUTINE  DSWAP (N,DX,INCX,DY,INCY)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION DX(1),DY(1)
+C
+C     INTERCHANGES TWO VECTORS.
+C           DX(I) <==> DY(I)
+C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      IF(N.LE.0)RETURN
+      IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
+C
+C       CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
+C         TO 1
+C
+      IX = 1
+      IY = 1
+      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
+      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
+      DO 10 I = 1,N
+        DTEMP = DX(IX)
+        DX(IX) = DY(IY)
+        DY(IY) = DTEMP
+        IX = IX + INCX
+        IY = IY + INCY
+   10 CONTINUE
+      RETURN
+C
+C       CODE FOR BOTH INCREMENTS EQUAL TO 1
+C
+C
+C       CLEAN-UP LOOP
+C
+   20 M = MOD(N,3)
+      IF( M .EQ. 0 ) GO TO 40
+      DO 30 I = 1,M
+        DTEMP = DX(I)
+        DX(I) = DY(I)
+        DY(I) = DTEMP
+   30 CONTINUE
+      IF( N .LT. 3 ) RETURN
+   40 MP1 = M + 1
+      DO 50 I = MP1,N,3
+        DTEMP = DX(I)
+        DX(I) = DY(I)
+        DY(I) = DTEMP
+        DTEMP = DX(I + 1)
+        DX(I + 1) = DY(I + 1)
+        DY(I + 1) = DTEMP
+        DTEMP = DX(I + 2)
+        DX(I + 2) = DY(I + 2)
+        DY(I + 2) = DTEMP
+   50 CONTINUE
+      RETURN
+      END
+C*MODULE BLAS1   *DECK IDAMAX
+      INTEGER FUNCTION IDAMAX(N,DX,INCX)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION DX(1)
+C
+C     FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C
+      IDAMAX = 0
+      IF( N .LT. 1 ) RETURN
+      IDAMAX = 1
+      IF(N.EQ.1)RETURN
+      IF(INCX.EQ.1)GO TO 20
+C
+C        CODE FOR INCREMENT NOT EQUAL TO 1
+C
+      IX = 1
+      RMAX = ABS(DX(1))
+      IX = IX + INCX
+      DO 10 I = 2,N
+         IF(ABS(DX(IX)).LE.RMAX) GO TO 5
+         IDAMAX = I
+         RMAX = ABS(DX(IX))
+    5    IX = IX + INCX
+   10 CONTINUE
+      RETURN
+C
+C        CODE FOR INCREMENT EQUAL TO 1
+C
+   20 RMAX = ABS(DX(1))
+      DO 30 I = 2,N
+         IF(ABS(DX(I)).LE.RMAX) GO TO 30
+         IDAMAX = I
+         RMAX = ABS(DX(I))
+   30 CONTINUE
+      RETURN
+      END
+C*MODULE BLAS    *DECK DGEMV
+      SUBROUTINE DGEMV(FORMA,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      CHARACTER*1 FORMA
+      DIMENSION A(LDA,*),X(*),Y(*)
+      PARAMETER (ZERO=0.0D+00, ONE=1.0D+00)
+C
+C        CLONE OF -DGEMV- WRITTEN BY MIKE SCHMIDT
+C
+      LOCY = 1
+      IF(FORMA.EQ.'T') GO TO 200
+C
+C                  Y = ALPHA * A * X + BETA * Y
+C
+      IF(ALPHA.EQ.ONE  .AND.  BETA.EQ.ZERO) THEN
+         DO 110 I=1,M
+            Y(LOCY) =       DDOT(N,A(I,1),LDA,X,INCX)
+            LOCY = LOCY+INCY
+  110    CONTINUE
+      ELSE
+         DO 120 I=1,M
+            Y(LOCY) = ALPHA*DDOT(N,A(I,1),LDA,X,INCX) + BETA*Y(LOCY)
+            LOCY = LOCY+INCY
+  120    CONTINUE
+      END IF
+      RETURN
+C
+C                  Y = ALPHA * A-TRANSPOSE * X + BETA * Y
+C
+  200 CONTINUE
+      IF(ALPHA.EQ.ONE  .AND.  BETA.EQ.ZERO) THEN
+         DO 210 I=1,N
+            Y(LOCY) =       DDOT(M,A(1,I),1,X,INCX)
+            LOCY = LOCY+INCY
+  210    CONTINUE
+      ELSE
+         DO 220 I=1,N
+            Y(LOCY) = ALPHA*DDOT(M,A(1,I),1,X,INCX) + BETA*Y(LOCY)
+            LOCY = LOCY+INCY
+  220    CONTINUE
+      END IF
+      RETURN
+      END
diff --git a/source/unres/src_MD_DFA/bond_move.f b/source/unres/src_MD_DFA/bond_move.f
new file mode 100644 (file)
index 0000000..4c0761a
--- /dev/null
@@ -0,0 +1,125 @@
+      subroutine bond_move(nbond,nstart,psi,lprint,error)
+C Move NBOND fragment starting from the CA(nstart) by angle PSI.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      integer nbond,nstart
+      double precision psi
+      logical fail,error,lprint
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.REFSYS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MCM'
+      dimension x(3),e(3,3),rot(3,3),trans(3,3)
+      error=.false.
+      nend=nstart+nbond
+      if (print_mc.gt.2) then
+      write (iout,*) 'nstart=',nstart,' nend=',nend,' nbond=',nbond
+      write (iout,*) 'psi=',psi
+      write (iout,'(a)') 'Original coordinates of the fragment'
+      do i=nstart,nend
+        write (iout,'(i5,3f10.5)') i,(c(j,i),j=1,3)
+      enddo
+      endif
+      if (nstart.lt.1 .or. nend .gt.nres .or. nbond.lt.2 .or. 
+     & nbond.ge.nres-1) then
+        write (iout,'(a)') 'Bad data in BOND_MOVE.'
+        error=.true.
+        return
+      endif
+C Generate the reference system.
+      i2=nend
+      i3=nstart
+      i4=nstart+1
+      call refsys(error) 
+C Return, if couldn't define the reference system.
+      if (error) return
+C Compute the transformation matrix.
+      cospsi=dcos(psi)
+      sinpsi=dsin(psi)
+      rot(1,1)=1.0D0
+      rot(1,2)=0.0D0
+      rot(1,3)=0.0D0
+      rot(2,1)=0.0D0
+      rot(2,2)=cospsi
+      rot(2,3)=-sinpsi
+      rot(3,1)=0.0D0
+      rot(3,2)=sinpsi
+      rot(3,3)=cospsi
+      do i=1,3
+        e(1,i)=e1(i)
+        e(2,i)=e2(i)
+        e(3,i)=e3(i)
+      enddo
+
+      if (print_mc.gt.2) then
+      write (iout,'(a)') 'Reference system and matrix r:'
+      do i=1,3
+        write(iout,'(i5,2(3f10.5,5x))')i,(e(i,j),j=1,3),(rot(i,j),j=1,3)
+      enddo
+      endif
+
+      call matmult(rot,e,trans)
+      do i=1,3
+        do j=1,3
+          e(i,1)=e1(i)
+          e(i,2)=e2(i)
+          e(i,3)=e3(i)
+        enddo
+      enddo
+      call matmult(e,trans,trans)
+
+      if (lprint) then
+      write (iout,'(a)') 'The trans matrix:'
+      do i=1,3
+        write (iout,'(i5,3f10.5)') i,(trans(i,j),j=1,3)
+      enddo
+      endif
+
+      do i=nstart,nend
+        do j=1,3
+          rij=c(j,nstart)
+          do k=1,3
+            rij=rij+trans(j,k)*(c(k,i)-c(k,nstart))
+          enddo
+          x(j)=rij
+        enddo
+        do j=1,3
+          c(j,i)=x(j)
+        enddo
+      enddo
+
+      if (lprint) then
+      write (iout,'(a)') 'Rotated coordinates of the fragment'
+      do i=nstart,nend
+        write (iout,'(i5,3f10.5)') i,(c(j,i),j=1,3)
+      enddo
+      endif
+
+c     call int_from_cart(.false.,lprint)
+      if (nstart.gt.1) then
+        theta(nstart+1)=alpha(nstart-1,nstart,nstart+1)
+        phi(nstart+2)=beta(nstart-1,nstart,nstart+1,nstart+2)
+        if (nstart.gt.2) phi(nstart+1)=
+     &                beta(nstart-2,nstart-1,nstart,nstart+1)
+      endif
+      if (nend.lt.nres) then
+        theta(nend+1)=alpha(nend-1,nend,nend+1)
+        phi(nend+1)=beta(nend-2,nend-1,nend,nend+1)
+        if (nend.lt.nres-1) phi(nend+2)=
+     &                beta(nend-1,nend,nend+1,nend+2)
+      endif
+      if (print_mc.gt.2) then
+      write (iout,'(/a,i3,a,i3,a/)') 
+     & 'Moved internal coordinates of the ',nstart,'-',nend,
+     & ' fragment:'
+      do i=nstart+1,nstart+2
+        write (iout,'(i5,2f10.5)') i,rad2deg*theta(i),rad2deg*phi(i)
+      enddo
+      do i=nend+1,nend+2
+        write (iout,'(i5,2f10.5)') i,rad2deg*theta(i),rad2deg*phi(i)
+      enddo
+      endif
+      return
+      end
diff --git a/source/unres/src_MD_DFA/cartder.F b/source/unres/src_MD_DFA/cartder.F
new file mode 100644 (file)
index 0000000..e2e8c1a
--- /dev/null
@@ -0,0 +1,314 @@
+      subroutine cartder 
+***********************************************************************
+* This subroutine calculates the derivatives of the consecutive virtual
+* bond vectors and the SC vectors in the virtual-bond angles theta and
+* virtual-torsional angles phi, as well as the derivatives of SC vectors
+* in the angles alpha and omega, describing the location of a side chain
+* in its local coordinate system.
+*
+* The derivatives are stored in the following arrays:
+*
+* DDCDV - the derivatives of virtual-bond vectors DC in theta and phi.
+* The structure is as follows:
+*
+* dDC(x,2)/dT(3),...,dDC(z,2)/dT(3),0,             0,             0
+* dDC(x,3)/dT(4),...,dDC(z,3)/dT(4),dDC(x,3)/dP(4),dDC(y,4)/dP(4),dDC(z,4)/dP(4)
+*         . . . . . . . . . . . .  . . . . . .
+* dDC(x,N-1)/dT(4),...,dDC(z,N-1)/dT(4),dDC(x,N-1)/dP(4),dDC(y,N-1)/dP(4),dDC(z,N-1)/dP(4)
+*                          .
+*                          .
+*                          .
+* dDC(x,N-1)/dT(N),...,dDC(z,N-1)/dT(N),dDC(x,N-1)/dP(N),dDC(y,N-1)/dP(N),dDC(z,N-1)/dP(N)
+*
+* DXDV - the derivatives of the side-chain vectors in theta and phi. 
+* The structure is same as above.
+*
+* DCDS - the derivatives of the side chain vectors in the local spherical
+* andgles alph and omega:
+*
+* dX(x,2)/dA(2),dX(y,2)/dA(2),dX(z,2)/dA(2),dX(x,2)/dO(2),dX(y,2)/dO(2),dX(z,2)/dO(2)
+* dX(x,3)/dA(3),dX(y,3)/dA(3),dX(z,3)/dA(3),dX(x,3)/dO(3),dX(y,3)/dO(3),dX(z,3)/dO(3)
+*                          .
+*                          .
+*                          .
+* dX(x,N-1)/dA(N-1),dX(y,N-1)/dA(N-1),dX(z,N-1)/dA(N-1),dX(x,N-1)/dO(N-1),dX(y,N-1)/dO(N-1),dX(z,N-1)/dO(N-1)
+*
+* Version of March '95, based on an early version of November '91.
+*
+*********************************************************************** 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      dimension drt(3,3,maxres),rdt(3,3,maxres),dp(3,3),temp(3,3),
+     &     fromto(3,3,maxdim),prordt(3,3,maxres),prodrt(3,3,maxres)
+      dimension xx(3),xx1(3)
+c      common /przechowalnia/ fromto
+* get the position of the jth ijth fragment of the chain coordinate system      
+* in the fromto array.
+      indmat(i,j)=((2*(nres-2)-i)*(i-1))/2+j-1
+*
+* calculate the derivatives of transformation matrix elements in theta
+*
+      do i=1,nres-2
+        rdt(1,1,i)=-rt(1,2,i)
+        rdt(1,2,i)= rt(1,1,i)
+        rdt(1,3,i)= 0.0d0
+        rdt(2,1,i)=-rt(2,2,i)
+        rdt(2,2,i)= rt(2,1,i)
+        rdt(2,3,i)= 0.0d0
+        rdt(3,1,i)=-rt(3,2,i)
+        rdt(3,2,i)= rt(3,1,i)
+        rdt(3,3,i)= 0.0d0
+      enddo
+*
+* derivatives in phi
+*
+      do i=2,nres-2
+        drt(1,1,i)= 0.0d0
+        drt(1,2,i)= 0.0d0
+        drt(1,3,i)= 0.0d0
+        drt(2,1,i)= rt(3,1,i)
+        drt(2,2,i)= rt(3,2,i)
+        drt(2,3,i)= rt(3,3,i)
+        drt(3,1,i)=-rt(2,1,i)
+        drt(3,2,i)=-rt(2,2,i)
+        drt(3,3,i)=-rt(2,3,i)
+      enddo 
+*
+* generate the matrix products of type r(i)t(i)...r(j)t(j)
+*
+      do i=2,nres-2
+        ind=indmat(i,i+1)
+        do k=1,3
+          do l=1,3
+            temp(k,l)=rt(k,l,i)
+          enddo
+        enddo
+        do k=1,3
+          do l=1,3
+            fromto(k,l,ind)=temp(k,l)
+          enddo
+        enddo  
+        do j=i+1,nres-2
+          ind=indmat(i,j+1)
+          do k=1,3
+            do l=1,3
+              dpkl=0.0d0
+              do m=1,3
+                dpkl=dpkl+temp(k,m)*rt(m,l,j)
+              enddo
+              dp(k,l)=dpkl
+              fromto(k,l,ind)=dpkl
+            enddo
+          enddo
+          do k=1,3
+            do l=1,3
+              temp(k,l)=dp(k,l)
+            enddo
+          enddo
+        enddo
+      enddo
+*
+* Calculate derivatives.
+*
+      ind1=0
+      do i=1,nres-2
+       ind1=ind1+1
+*
+* Derivatives of DC(i+1) in theta(i+2)
+*
+        do j=1,3
+          do k=1,2
+            dpjk=0.0D0
+            do l=1,3
+              dpjk=dpjk+prod(j,l,i)*rdt(l,k,i)
+            enddo
+            dp(j,k)=dpjk
+            prordt(j,k,i)=dp(j,k)
+          enddo
+          dp(j,3)=0.0D0
+          dcdv(j,ind1)=vbld(i+1)*dp(j,1)       
+        enddo
+*
+* Derivatives of SC(i+1) in theta(i+2)
+* 
+        xx1(1)=-0.5D0*xloc(2,i+1)
+        xx1(2)= 0.5D0*xloc(1,i+1)
+        do j=1,3
+          xj=0.0D0
+          do k=1,2
+            xj=xj+r(j,k,i)*xx1(k)
+          enddo
+          xx(j)=xj
+        enddo
+        do j=1,3
+          rj=0.0D0
+          do k=1,3
+            rj=rj+prod(j,k,i)*xx(k)
+          enddo
+          dxdv(j,ind1)=rj
+        enddo
+*
+* Derivatives of SC(i+1) in theta(i+3). The have to be handled differently
+* than the other off-diagonal derivatives.
+*
+        do j=1,3
+          dxoiij=0.0D0
+          do k=1,3
+            dxoiij=dxoiij+dp(j,k)*xrot(k,i+2)
+          enddo
+          dxdv(j,ind1+1)=dxoiij
+        enddo
+cd      print *,ind1+1,(dxdv(j,ind1+1),j=1,3)
+*
+* Derivatives of DC(i+1) in phi(i+2)
+*
+        do j=1,3
+          do k=1,3
+            dpjk=0.0
+            do l=2,3
+              dpjk=dpjk+prod(j,l,i)*drt(l,k,i)
+            enddo
+            dp(j,k)=dpjk
+            prodrt(j,k,i)=dp(j,k)
+          enddo 
+          dcdv(j+3,ind1)=vbld(i+1)*dp(j,1)
+        enddo
+*
+* Derivatives of SC(i+1) in phi(i+2)
+*
+        xx(1)= 0.0D0 
+        xx(3)= xloc(2,i+1)*r(2,2,i)+xloc(3,i+1)*r(2,3,i)
+        xx(2)=-xloc(2,i+1)*r(3,2,i)-xloc(3,i+1)*r(3,3,i)
+        do j=1,3
+          rj=0.0D0
+          do k=2,3
+            rj=rj+prod(j,k,i)*xx(k)
+          enddo
+          dxdv(j+3,ind1)=-rj
+        enddo
+*
+* Derivatives of SC(i+1) in phi(i+3).
+*
+        do j=1,3
+          dxoiij=0.0D0
+          do k=1,3
+            dxoiij=dxoiij+dp(j,k)*xrot(k,i+2)
+          enddo
+          dxdv(j+3,ind1+1)=dxoiij
+        enddo
+*
+* Calculate the derivatives of DC(i+1) and SC(i+1) in theta(i+3) thru 
+* theta(nres) and phi(i+3) thru phi(nres).
+*
+        do j=i+1,nres-2
+         ind1=ind1+1
+         ind=indmat(i+1,j+1)
+cd        print *,'i=',i,' j=',j,' ind=',ind,' ind1=',ind1
+          do k=1,3
+            do l=1,3
+              tempkl=0.0D0
+              do m=1,2
+                tempkl=tempkl+prordt(k,m,i)*fromto(m,l,ind)
+              enddo
+              temp(k,l)=tempkl
+            enddo
+          enddo  
+cd        print '(9f8.3)',((fromto(k,l,ind),l=1,3),k=1,3)
+cd        print '(9f8.3)',((prod(k,l,i),l=1,3),k=1,3)
+cd        print '(9f8.3)',((temp(k,l),l=1,3),k=1,3)
+* Derivatives of virtual-bond vectors in theta
+          do k=1,3
+            dcdv(k,ind1)=vbld(i+1)*temp(k,1)
+          enddo
+cd        print '(3f8.3)',(dcdv(k,ind1),k=1,3)
+* Derivatives of SC vectors in theta
+          do k=1,3
+            dxoijk=0.0D0
+            do l=1,3
+              dxoijk=dxoijk+temp(k,l)*xrot(l,j+2)
+            enddo
+            dxdv(k,ind1+1)=dxoijk
+          enddo
+*
+*--- Calculate the derivatives in phi
+*
+          do k=1,3
+            do l=1,3
+              tempkl=0.0D0
+              do m=1,3
+                tempkl=tempkl+prodrt(k,m,i)*fromto(m,l,ind)
+              enddo
+              temp(k,l)=tempkl
+            enddo
+          enddo
+          do k=1,3
+            dcdv(k+3,ind1)=vbld(i+1)*temp(k,1)
+         enddo
+          do k=1,3
+            dxoijk=0.0D0
+            do l=1,3
+              dxoijk=dxoijk+temp(k,l)*xrot(l,j+2)
+            enddo
+            dxdv(k+3,ind1+1)=dxoijk
+          enddo
+        enddo
+      enddo
+*
+* Derivatives in alpha and omega:
+*
+      do i=2,nres-1
+c       dsci=dsc(itype(i))
+        dsci=vbld(i+nres)
+#ifdef OSF
+        alphi=alph(i)
+        omegi=omeg(i)
+        if(alphi.ne.alphi) alphi=100.0 
+        if(omegi.ne.omegi) omegi=-100.0
+#else
+       alphi=alph(i)
+       omegi=omeg(i)
+#endif
+cd      print *,'i=',i,' dsci=',dsci,' alphi=',alphi,' omegi=',omegi
+       cosalphi=dcos(alphi)
+       sinalphi=dsin(alphi)
+       cosomegi=dcos(omegi)
+       sinomegi=dsin(omegi)
+       temp(1,1)=-dsci*sinalphi
+       temp(2,1)= dsci*cosalphi*cosomegi
+       temp(3,1)=-dsci*cosalphi*sinomegi
+       temp(1,2)=0.0D0
+       temp(2,2)=-dsci*sinalphi*sinomegi
+       temp(3,2)=-dsci*sinalphi*cosomegi
+       theta2=pi-0.5D0*theta(i+1)
+       cost2=dcos(theta2)
+       sint2=dsin(theta2)
+       jjj=0
+cd      print *,((temp(l,k),l=1,3),k=1,2)
+        do j=1,2
+         xp=temp(1,j)
+         yp=temp(2,j)
+         xxp= xp*cost2+yp*sint2
+         yyp=-xp*sint2+yp*cost2
+         zzp=temp(3,j)
+         xx(1)=xxp
+         xx(2)=yyp*r(2,2,i-1)+zzp*r(2,3,i-1)
+         xx(3)=yyp*r(3,2,i-1)+zzp*r(3,3,i-1)
+         do k=1,3
+           dj=0.0D0
+           do l=1,3
+             dj=dj+prod(k,l,i-1)*xx(l)
+            enddo
+           dxds(jjj+k,i)=dj
+          enddo
+         jjj=jjj+3
+       enddo
+      enddo
+      return
+      end
+
diff --git a/source/unres/src_MD_DFA/cartprint.f b/source/unres/src_MD_DFA/cartprint.f
new file mode 100644 (file)
index 0000000..d79409e
--- /dev/null
@@ -0,0 +1,19 @@
+      subroutine cartprint
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      write (iout,100)
+      do i=1,nres
+        write (iout,110) restyp(itype(i)),i,c(1,i),c(2,i),
+     &    c(3,i),c(1,nres+i),c(2,nres+i),c(3,nres+i)
+      enddo
+  100 format (//'              alpha-carbon coordinates       ',
+     &          '     centroid coordinates'/
+     1          '       ', 6X,'X',11X,'Y',11X,'Z',
+     &                          10X,'X',11X,'Y',11X,'Z')
+  110 format (a,'(',i3,')',6f12.5)
+      return
+      end  
diff --git a/source/unres/src_MD_DFA/chainbuild.F b/source/unres/src_MD_DFA/chainbuild.F
new file mode 100644 (file)
index 0000000..45a1a53
--- /dev/null
@@ -0,0 +1,274 @@
+      subroutine chainbuild
+C 
+C Build the virtual polypeptide chain. Side-chain centroids are moveable.
+C As of 2/17/95.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      logical lprn
+C Set lprn=.true. for debugging
+      lprn = .false.
+C
+C Define the origin and orientation of the coordinate system and locate the
+C first three CA's and SC(2).
+C
+      call orig_frame
+*
+* Build the alpha-carbon chain.
+*
+      do i=4,nres
+       call locate_next_res(i)
+      enddo     
+C
+C First and last SC must coincide with the corresponding CA.
+C
+      do j=1,3
+       dc(j,nres+1)=0.0D0
+        dc_norm(j,nres+1)=0.0D0
+       dc(j,nres+nres)=0.0D0
+        dc_norm(j,nres+nres)=0.0D0
+        c(j,nres+1)=c(j,1)
+        c(j,nres+nres)=c(j,nres)
+      enddo
+*
+* Temporary diagnosis
+*
+      if (lprn) then
+
+      call cartprint
+      write (iout,'(/a)') 'Recalculated internal coordinates'
+      do i=2,nres-1
+       do j=1,3
+         c(j,maxres2)=0.5D0*(c(j,i-1)+c(j,i+1))
+        enddo
+        be=0.0D0
+        if (i.gt.3) be=rad2deg*beta(i-3,i-2,i-1,i)
+        be1=rad2deg*beta(nres+i,i,maxres2,i+1)
+        alfai=0.0D0
+        if (i.gt.2) alfai=rad2deg*alpha(i-2,i-1,i)
+        write (iout,1212) restyp(itype(i)),i,dist(i-1,i),
+     &  alfai,be,dist(nres+i,i),rad2deg*alpha(nres+i,i,maxres2),be1
+      enddo   
+ 1212 format (a3,'(',i3,')',2(f10.5,2f10.2))
+
+      endif
+
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine orig_frame
+C
+C Define the origin and orientation of the coordinate system and locate 
+C the first three atoms.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      cost=dcos(theta(3))
+      sint=dsin(theta(3))
+      t(1,1,1)=-cost
+      t(1,2,1)=-sint 
+      t(1,3,1)= 0.0D0
+      t(2,1,1)=-sint
+      t(2,2,1)= cost
+      t(2,3,1)= 0.0D0
+      t(3,1,1)= 0.0D0
+      t(3,2,1)= 0.0D0
+      t(3,3,1)= 1.0D0
+      r(1,1,1)= 1.0D0
+      r(1,2,1)= 0.0D0
+      r(1,3,1)= 0.0D0
+      r(2,1,1)= 0.0D0
+      r(2,2,1)= 1.0D0
+      r(2,3,1)= 0.0D0
+      r(3,1,1)= 0.0D0
+      r(3,2,1)= 0.0D0
+      r(3,3,1)= 1.0D0
+      do i=1,3
+        do j=1,3
+          rt(i,j,1)=t(i,j,1)
+        enddo
+      enddo
+      do i=1,3
+        do j=1,3
+          prod(i,j,1)=0.0D0
+          prod(i,j,2)=t(i,j,1)
+        enddo
+        prod(i,i,1)=1.0D0
+      enddo   
+      c(1,1)=0.0D0
+      c(2,1)=0.0D0
+      c(3,1)=0.0D0
+      c(1,2)=vbld(2)
+      c(2,2)=0.0D0
+      c(3,2)=0.0D0
+      dc(1,0)=0.0d0
+      dc(2,0)=0.0D0
+      dc(3,0)=0.0D0
+      dc(1,1)=vbld(2)
+      dc(2,1)=0.0D0
+      dc(3,1)=0.0D0
+      dc_norm(1,0)=0.0D0
+      dc_norm(2,0)=0.0D0
+      dc_norm(3,0)=0.0D0
+      dc_norm(1,1)=1.0D0
+      dc_norm(2,1)=0.0D0
+      dc_norm(3,1)=0.0D0
+      do j=1,3
+        dc_norm(j,2)=prod(j,1,2)
+       dc(j,2)=vbld(3)*prod(j,1,2)
+       c(j,3)=c(j,2)+dc(j,2)
+      enddo
+      call locate_side_chain(2)
+      return
+      end
+c-----------------------------------------------------------------------------
+      subroutine locate_next_res(i)
+C
+C Locate CA(i) and SC(i-1)
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+C
+C Define the rotation matrices corresponding to CA(i)
+C
+#ifdef OSF
+      theti=theta(i)
+      if (theti.ne.theti) theti=100.0     
+      phii=phi(i)
+      if (phii.ne.phii) phii=180.0     
+#else
+      theti=theta(i)      
+      phii=phi(i)
+#endif
+      cost=dcos(theti)
+      sint=dsin(theti)
+      cosphi=dcos(phii)
+      sinphi=dsin(phii)
+* Define the matrices of the rotation about the virtual-bond valence angles
+* theta, T(i,j,k), virtual-bond dihedral angles gamma (miscalled PHI in this
+* program), R(i,j,k), and, the cumulative matrices of rotation RT
+      t(1,1,i-2)=-cost
+      t(1,2,i-2)=-sint 
+      t(1,3,i-2)= 0.0D0
+      t(2,1,i-2)=-sint
+      t(2,2,i-2)= cost
+      t(2,3,i-2)= 0.0D0
+      t(3,1,i-2)= 0.0D0
+      t(3,2,i-2)= 0.0D0
+      t(3,3,i-2)= 1.0D0
+      r(1,1,i-2)= 1.0D0
+      r(1,2,i-2)= 0.0D0
+      r(1,3,i-2)= 0.0D0
+      r(2,1,i-2)= 0.0D0
+      r(2,2,i-2)=-cosphi
+      r(2,3,i-2)= sinphi
+      r(3,1,i-2)= 0.0D0
+      r(3,2,i-2)= sinphi
+      r(3,3,i-2)= cosphi
+      rt(1,1,i-2)=-cost
+      rt(1,2,i-2)=-sint
+      rt(1,3,i-2)=0.0D0
+      rt(2,1,i-2)=sint*cosphi
+      rt(2,2,i-2)=-cost*cosphi
+      rt(2,3,i-2)=sinphi
+      rt(3,1,i-2)=-sint*sinphi
+      rt(3,2,i-2)=cost*sinphi
+      rt(3,3,i-2)=cosphi
+      call matmult(prod(1,1,i-2),rt(1,1,i-2),prod(1,1,i-1))
+      do j=1,3
+        dc_norm(j,i-1)=prod(j,1,i-1)
+        dc(j,i-1)=vbld(i)*prod(j,1,i-1)
+        c(j,i)=c(j,i-1)+dc(j,i-1)
+      enddo
+cd    print '(2i3,2(3f10.5,5x))', i-1,i,(dc(j,i-1),j=1,3),(c(j,i),j=1,3)
+C 
+C Now calculate the coordinates of SC(i-1)
+C
+      call locate_side_chain(i-1)
+      return
+      end
+c-----------------------------------------------------------------------------
+      subroutine locate_side_chain(i)
+C 
+C Locate the side-chain centroid i, 1 < i < NRES. Put in C(*,NRES+i).
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      dimension xx(3)
+
+c      dsci=dsc(itype(i))
+c      dsci_inv=dsc_inv(itype(i))
+      dsci=vbld(i+nres)
+      dsci_inv=vbld_inv(i+nres)
+#ifdef OSF
+      alphi=alph(i)
+      omegi=omeg(i)
+      if (alphi.ne.alphi) alphi=100.0
+      if (omegi.ne.omegi) omegi=-100.0
+#else
+      alphi=alph(i)
+      omegi=omeg(i)
+#endif
+      cosalphi=dcos(alphi)
+      sinalphi=dsin(alphi)
+      cosomegi=dcos(omegi)
+      sinomegi=dsin(omegi) 
+      xp= dsci*cosalphi
+      yp= dsci*sinalphi*cosomegi
+      zp=-dsci*sinalphi*sinomegi
+* Now we have to rotate the coordinate system by 180-theta(i)/2 so as to get its
+* X-axis aligned with the vector DC(*,i)
+      theta2=pi-0.5D0*theta(i+1)
+      cost2=dcos(theta2)
+      sint2=dsin(theta2)
+      xx(1)= xp*cost2+yp*sint2
+      xx(2)=-xp*sint2+yp*cost2
+      xx(3)= zp
+cd    print '(a3,i3,3f10.5,5x,3f10.5)',restyp(itype(i)),i,
+cd   &   xp,yp,zp,(xx(k),k=1,3)
+      do j=1,3
+        xloc(j,i)=xx(j)
+      enddo
+* Bring the SC vectors to the common coordinate system.
+      xx(1)=xloc(1,i)
+      xx(2)=xloc(2,i)*r(2,2,i-1)+xloc(3,i)*r(2,3,i-1)
+      xx(3)=xloc(2,i)*r(3,2,i-1)+xloc(3,i)*r(3,3,i-1)
+      do j=1,3
+       xrot(j,i)=xx(j)
+      enddo
+      do j=1,3
+        rj=0.0D0
+        do k=1,3
+          rj=rj+prod(j,k,i-1)*xx(k)
+        enddo
+        dc(j,nres+i)=rj
+        dc_norm(j,nres+i)=rj*dsci_inv
+        c(j,nres+i)=c(j,i)+rj
+      enddo
+      return
+      end
diff --git a/source/unres/src_MD_DFA/change.awk b/source/unres/src_MD_DFA/change.awk
new file mode 100644 (file)
index 0000000..d192a6e
--- /dev/null
@@ -0,0 +1,11 @@
+{
+ if($0=="      include 'COMMON.LANGEVIN'") {
+  print "#ifndef LANG0"
+  print "      include 'COMMON.LANGEVIN'"
+  print "#else"
+  print "      include 'COMMON.LANGEVIN.lang0'"
+  print "#endif"
+ }else{
+  print $0
+ }
+}
diff --git a/source/unres/src_MD_DFA/check_bond.f b/source/unres/src_MD_DFA/check_bond.f
new file mode 100644 (file)
index 0000000..c8a4ad1
--- /dev/null
@@ -0,0 +1,20 @@
+       subroutine check_bond
+C Subroutine is checking if the fitted function which describs sc_rot_pot
+C is correct, printing, alpha,beta, energy, data - for some known theta. 
+C theta angle is read from the input file. Sc_rot_pot are printed 
+C for the second  residue in sequance.
+       include 'DIMENSIONS'
+       include 'COMMON.VAR'
+       include 'COMMON.GEO'
+       include 'COMMON.INTERACT'
+       include 'COMMON.CHAIN'
+       double precision energia(0:n_ene)
+       it=itype(2)
+       do i=1,101
+         vbld(nres+2)=0.5d0+0.05d0*(i-1)
+         call chainbuild
+         call etotal(energia)
+         write (2,*) vbld(nres+2),energia(17)
+       enddo
+       return
+       end
diff --git a/source/unres/src_MD_DFA/check_sc_distr.f b/source/unres/src_MD_DFA/check_sc_distr.f
new file mode 100644 (file)
index 0000000..db2ed1b
--- /dev/null
@@ -0,0 +1,43 @@
+      subroutine check_sc_distr
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.TIME1'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      logical fail
+      double precision varia(maxvar)
+      double precision hrtime,mintime,sectime
+      parameter (MaxSample=10000000,delt=1.0D0/MaxSample)
+      dimension prob(0:72,0:90)
+      dV=2.0D0*5.0D0*deg2rad*deg2rad
+      print *,'dv=',dv
+      do 10 it=1,1 
+        if (it.eq.10) goto 10 
+        open (20,file=restyp(it)//'_distr.sdc',status='unknown')
+        call gen_side(it,90.0D0*deg2rad,al,om,fail)
+        close (20)
+        goto 10
+        open (20,file=restyp(it)//'_distr1.sdc',status='unknown')
+        do i=0,90
+          do j=0,72
+            prob(j,i)=0.0D0
+          enddo
+        enddo
+        do isample=1,MaxSample
+          call gen_side(it,90.0D0*deg2rad,al,om)
+          indal=rad2deg*al/2
+          indom=(rad2deg*om+180.0D0)/5
+          prob(indom,indal)=prob(indom,indal)+delt
+        enddo
+        do i=45,90
+          do j=0,72 
+            write (20,'(2f10.3,1pd15.5)') 2*i+0.0D0,5*j-180.0D0,
+     &              prob(j,i)/dV
+          enddo
+        enddo
+   10   continue
+      return
+      end
diff --git a/source/unres/src_MD_DFA/checkder_p.F b/source/unres/src_MD_DFA/checkder_p.F
new file mode 100644 (file)
index 0000000..4d0379e
--- /dev/null
@@ -0,0 +1,713 @@
+      subroutine check_cartgrad
+C Check the gradient of Cartesian coordinates in internal coordinates.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.DERIV'
+      include 'COMMON.SCCOR'
+      dimension temp(6,maxres),xx(3),gg(3)
+      indmat(i,j)=((2*(nres-2)-i)*(i-1))/2+j-1
+*
+* Check the gradient of the virtual-bond and SC vectors in the internal
+* coordinates.
+*    
+      aincr=1.0d-7  
+      aincr2=5.0d-8   
+      call cartder
+      write (iout,'(a)') '**************** dx/dalpha'
+      write (iout,'(a)')
+      do i=2,nres-1
+       alphi=alph(i)
+       alph(i)=alph(i)+aincr
+       do k=1,3
+         temp(k,i)=dc(k,nres+i)
+        enddo
+       call chainbuild
+       do k=1,3
+         gg(k)=(dc(k,nres+i)-temp(k,i))/aincr
+         xx(k)=dabs((gg(k)-dxds(k,i))/(aincr*dabs(dxds(k,i))+aincr))
+        enddo
+        write (iout,'(i4,3e15.6/4x,3e15.6,3f9.3)') 
+     &  i,(gg(k),k=1,3),(dxds(k,i),k=1,3),(xx(k),k=1,3)
+        write (iout,'(a)')
+       alph(i)=alphi
+       call chainbuild
+      enddo
+      write (iout,'(a)')
+      write (iout,'(a)') '**************** dx/domega'
+      write (iout,'(a)')
+      do i=2,nres-1
+       omegi=omeg(i)
+       omeg(i)=omeg(i)+aincr
+       do k=1,3
+         temp(k,i)=dc(k,nres+i)
+        enddo
+       call chainbuild
+       do k=1,3
+          gg(k)=(dc(k,nres+i)-temp(k,i))/aincr
+          xx(k)=dabs((gg(k)-dxds(k+3,i))/
+     &          (aincr*dabs(dxds(k+3,i))+aincr))
+        enddo
+        write (iout,'(i4,3e15.6/4x,3e15.6,3f9.3)') 
+     &      i,(gg(k),k=1,3),(dxds(k+3,i),k=1,3),(xx(k),k=1,3)
+        write (iout,'(a)')
+       omeg(i)=omegi
+       call chainbuild
+      enddo
+      write (iout,'(a)')
+      write (iout,'(a)') '**************** dx/dtheta'
+      write (iout,'(a)')
+      do i=3,nres
+       theti=theta(i)
+        theta(i)=theta(i)+aincr
+        do j=i-1,nres-1
+          do k=1,3
+            temp(k,j)=dc(k,nres+j)
+          enddo
+        enddo
+        call chainbuild
+        do j=i-1,nres-1
+         ii = indmat(i-2,j)
+c         print *,'i=',i-2,' j=',j-1,' ii=',ii
+         do k=1,3
+           gg(k)=(dc(k,nres+j)-temp(k,j))/aincr
+           xx(k)=dabs((gg(k)-dxdv(k,ii))/
+     &            (aincr*dabs(dxdv(k,ii))+aincr))
+          enddo
+          write (iout,'(2i4,3e14.6/8x,3e14.6,3f9.3)') 
+     &        i,j,(gg(k),k=1,3),(dxdv(k,ii),k=1,3),(xx(k),k=1,3)
+          write(iout,'(a)')
+        enddo
+        write (iout,'(a)')
+        theta(i)=theti
+        call chainbuild
+      enddo
+      write (iout,'(a)') '***************** dx/dphi'
+      write (iout,'(a)')
+      do i=4,nres
+        phi(i)=phi(i)+aincr
+        do j=i-1,nres-1
+          do k=1,3
+            temp(k,j)=dc(k,nres+j)
+          enddo
+        enddo
+        call chainbuild
+        do j=i-1,nres-1
+         ii = indmat(i-2,j)
+c         print *,'ii=',ii
+         do k=1,3
+           gg(k)=(dc(k,nres+j)-temp(k,j))/aincr
+            xx(k)=dabs((gg(k)-dxdv(k+3,ii))/
+     &            (aincr*dabs(dxdv(k+3,ii))+aincr))
+          enddo
+          write (iout,'(2i4,3e14.6/8x,3e14.6,3f9.3)') 
+     &        i,j,(gg(k),k=1,3),(dxdv(k+3,ii),k=1,3),(xx(k),k=1,3)
+          write(iout,'(a)')
+        enddo
+        phi(i)=phi(i)-aincr
+        call chainbuild
+      enddo
+      write (iout,'(a)') '****************** ddc/dtheta'
+      do i=1,nres-2
+        thet=theta(i+2)
+        theta(i+2)=thet+aincr
+        do j=i,nres
+          do k=1,3 
+            temp(k,j)=dc(k,j)
+          enddo
+        enddo
+        call chainbuild 
+        do j=i+1,nres-1
+         ii = indmat(i,j)
+c         print *,'ii=',ii
+         do k=1,3
+           gg(k)=(dc(k,j)-temp(k,j))/aincr
+           xx(k)=dabs((gg(k)-dcdv(k,ii))/
+     &           (aincr*dabs(dcdv(k,ii))+aincr))
+          enddo
+          write (iout,'(2i4,3e14.6/8x,3e14.6,3f9.3)') 
+     &           i,j,(gg(k),k=1,3),(dcdv(k,ii),k=1,3),(xx(k),k=1,3)
+         write (iout,'(a)')
+        enddo
+        do j=1,nres
+          do k=1,3
+            dc(k,j)=temp(k,j)
+          enddo 
+        enddo
+        theta(i+2)=thet
+      enddo    
+      write (iout,'(a)') '******************* ddc/dphi'
+      do i=1,nres-3
+        phii=phi(i+3)
+        phi(i+3)=phii+aincr
+        do j=1,nres
+          do k=1,3 
+            temp(k,j)=dc(k,j)
+          enddo
+        enddo
+        call chainbuild 
+        do j=i+2,nres-1
+         ii = indmat(i+1,j)
+c         print *,'ii=',ii
+         do k=1,3
+           gg(k)=(dc(k,j)-temp(k,j))/aincr
+            xx(k)=dabs((gg(k)-dcdv(k+3,ii))/
+     &           (aincr*dabs(dcdv(k+3,ii))+aincr))
+          enddo
+          write (iout,'(2i4,3e14.6/8x,3e14.6,3f9.3)') 
+     &         i,j,(gg(k),k=1,3),(dcdv(k+3,ii),k=1,3),(xx(k),k=1,3)
+         write (iout,'(a)')
+        enddo
+        do j=1,nres
+          do k=1,3
+            dc(k,j)=temp(k,j)
+          enddo
+        enddo
+        phi(i+3)=phii   
+      enddo   
+      return
+      end
+C----------------------------------------------------------------------------
+      subroutine check_ecart
+C Check the gradient of the energy in Cartesian coordinates. 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.SCCOR'
+      common /srutu/ icall
+      dimension ggg(6),cc(3),xx(3),ddc(3),ddx(3),x(maxvar),g(maxvar)
+      dimension grad_s(6,maxres)
+      double precision energia(0:n_ene),energia1(0:n_ene)
+      integer uiparm(1)
+      double precision urparm(1)
+      external fdum
+      icg=1
+      nf=0
+      nfl=0                
+      call zerograd
+      aincr=1.0D-7
+      print '(a)','CG processor',me,' calling CHECK_CART.'
+      nf=0
+      icall=0
+      call geom_to_var(nvar,x)
+      call etotal(energia(0))
+      etot=energia(0)
+      call enerprint(energia(0))
+      call gradient(nvar,x,nf,g,uiparm,urparm,fdum)
+      icall =1
+      do i=1,nres
+        write (iout,'(i5,3f10.5)') i,(gradxorr(j,i),j=1,3)
+      enddo
+      do i=1,nres
+       do j=1,3
+         grad_s(j,i)=gradc(j,i,icg)
+         grad_s(j+3,i)=gradx(j,i,icg)
+        enddo
+      enddo
+      call flush(iout)
+      write (iout,'(/a/)') 'Gradient in virtual-bond and SC vectors'
+      do i=1,nres
+        do j=1,3
+         xx(j)=c(j,i+nres)
+         ddc(j)=dc(j,i) 
+         ddx(j)=dc(j,i+nres)
+        enddo
+       do j=1,3
+         dc(j,i)=dc(j,i)+aincr
+         do k=i+1,nres
+           c(j,k)=c(j,k)+aincr
+           c(j,k+nres)=c(j,k+nres)+aincr
+          enddo
+          call etotal(energia1(0))
+          etot1=energia1(0)
+         ggg(j)=(etot1-etot)/aincr
+         dc(j,i)=ddc(j)
+         do k=i+1,nres
+           c(j,k)=c(j,k)-aincr
+           c(j,k+nres)=c(j,k+nres)-aincr
+          enddo
+        enddo
+       do j=1,3
+         c(j,i+nres)=c(j,i+nres)+aincr
+         dc(j,i+nres)=dc(j,i+nres)+aincr
+          call etotal(energia1(0))
+          etot1=energia1(0)
+         ggg(j+3)=(etot1-etot)/aincr
+         c(j,i+nres)=xx(j)
+         dc(j,i+nres)=ddx(j)
+        enddo
+       write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/)')
+     &   i,(ggg(k),k=1,6),(grad_s(k,i),k=1,6)
+      enddo
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine check_ecartint
+C Check the gradient of the energy in Cartesian coordinates. 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.MD'
+      include 'COMMON.LOCAL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SCCOR'
+      common /srutu/ icall
+      dimension ggg(6),ggg1(6),cc(3),xx(3),ddc(3),ddx(3),x(maxvar),
+     &  g(maxvar)
+      dimension dcnorm_safe(3),dxnorm_safe(3)
+      dimension grad_s(6,0:maxres),grad_s1(6,0:maxres)
+      double precision phi_temp(maxres),theta_temp(maxres),
+     &  alph_temp(maxres),omeg_temp(maxres)
+      double precision energia(0:n_ene),energia1(0:n_ene)
+      integer uiparm(1)
+      double precision urparm(1)
+      external fdum
+      r_cut=2.0d0
+      rlambd=0.3d0
+      icg=1
+      nf=0
+      nfl=0                
+      call intout
+c      call intcartderiv
+c      call checkintcartgrad
+      call zerograd
+      aincr=1.0D-5
+      write(iout,*) 'Calling CHECK_ECARTINT.'
+      nf=0
+      icall=0
+      call geom_to_var(nvar,x)
+      if (.not.split_ene) then
+        call etotal(energia(0))
+c        do i=1,nres
+c        write (iout,*) "atu?", gloc_sc(1,i,icg),gloc(i,icg)
+c        enddo
+        etot=energia(0)
+        call enerprint(energia(0))
+        call flush(iout)
+        write (iout,*) "enter cartgrad"
+c        do i=1,nres
+c        write (iout,*) gloc_sc(1,i,icg)
+c        enddo 
+        call flush(iout)
+        call cartgrad
+        write (iout,*) "exit cartgrad"
+        call flush(iout)
+        icall =1
+        do i=1,nres
+          write (iout,'(i5,3f10.5)') i,(gradxorr(j,i),j=1,3)
+        enddo
+        do j=1,3
+          grad_s(j,0)=gcart(j,0)
+        enddo
+        do i=1,nres
+          do j=1,3
+            grad_s(j,i)=gcart(j,i)
+            grad_s(j+3,i)=gxcart(j,i)
+          enddo
+        enddo
+      else
+!- split gradient check
+        call zerograd
+        call etotal_long(energia(0))
+        call enerprint(energia(0))
+        call flush(iout)
+        write (iout,*) "enter cartgrad"
+        call flush(iout)
+        call cartgrad
+        write (iout,*) "exit cartgrad"
+        call flush(iout)
+        icall =1
+        write (iout,*) "longrange grad"
+        do i=1,nres
+          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3),
+     &    (gxcart(j,i),j=1,3)
+        enddo
+        do j=1,3
+          grad_s(j,0)=gcart(j,0)
+        enddo
+        do i=1,nres
+          do j=1,3
+            grad_s(j,i)=gcart(j,i)
+            grad_s(j+3,i)=gxcart(j,i)
+          enddo
+        enddo
+        call zerograd
+        call etotal_short(energia(0))
+        call enerprint(energia(0))
+c        do i=1,nres
+c        write (iout,*) gloc_sc(1,i,icg)
+c        enddo 
+        call flush(iout)
+        write (iout,*) "enter cartgrad"
+        call flush(iout)
+        call cartgrad
+        write (iout,*) "exit cartgrad"
+        call flush(iout)
+        icall =1
+        write (iout,*) "shortrange grad"
+        do i=1,nres
+          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3),
+     &    (gxcart(j,i),j=1,3)
+        enddo
+        do j=1,3
+          grad_s1(j,0)=gcart(j,0)
+        enddo
+        do i=1,nres
+          do j=1,3
+            grad_s1(j,i)=gcart(j,i)
+            grad_s1(j+3,i)=gxcart(j,i)
+          enddo
+        enddo
+      endif
+      write (iout,'(/a/)') 'Gradient in virtual-bond and SC vectors'
+      do i=0,nres
+        do j=1,3
+         xx(j)=c(j,i+nres)
+         ddc(j)=dc(j,i) 
+         ddx(j)=dc(j,i+nres)
+          do k=1,3
+            dcnorm_safe(k)=dc_norm(k,i)
+            dxnorm_safe(k)=dc_norm(k,i+nres)
+          enddo
+        enddo
+       do j=1,3
+         dc(j,i)=ddc(j)+aincr
+          call chainbuild_cart
+#ifdef MPI
+c Broadcast the order to compute internal coordinates to the slaves.
+c          if (nfgtasks.gt.1)
+c     &      call MPI_Bcast(6,1,MPI_INTEGER,king,FG_COMM,IERROR)
+#endif
+c          call int_from_cart1(.false.)
+          if (.not.split_ene) then
+            call etotal(energia1(0))
+            etot1=energia1(0)
+          else
+!- split gradient
+            call etotal_long(energia1(0))
+            etot11=energia1(0)
+            call etotal_short(energia1(0))
+            etot12=energia1(0)
+c            write (iout,*) "etot11",etot11," etot12",etot12
+          endif
+!- end split gradient
+c          write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot1",etot1
+         dc(j,i)=ddc(j)-aincr
+          call chainbuild_cart
+c          call int_from_cart1(.false.)
+          if (.not.split_ene) then
+            call etotal(energia1(0))
+            etot2=energia1(0)
+           ggg(j)=(etot1-etot2)/(2*aincr)
+          else
+!- split gradient
+            call etotal_long(energia1(0))
+            etot21=energia1(0)
+           ggg(j)=(etot11-etot21)/(2*aincr)
+            call etotal_short(energia1(0))
+            etot22=energia1(0)
+           ggg1(j)=(etot12-etot22)/(2*aincr)
+!- end split gradient
+c            write (iout,*) "etot21",etot21," etot22",etot22
+          endif
+c          write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot2",etot2
+         dc(j,i)=ddc(j)
+          call chainbuild_cart
+        enddo
+       do j=1,3
+         dc(j,i+nres)=ddx(j)+aincr
+          call chainbuild_cart
+c          write (iout,*) "i",i," j",j," dxnorm+ and dxnorm"
+c          write (iout,'(3f15.10)') (dc_norm(k,i+nres),k=1,3)
+c          write (iout,'(3f15.10)') (dxnorm_safe(k),k=1,3)
+c          write (iout,*) "dxnormnorm",dsqrt(
+c     &  dc_norm(1,i+nres)**2+dc_norm(2,i+nres)**2+dc_norm(3,i+nres)**2)
+c          write (iout,*) "dxnormnormsafe",dsqrt(
+c     &      dxnorm_safe(1)**2+dxnorm_safe(2)**2+dxnorm_safe(3)**2)
+c          write (iout,*)
+          if (.not.split_ene) then
+            call etotal(energia1(0))
+            etot1=energia1(0)
+          else
+!- split gradient
+            call etotal_long(energia1(0))
+            etot11=energia1(0)
+            call etotal_short(energia1(0))
+            etot12=energia1(0)
+          endif
+!- end split gradient
+c          write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot1",etot1
+         dc(j,i+nres)=ddx(j)-aincr
+          call chainbuild_cart
+c          write (iout,*) "i",i," j",j," dxnorm- and dxnorm"
+c          write (iout,'(3f15.10)') (dc_norm(k,i+nres),k=1,3)
+c          write (iout,'(3f15.10)') (dxnorm_safe(k),k=1,3)
+c          write (iout,*) 
+c          write (iout,*) "dxnormnorm",dsqrt(
+c     &  dc_norm(1,i+nres)**2+dc_norm(2,i+nres)**2+dc_norm(3,i+nres)**2)
+c          write (iout,*) "dxnormnormsafe",dsqrt(
+c     &      dxnorm_safe(1)**2+dxnorm_safe(2)**2+dxnorm_safe(3)**2)
+          if (.not.split_ene) then
+            call etotal(energia1(0))
+            etot2=energia1(0)
+           ggg(j+3)=(etot1-etot2)/(2*aincr)
+          else
+!- split gradient
+            call etotal_long(energia1(0))
+            etot21=energia1(0)
+           ggg(j+3)=(etot11-etot21)/(2*aincr)
+            call etotal_short(energia1(0))
+            etot22=energia1(0)
+           ggg1(j+3)=(etot12-etot22)/(2*aincr)
+!- end split gradient
+          endif
+c          write(iout,'(2i5,2(a,f15.10))')i,j," etot",etot," etot2",etot2
+         dc(j,i+nres)=ddx(j)
+          call chainbuild_cart
+        enddo
+       write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)')
+     &   i,(ggg(k),k=1,6),(grad_s(k,i),k=1,6),(ggg(k)/grad_s(k,i),k=1,6)
+        if (split_ene) then
+          write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)')
+     &   i,(ggg1(k),k=1,6),(grad_s1(k,i),k=1,6),(ggg1(k)/grad_s1(k,i),
+     &   k=1,6)
+         write (iout,'(i3,6(1pe12.5)/3x,6(1pe12.5)/3x,6(1pe12.5)/)')
+     &   i,(ggg(k)+ggg1(k),k=1,6),(grad_s(k,i)+grad_s1(k,i),k=1,6),
+     &   ((ggg(k)+ggg1(k))/(grad_s(k,i)+grad_s1(k,i)),k=1,6)
+        endif
+      enddo
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine int_from_cart1(lprn)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      integer ierror
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.GEO'
+      include 'COMMON.INTERACT'
+      include 'COMMON.LOCAL'
+      include 'COMMON.NAMES'
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+      logical lprn 
+      if (lprn) write (iout,'(/a)') 'Recalculated internal coordinates'
+#ifdef TIMING
+      time01=MPI_Wtime()
+#endif
+#if defined(PARINT) && defined(MPI)
+      do i=iint_start,iint_end+1
+#else
+      do i=2,nres
+#endif
+        dnorm1=dist(i-1,i)
+        dnorm2=dist(i,i+1) 
+       do j=1,3
+         c(j,maxres2)=0.5D0*(2*c(j,i)+(c(j,i-1)-c(j,i))/dnorm1
+     &     +(c(j,i+1)-c(j,i))/dnorm2)
+        enddo
+        be=0.0D0
+        if (i.gt.2) then
+        if (i.le.nres) phi(i+1)=beta(i-2,i-1,i,i+1)
+        if ((itype(i).ne.10).and.(itype(i-1).ne.10)) then
+         tauangle(3,i+1)=beta(i+nres-1,i-1,i,i+nres)
+        endif
+        if (itype(i-1).ne.10) then
+         tauangle(1,i+1)=beta(i-1+nres,i-1,i,i+1)
+         omicron(1,i)=alpha(i-2,i-1,i-1+nres)
+         omicron(2,i)=alpha(i-1+nres,i-1,i)
+        endif
+        if (itype(i).ne.10) then
+         tauangle(2,i+1)=beta(i-2,i-1,i,i+nres)
+        endif
+        endif
+        omeg(i)=beta(nres+i,i,maxres2,i+1)
+        alph(i)=alpha(nres+i,i,maxres2)
+        theta(i+1)=alpha(i-1,i,i+1)
+        vbld(i)=dist(i-1,i)
+        vbld_inv(i)=1.0d0/vbld(i)
+        vbld(nres+i)=dist(nres+i,i)
+        if (itype(i).ne.10) then
+          vbld_inv(nres+i)=1.0d0/vbld(nres+i)
+        else
+          vbld_inv(nres+i)=0.0d0
+        endif
+      enddo   
+
+#if defined(PARINT) && defined(MPI)
+       if (nfgtasks1.gt.1) then
+cd       write(iout,*) "iint_start",iint_start," iint_count",
+cd     &   (iint_count(i),i=0,nfgtasks-1)," iint_displ",
+cd     &   (iint_displ(i),i=0,nfgtasks-1)
+cd       write (iout,*) "Gather vbld backbone"
+cd       call flush(iout)
+       time00=MPI_Wtime()
+       call MPI_Allgatherv(vbld(iint_start),iint_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,vbld(1),iint_count(0),iint_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+cd       write (iout,*) "Gather vbld_inv"
+cd       call flush(iout)
+       call MPI_Allgatherv(vbld_inv(iint_start),iint_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,vbld_inv(1),iint_count(0),iint_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+cd       write (iout,*) "Gather vbld side chain"
+cd       call flush(iout)
+       call MPI_Allgatherv(vbld(iint_start+nres),iint_count(fg_rank1),
+     &  MPI_DOUBLE_PRECISION,vbld(nres+1),iint_count(0),iint_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+cd       write (iout,*) "Gather vbld_inv side chain"
+cd       call flush(iout)
+       call MPI_Allgatherv(vbld_inv(iint_start+nres),
+     &   iint_count(fg_rank1),MPI_DOUBLE_PRECISION,vbld_inv(nres+1),
+     &   iint_count(0),iint_displ(0),MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+cd       write (iout,*) "Gather theta"
+cd       call flush(iout)
+       call MPI_Allgatherv(theta(iint_start+1),iint_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,theta(2),iint_count(0),iint_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+cd       write (iout,*) "Gather phi"
+cd       call flush(iout)
+       call MPI_Allgatherv(phi(iint_start+1),iint_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,phi(2),iint_count(0),iint_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+#ifdef CRYST_SC
+cd       write (iout,*) "Gather alph"
+cd       call flush(iout)
+       call MPI_Allgatherv(alph(iint_start),iint_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,alph(1),iint_count(0),iint_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+cd       write (iout,*) "Gather omeg"
+cd       call flush(iout)
+       call MPI_Allgatherv(omeg(iint_start),iint_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,omeg(1),iint_count(0),iint_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+#endif
+       time_gather=time_gather+MPI_Wtime()-time00
+      endif
+#endif
+      do i=1,nres-1
+        do j=1,3
+          dc_norm(j,i)=dc(j,i)*vbld_inv(i+1)
+        enddo
+      enddo
+      do i=2,nres-1
+        do j=1,3
+          dc_norm(j,i+nres)=dc(j,i+nres)*vbld_inv(i+nres)
+        enddo
+      enddo
+      if (lprn) then
+      do i=2,nres
+       write (iout,1212) restyp(itype(i)),i,vbld(i),
+     &rad2deg*theta(i),rad2deg*phi(i),vbld(nres+i),
+     &rad2deg*alph(i),rad2deg*omeg(i)
+      enddo
+      endif
+ 1212 format (a3,'(',i3,')',2(f15.10,2f10.2))
+#ifdef TIMING
+      time_intfcart=time_intfcart+MPI_Wtime()-time01
+#endif
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine check_eint
+C Check the gradient of energy in internal coordinates.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      common /srutu/ icall
+      dimension x(maxvar),gana(maxvar),gg(maxvar)
+      integer uiparm(1)
+      double precision urparm(1)
+      double precision energia(0:n_ene),energia1(0:n_ene),
+     &  energia2(0:n_ene)
+      character*6 key
+      external fdum
+      call zerograd
+      aincr=1.0D-7
+      print '(a)','Calling CHECK_INT.'
+      nf=0
+      nfl=0
+      icg=1
+      call geom_to_var(nvar,x)
+      call var_to_geom(nvar,x)
+      call chainbuild
+      icall=1
+      print *,'ICG=',ICG
+      call etotal(energia(0))
+      etot = energia(0)
+      call enerprint(energia(0))
+      print *,'ICG=',ICG
+#ifdef MPL
+      if (MyID.ne.BossID) then
+        call mp_bcast(x(1),8*(nvar+3),BossID,fgGroupID)
+        nf=x(nvar+1)
+        nfl=x(nvar+2)
+        icg=x(nvar+3)
+      endif
+#endif
+      nf=1
+      nfl=3
+cd    write (iout,'(10f8.3)') (rad2deg*x(i),i=1,nvar)
+      call gradient(nvar,x,nf,gana,uiparm,urparm,fdum)
+cd    write (iout,'(i3,1pe14.4)') (i,gana(i),i=1,nvar)
+      icall=1
+      do i=1,nvar
+        xi=x(i)
+        x(i)=xi-0.5D0*aincr
+        call var_to_geom(nvar,x)
+        call chainbuild
+        call etotal(energia1(0))
+        etot1=energia1(0)
+        x(i)=xi+0.5D0*aincr
+        call var_to_geom(nvar,x)
+        call chainbuild
+        call etotal(energia2(0))
+        etot2=energia2(0)
+        gg(i)=(etot2-etot1)/aincr
+        write (iout,*) i,etot1,etot2
+        x(i)=xi
+      enddo
+      write (iout,'(/2a)')' Variable        Numerical       Analytical',
+     &    '     RelDiff*100% '
+      do i=1,nvar
+        if (i.le.nphi) then
+          ii=i
+          key = ' phi'
+        else if (i.le.nphi+ntheta) then
+          ii=i-nphi
+          key=' theta'
+        else if (i.le.nphi+ntheta+nside) then
+           ii=i-(nphi+ntheta)
+           key=' alpha'
+        else 
+           ii=i-(nphi+ntheta+nside)
+           key=' omega'
+        endif
+        write (iout,'(i3,a,i3,3(1pd16.6))') 
+     & i,key,ii,gg(i),gana(i),
+     & 100.0D0*dabs(gg(i)-gana(i))/(dabs(gana(i))+aincr)
+      enddo
+      return
+      end
diff --git a/source/unres/src_MD_DFA/compare_s1.F b/source/unres/src_MD_DFA/compare_s1.F
new file mode 100644 (file)
index 0000000..300e7ed
--- /dev/null
@@ -0,0 +1,188 @@
+      subroutine compare_s1(n_thr,num_thread_save,energyx,x,
+     &                      icomp,enetbss,coordss,rms_d,modif,iprint)
+C This subroutine compares the new conformation, whose variables are in X
+C with the previously accumulated conformations whose energies and variables
+C are stored in ENETBSS and COORDSS, respectively. The meaning of other 
+C variables is as follows:
+C 
+C N_THR - on input the previous # of accumulated confs, on output the current
+C         # of accumulated confs.
+C N_REPEAT - an array that indicates how many times the structure has already
+C         been used to start the reversed-reversing procedure. Addition of 
+C         a new structure replacement of a structure with a similar, but 
+C         lower-energy structure resets the respective entry in N_REPEAT to zero
+C I9   -  output unit
+C ENERGYX,X - the energy and variables of the new conformations.
+C ICOMP - comparison result: 
+C         0 - the new structure is similar to one of the previous ones and does
+C             not have a remarkably lower energy and is therefore rejected;
+C         1 - the new structure is different and is added to the set, because
+C             there is still room in the COORDSS and ENETBSS arrays; 
+C         2 - the new structure is different, but higher in energy than any 
+C             previous one and is therefore rejected
+C         3 - there is no more room in the COORDSS and ENETBSS arrays, but 
+C             the new structure is lower in energy than at least the highest-
+C             energy previous structure and therefore replaces it.
+C         9 - the new structure is similar to a number of previous structures,
+C             but has a remarkably lower energy than any of them; therefore
+C             replaces all these structures;
+C MODIF - a logical variable that shows whether to include the new structure
+C         in the set of accumulated structures
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+crc      include 'COMMON.DEFORM'
+      include 'COMMON.IOUNITS'
+#ifdef UNRES
+      include 'COMMON.CHAIN'
+#endif
+
+      dimension x(maxvar)
+      dimension x1(maxvar)
+      double precision przes(3),obrot(3,3)
+      integer list(max_thread)
+      logical non_conv,modif
+      double precision enetbss(max_threadss)
+      double precision coordss(maxvar,max_threadss)
+
+      nlist=0
+#ifdef UNRES
+      call var_to_geom(nvar,x)
+      call chainbuild
+      do k=1,2*nres
+       do kk=1,3
+         cref(kk,k)=c(kk,k)
+       enddo
+      enddo 
+#endif
+c      write(iout,*)'*ene=',energyx
+      j=0
+      enex_jp=-1.0d+99
+      do i=1,n_thr
+       do k=1,nvar
+        x1(k)=coordss(k,i)
+       enddo
+       if (iprint.gt.3) then
+       write (iout,*) 'Compare_ss, i=',i
+       write (iout,*) 'New structure Energy:',energyx
+       write (iout,'(10f8.3)') (rad2deg*x(k),k=1,nvar)
+       write (iout,*) 'Template structure Energy:',enetbss(i)
+       write (iout,'(10f8.3)') (rad2deg*x1(k),k=1,nvar)
+       endif
+
+#ifdef UNRES
+       call var_to_geom(nvar,x1)
+       call chainbuild
+cd     write(iout,*)'C and CREF'
+cd     write(iout,'(i5,3f10.5,5x,3f10.5)')(k,(c(j,k),j=1,3),
+cd   &           (cref(j,k),j=1,3),k=1,nres)
+       call fitsq(roznica,c(1,1),cref(1,1),nres,przes,obrot,non_conv)
+       if (non_conv) then
+         print *,'Problems in FITSQ!!!'
+         print *,'X'
+         print '(10f8.3)',(x(k),k=1,nvar)
+         print *,'X1'
+         print '(10f8.3)',(x1(k),k=1,nvar)
+         print *,'C and CREF'
+         print '(i5,3f10.5,5x,3f10.5)',(k,(c(j,k),j=1,3),
+     &           (cref(j,k),j=1,3),k=1,nres)
+       endif
+       roznica=dsqrt(dabs(roznica))
+       iresult = 1
+       if (roznica.lt.rms_d) iresult = 0 
+#else
+       energyy=enetbss(i)
+       call cmprs(x,x1,roznica,energyx,energyy,iresult)
+#endif
+       if (iprint.gt.1) write(iout,'(i5,f10.6,$)') i,roznica
+c       print '(i5,f8.3)',i,roznica
+       if(iresult.eq.0) then
+        nlist = nlist + 1
+        list(nlist)=i
+        if (iprint.gt.1) write(iout,*)
+        if(energyx.ge.enetbss(i)) then
+         if (iprint.gt.1) 
+     &      write(iout,*)'s*>> structure rejected - same as nr ',i,
+     &  ' RMS',roznica
+         minimize_s_flag=0
+         icomp=0
+         go to 1106
+        endif
+       endif
+       if(energyx.lt.enetbss(i).and.enex_jp.lt.enetbss(i))then
+        j=i
+        enex_jp=enetbss(i)
+       endif
+      enddo
+      if (iprint.gt.1) write(iout,*)
+      if(nlist.gt.0) then
+       if (modif) then
+         if (iprint.gt.1) 
+     &    write(iout,'(a,i3,$)')'s*>> structure accepted1 - repl nr ',
+     &   list(1) 
+       else
+         if (iprint.gt.1) 
+     &    write(iout,'(a,i3)')
+     &    's*>> structure accepted1 - would repl nr ',list(1) 
+       endif
+       icomp=9
+       if (.not. modif) goto 1106
+       j=list(1)
+       enetbss(j)=energyx
+       do i=1,nvar
+        coordss(i,j)=x(i)
+       enddo
+       do j=2,nlist
+        if (iprint.gt.1) write(iout,'(i3,$)')list(j)
+        do kk=list(j)+1,nlist
+         enetbss(kk-1)=enetbss(kk) 
+         do i=1,nvar
+          coordss(i,kk-1)=coordss(i,kk)
+         enddo
+       enddo
+       enddo
+       if (iprint.gt.1) write(iout,*)
+       go to 1106 
+      endif
+      if(n_thr.lt.num_thread_save) then
+       icomp=1
+       if (modif) then
+         if (iprint.gt.1) 
+     &    write(iout,*)'s*>> structure accepted - add with nr ',n_thr+1
+       else 
+         if (iprint.gt.1) 
+     &    write(iout,*)'s*>> structure accepted - would add with nr ',
+     &      n_thr+1
+         goto 1106
+       endif
+       n_thr=n_thr+1
+       enetbss(n_thr)=energyx
+       do i=1,nvar
+        coordss(i,n_thr)=x(i)
+       enddo
+      else
+       if(j.eq.0) then
+        if (iprint.gt.1) 
+     &   write(iout,*)'s*>> structure rejected - too high energy'
+        icomp=2
+        go to 1106
+       end if
+       icomp=3
+       if (modif) then
+         if (iprint.gt.1) 
+     &     write(iout,*)'s*>> structure accepted - repl nr ',j
+       else
+         if (iprint.gt.1) 
+     &     write(iout,*)'s*>> structure accepted - would repl nr ',j
+         goto 1106
+       endif
+       enetbss(j)=energyx
+       do i=1,nvar
+        coordss(i,j)=x(i)
+       enddo
+      end if
+    
+1106  continue
+      return
+      end
diff --git a/source/unres/src_MD_DFA/compinfo.c b/source/unres/src_MD_DFA/compinfo.c
new file mode 100644 (file)
index 0000000..e28f686
--- /dev/null
@@ -0,0 +1,82 @@
+#include <stdio.h>
+#include <sys/utsname.h>
+#include <sys/types.h>
+#include <time.h>
+#include <string.h>
+
+main()
+{
+FILE *in, *in1, *out;
+int i,j,k,iv1,iv2,iv3;
+char *p1,buf[500],buf1[500],buf2[100],buf3[100];
+struct utsname Name;
+time_t Tp;
+
+in=fopen("cinfo.f","r");
+out=fopen("cinfo.f.new","w");
+if (fgets(buf,498,in) != NULL)
+       fprintf(out,"C DO NOT EDIT THIS FILE - IT HAS BEEN GENERATED BY COMPINFO.C\n");
+if (fgets(buf,498,in) != NULL)
+       sscanf(&buf[1],"%d %d %d",&iv1,&iv2,&iv3);
+iv3++;
+fprintf(out,"C %d %d %d\n",iv1,iv2,iv3);
+fprintf(out,"      subroutine cinfo\n");
+fprintf(out,"      include 'COMMON.IOUNITS'\n");
+fprintf(out,"      write(iout,*)'++++ Compile info ++++'\n");
+fprintf(out,"      write(iout,*)'Version %d.%-d build %d'\n",iv1,iv2,iv3);
+uname(&Name);
+time(&Tp);
+system("whoami > tmptmp");
+in1=fopen("tmptmp","r");
+if (fscanf(in1,"%s",buf1) != EOF)
+{
+p1=ctime(&Tp);
+p1[strlen(p1)-1]='\0';
+fprintf(out,"      write(iout,*)'compiled %s'\n",p1);
+fprintf(out,"      write(iout,*)'compiled by %s@%s'\n",buf1,Name.nodename);
+fprintf(out,"      write(iout,*)'OS name:    %s '\n",Name.sysname);
+fprintf(out,"      write(iout,*)'OS release: %s '\n",Name.release);
+fprintf(out,"      write(iout,*)'OS version:',\n");
+fprintf(out,"     & ' %s '\n",Name.version);
+fprintf(out,"      write(iout,*)'flags:'\n");
+}
+system("rm tmptmp");
+fclose(in1);
+in1=fopen("Makefile","r");
+while(fgets(buf,498,in1) != NULL)
+ {
+ if((p1=strchr(buf,'=')) != NULL && buf[0] != '#')
+  {
+  buf[strlen(buf)-1]='\0';
+  if(strlen(buf) > 49)
+   {
+   buf[47]='\0';
+   strcat(buf,"...");
+   }
+  else
+   {
+   while(buf[strlen(buf)-1]=='\\')
+    {
+    strcat(buf,"\\");
+    fprintf(out,"      write(iout,*)'%s'\n",buf);
+    if (fgets(buf,498,in1) != NULL)
+       buf[strlen(buf)-1]='\0';
+    if(strlen(buf) > 49)
+     {
+     buf[47]='\0';
+     strcat(buf,"...");
+     }
+    }
+   }
+  
+  fprintf(out,"      write(iout,*)'%s'\n",buf);
+  }
+ }
+fprintf(out,"      write(iout,*)'++++ End of compile info ++++'\n");
+fprintf(out,"      return\n");
+fprintf(out,"      end\n");
+fclose(out);
+fclose(in1);
+fclose(in);
+system("mv cinfo.f.new cinfo.f");
+}
diff --git a/source/unres/src_MD_DFA/contact.f b/source/unres/src_MD_DFA/contact.f
new file mode 100644 (file)
index 0000000..a244d86
--- /dev/null
@@ -0,0 +1,195 @@
+      subroutine contact(lprint,ncont,icont,co)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.NAMES'
+      real*8 facont /1.569D0/  ! facont = (2/(1-sqrt(1-1/4)))**(1/6)
+      integer ncont,icont(2,maxcont)
+      logical lprint
+      ncont=0
+      kkk=3
+      do i=nnt+kkk,nct
+        iti=itype(i)
+        do j=nnt,i-kkk
+          itj=itype(j)
+          if (ipot.ne.4) then
+c           rcomp=sigmaii(iti,itj)+1.0D0
+            rcomp=facont*sigmaii(iti,itj)
+          else 
+c           rcomp=sigma(iti,itj)+1.0D0
+            rcomp=facont*sigma(iti,itj)
+          endif
+c         rcomp=6.5D0
+c         print *,'rcomp=',rcomp,' dist=',dist(nres+i,nres+j)
+         if (dist(nres+i,nres+j).lt.rcomp) then
+            ncont=ncont+1
+            icont(1,ncont)=i
+            icont(2,ncont)=j
+          endif
+        enddo
+      enddo
+      if (lprint) then
+        write (iout,'(a)') 'Contact map:'
+        do i=1,ncont
+          i1=icont(1,i)
+          i2=icont(2,i)
+          it1=itype(i1)
+          it2=itype(i2)
+          write (iout,'(i3,2x,a,i4,2x,a,i4)') 
+     &     i,restyp(it1),i1,restyp(it2),i2 
+        enddo
+      endif
+      co = 0.0d0
+      do i=1,ncont
+        co = co + dfloat(iabs(icont(1,i)-icont(2,i)))
+      enddo 
+      co = co / (nres*ncont)
+      return
+      end
+c----------------------------------------------------------------------------
+      double precision function contact_fract(ncont,ncont_ref,
+     &                                     icont,icont_ref)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      integer ncont,ncont_ref,icont(2,maxcont),icont_ref(2,maxcont)
+      nmatch=0
+c     print *,'ncont=',ncont,' ncont_ref=',ncont_ref 
+c     write (iout,'(20i4)') (icont_ref(1,i),i=1,ncont_ref)
+c     write (iout,'(20i4)') (icont_ref(2,i),i=1,ncont_ref)
+c     write (iout,'(20i4)') (icont(1,i),i=1,ncont)
+c     write (iout,'(20i4)') (icont(2,i),i=1,ncont)
+      do i=1,ncont
+        do j=1,ncont_ref
+          if (icont(1,i).eq.icont_ref(1,j) .and. 
+     &        icont(2,i).eq.icont_ref(2,j)) nmatch=nmatch+1
+        enddo
+      enddo
+c     print *,' nmatch=',nmatch
+c     contact_fract=dfloat(nmatch)/dfloat(max0(ncont,ncont_ref))
+      contact_fract=dfloat(nmatch)/dfloat(ncont_ref)
+      return
+      end
+c----------------------------------------------------------------------------
+      double precision function contact_fract_nn(ncont,ncont_ref,
+     &                                     icont,icont_ref)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      integer ncont,ncont_ref,icont(2,maxcont),icont_ref(2,maxcont)
+      nmatch=0
+c     print *,'ncont=',ncont,' ncont_ref=',ncont_ref 
+c     write (iout,'(20i4)') (icont_ref(1,i),i=1,ncont_ref)
+c     write (iout,'(20i4)') (icont_ref(2,i),i=1,ncont_ref)
+c     write (iout,'(20i4)') (icont(1,i),i=1,ncont)
+c     write (iout,'(20i4)') (icont(2,i),i=1,ncont)
+      do i=1,ncont
+        do j=1,ncont_ref
+          if (icont(1,i).eq.icont_ref(1,j) .and. 
+     &        icont(2,i).eq.icont_ref(2,j)) nmatch=nmatch+1
+        enddo
+      enddo
+c     print *,' nmatch=',nmatch
+c     contact_fract=dfloat(nmatch)/dfloat(max0(ncont,ncont_ref))
+      contact_fract_nn=dfloat(ncont-nmatch)/dfloat(ncont)
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine hairpin(lprint,nharp,iharp)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.NAMES'
+      integer ncont,icont(2,maxcont)
+      integer nharp,iharp(4,maxres/3)
+      logical lprint,not_done
+      real*8 rcomp /6.0d0/ 
+      ncont=0
+      kkk=0
+c     print *,'nnt=',nnt,' nct=',nct
+      do i=nnt,nct-3
+        do k=1,3
+          c(k,2*nres+1)=0.5d0*(c(k,i)+c(k,i+1))
+        enddo
+        do j=i+2,nct-1
+          do k=1,3
+            c(k,2*nres+2)=0.5d0*(c(k,j)+c(k,j+1))
+          enddo
+         if (dist(2*nres+1,2*nres+2).lt.rcomp) then
+            ncont=ncont+1
+            icont(1,ncont)=i
+            icont(2,ncont)=j
+          endif
+        enddo
+      enddo
+      if (lprint) then
+        write (iout,'(a)') 'PP contact map:'
+        do i=1,ncont
+          i1=icont(1,i)
+          i2=icont(2,i)
+          it1=itype(i1)
+          it2=itype(i2)
+          write (iout,'(i3,2x,a,i4,2x,a,i4)') 
+     &     i,restyp(it1),i1,restyp(it2),i2 
+        enddo
+      endif
+c finding hairpins
+      nharp=0
+      do i=1,ncont
+        i1=icont(1,i)
+        j1=icont(2,i)
+        if (j1.eq.i1+2 .and. i1.gt.nnt .and. j1.lt.nct) then
+c          write (iout,*) "found turn at ",i1,j1
+          ii1=i1
+          jj1=j1
+          not_done=.true.
+          do while (not_done)
+            i1=i1-1
+            j1=j1+1
+            do j=1,ncont
+              if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j)) goto 10
+            enddo
+            not_done=.false.
+  10        continue
+c            write (iout,*) i1,j1,not_done  
+          enddo
+          i1=i1+1
+          j1=j1-1
+          if (j1-i1.gt.4) then
+            nharp=nharp+1
+            iharp(1,nharp)=i1
+            iharp(2,nharp)=j1
+            iharp(3,nharp)=ii1
+            iharp(4,nharp)=jj1 
+c            write (iout,*)'nharp',nharp,' iharp',(iharp(k,nharp),k=1,4)
+          endif
+        endif
+      enddo
+c      do i=1,nharp
+c            write (iout,*)'i',i,' iharp',(iharp(k,i),k=1,4)
+c      enddo
+      if (lprint) then
+      write (iout,*) "Hairpins:"
+      do i=1,nharp
+        i1=iharp(1,i)
+        j1=iharp(2,i)
+        ii1=iharp(3,i)
+        jj1=iharp(4,i)
+        write (iout,*)
+        write (iout,'(20(a,i3,1x))') (restyp(itype(k)),k,k=i1,ii1)
+        write (iout,'(20(a,i3,1x))') (restyp(itype(k)),k,k=j1,jj1,-1)
+c        do k=jj1,j1,-1
+c         write (iout,'(a,i3,$)') restyp(itype(k)),k
+c        enddo
+      enddo
+      endif
+      return
+      end
+c----------------------------------------------------------------------------
+
diff --git a/source/unres/src_MD_DFA/convert.f b/source/unres/src_MD_DFA/convert.f
new file mode 100644 (file)
index 0000000..dc0cccd
--- /dev/null
@@ -0,0 +1,196 @@
+      subroutine geom_to_var(n,x)
+C
+C Transfer the geometry parameters to the variable array.
+C The positions of variables are as follows:
+C 1. Virtual-bond torsional angles: 1 thru nres-3
+C 2. Virtual-bond valence angles: nres-2 thru 2*nres-5
+C 3. The polar angles alpha of local SC orientation: 2*nres-4 thru 
+C    2*nres-4+nside
+C 4. The torsional angles omega of SC orientation: 2*nres-4+nside+1
+C    thru 2*nre-4+2*nside 
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      double precision x(n)
+cd    print *,'nres',nres,' nphi',nphi,' ntheta',ntheta,' nvar',nvar
+      do i=4,nres
+        x(i-3)=phi(i)
+cd      print *,i,i-3,phi(i)
+      enddo
+      if (n.eq.nphi) return
+      do i=3,nres
+        x(i-2+nphi)=theta(i)
+cd      print *,i,i-2+nphi,theta(i)
+      enddo
+      if (n.eq.nphi+ntheta) return
+      do i=2,nres-1
+       if (ialph(i,1).gt.0) then
+         x(ialph(i,1))=alph(i)
+         x(ialph(i,1)+nside)=omeg(i)
+cd        print *,i,ialph(i,1),ialph(i,1)+nside,alph(i),omeg(i)
+        endif
+      enddo      
+      return
+      end
+C--------------------------------------------------------------------
+      subroutine var_to_geom(n,x)
+C
+C Update geometry parameters according to the variable array.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.GEO'
+      include 'COMMON.IOUNITS'
+      dimension x(n)
+      logical change,reduce
+      change=reduce(x)
+      if (n.gt.nphi+ntheta) then
+        do i=1,nside
+          ii=ialph(i,2)
+          alph(ii)=x(nphi+ntheta+i)
+          omeg(ii)=pinorm(x(nphi+ntheta+nside+i))
+        enddo      
+      endif
+      do i=4,nres
+        phi(i)=x(i-3)
+      enddo
+      if (n.eq.nphi) return
+      do i=3,nres
+        theta(i)=x(i-2+nphi)
+        if (theta(i).eq.pi) theta(i)=0.99d0*pi
+        x(i-2+nphi)=theta(i)
+      enddo
+      return
+      end
+c-------------------------------------------------------------------------
+      logical function convert_side(alphi,omegi)
+      implicit none
+      double precision alphi,omegi
+      double precision pinorm
+      include 'COMMON.GEO'
+      convert_side=.false.
+C Apply periodicity restrictions.
+      if (alphi.gt.pi) then
+        alphi=dwapi-alphi
+        omegi=pinorm(omegi+pi)
+        convert_side=.true.
+      endif
+      return
+      end
+c-------------------------------------------------------------------------
+      logical function reduce(x)
+C
+C Apply periodic restrictions to variables.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.GEO'
+      logical zm,zmiana,convert_side
+      dimension x(nvar)
+      zmiana=.false.
+      do i=4,nres
+        x(i-3)=pinorm(x(i-3))
+      enddo
+      if (nvar.gt.nphi+ntheta) then
+        do i=1,nside
+          ii=nphi+ntheta+i
+          iii=ii+nside
+          x(ii)=thetnorm(x(ii))
+          x(iii)=pinorm(x(iii))
+C Apply periodic restrictions.
+          zm=convert_side(x(ii),x(iii))
+          zmiana=zmiana.or.zm
+        enddo      
+      endif
+      if (nvar.eq.nphi) return
+      do i=3,nres
+        ii=i-2+nphi
+        iii=i-3
+        x(ii)=dmod(x(ii),dwapi)
+C Apply periodic restrictions.
+        if (x(ii).gt.pi) then
+          zmiana=.true.
+          x(ii)=dwapi-x(ii)
+          if (iii.gt.0) x(iii)=pinorm(x(iii)+pi)
+          if (i.lt.nres) x(iii+1)=pinorm(x(iii+1)+pi)
+          ii=ialph(i-1,1)
+          if (ii.gt.0) then
+            x(ii)=dmod(pi-x(ii),dwapi)
+            x(ii+nside)=pinorm(-x(ii+nside))
+            zm=convert_side(x(ii),x(ii+nside))
+          endif
+        else if (x(ii).lt.-pi) then
+          zmiana=.true.
+          x(ii)=dwapi+x(ii)
+          ii=ialph(i-1,1)
+          if (ii.gt.0) then
+            x(ii)=dmod(pi-x(ii),dwapi)
+            x(ii+nside)=pinorm(-pi-x(ii+nside))
+            zm=convert_side(x(ii),x(ii+nside))
+          endif
+        else if (x(ii).lt.0.0d0) then
+          zmiana=.true.
+          x(ii)=-x(ii)
+          if (iii.gt.0) x(iii)=pinorm(x(iii)+pi)
+          if (i.lt.nres) x(iii+1)=pinorm(x(iii+1)+pi)
+          ii=ialph(i-1,1)
+          if (ii.gt.0) then
+            x(ii+nside)=pinorm(-x(ii+nside))
+            zm=convert_side(x(ii),x(ii+nside))
+          endif
+        endif 
+      enddo
+      reduce=zmiana
+      return
+      end
+c--------------------------------------------------------------------------
+      double precision function thetnorm(x)
+C This function puts x within [0,2Pi].
+      implicit none
+      double precision x,xx
+      include 'COMMON.GEO'
+      xx=dmod(x,dwapi)
+      if (xx.lt.0.0d0) xx=xx+dwapi
+      if (xx.gt.0.9999d0*pi) xx=0.9999d0*pi
+      thetnorm=xx
+      return
+      end 
+C--------------------------------------------------------------------
+      subroutine var_to_geom_restr(n,xx)
+C
+C Update geometry parameters according to the variable array.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.GEO'
+      include 'COMMON.IOUNITS'
+      dimension x(maxvar),xx(maxvar)
+      logical change,reduce
+
+      call xx2x(x,xx)
+      change=reduce(x)
+      do i=1,nside
+          ii=ialph(i,2)
+          alph(ii)=x(nphi+ntheta+i)
+          omeg(ii)=pinorm(x(nphi+ntheta+nside+i))
+      enddo      
+      do i=4,nres
+        phi(i)=x(i-3)
+      enddo
+      do i=3,nres
+        theta(i)=x(i-2+nphi)
+        if (theta(i).eq.pi) theta(i)=0.99d0*pi
+        x(i-2+nphi)=theta(i)
+      enddo
+      return
+      end
+c-------------------------------------------------------------------------
diff --git a/source/unres/src_MD_DFA/cored.f b/source/unres/src_MD_DFA/cored.f
new file mode 100644 (file)
index 0000000..1cf25e5
--- /dev/null
@@ -0,0 +1,3151 @@
+      subroutine assst(iv, liv, lv, v)
+c
+c  ***  assess candidate step (***sol version 2.3)  ***
+c
+      integer liv, l
+      integer iv(liv)
+      double precision v(lv)
+c
+c  ***  purpose  ***
+c
+c        this subroutine is called by an unconstrained minimization
+c     routine to assess the next candidate step.  it may recommend one
+c     of several courses of action, such as accepting the step, recom-
+c     puting it using the same or a new quadratic model, or halting due
+c     to convergence or false convergence.  see the return code listing
+c     below.
+c
+c--------------------------  parameter usage  --------------------------
+c
+c  iv (i/o) integer parameter and scratch vector -- see description
+c             below of iv values referenced.
+c liv (in)  length of iv array.
+c  lv (in)  length of v array.
+c   v (i/o) real parameter and scratch vector -- see description
+c             below of v values referenced.
+c
+c  ***  iv values referenced  ***
+c
+c    iv(irc) (i/o) on input for the first step tried in a new iteration,
+c             iv(irc) should be set to 3 or 4 (the value to which it is
+c             set when step is definitely to be accepted).  on input
+c             after step has been recomputed, iv(irc) should be
+c             unchanged since the previous return of assst.
+c                on output, iv(irc) is a return code having one of the
+c             following values...
+c                  1 = switch models or try smaller step.
+c                  2 = switch models or accept step.
+c                  3 = accept step and determine v(radfac) by gradient
+c                       tests.
+c                  4 = accept step, v(radfac) has been determined.
+c                  5 = recompute step (using the same model).
+c                  6 = recompute step with radius = v(lmaxs) but do not
+c                       evaulate the objective function.
+c                  7 = x-convergence (see v(xctol)).
+c                  8 = relative function convergence (see v(rfctol)).
+c                  9 = both x- and relative function convergence.
+c                 10 = absolute function convergence (see v(afctol)).
+c                 11 = singular convergence (see v(lmaxs)).
+c                 12 = false convergence (see v(xftol)).
+c                 13 = iv(irc) was out of range on input.
+c             return code i has precdence over i+1 for i = 9, 10, 11.
+c iv(mlstgd) (i/o) saved value of iv(model).
+c  iv(model) (i/o) on input, iv(model) should be an integer identifying
+c             the current quadratic model of the objective function.
+c             if a previous step yielded a better function reduction,
+c             then iv(model) will be set to iv(mlstgd) on output.
+c iv(nfcall) (in)  invocation count for the objective function.
+c iv(nfgcal) (i/o) value of iv(nfcall) at step that gave the biggest
+c             function reduction this iteration.  iv(nfgcal) remains
+c             unchanged until a function reduction is obtained.
+c iv(radinc) (i/o) the number of radius increases (or minus the number
+c             of decreases) so far this iteration.
+c iv(restor) (out) set to 1 if v(f) has been restored and x should be
+c             restored to its initial value, to 2 if x should be saved,
+c             to 3 if x should be restored from the saved value, and to
+c             0 otherwise.
+c  iv(stage) (i/o) count of the number of models tried so far in the
+c             current iteration.
+c iv(stglim) (in)  maximum number of models to consider.
+c iv(switch) (out) set to 0 unless a new model is being tried and it
+c             gives a smaller function value than the previous model,
+c             in which case assst sets iv(switch) = 1.
+c iv(toobig) (in)  is nonzero if step was too big (e.g. if it caused
+c             overflow).
+c   iv(xirc) (i/o) value that iv(irc) would have in the absence of
+c             convergence, false convergence, and oversized steps.
+c
+c  ***  v values referenced  ***
+c
+c v(afctol) (in)  absolute function convergence tolerance.  if the
+c             absolute value of the current function value v(f) is less
+c             than v(afctol), then assst returns with iv(irc) = 10.
+c v(decfac) (in)  factor by which to decrease radius when iv(toobig) is
+c             nonzero.
+c v(dstnrm) (in)  the 2-norm of d*step.
+c v(dstsav) (i/o) value of v(dstnrm) on saved step.
+c   v(dst0) (in)  the 2-norm of d times the newton step (when defined,
+c             i.e., for v(nreduc) .ge. 0).
+c      v(f) (i/o) on both input and output, v(f) is the objective func-
+c             tion value at x.  if x is restored to a previous value,
+c             then v(f) is restored to the corresponding value.
+c   v(fdif) (out) the function reduction v(f0) - v(f) (for the output
+c             value of v(f) if an earlier step gave a bigger function
+c             decrease, and for the input value of v(f) otherwise).
+c v(flstgd) (i/o) saved value of v(f).
+c     v(f0) (in)  objective function value at start of iteration.
+c v(gtslst) (i/o) value of v(gtstep) on saved step.
+c v(gtstep) (in)  inner product between step and gradient.
+c v(incfac) (in)  minimum factor by which to increase radius.
+c  v(lmaxs) (in)  maximum reasonable step size (and initial step bound).
+c             if the actual function decrease is no more than twice
+c             what was predicted, if a return with iv(irc) = 7, 8, 9,
+c             or 10 does not occur, if v(dstnrm) .gt. v(lmaxs), and if
+c             v(preduc) .le. v(sctol) * abs(v(f0)), then assst re-
+c             turns with iv(irc) = 11.  if so doing appears worthwhile,
+c             then assst repeats this test with v(preduc) computed for
+c             a step of length v(lmaxs) (by a return with iv(irc) = 6).
+c v(nreduc) (i/o)  function reduction predicted by quadratic model for
+c             newton step.  if assst is called with iv(irc) = 6, i.e.,
+c             if v(preduc) has been computed with radius = v(lmaxs) for
+c             use in the singular convervence test, then v(nreduc) is
+c             set to -v(preduc) before the latter is restored.
+c v(plstgd) (i/o) value of v(preduc) on saved step.
+c v(preduc) (i/o) function reduction predicted by quadratic model for
+c             current step.
+c v(radfac) (out) factor to be used in determining the new radius,
+c             which should be v(radfac)*dst, where  dst  is either the
+c             output value of v(dstnrm) or the 2-norm of
+c             diag(newd)*step  for the output value of step and the
+c             updated version, newd, of the scale vector d.  for
+c             iv(irc) = 3, v(radfac) = 1.0 is returned.
+c v(rdfcmn) (in)  minimum value for v(radfac) in terms of the input
+c             value of v(dstnrm) -- suggested value = 0.1.
+c v(rdfcmx) (in)  maximum value for v(radfac) -- suggested value = 4.0.
+c  v(reldx) (in) scaled relative change in x caused by step, computed
+c             (e.g.) by function  reldst  as
+c                 max (d(i)*abs(x(i)-x0(i)), 1 .le. i .le. p) /
+c                    max (d(i)*(abs(x(i))+abs(x0(i))), 1 .le. i .le. p).
+c v(rfctol) (in)  relative function convergence tolerance.  if the
+c             actual function reduction is at most twice what was pre-
+c             dicted and  v(nreduc) .le. v(rfctol)*abs(v(f0)),  then
+c             assst returns with iv(irc) = 8 or 9.
+c v(stppar) (in)  marquardt parameter -- 0 means full newton step.
+c v(tuner1) (in)  tuning constant used to decide if the function
+c             reduction was much less than expected.  suggested
+c             value = 0.1.
+c v(tuner2) (in)  tuning constant used to decide if the function
+c             reduction was large enough to accept step.  suggested
+c             value = 10**-4.
+c v(tuner3) (in)  tuning constant used to decide if the radius
+c             should be increased.  suggested value = 0.75.
+c  v(xctol) (in)  x-convergence criterion.  if step is a newton step
+c             (v(stppar) = 0) having v(reldx) .le. v(xctol) and giving
+c             at most twice the predicted function decrease, then
+c             assst returns iv(irc) = 7 or 9.
+c  v(xftol) (in)  false convergence tolerance.  if step gave no or only
+c             a small function decrease and v(reldx) .le. v(xftol),
+c             then assst returns with iv(irc) = 12.
+c
+c-------------------------------  notes  -------------------------------
+c
+c  ***  application and usage restrictions  ***
+c
+c        this routine is called as part of the nl2sol (nonlinear
+c     least-squares) package.  it may be used in any unconstrained
+c     minimization solver that uses dogleg, goldfeld-quandt-trotter,
+c     or levenberg-marquardt steps.
+c
+c  ***  algorithm notes  ***
+c
+c        see (1) for further discussion of the assessing and model
+c     switching strategies.  while nl2sol considers only two models,
+c     assst is designed to handle any number of models.
+c
+c  ***  usage notes  ***
+c
+c        on the first call of an iteration, only the i/o variables
+c     step, x, iv(irc), iv(model), v(f), v(dstnrm), v(gtstep), and
+c     v(preduc) need have been initialized.  between calls, no i/o
+c     values execpt step, x, iv(model), v(f) and the stopping toler-
+c     ances should be changed.
+c        after a return for convergence or false convergence, one can
+c     change the stopping tolerances and call assst again, in which
+c     case the stopping tests will be repeated.
+c
+c  ***  references  ***
+c
+c     (1) dennis, j.e., jr., gay, d.m., and welsch, r.e. (1981),
+c        an adaptive nonlinear least-squares algorithm,
+c        acm trans. math. software, vol. 7, no. 3.
+c
+c     (2) powell, m.j.d. (1970)  a fortran subroutine for solving
+c        systems of nonlinear algebraic equations, in numerical
+c        methods for nonlinear algebraic equations, edited by
+c        p. rabinowitz, gordon and breach, london.
+c
+c  ***  history  ***
+c
+c        john dennis designed much of this routine, starting with
+c     ideas in (2). roy welsch suggested the model switching strategy.
+c        david gay and stephen peters cast this subroutine into a more
+c     portable form (winter 1977), and david gay cast it into its
+c     present form (fall 1978).
+c
+c  ***  general  ***
+c
+c     this subroutine was written in connection with research
+c     supported by the national science foundation under grants
+c     mcs-7600324, dcr75-10143, 76-14311dss, mcs76-11989, and
+c     mcs-7906671.
+c
+c------------------------  external quantities  ------------------------
+c
+c  ***  no external functions and subroutines  ***
+c
+c  ***  intrinsic functions  ***
+c/+
+      double precision dabs, dmax1
+c/
+c  ***  no common blocks  ***
+c
+c--------------------------  local variables  --------------------------
+c
+      logical goodx
+      integer i, nfc
+      double precision emax, emaxs, gts, rfac1, xmax
+      double precision half, one, onep2, two, zero
+c
+c  ***  subscripts for iv and v  ***
+c
+      integer afctol, decfac, dstnrm, dstsav, dst0, f, fdif, flstgd, f0,
+     1        gtslst, gtstep, incfac, irc, lmaxs, mlstgd, model, nfcall,
+     2        nfgcal, nreduc, plstgd, preduc, radfac, radinc, rdfcmn,
+     3        rdfcmx, reldx, restor, rfctol, sctol, stage, stglim,
+     4        stppar, switch, toobig, tuner1, tuner2, tuner3, xctol,
+     5        xftol, xirc
+c
+c  ***  data initializations  ***
+c
+c/6
+c     data half/0.5d+0/, one/1.d+0/, onep2/1.2d+0/, two/2.d+0/,
+c    1     zero/0.d+0/
+c/7
+      parameter (half=0.5d+0, one=1.d+0, onep2=1.2d+0, two=2.d+0,
+     1           zero=0.d+0)
+c/
+c
+c/6
+c     data irc/29/, mlstgd/32/, model/5/, nfcall/6/, nfgcal/7/,
+c    1     radinc/8/, restor/9/, stage/10/, stglim/11/, switch/12/,
+c    2     toobig/2/, xirc/13/
+c/7
+      parameter (irc=29, mlstgd=32, model=5, nfcall=6, nfgcal=7,
+     1           radinc=8, restor=9, stage=10, stglim=11, switch=12,
+     2           toobig=2, xirc=13)
+c/
+c/6
+c     data afctol/31/, decfac/22/, dstnrm/2/, dst0/3/, dstsav/18/,
+c    1     f/10/, fdif/11/, flstgd/12/, f0/13/, gtslst/14/, gtstep/4/,
+c    2     incfac/23/, lmaxs/36/, nreduc/6/, plstgd/15/, preduc/7/,
+c    3     radfac/16/, rdfcmn/24/, rdfcmx/25/, reldx/17/, rfctol/32/,
+c    4     sctol/37/, stppar/5/, tuner1/26/, tuner2/27/, tuner3/28/,
+c    5     xctol/33/, xftol/34/
+c/7
+      parameter (afctol=31, decfac=22, dstnrm=2, dst0=3, dstsav=18,
+     1           f=10, fdif=11, flstgd=12, f0=13, gtslst=14, gtstep=4,
+     2           incfac=23, lmaxs=36, nreduc=6, plstgd=15, preduc=7,
+     3           radfac=16, rdfcmn=24, rdfcmx=25, reldx=17, rfctol=32,
+     4           sctol=37, stppar=5, tuner1=26, tuner2=27, tuner3=28,
+     5           xctol=33, xftol=34)
+c/
+c
+c+++++++++++++++++++++++++++++++  body  ++++++++++++++++++++++++++++++++
+c
+      nfc = iv(nfcall)
+      iv(switch) = 0
+      iv(restor) = 0
+      rfac1 = one
+      goodx = .true.
+      i = iv(irc)
+      if (i .ge. 1 .and. i .le. 12)
+     1             go to (20,30,10,10,40,280,220,220,220,220,220,170), i
+         iv(irc) = 13
+         go to 999
+c
+c  ***  initialize for new iteration  ***
+c
+ 10   iv(stage) = 1
+      iv(radinc) = 0
+      v(flstgd) = v(f0)
+      if (iv(toobig) .eq. 0) go to 110
+         iv(stage) = -1
+         iv(xirc) = i
+         go to 60
+c
+c  ***  step was recomputed with new model or smaller radius  ***
+c  ***  first decide which  ***
+c
+ 20   if (iv(model) .ne. iv(mlstgd)) go to 30
+c        ***  old model retained, smaller radius tried  ***
+c        ***  do not consider any more new models this iteration  ***
+         iv(stage) = iv(stglim)
+         iv(radinc) = -1
+         go to 110
+c
+c  ***  a new model is being tried.  decide whether to keep it.  ***
+c
+ 30   iv(stage) = iv(stage) + 1
+c
+c     ***  now we add the possibiltiy that step was recomputed with  ***
+c     ***  the same model, perhaps because of an oversized step.     ***
+c
+ 40   if (iv(stage) .gt. 0) go to 50
+c
+c        ***  step was recomputed because it was too big.  ***
+c
+         if (iv(toobig) .ne. 0) go to 60
+c
+c        ***  restore iv(stage) and pick up where we left off.  ***
+c
+         iv(stage) = -iv(stage)
+         i = iv(xirc)
+         go to (20, 30, 110, 110, 70), i
+c
+ 50   if (iv(toobig) .eq. 0) go to 70
+c
+c  ***  handle oversize step  ***
+c
+      if (iv(radinc) .gt. 0) go to 80
+         iv(stage) = -iv(stage)
+         iv(xirc) = iv(irc)
+c
+ 60      v(radfac) = v(decfac)
+         iv(radinc) = iv(radinc) - 1
+         iv(irc) = 5
+         iv(restor) = 1
+         go to 999
+c
+ 70   if (v(f) .lt. v(flstgd)) go to 110
+c
+c     *** the new step is a loser.  restore old model.  ***
+c
+      if (iv(model) .eq. iv(mlstgd)) go to 80
+         iv(model) = iv(mlstgd)
+         iv(switch) = 1
+c
+c     ***  restore step, etc. only if a previous step decreased v(f).
+c
+ 80   if (v(flstgd) .ge. v(f0)) go to 110
+         iv(restor) = 1
+         v(f) = v(flstgd)
+         v(preduc) = v(plstgd)
+         v(gtstep) = v(gtslst)
+         if (iv(switch) .eq. 0) rfac1 = v(dstnrm) / v(dstsav)
+         v(dstnrm) = v(dstsav)
+         nfc = iv(nfgcal)
+         goodx = .false.
+c
+ 110  v(fdif) = v(f0) - v(f)
+      if (v(fdif) .gt. v(tuner2) * v(preduc)) go to 140
+      if(iv(radinc).gt.0) go to 140
+c
+c        ***  no (or only a trivial) function decrease
+c        ***  -- so try new model or smaller radius
+c
+         if (v(f) .lt. v(f0)) go to 120
+              iv(mlstgd) = iv(model)
+              v(flstgd) = v(f)
+              v(f) = v(f0)
+              iv(restor) = 1
+              go to 130
+ 120     iv(nfgcal) = nfc
+ 130     iv(irc) = 1
+         if (iv(stage) .lt. iv(stglim)) go to 160
+              iv(irc) = 5
+              iv(radinc) = iv(radinc) - 1
+              go to 160
+c
+c  ***  nontrivial function decrease achieved  ***
+c
+ 140  iv(nfgcal) = nfc
+      rfac1 = one
+      v(dstsav) = v(dstnrm)
+      if (v(fdif) .gt. v(preduc)*v(tuner1)) go to 190
+c
+c  ***  decrease was much less than predicted -- either change models
+c  ***  or accept step with decreased radius.
+c
+      if (iv(stage) .ge. iv(stglim)) go to 150
+c        ***  consider switching models  ***
+         iv(irc) = 2
+         go to 160
+c
+c     ***  accept step with decreased radius  ***
+c
+ 150  iv(irc) = 4
+c
+c  ***  set v(radfac) to fletcher*s decrease factor  ***
+c
+ 160  iv(xirc) = iv(irc)
+      emax = v(gtstep) + v(fdif)
+      v(radfac) = half * rfac1
+      if (emax .lt. v(gtstep)) v(radfac) = rfac1 * dmax1(v(rdfcmn),
+     1                                           half * v(gtstep)/emax)
+c
+c  ***  do false convergence test  ***
+c
+ 170  if (v(reldx) .le. v(xftol)) go to 180
+         iv(irc) = iv(xirc)
+         if (v(f) .lt. v(f0)) go to 200
+              go to 230
+c
+ 180  iv(irc) = 12
+      go to 240
+c
+c  ***  handle good function decrease  ***
+c
+ 190  if (v(fdif) .lt. (-v(tuner3) * v(gtstep))) go to 210
+c
+c     ***  increasing radius looks worthwhile.  see if we just
+c     ***  recomputed step with a decreased radius or restored step
+c     ***  after recomputing it with a larger radius.
+c
+      if (iv(radinc) .lt. 0) go to 210
+      if (iv(restor) .eq. 1) go to 210
+c
+c        ***  we did not.  try a longer step unless this was a newton
+c        ***  step.
+c
+         v(radfac) = v(rdfcmx)
+         gts = v(gtstep)
+         if (v(fdif) .lt. (half/v(radfac) - one) * gts)
+     1            v(radfac) = dmax1(v(incfac), half*gts/(gts + v(fdif)))
+         iv(irc) = 4
+         if (v(stppar) .eq. zero) go to 230
+         if (v(dst0) .ge. zero .and. (v(dst0) .lt. two*v(dstnrm)
+     1             .or. v(nreduc) .lt. onep2*v(fdif)))  go to 230
+c             ***  step was not a newton step.  recompute it with
+c             ***  a larger radius.
+              iv(irc) = 5
+              iv(radinc) = iv(radinc) + 1
+c
+c  ***  save values corresponding to good step  ***
+c
+ 200  v(flstgd) = v(f)
+      iv(mlstgd) = iv(model)
+      if (iv(restor) .ne. 1) iv(restor) = 2
+      v(dstsav) = v(dstnrm)
+      iv(nfgcal) = nfc
+      v(plstgd) = v(preduc)
+      v(gtslst) = v(gtstep)
+      go to 230
+c
+c  ***  accept step with radius unchanged  ***
+c
+ 210  v(radfac) = one
+      iv(irc) = 3
+      go to 230
+c
+c  ***  come here for a restart after convergence  ***
+c
+ 220  iv(irc) = iv(xirc)
+      if (v(dstsav) .ge. zero) go to 240
+         iv(irc) = 12
+         go to 240
+c
+c  ***  perform convergence tests  ***
+c
+ 230  iv(xirc) = iv(irc)
+ 240  if (iv(restor) .eq. 1 .and. v(flstgd) .lt. v(f0)) iv(restor) = 3
+      if (half * v(fdif) .gt. v(preduc)) go to 999
+      emax = v(rfctol) * dabs(v(f0))
+      emaxs = v(sctol) * dabs(v(f0))
+      if (v(dstnrm) .gt. v(lmaxs) .and. v(preduc) .le. emaxs)
+     1                       iv(irc) = 11
+      if (v(dst0) .lt. zero) go to 250
+      i = 0
+      if ((v(nreduc) .gt. zero .and. v(nreduc) .le. emax) .or.
+     1    (v(nreduc) .eq. zero. and. v(preduc) .eq. zero))  i = 2
+      if (v(stppar) .eq. zero .and. v(reldx) .le. v(xctol)
+     1                        .and. goodx)                  i = i + 1
+      if (i .gt. 0) iv(irc) = i + 6
+c
+c  ***  consider recomputing step of length v(lmaxs) for singular
+c  ***  convergence test.
+c
+ 250  if (iv(irc) .gt. 5 .and. iv(irc) .ne. 12) go to 999
+      if (v(dstnrm) .gt. v(lmaxs)) go to 260
+         if (v(preduc) .ge. emaxs) go to 999
+              if (v(dst0) .le. zero) go to 270
+                   if (half * v(dst0) .le. v(lmaxs)) go to 999
+                        go to 270
+ 260  if (half * v(dstnrm) .le. v(lmaxs)) go to 999
+      xmax = v(lmaxs) / v(dstnrm)
+      if (xmax * (two - xmax) * v(preduc) .ge. emaxs) go to 999
+ 270  if (v(nreduc) .lt. zero) go to 290
+c
+c  ***  recompute v(preduc) for use in singular convergence test  ***
+c
+      v(gtslst) = v(gtstep)
+      v(dstsav) = v(dstnrm)
+      if (iv(irc) .eq. 12) v(dstsav) = -v(dstsav)
+      v(plstgd) = v(preduc)
+      i = iv(restor)
+      iv(restor) = 2
+      if (i .eq. 3) iv(restor) = 0
+      iv(irc) = 6
+      go to 999
+c
+c  ***  perform singular convergence test with recomputed v(preduc)  ***
+c
+ 280  v(gtstep) = v(gtslst)
+      v(dstnrm) = dabs(v(dstsav))
+      iv(irc) = iv(xirc)
+      if (v(dstsav) .le. zero) iv(irc) = 12
+      v(nreduc) = -v(preduc)
+      v(preduc) = v(plstgd)
+      iv(restor) = 3
+ 290  if (-v(nreduc) .le. v(sctol) * dabs(v(f0))) iv(irc) = 11
+c
+ 999  return
+c
+c  ***  last card of assst follows  ***
+      end
+      subroutine deflt(alg, iv, liv, lv, v)
+c
+c  ***  supply ***sol (version 2.3) default values to iv and v  ***
+c
+c  ***  alg = 1 means regression constants.
+c  ***  alg = 2 means general unconstrained optimization constants.
+c
+      integer liv, l
+      integer alg, iv(liv)
+      double precision v(lv)
+c
+      external imdcon, vdflt
+      integer imdcon
+c imdcon... returns machine-dependent integer constants.
+c vdflt.... provides default values to v.
+c
+      integer miv, m
+      integer miniv(2), minv(2)
+c
+c  ***  subscripts for iv  ***
+c
+      integer algsav, covprt, covreq, dtype, hc, ierr, inith, inits,
+     1        ipivot, ivneed, lastiv, lastv, lmat, mxfcal, mxiter,
+     2        nfcov, ngcov, nvdflt, outlev, parprt, parsav, perm,
+     3        prunit, qrtyp, rdreq, rmat, solprt, statpr, vneed,
+     4        vsave, x0prt
+c
+c  ***  iv subscript values  ***
+c
+c/6
+c     data algsav/51/, covprt/14/, covreq/15/, dtype/16/, hc/71/,
+c    1     ierr/75/, inith/25/, inits/25/, ipivot/76/, ivneed/3/,
+c    2     lastiv/44/, lastv/45/, lmat/42/, mxfcal/17/, mxiter/18/,
+c    3     nfcov/52/, ngcov/53/, nvdflt/50/, outlev/19/, parprt/20/,
+c    4     parsav/49/, perm/58/, prunit/21/, qrtyp/80/, rdreq/57/,
+c    5     rmat/78/, solprt/22/, statpr/23/, vneed/4/, vsave/60/,
+c    6     x0prt/24/
+c/7
+      parameter (algsav=51, covprt=14, covreq=15, dtype=16, hc=71,
+     1           ierr=75, inith=25, inits=25, ipivot=76, ivneed=3,
+     2           lastiv=44, lastv=45, lmat=42, mxfcal=17, mxiter=18,
+     3           nfcov=52, ngcov=53, nvdflt=50, outlev=19, parprt=20,
+     4           parsav=49, perm=58, prunit=21, qrtyp=80, rdreq=57,
+     5           rmat=78, solprt=22, statpr=23, vneed=4, vsave=60,
+     6           x0prt=24)
+c/
+      data miniv(1)/80/, miniv(2)/59/, minv(1)/98/, minv(2)/71/
+c
+c-------------------------------  body  --------------------------------
+c
+      if (alg .lt. 1 .or. alg .gt. 2) go to 40
+      miv = miniv(alg)
+      if (liv .lt. miv) go to 20
+      mv = minv(alg)
+      if (lv .lt. mv) go to 30
+      call vdflt(alg, lv, v)
+      iv(1) = 12
+      iv(algsav) = alg
+      iv(ivneed) = 0
+      iv(lastiv) = miv
+      iv(lastv) = mv
+      iv(lmat) = mv + 1
+      iv(mxfcal) = 200
+      iv(mxiter) = 150
+      iv(outlev) = 1
+      iv(parprt) = 1
+      iv(perm) = miv + 1
+      iv(prunit) = imdcon(1)
+      iv(solprt) = 1
+      iv(statpr) = 1
+      iv(vneed) = 0
+      iv(x0prt) = 1
+c
+      if (alg .ge. 2) go to 10
+c
+c  ***  regression  values
+c
+      iv(covprt) = 3
+      iv(covreq) = 1
+      iv(dtype) = 1
+      iv(hc) = 0
+      iv(ierr) = 0
+      iv(inits) = 0
+      iv(ipivot) = 0
+      iv(nvdflt) = 32
+      iv(parsav) = 67
+      iv(qrtyp) = 1
+      iv(rdreq) = 3
+      iv(rmat) = 0
+      iv(vsave) = 58
+      go to 999
+c
+c  ***  general optimization values
+c
+ 10   iv(dtype) = 0
+      iv(inith) = 1
+      iv(nfcov) = 0
+      iv(ngcov) = 0
+      iv(nvdflt) = 25
+      iv(parsav) = 47
+      go to 999
+c
+ 20   iv(1) = 15
+      go to 999
+c
+ 30   iv(1) = 16
+      go to 999
+c
+ 40   iv(1) = 67
+c
+ 999  return
+c  ***  last card of deflt follows  ***
+      end
+      double precision function dotprd(p, x, y)
+c
+c  ***  return the inner product of the p-vectors x and y.  ***
+c
+      integer p
+      double precision x(p), y(p)
+c
+      integer i
+      double precision one, sqteta, t, zero
+c/+
+      double precision dmax1, dabs
+c/
+      external rmdcon
+      double precision rmdcon
+c
+c  ***  rmdcon(2) returns a machine-dependent constant, sqteta, which
+c  ***  is slightly larger than the smallest positive number that
+c  ***  can be squared without underflowing.
+c
+c/6
+c     data one/1.d+0/, sqteta/0.d+0/, zero/0.d+0/
+c/7
+      parameter (one=1.d+0, zero=0.d+0)
+      data sqteta/0.d+0/
+c/
+c
+      dotprd = zero
+      if (p .le. 0) go to 999
+crc      if (sqteta .eq. zero) sqteta = rmdcon(2)
+      do 20 i = 1, p
+crc         t = dmax1(dabs(x(i)), dabs(y(i)))
+crc         if (t .gt. one) go to 10
+crc         if (t .lt. sqteta) go to 20
+crc         t = (x(i)/sqteta)*y(i)
+crc         if (dabs(t) .lt. sqteta) go to 20
+ 10      dotprd = dotprd + x(i)*y(i)
+ 20   continue
+c
+ 999  return
+c  ***  last card of dotprd follows  ***
+      end
+      subroutine itsum(d, g, iv, liv, lv, p, v, x)
+c
+c  ***  print iteration summary for ***sol (version 2.3)  ***
+c
+c  ***  parameter declarations  ***
+c
+      integer liv, lv, p
+      integer iv(liv)
+      double precision d(p), g(p), v(lv), x(p)
+c
+c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+c
+c  ***  local variables  ***
+c
+      integer alg, i, iv1, m, nf, ng, ol, pu
+c/6
+c     real model1(6), model2(6)
+c/7
+      character*4 model1(6), model2(6)
+c/
+      double precision nreldf, oldf, preldf, reldf, zero
+c
+c  ***  intrinsic functions  ***
+c/+
+      integer iabs
+      double precision dabs, dmax1
+c/
+c  ***  no external functions or subroutines  ***
+c
+c  ***  subscripts for iv and v  ***
+c
+      integer algsav, dstnrm, f, fdif, f0, needhd, nfcall, nfcov, ngcov,
+     1        ngcall, niter, nreduc, outlev, preduc, prntit, prunit,
+     2        reldx, solprt, statpr, stppar, sused, x0prt
+c
+c  ***  iv subscript values  ***
+c
+c/6
+c     data algsav/51/, needhd/36/, nfcall/6/, nfcov/52/, ngcall/30/,
+c    1     ngcov/53/, niter/31/, outlev/19/, prntit/39/, prunit/21/,
+c    2     solprt/22/, statpr/23/, sused/64/, x0prt/24/
+c/7
+      parameter (algsav=51, needhd=36, nfcall=6, nfcov=52, ngcall=30,
+     1           ngcov=53, niter=31, outlev=19, prntit=39, prunit=21,
+     2           solprt=22, statpr=23, sused=64, x0prt=24)
+c/
+c
+c  ***  v subscript values  ***
+c
+c/6
+c     data dstnrm/2/, f/10/, f0/13/, fdif/11/, nreduc/6/, preduc/7/,
+c    1     reldx/17/, stppar/5/
+c/7
+      parameter (dstnrm=2, f=10, f0=13, fdif=11, nreduc=6, preduc=7,
+     1           reldx=17, stppar=5)
+c/
+c
+c/6
+c     data zero/0.d+0/
+c/7
+      parameter (zero=0.d+0)
+c/
+c/6
+c     data model1(1)/4h    /, model1(2)/4h    /, model1(3)/4h    /,
+c    1     model1(4)/4h    /, model1(5)/4h  g /, model1(6)/4h  s /,
+c    2     model2(1)/4h g  /, model2(2)/4h s  /, model2(3)/4hg-s /,
+c    3     model2(4)/4hs-g /, model2(5)/4h-s-g/, model2(6)/4h-g-s/
+c/7
+      data model1/'    ','    ','    ','    ','  g ','  s '/,
+     1     model2/' g  ',' s  ','g-s ','s-g ','-s-g','-g-s'/
+c/
+c
+c-------------------------------  body  --------------------------------
+c
+      pu = iv(prunit)
+      if (pu .eq. 0) go to 999
+      iv1 = iv(1)
+      if (iv1 .gt. 62) iv1 = iv1 - 51
+      ol = iv(outlev)
+      alg = iv(algsav)
+      if (iv1 .lt. 2 .or. iv1 .gt. 15) go to 370
+      if (iv1 .ge. 12) go to 120
+      if (iv1 .eq. 2 .and. iv(niter) .eq. 0) go to 390
+      if (ol .eq. 0) go to 120
+      if (iv1 .ge. 10 .and. iv(prntit) .eq. 0) go to 120
+      if (iv1 .gt. 2) go to 10
+         iv(prntit) = iv(prntit) + 1
+         if (iv(prntit) .lt. iabs(ol)) go to 999
+ 10   nf = iv(nfcall) - iabs(iv(nfcov))
+      iv(prntit) = 0
+      reldf = zero
+      preldf = zero
+      oldf = dmax1(dabs(v(f0)), dabs(v(f)))
+      if (oldf .le. zero) go to 20
+         reldf = v(fdif) / oldf
+         preldf = v(preduc) / oldf
+ 20   if (ol .gt. 0) go to 60
+c
+c        ***  print short summary line  ***
+c
+         if (iv(needhd) .eq. 1 .and. alg .eq. 1) write(pu,30)
+ 30   format(/10h   it   nf,6x,1hf,7x,5hreldf,3x,6hpreldf,3x,5hreldx,
+     1       2x,13hmodel  stppar)
+         if (iv(needhd) .eq. 1 .and. alg .eq. 2) write(pu,40)
+ 40   format(/11h    it   nf,7x,1hf,8x,5hreldf,4x,6hpreldf,4x,5hreldx,
+     1       3x,6hstppar)
+         iv(needhd) = 0
+         if (alg .eq. 2) go to 50
+         m = iv(sused)
+         write(pu,100) iv(niter), nf, v(f), reldf, preldf, v(reldx),
+     1                 model1(m), model2(m), v(stppar)
+         go to 120
+c
+ 50      write(pu,110) iv(niter), nf, v(f), reldf, preldf, v(reldx),
+     1                 v(stppar)
+         go to 120
+c
+c     ***  print long summary line  ***
+c
+ 60   if (iv(needhd) .eq. 1 .and. alg .eq. 1) write(pu,70)
+ 70   format(/11h    it   nf,6x,1hf,7x,5hreldf,3x,6hpreldf,3x,5hreldx,
+     1       2x,13hmodel  stppar,2x,6hd*step,2x,7hnpreldf)
+      if (iv(needhd) .eq. 1 .and. alg .eq. 2) write(pu,80)
+ 80   format(/11h    it   nf,7x,1hf,8x,5hreldf,4x,6hpreldf,4x,5hreldx,
+     1       3x,6hstppar,3x,6hd*step,3x,7hnpreldf)
+      iv(needhd) = 0
+      nreldf = zero
+      if (oldf .gt. zero) nreldf = v(nreduc) / oldf
+      if (alg .eq. 2) go to 90
+      m = iv(sused)
+      write(pu,100) iv(niter), nf, v(f), reldf, preldf, v(reldx),
+     1             model1(m), model2(m), v(stppar), v(dstnrm), nreldf
+      go to 120
+c
+ 90   write(pu,110) iv(niter), nf, v(f), reldf, preldf,
+     1             v(reldx), v(stppar), v(dstnrm), nreldf
+ 100  format(i6,i5,d10.3,2d9.2,d8.1,a3,a4,2d8.1,d9.2)
+ 110  format(i6,i5,d11.3,2d10.2,3d9.1,d10.2)
+c
+ 120  if (iv(statpr) .lt. 0) go to 430
+      go to (999, 999, 130, 150, 170, 190, 210, 230, 250, 270, 290, 310,
+     1       330, 350, 520), iv1
+c
+ 130  write(pu,140)
+ 140  format(/26h ***** x-convergence *****)
+      go to 430
+c
+ 150  write(pu,160)
+ 160  format(/42h ***** relative function convergence *****)
+      go to 430
+c
+ 170  write(pu,180)
+ 180  format(/49h ***** x- and relative function convergence *****)
+      go to 430
+c
+ 190  write(pu,200)
+ 200  format(/42h ***** absolute function convergence *****)
+      go to 430
+c
+ 210  write(pu,220)
+ 220  format(/33h ***** singular convergence *****)
+      go to 430
+c
+ 230  write(pu,240)
+ 240  format(/30h ***** false convergence *****)
+      go to 430
+c
+ 250  write(pu,260)
+ 260  format(/38h ***** function evaluation limit *****)
+      go to 430
+c
+ 270  write(pu,280)
+ 280  format(/28h ***** iteration limit *****)
+      go to 430
+c
+ 290  write(pu,300)
+ 300  format(/18h ***** stopx *****)
+      go to 430
+c
+ 310  write(pu,320)
+ 320  format(/44h ***** initial f(x) cannot be computed *****)
+c
+      go to 390
+c
+ 330  write(pu,340)
+ 340  format(/37h ***** bad parameters to assess *****)
+      go to 999
+c
+ 350  write(pu,360)
+ 360  format(/43h ***** gradient could not be computed *****)
+      if (iv(niter) .gt. 0) go to 480
+      go to 390
+c
+ 370  write(pu,380) iv(1)
+ 380  format(/14h ***** iv(1) =,i5,6h *****)
+      go to 999
+c
+c  ***  initial call on itsum  ***
+c
+ 390  if (iv(x0prt) .ne. 0) write(pu,400) (i, x(i), d(i), i = 1, p)
+ 400  format(/23h     i     initial x(i),8x,4hd(i)//(1x,i5,d17.6,d14.3))
+c     *** the following are to avoid undefined variables when the
+c     *** function evaluation limit is 1...
+      v(dstnrm) = zero
+      v(fdif) = zero
+      v(nreduc) = zero
+      v(preduc) = zero
+      v(reldx)  = zero
+      if (iv1 .ge. 12) go to 999
+      iv(needhd) = 0
+      iv(prntit) = 0
+      if (ol .eq. 0) go to 999
+      if (ol .lt. 0 .and. alg .eq. 1) write(pu,30)
+      if (ol .lt. 0 .and. alg .eq. 2) write(pu,40)
+      if (ol .gt. 0 .and. alg .eq. 1) write(pu,70)
+      if (ol .gt. 0 .and. alg .eq. 2) write(pu,80)
+      if (alg .eq. 1) write(pu,410) v(f)
+      if (alg .eq. 2) write(pu,420) v(f)
+ 410  format(/11h     0    1,d10.3)
+c365  format(/11h     0    1,e11.3)
+ 420  format(/11h     0    1,d11.3)
+      go to 999
+c
+c  ***  print various information requested on solution  ***
+c
+ 430  iv(needhd) = 1
+      if (iv(statpr) .eq. 0) go to 480
+         oldf = dmax1(dabs(v(f0)), dabs(v(f)))
+         preldf = zero
+         nreldf = zero
+         if (oldf .le. zero) go to 440
+              preldf = v(preduc) / oldf
+              nreldf = v(nreduc) / oldf
+ 440     nf = iv(nfcall) - iv(nfcov)
+         ng = iv(ngcall) - iv(ngcov)
+         write(pu,450) v(f), v(reldx), nf, ng, preldf, nreldf
+ 450  format(/9h function,d17.6,8h   reldx,d17.3/12h func. evals,
+     1   i8,9x,11hgrad. evals,i8/7h preldf,d16.3,6x,7hnpreldf,d15.3)
+c
+         if (iv(nfcov) .gt. 0) write(pu,460) iv(nfcov)
+ 460     format(/1x,i4,50h extra func. evals for covariance and diagnost
+     1ics.)
+         if (iv(ngcov) .gt. 0) write(pu,470) iv(ngcov)
+ 470     format(1x,i4,50h extra grad. evals for covariance and diagnosti
+     1cs.)
+c
+ 480  if (iv(solprt) .eq. 0) go to 999
+         iv(needhd) = 1
+         write(pu,490)
+ 490  format(/22h     i      final x(i),8x,4hd(i),10x,4hg(i)/)
+         do 500 i = 1, p
+              write(pu,510) i, x(i), d(i), g(i)
+ 500          continue
+ 510     format(1x,i5,d16.6,2d14.3)
+      go to 999
+c
+ 520  write(pu,530)
+ 530  format(/24h inconsistent dimensions)
+ 999  return
+c  ***  last card of itsum follows  ***
+      end
+      subroutine litvmu(n, x, l, y)
+c
+c  ***  solve  (l**t)*x = y,  where  l  is an  n x n  lower triangular
+c  ***  matrix stored compactly by rows.  x and y may occupy the same
+c  ***  storage.  ***
+c
+      integer n
+cal   double precision x(n), l(1), y(n)
+      double precision x(n), l(n*(n+1)/2), y(n)
+      integer i, ii, ij, im1, i0, j, np1
+      double precision xi, zero
+c/6
+c     data zero/0.d+0/
+c/7
+      parameter (zero=0.d+0)
+c/
+c
+      do 10 i = 1, n
+ 10      x(i) = y(i)
+      np1 = n + 1
+      i0 = n*(n+1)/2
+      do 30 ii = 1, n
+         i = np1 - ii
+         xi = x(i)/l(i0)
+         x(i) = xi
+         if (i .le. 1) go to 999
+         i0 = i0 - i
+         if (xi .eq. zero) go to 30
+         im1 = i - 1
+         do 20 j = 1, im1
+              ij = i0 + j
+              x(j) = x(j) - xi*l(ij)
+ 20           continue
+ 30      continue
+ 999  return
+c  ***  last card of litvmu follows  ***
+      end
+      subroutine livmul(n, x, l, y)
+c
+c  ***  solve  l*x = y, where  l  is an  n x n  lower triangular
+c  ***  matrix stored compactly by rows.  x and y may occupy the same
+c  ***  storage.  ***
+c
+      integer n
+cal   double precision x(n), l(1), y(n)
+      double precision x(n), l(n*(n+1)/2), y(n)
+      external dotprd
+      double precision dotprd
+      integer i, j, k
+      double precision t, zero
+c/6
+c     data zero/0.d+0/
+c/7
+      parameter (zero=0.d+0)
+c/
+c
+      do 10 k = 1, n
+         if (y(k) .ne. zero) go to 20
+         x(k) = zero
+ 10      continue
+      go to 999
+ 20   j = k*(k+1)/2
+      x(k) = y(k) / l(j)
+      if (k .ge. n) go to 999
+      k = k + 1
+      do 30 i = k, n
+         t = dotprd(i-1, l(j+1), x)
+         j = j + i
+         x(i) = (y(i) - t)/l(j)
+ 30      continue
+ 999  return
+c  ***  last card of livmul follows  ***
+      end
+      subroutine parck(alg, d, iv, liv, lv, n, v)
+c
+c  ***  check ***sol (version 2.3) parameters, print changed values  ***
+c
+c  ***  alg = 1 for regression, alg = 2 for general unconstrained opt.
+c
+      integer alg, liv, lv, n
+      integer iv(liv)
+      double precision d(n), v(lv)
+c
+      external rmdcon, vcopy, vdflt
+      double precision rmdcon
+c rmdcon -- returns machine-dependent constants.
+c vcopy  -- copies one vector to another.
+c vdflt  -- supplies default parameter values to v alone.
+c/+
+      integer max0
+c/
+c
+c  ***  local variables  ***
+c
+      integer i, ii, iv1, j, k, l, m, miv1, miv2, ndfalt, parsv1, pu
+      integer ijmp, jlim(2), miniv(2), ndflt(2)
+c/6
+c     integer varnm(2), sh(2)
+c     real cngd(3), dflt(3), vn(2,34), which(3)
+c/7
+      character*1 varnm(2), sh(2)
+      character*4 cngd(3), dflt(3), vn(2,34), which(3)
+c/
+      double precision big, machep, tiny, vk, vm(34), vx(34), zero
+c
+c  ***  iv and v subscripts  ***
+c
+      integer algsav, dinit, dtype, dtype0, epslon, inits, ivneed,
+     1        lastiv, lastv, lmat, nextiv, nextv, nvdflt, oldn,
+     2        parprt, parsav, perm, prunit, vneed
+c
+c
+c/6
+c     data algsav/51/, dinit/38/, dtype/16/, dtype0/54/, epslon/19/,
+c    1     inits/25/, ivneed/3/, lastiv/44/, lastv/45/, lmat/42/,
+c    2     nextiv/46/, nextv/47/, nvdflt/50/, oldn/38/, parprt/20/,
+c    3     parsav/49/, perm/58/, prunit/21/, vneed/4/
+c/7
+      parameter (algsav=51, dinit=38, dtype=16, dtype0=54, epslon=19,
+     1           inits=25, ivneed=3, lastiv=44, lastv=45, lmat=42,
+     2           nextiv=46, nextv=47, nvdflt=50, oldn=38, parprt=20,
+     3           parsav=49, perm=58, prunit=21, vneed=4)
+      save big, machep, tiny
+c/
+c
+      data big/0.d+0/, machep/-1.d+0/, tiny/1.d+0/, zero/0.d+0/
+c/6
+c     data vn(1,1),vn(2,1)/4hepsl,4hon../
+c     data vn(1,2),vn(2,2)/4hphmn,4hfc../
+c     data vn(1,3),vn(2,3)/4hphmx,4hfc../
+c     data vn(1,4),vn(2,4)/4hdecf,4hac../
+c     data vn(1,5),vn(2,5)/4hincf,4hac../
+c     data vn(1,6),vn(2,6)/4hrdfc,4hmn../
+c     data vn(1,7),vn(2,7)/4hrdfc,4hmx../
+c     data vn(1,8),vn(2,8)/4htune,4hr1../
+c     data vn(1,9),vn(2,9)/4htune,4hr2../
+c     data vn(1,10),vn(2,10)/4htune,4hr3../
+c     data vn(1,11),vn(2,11)/4htune,4hr4../
+c     data vn(1,12),vn(2,12)/4htune,4hr5../
+c     data vn(1,13),vn(2,13)/4hafct,4hol../
+c     data vn(1,14),vn(2,14)/4hrfct,4hol../
+c     data vn(1,15),vn(2,15)/4hxcto,4hl.../
+c     data vn(1,16),vn(2,16)/4hxfto,4hl.../
+c     data vn(1,17),vn(2,17)/4hlmax,4h0.../
+c     data vn(1,18),vn(2,18)/4hlmax,4hs.../
+c     data vn(1,19),vn(2,19)/4hscto,4hl.../
+c     data vn(1,20),vn(2,20)/4hdini,4ht.../
+c     data vn(1,21),vn(2,21)/4hdtin,4hit../
+c     data vn(1,22),vn(2,22)/4hd0in,4hit../
+c     data vn(1,23),vn(2,23)/4hdfac,4h..../
+c     data vn(1,24),vn(2,24)/4hdltf,4hdc../
+c     data vn(1,25),vn(2,25)/4hdltf,4hdj../
+c     data vn(1,26),vn(2,26)/4hdelt,4ha0../
+c     data vn(1,27),vn(2,27)/4hfuzz,4h..../
+c     data vn(1,28),vn(2,28)/4hrlim,4hit../
+c     data vn(1,29),vn(2,29)/4hcosm,4hin../
+c     data vn(1,30),vn(2,30)/4hhube,4hrc../
+c     data vn(1,31),vn(2,31)/4hrspt,4hol../
+c     data vn(1,32),vn(2,32)/4hsigm,4hin../
+c     data vn(1,33),vn(2,33)/4heta0,4h..../
+c     data vn(1,34),vn(2,34)/4hbias,4h..../
+c/7
+      data vn(1,1),vn(2,1)/'epsl','on..'/
+      data vn(1,2),vn(2,2)/'phmn','fc..'/
+      data vn(1,3),vn(2,3)/'phmx','fc..'/
+      data vn(1,4),vn(2,4)/'decf','ac..'/
+      data vn(1,5),vn(2,5)/'incf','ac..'/
+      data vn(1,6),vn(2,6)/'rdfc','mn..'/
+      data vn(1,7),vn(2,7)/'rdfc','mx..'/
+      data vn(1,8),vn(2,8)/'tune','r1..'/
+      data vn(1,9),vn(2,9)/'tune','r2..'/
+      data vn(1,10),vn(2,10)/'tune','r3..'/
+      data vn(1,11),vn(2,11)/'tune','r4..'/
+      data vn(1,12),vn(2,12)/'tune','r5..'/
+      data vn(1,13),vn(2,13)/'afct','ol..'/
+      data vn(1,14),vn(2,14)/'rfct','ol..'/
+      data vn(1,15),vn(2,15)/'xcto','l...'/
+      data vn(1,16),vn(2,16)/'xfto','l...'/
+      data vn(1,17),vn(2,17)/'lmax','0...'/
+      data vn(1,18),vn(2,18)/'lmax','s...'/
+      data vn(1,19),vn(2,19)/'scto','l...'/
+      data vn(1,20),vn(2,20)/'dini','t...'/
+      data vn(1,21),vn(2,21)/'dtin','it..'/
+      data vn(1,22),vn(2,22)/'d0in','it..'/
+      data vn(1,23),vn(2,23)/'dfac','....'/
+      data vn(1,24),vn(2,24)/'dltf','dc..'/
+      data vn(1,25),vn(2,25)/'dltf','dj..'/
+      data vn(1,26),vn(2,26)/'delt','a0..'/
+      data vn(1,27),vn(2,27)/'fuzz','....'/
+      data vn(1,28),vn(2,28)/'rlim','it..'/
+      data vn(1,29),vn(2,29)/'cosm','in..'/
+      data vn(1,30),vn(2,30)/'hube','rc..'/
+      data vn(1,31),vn(2,31)/'rspt','ol..'/
+      data vn(1,32),vn(2,32)/'sigm','in..'/
+      data vn(1,33),vn(2,33)/'eta0','....'/
+      data vn(1,34),vn(2,34)/'bias','....'/
+c/
+c
+      data vm(1)/1.0d-3/, vm(2)/-0.99d+0/, vm(3)/1.0d-3/, vm(4)/1.0d-2/,
+     1     vm(5)/1.2d+0/, vm(6)/1.d-2/, vm(7)/1.2d+0/, vm(8)/0.d+0/,
+     2     vm(9)/0.d+0/, vm(10)/1.d-3/, vm(11)/-1.d+0/, vm(13)/0.d+0/,
+     3     vm(15)/0.d+0/, vm(16)/0.d+0/, vm(19)/0.d+0/, vm(20)/-10.d+0/,
+     4     vm(21)/0.d+0/, vm(22)/0.d+0/, vm(23)/0.d+0/, vm(27)/1.01d+0/,
+     5     vm(28)/1.d+10/, vm(30)/0.d+0/, vm(31)/0.d+0/, vm(32)/0.d+0/,
+     6     vm(34)/0.d+0/
+      data vx(1)/0.9d+0/, vx(2)/-1.d-3/, vx(3)/1.d+1/, vx(4)/0.8d+0/,
+     1     vx(5)/1.d+2/, vx(6)/0.8d+0/, vx(7)/1.d+2/, vx(8)/0.5d+0/,
+     2     vx(9)/0.5d+0/, vx(10)/1.d+0/, vx(11)/1.d+0/, vx(14)/0.1d+0/,
+     3     vx(15)/1.d+0/, vx(16)/1.d+0/, vx(19)/1.d+0/, vx(23)/1.d+0/,
+     4     vx(24)/1.d+0/, vx(25)/1.d+0/, vx(26)/1.d+0/, vx(27)/1.d+10/,
+     5     vx(29)/1.d+0/, vx(31)/1.d+0/, vx(32)/1.d+0/, vx(33)/1.d+0/,
+     6     vx(34)/1.d+0/
+c
+c/6
+c     data varnm(1)/1hp/, varnm(2)/1hn/, sh(1)/1hs/, sh(2)/1hh/
+c     data cngd(1),cngd(2),cngd(3)/4h---c,4hhang,4hed v/,
+c    1     dflt(1),dflt(2),dflt(3)/4hnond,4hefau,4hlt v/
+c/7
+      data varnm(1)/'p'/, varnm(2)/'n'/, sh(1)/'s'/, sh(2)/'h'/
+      data cngd(1),cngd(2),cngd(3)/'---c','hang','ed v'/,
+     1     dflt(1),dflt(2),dflt(3)/'nond','efau','lt v'/
+c/
+      data ijmp/33/, jlim(1)/0/, jlim(2)/24/, ndflt(1)/32/, ndflt(2)/25/
+      data miniv(1)/80/, miniv(2)/59/
+c
+c...............................  body  ................................
+c
+      pu = 0
+      if (prunit .le. liv) pu = iv(prunit)
+      if (alg .lt. 1 .or. alg .gt. 2) go to 340
+      if (iv(1) .eq. 0) call deflt(alg, iv, liv, lv, v)
+      iv1 = iv(1)
+      if (iv1 .ne. 13 .and. iv1 .ne. 12) go to 10
+      miv1 = miniv(alg)
+      if (perm .le. liv) miv1 = max0(miv1, iv(perm) - 1)
+      if (ivneed .le. liv) miv2 = miv1 + max0(iv(ivneed), 0)
+      if (lastiv .le. liv) iv(lastiv) = miv2
+      if (liv .lt. miv1) go to 300
+      iv(ivneed) = 0
+      iv(lastv) = max0(iv(vneed), 0) + iv(lmat) - 1
+      iv(vneed) = 0
+      if (liv .lt. miv2) go to 300
+      if (lv .lt. iv(lastv)) go to 320
+ 10   if (alg .eq. iv(algsav)) go to 30
+         if (pu .ne. 0) write(pu,20) alg, iv(algsav)
+ 20      format(/39h the first parameter to deflt should be,i3,
+     1          12h rather than,i3)
+         iv(1) = 82
+         go to 999
+ 30   if (iv1 .lt. 12 .or. iv1 .gt. 14) go to 60
+         if (n .ge. 1) go to 50
+              iv(1) = 81
+              if (pu .eq. 0) go to 999
+              write(pu,40) varnm(alg), n
+ 40           format(/8h /// bad,a1,2h =,i5)
+              go to 999
+ 50      if (iv1 .ne. 14) iv(nextiv) = iv(perm)
+         if (iv1 .ne. 14) iv(nextv) = iv(lmat)
+         if (iv1 .eq. 13) go to 999
+         k = iv(parsav) - epslon
+         call vdflt(alg, lv-k, v(k+1))
+         iv(dtype0) = 2 - alg
+         iv(oldn) = n
+         which(1) = dflt(1)
+         which(2) = dflt(2)
+         which(3) = dflt(3)
+         go to 110
+ 60   if (n .eq. iv(oldn)) go to 80
+         iv(1) = 17
+         if (pu .eq. 0) go to 999
+         write(pu,70) varnm(alg), iv(oldn), n
+ 70      format(/5h /// ,1a1,14h changed from ,i5,4h to ,i5)
+         go to 999
+c
+ 80   if (iv1 .le. 11 .and. iv1 .ge. 1) go to 100
+         iv(1) = 80
+         if (pu .ne. 0) write(pu,90) iv1
+ 90      format(/13h ///  iv(1) =,i5,28h should be between 0 and 14.)
+         go to 999
+c
+ 100  which(1) = cngd(1)
+      which(2) = cngd(2)
+      which(3) = cngd(3)
+c
+ 110  if (iv1 .eq. 14) iv1 = 12
+      if (big .gt. tiny) go to 120
+         tiny = rmdcon(1)
+         machep = rmdcon(3)
+         big = rmdcon(6)
+         vm(12) = machep
+         vx(12) = big
+         vx(13) = big
+         vm(14) = machep
+         vm(17) = tiny
+         vx(17) = big
+         vm(18) = tiny
+         vx(18) = big
+         vx(20) = big
+         vx(21) = big
+         vx(22) = big
+         vm(24) = machep
+         vm(25) = machep
+         vm(26) = machep
+         vx(28) = rmdcon(5)
+         vm(29) = machep
+         vx(30) = big
+         vm(33) = machep
+ 120  m = 0
+      i = 1
+      j = jlim(alg)
+      k = epslon
+      ndfalt = ndflt(alg)
+      do 150 l = 1, ndfalt
+         vk = v(k)
+         if (vk .ge. vm(i) .and. vk .le. vx(i)) go to 140
+              m = k
+              if (pu .ne. 0) write(pu,130) vn(1,i), vn(2,i), k, vk,
+     1                                    vm(i), vx(i)
+ 130          format(/6h ///  ,2a4,5h.. v(,i2,3h) =,d11.3,7h should,
+     1               11h be between,d11.3,4h and,d11.3)
+ 140     k = k + 1
+         i = i + 1
+         if (i .eq. j) i = ijmp
+ 150     continue
+c
+      if (iv(nvdflt) .eq. ndfalt) go to 170
+         iv(1) = 51
+         if (pu .eq. 0) go to 999
+         write(pu,160) iv(nvdflt), ndfalt
+ 160     format(/13h iv(nvdflt) =,i5,13h rather than ,i5)
+         go to 999
+ 170  if ((iv(dtype) .gt. 0 .or. v(dinit) .gt. zero) .and. iv1 .eq. 12)
+     1                  go to 200
+      do 190 i = 1, n
+         if (d(i) .gt. zero) go to 190
+              m = 18
+              if (pu .ne. 0) write(pu,180) i, d(i)
+ 180     format(/8h ///  d(,i3,3h) =,d11.3,19h should be positive)
+ 190     continue
+ 200  if (m .eq. 0) go to 210
+         iv(1) = m
+         go to 999
+c
+ 210  if (pu .eq. 0 .or. iv(parprt) .eq. 0) go to 999
+      if (iv1 .ne. 12 .or. iv(inits) .eq. alg-1) go to 230
+         m = 1
+         write(pu,220) sh(alg), iv(inits)
+ 220     format(/22h nondefault values..../5h init,a1,14h..... iv(25) =,
+     1          i3)
+ 230  if (iv(dtype) .eq. iv(dtype0)) go to 250
+         if (m .eq. 0) write(pu,260) which
+         m = 1
+         write(pu,240) iv(dtype)
+ 240     format(20h dtype..... iv(16) =,i3)
+ 250  i = 1
+      j = jlim(alg)
+      k = epslon
+      l = iv(parsav)
+      ndfalt = ndflt(alg)
+      do 290 ii = 1, ndfalt
+         if (v(k) .eq. v(l)) go to 280
+              if (m .eq. 0) write(pu,260) which
+ 260          format(/1h ,3a4,9halues..../)
+              m = 1
+              write(pu,270) vn(1,i), vn(2,i), k, v(k)
+ 270          format(1x,2a4,5h.. v(,i2,3h) =,d15.7)
+ 280     k = k + 1
+         l = l + 1
+         i = i + 1
+         if (i .eq. j) i = ijmp
+ 290     continue
+c
+      iv(dtype0) = iv(dtype)
+      parsv1 = iv(parsav)
+      call vcopy(iv(nvdflt), v(parsv1), v(epslon))
+      go to 999
+c
+ 300  iv(1) = 15
+      if (pu .eq. 0) go to 999
+      write(pu,310) liv, miv2
+ 310  format(/10h /// liv =,i5,17h must be at least,i5)
+      if (liv .lt. miv1) go to 999
+      if (lv .lt. iv(lastv)) go to 320
+      go to 999
+c
+ 320  iv(1) = 16
+      if (pu .eq. 0) go to 999
+      write(pu,330) lv, iv(lastv)
+ 330  format(/9h /// lv =,i5,17h must be at least,i5)
+      go to 999
+c
+ 340  iv(1) = 67
+      if (pu .eq. 0) go to 999
+      write(pu,350) alg
+ 350  format(/10h /// alg =,i5,15h must be 1 or 2)
+c
+ 999  return
+c  ***  last card of parck follows  ***
+      end
+      double precision function reldst(p, d, x, x0)
+c
+c  ***  compute and return relative difference between x and x0  ***
+c  ***  nl2sol version 2.2  ***
+c
+      integer p
+      double precision d(p), x(p), x0(p)
+c/+
+      double precision dabs
+c/
+      integer i
+      double precision emax, t, xmax, zero
+c/6
+c     data zero/0.d+0/
+c/7
+      parameter (zero=0.d+0)
+c/
+c
+      emax = zero
+      xmax = zero
+      do 10 i = 1, p
+         t = dabs(d(i) * (x(i) - x0(i)))
+         if (emax .lt. t) emax = t
+         t = d(i) * (dabs(x(i)) + dabs(x0(i)))
+         if (xmax .lt. t) xmax = t
+ 10      continue
+      reldst = zero
+      if (xmax .gt. zero) reldst = emax / xmax
+ 999  return
+c  ***  last card of reldst follows  ***
+      end
+c     logical function stopx(idummy)
+c     *****parameters...
+c     integer idummy
+c
+c     ..................................................................
+c
+c     *****purpose...
+c     this function may serve as the stopx (asynchronous interruption)
+c     function for the nl2sol (nonlinear least-squares) package at
+c     those installations which do not wish to implement a
+c     dynamic stopx.
+c
+c     *****algorithm notes...
+c     at installations where the nl2sol system is used
+c     interactively, this dummy stopx should be replaced by a
+c     function that returns .true. if and only if the interrupt
+c     (break) key has been pressed since the last call on stopx.
+c
+c     ..................................................................
+c
+c     stopx = .false.
+c     return
+c     end
+      subroutine vaxpy(p, w, a, x, y)
+c
+c  ***  set w = a*x + y  --  w, x, y = p-vectors, a = scalar  ***
+c
+      integer p
+      double precision a, w(p), x(p), y(p)
+c
+      integer i
+c
+      do 10 i = 1, p
+ 10      w(i) = a*x(i) + y(i)
+      return
+      end
+      subroutine vcopy(p, y, x)
+c
+c  ***  set y = x, where x and y are p-vectors  ***
+c
+      integer p
+      double precision x(p), y(p)
+c
+      integer i
+c
+      do 10 i = 1, p
+ 10      y(i) = x(i)
+      return
+      end
+      subroutine vdflt(alg, lv, v)
+c
+c  ***  supply ***sol (version 2.3) default values to v  ***
+c
+c  ***  alg = 1 means regression constants.
+c  ***  alg = 2 means general unconstrained optimization constants.
+c
+      integer alg, l
+      double precision v(lv)
+c/+
+      double precision dmax1
+c/
+      external rmdcon
+      double precision rmdcon
+c rmdcon... returns machine-dependent constants
+c
+      double precision machep, mepcrt, one, sqteps, three
+c
+c  ***  subscripts for v  ***
+c
+      integer afctol, bias, cosmin, decfac, delta0, dfac, dinit, dltfdc,
+     1        dltfdj, dtinit, d0init, epslon, eta0, fuzz, huberc,
+     2        incfac, lmax0, lmaxs, phmnfc, phmxfc, rdfcmn, rdfcmx,
+     3        rfctol, rlimit, rsptol, sctol, sigmin, tuner1, tuner2,
+     4        tuner3, tuner4, tuner5, xctol, xftol
+c
+c/6
+c     data one/1.d+0/, three/3.d+0/
+c/7
+      parameter (one=1.d+0, three=3.d+0)
+c/
+c
+c  ***  v subscript values  ***
+c
+c/6
+c     data afctol/31/, bias/43/, cosmin/47/, decfac/22/, delta0/44/,
+c    1     dfac/41/, dinit/38/, dltfdc/42/, dltfdj/43/, dtinit/39/,
+c    2     d0init/40/, epslon/19/, eta0/42/, fuzz/45/, huberc/48/,
+c    3     incfac/23/, lmax0/35/, lmaxs/36/, phmnfc/20/, phmxfc/21/,
+c    4     rdfcmn/24/, rdfcmx/25/, rfctol/32/, rlimit/46/, rsptol/49/,
+c    5     sctol/37/, sigmin/50/, tuner1/26/, tuner2/27/, tuner3/28/,
+c    6     tuner4/29/, tuner5/30/, xctol/33/, xftol/34/
+c/7
+      parameter (afctol=31, bias=43, cosmin=47, decfac=22, delta0=44,
+     1           dfac=41, dinit=38, dltfdc=42, dltfdj=43, dtinit=39,
+     2           d0init=40, epslon=19, eta0=42, fuzz=45, huberc=48,
+     3           incfac=23, lmax0=35, lmaxs=36, phmnfc=20, phmxfc=21,
+     4           rdfcmn=24, rdfcmx=25, rfctol=32, rlimit=46, rsptol=49,
+     5           sctol=37, sigmin=50, tuner1=26, tuner2=27, tuner3=28,
+     6           tuner4=29, tuner5=30, xctol=33, xftol=34)
+c/
+c
+c-------------------------------  body  --------------------------------
+c
+      machep = rmdcon(3)
+      v(afctol) = 1.d-20
+      if (machep .gt. 1.d-10) v(afctol) = machep**2
+      v(decfac) = 0.5d+0
+      sqteps = rmdcon(4)
+      v(dfac) = 0.6d+0
+      v(delta0) = sqteps
+      v(dtinit) = 1.d-6
+      mepcrt = machep ** (one/three)
+      v(d0init) = 1.d+0
+      v(epslon) = 0.1d+0
+      v(incfac) = 2.d+0
+      v(lmax0) = 1.d+0
+      v(lmaxs) = 1.d+0
+      v(phmnfc) = -0.1d+0
+      v(phmxfc) = 0.1d+0
+      v(rdfcmn) = 0.1d+0
+      v(rdfcmx) = 4.d+0
+      v(rfctol) = dmax1(1.d-10, mepcrt**2)
+      v(sctol) = v(rfctol)
+      v(tuner1) = 0.1d+0
+      v(tuner2) = 1.d-4
+      v(tuner3) = 0.75d+0
+      v(tuner4) = 0.5d+0
+      v(tuner5) = 0.75d+0
+      v(xctol) = sqteps
+      v(xftol) = 1.d+2 * machep
+c
+      if (alg .ge. 2) go to 10
+c
+c  ***  regression  values
+c
+      v(cosmin) = dmax1(1.d-6, 1.d+2 * machep)
+      v(dinit) = 0.d+0
+      v(dltfdc) = mepcrt
+      v(dltfdj) = sqteps
+      v(fuzz) = 1.5d+0
+      v(huberc) = 0.7d+0
+      v(rlimit) = rmdcon(5)
+      v(rsptol) = 1.d-3
+      v(sigmin) = 1.d-4
+      go to 999
+c
+c  ***  general optimization values
+c
+ 10   v(bias) = 0.8d+0
+      v(dinit) = -1.0d+0
+      v(eta0) = 1.0d+3 * machep
+c
+ 999  return
+c  ***  last card of vdflt follows  ***
+      end
+      subroutine vscopy(p, y, s)
+c
+c  ***  set p-vector y to scalar s  ***
+c
+      integer p
+      double precision s, y(p)
+c
+      integer i
+c
+      do 10 i = 1, p
+ 10      y(i) = s
+      return
+      end
+      double precision function v2norm(p, x)
+c
+c  ***  return the 2-norm of the p-vector x, taking  ***
+c  ***  care to avoid the most likely underflows.    ***
+c
+      integer p
+      double precision x(p)
+c
+      integer i, j
+      double precision one, r, scale, sqteta, t, xi, zero
+c/+
+      double precision dabs, dsqrt
+c/
+      external rmdcon
+      double precision rmdcon
+c
+c/6
+c     data one/1.d+0/, zero/0.d+0/
+c/7
+      parameter (one=1.d+0, zero=0.d+0)
+      save sqteta
+c/
+      data sqteta/0.d+0/
+c
+      if (p .gt. 0) go to 10
+         v2norm = zero
+         go to 999
+ 10   do 20 i = 1, p
+         if (x(i) .ne. zero) go to 30
+ 20      continue
+      v2norm = zero
+      go to 999
+c
+ 30   scale = dabs(x(i))
+      if (i .lt. p) go to 40
+         v2norm = scale
+         go to 999
+ 40   t = one
+      if (sqteta .eq. zero) sqteta = rmdcon(2)
+c
+c     ***  sqteta is (slightly larger than) the square root of the
+c     ***  smallest positive floating point number on the machine.
+c     ***  the tests involving sqteta are done to prevent underflows.
+c
+      j = i + 1
+      do 60 i = j, p
+         xi = dabs(x(i))
+         if (xi .gt. scale) go to 50
+              r = xi / scale
+              if (r .gt. sqteta) t = t + r*r
+              go to 60
+ 50           r = scale / xi
+              if (r .le. sqteta) r = zero
+              t = one  +  t * r*r
+              scale = xi
+ 60      continue
+c
+      v2norm = scale * dsqrt(t)
+ 999  return
+c  ***  last card of v2norm follows  ***
+      end
+      subroutine humsl(n, d, x, calcf, calcgh, iv, liv, lv, v,
+     1                  uiparm, urparm, ufparm)
+c
+c  ***  minimize general unconstrained objective function using   ***
+c  ***  (analytic) gradient and hessian provided by the caller.   ***
+c
+      integer liv, lv, n
+      integer iv(liv), uiparm(1)
+      double precision d(n), x(n), v(lv), urparm(1)
+c     dimension v(78 + n*(n+12)), uiparm(*), urparm(*)
+      external calcf, calcgh, ufparm
+c
+c------------------------------  discussion  ---------------------------
+c
+c        this routine is like sumsl, except that the subroutine para-
+c     meter calcg of sumsl (which computes the gradient of the objec-
+c     tive function) is replaced by the subroutine parameter calcgh,
+c     which computes both the gradient and (lower triangle of the)
+c     hessian of the objective function.  the calling sequence is...
+c             call calcgh(n, x, nf, g, h, uiparm, urparm, ufparm)
+c     parameters n, x, nf, g, uiparm, urparm, and ufparm are the same
+c     as for sumsl, while h is an array of length n*(n+1)/2 in which
+c     calcgh must store the lower triangle of the hessian at x.  start-
+c     ing at h(1), calcgh must store the hessian entries in the order
+c     (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), ...
+c        the value printed (by itsum) in the column labelled stppar
+c     is the levenberg-marquardt used in computing the current step.
+c     zero means a full newton step.  if the special case described in
+c     ref. 1 is detected, then stppar is negated.  the value printed
+c     in the column labelled npreldf is zero if the current hessian
+c     is not positive definite.
+c        it sometimes proves worthwhile to let d be determined from the
+c     diagonal of the hessian matrix by setting iv(dtype) = 1 and
+c     v(dinit) = 0.  the following iv and v components are relevant...
+c
+c iv(dtol)..... iv(59) gives the starting subscript in v of the dtol
+c             array used when d is updated.  (iv(dtol) can be
+c             initialized by calling humsl with iv(1) = 13.)
+c iv(dtype).... iv(16) tells how the scale vector d should be chosen.
+c             iv(dtype) .le. 0 means that d should not be updated, and
+c             iv(dtype) .ge. 1 means that d should be updated as
+c             described below with v(dfac).  default = 0.
+c v(dfac)..... v(41) and the dtol and d0 arrays (see v(dtinit) and
+c             v(d0init)) are used in updating the scale vector d when
+c             iv(dtype) .gt. 0.  (d is initialized according to
+c             v(dinit), described in sumsl.)  let
+c                  d1(i) = max(sqrt(abs(h(i,i))), v(dfac)*d(i)),
+c             where h(i,i) is the i-th diagonal element of the current
+c             hessian.  if iv(dtype) = 1, then d(i) is set to d1(i)
+c             unless d1(i) .lt. dtol(i), in which case d(i) is set to
+c                  max(d0(i), dtol(i)).
+c             if iv(dtype) .ge. 2, then d is updated during the first
+c             iteration as for iv(dtype) = 1 (after any initialization
+c             due to v(dinit)) and is left unchanged thereafter.
+c             default = 0.6.
+c v(dtinit)... v(39), if positive, is the value to which all components
+c             of the dtol array (see v(dfac)) are initialized.  if
+c             v(dtinit) = 0, then it is assumed that the caller has
+c             stored dtol in v starting at v(iv(dtol)).
+c             default = 10**-6.
+c v(d0init)... v(40), if positive, is the value to which all components
+c             of the d0 vector (see v(dfac)) are initialized.  if
+c             v(dfac) = 0, then it is assumed that the caller has
+c             stored d0 in v starting at v(iv(dtol)+n).  default = 1.0.
+c
+c  ***  reference  ***
+c
+c 1. gay, d.m. (1981), computing optimal locally constrained steps,
+c         siam j. sci. statist. comput. 2, pp. 186-197.
+c.
+c  ***  general  ***
+c
+c     coded by david m. gay (winter 1980).  revised sept. 1982.
+c     this subroutine was written in connection with research supported
+c     in part by the national science foundation under grants
+c     mcs-7600324 and mcs-7906671.
+c
+c----------------------------  declarations  ---------------------------
+c
+      external deflt, humit
+c
+c deflt... provides default input values for iv and v.
+c humit... reverse-communication routine that does humsl algorithm.
+c
+      integer g1, h1, iv1, lh, nf
+      double precision f
+c
+c  ***  subscripts for iv   ***
+c
+      integer g, h, nextv, nfcall, nfgcal, toobig, vneed
+c
+c/6
+c     data nextv/47/, nfcall/6/, nfgcal/7/, g/28/, h/56/, toobig/2/,
+c    1     vneed/4/
+c/7
+      parameter (nextv=47, nfcall=6, nfgcal=7, g=28, h=56, toobig=2,
+     1           vneed=4)
+c/
+c
+c+++++++++++++++++++++++++++++++  body  ++++++++++++++++++++++++++++++++
+c
+      lh = n * (n + 1) / 2
+      if (iv(1) .eq. 0) call deflt(2, iv, liv, lv, v)
+      if (iv(1) .eq. 12 .or. iv(1) .eq. 13)
+     1     iv(vneed) = iv(vneed) + n*(n+3)/2
+      iv1 = iv(1)
+      if (iv1 .eq. 14) go to 10
+      if (iv1 .gt. 2 .and. iv1 .lt. 12) go to 10
+      g1 = 1
+      h1 = 1
+      if (iv1 .eq. 12) iv(1) = 13
+      go to 20
+c
+ 10   g1 = iv(g)
+      h1 = iv(h)
+c
+ 20   call humit(d, f, v(g1), v(h1), iv, lh, liv, lv, n, v, x)
+      if (iv(1) - 2) 30, 40, 50
+c
+ 30   nf = iv(nfcall)
+      call calcf(n, x, nf, f, uiparm, urparm, ufparm)
+      if (nf .le. 0) iv(toobig) = 1
+      go to 20
+c
+ 40   call calcgh(n, x, iv(nfgcal), v(g1), v(h1), uiparm, urparm,
+     1            ufparm)
+      go to 20
+c
+ 50   if (iv(1) .ne. 14) go to 999
+c
+c  ***  storage allocation
+c
+      iv(g) = iv(nextv)
+      iv(h) = iv(g) + n
+      iv(nextv) = iv(h) + n*(n+1)/2
+      if (iv1 .ne. 13) go to 10
+c
+ 999  return
+c  ***  last card of humsl follows  ***
+      end
+      subroutine humit(d, fx, g, h, iv, lh, liv, lv, n, v, x)
+c
+c  ***  carry out humsl (unconstrained minimization) iterations, using
+c  ***  hessian matrix provided by the caller.
+c
+c  ***  parameter declarations  ***
+c
+      integer lh, liv, lv, n
+      integer iv(liv)
+      double precision d(n), fx, g(n), h(lh), v(lv), x(n)
+c
+c--------------------------  parameter usage  --------------------------
+c
+c d.... scale vector.
+c fx... function value.
+c g.... gradient vector.
+c h.... lower triangle of the hessian, stored rowwise.
+c iv... integer value array.
+c lh... length of h = p*(p+1)/2.
+c liv.. length of iv (at least 60).
+c lv... length of v (at least 78 + n*(n+21)/2).
+c n.... number of variables (components in x and g).
+c v.... floating-point value array.
+c x.... parameter vector.
+c
+c  ***  discussion  ***
+c
+c        parameters iv, n, v, and x are the same as the corresponding
+c     ones to humsl (which see), except that v can be shorter (since
+c     the part of v that humsl uses for storing g and h is not needed).
+c     moreover, compared with humsl, iv(1) may have the two additional
+c     output values 1 and 2, which are explained below, as is the use
+c     of iv(toobig) and iv(nfgcal).  the value iv(g), which is an
+c     output value from humsl, is not referenced by humit or the
+c     subroutines it calls.
+c
+c iv(1) = 1 means the caller should set fx to f(x), the function value
+c             at x, and call humit again, having changed none of the
+c             other parameters.  an exception occurs if f(x) cannot be
+c             computed (e.g. if overflow would occur), which may happen
+c             because of an oversized step.  in this case the caller
+c             should set iv(toobig) = iv(2) to 1, which will cause
+c             humit to ignore fx and try a smaller step.  the para-
+c             meter nf that humsl passes to calcf (for possible use by
+c             calcgh) is a copy of iv(nfcall) = iv(6).
+c iv(1) = 2 means the caller should set g to g(x), the gradient of f at
+c             x, and h to the lower triangle of h(x), the hessian of f
+c             at x, and call humit again, having changed none of the
+c             other parameters except perhaps the scale vector d.
+c                  the parameter nf that humsl passes to calcg is
+c             iv(nfgcal) = iv(7).  if g(x) and h(x) cannot be evaluated,
+c             then the caller may set iv(nfgcal) to 0, in which case
+c             humit will return with iv(1) = 65.
+c                  note -- humit overwrites h with the lower triangle
+c             of  diag(d)**-1 * h(x) * diag(d)**-1.
+c.
+c  ***  general  ***
+c
+c     coded by david m. gay (winter 1980).  revised sept. 1982.
+c     this subroutine was written in connection with research supported
+c     in part by the national science foundation under grants
+c     mcs-7600324 and mcs-7906671.
+c
+c        (see sumsl and humsl for references.)
+c
+c+++++++++++++++++++++++++++  declarations  ++++++++++++++++++++++++++++
+c
+c  ***  local variables  ***
+c
+      integer dg1, dummy, i, j, k, l, lstgst, nn1o2, step1,
+     1        temp1, w1, x01
+      double precision t
+c
+c     ***  constants  ***
+c
+      double precision one, onep2, zero
+c
+c  ***  no intrinsic functions  ***
+c
+c  ***  external functions and subroutines  ***
+c
+      external assst, deflt, dotprd, dupdu, gqtst, itsum, parck,
+     1         reldst, slvmul, stopx, vaxpy, vcopy, vscopy, v2norm
+      logical stopx
+      double precision dotprd, reldst, v2norm
+c
+c assst.... assesses candidate step.
+c deflt.... provides default iv and v input values.
+c dotprd... returns inner product of two vectors.
+c dupdu.... updates scale vector d.
+c gqtst.... computes optimally locally constrained step.
+c itsum.... prints iteration summary and info on initial and final x.
+c parck.... checks validity of input iv and v values.
+c reldst... computes v(reldx) = relative step size.
+c slvmul... multiplies symmetric matrix times vector, given the lower
+c             triangle of the matrix.
+c stopx.... returns .true. if the break key has been pressed.
+c vaxpy.... computes scalar times one vector plus another.
+c vcopy.... copies one vector to another.
+c vscopy... sets all elements of a vector to a scalar.
+c v2norm... returns the 2-norm of a vector.
+c
+c  ***  subscripts for iv and v  ***
+c
+      integer cnvcod, dg, dgnorm, dinit, dstnrm, dtinit, dtol,
+     1        dtype, d0init, f, f0, fdif, gtstep, incfac, irc, kagqt,
+     2        lmat, lmax0, lmaxs, mode, model, mxfcal, mxiter, nextv,
+     3        nfcall, nfgcal, ngcall, niter, preduc, radfac, radinc,
+     4        radius, rad0, reldx, restor, step, stglim, stlstg, stppar,
+     5        toobig, tuner4, tuner5, vneed, w, xirc, x0
+c
+c  ***  iv subscript values  ***
+c
+c/6
+c     data cnvcod/55/, dg/37/, dtol/59/, dtype/16/, irc/29/, kagqt/33/,
+c    1     lmat/42/, mode/35/, model/5/, mxfcal/17/, mxiter/18/,
+c    2     nextv/47/, nfcall/6/, nfgcal/7/, ngcall/30/, niter/31/,
+c    3     radinc/8/, restor/9/, step/40/, stglim/11/, stlstg/41/,
+c    4     toobig/2/, vneed/4/, w/34/, xirc/13/, x0/43/
+c/7
+      parameter (cnvcod=55, dg=37, dtol=59, dtype=16, irc=29, kagqt=33,
+     1           lmat=42, mode=35, model=5, mxfcal=17, mxiter=18,
+     2           nextv=47, nfcall=6, nfgcal=7, ngcall=30, niter=31,
+     3           radinc=8, restor=9, step=40, stglim=11, stlstg=41,
+     4           toobig=2, vneed=4, w=34, xirc=13, x0=43)
+c/
+c
+c  ***  v subscript values  ***
+c
+c/6
+c     data dgnorm/1/, dinit/38/, dstnrm/2/, dtinit/39/, d0init/40/,
+c    1     f/10/, f0/13/, fdif/11/, gtstep/4/, incfac/23/, lmax0/35/,
+c    2     lmaxs/36/, preduc/7/, radfac/16/, radius/8/, rad0/9/,
+c    3     reldx/17/, stppar/5/, tuner4/29/, tuner5/30/
+c/7
+      parameter (dgnorm=1, dinit=38, dstnrm=2, dtinit=39, d0init=40,
+     1           f=10, f0=13, fdif=11, gtstep=4, incfac=23, lmax0=35,
+     2           lmaxs=36, preduc=7, radfac=16, radius=8, rad0=9,
+     3           reldx=17, stppar=5, tuner4=29, tuner5=30)
+c/
+c
+c/6
+c     data one/1.d+0/, onep2/1.2d+0/, zero/0.d+0/
+c/7
+      parameter (one=1.d+0, onep2=1.2d+0, zero=0.d+0)
+c/
+c
+c+++++++++++++++++++++++++++++++  body  ++++++++++++++++++++++++++++++++
+c
+      i = iv(1)
+      if (i .eq. 1) go to 30
+      if (i .eq. 2) go to 40
+c
+c  ***  check validity of iv and v input values  ***
+c
+      if (iv(1) .eq. 0) call deflt(2, iv, liv, lv, v)
+      if (iv(1) .eq. 12 .or. iv(1) .eq. 13)
+     1     iv(vneed) = iv(vneed) + n*(n+21)/2 + 7
+      call parck(2, d, iv, liv, lv, n, v)
+      i = iv(1) - 2
+      if (i .gt. 12) go to 999
+      nn1o2 = n * (n + 1) / 2
+      if (lh .ge. nn1o2) go to (210,210,210,210,210,210,160,120,160,
+     1                          10,10,20), i
+         iv(1) = 66
+         go to 350
+c
+c  ***  storage allocation  ***
+c
+ 10   iv(dtol) = iv(lmat) + nn1o2
+      iv(x0) = iv(dtol) + 2*n
+      iv(step) = iv(x0) + n
+      iv(stlstg) = iv(step) + n
+      iv(dg) = iv(stlstg) + n
+      iv(w) = iv(dg) + n
+      iv(nextv) = iv(w) + 4*n + 7
+      if (iv(1) .ne. 13) go to 20
+         iv(1) = 14
+         go to 999
+c
+c  ***  initialization  ***
+c
+ 20   iv(niter) = 0
+      iv(nfcall) = 1
+      iv(ngcall) = 1
+      iv(nfgcal) = 1
+      iv(mode) = -1
+      iv(model) = 1
+      iv(stglim) = 1
+      iv(toobig) = 0
+      iv(cnvcod) = 0
+      iv(radinc) = 0
+      v(rad0) = zero
+      v(stppar) = zero
+      if (v(dinit) .ge. zero) call vscopy(n, d, v(dinit))
+      k = iv(dtol)
+      if (v(dtinit) .gt. zero) call vscopy(n, v(k), v(dtinit))
+      k = k + n
+      if (v(d0init) .gt. zero) call vscopy(n, v(k), v(d0init))
+      iv(1) = 1
+      go to 999
+c
+ 30   v(f) = fx
+      if (iv(mode) .ge. 0) go to 210
+      iv(1) = 2
+      if (iv(toobig) .eq. 0) go to 999
+         iv(1) = 63
+         go to 350
+c
+c  ***  make sure gradient could be computed  ***
+c
+ 40   if (iv(nfgcal) .ne. 0) go to 50
+         iv(1) = 65
+         go to 350
+c
+c  ***  update the scale vector d  ***
+c
+ 50   dg1 = iv(dg)
+      if (iv(dtype) .le. 0) go to 70
+      k = dg1
+      j = 0
+      do 60 i = 1, n
+         j = j + i
+         v(k) = h(j)
+         k = k + 1
+ 60      continue
+      call dupdu(d, v(dg1), iv, liv, lv, n, v)
+c
+c  ***  compute scaled gradient and its norm  ***
+c
+ 70   dg1 = iv(dg)
+      k = dg1
+      do 80 i = 1, n
+         v(k) = g(i) / d(i)
+         k = k + 1
+ 80      continue
+      v(dgnorm) = v2norm(n, v(dg1))
+c
+c  ***  compute scaled hessian  ***
+c
+      k = 1
+      do 100 i = 1, n
+         t = one / d(i)
+         do 90 j = 1, i
+              h(k) = t * h(k) / d(j)
+              k = k + 1
+ 90           continue
+ 100     continue
+c
+      if (iv(cnvcod) .ne. 0) go to 340
+      if (iv(mode) .eq. 0) go to 300
+c
+c  ***  allow first step to have scaled 2-norm at most v(lmax0)  ***
+c
+      v(radius) = v(lmax0)
+c
+      iv(mode) = 0
+c
+c
+c-----------------------------  main loop  -----------------------------
+c
+c
+c  ***  print iteration summary, check iteration limit  ***
+c
+ 110  call itsum(d, g, iv, liv, lv, n, v, x)
+ 120  k = iv(niter)
+      if (k .lt. iv(mxiter)) go to 130
+         iv(1) = 10
+         go to 350
+c
+ 130  iv(niter) = k + 1
+c
+c  ***  initialize for start of next iteration  ***
+c
+      dg1 = iv(dg)
+      x01 = iv(x0)
+      v(f0) = v(f)
+      iv(irc) = 4
+      iv(kagqt) = -1
+c
+c     ***  copy x to x0  ***
+c
+      call vcopy(n, v(x01), x)
+c
+c  ***  update radius  ***
+c
+      if (k .eq. 0) go to 150
+      step1 = iv(step)
+      k = step1
+      do 140 i = 1, n
+         v(k) = d(i) * v(k)
+         k = k + 1
+ 140     continue
+      v(radius) = v(radfac) * v2norm(n, v(step1))
+c
+c  ***  check stopx and function evaluation limit  ***
+c
+C AL 4/30/95
+      dummy=iv(nfcall)
+ 150  if (.not. stopx(dummy)) go to 170
+         iv(1) = 11
+         go to 180
+c
+c     ***  come here when restarting after func. eval. limit or stopx.
+c
+ 160  if (v(f) .ge. v(f0)) go to 170
+         v(radfac) = one
+         k = iv(niter)
+         go to 130
+c
+ 170  if (iv(nfcall) .lt. iv(mxfcal)) go to 190
+         iv(1) = 9
+ 180     if (v(f) .ge. v(f0)) go to 350
+c
+c        ***  in case of stopx or function evaluation limit with
+c        ***  improved v(f), evaluate the gradient at x.
+c
+              iv(cnvcod) = iv(1)
+              go to 290
+c
+c. . . . . . . . . . . . .  compute candidate step  . . . . . . . . . .
+c
+ 190  step1 = iv(step)
+      dg1 = iv(dg)
+      l = iv(lmat)
+      w1 = iv(w)
+      call gqtst(d, v(dg1), h, iv(kagqt), v(l), n, v(step1), v, v(w1))
+      if (iv(irc) .eq. 6) go to 210
+c
+c  ***  check whether evaluating f(x0 + step) looks worthwhile  ***
+c
+      if (v(dstnrm) .le. zero) go to 210
+      if (iv(irc) .ne. 5) go to 200
+      if (v(radfac) .le. one) go to 200
+      if (v(preduc) .le. onep2 * v(fdif)) go to 210
+c
+c  ***  compute f(x0 + step)  ***
+c
+ 200  x01 = iv(x0)
+      step1 = iv(step)
+      call vaxpy(n, x, one, v(step1), v(x01))
+      iv(nfcall) = iv(nfcall) + 1
+      iv(1) = 1
+      iv(toobig) = 0
+      go to 999
+c
+c. . . . . . . . . . . . .  assess candidate step  . . . . . . . . . . .
+c
+ 210  x01 = iv(x0)
+      v(reldx) = reldst(n, d, x, v(x01))
+      call assst(iv, liv, lv, v)
+      step1 = iv(step)
+      lstgst = iv(stlstg)
+      if (iv(restor) .eq. 1) call vcopy(n, x, v(x01))
+      if (iv(restor) .eq. 2) call vcopy(n, v(lstgst), v(step1))
+      if (iv(restor) .ne. 3) go to 220
+         call vcopy(n, v(step1), v(lstgst))
+         call vaxpy(n, x, one, v(step1), v(x01))
+         v(reldx) = reldst(n, d, x, v(x01))
+c
+ 220  k = iv(irc)
+      go to (230,260,260,260,230,240,250,250,250,250,250,250,330,300), k
+c
+c     ***  recompute step with new radius  ***
+c
+ 230     v(radius) = v(radfac) * v(dstnrm)
+         go to 150
+c
+c  ***  compute step of length v(lmaxs) for singular convergence test.
+c
+ 240  v(radius) = v(lmaxs)
+      go to 190
+c
+c  ***  convergence or false convergence  ***
+c
+ 250  iv(cnvcod) = k - 4
+      if (v(f) .ge. v(f0)) go to 340
+         if (iv(xirc) .eq. 14) go to 340
+              iv(xirc) = 14
+c
+c. . . . . . . . . . . .  process acceptable step  . . . . . . . . . . .
+c
+ 260  if (iv(irc) .ne. 3) go to 290
+         temp1 = lstgst
+c
+c     ***  prepare for gradient tests  ***
+c     ***  set  temp1 = hessian * step + g(x0)
+c     ***             = diag(d) * (h * step + g(x0))
+c
+c        use x0 vector as temporary.
+         k = x01
+         do 270 i = 1, n
+              v(k) = d(i) * v(step1)
+              k = k + 1
+              step1 = step1 + 1
+ 270          continue
+         call slvmul(n, v(temp1), h, v(x01))
+         do 280 i = 1, n
+              v(temp1) = d(i) * v(temp1) + g(i)
+              temp1 = temp1 + 1
+ 280          continue
+c
+c  ***  compute gradient and hessian  ***
+c
+ 290  iv(ngcall) = iv(ngcall) + 1
+      iv(1) = 2
+      go to 999
+c
+ 300  iv(1) = 2
+      if (iv(irc) .ne. 3) go to 110
+c
+c  ***  set v(radfac) by gradient tests  ***
+c
+      temp1 = iv(stlstg)
+      step1 = iv(step)
+c
+c     ***  set  temp1 = diag(d)**-1 * (hessian*step + (g(x0)-g(x)))  ***
+c
+      k = temp1
+      do 310 i = 1, n
+         v(k) = (v(k) - g(i)) / d(i)
+         k = k + 1
+ 310     continue
+c
+c     ***  do gradient tests  ***
+c
+      if (v2norm(n, v(temp1)) .le. v(dgnorm) * v(tuner4)) go to 320
+           if (dotprd(n, g, v(step1))
+     1               .ge. v(gtstep) * v(tuner5))  go to 110
+ 320            v(radfac) = v(incfac)
+                go to 110
+c
+c. . . . . . . . . . . . . .  misc. details  . . . . . . . . . . . . . .
+c
+c  ***  bad parameters to assess  ***
+c
+ 330  iv(1) = 64
+      go to 350
+c
+c  ***  print summary of final iteration and other requested items  ***
+c
+ 340  iv(1) = iv(cnvcod)
+      iv(cnvcod) = 0
+ 350  call itsum(d, g, iv, liv, lv, n, v, x)
+c
+ 999  return
+c
+c  ***  last card of humit follows  ***
+      end
+      subroutine dupdu(d, hdiag, iv, liv, lv, n, v)
+c
+c  ***  update scale vector d for humsl  ***
+c
+c  ***  parameter declarations  ***
+c
+      integer liv, lv, n
+      integer iv(liv)
+      double precision d(n), hdiag(n), v(lv)
+c
+c  ***  local variables  ***
+c
+      integer dtoli, d0i, i
+      double precision t, vdfac
+c
+c  ***  intrinsic functions  ***
+c/+
+      double precision dabs, dmax1, dsqrt
+c/
+c  ***  subscripts for iv and v  ***
+c
+      integer dfac, dtol, dtype, niter
+c/6
+c     data dfac/41/, dtol/59/, dtype/16/, niter/31/
+c/7
+      parameter (dfac=41, dtol=59, dtype=16, niter=31)
+c/
+c
+c-------------------------------  body  --------------------------------
+c
+      i = iv(dtype)
+      if (i .eq. 1) go to 10
+         if (iv(niter) .gt. 0) go to 999
+c
+ 10   dtoli = iv(dtol)
+      d0i = dtoli + n
+      vdfac = v(dfac)
+      do 20 i = 1, n
+         t = dmax1(dsqrt(dabs(hdiag(i))), vdfac*d(i))
+         if (t .lt. v(dtoli)) t = dmax1(v(dtoli), v(d0i))
+         d(i) = t
+         dtoli = dtoli + 1
+         d0i = d0i + 1
+ 20      continue
+c
+ 999  return
+c  ***  last card of dupdu follows  ***
+      end
+      subroutine gqtst(d, dig, dihdi, ka, l, p, step, v, w)
+c
+c  *** compute goldfeld-quandt-trotter step by more-hebden technique ***
+c  ***  (nl2sol version 2.2), modified a la more and sorensen  ***
+c
+c  ***  parameter declarations  ***
+c
+      integer ka, p
+cal   double precision d(p), dig(p), dihdi(1), l(1), v(21), step(p),
+cal  1                 w(1)
+      double precision d(p), dig(p), dihdi(p*(p+1)/2), l(p*(p+1)/2), 
+     1    v(21), step(p),w(4*p+7)
+c     dimension dihdi(p*(p+1)/2), l(p*(p+1)/2), w(4*p+7)
+c
+c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+c
+c  ***  purpose  ***
+c
+c        given the (compactly stored) lower triangle of a scaled
+c     hessian (approximation) and a nonzero scaled gradient vector,
+c     this subroutine computes a goldfeld-quandt-trotter step of
+c     approximate length v(radius) by the more-hebden technique.  in
+c     other words, step is computed to (approximately) minimize
+c     psi(step) = (g**t)*step + 0.5*(step**t)*h*step  such that the
+c     2-norm of d*step is at most (approximately) v(radius), where
+c     g  is the gradient,  h  is the hessian, and  d  is a diagonal
+c     scale matrix whose diagonal is stored in the parameter d.
+c     (gqtst assumes  dig = d**-1 * g  and  dihdi = d**-1 * h * d**-1.)
+c
+c  ***  parameter description  ***
+c
+c     d (in)  = the scale vector, i.e. the diagonal of the scale
+c              matrix  d  mentioned above under purpose.
+c   dig (in)  = the scaled gradient vector, d**-1 * g.  if g = 0, then
+c              step = 0  and  v(stppar) = 0  are returned.
+c dihdi (in)  = lower triangle of the scaled hessian (approximation),
+c              i.e., d**-1 * h * d**-1, stored compactly by rows., i.e.,
+c              in the order (1,1), (2,1), (2,2), (3,1), (3,2), etc.
+c    ka (i/o) = the number of hebden iterations (so far) taken to deter-
+c              mine step.  ka .lt. 0 on input means this is the first
+c              attempt to determine step (for the present dig and dihdi)
+c              -- ka is initialized to 0 in this case.  output with
+c              ka = 0  (or v(stppar) = 0)  means  step = -(h**-1)*g.
+c     l (i/o) = workspace of length p*(p+1)/2 for cholesky factors.
+c     p (in)  = number of parameters -- the hessian is a  p x p  matrix.
+c  step (i/o) = the step computed.
+c     v (i/o) contains various constants and variables described below.
+c     w (i/o) = workspace of length 4*p + 6.
+c
+c  ***  entries in v  ***
+c
+c v(dgnorm) (i/o) = 2-norm of (d**-1)*g.
+c v(dstnrm) (output) = 2-norm of d*step.
+c v(dst0)   (i/o) = 2-norm of d*(h**-1)*g (for pos. def. h only), or
+c             overestimate of smallest eigenvalue of (d**-1)*h*(d**-1).
+c v(epslon) (in)  = max. rel. error allowed for psi(step).  for the
+c             step returned, psi(step) will exceed its optimal value
+c             by less than -v(epslon)*psi(step).  suggested value = 0.1.
+c v(gtstep) (out) = inner product between g and step.
+c v(nreduc) (out) = psi(-(h**-1)*g) = psi(newton step)  (for pos. def.
+c             h only -- v(nreduc) is set to zero otherwise).
+c v(phmnfc) (in)  = tol. (together with v(phmxfc)) for accepting step
+c             (more*s sigma).  the error v(dstnrm) - v(radius) must lie
+c             between v(phmnfc)*v(radius) and v(phmxfc)*v(radius).
+c v(phmxfc) (in)  (see v(phmnfc).)
+c             suggested values -- v(phmnfc) = -0.25, v(phmxfc) = 0.5.
+c v(preduc) (out) = psi(step) = predicted obj. func. reduction for step.
+c v(radius) (in)  = radius of current (scaled) trust region.
+c v(rad0)   (i/o) = value of v(radius) from previous call.
+c v(stppar) (i/o) is normally the marquardt parameter, i.e. the alpha
+c             described below under algorithm notes.  if h + alpha*d**2
+c             (see algorithm notes) is (nearly) singular, however,
+c             then v(stppar) = -alpha.
+c
+c  ***  usage notes  ***
+c
+c     if it is desired to recompute step using a different value of
+c     v(radius), then this routine may be restarted by calling it
+c     with all parameters unchanged except v(radius).  (this explains
+c     why step and w are listed as i/o).  on an initial call (one with
+c     ka .lt. 0), step and w need not be initialized and only compo-
+c     nents v(epslon), v(stppar), v(phmnfc), v(phmxfc), v(radius), and
+c     v(rad0) of v must be initialized.
+c
+c  ***  algorithm notes  ***
+c
+c        the desired g-q-t step (ref. 2, 3, 4, 6) satisfies
+c     (h + alpha*d**2)*step = -g  for some nonnegative alpha such that
+c     h + alpha*d**2 is positive semidefinite.  alpha and step are
+c     computed by a scheme analogous to the one described in ref. 5.
+c     estimates of the smallest and largest eigenvalues of the hessian
+c     are obtained from the gerschgorin circle theorem enhanced by a
+c     simple form of the scaling described in ref. 7.  cases in which
+c     h + alpha*d**2 is nearly (or exactly) singular are handled by
+c     the technique discussed in ref. 2.  in these cases, a step of
+c     (exact) length v(radius) is returned for which psi(step) exceeds
+c     its optimal value by less than -v(epslon)*psi(step).  the test
+c     suggested in ref. 6 for detecting the special case is performed
+c     once two matrix factorizations have been done -- doing so sooner
+c     seems to degrade the performance of optimization routines that
+c     call this routine.
+c
+c  ***  functions and subroutines called  ***
+c
+c dotprd - returns inner product of two vectors.
+c litvmu - applies inverse-transpose of compact lower triang. matrix.
+c livmul - applies inverse of compact lower triang. matrix.
+c lsqrt  - finds cholesky factor (of compactly stored lower triang.).
+c lsvmin - returns approx. to min. sing. value of lower triang. matrix.
+c rmdcon - returns machine-dependent constants.
+c v2norm - returns 2-norm of a vector.
+c
+c  ***  references  ***
+c
+c 1.  dennis, j.e., gay, d.m., and welsch, r.e. (1981), an adaptive
+c             nonlinear least-squares algorithm, acm trans. math.
+c             software, vol. 7, no. 3.
+c 2.  gay, d.m. (1981), computing optimal locally constrained steps,
+c             siam j. sci. statist. computing, vol. 2, no. 2, pp.
+c             186-197.
+c 3.  goldfeld, s.m., quandt, r.e., and trotter, h.f. (1966),
+c             maximization by quadratic hill-climbing, econometrica 34,
+c             pp. 541-551.
+c 4.  hebden, m.d. (1973), an algorithm for minimization using exact
+c             second derivatives, report t.p. 515, theoretical physics
+c             div., a.e.r.e. harwell, oxon., england.
+c 5.  more, j.j. (1978), the levenberg-marquardt algorithm, implemen-
+c             tation and theory, pp.105-116 of springer lecture notes
+c             in mathematics no. 630, edited by g.a. watson, springer-
+c             verlag, berlin and new york.
+c 6.  more, j.j., and sorensen, d.c. (1981), computing a trust region
+c             step, technical report anl-81-83, argonne national lab.
+c 7.  varga, r.s. (1965), minimal gerschgorin sets, pacific j. math. 15,
+c             pp. 719-729.
+c
+c  ***  general  ***
+c
+c     coded by david m. gay.
+c     this subroutine was written in connection with research
+c     supported by the national science foundation under grants
+c     mcs-7600324, dcr75-10143, 76-14311dss, mcs76-11989, and
+c     mcs-7906671.
+c
+c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+c
+c  ***  local variables  ***
+c
+      logical restrt
+      integer dggdmx, diag, diag0, dstsav, emax, emin, i, im1, inc, irc,
+     1        j, k, kalim, kamin, k1, lk0, phipin, q, q0, uk0, x
+      double precision alphak, aki, akk, delta, dst, eps, gtsta, lk,
+     1                 oldphi, phi, phimax, phimin, psifac, rad, radsq,
+     2                 root, si, sk, sw, t, twopsi, t1, t2, uk, wi
+c
+c     ***  constants  ***
+      double precision big, dgxfac, epsfac, four, half, kappa, negone,
+     1                 one, p001, six, three, two, zero
+c
+c  ***  intrinsic functions  ***
+c/+
+      double precision dabs, dmax1, dmin1, dsqrt
+c/
+c  ***  external functions and subroutines  ***
+c
+      external dotprd, litvmu, livmul, lsqrt, lsvmin, rmdcon, v2norm
+      double precision dotprd, lsvmin, rmdcon, v2norm
+c
+c  ***  subscripts for v  ***
+c
+      integer dgnorm, dstnrm, dst0, epslon, gtstep, stppar, nreduc,
+     1        phmnfc, phmxfc, preduc, radius, rad0
+c/6
+c     data dgnorm/1/, dstnrm/2/, dst0/3/, epslon/19/, gtstep/4/,
+c    1     nreduc/6/, phmnfc/20/, phmxfc/21/, preduc/7/, radius/8/,
+c    2     rad0/9/, stppar/5/
+c/7
+      parameter (dgnorm=1, dstnrm=2, dst0=3, epslon=19, gtstep=4,
+     1           nreduc=6, phmnfc=20, phmxfc=21, preduc=7, radius=8,
+     2           rad0=9, stppar=5)
+c/
+c
+c/6
+c     data epsfac/50.0d+0/, four/4.0d+0/, half/0.5d+0/,
+c    1     kappa/2.0d+0/, negone/-1.0d+0/, one/1.0d+0/, p001/1.0d-3/,
+c    2     six/6.0d+0/, three/3.0d+0/, two/2.0d+0/, zero/0.0d+0/
+c/7
+      parameter (epsfac=50.0d+0, four=4.0d+0, half=0.5d+0,
+     1     kappa=2.0d+0, negone=-1.0d+0, one=1.0d+0, p001=1.0d-3,
+     2     six=6.0d+0, three=3.0d+0, two=2.0d+0, zero=0.0d+0)
+      save dgxfac
+c/
+      data big/0.d+0/, dgxfac/0.d+0/
+c
+c  ***  body  ***
+c
+c     ***  store largest abs. entry in (d**-1)*h*(d**-1) at w(dggdmx).
+      dggdmx = p + 1
+c     ***  store gerschgorin over- and underestimates of the largest
+c     ***  and smallest eigenvalues of (d**-1)*h*(d**-1) at w(emax)
+c     ***  and w(emin) respectively.
+      emax = dggdmx + 1
+      emin = emax + 1
+c     ***  for use in recomputing step, the final values of lk, uk, dst,
+c     ***  and the inverse derivative of more*s phi at 0 (for pos. def.
+c     ***  h) are stored in w(lk0), w(uk0), w(dstsav), and w(phipin)
+c     ***  respectively.
+      lk0 = emin + 1
+      phipin = lk0 + 1
+      uk0 = phipin + 1
+      dstsav = uk0 + 1
+c     ***  store diag of (d**-1)*h*(d**-1) in w(diag),...,w(diag0+p).
+      diag0 = dstsav
+      diag = diag0 + 1
+c     ***  store -d*step in w(q),...,w(q0+p).
+      q0 = diag0 + p
+      q = q0 + 1
+c     ***  allocate storage for scratch vector x  ***
+      x = q + p
+      rad = v(radius)
+      radsq = rad**2
+c     ***  phitol = max. error allowed in dst = v(dstnrm) = 2-norm of
+c     ***  d*step.
+      phimax = v(phmxfc) * rad
+      phimin = v(phmnfc) * rad
+      psifac = two * v(epslon) / (three * (four * (v(phmnfc) + one) *
+     1                       (kappa + one)  +  kappa  +  two) * rad**2)
+c     ***  oldphi is used to detect limits of numerical accuracy.  if
+c     ***  we recompute step and it does not change, then we accept it.
+      oldphi = zero
+      eps = v(epslon)
+      irc = 0
+      restrt = .false.
+      kalim = ka + 50
+c
+c  ***  start or restart, depending on ka  ***
+c
+      if (ka .ge. 0) go to 290
+c
+c  ***  fresh start  ***
+c
+      k = 0
+      uk = negone
+      ka = 0
+      kalim = 50
+      v(dgnorm) = v2norm(p, dig)
+      v(nreduc) = zero
+      v(dst0) = zero
+      kamin = 3
+      if (v(dgnorm) .eq. zero) kamin = 0
+c
+c     ***  store diag(dihdi) in w(diag0+1),...,w(diag0+p)  ***
+c
+      j = 0
+      do 10 i = 1, p
+         j = j + i
+         k1 = diag0 + i
+         w(k1) = dihdi(j)
+ 10      continue
+c
+c     ***  determine w(dggdmx), the largest element of dihdi  ***
+c
+      t1 = zero
+      j = p * (p + 1) / 2
+      do 20 i = 1, j
+         t = dabs(dihdi(i))
+         if (t1 .lt. t) t1 = t
+ 20      continue
+      w(dggdmx) = t1
+c
+c  ***  try alpha = 0  ***
+c
+ 30   call lsqrt(1, p, l, dihdi, irc)
+      if (irc .eq. 0) go to 50
+c        ***  indef. h -- underestimate smallest eigenvalue, use this
+c        ***  estimate to initialize lower bound lk on alpha.
+         j = irc*(irc+1)/2
+         t = l(j)
+         l(j) = one
+         do 40 i = 1, irc
+ 40           w(i) = zero
+         w(irc) = one
+         call litvmu(irc, w, l, w)
+         t1 = v2norm(irc, w)
+         lk = -t / t1 / t1
+         v(dst0) = -lk
+         if (restrt) go to 210
+         go to 70
+c
+c     ***  positive definite h -- compute unmodified newton step.  ***
+ 50   lk = zero
+      t = lsvmin(p, l, w(q), w(q))
+      if (t .ge. one) go to 60
+         if (big .le. zero) big = rmdcon(6)
+         if (v(dgnorm) .ge. t*t*big) go to 70
+ 60   call livmul(p, w(q), l, dig)
+      gtsta = dotprd(p, w(q), w(q))
+      v(nreduc) = half * gtsta
+      call litvmu(p, w(q), l, w(q))
+      dst = v2norm(p, w(q))
+      v(dst0) = dst
+      phi = dst - rad
+      if (phi .le. phimax) go to 260
+      if (restrt) go to 210
+c
+c  ***  prepare to compute gerschgorin estimates of largest (and
+c  ***  smallest) eigenvalues.  ***
+c
+ 70   k = 0
+      do 100 i = 1, p
+         wi = zero
+         if (i .eq. 1) go to 90
+         im1 = i - 1
+         do 80 j = 1, im1
+              k = k + 1
+              t = dabs(dihdi(k))
+              wi = wi + t
+              w(j) = w(j) + t
+ 80           continue
+ 90      w(i) = wi
+         k = k + 1
+ 100     continue
+c
+c  ***  (under-)estimate smallest eigenvalue of (d**-1)*h*(d**-1)  ***
+c
+      k = 1
+      t1 = w(diag) - w(1)
+      if (p .le. 1) go to 120
+      do 110 i = 2, p
+         j = diag0 + i
+         t = w(j) - w(i)
+         if (t .ge. t1) go to 110
+              t1 = t
+              k = i
+ 110     continue
+c
+ 120  sk = w(k)
+      j = diag0 + k
+      akk = w(j)
+      k1 = k*(k-1)/2 + 1
+      inc = 1
+      t = zero
+      do 150 i = 1, p
+         if (i .eq. k) go to 130
+         aki = dabs(dihdi(k1))
+         si = w(i)
+         j = diag0 + i
+         t1 = half * (akk - w(j) + si - aki)
+         t1 = t1 + dsqrt(t1*t1 + sk*aki)
+         if (t .lt. t1) t = t1
+         if (i .lt. k) go to 140
+ 130     inc = i
+ 140     k1 = k1 + inc
+ 150     continue
+c
+      w(emin) = akk - t
+      uk = v(dgnorm)/rad - w(emin)
+      if (v(dgnorm) .eq. zero) uk = uk + p001 + p001*uk
+      if (uk .le. zero) uk = p001
+c
+c  ***  compute gerschgorin (over-)estimate of largest eigenvalue  ***
+c
+      k = 1
+      t1 = w(diag) + w(1)
+      if (p .le. 1) go to 170
+      do 160 i = 2, p
+         j = diag0 + i
+         t = w(j) + w(i)
+         if (t .le. t1) go to 160
+              t1 = t
+              k = i
+ 160     continue
+c
+ 170  sk = w(k)
+      j = diag0 + k
+      akk = w(j)
+      k1 = k*(k-1)/2 + 1
+      inc = 1
+      t = zero
+      do 200 i = 1, p
+         if (i .eq. k) go to 180
+         aki = dabs(dihdi(k1))
+         si = w(i)
+         j = diag0 + i
+         t1 = half * (w(j) + si - aki - akk)
+         t1 = t1 + dsqrt(t1*t1 + sk*aki)
+         if (t .lt. t1) t = t1
+         if (i .lt. k) go to 190
+ 180     inc = i
+ 190     k1 = k1 + inc
+ 200     continue
+c
+      w(emax) = akk + t
+      lk = dmax1(lk, v(dgnorm)/rad - w(emax))
+c
+c     ***  alphak = current value of alpha (see alg. notes above).  we
+c     ***  use more*s scheme for initializing it.
+      alphak = dabs(v(stppar)) * v(rad0)/rad
+c
+      if (irc .ne. 0) go to 210
+c
+c  ***  compute l0 for positive definite h  ***
+c
+      call livmul(p, w, l, w(q))
+      t = v2norm(p, w)
+      w(phipin) = dst / t / t
+      lk = dmax1(lk, phi*w(phipin))
+c
+c  ***  safeguard alphak and add alphak*i to (d**-1)*h*(d**-1)  ***
+c
+ 210  ka = ka + 1
+      if (-v(dst0) .ge. alphak .or. alphak .lt. lk .or. alphak .ge. uk)
+     1                      alphak = uk * dmax1(p001, dsqrt(lk/uk))
+      if (alphak .le. zero) alphak = half * uk
+      if (alphak .le. zero) alphak = uk
+      k = 0
+      do 220 i = 1, p
+         k = k + i
+         j = diag0 + i
+         dihdi(k) = w(j) + alphak
+ 220     continue
+c
+c  ***  try computing cholesky decomposition  ***
+c
+      call lsqrt(1, p, l, dihdi, irc)
+      if (irc .eq. 0) go to 240
+c
+c  ***  (d**-1)*h*(d**-1) + alphak*i  is indefinite -- overestimate
+c  ***  smallest eigenvalue for use in updating lk  ***
+c
+      j = (irc*(irc+1))/2
+      t = l(j)
+      l(j) = one
+      do 230 i = 1, irc
+ 230     w(i) = zero
+      w(irc) = one
+      call litvmu(irc, w, l, w)
+      t1 = v2norm(irc, w)
+      lk = alphak - t/t1/t1
+      v(dst0) = -lk
+      go to 210
+c
+c  ***  alphak makes (d**-1)*h*(d**-1) positive definite.
+c  ***  compute q = -d*step, check for convergence.  ***
+c
+ 240  call livmul(p, w(q), l, dig)
+      gtsta = dotprd(p, w(q), w(q))
+      call litvmu(p, w(q), l, w(q))
+      dst = v2norm(p, w(q))
+      phi = dst - rad
+      if (phi .le. phimax .and. phi .ge. phimin) go to 270
+      if (phi .eq. oldphi) go to 270
+      oldphi = phi
+      if (phi .lt. zero) go to 330
+c
+c  ***  unacceptable alphak -- update lk, uk, alphak  ***
+c
+ 250  if (ka .ge. kalim) go to 270
+c     ***  the following dmin1 is necessary because of restarts  ***
+      if (phi .lt. zero) uk = dmin1(uk, alphak)
+c     *** kamin = 0 only iff the gradient vanishes  ***
+      if (kamin .eq. 0) go to 210
+      call livmul(p, w, l, w(q))
+      t1 = v2norm(p, w)
+      alphak = alphak  +  (phi/t1) * (dst/t1) * (dst/rad)
+      lk = dmax1(lk, alphak)
+      go to 210
+c
+c  ***  acceptable step on first try  ***
+c
+ 260  alphak = zero
+c
+c  ***  successful step in general.  compute step = -(d**-1)*q  ***
+c
+ 270  do 280 i = 1, p
+         j = q0 + i
+         step(i) = -w(j)/d(i)
+ 280     continue
+      v(gtstep) = -gtsta
+      v(preduc) = half * (dabs(alphak)*dst*dst + gtsta)
+      go to 410
+c
+c
+c  ***  restart with new radius  ***
+c
+ 290  if (v(dst0) .le. zero .or. v(dst0) - rad .gt. phimax) go to 310
+c
+c     ***  prepare to return newton step  ***
+c
+         restrt = .true.
+         ka = ka + 1
+         k = 0
+         do 300 i = 1, p
+              k = k + i
+              j = diag0 + i
+              dihdi(k) = w(j)
+ 300          continue
+         uk = negone
+         go to 30
+c
+ 310  kamin = ka + 3
+      if (v(dgnorm) .eq. zero) kamin = 0
+      if (ka .eq. 0) go to 50
+c
+      dst = w(dstsav)
+      alphak = dabs(v(stppar))
+      phi = dst - rad
+      t = v(dgnorm)/rad
+      uk = t - w(emin)
+      if (v(dgnorm) .eq. zero) uk = uk + p001 + p001*uk
+      if (uk .le. zero) uk = p001
+      if (rad .gt. v(rad0)) go to 320
+c
+c        ***  smaller radius  ***
+         lk = zero
+         if (alphak .gt. zero) lk = w(lk0)
+         lk = dmax1(lk, t - w(emax))
+         if (v(dst0) .gt. zero) lk = dmax1(lk, (v(dst0)-rad)*w(phipin))
+         go to 250
+c
+c     ***  bigger radius  ***
+ 320  if (alphak .gt. zero) uk = dmin1(uk, w(uk0))
+      lk = dmax1(zero, -v(dst0), t - w(emax))
+      if (v(dst0) .gt. zero) lk = dmax1(lk, (v(dst0)-rad)*w(phipin))
+      go to 250
+c
+c  ***  decide whether to check for special case... in practice (from
+c  ***  the standpoint of the calling optimization code) it seems best
+c  ***  not to check until a few iterations have failed -- hence the
+c  ***  test on kamin below.
+c
+ 330  delta = alphak + dmin1(zero, v(dst0))
+      twopsi = alphak*dst*dst + gtsta
+      if (ka .ge. kamin) go to 340
+c     *** if the test in ref. 2 is satisfied, fall through to handle
+c     *** the special case (as soon as the more-sorensen test detects
+c     *** it).
+      if (delta .ge. psifac*twopsi) go to 370
+c
+c  ***  check for the special case of  h + alpha*d**2  (nearly)
+c  ***  singular.  use one step of inverse power method with start
+c  ***  from lsvmin to obtain approximate eigenvector corresponding
+c  ***  to smallest eigenvalue of (d**-1)*h*(d**-1).  lsvmin returns
+c  ***  x and w with  l*w = x.
+c
+ 340  t = lsvmin(p, l, w(x), w)
+c
+c     ***  normalize w  ***
+      do 350 i = 1, p
+ 350     w(i) = t*w(i)
+c     ***  complete current inv. power iter. -- replace w by (l**-t)*w.
+      call litvmu(p, w, l, w)
+      t2 = one/v2norm(p, w)
+      do 360 i = 1, p
+ 360     w(i) = t2*w(i)
+      t = t2 * t
+c
+c  ***  now w is the desired approximate (unit) eigenvector and
+c  ***  t*x = ((d**-1)*h*(d**-1) + alphak*i)*w.
+c
+      sw = dotprd(p, w(q), w)
+      t1 = (rad + dst) * (rad - dst)
+      root = dsqrt(sw*sw + t1)
+      if (sw .lt. zero) root = -root
+      si = t1 / (sw + root)
+c
+c  ***  the actual test for the special case...
+c
+      if ((t2*si)**2 .le. eps*(dst**2 + alphak*radsq)) go to 380
+c
+c  ***  update upper bound on smallest eigenvalue (when not positive)
+c  ***  (as recommended by more and sorensen) and continue...
+c
+      if (v(dst0) .le. zero) v(dst0) = dmin1(v(dst0), t2**2 - alphak)
+      lk = dmax1(lk, -v(dst0))
+c
+c  ***  check whether we can hope to detect the special case in
+c  ***  the available arithmetic.  accept step as it is if not.
+c
+c     ***  if not yet available, obtain machine dependent value dgxfac.
+ 370  if (dgxfac .eq. zero) dgxfac = epsfac * rmdcon(3)
+c
+      if (delta .gt. dgxfac*w(dggdmx)) go to 250
+         go to 270
+c
+c  ***  special case detected... negate alphak to indicate special case
+c
+ 380  alphak = -alphak
+      v(preduc) = half * twopsi
+c
+c  ***  accept current step if adding si*w would lead to a
+c  ***  further relative reduction in psi of less than v(epslon)/3.
+c
+      t1 = zero
+      t = si*(alphak*sw - half*si*(alphak + t*dotprd(p,w(x),w)))
+      if (t .lt. eps*twopsi/six) go to 390
+         v(preduc) = v(preduc) + t
+         dst = rad
+         t1 = -si
+ 390  do 400 i = 1, p
+         j = q0 + i
+         w(j) = t1*w(i) - w(j)
+         step(i) = w(j) / d(i)
+ 400     continue
+      v(gtstep) = dotprd(p, dig, w(q))
+c
+c  ***  save values for use in a possible restart  ***
+c
+ 410  v(dstnrm) = dst
+      v(stppar) = alphak
+      w(lk0) = lk
+      w(uk0) = uk
+      v(rad0) = rad
+      w(dstsav) = dst
+c
+c     ***  restore diagonal of dihdi  ***
+c
+      j = 0
+      do 420 i = 1, p
+         j = j + i
+         k = diag0 + i
+         dihdi(j) = w(k)
+ 420     continue
+c
+ 999  return
+c
+c  ***  last card of gqtst follows  ***
+      end
+      subroutine lsqrt(n1, n, l, a, irc)
+c
+c  ***  compute rows n1 through n of the cholesky factor  l  of
+c  ***  a = l*(l**t),  where  l  and the lower triangle of  a  are both
+c  ***  stored compactly by rows (and may occupy the same storage).
+c  ***  irc = 0 means all went well.  irc = j means the leading
+c  ***  principal  j x j  submatrix of  a  is not positive definite --
+c  ***  and  l(j*(j+1)/2)  contains the (nonpos.) reduced j-th diagonal.
+c
+c  ***  parameters  ***
+c
+      integer n1, n, irc
+cal   double precision l(1), a(1)
+      double precision l(n*(n+1)/2), a(n*(n+1)/2)
+c     dimension l(n*(n+1)/2), a(n*(n+1)/2)
+c
+c  ***  local variables  ***
+c
+      integer i, ij, ik, im1, i0, j, jk, jm1, j0, k
+      double precision t, td, zero
+c
+c  ***  intrinsic functions  ***
+c/+
+      double precision dsqrt
+c/
+c/6
+c     data zero/0.d+0/
+c/7
+      parameter (zero=0.d+0)
+c/
+c
+c  ***  body  ***
+c
+      i0 = n1 * (n1 - 1) / 2
+      do 50 i = n1, n
+         td = zero
+         if (i .eq. 1) go to 40
+         j0 = 0
+         im1 = i - 1
+         do 30 j = 1, im1
+              t = zero
+              if (j .eq. 1) go to 20
+              jm1 = j - 1
+              do 10 k = 1, jm1
+                   ik = i0 + k
+                   jk = j0 + k
+                   t = t + l(ik)*l(jk)
+ 10                continue
+ 20           ij = i0 + j
+              j0 = j0 + j
+              t = (a(ij) - t) / l(j0)
+              l(ij) = t
+              td = td + t*t
+ 30           continue
+ 40      i0 = i0 + i
+         t = a(i0) - td
+         if (t .le. zero) go to 60
+         l(i0) = dsqrt(t)
+ 50      continue
+c
+      irc = 0
+      go to 999
+c
+ 60   l(i0) = t
+      irc = i
+c
+ 999  return
+c
+c  ***  last card of lsqrt  ***
+      end
+      double precision function lsvmin(p, l, x, y)
+c
+c  ***  estimate smallest sing. value of packed lower triang. matrix l
+c
+c  ***  parameter declarations  ***
+c
+      integer p
+cal   double precision l(1), x(p), y(p)
+      double precision l(p*(p+1)/2), x(p), y(p)
+c     dimension l(p*(p+1)/2)
+c
+c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+c
+c  ***  purpose  ***
+c
+c     this function returns a good over-estimate of the smallest
+c     singular value of the packed lower triangular matrix l.
+c
+c  ***  parameter description  ***
+c
+c  p (in)  = the order of l.  l is a  p x p  lower triangular matrix.
+c  l (in)  = array holding the elements of  l  in row order, i.e.
+c             l(1,1), l(2,1), l(2,2), l(3,1), l(3,2), l(3,3), etc.
+c  x (out) if lsvmin returns a positive value, then x is a normalized
+c             approximate left singular vector corresponding to the
+c             smallest singular value.  this approximation may be very
+c             crude.  if lsvmin returns zero, then some components of x
+c             are zero and the rest retain their input values.
+c  y (out) if lsvmin returns a positive value, then y = (l**-1)*x is an
+c             unnormalized approximate right singular vector correspond-
+c             ing to the smallest singular value.  this approximation
+c             may be crude.  if lsvmin returns zero, then y retains its
+c             input value.  the caller may pass the same vector for x
+c             and y (nonstandard fortran usage), in which case y over-
+c             writes x (for nonzero lsvmin returns).
+c
+c  ***  algorithm notes  ***
+c
+c     the algorithm is based on (1), with the additional provision that
+c     lsvmin = 0 is returned if the smallest diagonal element of l
+c     (in magnitude) is not more than the unit roundoff times the
+c     largest.  the algorithm uses a random number generator proposed
+c     in (4), which passes the spectral test with flying colors -- see
+c     (2) and (3).
+c
+c  ***  subroutines and functions called  ***
+c
+c        v2norm - function, returns the 2-norm of a vector.
+c
+c  ***  references  ***
+c
+c     (1) cline, a., moler, c., stewart, g., and wilkinson, j.h.(1977),
+c         an estimate for the condition number of a matrix, report
+c         tm-310, applied math. div., argonne national laboratory.
+c
+c     (2) hoaglin, d.c. (1976), theoretical properties of congruential
+c         random-number generators --  an empirical view,
+c         memorandum ns-340, dept. of statistics, harvard univ.
+c
+c     (3) knuth, d.e. (1969), the art of computer programming, vol. 2
+c         (seminumerical algorithms), addison-wesley, reading, mass.
+c
+c     (4) smith, c.s. (1971), multiplicative pseudo-random number
+c         generators with prime modulus, j. assoc. comput. mach. 18,
+c         pp. 586-593.
+c
+c  ***  history  ***
+c
+c     designed and coded by david m. gay (winter 1977/summer 1978).
+c
+c  ***  general  ***
+c
+c     this subroutine was written in connection with research
+c     supported by the national science foundation under grants
+c     mcs-7600324, dcr75-10143, 76-14311dss, and mcs76-11989.
+c
+c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+c
+c  ***  local variables  ***
+c
+      integer i, ii, ix, j, ji, jj, jjj, jm1, j0, pm1
+      double precision b, sminus, splus, t, xminus, xplus
+c
+c  ***  constants  ***
+c
+      double precision half, one, r9973, zero
+c
+c  ***  intrinsic functions  ***
+c/+
+      integer mod
+      real float
+      double precision dabs
+c/
+c  ***  external functions and subroutines  ***
+c
+      external dotprd, v2norm, vaxpy
+      double precision dotprd, v2norm
+c
+c/6
+c     data half/0.5d+0/, one/1.d+0/, r9973/9973.d+0/, zero/0.d+0/
+c/7
+      parameter (half=0.5d+0, one=1.d+0, r9973=9973.d+0, zero=0.d+0)
+c/
+c
+c  ***  body  ***
+c
+      ix = 2
+      pm1 = p - 1
+c
+c  ***  first check whether to return lsvmin = 0 and initialize x  ***
+c
+      ii = 0
+      j0 = p*pm1/2
+      jj = j0 + p
+      if (l(jj) .eq. zero) go to 110
+      ix = mod(3432*ix, 9973)
+      b = half*(one + float(ix)/r9973)
+      xplus = b / l(jj)
+      x(p) = xplus
+      if (p .le. 1) go to 60
+      do 10 i = 1, pm1
+         ii = ii + i
+         if (l(ii) .eq. zero) go to 110
+         ji = j0 + i
+         x(i) = xplus * l(ji)
+ 10      continue
+c
+c  ***  solve (l**t)*x = b, where the components of b have randomly
+c  ***  chosen magnitudes in (.5,1) with signs chosen to make x large.
+c
+c     do j = p-1 to 1 by -1...
+      do 50 jjj = 1, pm1
+         j = p - jjj
+c       ***  determine x(j) in this iteration. note for i = 1,2,...,j
+c       ***  that x(i) holds the current partial sum for row i.
+         ix = mod(3432*ix, 9973)
+         b = half*(one + float(ix)/r9973)
+         xplus = (b - x(j))
+         xminus = (-b - x(j))
+         splus = dabs(xplus)
+         sminus = dabs(xminus)
+         jm1 = j - 1
+         j0 = j*jm1/2
+         jj = j0 + j
+         xplus = xplus/l(jj)
+         xminus = xminus/l(jj)
+         if (jm1 .eq. 0) go to 30
+         do 20 i = 1, jm1
+              ji = j0 + i
+              splus = splus + dabs(x(i) + l(ji)*xplus)
+              sminus = sminus + dabs(x(i) + l(ji)*xminus)
+ 20           continue
+ 30      if (sminus .gt. splus) xplus = xminus
+         x(j) = xplus
+c       ***  update partial sums  ***
+         if (jm1 .gt. 0) call vaxpy(jm1, x, xplus, l(j0+1), x)
+ 50      continue
+c
+c  ***  normalize x  ***
+c
+ 60   t = one/v2norm(p, x)
+      do 70 i = 1, p
+ 70      x(i) = t*x(i)
+c
+c  ***  solve l*y = x and return lsvmin = 1/twonorm(y)  ***
+c
+      do 100 j = 1, p
+         jm1 = j - 1
+         j0 = j*jm1/2
+         jj = j0 + j
+         t = zero
+         if (jm1 .gt. 0) t = dotprd(jm1, l(j0+1), y)
+         y(j) = (x(j) - t) / l(jj)
+ 100     continue
+c
+      lsvmin = one/v2norm(p, y)
+      go to 999
+c
+ 110  lsvmin = zero
+ 999  return
+c  ***  last card of lsvmin follows  ***
+      end
+      subroutine slvmul(p, y, s, x)
+c
+c  ***  set  y = s * x,  s = p x p symmetric matrix.  ***
+c  ***  lower triangle of  s  stored rowwise.         ***
+c
+c  ***  parameter declarations  ***
+c
+      integer p
+cal   double precision s(1), x(p), y(p)
+      double precision s(p*(p+1)/2), x(p), y(p)
+c     dimension s(p*(p+1)/2)
+c
+c  ***  local variables  ***
+c
+      integer i, im1, j, k
+      double precision xi
+c
+c  ***  no intrinsic functions  ***
+c
+c  ***  external function  ***
+c
+      external dotprd
+      double precision dotprd
+c
+c-----------------------------------------------------------------------
+c
+      j = 1
+      do 10 i = 1, p
+         y(i) = dotprd(i, s(j), x)
+         j = j + i
+ 10      continue
+c
+      if (p .le. 1) go to 999
+      j = 1
+      do 40 i = 2, p
+         xi = x(i)
+         im1 = i - 1
+         j = j + 1
+         do 30 k = 1, im1
+              y(k) = y(k) + s(j)*xi
+              j = j + 1
+ 30           continue
+ 40      continue
+c
+ 999  return
+c  ***  last card of slvmul follows  ***
+      end
diff --git a/source/unres/src_MD_DFA/dihed_cons.F b/source/unres/src_MD_DFA/dihed_cons.F
new file mode 100644 (file)
index 0000000..e45405f
--- /dev/null
@@ -0,0 +1,185 @@
+      subroutine secstrp2dihc
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.BOUNDS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.TORCNSTR'
+       include 'COMMON.IOUNITS'
+      character*1 secstruc(maxres)
+      COMMON/SECONDARYS/secstruc
+      character*80 line
+      logical errflag
+      external ilen
+
+cdr      call getenv_loc('SECPREDFIL',secpred)
+      lenpre=ilen(prefix)
+      secpred=prefix(:lenpre)//'.spred'
+
+#if defined(WINIFL) || defined(WINPGI)
+      open(isecpred,file=secpred,status='old',readonly,shared)
+#elif (defined CRAY) || (defined AIX)
+      open(isecpred,file=secpred,status='old',action='read')
+#elif (defined G77)
+      open(isecpred,file=secpred,status='old')
+#else
+      open(isecpred,file=secpred,status='old',action='read')
+#endif
+C read secondary structure prediction from JPRED here!
+!      read(isecpred,'(A80)',err=100,end=100) line
+!      read(line,'(f10.3)',err=110) ftors
+       read(isecpred,'(f10.3)',err=110) ftors
+
+      write (iout,*) 'FTORS factor =',ftors
+! initialize secstruc to any
+       do i=1,nres
+        secstruc(i) ='-'
+      enddo
+      ndih_constr=0
+      ndih_nconstr=0
+
+      call read_secstr_pred(isecpred,iout,errflag)
+      if (errflag) then
+         write(iout,*)'There is a problem with the list of secondary-',
+     &     'structure prediction'
+         goto 100
+      endif
+C 8/13/98 Set limits to generating the dihedral angles
+      do i=1,nres
+        phibound(1,i)=-pi
+        phibound(2,i)=pi
+      enddo
+      
+      ii=0
+      do i=1,nres
+        if ( secstruc(i) .eq. 'H') then
+C Helix restraints for this residue               
+           ii=ii+1 
+           idih_constr(ii)=i
+           phi0(ii) = 45.0D0*deg2rad
+           drange(ii)= 5.0D0*deg2rad
+           phibound(1,i) = phi0(ii)-drange(ii)
+           phibound(2,i) = phi0(ii)+drange(ii)
+        else if (secstruc(i) .eq. 'E') then
+C strand restraints for this residue               
+           ii=ii+1 
+           idih_constr(ii)=i 
+           phi0(ii) = 180.0D0*deg2rad
+           drange(ii)= 5.0D0*deg2rad
+           phibound(1,i) = phi0(ii)-drange(ii)
+           phibound(2,i) = phi0(ii)+drange(ii)
+        else
+C no restraints for this residue               
+           ndih_nconstr=ndih_nconstr+1
+           idih_nconstr(ndih_nconstr)=i
+        endif        
+      enddo
+      ndih_constr=ii
+      return
+100   continue
+      write(iout,'(A30,A80)')'Error reading file SECPRED',secpred
+      return
+ 110  continue
+      write(iout,'(A20)')'Error reading FTORS'
+      return
+      end 
+
+      subroutine read_secstr_pred(jin,jout,errors)
+
+      implicit real*8 (a-h,o-z)
+      INCLUDE 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      character*1 secstruc(maxres)
+      COMMON/SECONDARYS/secstruc
+      EXTERNAL ILEN
+      character*80 line,line1,ucase
+      logical errflag,errors,blankline
+
+      errors=.false.
+      read (jin,'(a)') line
+      write (jout,'(2a)') '> ',line(1:78)
+      line1=ucase(line)
+C Remember that we number full residues starting from 2, then, iseq=1 and iseq=nres
+C correspond to the end-groups.  ADD to the secondary structure prediction "-" for the
+C end-groups in the input file "*.spred"
+
+      iseq=1
+      do while (index(line1,'$END').eq.0)
+* Override commented lines.
+         ipos=1
+         blankline=.false.
+         do while (.not.blankline)
+            line1=' '
+            call mykey(line,line1,ipos,blankline,errflag) 
+            if (errflag) write (jout,'(2a)')
+     & 'Error when reading sequence in line: ',line
+            errors=errors .or. errflag
+            if (.not. blankline .and. .not. errflag) then
+               ipos1=2
+               iend=ilen(line1)
+               if (iseq.le.maxres) then
+                  if (line1(1:1).eq.'-' ) then 
+                     secstruc(iseq)=line1(1:1)
+                  else if ( ( ucase(line1(1:1)).eq.'E' ) .or.
+     &                      ( ucase(line1(1:1)).eq.'H' ) ) then
+                     secstruc(iseq)=ucase(line1(1:1))
+                  else
+                     errors=.true.
+                     write (jout,1010) line1(1:1), iseq
+                     goto 80
+                  endif                  
+               else
+                  errors=.true.
+                  write (jout,1000) iseq,maxres
+                  goto 80
+               endif
+               do while (ipos1.le.iend)
+
+                  iseq=iseq+1
+                  il=1
+                  ipos1=ipos1+1
+                  if (iseq.le.maxres) then
+                     if (line1(ipos1-1:ipos1-1).eq.'-' ) then 
+                        secstruc(iseq)=line1(ipos1-1:ipos1-1)
+                     else if((ucase(line1(ipos1-1:ipos1-1)).eq.'E').or.
+     &                     (ucase(line1(ipos1-1:ipos1-1)).eq.'H') ) then
+                        secstruc(iseq)=ucase(line1(ipos1-1:ipos1-1))
+                     else
+                        errors=.true.
+                        write (jout,1010) line1(ipos1-1:ipos1-1), iseq
+                        goto 80
+                     endif                  
+                  else
+                     errors=.true.
+                     write (jout,1000) iseq,maxres
+                     goto 80
+                  endif
+               enddo
+               iseq=iseq+1
+            endif
+         enddo
+         read (jin,'(a)') line
+         write (jout,'(2a)') '> ',line(1:78)
+         line1=ucase(line)
+      enddo
+
+cd    write (jout,'(10a8)') (sequence(i),i=1,iseq-1)
+
+cd check whether the found length of the chain is correct.
+      length_of_chain=iseq-1
+      if (length_of_chain .ne. nres) then
+!        errors=.true.
+        write (jout,'(a,i4,a,i4,a)') 
+     & 'Error: the number of labels specified in $SEC_STRUC_PRED ('
+     & ,length_of_chain,') does not match with the number of residues ('
+     & ,nres,').' 
+      endif
+   80 continue
+
+ 1000 format('Error - the number of residues (',i4,
+     & ') has exceeded maximum (',i4,').')
+ 1010 format ('Error - unrecognized secondary structure label',a4,
+     & ' in position',i4)
+      return
+      end
diff --git a/source/unres/src_MD_DFA/djacob.f b/source/unres/src_MD_DFA/djacob.f
new file mode 100644 (file)
index 0000000..e3f46bc
--- /dev/null
@@ -0,0 +1,107 @@
+      SUBROUTINE DJACOB(N,NMAX,MAXJAC,E,A,C,AII)                        
+      IMPLICIT REAL*8 (A-H,O-Z) 
+C     THE JACOBI DIAGONALIZATION PROCEDURE
+      COMMON INP,IOUT,IPN                              
+      DIMENSION A(NMAX,N),C(NMAX,N),AII(150),AJJ(150)
+      SIN45 = .70710678                                                 
+      COS45 = .70710678                                                 
+      S45SQ = 0.50                                                      
+      C45SQ = 0.50                                                      
+C     UNIT EIGENVECTOR MATRIX                                           
+      DO 70 I = 1,N                                                     
+      DO 7 J = I,N                                                      
+      A(J,I)=A(I,J)                                                     
+      C(I,J) = 0.0                                                      
+    7 C(J,I) = 0.0                                                      
+   70  C(I,I) = 1.0                                                     
+C     DETERMINATION OF SEARCH ARGUMENT, TEST                            
+      AMAX = 0.0                                                        
+      DO 1 I = 1,N                                                      
+      DO 1 J = 1,I                                                      
+      TEMPA=DABS(A(I,J))                                                 
+      IF (AMAX-TEMPA) 2,1,1                                             
+    2 AMAX = TEMPA                                                      
+    1 CONTINUE                                                          
+      TEST = AMAX*E                                                     
+C     SEARCH FOR LARGEST OFF DIAGONAL ELEMENT                           
+      DO 72 IJAC=1,MAXJAC                                               
+      AIJMAX = 0.0                                                      
+      DO 3 I = 2,N                                                      
+      LIM = I-1                                                         
+      DO 3 J = 1,LIM                                                    
+      TAIJ=DABS(A(I,J))                                                  
+       IF (AIJMAX-TAIJ) 4,3,3                                           
+    4 AIJMAX = TAIJ                                                     
+      IPIV = I                                                          
+      JPIV = J                                                          
+    3 CONTINUE                                                          
+      IF(AIJMAX-TEST)300,300,5                                          
+C     PARAMETERS FOR ROTATION                                           
+    5 TAII = A(IPIV,IPIV)                                               
+      TAJJ = A(JPIV,JPIV)                                               
+      TAIJ = A(IPIV,JPIV)                                               
+      TMT = TAII-TAJJ                                                   
+      IF(DABS(TMT/TAIJ)-1.0D-12) 60,60,6                                 
+   60 IF(TAIJ) 10,10,11                                                 
+    6 ZAMMA=TAIJ/(2.0*TMT)                                              
+   90 IF(DABS(ZAMMA)-0.38268)8,8,9                                       
+    9 IF(ZAMMA)10,10,11                                                 
+   10 SINT = -SIN45                                                     
+      GO TO 12                                                          
+   11 SINT = SIN45                                                      
+   12 COST = COS45                                                      
+      SINSQ = S45SQ                                                     
+      COSSQ = C45SQ                                                     
+      GO TO 120                                                         
+    8 GAMSQ=ZAMMA*ZAMMA                                                 
+      SINT=2.0*ZAMMA/(1.0+GAMSQ)                                        
+      COST = (1.0-GAMSQ)/(1.0+GAMSQ)                                    
+      SINSQ=SINT*SINT                                                   
+      COSSQ=COST*COST                                                   
+C     ROTATION                                                          
+  120 DO 13 K = 1,N                                                     
+      TAIK = A(IPIV,K)                                                  
+      TAJK = A(JPIV,K)                                                  
+      A(IPIV,K) = TAIK*COST+TAJK*SINT                                   
+      A(JPIV,K) = TAJK*COST-TAIK*SINT                                   
+      TCIK = C(IPIV,K)                                                  
+      TCJK = C(JPIV,K)                                                  
+      C(IPIV,K) = TCIK*COST+TCJK*SINT                                   
+   13 C(JPIV,K) = TCJK*COST-TCIK*SINT                                   
+      A(IPIV,IPIV) = TAII*COSSQ+TAJJ*SINSQ+2.0*TAIJ*SINT*COST           
+      A(JPIV,JPIV) = TAII*SINSQ+TAJJ*COSSQ-2.0*TAIJ*SINT*COST           
+      A(IPIV,JPIV) = TAIJ*(COSSQ-SINSQ)-SINT*COST*TMT                   
+      A(JPIV,IPIV) = A(IPIV,JPIV)                                       
+      DO 30 K = 1,N                                                     
+      A(K,IPIV) = A(IPIV,K)                                             
+   30 A(K,JPIV) = A(JPIV,K)                                             
+   72 CONTINUE                                                          
+      WRITE (IOUT,1000) AIJMAX                                             
+ 1000 FORMAT (/1X,'NONCONVERGENT JACOBI. LARGEST OFF-DIAGONAL ELE',     
+     1 'MENT = ',1PE14.7)                                               
+C     ARRANGEMENT OF EIGENVALUES IN ASCENDING ORDER                     
+  300 DO 14 I=1,N                                                       
+   14 AJJ(I)=A(I,I)                                                     
+      LT=N+1                                                            
+      DO15 L=1,N                                                        
+      LT=LT-1                                                           
+      AIIMIN=1.0E+30                                                    
+      DO16 I=1,N                                                        
+      IF(AJJ(I)-AIIMIN)17,16,16                                         
+   17 AIIMIN=AJJ(I)                                                     
+      IT=I                                                              
+   16 CONTINUE                                                          
+      IN=L                                                              
+      AII(IN)=AIIMIN                                                    
+      AJJ(IT)=1.0E+30                                                   
+      DO15 K=1,N                                                        
+   15 A(IN,K)=C(IT,K)                                                   
+      DO 18 I=1,N                                                       
+      IF(A(I,1))19,22,22                                                
+   19 T=-1.0                                                            
+      GO TO 91                                                          
+   22 T=1.0                                                             
+   91 DO 18 J=1,N                                                       
+   18 C(J,I)=T*A(I,J)                                                   
+      RETURN                                                            
+      END
diff --git a/source/unres/src_MD_DFA/econstr_local.F b/source/unres/src_MD_DFA/econstr_local.F
new file mode 100644 (file)
index 0000000..f11acfb
--- /dev/null
@@ -0,0 +1,91 @@
+      subroutine Econstr_back
+c     MD with umbrella_sampling using Wolyne's distance measure as a constraint
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      Uconst_back=0.0d0
+      do i=1,nres
+        dutheta(i)=0.0d0
+        dugamma(i)=0.0d0
+        do j=1,3
+          duscdiff(j,i)=0.0d0
+          duscdiffx(j,i)=0.0d0
+        enddo
+      enddo
+      do i=1,nfrag_back
+        ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset)
+c
+c Deviations from theta angles
+c
+        utheta_i=0.0d0
+        do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset)
+          dtheta_i=theta(j)-thetaref(j)
+          utheta_i=utheta_i+0.5d0*dtheta_i*dtheta_i
+          dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1)
+        enddo
+        utheta(i)=utheta_i/(ii-1)
+c
+c Deviations from gamma angles
+c
+        ugamma_i=0.0d0
+        do j=ifrag_back(1,i,iset)+3,ifrag_back(2,i,iset)
+          dgamma_i=pinorm(phi(j)-phiref(j))
+c          write (iout,*) j,phi(j),phi(j)-phiref(j)
+          ugamma_i=ugamma_i+0.5d0*dgamma_i*dgamma_i
+          dugamma(j-3)=dugamma(j-3)+wfrag_back(2,i,iset)*dgamma_i/(ii-2)
+c          write (iout,*) i,j,dgamma_i,wfrag_back(2,i,iset),dugamma(j-3)
+        enddo
+        ugamma(i)=ugamma_i/(ii-2)
+c
+c Deviations from local SC geometry
+c
+        uscdiff(i)=0.0d0
+        do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1
+          dxx=xxtab(j)-xxref(j)
+          dyy=yytab(j)-yyref(j)
+          dzz=zztab(j)-zzref(j)
+          uscdiff(i)=uscdiff(i)+dxx*dxx+dyy*dyy+dzz*dzz
+          do k=1,3
+            duscdiff(k,j-1)=duscdiff(k,j-1)+wfrag_back(3,i,iset)*
+     &       (dXX_C1tab(k,j)*dxx+dYY_C1tab(k,j)*dyy+dZZ_C1tab(k,j)*dzz)/
+     &       (ii-1)
+            duscdiff(k,j)=duscdiff(k,j)+wfrag_back(3,i,iset)*
+     &       (dXX_Ctab(k,j)*dxx+dYY_Ctab(k,j)*dyy+dZZ_Ctab(k,j)*dzz)/
+     &       (ii-1)
+            duscdiffx(k,j)=duscdiffx(k,j)+wfrag_back(3,i,iset)*
+     &     (dXX_XYZtab(k,j)*dxx+dYY_XYZtab(k,j)*dyy+dZZ_XYZtab(k,j)*dzz)
+     &      /(ii-1)
+          enddo
+c          write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j),
+c     &      xxref(j),yyref(j),zzref(j)
+        enddo
+        uscdiff(i)=0.5d0*uscdiff(i)/(ii-1)
+c        write (iout,*) i," uscdiff",uscdiff(i)
+c
+c Put together deviations from local geometry
+c
+        Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+
+     &    wfrag_back(2,i,iset)*ugamma(i)+wfrag_back(3,i,iset)*uscdiff(i)
+c        write(iout,*) "i",i," utheta",utheta(i)," ugamma",ugamma(i),
+c     &   " uconst_back",uconst_back
+        utheta(i)=dsqrt(utheta(i))
+        ugamma(i)=dsqrt(ugamma(i))
+        uscdiff(i)=dsqrt(uscdiff(i))
+      enddo
+      return
+      end
diff --git a/source/unres/src_MD_DFA/eigen.f b/source/unres/src_MD_DFA/eigen.f
new file mode 100644 (file)
index 0000000..e4088ee
--- /dev/null
@@ -0,0 +1,2351 @@
+C 10 AUG 94 - MWS - INCREASE NUMBER OF DAF RECORDS
+C 31 MAR 94 - MWS - ADD A VARIABLE TO END OF MACHSW COMMON
+C 26 JUN 93 - MWS - ETRED3: ADD RETURN FOR SPECIAL CASE N=1
+C  4 JAN 92 - TLW - MAKE WRITES PARALLEL;ADD COMMON PAR
+C 30 AUG 91 - MWS - JACDIA: LIMIT ITERATIONS, USE EPSLON IN TEST.
+C 14 JUL 91 - MWS - JACOBI DIAGONALIZATION ALLOWS FOR LDVEC.NE.N
+C 29 JAN 91 - TLW - GLDIAG: CHANGED COMMON DIAGSW TO MACHSW
+C 29 OCT 90 - STE - FIX JACDIA UNDEFINED VARIABLE BUG
+C 14 SEP 90 - MK  - NEW JACOBI DIAGONALIZATION (KDIAG=3)
+C 27 MAR 88 - MWS - ALLOW FOR VECTOR ROUTINE IN GLDIAG
+C 11 AUG 87 - MWS - SANITIZE CONSTANTS IN EQLRAT
+C 15 FEB 87 - STE - FIX EINVIT SUB-MATRIX LOOP LIMIT
+C                   SCRATCH ARRAYS ARE N*8 REAL AND N INTEGER
+C  8 DEC 86 - STE - USE PERF INDEX FROM ESTPI1 TO JUDGE EINVIT FAILURE
+C 30 NOV 86 - STE - DELETE LIGENB, MAKE EVVRSP DEFAULT
+C                   (GIVEIS FAILS ON CRAY FOR BENCHMC AND BENCHCI)
+C  7 JUL 86 - JAB - SANITIZE FLOATING POINT CONSTANTS
+C 11 OCT 85 - STE - LIGENB,TQL2: USE DROT,DSWAP; TINVTB: SCALE VECTOR
+C                   BEFORE NORMALIZING; GENERIC FUNCTIONS
+C 24 FEB 84 - STE - INITIALIZE INDEX ARRAY FOR LIGENB IN GLDIAG
+C  1 DEC 83 - STE - CHANGE MACHEP FROM 2**-54 TO 2**-50
+C 28 SEP 82 - MWS - CONVERT TO IBM
+C
+C*MODULE EIGEN   *DECK EINVIT
+      SUBROUTINE EINVIT(NM,N,D,E,E2,M,W,IND,Z,IERR,RV1,RV2,RV3,RV4,RV6)
+C*
+C*    AUTHORS-
+C*       THIS IS A MODIFICATION OF TINVIT FROM EISPACK EDITION 3
+C*       DATED AUGUST 1983.
+C*       TINVIT IS A TRANSLATION OF THE INVERSE ITERATION TECHNIQUE
+C*       IN THE ALGOL PROCEDURE TRISTURM BY PETERS AND WILKINSON.
+C*       HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
+C*       THIS VERSION IS BY S. T. ELBERT (AMES LABORATORY-USDOE)
+C*
+C*    PURPOSE -
+C*       THIS ROUTINE FINDS THOSE EIGENVECTORS OF A TRIDIAGONAL
+C*       SYMMETRIC MATRIX CORRESPONDING TO SPECIFIED EIGENVALUES.
+C*
+C*    METHOD -
+C*       INVERSE ITERATION.
+C*
+C*    ON ENTRY -
+C*       NM     - INTEGER
+C*                MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
+C*                ARRAY PARAMETERS AS DECLARED IN THE CALLING ROUTINE
+C*                DIMENSION STATEMENT.
+C*       N      - INTEGER
+C*       D      - W.P. REAL (N)
+C*                CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
+C*       E      - W.P. REAL (N)
+C*                CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
+C*                IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY.
+C*       E2     - W.P. REAL (N)
+C*                CONTAINS THE SQUARES OF CORRESPONDING ELEMENTS OF E,
+C*                WITH ZEROS CORRESPONDING TO NEGLIGIBLE ELEMENTS OF E.
+C*                E(I) IS CONSIDERED NEGLIGIBLE IF IT IS NOT LARGER THAN
+C*                THE PRODUCT OF THE RELATIVE MACHINE PRECISION AND THE
+C*                SUM OF THE MAGNITUDES OF D(I) AND D(I-1).  E2(1) MUST
+C*                CONTAIN 0.0 IF THE EIGENVALUES ARE IN ASCENDING ORDER,
+C*                OR 2.0 IF THE EIGENVALUES ARE IN DESCENDING ORDER.
+C*                IF TQLRAT, BISECT, TRIDIB, OR IMTQLV
+C*                HAS BEEN USED TO FIND THE EIGENVALUES, THEIR
+C*                OUTPUT E2 ARRAY IS EXACTLY WHAT IS EXPECTED HERE.
+C*       M      - INTEGER
+C*                THE NUMBER OF SPECIFIED EIGENVECTORS.
+C*       W      - W.P. REAL (M)
+C*                CONTAINS THE M EIGENVALUES IN ASCENDING
+C*                OR DESCENDING ORDER.
+C*       IND    - INTEGER (M)
+C*                CONTAINS IN FIRST M POSITIONS THE SUBMATRIX INDICES
+C*                ASSOCIATED WITH THE CORRESPONDING EIGENVALUES IN W --
+C*                1 FOR EIGENVALUES BELONGING TO THE FIRST SUBMATRIX
+C*                FROM THE TOP, 2 FOR THOSE BELONGING TO THE SECOND
+C*                SUBMATRIX, ETC.
+C*       IERR   - INTEGER (LOGICAL UNIT NUMBER)
+C*                LOGICAL UNIT FOR ERROR MESSAGES
+C*
+C*    ON EXIT -
+C*       ALL INPUT ARRAYS ARE UNALTERED.
+C*       Z      - W.P. REAL (NM,M)
+C*                CONTAINS THE ASSOCIATED SET OF ORTHONORMAL
+C*                EIGENVECTORS. ANY VECTOR WHICH WHICH FAILS TO CONVERGE
+C*                IS LEFT AS IS (BUT NORMALIZED) WHEN ITERATING STOPPED.
+C*       IERR   - INTEGER
+C*                SET TO
+C*                ZERO    FOR NORMAL RETURN,
+C*                -R      IF THE EIGENVECTOR CORRESPONDING TO THE R-TH
+C*                        EIGENVALUE FAILS TO CONVERGE IN 5 ITERATIONS.
+C*                        (ONLY LAST FAILURE TO CONVERGE IS REPORTED)
+C*
+C*       RV1, RV2, RV3, RV4, AND RV6 ARE TEMPORARY STORAGE ARRAYS.
+C*
+C*       RV1    - W.P. REAL (N)
+C*                DIAGONAL ELEMENTS OF U FROM LU DECOMPOSITION
+C*       RV2    - W.P. REAL (N)
+C*                SUPER(1)-DIAGONAL ELEMENTS OF U FROM LU DECOMPOSITION
+C*       RV3    - W.P. REAL (N)
+C*                SUPER(2)-DIAGONAL ELEMENTS OF U FROM LU DECOMPOSITION
+C*       RV4    - W.P. REAL (N)
+C*                ELEMENTS DEFINING L IN LU DECOMPOSITION
+C*       RV6    - W.P. REAL (N)
+C*                APPROXIMATE EIGENVECTOR
+C*
+C*    DIFFERENCES FROM EISPACK 3 -
+C*       EPS3 IS SCALED BY  EPSCAL  (ENHANCES CONVERGENCE, BUT
+C*          LOWERS ACCURACY)!
+C*       ONE MORE ITERATION (MINIMUM 2) IS PERFORMED AFTER CONVERGENCE
+C*          (ENHANCES ACCURACY)!
+C*       REPLACE LOOP WITH PYTHAG WITH SINGLE CALL TO DNRM2!
+C*       IF NOT CONVERGED, USE PERFORMANCE INDEX TO DECIDE ON ERROR
+C*          VALUE SETTING, BUT DO NOT STOP!
+C*       L.U. FOR ERROR MESSAGES PASSED THROUGH IERR
+C*       USE PARAMETER STATEMENTS AND GENERIC INTRINSIC FUNCTIONS
+C*       USE LEVEL 1 BLAS
+C*       USE IF-THEN-ELSE TO CLARIFY LOGIC
+C*       LOOP OVER SUBSPACES MADE INTO DO LOOP.
+C*       LOOP OVER INVERSE ITERATIONS MADE INTO DO LOOP
+C*       ZERO ONLY REQUIRED PORTIONS OF OUTPUT VECTOR
+C*
+C*    NOTE -
+C*       QUESTIONS AND COMMENTS CONCERNING EISPACK SHOULD BE DIRECTED TO
+C*       B. S. GARBOW, APPLIED MATH. DIVISION, ARGONNE NATIONAL LAB.
+C*
+C
+      LOGICAL CONVGD,GOPARR,DSKWRK,MASWRK
+C
+      INTEGER GROUP,I,IERR,ITS,J,JJ,M,N,NM,P,Q,R,S,SUBMAT,TAG
+      INTEGER IND(M)
+C
+      DOUBLE PRECISION D(N),E(N),E2(N),W(M),Z(NM,M)
+      DOUBLE PRECISION RV1(N),RV2(N),RV3(N),RV4(N),RV6(N)
+      DOUBLE PRECISION ANORM,EPS2,EPS3,EPS4,NORM,ORDER,RHO,U,UK,V
+      DOUBLE PRECISION X0,X1,XU
+      DOUBLE PRECISION EPSCAL,GRPTOL,HUNDRD,ONE,TEN,ZERO
+      DOUBLE PRECISION EPSLON, ESTPI1, DASUM, DDOT, DNRM2
+C
+      COMMON /PAR   / ME,MASTER,NPROC,IBTYP,IPTIM,GOPARR,DSKWRK,MASWRK
+C
+      PARAMETER (ZERO = 0.0D+00, ONE = 1.0D+00, GRPTOL = 0.001D+00)
+      PARAMETER (EPSCAL = 0.5D+00, HUNDRD = 100.0D+00, TEN = 10.0D+00)
+C
+  001 FORMAT(' EIGENVECTOR ROUTINE EINVIT DID NOT CONVERGE FOR VECTOR'
+     *      ,I5,'.  NORM =',1P,E10.2,' PERFORMANCE INDEX =',E10.2/
+     *      ' (AN ERROR HALT WILL OCCUR IF THE PI IS GREATER THAN 100)')
+C
+C-----------------------------------------------------------------------
+C
+      LUEMSG = IERR
+      IERR = 0
+      X0 = ZERO
+      UK = ZERO
+      NORM = ZERO
+      EPS2 = ZERO
+      EPS3 = ZERO
+      EPS4 = ZERO
+      GROUP = 0
+      TAG = 0
+      ORDER = ONE - E2(1)
+      Q = 0
+      DO 930 SUBMAT = 1, N
+         P = Q + 1
+C
+C        .......... ESTABLISH AND PROCESS NEXT SUBMATRIX ..........
+C
+         DO 120 Q = P, N-1
+            IF (E2(Q+1) .EQ. ZERO) GO TO 140
+  120    CONTINUE
+         Q = N
+C
+C        .......... FIND VECTORS BY INVERSE ITERATION ..........
+C
+  140    CONTINUE
+         TAG = TAG + 1
+         ANORM = ZERO
+         S = 0
+C
+         DO 920 R = 1, M
+            IF (IND(R) .NE. TAG) GO TO 920
+            ITS = 1
+            X1 = W(R)
+            IF (S .NE. 0) GO TO 510
+C
+C        .......... CHECK FOR ISOLATED ROOT ..........
+C
+            XU = ONE
+            IF (P .EQ. Q) THEN
+               RV6(P) = ONE
+               CONVGD = .TRUE.
+               GO TO 860
+C
+            END IF
+            NORM = ABS(D(P))
+            DO 500 I = P+1, Q
+               NORM = MAX( NORM, ABS(D(I)) + ABS(E(I)) )
+  500       CONTINUE
+C
+C        .......... EPS2 IS THE CRITERION FOR GROUPING,
+C                   EPS3 REPLACES ZERO PIVOTS AND EQUAL
+C                   ROOTS ARE MODIFIED BY EPS3,
+C                   EPS4 IS TAKEN VERY SMALL TO AVOID OVERFLOW .........
+C
+            EPS2 = GRPTOL * NORM
+            EPS3 = EPSCAL * EPSLON(NORM)
+            UK = Q - P + 1
+            EPS4 = UK * EPS3
+            UK = EPS4 / SQRT(UK)
+            S = P
+            GROUP = 0
+            GO TO 520
+C
+C        .......... LOOK FOR CLOSE OR COINCIDENT ROOTS ..........
+C
+  510       IF (ABS(X1-X0) .GE. EPS2) THEN
+C
+C                 ROOTS ARE SEPERATE
+C
+               GROUP = 0
+            ELSE
+C
+C                 ROOTS ARE CLOSE
+C
+               GROUP = GROUP + 1
+               IF (ORDER * (X1 - X0) .LE. EPS3) X1 = X0 + ORDER * EPS3
+            END IF
+C
+C        .......... ELIMINATION WITH INTERCHANGES AND
+C                   INITIALIZATION OF VECTOR ..........
+C
+  520       CONTINUE
+C
+            U = D(P) - X1
+            V = E(P+1)
+            RV6(P) = UK
+            DO 550 I = P+1, Q
+               RV6(I) = UK
+               IF (ABS(E(I)) .GT. ABS(U)) THEN
+C
+C                 EXCHANGE ROWS BEFORE ELIMINATION
+C
+C                  *** WARNING -- A DIVIDE CHECK MAY OCCUR HERE IF
+C                      E2 ARRAY HAS NOT BEEN SPECIFIED CORRECTLY .......
+C
+                  XU = U / E(I)
+                  RV4(I) = XU
+                  RV1(I-1) = E(I)
+                  RV2(I-1) = D(I) - X1
+                  RV3(I-1) = E(I+1)
+                  U = V - XU * RV2(I-1)
+                  V = -XU * RV3(I-1)
+C
+               ELSE
+C
+C                    STRAIGHT ELIMINATION
+C
+                  XU = E(I) / U
+                  RV4(I) = XU
+                  RV1(I-1) = U
+                  RV2(I-1) = V
+                  RV3(I-1) = ZERO
+                  U = D(I) - X1 - XU * V
+                  V = E(I+1)
+               END IF
+  550       CONTINUE
+C
+            IF (ABS(U) .LE. EPS3) U = EPS3
+            RV1(Q) = U
+            RV2(Q) = ZERO
+            RV3(Q) = ZERO
+C
+C              DO INVERSE ITERATIONS
+C
+            CONVGD = .FALSE.
+            DO 800 ITS = 1, 5
+               IF (ITS .EQ. 1) GO TO 600
+C
+C                    .......... FORWARD SUBSTITUTION ..........
+C
+                  IF (NORM .EQ. ZERO) THEN
+                     RV6(S) = EPS4
+                     S = S + 1
+                     IF (S .GT. Q) S = P
+                  ELSE
+                     XU = EPS4 / NORM
+                     CALL DSCAL (Q-P+1, XU, RV6(P), 1)
+                  END IF
+C
+C                     ... ELIMINATION OPERATIONS ON NEXT VECTOR
+C
+                  DO 590 I = P+1, Q
+                     U = RV6(I)
+C
+C                         IF RV1(I-1) .EQ. E(I), A ROW INTERCHANGE
+C                         WAS PERFORMED EARLIER IN THE
+C                         TRIANGULARIZATION PROCESS ..........
+C
+                     IF (RV1(I-1) .EQ. E(I)) THEN
+                        U = RV6(I-1)
+                        RV6(I-1) = RV6(I)
+                     ELSE
+                        U = RV6(I)
+                     END IF
+                     RV6(I) = U - RV4(I) * RV6(I-1)
+  590             CONTINUE
+  600          CONTINUE
+C
+C           .......... BACK SUBSTITUTION
+C
+               RV6(Q) = RV6(Q) / RV1(Q)
+               V = U
+               U = RV6(Q)
+               NORM = ABS(U)
+               DO 620 I = Q-1, P, -1
+                  RV6(I) = (RV6(I) - U * RV2(I) - V * RV3(I)) / RV1(I)
+                  V = U
+                  U = RV6(I)
+                  NORM = NORM + ABS(U)
+  620          CONTINUE
+               IF (GROUP .EQ. 0) GO TO 700
+C
+C                 ....... ORTHOGONALIZE WITH RESPECT TO PREVIOUS
+C                         MEMBERS OF GROUP ..........
+C
+                  J = R
+                  DO 680 JJ = 1, GROUP
+  630                J = J - 1
+                     IF (IND(J) .NE. TAG) GO TO 630
+                     CALL DAXPY(Q-P+1, -DDOT(Q-P+1,RV6(P),1,Z(P,J),1),
+     *                          Z(P,J),1,RV6(P),1)
+  680             CONTINUE
+                  NORM = DASUM(Q-P+1, RV6(P), 1)
+  700          CONTINUE
+C
+               IF (CONVGD) GO TO 840
+               IF (NORM .GE. ONE) CONVGD = .TRUE.
+  800       CONTINUE
+C
+C        .......... NORMALIZE SO THAT SUM OF SQUARES IS
+C                   1 AND EXPAND TO FULL ORDER ..........
+C
+  840       CONTINUE
+C
+            XU = ONE / DNRM2(Q-P+1,RV6(P),1)
+C
+  860       CONTINUE
+            DO 870 I = 1, P-1
+               Z(I,R) = ZERO
+  870       CONTINUE
+            DO 890 I = P,Q
+               Z(I,R) = RV6(I) * XU
+  890       CONTINUE
+            DO 900 I = Q+1, N
+               Z(I,R) = ZERO
+  900       CONTINUE
+C
+            IF (.NOT.CONVGD) THEN
+               RHO = ESTPI1(Q-P+1,X1,D(P),E(P),Z(P,R),ANORM)
+               IF (RHO .GE. TEN .AND. LUEMSG .GT. 0 .AND. MASWRK)
+     *             WRITE(LUEMSG,001) R,NORM,RHO
+C
+C               *** SET ERROR -- NON-CONVERGED EIGENVECTOR ..........
+C
+               IF (RHO .GT. HUNDRD) IERR = -R
+            END IF
+C
+            X0 = X1
+  920    CONTINUE
+C
+         IF (Q .EQ. N) GO TO 940
+  930 CONTINUE
+  940 CONTINUE
+      RETURN
+      END
+C*MODULE EIGEN   *DECK ELAUM
+      SUBROUTINE ELAU(HINV,L,D,A,E)
+C
+      DOUBLE PRECISION A(*)
+      DOUBLE PRECISION D(L)
+      DOUBLE PRECISION E(L)
+      DOUBLE PRECISION F
+      DOUBLE PRECISION G
+      DOUBLE PRECISION HALF
+      DOUBLE PRECISION HH
+      DOUBLE PRECISION HINV
+      DOUBLE PRECISION ZERO
+C
+      PARAMETER (ZERO = 0.0D+00, HALF = 0.5D+00)
+C
+      JL = L
+      E(1) = A(1) * D(1)
+      JK = 2
+      DO 210 J = 2, JL
+         F = D(J)
+         G = ZERO
+         JM1 = J - 1
+C
+         DO 200 K = 1, JM1
+            G = G + A(JK) * D(K)
+            E(K) = E(K) + A(JK) * F
+            JK = JK + 1
+  200    CONTINUE
+C
+         E(J) = G + A(JK) * F
+         JK = JK + 1
+  210 CONTINUE
+C
+C        .......... FORM P ..........
+C
+      F = ZERO
+      DO 245 J = 1, L
+         E(J) = E(J) * HINV
+         F = F + E(J) * D(J)
+  245 CONTINUE
+C
+C     .......... FORM Q ..........
+C
+      HH = F * HALF * HINV
+      DO 250 J = 1, L
+  250 E(J) = E(J) - HH * D(J)
+C
+      RETURN
+      END
+C*MODULE EIGEN   *DECK EPSLON
+      DOUBLE PRECISION FUNCTION EPSLON (X)
+C*
+C*    AUTHORS -
+C*       THIS ROUTINE WAS TAKEN FROM EISPACK EDITION 3 DATED 4/6/83
+C*       THIS VERSION IS BY S. T. ELBERT, AMES LABORATORY-USDOE NOV 1986
+C*
+C*    PURPOSE -
+C*       ESTIMATE UNIT ROUNDOFF IN QUANTITIES OF SIZE X.
+C*
+C*    ON ENTRY -
+C*       X      - WORKING PRECISION REAL
+C*                VALUES TO FIND EPSLON FOR
+C*
+C*    ON EXIT -
+C*       EPSLON - WORKING PRECISION REAL
+C*                SMALLEST POSITIVE VALUE SUCH THAT X+EPSLON .NE. ZERO
+C*
+C*    QUALIFICATIONS -
+C*       THIS ROUTINE SHOULD PERFORM PROPERLY ON ALL SYSTEMS
+C*       SATISFYING THE FOLLOWING TWO ASSUMPTIONS,
+C*          1.  THE BASE USED IN REPRESENTING FLOATING POINT
+C*              NUMBERS IS NOT A POWER OF THREE.
+C*          2.  THE QUANTITY  A  IN STATEMENT 10 IS REPRESENTED TO
+C*              THE ACCURACY USED IN FLOATING POINT VARIABLES
+C*              THAT ARE STORED IN MEMORY.
+C*       THE STATEMENT NUMBER 10 AND THE GO TO 10 ARE INTENDED TO
+C*       FORCE OPTIMIZING COMPILERS TO GENERATE CODE SATISFYING
+C*       ASSUMPTION 2.
+C*       UNDER THESE ASSUMPTIONS, IT SHOULD BE TRUE THAT,
+C*              A  IS NOT EXACTLY EQUAL TO FOUR-THIRDS,
+C*              B  HAS A ZERO FOR ITS LAST BIT OR DIGIT,
+C*              C  IS NOT EXACTLY EQUAL TO ONE,
+C*              EPS  MEASURES THE SEPARATION OF 1.0 FROM
+C*                   THE NEXT LARGER FLOATING POINT NUMBER.
+C*       THE DEVELOPERS OF EISPACK WOULD APPRECIATE BEING INFORMED
+C*       ABOUT ANY SYSTEMS WHERE THESE ASSUMPTIONS DO NOT HOLD.
+C*
+C*    DIFFERENCES FROM EISPACK 3 -
+C*       USE IS MADE OF PARAMETER STATEMENTS AND INTRINSIC FUNCTIONS
+C*       --NO EXECUTEABLE CODE CHANGES--
+C*
+C*    NOTE -
+C*       QUESTIONS AND COMMENTS CONCERNING EISPACK SHOULD BE DIRECTED TO
+C*       B. S. GARBOW, APPLIED MATH. DIVISION, ARGONNE NATIONAL LAB.
+C
+      DOUBLE PRECISION A,B,C,EPS,X
+      DOUBLE PRECISION ZERO, ONE, THREE, FOUR
+C
+      PARAMETER (ZERO=0.0D+00, ONE=1.0D+00, THREE=3.0D+00, FOUR=4.0D+00)
+C
+C-----------------------------------------------------------------------
+C
+      A = FOUR/THREE
+   10 B = A - ONE
+      C = B + B + B
+      EPS = ABS(C - ONE)
+      IF (EPS .EQ. ZERO) GO TO 10
+      EPSLON = EPS*ABS(X)
+      RETURN
+      END
+C*MODULE EIGEN   *DECK EQLRAT
+      SUBROUTINE EQLRAT(N,DIAG,E,E2IN,D,IND,IERR,E2)
+C*
+C*    AUTHORS -
+C*       THIS IS A MODIFICATION OF ROUTINE EQLRAT FROM EISPACK EDITION 3
+C*       DATED AUGUST 1983.
+C*       TQLRAT IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT,
+C*       ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH.
+C*       THIS VERSION IS BY S. T. ELBERT (AMES LABORATORY-USDOE)
+C*
+C*    PURPOSE -
+C*       THIS ROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
+C*       TRIDIAGONAL MATRIX
+C*
+C*    METHOD -
+C*       RATIONAL QL
+C*
+C*    ON ENTRY -
+C*       N      - INTEGER
+C*                THE ORDER OF THE MATRIX.
+C*       D      - W.P. REAL (N)
+C*                CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
+C*       E2     - W.P. REAL (N)
+C*                CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF
+C*                THE INPUT MATRIX IN ITS LAST N-1 POSITIONS.
+C*                E2(1) IS ARBITRARY.
+C*
+C*     ON EXIT -
+C*       D      - W.P. REAL (N)
+C*                CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
+C*                ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
+C*                ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE
+C*                THE SMALLEST EIGENVALUES.
+C*       E2     - W.P. REAL (N)
+C*                DESTROYED.
+C*       IERR   - INTEGER
+C*                SET TO
+C*                ZERO       FOR NORMAL RETURN,
+C*                J          IF THE J-TH EIGENVALUE HAS NOT BEEN
+C*                           DETERMINED AFTER 30 ITERATIONS.
+C*
+C*    DIFFERENCES FROM EISPACK 3 -
+C*       G=G+B INSTEAD OF IF(G.EQ.0) G=B ; B=B/4
+C*       F77 BACKWARD LOOPS INSTEAD OF F66 CONSTRUCT
+C*       GENERIC INTRINSIC FUNCTIONS
+C*       ARRARY  IND  ADDED FOR USE BY EINVIT
+C*
+C*    NOTE -
+C*       QUESTIONS AND COMMENTS CONCERNING EISPACK SHOULD BE DIRECTED TO
+C*       B. S. GARBOW, APPLIED MATH. DIVISION, ARGONNE NATIONAL LAB.
+C
+      INTEGER I,J,L,M,N,II,L1,IERR
+      INTEGER IND(N)
+C
+      DOUBLE PRECISION D(N),E(N),E2(N),DIAG(N),E2IN(N)
+      DOUBLE PRECISION B,C,F,G,H,P,R,S,T,EPSLON
+      DOUBLE PRECISION SCALE,ZERO,ONE
+C
+      PARAMETER (ZERO = 0.0D+00, SCALE= 1.0D+00/64.0D+00, ONE = 1.0D+00)
+C
+C-----------------------------------------------------------------------
+      IERR = 0
+      D(1)=DIAG(1)
+      IND(1) = 1
+      K = 0
+      ITAG = 0
+      IF (N .EQ. 1) GO TO 1001
+C
+      DO 100 I = 2, N
+         D(I)=DIAG(I)
+  100 E2(I-1) = E2IN(I)
+C
+      F = ZERO
+      T = ZERO
+      B = EPSLON(ONE)
+      C = B *B
+      B = B * SCALE
+      E2(N) = ZERO
+C
+      DO 290 L = 1, N
+         H = ABS(D(L)) + ABS(E(L))
+         IF (T .GE. H) GO TO 105
+            T = H
+            B = EPSLON(T)
+            C = B * B
+            B = B * SCALE
+  105    CONTINUE
+C     .......... LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT ..........
+         M = L - 1
+  110    M = M + 1
+         IF (E2(M) .GT. C) GO TO 110
+C     .......... E2(N) IS ALWAYS ZERO, SO THERE IS AN EXIT
+C                FROM THE LOOP ..........
+C
+         IF (M .LE. K) GO TO 125
+            IF (M .NE. N) E2IN(M+1) = ZERO
+            K = M
+            ITAG = ITAG + 1
+  125    CONTINUE
+         IF (M .EQ. L) GO TO 210
+C
+C           ITERATE
+C
+         DO 205 J = 1, 30
+C              .......... FORM SHIFT ..........
+            L1 = L + 1
+            S = SQRT(E2(L))
+            G = D(L)
+            P = (D(L1) - G) / (2.0D+00 * S)
+            R = SQRT(P*P+1.0D+00)
+            D(L) = S / (P + SIGN(R,P))
+            H = G - D(L)
+C
+            DO 140 I = L1, N
+  140       D(I) = D(I) - H
+C
+            F = F + H
+C              .......... RATIONAL QL TRANSFORMATION ..........
+            G = D(M) + B
+            H = G
+            S = ZERO
+            DO 200 I = M-1,L,-1
+               P = G * H
+               R = P + E2(I)
+               E2(I+1) = S * R
+               S = E2(I) / R
+               D(I+1) = H + S * (H + D(I))
+               G = D(I) - E2(I) / G   + B
+               H = G * P / R
+  200       CONTINUE
+C
+            E2(L) = S * G
+            D(L) = H
+C              .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST
+            IF (H .EQ. ZERO) GO TO 210
+            IF (ABS(E2(L)) .LE. ABS(C/H)) GO TO 210
+            E2(L) = H * E2(L)
+            IF (E2(L) .EQ. ZERO) GO TO 210
+  205    CONTINUE
+C     .......... SET ERROR -- NO CONVERGENCE TO AN
+C                EIGENVALUE AFTER 30 ITERATIONS ..........
+      IERR = L
+      GO TO 1001
+C
+C           CONVERGED
+C
+  210    P = D(L) + F
+C           .......... ORDER EIGENVALUES ..........
+         I = 1
+         IF (L .EQ. 1) GO TO 250
+            IF (P .LT. D(1)) GO TO 230
+               I = L
+C           .......... LOOP TO FIND ORDERED POSITION
+  220          I = I - 1
+               IF (P .LT. D(I)) GO TO 220
+C
+               I = I + 1
+               IF (I .EQ. L) GO TO 250
+  230       CONTINUE
+            DO 240 II = L, I+1, -1
+               D(II) = D(II-1)
+               IND(II) = IND(II-1)
+  240       CONTINUE
+C
+  250    CONTINUE
+         D(I) = P
+         IND(I) = ITAG
+  290 CONTINUE
+C
+ 1001 RETURN
+      END
+C*MODULE EIGEN   *DECK ESTPI1
+      DOUBLE PRECISION FUNCTION ESTPI1 (N,EVAL,D,E,X,ANORM)
+C*
+C*    AUTHOR -
+C*       STEPHEN T. ELBERT (AMES LABORATORY-USDOE) DATE: 5 DEC 1986
+C*
+C*    PURPOSE -
+C*       EVALUATE SYMMETRIC TRIDIAGONAL MATRIX PERFORMANCE INDEX
+C*       *        *         *                  *           *
+C*       FOR 1 EIGENVECTOR
+C*           *
+C*
+C*    METHOD -
+C*       THIS ROUTINE FORMS THE 1-NORM OF THE RESIDUAL MATRIX A*X-X*EVAL
+C*       WHERE  A  IS A SYMMETRIC TRIDIAGONAL MATRIX STORED
+C*       IN THE DIAGONAL (D) AND SUB-DIAGONAL (E) VECTORS, EVAL IS THE
+C*       EIGENVALUE OF AN EIGENVECTOR OF  A,  NAMELY  X.
+C*       THIS NORM IS SCALED BY MACHINE ACCURACY FOR THE PROBLEM SIZE.
+C*       ALL NORMS APPEARING IN THE COMMENTS BELOW ARE 1-NORMS.
+C*
+C*    ON ENTRY -
+C*       N      - INTEGER
+C*                THE ORDER OF THE MATRIX  A.
+C*       EVAL   - W.P. REAL
+C*                THE EIGENVALUE CORRESPONDING TO VECTOR  X.
+C*       D      - W.P. REAL (N)
+C*                THE DIAGONAL VECTOR OF  A.
+C*       E      - W.P. REAL (N)
+C*                THE SUB-DIAGONAL VECTOR OF  A.
+C*       X      - W.P. REAL (N)
+C*                AN EIGENVECTOR OF  A.
+C*       ANORM  - W.P. REAL
+C*                THE NORM OF  A  IF IT HAS BEEN PREVIOUSLY COMPUTED.
+C*
+C*    ON EXIT -
+C*       ANORM  - W.P. REAL
+C*                THE NORM OF  A, COMPUTED IF INITIALLY ZERO.
+C*       ESTPI1 - W.P. REAL
+C*          !!A*X-X*EVAL!! / (EPSLON(10*N)*!!A!!*!!X!!);
+C*          WHERE EPSLON(X) IS THE SMALLEST NUMBER SUCH THAT
+C*             X + EPSLON(X) .NE. X
+C*
+C*          ESTPI1 .LT. 1 == SATISFACTORY PERFORMANCE
+C*                 .GE. 1 AND .LE. 100 == MARGINAL PERFORMANCE
+C*                 .GT. 100 == POOR PERFORMANCE
+C*          (SEE LECT. NOTES IN COMP. SCI. VOL.6 PP 124-125)
+C
+      DOUBLE PRECISION ANORM,EVAL,RNORM,SIZE,XNORM
+      DOUBLE PRECISION D(N), E(N), X(N)
+      DOUBLE PRECISION EPSLON, ONE, ZERO
+C
+      PARAMETER (ZERO = 0.0D+00, ONE = 1.0D+00)
+C
+C-----------------------------------------------------------------------
+C
+      ESTPI1 = ZERO
+      IF( N .LE. 1 ) RETURN
+      SIZE = 10 * N
+      IF (ANORM .EQ. ZERO) THEN
+C
+C              COMPUTE NORM OF  A
+C
+         ANORM = MAX( ABS(D(1)) + ABS(E(2))
+     *               ,ABS(D(N)) + ABS(E(N)))
+         DO 110 I = 2, N-1
+            ANORM = MAX( ANORM, ABS(E(I))+ABS(D(I))+ABS(E(I+1)))
+  110    CONTINUE
+         IF(ANORM .EQ. ZERO) ANORM = ONE
+      END IF
+C
+C           COMPUTE NORMS OF RESIDUAL AND EIGENVECTOR
+C
+      XNORM = ABS(X(1)) + ABS(X(N))
+      RNORM = ABS( (D(1)-EVAL)*X(1) + E(2)*X(2))
+     *       +ABS( (D(N)-EVAL)*X(N) + E(N)*X(N-1))
+      DO 120 I = 2, N-1
+         XNORM = XNORM + ABS(X(I))
+         RNORM = RNORM + ABS(E(I)*X(I-1) + (D(I)-EVAL)*X(I)
+     *                       + E(I+1)*X(I+1))
+  120 CONTINUE
+C
+      ESTPI1 = RNORM / (EPSLON(SIZE)*ANORM*XNORM)
+      RETURN
+      END
+C*MODULE EIGEN   *DECK ETRBK3
+      SUBROUTINE ETRBK3(NM,N,NV,A,M,Z)
+C*
+C*    AUTHORS-
+C*       THIS IS A MODIFICATION OF ROUTINE TRBAK3 FROM EISPACK EDITION 3
+C*       DATED AUGUST 1983.
+C*       EISPACK TRBAK3 IS A TRANSLATION OF THE ALGOL PROCEDURE TRBAK3,
+C*       NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
+C*       HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
+C*       THIS VERSION IS BY S. T. ELBERT (AMES LABORATORY-USDOE)
+C*
+C*    PURPOSE -
+C*       THIS ROUTINE FORMS THE EIGENVECTORS OF A REAL SYMMETRIC
+C*       MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING
+C*       SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY  ETRED3.
+C*
+C*    METHOD -
+C*       THE CALCULATION IS CARRIED OUT BY FORMING THE MATRIX PRODUCT
+C*          Q*Z
+C*       WHERE  Q  IS A PRODUCT OF THE ORTHOGONAL SYMMETRIC MATRICES
+C*                Q = PROD(I)[1 - U(I)*.TRANSPOSE.U(I)*H(I)]
+C*       U  IS THE AUGMENTED SUB-DIAGONAL ROWS OF  A  AND
+C*       Z  IS THE SET OF EIGENVECTORS OF THE TRIDIAGONAL
+C*       MATRIX  F  WHICH WAS FORMED FROM THE ORIGINAL SYMMETRIC
+C*       MATRIX  C  BY THE SIMILARITY TRANSFORMATION
+C*                F = Q(TRANSPOSE) C Q
+C*       NOTE THAT ETRBK3 PRESERVES VECTOR EUCLIDEAN NORMS.
+C*
+C*
+C*    COMPLEXITY -
+C*       M*N**2
+C*
+C*    ON ENTRY-
+C*       NM     - INTEGER
+C*                MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
+C*                ARRAY PARAMETERS AS DECLARED IN THE CALLING ROUTINE
+C*                DIMENSION STATEMENT.
+C*       N      - INTEGER
+C*                THE ORDER OF THE MATRIX  A.
+C*       NV     - INTEGER
+C*                MUST BE SET TO THE DIMENSION OF THE ARRAY  A  AS
+C*                DECLARED IN THE CALLING ROUTINE DIMENSION STATEMENT.
+C*       A      - W.P. REAL (NV)
+C*                CONTAINS INFORMATION ABOUT THE ORTHOGONAL
+C*                TRANSFORMATIONS USED IN THE REDUCTION BY  ETRED3  IN
+C*                ITS FIRST  NV = N*(N+1)/2 POSITIONS.
+C*       M      - INTEGER
+C*                THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED.
+C*       Z      - W.P REAL (NM,M)
+C*                CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED
+C*                IN ITS FIRST M COLUMNS.
+C*
+C*    ON EXIT-
+C*       Z      - W.P. REAL (NM,M)
+C*                CONTAINS THE TRANSFORMED EIGENVECTORS
+C*                IN ITS FIRST M COLUMNS.
+C*
+C*    DIFFERENCES WITH EISPACK 3 -
+C*       THE TWO INNER LOOPS ARE REPLACED BY DDOT AND DAXPY.
+C*       MULTIPLICATION USED INSTEAD OF DIVISION TO FIND S.
+C*       OUTER LOOP RANGE CHANGED FROM 2,N TO 3,N.
+C*       ADDRESS POINTERS FOR  A  SIMPLIFIED.
+C*
+C*    NOTE -
+C*       QUESTIONS AND COMMENTS CONCERNING EISPACK SHOULD BE DIRECTED TO
+C*       B. S. GARBOW, APPLIED MATH. DIVISION, ARGONNE NATIONAL LAB.
+C
+      INTEGER I,II,IM1,IZ,J,M,N,NM,NV
+C
+      DOUBLE PRECISION A(NV),Z(NM,M)
+      DOUBLE PRECISION H,S,DDOT,ZERO
+C
+      PARAMETER (ZERO = 0.0D+00)
+C
+C-----------------------------------------------------------------------
+C
+      IF (M .EQ. 0) RETURN
+      IF (N .LE. 2) RETURN
+C
+      II=3
+      DO 140 I = 3, N
+         IZ=II+1
+         II=II+I
+         H = A(II)
+         IF (H .EQ. ZERO) GO TO 140
+            IM1 = I - 1
+            DO 130 J = 1, M
+               S = -( DDOT(IM1,A(IZ),1,Z(1,J),1) * H) * H
+               CALL DAXPY(IM1,S,A(IZ),1,Z(1,J),1)
+  130       CONTINUE
+  140 CONTINUE
+      RETURN
+      END
+C*MODULE EIGEN   *DECK ETRED3
+      SUBROUTINE ETRED3(N,NV,A,D,E,E2)
+C*
+C*    AUTHORS -
+C*       THIS IS A MODIFICATION OF ROUTINE TRED3 FROM EISPACK EDITION 3
+C*       DATED AUGUST 1983.
+C*       EISPACK TRED3 IS A TRANSLATION OF THE ALGOL PROCEDURE TRED3,
+C*       NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
+C*       HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
+C*       THIS VERSION IS BY S. T. ELBERT, AMES LABORATORY-USDOE JUN 1986
+C*
+C*    PURPOSE -
+C*       THIS ROUTINE REDUCES A REAL SYMMETRIC (PACKED) MATRIX, STORED
+C*       AS A ONE-DIMENSIONAL ARRAY, TO A SYMMETRIC TRIDIAGONAL MATRIX
+C*       USING ORTHOGONAL SIMILARITY TRANSFORMATIONS, PRESERVING THE
+C*       INFORMATION ABOUT THE TRANSFORMATIONS IN  A.
+C*
+C*    METHOD -
+C*       THE TRIDIAGONAL REDUCTION IS PERFORMED IN THE FOLLOWING WAY.
+C*       STARTING WITH J=N, THE ELEMENTS IN THE J-TH ROW TO THE
+C*       LEFT OF THE DIAGONAL ARE FIRST SCALED, TO AVOID POSSIBLE
+C*       UNDERFLOW IN THE TRANSFORMATION THAT MIGHT RESULT IN SEVERE
+C*       DEPARTURE FROM ORTHOGONALITY.  THE SUM OF SQUARES  SIGMA  OF
+C*       THESE SCALED ELEMENTS IS NEXT FORMED.  THEN, A VECTOR  U  AND
+C*       A SCALAR
+C*                      H = U(TRANSPOSE) * U / 2
+C*       DEFINE A REFLECTION OPERATOR
+C*                      P = I - U * U(TRANSPOSE) / H
+C*       WHICH IS ORTHOGONAL AND SYMMETRIC AND FOR WHICH THE
+C*       SIMILIARITY TRANSFORMATION  PAP  ELIMINATES THE ELEMENTS IN
+C*       THE J-TH ROW OF  A  TO THE LEFT OF THE SUBDIAGONAL AND THE
+C*       SYMMETRICAL ELEMENTS IN THE J-TH COLUMN.
+C*
+C*       THE NON-ZERO COMPONENTS OF  U  ARE THE ELEMENTS OF THE J-TH
+C*       ROW TO THE LEFT OF THE DIAGONAL WITH THE LAST OF THEM
+C*       AUGMENTED BY THE SQUARE ROOT OF  SIGMA  PREFIXED BY THE SIGN
+C*       OF THE SUBDIAGONAL ELEMENT.  BY STORING THE TRANSFORMED SUB-
+C*       DIAGONAL ELEMENT IN  E(J)  AND NOT OVERWRITING THE ROW
+C*       ELEMENTS ELIMINATED IN THE TRANSFORMATION, FULL INFORMATION
+C*       ABOUT  P  IS SAVE FOR LATER USE IN  ETRBK3.
+C*
+C*       THE TRANSFORMATION SETS  E2(J)  EQUAL TO  SIGMA  AND  E(J)
+C*       EQUAL TO THE SQUARE ROOT OF  SIGMA  PREFIXED BY THE SIGN
+C*       OF THE REPLACED SUBDIAGONAL ELEMENT.
+C*
+C*       THE ABOVE STEPS ARE REPEATED ON FURTHER ROWS OF THE
+C*       TRANSFORMED  A  IN REVERSE ORDER UNTIL  A  IS REDUCED TO TRI-
+C*       DIAGONAL FORM, THAT IS, REPEATED FOR  J = N-1,N-2,...,3.
+C*
+C*    COMPLEXITY -
+C*       2/3 N**3
+C*
+C*    ON ENTRY-
+C*       N      - INTEGER
+C*                THE ORDER OF THE MATRIX.
+C*       NV     - INTEGER
+C*                MUST BE SET TO THE DIMENSION OF THE ARRAY PARAMETER A
+C*                AS DECLARED IN THE CALLING ROUTINE DIMENSION STATEMENT
+C*       A      - W.P. REAL (NV)
+C*                CONTAINS THE LOWER TRIANGLE OF THE REAL SYMMETRIC
+C*                INPUT MATRIX, STORED ROW-WISE AS A ONE-DIMENSIONAL
+C*                ARRAY, IN ITS FIRST N*(N+1)/2 POSITIONS.
+C*
+C*    ON EXIT-
+C*       A      - W.P. REAL (NV)
+C*                CONTAINS INFORMATION ABOUT THE ORTHOGONAL
+C*                TRANSFORMATIONS USED IN THE REDUCTION.
+C*       D      - W.P. REAL (N)
+C*                CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL
+C*                MATRIX.
+C*       E      - W.P. REAL (N)
+C*                CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
+C*                MATRIX IN ITS LAST N-1 POSITIONS.  E(1) IS SET TO ZERO
+C*       E2     - W.P. REAL (N)
+C*                CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF
+C*                E. MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.
+C*
+C*    DIFFERENCES FROM EISPACK 3 -
+C*       OUTER LOOP CHANGED FROM II=1,N TO I=N,3,-1
+C*       PARAMETER STATEMENT AND GENERIC INTRINSIC FUNCTIONS USED
+C*       SCALE.NE.0 TEST NOW SPOTS TRI-DIAGONAL FORM
+C*       VALUES LESS THAN EPSLON CLEARED TO ZERO
+C*       USE BLAS(1)
+C*       U NOT COPIED TO D, LEFT IN A
+C*       E2 COMPUTED FROM E
+C*       INNER LOOPS SPLIT INTO ROUTINES ELAU AND FREDA
+C*       INVERSE OF H STORED INSTEAD OF H
+C*
+C*    NOTE -
+C*       QUESTIONS AND COMMENTS CONCERNING EISPACK SHOULD BE DIRECTED TO
+C*       B. S. GARBOW, APPLIED MATH. DIVISION, ARGONNE NATIONAL LAB.
+C
+      INTEGER I,IIA,IZ0,L,N,NV
+C
+      DOUBLE PRECISION A(NV),D(N),E(N),E2(N)
+      DOUBLE PRECISION AIIMAX,F,G,H,HROOT,SCALE,SCALEI
+      DOUBLE PRECISION DASUM, DNRM2
+      DOUBLE PRECISION ONE, ZERO
+C
+      PARAMETER (ZERO = 0.0D+00, ONE = 1.0D+00)
+C
+C-----------------------------------------------------------------------
+C
+      IF (N .LE. 2) GO TO 310
+      IZ0 = (N*N+N)/2
+      AIIMAX = ABS(A(IZ0))
+      DO 300 I = N, 3, -1
+         L = I - 1
+         IIA = IZ0
+         IZ0 = IZ0 - I
+         AIIMAX = MAX(AIIMAX, ABS(A(IIA)))
+         SCALE = DASUM (L, A(IZ0+1), 1)
+         IF(SCALE .EQ. ABS(A(IIA-1)) .OR. AIIMAX+SCALE .EQ. AIIMAX) THEN
+C
+C           THIS ROW IS ALREADY IN TRI-DIAGONAL FORM
+C
+            D(I) = A(IIA)
+            IF (AIIMAX+D(I) .EQ. AIIMAX) D(I) = ZERO
+            E(I) = A(IIA-1)
+            IF (AIIMAX+E(I) .EQ. AIIMAX) E(I) = ZERO
+            E2(I) = E(I)*E(I)
+            A(IIA) = ZERO
+            GO TO 300
+C
+         END IF
+C
+         SCALEI = ONE / SCALE
+         CALL DSCAL(L,SCALEI,A(IZ0+1),1)
+         HROOT = DNRM2(L,A(IZ0+1),1)
+C
+         F = A(IZ0+L)
+         G = -SIGN(HROOT,F)
+         E(I) = SCALE * G
+         E2(I) = E(I)*E(I)
+         H = HROOT*HROOT - F * G
+         A(IZ0+L) = F - G
+         D(I) = A(IIA)
+         A(IIA) = ONE / SQRT(H)
+C           .......... FORM P THEN Q IN E(1:L) ..........
+         CALL ELAU(ONE/H,L,A(IZ0+1),A,E)
+C           .......... FORM REDUCED A ..........
+         CALL FREDA(L,A(IZ0+1),A,E)
+C
+  300 CONTINUE
+  310 CONTINUE
+      E(1) = ZERO
+      E2(1)= ZERO
+      D(1) = A(1)
+      IF(N.EQ.1) RETURN
+C
+      E(2) = A(2)
+      E2(2)= A(2)*A(2)
+      D(2) = A(3)
+      RETURN
+      END
+C*MODULE EIGEN   *DECK EVVRSP
+      SUBROUTINE EVVRSP(MSGFL,N,NVECT,LENA,NV,A,B,IND,ROOT,
+     *                  VECT,IORDER,IERR)
+C*
+C*    AUTHOR:  S. T. ELBERT, AMES LABORATORY-USDOE, JUNE 1985
+C*
+C*    PURPOSE -
+C*       FINDS   (ALL) EIGENVALUES    AND    (SOME OR ALL) EIGENVECTORS
+C*                     *    *                                   *
+C*       OF A REAL SYMMETRIC PACKED MATRIX.
+C*            *    *         *
+C*
+C*    METHOD -
+C*       THE METHOD AS PRESENTED IN THIS ROUTINE CONSISTS OF FOUR STEPS:
+C*       FIRST, THE INPUT MATRIX IS REDUCED TO TRIDIAGONAL FORM BY THE
+C*       HOUSEHOLDER TECHNIQUE (ORTHOGONAL SIMILARITY TRANSFORMATIONS).
+C*       SECOND, THE ROOTS ARE LOCATED USING THE RATIONAL QL METHOD.
+C*       THIRD, THE VECTORS OF THE TRIDIAGONAL FORM ARE EVALUATED BY THE
+C*       INVERSE ITERATION TECHNIQUE.  VECTORS FOR DEGENERATE OR NEAR-
+C*       DEGENERATE ROOTS ARE FORCED TO BE ORTHOGONAL.
+C*       FOURTH, THE TRIDIAGONAL VECTORS ARE ROTATED TO VECTORS OF THE
+C*       ORIGINAL ARRAY.
+C*
+C*       THESE ROUTINES ARE MODIFICATIONS OF THE EISPACK 3
+C*       ROUTINES TRED3, TQLRAT, TINVIT AND TRBAK3
+C*
+C*       FOR FURTHER DETAILS, SEE EISPACK USERS GUIDE, B. T. SMITH
+C*       ET AL, SPRINGER-VERLAG, LECTURE NOTES IN COMPUTER SCIENCE,
+C*       VOL. 6, 2-ND EDITION, 1976.  ANOTHER GOOD REFERENCE IS
+C*       THE SYMMETRIC EIGENVALUE PROBLEM BY B. N. PARLETT
+C*       PUBLISHED BY PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, N.J. (1980)
+C*
+C*    ON ENTRY -
+C*       MSGFL  - INTEGER (LOGICAL UNIT NO.)
+C*                FILE WHERE ERROR MESSAGES WILL BE PRINTED.
+C*                IF MSGFL IS 0, ERROR MESSAGES WILL BE PRINTED ON LU 6.
+C*                IF MSGFL IS NEGATIVE, NO ERROR MESSAGES PRINTED.
+C*       N      - INTEGER
+C*                ORDER OF MATRIX A.
+C*       NVECT  - INTEGER
+C*                NUMBER OF VECTORS DESIRED.  0 .LE. NVECT .LE. N.
+C*       LENA   - INTEGER
+C*                DIMENSION OF  A  IN CALLING ROUTINE.  MUST NOT BE LESS
+C*                THAN (N*N+N)/2.
+C*       NV     - INTEGER
+C*                ROW DIMENSION OF VECT IN CALLING ROUTINE.   N .LE. NV.
+C*       A      - WORKING PRECISION REAL (LENA)
+C*                INPUT MATRIX, ROWS OF THE LOWER TRIANGLE PACKED INTO
+C*                LINEAR ARRAY OF DIMENSION N*(N+1)/2.  THE PACKED ORDER
+C*                IS A(1,1), A(2,1), A(2,2), A(3,1), A(3,2), ...
+C*       B      - WORKING PRECISION REAL (N,8)
+C*                SCRATCH ARRAY, 8*N ELEMENTS
+C*       IND    - INTEGER (N)
+C*                SCRATCH ARRAY OF LENGTH N.
+C*       IORDER - INTEGER
+C*                ROOT ORDERING FLAG.
+C*                = 0, ROOTS WILL BE PUT IN ASCENDING ORDER.
+C*                = 2, ROOTS WILL BE PUT IN DESCENDING ORDER.
+C*
+C*    ON EXIT -
+C*       A      - DESTORYED.  NOW HOLDS REFLECTION OPERATORS.
+C*       ROOT   - WORKING PRECISION REAL (N)
+C*                ALL EIGENVALUES IN ASCENDING OR DESCENDING ORDER.
+C*                  IF IORDER = 0, ROOT(1) .LE. ... .LE. ROOT(N)
+C*                  IF IORDER = 2, ROOT(1) .GE. ... .GE. ROOT(N)
+C*       VECT   - WORKING PRECISION REAL (NV,NVECT)
+C*                EIGENVECTORS FOR ROOT(1), ..., ROOT(NVECT).
+C*       IERR   - INTEGER
+C*                = 0 IF NO ERROR DETECTED,
+C*                = K IF ITERATION FOR K-TH EIGENVALUE FAILED,
+C*                = -K IF ITERATION FOR K-TH EIGENVECTOR FAILED.
+C*                (FAILURES SHOULD BE VERY RARE.  CONTACT C. MOLER.)
+C*
+C
+      LOGICAL GOPARR,DSKWRK,MASWRK
+C
+      DOUBLE PRECISION A(LENA)
+      DOUBLE PRECISION B(N,8)
+      DOUBLE PRECISION ROOT(N)
+      DOUBLE PRECISION T
+      DOUBLE PRECISION VECT(NV,*)
+C
+      INTEGER IND(N)
+C
+      COMMON /PAR   / ME,MASTER,NPROC,IBTYP,IPTIM,GOPARR,DSKWRK,MASWRK
+C
+  900 FORMAT(26H0*** EVVRSP PARAMETERS ***/
+     +       14H ***      N = ,I8,4H ***/
+     +       14H ***  NVECT = ,I8,4H ***/
+     +       14H ***   LENA = ,I8,4H ***/
+     +       14H ***     NV = ,I8,4H ***/
+     +       14H *** IORDER = ,I8,4H ***/
+     +       14H ***   IERR = ,I8,4H ***)
+  901 FORMAT(37H VALUE OF LENA IS LESS THAN (N*N+N)/2)
+  902 FORMAT(39H EQLRAT HAS FAILED TO CONVERGE FOR ROOT,I5)
+  903 FORMAT(18H NV IS LESS THAN N)
+  904 FORMAT(41H EINVIT HAS FAILED TO CONVERGE FOR VECTOR,I5)
+  905 FORMAT(51H VALUE OF IORDER MUST BE 0 (SMALLEST ROOT FIRST) OR
+     *      ,23H 2 (LARGEST ROOT FIRST))
+  906 FORMAT(' VALUE OF N IS LESS THAN OR EQUAL ZERO')
+C
+C-----------------------------------------------------------------------
+C
+      LMSGFL=MSGFL
+      IF (MSGFL .EQ. 0) LMSGFL=6
+      IERR = N - 1
+      IF (N .LE. 0) GO TO 800
+      IERR = N + 1
+      IF ( (N*N+N)/2 .GT. LENA) GO TO 810
+C
+C        REDUCE REAL SYMMETRIC MATRIX A TO TRIDIAGONAL FORM
+C
+      CALL ETRED3(N,LENA,A,B(1,1),B(1,2),B(1,3))
+C
+C        FIND ALL EIGENVALUES OF TRIDIAGONAL MATRIX
+C
+      CALL EQLRAT(N,B(1,1),B(1,2),B(1,3),ROOT,IND,IERR,B(1,4))
+      IF (IERR .NE. 0) GO TO 820
+C
+C         CHECK THE DESIRED ORDER OF THE EIGENVALUES
+C
+      B(1,3) = IORDER
+      IF (IORDER .EQ. 0) GO TO 300
+         IF (IORDER .NE. 2) GO TO 850
+C
+C         ORDER ROOTS IN DESCENDING ORDER (LARGEST FIRST)...
+C        TURN ROOT AND IND ARRAYS END FOR END
+C
+         DO 210 I = 1, N/2
+            J = N+1-I
+            T = ROOT(I)
+            ROOT(I) = ROOT(J)
+            ROOT(J) = T
+            L = IND(I)
+            IND(I) = IND(J)
+            IND(J) = L
+  210    CONTINUE
+C
+C           FIND I AND J MARKING THE START AND END OF A SEQUENCE
+C           OF DEGENERATE ROOTS
+C
+         I=0
+  220    CONTINUE
+            I = I+1
+            IF (I .GT. N) GO TO 300
+            DO 230 J=I,N
+               IF (ROOT(J) .NE. ROOT(I)) GO TO 240
+  230       CONTINUE
+            J = N+1
+  240       CONTINUE
+            J = J-1
+            IF (J .EQ. I) GO TO 220
+C
+C                    TURN AROUND IND BETWEEN I AND J
+C
+            JSV = J
+            KLIM = (J-I+1)/2
+            DO 250 K=1,KLIM
+               L = IND(J)
+               IND(J) = IND(I)
+               IND(I) = L
+               I = I+1
+               J = J-1
+  250       CONTINUE
+            I = JSV
+         GO TO 220
+C
+  300 CONTINUE
+C
+      IF (NVECT .LE. 0) RETURN
+      IF (NV .LT. N) GO TO 830
+C
+C        FIND EIGENVECTORS OF TRI-DIAGONAL MATRIX VIA INVERSE ITERATION
+C
+      IERR = LMSGFL
+      CALL EINVIT(NV,N,B(1,1),B(1,2),B(1,3),NVECT,ROOT,IND,
+     +            VECT,IERR,B(1,4),B(1,5),B(1,6),B(1,7),B(1,8))
+      IF (IERR .NE. 0) GO TO 840
+C
+C        FIND EIGENVECTORS OF SYMMETRIC MATRIX VIA BACK TRANSFORMATION
+C
+  400 CONTINUE
+      CALL ETRBK3(NV,N,LENA,A,NVECT,VECT)
+      RETURN
+C
+C        ERROR MESSAGE SECTION
+C
+  800 IF (LMSGFL .LT. 0) RETURN
+      IF (MASWRK) WRITE(LMSGFL,906)
+      GO TO 890
+C
+  810 IF (LMSGFL .LT. 0) RETURN
+      IF (MASWRK) WRITE(LMSGFL,901)
+      GO TO 890
+C
+  820 IF (LMSGFL .LT. 0) RETURN
+      IF (MASWRK) WRITE(LMSGFL,902) IERR
+      GO TO 890
+C
+  830 IF (LMSGFL .LT. 0) RETURN
+      IF (MASWRK) WRITE(LMSGFL,903)
+      GO TO 890
+C
+  840 CONTINUE
+      IF ((LMSGFL .GT. 0).AND.MASWRK) WRITE(LMSGFL,904) -IERR
+      GO TO 400
+C
+  850 IERR=-1
+      IF (LMSGFL .LT. 0) RETURN
+      IF (MASWRK) WRITE(LMSGFL,905)
+      GO TO 890
+C
+  890 CONTINUE
+      IF (MASWRK) WRITE(LMSGFL,900) N,NVECT,LENA,NV,IORDER,IERR
+      RETURN
+      END
+C*MODULE EIGEN   *DECK FREDA
+      SUBROUTINE FREDA(L,D,A,E)
+C
+      DOUBLE PRECISION A(*)
+      DOUBLE PRECISION D(L)
+      DOUBLE PRECISION E(L)
+      DOUBLE PRECISION F
+      DOUBLE PRECISION G
+C
+      JK = 1
+C
+C     .......... FORM REDUCED A ..........
+C
+      DO 280 J = 1, L
+         F = D(J)
+         G = E(J)
+C
+         DO 260 K = 1, J
+            A(JK) = A(JK) - F * E(K) - G * D(K)
+            JK = JK + 1
+  260    CONTINUE
+C
+  280 CONTINUE
+      RETURN
+      END
+C*MODULE EIGEN   *DECK GIVEIS
+      SUBROUTINE GIVEIS(N,NVECT,NV,A,B,INDB,ROOT,VECT,IERR)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION A(*),B(N,8),INDB(N),ROOT(N),VECT(NV,NVECT)
+C
+C     EISPACK-BASED SUBSTITUTE FOR QCPE ROUTINE GIVENS.
+C     FINDS ALL EIGENVALUES AND SOME EIGENVECTORS OF A REAL SYMMETRIC
+C     MATRIX.   AUTHOR.. C. MOLER AND D. SPANGLER, N.R.C.C., 4/1/79.
+C
+C     INPUT..
+C     N     = ORDER OF MATRIX .
+C     NVECT = NUMBER OF VECTORS DESIRED.  0 .LE. NVECT .LE. N .
+C     NV    = LEADING DIMENSION OF VECT .
+C     A     = INPUT MATRIX, COLUMNS OF THE UPPER TRIANGLE PACKED INTO
+C             LINEAR ARRAY OF DIMENSION N*(N+1)/2 .
+C     B     = SCRATCH ARRAY, 8*N ELEMENTS (NOTE THIS IS MORE THAN
+C             PREVIOUS VERSIONS OF GIVENS.)
+C    IND    = INDEX ARRAY OF N ELEMENTS
+C
+C     OUTPUT..
+C     A       DESTROYED .
+C     ROOT  = ALL EIGENVALUES, ROOT(1) .LE. ... .LE. ROOT(N) .
+C             (FOR OTHER ORDERINGS, SEE BELOW.)
+C     VECT  = EIGENVECTORS FOR ROOT(1),..., ROOT(NVECT) .
+C     IERR  = 0 IF NO ERROR DETECTED,
+C           = K IF ITERATION FOR K-TH EIGENVALUE FAILED,
+C           = -K IF ITERATION FOR K-TH EIGENVECTOR FAILED.
+C             (FAILURES SHOULD BE VERY RARE.  CONTACT MOLER.)
+C
+C     CALLS MODIFIED EISPACK ROUTINES TRED3B, IMTQLV, TINVTB, AND
+C     TRBK3B.  THE ROUTINES TRED3B, TINVTB, AND TRBK3B.
+C     THE ORIGINAL EISPACK ROUTINES TRED3, TINVIT, AND TRBAK3
+C     WERE MODIFIED BY THE INTRODUCTION OF TWO ROUTINES FROM THE
+C     BLAS LIBRARY - DDOT AND DAXPY.
+C
+C         IF TINVIT FAILS TO CONVERGE, TQL2 IS CALLED
+C
+C         SEE EISPACK USERS GUIDE, B. T. SMITH ET AL, SPRINGER-VERLAG
+C     LECTURE NOTES IN COMPUTER SCIENCE, VOL. 6, 2-ND EDITION, 1976 .
+C     NOTE THAT IMTQLV AND TINVTB HAVE INTERNAL MACHINE
+C     DEPENDENT CONSTANTS.
+C
+      DATA ONE, ZERO /1.0D+00, 0.0D+00/
+      CALL TRED3B(N,(N*N+N)/2,A,B(1,1),B(1,2),B(1,3))
+      CALL IMTQLV(N,B(1,1),B(1,2),B(1,3),ROOT,INDB,IERR,B(1,4))
+      IF (IERR .NE. 0) RETURN
+C
+C     TO REORDER ROOTS...
+C     K = N/2
+C     B(1,3) = 2.0D+00
+C     DO 50 I = 1, K
+C        J = N+1-I
+C        T = ROOT(I)
+C        ROOT(I) = ROOT(J)
+C        ROOT(J) = T
+C 50  CONTINUE
+C
+      IF (NVECT .LE. 0) RETURN
+      CALL TINVTB(NV,N,B(1,1),B(1,2),B(1,3),NVECT,ROOT,INDB,VECT,IERR,
+     +     B(1,4),B(1,5),B(1,6),B(1,7),B(1,8))
+      IF (IERR .EQ. 0) GO TO 160
+C
+C      IF INVERSE ITERATION GIVES AN ERROR IN DETERMINING THE
+C      EIGENVECTORS, TRY THE QL ALGORITHM IF ALL THE EIGENVECTORS
+C      ARE DESIRED.
+C
+      IF (NVECT .NE. N) RETURN
+      DO 120 I = 1, NVECT
+      DO 100 J = 1, N
+      VECT(I,J) = ZERO
+  100 CONTINUE
+      VECT(I,I) = ONE
+  120 CONTINUE
+      CALL TQL2 (NV,N,B(1,1),B(1,2),VECT,IERR)
+      DO 140 I = 1, NVECT
+      ROOT(I) = B(I,1)
+  140 CONTINUE
+      IF (IERR .NE. 0) RETURN
+  160 CALL TRBK3B(NV,N,(N*N+N)/2,A,NVECT,VECT)
+      RETURN
+      END
+C*MODULE EIGEN   *DECK GLDIAG
+      SUBROUTINE GLDIAG(LDVECT,NVECT,N,H,WRK,EIG,VECTOR,IERR,IWRK)
+C
+      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
+C
+      LOGICAL GOPARR,DSKWRK,MASWRK
+C
+      DIMENSION H(*),WRK(N,8),EIG(N),VECTOR(LDVECT,NVECT),IWRK(N)
+C
+      COMMON /IOFILE/ IR,IW,IP,IJK,IPK,IDAF,NAV,IODA(400)
+      COMMON /MACHSW/ KDIAG,ICORFL,IXDR
+      COMMON /PAR   / ME,MASTER,NPROC,IBTYP,IPTIM,GOPARR,DSKWRK,MASWRK
+C
+C     ----- GENERAL ROUTINE TO DIAGONALIZE A SYMMETRIC MATRIX -----
+C     IF KDIAG = 0, USE A ROUTINE FROM THE VECTOR LIBRARY,
+C                   IF AVAILABLE (SEE THE SUBROUTINE 'GLDIAG'
+C                   IN VECTOR.SRC), OR EVVRSP OTHERWISE
+C              = 1, USE EVVRSP
+C              = 2, USE GIVEIS
+C              = 3, USE JACOBI
+C
+C           N      = DIMENSION (ORDER) OF MATRIX TO BE SOLVED
+C           LDVECT = LEADING DIMENSION OF VECTOR
+C           NVECT  = NUMBER OF VECTORS DESIRED
+C           H      = MATRIX TO BE DIAGONALIZED
+C           WRK    = N*8 W.P. REAL WORDS OF SCRATCH SPACE
+C           EIG    = EIGENVECTORS (OUTPUT)
+C           VECTOR = EIGENVECTORS (OUTPUT)
+C           IERR   = ERROR FLAG (OUTPUT)
+C           IWRK   = N INTEGER WORDS OF SCRATCH SPACE
+C
+      IERR = 0
+C
+C         ----- USE STEVE ELBERT'S ROUTINE -----
+C
+      IF(KDIAG.LE.1  .OR.  KDIAG.GT.3) THEN
+         LENH = (N*N+N)/2
+         KORDER =0
+         CALL EVVRSP(IW,N,NVECT,LENH,LDVECT,H,WRK,IWRK,EIG,VECTOR
+     *              ,KORDER,IERR)
+      END IF
+C
+C         ----- USE MODIFIED EISPAK ROUTINE -----
+C
+      IF(KDIAG.EQ.2)
+     *   CALL GIVEIS(N,NVECT,LDVECT,H,WRK,IWRK,EIG,VECTOR,IERR)
+C
+C         ----- USE JACOBI ROTATION ROUTINE -----
+C
+      IF(KDIAG.EQ.3) THEN
+         IF(NVECT.EQ.N) THEN
+            CALL JACDG(H,VECTOR,EIG,IWRK,WRK,LDVECT,N)
+         ELSE
+            IF (MASWRK) WRITE(IW,9000) N,NVECT,LDVECT
+            CALL ABRT
+         END IF
+      END IF
+      RETURN
+C
+ 9000 FORMAT(1X,'IN -GLDIAG-, N,NVECT,LDVECT=',3I8/
+     *       1X,'THE JACOBI CODE CANNOT COPE WITH N.NE.NVECT!'/
+     *       1X,'SO THIS RUN DOES NOT PERMIT KDIAG=3.')
+      END
+C*MODULE EIGEN   *DECK IMTQLV
+      SUBROUTINE IMTQLV(N,D,E,E2,W,IND,IERR,RV1)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      INTEGER TAG
+      DOUBLE PRECISION MACHEP
+      DIMENSION D(N),E(N),E2(N),W(N),RV1(N),IND(N)
+C
+C     THIS ROUTINE IS A VARIANT OF  IMTQL1  WHICH IS A TRANSLATION OF
+C     ALGOL PROCEDURE IMTQL1, NUM. MATH. 12, 377-383(1968) BY MARTIN AND
+C     WILKINSON, AS MODIFIED IN NUM. MATH. 15, 450(1970) BY DUBRULLE.
+C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).
+C
+C     THIS ROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC TRIDIAGONAL
+C     MATRIX BY THE IMPLICIT QL METHOD AND ASSOCIATES WITH THEM
+C     THEIR CORRESPONDING SUBMATRIX INDICES.
+C
+C     ON INPUT-
+C
+C        N IS THE ORDER OF THE MATRIX,
+C
+C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX,
+C
+C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
+C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY,
+C
+C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
+C          E2(1) IS ARBITRARY.
+C
+C     ON OUTPUT-
+C
+C        D AND E ARE UNALTERED,
+C
+C        ELEMENTS OF E2, CORRESPONDING TO ELEMENTS OF E REGARDED
+C          AS NEGLIGIBLE, HAVE BEEN REPLACED BY ZERO CAUSING THE
+C          MATRIX TO SPLIT INTO A DIRECT SUM OF SUBMATRICES.
+C          E2(1) IS ALSO SET TO ZERO,
+C
+C        W CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
+C          ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
+C          ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE
+C          THE SMALLEST EIGENVALUES,
+C
+C        IND CONTAINS THE SUBMATRIX INDICES ASSOCIATED WITH THE
+C          CORRESPONDING EIGENVALUES IN W -- 1 FOR EIGENVALUES
+C          BELONGING TO THE FIRST SUBMATRIX FROM THE TOP,
+C          2 FOR THOSE BELONGING TO THE SECOND SUBMATRIX, ETC.,
+C
+C        IERR IS SET TO
+C          ZERO       FOR NORMAL RETURN,
+C          J          IF THE J-TH EIGENVALUE HAS NOT BEEN
+C                     DETERMINED AFTER 30 ITERATIONS,
+C
+C        RV1 IS A TEMPORARY STORAGE ARRAY.
+C
+C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
+C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
+C
+C     ------------------------------------------------------------------
+C
+C     ********** MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
+C                THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.
+C
+C                **********
+      MACHEP = 2.0D+00**(-50)
+C
+      IERR = 0
+      K = 0
+      TAG = 0
+C
+      DO 100 I = 1, N
+      W(I) = D(I)
+      IF (I .NE. 1) RV1(I-1) = E(I)
+  100 CONTINUE
+C
+      E2(1) = 0.0D+00
+      RV1(N) = 0.0D+00
+C
+      DO 360 L = 1, N
+      J = 0
+C     ********** LOOK FOR SMALL SUB-DIAGONAL ELEMENT **********
+  120 DO 140 M = L, N
+      IF (M .EQ. N) GO TO 160
+      IF (ABS(RV1(M)) .LE. MACHEP * (ABS(W(M)) + ABS(W(M+1)))) GO TO
+     +     160
+C     ********** GUARD AGAINST UNDERFLOWED ELEMENT OF E2 **********
+      IF (E2(M+1) .EQ. 0.0D+00) GO TO 180
+  140 CONTINUE
+C
+  160 IF (M .LE. K) GO TO 200
+      IF (M .NE. N) E2(M+1) = 0.0D+00
+  180 K = M
+      TAG = TAG + 1
+  200 P = W(L)
+      IF (M .EQ. L) GO TO 280
+      IF (J .EQ. 30) GO TO 380
+      J = J + 1
+C     ********** FORM SHIFT **********
+      G = (W(L+1) - P) / (2.0D+00 * RV1(L))
+      R = SQRT(G*G+1.0D+00)
+      G = W(M) - P + RV1(L) / (G + SIGN(R,G))
+      S = 1.0D+00
+      C = 1.0D+00
+      P = 0.0D+00
+      MML = M - L
+C     ********** FOR I=M-1 STEP -1 UNTIL L DO -- **********
+      DO 260 II = 1, MML
+      I = M - II
+      F = S * RV1(I)
+      B = C * RV1(I)
+      IF (ABS(F) .LT. ABS(G)) GO TO 220
+      C = G / F
+      R = SQRT(C*C+1.0D+00)
+      RV1(I+1) = F * R
+      S = 1.0D+00 / R
+      C = C * S
+      GO TO 240
+  220 S = F / G
+      R = SQRT(S*S+1.0D+00)
+      RV1(I+1) = G * R
+      C = 1.0D+00 / R
+      S = S * C
+  240 G = W(I+1) - P
+      R = (W(I) - G) * S + 2.0D+00 * C * B
+      P = S * R
+      W(I+1) = G + P
+      G = C * R - B
+  260 CONTINUE
+C
+      W(L) = W(L) - P
+      RV1(L) = G
+      RV1(M) = 0.0D+00
+      GO TO 120
+C     ********** ORDER EIGENVALUES **********
+  280 IF (L .EQ. 1) GO TO 320
+C     ********** FOR I=L STEP -1 UNTIL 2 DO -- **********
+      DO 300 II = 2, L
+      I = L + 2 - II
+      IF (P .GE. W(I-1)) GO TO 340
+      W(I) = W(I-1)
+      IND(I) = IND(I-1)
+  300 CONTINUE
+C
+  320 I = 1
+  340 W(I) = P
+      IND(I) = TAG
+  360 CONTINUE
+C
+      GO TO 400
+C     ********** SET ERROR -- NO CONVERGENCE TO AN
+C                EIGENVALUE AFTER 30 ITERATIONS **********
+  380 IERR = L
+  400 RETURN
+C     ********** LAST CARD OF IMTQLV **********
+      END
+C*MODULE EIGEN   *DECK JACDG
+      SUBROUTINE JACDG(A,VEC,EIG,JBIG,BIG,LDVEC,N)
+C
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+C
+      DIMENSION A(*),VEC(LDVEC,N),EIG(N),JBIG(N),BIG(N)
+C
+      PARAMETER (ONE=1.0D+00)
+C
+C     ----- JACOBI DIAGONALIZATION OF SYMMETRIC MATRIX -----
+C     SYMMETRIC MATRIX -A- OF DIMENSION -N- IS DESTROYED ON EXIT.
+C     ALL EIGENVECTORS ARE FOUND, SO -VEC- MUST BE SQUARE,
+C     UNLESS SOMEONE TAKES THE TROUBLE TO LOOK AT -NMAX- BELOW.
+C     -BIG- AND -JBIG- ARE SCRATCH WORK ARRAYS.
+C
+      CALL VCLR(VEC,1,LDVEC*N)
+      DO 20 I = 1,N
+        VEC(I,I) = ONE
+   20 CONTINUE
+C
+      NB1 = N
+      NB2 = (NB1*NB1+NB1)/2
+      NMIN = 1
+      NMAX = NB1
+C
+      CALL JACDIA(A,VEC,NB1,NB2,LDVEC,NMIN,NMAX,BIG,JBIG)
+C
+      DO 30 I=1,N
+        EIG(I) = A((I*I+I)/2)
+   30 CONTINUE
+C
+      CALL JACORD(VEC,EIG,NB1,LDVEC)
+      RETURN
+      END
+C*MODULE EIGEN   *DECK JACDIA
+      SUBROUTINE JACDIA(F,VEC,NB1,NB2,LDVEC,NMIN,NMAX,BIG,JBIG)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      LOGICAL GOPARR,DSKWRK,MASWRK
+      DIMENSION F(NB2),VEC(LDVEC,NB1),BIG(NB1),JBIG(NB1)
+C
+      COMMON /PAR   / ME,MASTER,NPROC,IBTYP,IPTIM,GOPARR,DSKWRK,MASWRK
+C
+      PARAMETER (ROOT2=0.707106781186548D+00 )
+      PARAMETER (ZERO=0.0D+00, ONE=1.0D+00, D1050=1.05D+00,
+     *           D1500=1.5D+00, D3875=3.875D+00,
+     *           D0500=0.5D+00, D1375=1.375D+00, D0250=0.25D+00 )
+      PARAMETER (C2=1.0D-12, C3=4.0D-16,
+     *           C4=2.0D-16, C5=8.0D-09, C6=3.0D-06 )
+C
+C      F IS THE MATRIX TO BE DIAGONALIZED, F IS STORED TRIANGULAR
+C      VEC IS THE ARRAY OF EIGENVECTORS, DIMENSION NB1*NB1
+C      BIG AND JBIG ARE TEMPORARY SCRATCH AREAS OF DIMENSION NB1
+C      THE ROTATIONS AMONG THE FIRST NMIN BASIS FUNCTIONS ARE NOT
+C      ACCOUNTED FOR.
+C      THE ROTATIONS AMONG THE LAST NB1-NMAX BASIS FUNCTIONS ARE NOT
+C      ACCOUNTED FOR.
+C
+      IEAA=0
+      IEAB=0
+      TT=ZERO
+      EPS = 64.0D+00*EPSLON(ONE)
+C
+C      LOOP OVER COLUMNS (K) OF TRIANGULAR MATRIX TO DETERMINE
+C      LARGEST OFF-DIAGONAL ELEMENTS IN ROW(I).
+C
+      DO 20 I=1,NB1
+         BIG(I)=ZERO
+         JBIG(I)=0
+         IF(I.LT.NMIN  .OR.  I.EQ.1) GO TO 20
+         II = (I*I-I)/2
+         J=MIN(I-1,NMAX)
+         DO 10 K=1,J
+            IF(ABS(BIG(I)).GE.ABS(F(II+K))) GO TO 10
+            BIG(I)=F(II+K)
+            JBIG(I)=K
+   10    CONTINUE
+   20 CONTINUE
+C
+C     ----- 2X2 JACOBI ITERATIONS BEGIN HERE -----
+C
+      MAXIT=MAX(NB2*20,500)
+      ITER=0
+   30 CONTINUE
+      ITER=ITER+1
+C
+C      FIND SMALLEST DIAGONAL ELEMENT
+C
+      SD=D1050
+      JJ=0
+      DO 40 J=1,NB1
+         JJ=JJ+J
+         SD= MIN(SD,ABS(F(JJ)))
+   40 CONTINUE
+      TEST = MAX(EPS, C2*MAX(SD,C6))
+C
+C      FIND LARGEST OFF-DIAGONAL ELEMENT
+C
+      T=ZERO
+      I1=MAX(2,NMIN)
+      IB = I1
+      DO 50 I=I1,NB1
+         IF(T.GE.ABS(BIG(I))) GO TO 50
+         T= ABS(BIG(I))
+         IB=I
+   50 CONTINUE
+C
+C      TEST FOR CONVERGENCE, THEN DETERMINE ROTATION.
+C
+      IF(T.LT.TEST) RETURN
+C                   ******
+C
+      IF(ITER.GT.MAXIT) THEN
+         IF (MASWRK) THEN
+            WRITE(6,*) 'JACOBI DIAGONALIZATION FAILS, DIMENSION=',NB1
+            WRITE(6,9020) ITER,T,TEST,SD
+         ENDIF
+         CALL ABRT
+         STOP
+      END IF
+C
+      IA=JBIG(IB)
+      IAA=IA*(IA-1)/2
+      IBB=IB*(IB-1)/2
+      DIF=F(IAA+IA)-F(IBB+IB)
+      IF(ABS(DIF).GT.C3*T) GO TO 70
+      SX=ROOT2
+      CX=ROOT2
+      GO TO 110
+   70 T2X2=BIG(IB)/DIF
+      T2X25=T2X2*T2X2
+      IF(T2X25 . GT . C4) GO TO 80
+      CX=ONE
+      SX=T2X2
+      GO TO 110
+   80 IF(T2X25 . GT . C5) GO TO 90
+      SX=T2X2*(ONE-D1500*T2X25)
+      CX=ONE-D0500*T2X25
+      GO TO 110
+   90 IF(T2X25 . GT . C6) GO TO 100
+      CX=ONE+T2X25*(T2X25*D1375 - D0500)
+      SX= T2X2*(ONE + T2X25*(T2X25*D3875 - D1500))
+      GO TO 110
+  100 T=D0250  / SQRT(D0250   + T2X25)
+      CX= SQRT(D0500   + T)
+      SX= SIGN( SQRT(D0500   - T),T2X2)
+  110 IEAR=IAA+1
+      IEBR=IBB+1
+C
+      DO 230 IR=1,NB1
+         T=F(IEAR)*SX
+         F(IEAR)=F(IEAR)*CX+F(IEBR)*SX
+         F(IEBR)=T-F(IEBR)*CX
+         IF(IR-IA) 220,120,130
+  120    TT=F(IEBR)
+         IEAA=IEAR
+         IEAB=IEBR
+         F(IEBR)=BIG(IB)
+         IEAR=IEAR+IR-1
+         IF(JBIG(IR)) 200,220,200
+  130    T=F(IEAR)
+         IT=IA
+         IEAR=IEAR+IR-1
+         IF(IR-IB) 180,150,160
+  150    F(IEAA)=F(IEAA)*CX+F(IEAB)*SX
+         F(IEAB)=TT*CX+F(IEBR)*SX
+         F(IEBR)=TT*SX-F(IEBR)*CX
+         IEBR=IEBR+IR-1
+         GO TO 200
+  160    IF(  ABS(T) . GE .  ABS(F(IEBR))) GO TO 170
+         IF(IB.GT.NMAX) GO TO 170
+         T=F(IEBR)
+         IT=IB
+  170    IEBR=IEBR+IR-1
+  180    IF(  ABS(T) . LT .  ABS(BIG(IR))) GO TO 190
+         BIG(IR) = T
+         JBIG(IR) = IT
+         GO TO 220
+  190    IF(IA . NE . JBIG(IR) . AND . IB . NE . JBIG(IR))  GO TO 220
+  200    KQ=IEAR-IR-IA+1
+         BIG(IR)=ZERO
+         IR1=MIN(IR-1,NMAX)
+         DO 210 I=1,IR1
+            K=KQ+I
+            IF(ABS(BIG(IR)) . GE . ABS(F(K)))  GO TO 210
+            BIG(IR) = F(K)
+            JBIG(IR)=I
+  210    CONTINUE
+  220    IEAR=IEAR+1
+  230    IEBR=IEBR+1
+C
+      DO 240 I=1,NB1
+         T1=VEC(I,IA)*CX + VEC(I,IB)*SX
+         T2=VEC(I,IA)*SX - VEC(I,IB)*CX
+         VEC(I,IA)=T1
+         VEC(I,IB)=T2
+  240 CONTINUE
+      GO TO 30
+C
+ 9020 FORMAT(1X,'ITER=',I6,' T,TEST,SD=',1P,3E20.10)
+      END
+C*MODULE EIGEN   *DECK JACORD
+      SUBROUTINE JACORD(VEC,EIG,N,LDVEC)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION VEC(LDVEC,N),EIG(N)
+C
+C     ---- SORT EIGENDATA INTO ASCENDING ORDER -----
+C
+      DO 290 I = 1, N
+         JJ = I
+         DO 270 J = I, N
+            IF (EIG(J) .LT. EIG(JJ)) JJ = J
+  270    CONTINUE
+         IF (JJ .EQ. I) GO TO 290
+         T = EIG(JJ)
+         EIG(JJ) = EIG(I)
+         EIG(I) = T
+         DO 280 J = 1, N
+            T = VEC(J,JJ)
+            VEC(J,JJ) = VEC(J,I)
+            VEC(J,I) = T
+  280    CONTINUE
+  290 CONTINUE
+      RETURN
+      END
+C*MODULE EIGEN   *DECK TINVTB
+      SUBROUTINE TINVTB(NM,N,D,E,E2,M,W,IND,Z,
+     *                  IERR,RV1,RV2,RV3,RV4,RV6)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION D(N),E(N),E2(N),W(M),Z(NM,M),
+     *          RV1(N),RV2(N),RV3(N),RV4(N),RV6(N),IND(M)
+      DOUBLE PRECISION MACHEP,NORM
+      INTEGER P,Q,R,S,TAG,GROUP
+C     ------------------------------------------------------------------
+C
+C     THIS ROUTINE IS A TRANSLATION OF THE INVERSE ITERATION TECH-
+C     NIQUE IN THE ALGOL PROCEDURE TRISTURM BY PETERS AND WILKINSON.
+C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
+C
+C     THIS ROUTINE FINDS THOSE EIGENVECTORS OF A TRIDIAGONAL
+C     SYMMETRIC MATRIX CORRESPONDING TO SPECIFIED EIGENVALUES,
+C     USING INVERSE ITERATION.
+C
+C     ON INPUT-
+C
+C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
+C          ARRAY PARAMETERS AS DECLARED IN THE CALLING ROUTINE
+C          DIMENSION STATEMENT,
+C
+C        N IS THE ORDER OF THE MATRIX,
+C
+C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX,
+C
+C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
+C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY,
+C
+C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E,
+C          WITH ZEROS CORRESPONDING TO NEGLIGIBLE ELEMENTS OF E.
+C          E(I) IS CONSIDERED NEGLIGIBLE IF IT IS NOT LARGER THAN
+C          THE PRODUCT OF THE RELATIVE MACHINE PRECISION AND THE SUM
+C          OF THE MAGNITUDES OF D(I) AND D(I-1).  E2(1) MUST CONTAIN
+C          0.0 IF THE EIGENVALUES ARE IN ASCENDING ORDER, OR 2.0
+C          IF THE EIGENVALUES ARE IN DESCENDING ORDER.  IF  BISECT,
+C          TRIDIB, OR  IMTQLV  HAS BEEN USED TO FIND THE EIGENVALUES,
+C          THEIR OUTPUT E2 ARRAY IS EXACTLY WHAT IS EXPECTED HERE,
+C
+C        M IS THE NUMBER OF SPECIFIED EIGENVALUES,
+C
+C        W CONTAINS THE M EIGENVALUES IN ASCENDING OR DESCENDING ORDER,
+C
+C        IND CONTAINS IN ITS FIRST M POSITIONS THE SUBMATRIX INDICES
+C          ASSOCIATED WITH THE CORRESPONDING EIGENVALUES IN W --
+C          1 FOR EIGENVALUES BELONGING TO THE FIRST SUBMATRIX FROM
+C          THE TOP, 2 FOR THOSE BELONGING TO THE SECOND SUBMATRIX, ETC.
+C
+C     ON OUTPUT-
+C
+C        ALL INPUT ARRAYS ARE UNALTERED,
+C
+C        Z CONTAINS THE ASSOCIATED SET OF ORTHONORMAL EIGENVECTORS.
+C          ANY VECTOR WHICH FAILS TO CONVERGE IS SET TO ZERO,
+C
+C        IERR IS SET TO
+C          ZERO       FOR NORMAL RETURN,
+C          -R         IF THE EIGENVECTOR CORRESPONDING TO THE R-TH
+C                     EIGENVALUE FAILS TO CONVERGE IN 5 ITERATIONS,
+C
+C        RV1, RV2, RV3, RV4, AND RV6 ARE TEMPORARY STORAGE ARRAYS.
+C
+C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
+C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
+C
+C     ------------------------------------------------------------------
+C
+C     ********** MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
+C                THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.
+C
+C                **********
+      MACHEP = 2.0D+00**(-50)
+C
+      IERR = 0
+      IF (M .EQ. 0) GO TO 680
+      TAG = 0
+      ORDER = 1.0D+00 - E2(1)
+      XU = 0.0D+00
+      UK = 0.0D+00
+      X0 = 0.0D+00
+      U  = 0.0D+00
+      EPS2 = 0.0D+00
+      EPS3 = 0.0D+00
+      EPS4 = 0.0D+00
+      GROUP = 0
+      Q = 0
+C     ********** ESTABLISH AND PROCESS NEXT SUBMATRIX **********
+  100 P = Q + 1
+      IP = P + 1
+C
+      DO 120 Q = P, N
+      IF (Q .EQ. N) GO TO 140
+      IF (E2(Q+1) .EQ. 0.0D+00) GO TO 140
+  120 CONTINUE
+C     ********** FIND VECTORS BY INVERSE ITERATION **********
+  140 TAG = TAG + 1
+      IQMP = Q - P + 1
+      S = 0
+C
+      DO 660 R = 1, M
+      IF (IND(R) .NE. TAG) GO TO 660
+      ITS = 1
+      X1 = W(R)
+      IF (S .NE. 0) GO TO 220
+C     ********** CHECK FOR ISOLATED ROOT **********
+      XU = 1.0D+00
+      IF (P .NE. Q) GO TO 160
+      RV6(P) = 1.0D+00
+      GO TO 600
+  160 NORM = ABS(D(P))
+C
+      DO 180 I = IP, Q
+  180 NORM = NORM + ABS(D(I)) + ABS(E(I))
+C     ********** EPS2 IS THE CRITERION FOR GROUPING,
+C                EPS3 REPLACES ZERO PIVOTS AND EQUAL
+C                ROOTS ARE MODIFIED BY EPS3,
+C                EPS4 IS TAKEN VERY SMALL TO AVOID OVERFLOW **********
+      EPS2 = 1.0D-03 * NORM
+      EPS3 = MACHEP * NORM
+      UK = IQMP
+      EPS4 = UK * EPS3
+      UK = EPS4 / SQRT(UK)
+      S = P
+  200 GROUP = 0
+      GO TO 240
+C     ********** LOOK FOR CLOSE OR COINCIDENT ROOTS **********
+  220 IF (ABS(X1-X0) .GE. EPS2) GO TO 200
+      GROUP = GROUP + 1
+      IF (ORDER * (X1 - X0) .LE. 0.0D+00) X1 = X0 + ORDER * EPS3
+C     ********** ELIMINATION WITH INTERCHANGES AND
+C                INITIALIZATION OF VECTOR **********
+  240 V = 0.0D+00
+C
+      DO 300 I = P, Q
+      RV6(I) = UK
+      IF (I .EQ. P) GO TO 280
+      IF (ABS(E(I)) .LT. ABS(U)) GO TO 260
+C     ********** WARNING -- A DIVIDE CHECK MAY OCCUR HERE IF
+C                E2 ARRAY HAS NOT BEEN SPECIFIED CORRECTLY **********
+      XU = U / E(I)
+      RV4(I) = XU
+      RV1(I-1) = E(I)
+      RV2(I-1) = D(I) - X1
+      RV3(I-1) = 0.0D+00
+      IF (I .NE. Q) RV3(I-1) = E(I+1)
+      U = V - XU * RV2(I-1)
+      V = -XU * RV3(I-1)
+      GO TO 300
+  260 XU = E(I) / U
+      RV4(I) = XU
+      RV1(I-1) = U
+      RV2(I-1) = V
+      RV3(I-1) = 0.0D+00
+  280 U = D(I) - X1 - XU * V
+      IF (I .NE. Q) V = E(I+1)
+  300 CONTINUE
+C
+      IF (U .EQ. 0.0D+00) U = EPS3
+      RV1(Q) = U
+      RV2(Q) = 0.0D+00
+      RV3(Q) = 0.0D+00
+C     ********** BACK SUBSTITUTION
+C                FOR I=Q STEP -1 UNTIL P DO -- **********
+  320 DO 340 II = P, Q
+      I = P + Q - II
+      RV6(I) = (RV6(I) - U * RV2(I) - V * RV3(I)) / RV1(I)
+      V = U
+      U = RV6(I)
+  340 CONTINUE
+C     ********** ORTHOGONALIZE WITH RESPECT TO PREVIOUS
+C                MEMBERS OF GROUP **********
+      IF (GROUP .EQ. 0) GO TO 400
+      J = R
+C
+      DO 380 JJ = 1, GROUP
+  360 J = J - 1
+      IF (IND(J) .NE. TAG) GO TO 360
+      XU = DDOT(IQMP,RV6(P),1,Z(P,J),1)
+C
+      CALL DAXPY(IQMP,-XU,Z(P,J),1,RV6(P),1)
+C
+  380 CONTINUE
+C
+  400 NORM = 0.0D+00
+C
+      DO 420 I = P, Q
+  420 NORM = NORM + ABS(RV6(I))
+C
+      IF (NORM .GE. 1.0D+00) GO TO 560
+C     ********** FORWARD SUBSTITUTION **********
+      IF (ITS .EQ. 5) GO TO 540
+      IF (NORM .NE. 0.0D+00) GO TO 440
+      RV6(S) = EPS4
+      S = S + 1
+      IF (S .GT. Q) S = P
+      GO TO 480
+  440 XU = EPS4 / NORM
+C
+      DO 460 I = P, Q
+  460 RV6(I) = RV6(I) * XU
+C     ********** ELIMINATION OPERATIONS ON NEXT VECTOR
+C                ITERATE **********
+  480 DO 520 I = IP, Q
+      U = RV6(I)
+C     ********** IF RV1(I-1) .EQ. E(I), A ROW INTERCHANGE
+C                WAS PERFORMED EARLIER IN THE
+C                TRIANGULARIZATION PROCESS **********
+      IF (RV1(I-1) .NE. E(I)) GO TO 500
+      U = RV6(I-1)
+      RV6(I-1) = RV6(I)
+  500 RV6(I) = U - RV4(I) * RV6(I-1)
+  520 CONTINUE
+C
+      ITS = ITS + 1
+      GO TO 320
+C     ********** SET ERROR -- NON-CONVERGED EIGENVECTOR **********
+  540 IERR = -R
+      XU = 0.0D+00
+      GO TO 600
+C     ********** NORMALIZE SO THAT SUM OF SQUARES IS
+C                1 AND EXPAND TO FULL ORDER **********
+  560 U = 0.0D+00
+C
+      DO 580 I = P, Q
+      RV6(I) = RV6(I) / NORM
+  580 U = U + RV6(I)**2
+C
+      XU = 1.0D+00 / SQRT(U)
+C
+  600 DO 620 I = 1, N
+  620 Z(I,R) = 0.0D+00
+C
+      DO 640 I = P, Q
+  640 Z(I,R) = RV6(I) * XU
+C
+      X0 = X1
+  660 CONTINUE
+C
+      IF (Q .LT. N) GO TO 100
+  680 RETURN
+C     ********** LAST CARD OF TINVIT **********
+      END
+C*MODULE EIGEN   *DECK TQL2
+C
+C     ------------------------------------------------------------------
+C
+      SUBROUTINE TQL2(NM,N,D,E,Z,IERR)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DOUBLE PRECISION MACHEP
+      DIMENSION D(N),E(N),Z(NM,N)
+C
+C     THIS ROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQL2,
+C     NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND
+C     WILKINSON.
+C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).
+C
+C     THIS ROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
+C     OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE QL METHOD.
+C     THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO
+C     BE FOUND IF  TRED2  HAS BEEN USED TO REDUCE THIS
+C     FULL MATRIX TO TRIDIAGONAL FORM.
+C
+C     ON INPUT-
+C
+C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
+C          ARRAY PARAMETERS AS DECLARED IN THE CALLING ROUTINE
+C          DIMENSION STATEMENT,
+C
+C        N IS THE ORDER OF THE MATRIX,
+C
+C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX,
+C
+C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
+C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY,
+C
+C        Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
+C          REDUCTION BY  TRED2, IF PERFORMED.  IF THE EIGENVECTORS
+C          OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN
+C          THE IDENTITY MATRIX.
+C
+C      ON OUTPUT-
+C
+C        D CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
+C          ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT
+C          UNORDERED FOR INDICES 1,2,...,IERR-1,
+C
+C        E HAS BEEN DESTROYED,
+C
+C        Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC
+C          TRIDIAGONAL (OR FULL) MATRIX.  IF AN ERROR EXIT IS MADE,
+C          Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED
+C          EIGENVALUES,
+C
+C        IERR IS SET TO
+C          ZERO       FOR NORMAL RETURN,
+C          J          IF THE J-TH EIGENVALUE HAS NOT BEEN
+C                     DETERMINED AFTER 30 ITERATIONS.
+C
+C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
+C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
+C
+C     ------------------------------------------------------------------
+C
+C     ********** MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
+C                THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.
+C
+C                **********
+      MACHEP = 2.0D+00**(-50)
+C
+      IERR = 0
+      IF (N .EQ. 1) GO TO 400
+C
+      DO 100 I = 2, N
+  100 E(I-1) = E(I)
+C
+      F = 0.0D+00
+      B = 0.0D+00
+      E(N) = 0.0D+00
+C
+      DO 300 L = 1, N
+      J = 0
+      H = MACHEP * (ABS(D(L)) + ABS(E(L)))
+      IF (B .LT. H) B = H
+C     ********** LOOK FOR SMALL SUB-DIAGONAL ELEMENT **********
+      DO 120 M = L, N
+      IF (ABS(E(M)) .LE. B) GO TO 140
+C     ********** E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
+C                THROUGH THE BOTTOM OF THE LOOP **********
+  120 CONTINUE
+C
+  140 IF (M .EQ. L) GO TO 280
+  160 IF (J .EQ. 30) GO TO 380
+      J = J + 1
+C     ********** FORM SHIFT **********
+      L1 = L + 1
+      G = D(L)
+      P = (D(L1) - G) / (2.0D+00 * E(L))
+      R = SQRT(P*P+1.0D+00)
+      D(L) = E(L) / (P + SIGN(R,P))
+      H = G - D(L)
+C
+      DO 180 I = L1, N
+  180 D(I) = D(I) - H
+C
+      F = F + H
+C     ********** QL TRANSFORMATION **********
+      P = D(M)
+      C = 1.0D+00
+      S = 0.0D+00
+      MML = M - L
+C     ********** FOR I=M-1 STEP -1 UNTIL L DO -- **********
+      DO 260 II = 1, MML
+      I = M - II
+      G = C * E(I)
+      H = C * P
+      IF (ABS(P) .LT. ABS(E(I))) GO TO 200
+      C = E(I) / P
+      R = SQRT(C*C+1.0D+00)
+      E(I+1) = S * P * R
+      S = C / R
+      C = 1.0D+00 / R
+      GO TO 220
+  200 C = P / E(I)
+      R = SQRT(C*C+1.0D+00)
+      E(I+1) = S * E(I) * R
+      S = 1.0D+00 / R
+      C = C * S
+  220 P = C * D(I) - S * G
+      D(I+1) = H + S * (C * G + S * D(I))
+C     ********** FORM VECTOR **********
+      CALL DROT(N,Z(1,I+1),1,Z(1,I),1,C,S)
+C
+  260 CONTINUE
+C
+      E(L) = S * P
+      D(L) = C * P
+      IF (ABS(E(L)) .GT. B) GO TO 160
+  280 D(L) = D(L) + F
+  300 CONTINUE
+C     ********** ORDER EIGENVALUES AND EIGENVECTORS **********
+      DO 360 II = 2, N
+      I = II - 1
+      K = I
+      P = D(I)
+C
+      DO 320 J = II, N
+      IF (D(J) .GE. P) GO TO 320
+      K = J
+      P = D(J)
+  320 CONTINUE
+C
+      IF (K .EQ. I) GO TO 360
+      D(K) = D(I)
+      D(I) = P
+C
+      CALL DSWAP(N,Z(1,I),1,Z(1,K),1)
+C
+  360 CONTINUE
+C
+      GO TO 400
+C     ********** SET ERROR -- NO CONVERGENCE TO AN
+C                EIGENVALUE AFTER 30 ITERATIONS **********
+  380 IERR = L
+  400 RETURN
+C     ********** LAST CARD OF TQL2 **********
+      END
+C*MODULE EIGEN   *DECK TRBK3B
+C
+C     ------------------------------------------------------------------
+C
+      SUBROUTINE TRBK3B(NM,N,NV,A,M,Z)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION A(NV),Z(NM,M)
+C
+C     THIS ROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRBAK3,
+C     NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
+C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
+C
+C     THIS ROUTINE FORMS THE EIGENVECTORS OF A REAL SYMMETRIC
+C     MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING
+C     SYMMETRIC TRIDIAGONAL MATRIX DETERMINED BY  TRED3B.
+C
+C     ON INPUT-
+C
+C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
+C          ARRAY PARAMETERS AS DECLARED IN THE CALLING ROUTINE
+C          DIMENSION STATEMENT,
+C
+C        N IS THE ORDER OF THE MATRIX,
+C
+C        NV MUST BE SET TO THE DIMENSION OF THE ARRAY PARAMETER A
+C          AS DECLARED IN THE CALLING ROUTINE DIMENSION STATEMENT,
+C
+C        A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANSFORMATIONS
+C          USED IN THE REDUCTION BY  TRED3B IN ITS FIRST
+C          N*(N+1)/2 POSITIONS,
+C
+C        M IS THE NUMBER OF EIGENVECTORS TO BE BACK TRANSFORMED,
+C
+C        Z CONTAINS THE EIGENVECTORS TO BE BACK TRANSFORMED
+C          IN ITS FIRST M COLUMNS.
+C
+C     ON OUTPUT-
+C
+C        Z CONTAINS THE TRANSFORMED EIGENVECTORS
+C          IN ITS FIRST M COLUMNS.
+C
+C     NOTE THAT TRBAK3 PRESERVES VECTOR EUCLIDEAN NORMS.
+C
+C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
+C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
+C
+C     ------------------------------------------------------------------
+C
+      IF (M .EQ. 0) GO TO 140
+      IF (N .EQ. 1) GO TO 140
+C
+      DO 120 I = 2, N
+      L = I - 1
+      IZ = (I * L) / 2
+      IK = IZ + I
+      H = A(IK)
+      IF (H .EQ. 0.0D+00) GO TO 120
+C
+      DO 100 J = 1, M
+      S = -DDOT(L,A(IZ+1),1,Z(1,J),1)
+C
+C     ********** DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW **********
+      S = (S / H) / H
+C
+      CALL DAXPY(L,S,A(IZ+1),1,Z(1,J),1)
+C
+  100 CONTINUE
+C
+  120 CONTINUE
+C
+  140 RETURN
+C     ********** LAST CARD OF TRBAK3 **********
+      END
+C*MODULE EIGEN   *DECK TRED3B
+C
+C     ------------------------------------------------------------------
+C
+      SUBROUTINE TRED3B(N,NV,A,D,E,E2)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION A(NV),D(N),E(N),E2(N)
+C
+C     THIS ROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED3,
+C     NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
+C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
+C
+C     THIS ROUTINE REDUCES A REAL SYMMETRIC MATRIX, STORED AS
+C     A ONE-DIMENSIONAL ARRAY, TO A SYMMETRIC TRIDIAGONAL MATRIX
+C     USING ORTHOGONAL SIMILARITY TRANSFORMATIONS.
+C
+C     ON INPUT-
+C
+C        N IS THE ORDER OF THE MATRIX,
+C
+C        NV MUST BE SET TO THE DIMENSION OF THE ARRAY PARAMETER A
+C          AS DECLARED IN THE CALLING ROUTINE DIMENSION STATEMENT,
+C
+C        A CONTAINS THE LOWER TRIANGLE OF THE REAL SYMMETRIC
+C          INPUT MATRIX, STORED ROW-WISE AS A ONE-DIMENSIONAL
+C          ARRAY, IN ITS FIRST N*(N+1)/2 POSITIONS.
+C
+C     ON OUTPUT-
+C
+C        A CONTAINS INFORMATION ABOUT THE ORTHOGONAL
+C          TRANSFORMATIONS USED IN THE REDUCTION,
+C
+C        D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX,
+C
+C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
+C          MATRIX IN ITS LAST N-1 POSITIONS.  E(1) IS SET TO ZERO,
+C
+C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
+C          E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.
+C
+C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
+C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
+C
+C     ------------------------------------------------------------------
+C
+C     ********** FOR I=N STEP -1 UNTIL 1 DO -- **********
+      DO 300 II = 1, N
+      I = N + 1 - II
+      L = I - 1
+      IZ = (I * L) / 2
+      H = 0.0D+00
+      SCALE = 0.0D+00
+      IF (L .LT. 1) GO TO 120
+C     ********** SCALE ROW (ALGOL TOL THEN NOT NEEDED) **********
+      DO 100 K = 1, L
+      IZ = IZ + 1
+      D(K) = A(IZ)
+      SCALE = SCALE + ABS(D(K))
+  100 CONTINUE
+C
+      IF (SCALE .NE. 0.0D+00) GO TO 140
+  120 E(I) = 0.0D+00
+      E2(I) = 0.0D+00
+      GO TO 280
+C
+  140 DO 160 K = 1, L
+      D(K) = D(K) / SCALE
+      H = H + D(K) * D(K)
+  160 CONTINUE
+C
+      E2(I) = SCALE * SCALE * H
+      F = D(L)
+      G = -SIGN(SQRT(H),F)
+      E(I) = SCALE * G
+      H = H - F * G
+      D(L) = F - G
+      A(IZ) = SCALE * D(L)
+      IF (L .EQ. 1) GO TO 280
+      F = 0.0D+00
+C
+      JK = 1
+      DO 220 J = 1, L
+      JM1 = J - 1
+      DT = D(J)
+      G = 0.0D+00
+C     ********** FORM ELEMENT OF A*U **********
+      IF (JM1 .EQ. 0) GO TO 200
+      DO 180 K = 1, JM1
+      E(K) = E(K) + DT * A(JK)
+      G = G + D(K) * A(JK)
+      JK = JK + 1
+  180 CONTINUE
+  200 E(J) = G + A(JK) * DT
+      JK = JK + 1
+C     ********** FORM ELEMENT OF P **********
+  220 CONTINUE
+      F = 0.0D+00
+      DO 240 J = 1, L
+      E(J) = E(J) / H
+      F = F + E(J) * D(J)
+  240 CONTINUE
+C
+      HH = F / (H + H)
+      JK = 0
+C     ********** FORM REDUCED A **********
+      DO 260 J = 1, L
+      F = D(J)
+      G = E(J) - HH * F
+      E(J) = G
+C
+      DO 260 K = 1, J
+      JK = JK + 1
+      A(JK) = A(JK) - F * E(K) - G * D(K)
+  260 CONTINUE
+C
+  280 D(I) = A(IZ+1)
+      A(IZ+1) = SCALE * SQRT(H)
+  300 CONTINUE
+C
+      RETURN
+C     ********** LAST CARD OF TRED3 **********
+      END
diff --git a/source/unres/src_MD_DFA/elecont.f b/source/unres/src_MD_DFA/elecont.f
new file mode 100644 (file)
index 0000000..e9ed067
--- /dev/null
@@ -0,0 +1,509 @@
+      subroutine elecont(lprint,ncont,icont)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.LOCAL'
+      include 'COMMON.FFIELD'
+      include 'COMMON.NAMES'
+      logical lprint
+      double precision elpp_6(2,2),elpp_3(2,2),ael6_(2,2),ael3_(2,2)
+      double precision app_(2,2),bpp_(2,2),rpp_(2,2)
+      integer ncont,icont(2,maxcont)
+      double precision econt(maxcont)
+*
+* Load the constants of peptide bond - peptide bond interactions.
+* Type 1 - ordinary peptide bond, type 2 - alkylated peptide bond (e.g.
+* proline) - determined by averaging ECEPP energy.      
+*
+* as of 7/06/91.
+*
+c      data epp    / 0.3045d0, 0.3649d0, 0.3649d0, 0.5743d0/
+      data rpp_    / 4.5088d0, 4.5395d0, 4.5395d0, 4.4846d0/
+      data elpp_6  /-0.2379d0,-0.2056d0,-0.2056d0,-0.0610d0/
+      data elpp_3  / 0.0503d0, 0.0000d0, 0.0000d0, 0.0692d0/
+      data elcutoff /-0.3d0/,elecutoff_14 /-0.5d0/
+      if (lprint) write (iout,'(a)') 
+     &  "Constants of electrostatic interaction energy expression."
+      do i=1,2
+        do j=1,2
+        rri=rpp_(i,j)**6
+        app_(i,j)=epp(i,j)*rri*rri 
+        bpp_(i,j)=-2.0*epp(i,j)*rri
+        ael6_(i,j)=elpp_6(i,j)*4.2**6
+        ael3_(i,j)=elpp_3(i,j)*4.2**3
+        if (lprint)
+     &  write (iout,'(2i2,4e15.4)') i,j,app_(i,j),bpp_(i,j),ael6_(i,j),
+     &                               ael3_(i,j)
+        enddo
+      enddo
+      ncont=0
+      ees=0.0
+      evdw=0.0
+      do 1 i=nnt,nct-2
+        xi=c(1,i)
+        yi=c(2,i)
+        zi=c(3,i)
+        dxi=c(1,i+1)-c(1,i)
+        dyi=c(2,i+1)-c(2,i)
+        dzi=c(3,i+1)-c(3,i)
+        xmedi=xi+0.5*dxi
+        ymedi=yi+0.5*dyi
+        zmedi=zi+0.5*dzi
+        do 4 j=i+2,nct-1
+          ind=ind+1
+          iteli=itel(i)
+          itelj=itel(j)
+          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
+          if (iteli.eq.2 .and. itelj.eq.2) goto 4
+          aaa=app_(iteli,itelj)
+          bbb=bpp_(iteli,itelj)
+          ael6_i=ael6_(iteli,itelj)
+          ael3_i=ael3_(iteli,itelj) 
+          dxj=c(1,j+1)-c(1,j)
+          dyj=c(2,j+1)-c(2,j)
+          dzj=c(3,j+1)-c(3,j)
+          xj=c(1,j)+0.5*dxj-xmedi
+          yj=c(2,j)+0.5*dyj-ymedi
+          zj=c(3,j)+0.5*dzj-zmedi
+          rrmij=1.0/(xj*xj+yj*yj+zj*zj)
+          rmij=sqrt(rrmij)
+          r3ij=rrmij*rmij
+          r6ij=r3ij*r3ij  
+          vrmij=vblinv*rmij
+          cosa=(dxi*dxj+dyi*dyj+dzi*dzj)*vblinv2      
+          cosb=(xj*dxi+yj*dyi+zj*dzi)*vrmij
+          cosg=(xj*dxj+yj*dyj+zj*dzj)*vrmij
+          fac=cosa-3.0*cosb*cosg
+          ev1=aaa*r6ij*r6ij
+          ev2=bbb*r6ij
+          fac3=ael6_i*r6ij
+          fac4=ael3_i*r3ij
+          evdwij=ev1+ev2
+          el1=fac3*(4.0+fac*fac-3.0*(cosb*cosb+cosg*cosg))
+          el2=fac4*fac       
+          eesij=el1+el2
+          if (j.gt.i+2 .and. eesij.le.elcutoff .or.
+     &        j.eq.i+2 .and. eesij.le.elecutoff_14) then
+             ncont=ncont+1
+             icont(1,ncont)=i
+             icont(2,ncont)=j
+            econt(ncont)=eesij
+          endif
+          ees=ees+eesij
+          evdw=evdw+evdwij
+    4   continue
+    1 continue
+      if (lprint) then
+        write (iout,*) 'Total average electrostatic energy: ',ees
+        write (iout,*) 'VDW energy between peptide-group centers: ',evdw
+        write (iout,*)
+        write (iout,*) 'Electrostatic contacts before pruning: '
+        do i=1,ncont
+          i1=icont(1,i)
+          i2=icont(2,i)
+          it1=itype(i1)
+          it2=itype(i2)
+          write (iout,'(i3,2x,a,i4,2x,a,i4,f10.5)')
+     &     i,restyp(it1),i1,restyp(it2),i2,econt(i)
+        enddo
+      endif
+c For given residues keep only the contacts with the greatest energy.
+      i=0
+      do while (i.lt.ncont)
+        i=i+1
+        ene=econt(i)
+        ic1=icont(1,i)
+        ic2=icont(2,i)
+        j=i
+        do while (j.lt.ncont)
+          j=j+1
+          if (ic1.eq.icont(1,j).and.iabs(icont(2,j)-ic2).le.2 .or.
+     &        ic2.eq.icont(2,j).and.iabs(icont(1,j)-ic1).le.2) then
+c            write (iout,*) "i",i," j",j," ic1",ic1," ic2",ic2,
+c     &       " jc1",icont(1,j)," jc2",icont(2,j)," ncont",ncont
+            if (econt(j).lt.ene .and. icont(2,j).ne.icont(1,j)+2) then
+              if (ic1.eq.icont(1,j)) then
+                do k=1,ncont
+                  if (k.ne.i .and. k.ne.j .and. icont(2,k).eq.icont(2,j)
+     &               .and. iabs(icont(1,k)-ic1).le.2 .and. 
+     &               econt(k).lt.econt(j) ) goto 21 
+                enddo
+              else if (ic2.eq.icont(2,j) ) then
+                do k=1,ncont
+                  if (k.ne.i .and. k.ne.j .and. icont(1,k).eq.icont(1,j)
+     &               .and. iabs(icont(2,k)-ic2).le.2 .and. 
+     &               econt(k).lt.econt(j) ) goto 21 
+                enddo
+              endif
+c Remove ith contact
+              do k=i+1,ncont
+                icont(1,k-1)=icont(1,k)
+                icont(2,k-1)=icont(2,k)
+                econt(k-1)=econt(k) 
+              enddo
+              i=i-1
+              ncont=ncont-1
+c              write (iout,*) "ncont",ncont
+c              do k=1,ncont
+c                write (iout,*) icont(1,k),icont(2,k)
+c              enddo
+              goto 20
+            else if (econt(j).gt.ene .and. ic2.ne.ic1+2) 
+     &      then
+              if (ic1.eq.icont(1,j)) then
+                do k=1,ncont
+                  if (k.ne.i .and. k.ne.j .and. icont(2,k).eq.ic2
+     &               .and. iabs(icont(1,k)-icont(1,j)).le.2 .and. 
+     &               econt(k).lt.econt(i) ) goto 21 
+                enddo
+              else if (ic2.eq.icont(2,j) ) then
+                do k=1,ncont
+                  if (k.ne.i .and. k.ne.j .and. icont(1,k).eq.ic1
+     &               .and. iabs(icont(2,k)-icont(2,j)).le.2 .and. 
+     &               econt(k).lt.econt(i) ) goto 21 
+                enddo
+              endif
+c Remove jth contact
+              do k=j+1,ncont
+                icont(1,k-1)=icont(1,k)
+                icont(2,k-1)=icont(2,k)
+                econt(k-1)=econt(k) 
+              enddo
+              ncont=ncont-1
+c              write (iout,*) "ncont",ncont
+c              do k=1,ncont
+c                write (iout,*) icont(1,k),icont(2,k)
+c              enddo
+              j=j-1
+            endif   
+          endif
+   21     continue
+        enddo
+   20   continue
+      enddo
+      if (lprint) then
+        write (iout,*)
+        write (iout,*) 'Electrostatic contacts after pruning: '
+        do i=1,ncont
+          i1=icont(1,i)
+          i2=icont(2,i)
+          it1=itype(i1)
+          it2=itype(i2)
+          write (iout,'(i3,2x,a,i4,2x,a,i4,f10.5)')
+     &     i,restyp(it1),i1,restyp(it2),i2,econt(i)
+        enddo
+      endif
+      return
+      end
+c--------------------------------------------
+      subroutine secondary2(lprint)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.DISTFIT'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.CONTROL'
+      integer ncont,icont(2,maxcont),isec(maxres,4),nsec(maxres)
+      logical lprint,not_done,freeres
+      double precision p1,p2
+      external freeres
+
+      if(.not.dccart) call chainbuild
+cd      call write_pdb(99,'sec structure',0d0)
+      ncont=0
+      nbfrag=0
+      nhfrag=0
+      do i=1,nres
+        isec(i,1)=0
+        isec(i,2)=0
+        nsec(i)=0
+      enddo
+
+      call elecont(lprint,ncont,icont)
+
+c finding parallel beta
+cd      write (iout,*) '------- looking for parallel beta -----------'
+      nbeta=0
+      nstrand=0
+      do i=1,ncont
+        i1=icont(1,i)
+        j1=icont(2,i)
+        if(j1-i1.gt.5 .and. freeres(i1,j1,nsec,isec)) then
+          ii1=i1
+          jj1=j1
+cd          write (iout,*) i1,j1
+          not_done=.true.
+          do while (not_done)
+           i1=i1+1
+           j1=j1+1
+            do j=1,ncont
+              if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j) .and.
+     &             freeres(i1,j1,nsec,isec)) goto 5
+            enddo
+            not_done=.false.
+  5         continue
+cd            write (iout,*) i1,j1,not_done
+          enddo
+          j1=j1-1
+          i1=i1-1
+          if (i1-ii1.gt.1) then
+            ii1=max0(ii1-1,1)
+            jj1=max0(jj1-1,1)
+            nbeta=nbeta+1
+            if(lprint)write(iout,'(a,i3,4i4)')'parallel beta',
+     &               nbeta,ii1,i1,jj1,j1
+
+            nbfrag=nbfrag+1
+            bfrag(1,nbfrag)=ii1+1
+            bfrag(2,nbfrag)=i1+1
+            bfrag(3,nbfrag)=jj1+1
+            bfrag(4,nbfrag)=min0(j1+1,nres) 
+
+            do ij=ii1,i1
+             nsec(ij)=nsec(ij)+1
+             isec(ij,nsec(ij))=nbeta
+            enddo
+            do ij=jj1,j1
+             nsec(ij)=nsec(ij)+1
+             isec(ij,nsec(ij))=nbeta
+            enddo
+
+           if(lprint) then 
+            nstrand=nstrand+1
+            if (nbeta.le.9) then
+              write(12,'(a18,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",ii1-1,"..",i1-1,"'"
+            else
+              write(12,'(a18,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",ii1-1,"..",i1-1,"'"
+            endif
+            nstrand=nstrand+1
+            if (nbeta.le.9) then
+              write(12,'(a18,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",jj1-1,"..",j1-1,"'"
+            else
+              write(12,'(a18,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",jj1-1,"..",j1-1,"'"
+            endif
+              write(12,'(a8,4i4)')
+     &          "SetNeigh",ii1-1,i1-1,jj1-1,j1-1
+           endif
+          endif
+        endif
+      enddo
+
+c finding alpha or 310 helix
+
+      nhelix=0
+      do i=1,ncont
+        i1=icont(1,i)
+        j1=icont(2,i)
+        p1=phi(i1+2)*rad2deg
+        p2=0.0
+        if (j1+2.le.nres) p2=phi(j1+2)*rad2deg
+
+
+        if (j1.eq.i1+3 .and. 
+     &       ((p1.ge.10.and.p1.le.80).or.i1.le.2).and.
+     &       ((p2.ge.10.and.p2.le.80).or.j1.le.2.or.j1.ge.nres-3) )then
+cd          if (j1.eq.i1+3) write (iout,*) "found 1-4 ",i1,j1,p1,p2
+co          if (j1.eq.i1+4) write (iout,*) "found 1-5 ",i1,j1,p1,p2
+          ii1=i1
+          jj1=j1
+          if (nsec(ii1).eq.0) then 
+            not_done=.true.
+          else
+            not_done=.false.
+          endif
+          do while (not_done)
+            i1=i1+1
+            j1=j1+1
+            do j=1,ncont
+              if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j)) goto 10
+            enddo
+            not_done=.false.
+  10        continue
+            p1=phi(i1+2)*rad2deg
+            p2=phi(j1+2)*rad2deg
+            if (p1.lt.10.or.p1.gt.80.or.p2.lt.10.or.p2.gt.80) 
+     &                              not_done=.false.
+cd           write (iout,*) i1,j1,not_done,p1,p2
+          enddo
+          j1=j1+1
+          if (j1-ii1.gt.5) then
+            nhelix=nhelix+1
+cd            write (iout,*)'helix',nhelix,ii1,j1
+
+            nhfrag=nhfrag+1
+            hfrag(1,nhfrag)=ii1
+            hfrag(2,nhfrag)=j1
+
+            do ij=ii1,j1
+             nsec(ij)=-1
+            enddo
+           if (lprint) then
+            write (iout,'(a,i3,2i4)') "Helix",nhelix,ii1-1,j1-1
+            if (nhelix.le.9) then
+              write(12,'(a17,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'helix",nhelix,
+     &          "' 'num = ",ii1-1,"..",j1-2,"'"
+            else
+              write(12,'(a17,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'helix",nhelix,
+     &          "' 'num = ",ii1-1,"..",j1-2,"'"
+            endif
+           endif
+          endif
+        endif
+      enddo
+       
+      if (nhelix.gt.0.and.lprint) then
+        write(12,'(a26,$)') "DefPropRes 'helix' 'helix1"
+        do i=2,nhelix
+         if (nhelix.le.9) then
+          write(12,'(a8,i1,$)') " | helix",i
+         else
+          write(12,'(a8,i2,$)') " | helix",i
+         endif
+        enddo
+        write(12,'(a1)') "'"
+      endif
+
+
+c finding antiparallel beta
+cd      write (iout,*) '--------- looking for antiparallel beta ---------'
+
+      do i=1,ncont
+        i1=icont(1,i)
+        j1=icont(2,i)
+        if (freeres(i1,j1,nsec,isec)) then
+          ii1=i1
+          jj1=j1
+cd          write (iout,*) i1,j1
+
+          not_done=.true.
+          do while (not_done)
+           i1=i1+1
+           j1=j1-1
+            do j=1,ncont
+              if (i1.eq.icont(1,j).and.j1.eq.icont(2,j) .and.
+     &             freeres(i1,j1,nsec,isec)) goto 6
+            enddo
+            not_done=.false.
+  6         continue
+cd            write (iout,*) i1,j1,not_done
+          enddo
+          i1=i1-1
+          j1=j1+1
+          if (i1-ii1.gt.1) then
+
+            nbfrag=nbfrag+1
+            bfrag(1,nbfrag)=ii1
+            bfrag(2,nbfrag)=min0(i1+1,nres)
+            bfrag(3,nbfrag)=min0(jj1+1,nres)
+            bfrag(4,nbfrag)=j1
+
+            nbeta=nbeta+1
+            iii1=max0(ii1-1,1)
+            do ij=iii1,i1
+             nsec(ij)=nsec(ij)+1
+             if (nsec(ij).le.2) then
+              isec(ij,nsec(ij))=nbeta
+             endif
+            enddo
+            jjj1=max0(j1-1,1)  
+            do ij=jjj1,jj1
+             nsec(ij)=nsec(ij)+1
+             if (nsec(ij).le.2 .and. nsec(ij).gt.0) then
+              isec(ij,nsec(ij))=nbeta
+             endif
+            enddo
+
+
+           if (lprint) then
+            write (iout,'(a,i3,4i4)')'antiparallel beta',
+     &                   nbeta,ii1-1,i1,jj1,j1-1
+            nstrand=nstrand+1
+            if (nstrand.le.9) then
+              write(12,'(a18,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",ii1-2,"..",i1-1,"'"
+            else
+              write(12,'(a18,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",ii1-2,"..",i1-1,"'"
+            endif
+            nstrand=nstrand+1
+            if (nstrand.le.9) then
+              write(12,'(a18,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",j1-2,"..",jj1-1,"'"
+            else
+              write(12,'(a18,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",j1-2,"..",jj1-1,"'"
+            endif
+              write(12,'(a8,4i4)')
+     &          "SetNeigh",ii1-2,i1-1,jj1-1,j1-2
+           endif
+          endif
+        endif
+      enddo
+
+      if (nstrand.gt.0.and.lprint) then
+        write(12,'(a27,$)') "DefPropRes 'sheet' 'strand1"
+        do i=2,nstrand
+         if (i.le.9) then
+          write(12,'(a9,i1,$)') " | strand",i
+         else
+          write(12,'(a9,i2,$)') " | strand",i
+         endif
+        enddo
+        write(12,'(a1)') "'"
+      endif
+
+       
+
+      if (lprint) then
+       write(12,'(a37)') "DefPropRes 'coil' '! (helix | sheet)'"
+       write(12,'(a20)') "XMacStand ribbon.mac"
+         
+        
+       write(iout,*) 'UNRES seq:'
+       do j=1,nbfrag
+        write(iout,*) 'beta ',(bfrag(i,j),i=1,4)
+       enddo
+
+       do j=1,nhfrag
+        write(iout,*) 'helix ',(hfrag(i,j),i=1,2)
+       enddo
+      endif       
+
+      return
+      end
+c-------------------------------------------------
+      logical function freeres(i,j,nsec,isec)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      integer isec(maxres,4),nsec(maxres)
+      freeres=.false.
+
+      if (nsec(i).lt.0.or.nsec(j).lt.0) return
+      if (nsec(i).gt.1.or.nsec(j).gt.1) return
+      do k=1,nsec(i)
+        do l=1,nsec(j)
+          if (isec(i,k).eq.isec(j,l)) return
+        enddo
+      enddo
+      freeres=.true.
+      return
+      end
+
diff --git a/source/unres/src_MD_DFA/energy_p_new-sep_barrier.F b/source/unres/src_MD_DFA/energy_p_new-sep_barrier.F
new file mode 100644 (file)
index 0000000..c89aee2
--- /dev/null
@@ -0,0 +1,2322 @@
+C-----------------------------------------------------------------------
+      double precision function sscale(r)
+      double precision r,gamm
+      include "COMMON.SPLITELE"
+      if(r.lt.r_cut-rlamb) then
+        sscale=1.0d0
+      else if(r.le.r_cut.and.r.ge.r_cut-rlamb) then
+        gamm=(r-(r_cut-rlamb))/rlamb
+        sscale=1.0d0+gamm*gamm*(2*gamm-3.0d0)
+      else
+        sscale=0d0
+      endif
+      return
+      end
+C-----------------------------------------------------------------------
+      subroutine elj_long(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the LJ potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (accur=1.0d-10)
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.TORSION'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTACTS'
+      dimension gg(3)
+c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
+cd   &                  'iend=',iend(i,iint)
+          do j=istart(i,iint),iend(i,iint)
+            itypj=itype(j)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            rij=xj*xj+yj*yj+zj*zj
+            sss=sscale(dsqrt(rij)/sigma(itypi,itypj))
+            if (sss.lt.1.0d0) then
+              rrij=1.0D0/rij
+              eps0ij=eps(itypi,itypj)
+              fac=rrij**expon2
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=e1+e2
+              evdw=evdw+(1.0d0-sss)*evdwij
+C 
+C Calculate the components of the gradient in DC and X
+C
+              fac=-rrij*(e1+evdwij)*(1.0d0-sss)
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+              do k=1,3
+                gvdwx(k,i)=gvdwx(k,i)-gg(k)
+                gvdwx(k,j)=gvdwx(k,j)+gg(k)
+                gvdwc(k,i)=gvdwc(k,i)-gg(k)
+                gvdwc(k,j)=gvdwc(k,j)+gg(k)
+              enddo
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc(j,i)=expon*gvdwc(j,i)
+          gvdwx(j,i)=expon*gvdwx(j,i)
+        enddo
+      enddo
+C******************************************************************************
+C
+C                              N O T E !!!
+C
+C To save time, the factor of EXPON has been extracted from ALL components
+C of GVDWC and GRADX. Remember to multiply them by this factor before further 
+C use!
+C
+C******************************************************************************
+      return
+      end
+C-----------------------------------------------------------------------
+      subroutine elj_short(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the LJ potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (accur=1.0d-10)
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.TORSION'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTACTS'
+      dimension gg(3)
+c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+C Change 12/1/95
+        num_conti=0
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
+cd   &                  'iend=',iend(i,iint)
+          do j=istart(i,iint),iend(i,iint)
+            itypj=itype(j)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+C Change 12/1/95 to calculate four-body interactions
+            rij=xj*xj+yj*yj+zj*zj
+            sss=sscale(dsqrt(rij)/sigma(itypi,itypj))
+            if (sss.gt.0.0d0) then
+              rrij=1.0D0/rij
+              eps0ij=eps(itypi,itypj)
+              fac=rrij**expon2
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=e1+e2
+              evdw=evdw+sss*evdwij
+C 
+C Calculate the components of the gradient in DC and X
+C
+              fac=-rrij*(e1+evdwij)*sss
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+              do k=1,3
+                gvdwx(k,i)=gvdwx(k,i)-gg(k)
+                gvdwx(k,j)=gvdwx(k,j)+gg(k)
+                gvdwc(k,i)=gvdwc(k,i)-gg(k)
+                gvdwc(k,j)=gvdwc(k,j)+gg(k)
+              enddo
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc(j,i)=expon*gvdwc(j,i)
+          gvdwx(j,i)=expon*gvdwx(j,i)
+        enddo
+      enddo
+C******************************************************************************
+C
+C                              N O T E !!!
+C
+C To save time, the factor of EXPON has been extracted from ALL components
+C of GVDWC and GRADX. Remember to multiply them by this factor before further 
+C use!
+C
+C******************************************************************************
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine eljk_long(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the LJK potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      dimension gg(3)
+      logical scheck
+c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            itypj=itype(j)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            fac_augm=rrij**expon
+            e_augm=augm(itypi,itypj)*fac_augm
+            r_inv_ij=dsqrt(rrij)
+            rij=1.0D0/r_inv_ij 
+            sss=sscale(rij/sigma(itypi,itypj))
+            if (sss.lt.1.0d0) then
+              r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
+              fac=r_shift_inv**expon
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=e_augm+e1+e2
+cd            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+cd            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+cd            write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
+cd   &          restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
+cd   &          bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
+cd   &          sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
+cd   &          (c(k,i),k=1,3),(c(k,j),k=1,3)
+              evdw=evdw+(1.0d0-sss)*evdwij
+C 
+C Calculate the components of the gradient in DC and X
+C
+              fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
+              fac=fac*(1.0d0-sss)
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+              do k=1,3
+                gvdwx(k,i)=gvdwx(k,i)-gg(k)
+                gvdwx(k,j)=gvdwx(k,j)+gg(k)
+                gvdwc(k,i)=gvdwc(k,i)-gg(k)
+                gvdwc(k,j)=gvdwc(k,j)+gg(k)
+              enddo
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc(j,i)=expon*gvdwc(j,i)
+          gvdwx(j,i)=expon*gvdwx(j,i)
+        enddo
+      enddo
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine eljk_short(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the LJK potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      dimension gg(3)
+      logical scheck
+c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            itypj=itype(j)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            fac_augm=rrij**expon
+            e_augm=augm(itypi,itypj)*fac_augm
+            r_inv_ij=dsqrt(rrij)
+            rij=1.0D0/r_inv_ij 
+            sss=sscale(rij/sigma(itypi,itypj))
+            if (sss.gt.0.0d0) then
+              r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
+              fac=r_shift_inv**expon
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=e_augm+e1+e2
+cd            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+cd            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+cd            write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
+cd   &          restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
+cd   &          bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
+cd   &          sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
+cd   &          (c(k,i),k=1,3),(c(k,j),k=1,3)
+              evdw=evdw+sss*evdwij
+C 
+C Calculate the components of the gradient in DC and X
+C
+              fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
+              fac=fac*sss
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+              do k=1,3
+                gvdwx(k,i)=gvdwx(k,i)-gg(k)
+                gvdwx(k,j)=gvdwx(k,j)+gg(k)
+                gvdwc(k,i)=gvdwc(k,i)-gg(k)
+                gvdwc(k,j)=gvdwc(k,j)+gg(k)
+              enddo
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc(j,i)=expon*gvdwc(j,i)
+          gvdwx(j,i)=expon*gvdwx(j,i)
+        enddo
+      enddo
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine ebp_long(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Berne-Pechukas potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      common /srutu/ icall
+c     double precision rrsave(maxdim)
+      logical lprn
+      evdw=0.0D0
+c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+c     if (icall.eq.0) then
+c       lprn=.true.
+c     else
+        lprn=.false.
+c     endif
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
+
+            if (sss.lt.1.0d0) then
+
+C Calculate the angle-dependent terms of energy & contributions to derivatives.
+              call sc_angular
+C Calculate whole angle-dependent part of epsilon and contributions
+C to its derivatives
+              fac=(rrij*sigsq)**expon2
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+              eps2der=evdwij*eps3rt
+              eps3der=evdwij*eps2rt
+              evdwij=evdwij*eps2rt*eps3rt
+              evdw=evdw+evdwij*(1.0d0-sss)
+              if (lprn) then
+              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+cd              write (iout,'(2(a3,i3,2x),15(0pf7.3))')
+cd     &          restyp(itypi),i,restyp(itypj),j,
+cd     &          epsi,sigm,chi1,chi2,chip1,chip2,
+cd     &          eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
+cd     &          om1,om2,om12,1.0D0/dsqrt(rrij),
+cd     &          evdwij
+              endif
+C Calculate gradient components.
+              e1=e1*eps1*eps2rt**2*eps3rt**2
+              fac=-expon*(e1+evdwij)
+              sigder=fac/sigsq
+              fac=rrij*fac
+C Calculate radial part of the gradient
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+C Calculate the angular part of the gradient and sum add the contributions
+C to the appropriate components of the Cartesian gradient.
+              call sc_grad_scale(1.0d0-sss)
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+c     stop
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine ebp_short(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Berne-Pechukas potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      common /srutu/ icall
+c     double precision rrsave(maxdim)
+      logical lprn
+      evdw=0.0D0
+c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+c     if (icall.eq.0) then
+c       lprn=.true.
+c     else
+        lprn=.false.
+c     endif
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
+
+            if (sss.gt.0.0d0) then
+
+C Calculate the angle-dependent terms of energy & contributions to derivatives.
+              call sc_angular
+C Calculate whole angle-dependent part of epsilon and contributions
+C to its derivatives
+              fac=(rrij*sigsq)**expon2
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+              eps2der=evdwij*eps3rt
+              eps3der=evdwij*eps2rt
+              evdwij=evdwij*eps2rt*eps3rt
+              evdw=evdw+evdwij*sss
+              if (lprn) then
+              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+cd              write (iout,'(2(a3,i3,2x),15(0pf7.3))')
+cd     &          restyp(itypi),i,restyp(itypj),j,
+cd     &          epsi,sigm,chi1,chi2,chip1,chip2,
+cd     &          eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
+cd     &          om1,om2,om12,1.0D0/dsqrt(rrij),
+cd     &          evdwij
+              endif
+C Calculate gradient components.
+              e1=e1*eps1*eps2rt**2*eps3rt**2
+              fac=-expon*(e1+evdwij)
+              sigder=fac/sigsq
+              fac=rrij*fac
+C Calculate radial part of the gradient
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+C Calculate the angular part of the gradient and sum add the contributions
+C to the appropriate components of the Cartesian gradient.
+              call sc_grad_scale(sss)
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+c     stop
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine egb_long(evdw,evdw_p,evdw_m)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Gay-Berne potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      logical lprn
+ccccc      energy_dec=.false.
+c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      evdw_p=0.0D0
+      evdw_m=0.0D0
+      lprn=.false.
+c     if (icall.eq.0) lprn=.false.
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
+c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
+c     &       1.0d0/vbld(j+nres)
+c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
+            sig0ij=sigma(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
+
+            if (sss.lt.1.0d0) then
+
+C Calculate angle-dependent terms of energy and contributions to their
+C derivatives.
+              call sc_angular
+              sigsq=1.0D0/sigsq
+              sig=sig0ij*dsqrt(sigsq)
+              rij_shift=1.0D0/rij-sig+sig0ij
+c for diagnostics; uncomment
+c              rij_shift=1.2*sig0ij
+C I hate to put IF's in the loops, but here don't have another choice!!!!
+              if (rij_shift.le.0.0D0) then
+                evdw=1.0D20
+cd                write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+cd     &          restyp(itypi),i,restyp(itypj),j,
+cd     &          rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
+                return
+              endif
+              sigder=-sig*sigsq
+c---------------------------------------------------------------
+              rij_shift=1.0D0/rij_shift 
+              fac=rij_shift**expon
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+              eps2der=evdwij*eps3rt
+              eps3der=evdwij*eps2rt
+c              write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
+c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
+              evdwij=evdwij*eps2rt*eps3rt
+#ifdef TSCSC
+              if (bb(itypi,itypj).gt.0) then
+                 evdw_p=evdw_p+evdwij*(1.0d0-sss)
+              else
+                 evdw_m=evdw_m+evdwij*(1.0d0-sss)
+              endif
+#else
+              evdw=evdw+evdwij*(1.0d0-sss)
+#endif
+              if (lprn) then
+              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+     &          restyp(itypi),i,restyp(itypj),j,
+     &          epsi,sigm,chi1,chi2,chip1,chip2,
+     &          eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
+     &          om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
+     &          evdwij
+              endif
+
+              if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
+     &                        'evdw',i,j,evdwij
+
+C Calculate gradient components.
+              e1=e1*eps1*eps2rt**2*eps3rt**2
+              fac=-expon*(e1+evdwij)*rij_shift
+              sigder=fac*sigder
+              fac=rij*fac
+c              fac=0.0d0
+C Calculate the radial part of the gradient
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+C Calculate angular part of the gradient.
+#ifdef TSCSC
+              if (bb(itypi,itypj).gt.0) then
+               call sc_grad_scale_T(1.0d0-sss)
+              else
+               call sc_grad_scale(1.0d0-sss)
+              endif
+#else
+              call sc_grad_scale(1.0d0-sss)
+#endif
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+c      write (iout,*) "Number of loop steps in EGB:",ind
+cccc      energy_dec=.false.
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine egb_short(evdw,evdw_p,evdw_m)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Gay-Berne potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      logical lprn
+      evdw=0.0D0
+      evdw_p=0.0D0
+      evdw_m=0.0D0
+ccccc      energy_dec=.false.
+c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      lprn=.false.
+c     if (icall.eq.0) lprn=.false.
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
+c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
+c     &       1.0d0/vbld(j+nres)
+c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
+            sig0ij=sigma(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
+
+            if (sss.gt.0.0d0) then
+
+C Calculate angle-dependent terms of energy and contributions to their
+C derivatives.
+              call sc_angular
+              sigsq=1.0D0/sigsq
+              sig=sig0ij*dsqrt(sigsq)
+              rij_shift=1.0D0/rij-sig+sig0ij
+c for diagnostics; uncomment
+c              rij_shift=1.2*sig0ij
+C I hate to put IF's in the loops, but here don't have another choice!!!!
+              if (rij_shift.le.0.0D0) then
+                evdw=1.0D20
+cd                write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+cd     &          restyp(itypi),i,restyp(itypj),j,
+cd     &          rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
+                return
+              endif
+              sigder=-sig*sigsq
+c---------------------------------------------------------------
+              rij_shift=1.0D0/rij_shift 
+              fac=rij_shift**expon
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+              eps2der=evdwij*eps3rt
+              eps3der=evdwij*eps2rt
+c              write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
+c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
+              evdwij=evdwij*eps2rt*eps3rt
+#ifdef TSCSC
+              if (bb(itypi,itypj).gt.0) then
+                 evdw_p=evdw_p+evdwij*sss
+              else
+                 evdw_m=evdw_m+evdwij*sss
+              endif
+#else
+              evdw=evdw+evdwij*sss
+#endif
+              if (lprn) then
+              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+     &          restyp(itypi),i,restyp(itypj),j,
+     &          epsi,sigm,chi1,chi2,chip1,chip2,
+     &          eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
+     &          om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
+     &          evdwij
+              endif
+
+              if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
+     &                        'evdw',i,j,evdwij
+
+C Calculate gradient components.
+              e1=e1*eps1*eps2rt**2*eps3rt**2
+              fac=-expon*(e1+evdwij)*rij_shift
+              sigder=fac*sigder
+              fac=rij*fac
+c              fac=0.0d0
+C Calculate the radial part of the gradient
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+C Calculate angular part of the gradient.
+#ifdef TSCSC
+              if (bb(itypi,itypj).gt.0) then
+               call sc_grad_scale_T(sss)
+              else
+               call sc_grad_scale(sss)
+              endif
+#else
+              call sc_grad_scale(sss)
+#endif
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+c      write (iout,*) "Number of loop steps in EGB:",ind
+cccc      energy_dec=.false.
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine egbv_long(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Gay-Berne-Vorobjev potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      common /srutu/ icall
+      logical lprn
+      evdw=0.0D0
+c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      lprn=.false.
+c     if (icall.eq.0) lprn=.true.
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+            sig0ij=sigma(itypi,itypj)
+            r0ij=r0(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+
+            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
+
+            if (sss.lt.1.0d0) then
+
+C Calculate angle-dependent terms of energy and contributions to their
+C derivatives.
+              call sc_angular
+              sigsq=1.0D0/sigsq
+              sig=sig0ij*dsqrt(sigsq)
+              rij_shift=1.0D0/rij-sig+r0ij
+C I hate to put IF's in the loops, but here don't have another choice!!!!
+              if (rij_shift.le.0.0D0) then
+                evdw=1.0D20
+                return
+              endif
+              sigder=-sig*sigsq
+c---------------------------------------------------------------
+              rij_shift=1.0D0/rij_shift 
+              fac=rij_shift**expon
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+              eps2der=evdwij*eps3rt
+              eps3der=evdwij*eps2rt
+              fac_augm=rrij**expon
+              e_augm=augm(itypi,itypj)*fac_augm
+              evdwij=evdwij*eps2rt*eps3rt
+              evdw=evdw+(evdwij+e_augm)*(1.0d0-sss)
+              if (lprn) then
+              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+     &          restyp(itypi),i,restyp(itypj),j,
+     &          epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
+     &          chi1,chi2,chip1,chip2,
+     &          eps1,eps2rt**2,eps3rt**2,
+     &          om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
+     &          evdwij+e_augm
+              endif
+C Calculate gradient components.
+              e1=e1*eps1*eps2rt**2*eps3rt**2
+              fac=-expon*(e1+evdwij)*rij_shift
+              sigder=fac*sigder
+              fac=rij*fac-2*expon*rrij*e_augm
+C Calculate the radial part of the gradient
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+C Calculate angular part of the gradient.
+              call sc_grad_scale(1.0d0-sss)
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      end
+C-----------------------------------------------------------------------------
+      subroutine egbv_short(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Gay-Berne-Vorobjev potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      common /srutu/ icall
+      logical lprn
+      evdw=0.0D0
+c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      lprn=.false.
+c     if (icall.eq.0) lprn=.true.
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+            sig0ij=sigma(itypi,itypj)
+            r0ij=r0(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+
+            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
+
+            if (sss.gt.0.0d0) then
+
+C Calculate angle-dependent terms of energy and contributions to their
+C derivatives.
+              call sc_angular
+              sigsq=1.0D0/sigsq
+              sig=sig0ij*dsqrt(sigsq)
+              rij_shift=1.0D0/rij-sig+r0ij
+C I hate to put IF's in the loops, but here don't have another choice!!!!
+              if (rij_shift.le.0.0D0) then
+                evdw=1.0D20
+                return
+              endif
+              sigder=-sig*sigsq
+c---------------------------------------------------------------
+              rij_shift=1.0D0/rij_shift 
+              fac=rij_shift**expon
+              e1=fac*fac*aa(itypi,itypj)
+              e2=fac*bb(itypi,itypj)
+              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+              eps2der=evdwij*eps3rt
+              eps3der=evdwij*eps2rt
+              fac_augm=rrij**expon
+              e_augm=augm(itypi,itypj)*fac_augm
+              evdwij=evdwij*eps2rt*eps3rt
+              evdw=evdw+(evdwij+e_augm)*sss
+              if (lprn) then
+              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+     &          restyp(itypi),i,restyp(itypj),j,
+     &          epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
+     &          chi1,chi2,chip1,chip2,
+     &          eps1,eps2rt**2,eps3rt**2,
+     &          om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
+     &          evdwij+e_augm
+              endif
+C Calculate gradient components.
+              e1=e1*eps1*eps2rt**2*eps3rt**2
+              fac=-expon*(e1+evdwij)*rij_shift
+              sigder=fac*sigder
+              fac=rij*fac-2*expon*rrij*e_augm
+C Calculate the radial part of the gradient
+              gg(1)=xj*fac
+              gg(2)=yj*fac
+              gg(3)=zj*fac
+C Calculate angular part of the gradient.
+              call sc_grad_scale(sss)
+            endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      end
+C----------------------------------------------------------------------------
+      subroutine sc_grad_scale(scalfac)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.CALC'
+      include 'COMMON.IOUNITS'
+      double precision dcosom1(3),dcosom2(3)
+      double precision scalfac
+      eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
+      eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
+      eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
+     &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
+c diagnostics only
+c      eom1=0.0d0
+c      eom2=0.0d0
+c      eom12=evdwij*eps1_om12
+c end diagnostics
+c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
+c     &  " sigder",sigder
+c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
+c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
+      do k=1,3
+        dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
+        dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
+      enddo
+      do k=1,3
+        gg(k)=(gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k))*scalfac
+      enddo 
+c      write (iout,*) "gg",(gg(k),k=1,3)
+      do k=1,3
+        gvdwx(k,i)=gvdwx(k,i)-gg(k)
+     &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+     &          +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv*scalfac
+        gvdwx(k,j)=gvdwx(k,j)+gg(k)
+     &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+     &          +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv*scalfac
+c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+      enddo
+C 
+C Calculate the components of the gradient in DC and X
+C
+      do l=1,3
+        gvdwc(l,i)=gvdwc(l,i)-gg(l)
+        gvdwc(l,j)=gvdwc(l,j)+gg(l)
+      enddo
+      return
+      end
+C----------------------------------------------------------------------------
+      subroutine sc_grad_scale_T(scalfac)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.CALC'
+      include 'COMMON.IOUNITS'
+      double precision dcosom1(3),dcosom2(3)
+      double precision scalfac
+      eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
+      eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
+      eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
+     &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
+c diagnostics only
+c      eom1=0.0d0
+c      eom2=0.0d0
+c      eom12=evdwij*eps1_om12
+c end diagnostics
+c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
+c     &  " sigder",sigder
+c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
+c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
+      do k=1,3
+        dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
+        dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
+      enddo
+      do k=1,3
+        gg(k)=(gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k))*scalfac
+      enddo 
+c      write (iout,*) "gg",(gg(k),k=1,3)
+      do k=1,3
+        gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
+     &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+     &          +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv*scalfac
+        gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
+     &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+     &          +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv*scalfac
+c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+      enddo
+C 
+C Calculate the components of the gradient in DC and X
+C
+      do l=1,3
+        gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
+        gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
+      enddo
+      return
+      end
+
+C--------------------------------------------------------------------------
+      subroutine eelec_scale(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
+C
+C This subroutine calculates the average interaction energy and its gradient
+C in the virtual-bond vectors between non-adjacent peptide groups, based on 
+C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
+C The potential depends both on the distance of peptide-group centers and on 
+C the orientation of the CA-CA virtual bonds.
+C 
+      implicit real*8 (a-h,o-z)
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TIME1'
+      dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
+     &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
+      double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+      common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
+     &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
+     &    num_conti,j1,j2
+c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
+#ifdef MOMENT
+      double precision scal_el /1.0d0/
+#else
+      double precision scal_el /0.5d0/
+#endif
+C 12/13/98 
+C 13-go grudnia roku pamietnego... 
+      double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
+     &                   0.0d0,1.0d0,0.0d0,
+     &                   0.0d0,0.0d0,1.0d0/
+cd      write(iout,*) 'In EELEC'
+cd      do i=1,nloctyp
+cd        write(iout,*) 'Type',i
+cd        write(iout,*) 'B1',B1(:,i)
+cd        write(iout,*) 'B2',B2(:,i)
+cd        write(iout,*) 'CC',CC(:,:,i)
+cd        write(iout,*) 'DD',DD(:,:,i)
+cd        write(iout,*) 'EE',EE(:,:,i)
+cd      enddo
+cd      call check_vecgrad
+cd      stop
+      if (icheckgrad.eq.1) then
+        do i=1,nres-1
+          fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
+          do k=1,3
+            dc_norm(k,i)=dc(k,i)*fac
+          enddo
+c          write (iout,*) 'i',i,' fac',fac
+        enddo
+      endif
+      if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
+     &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
+     &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
+c        call vec_and_deriv
+#ifdef TIMING
+        time01=MPI_Wtime()
+#endif
+        call set_matrices
+#ifdef TIMING
+        time_mat=time_mat+MPI_Wtime()-time01
+#endif
+      endif
+cd      do i=1,nres-1
+cd        write (iout,*) 'i=',i
+cd        do k=1,3
+cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
+cd        enddo
+cd        do k=1,3
+cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
+cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
+cd        enddo
+cd      enddo
+      t_eelecij=0.0d0
+      ees=0.0D0
+      evdw1=0.0D0
+      eel_loc=0.0d0 
+      eello_turn3=0.0d0
+      eello_turn4=0.0d0
+      ind=0
+      do i=1,nres
+        num_cont_hb(i)=0
+      enddo
+cd      print '(a)','Enter EELEC'
+cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
+      do i=1,nres
+        gel_loc_loc(i)=0.0d0
+        gcorr_loc(i)=0.0d0
+      enddo
+c
+c
+c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
+C
+C Loop over i,i+2 and i,i+3 pairs of the peptide groups
+C
+      do i=iturn3_start,iturn3_end
+        dxi=dc(1,i)
+        dyi=dc(2,i)
+        dzi=dc(3,i)
+        dx_normi=dc_norm(1,i)
+        dy_normi=dc_norm(2,i)
+        dz_normi=dc_norm(3,i)
+        xmedi=c(1,i)+0.5d0*dxi
+        ymedi=c(2,i)+0.5d0*dyi
+        zmedi=c(3,i)+0.5d0*dzi
+        num_conti=0
+        call eelecij_scale(i,i+2,ees,evdw1,eel_loc)
+        if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
+        num_cont_hb(i)=num_conti
+      enddo
+      do i=iturn4_start,iturn4_end
+        dxi=dc(1,i)
+        dyi=dc(2,i)
+        dzi=dc(3,i)
+        dx_normi=dc_norm(1,i)
+        dy_normi=dc_norm(2,i)
+        dz_normi=dc_norm(3,i)
+        xmedi=c(1,i)+0.5d0*dxi
+        ymedi=c(2,i)+0.5d0*dyi
+        zmedi=c(3,i)+0.5d0*dzi
+        num_conti=num_cont_hb(i)
+        call eelecij_scale(i,i+3,ees,evdw1,eel_loc)
+        if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
+        num_cont_hb(i)=num_conti
+      enddo   ! i
+c
+c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
+c
+      do i=iatel_s,iatel_e
+        dxi=dc(1,i)
+        dyi=dc(2,i)
+        dzi=dc(3,i)
+        dx_normi=dc_norm(1,i)
+        dy_normi=dc_norm(2,i)
+        dz_normi=dc_norm(3,i)
+        xmedi=c(1,i)+0.5d0*dxi
+        ymedi=c(2,i)+0.5d0*dyi
+        zmedi=c(3,i)+0.5d0*dzi
+c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
+        num_conti=num_cont_hb(i)
+        do j=ielstart(i),ielend(i)
+          call eelecij_scale(i,j,ees,evdw1,eel_loc)
+        enddo ! j
+        num_cont_hb(i)=num_conti
+      enddo   ! i
+c      write (iout,*) "Number of loop steps in EELEC:",ind
+cd      do i=1,nres
+cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
+cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
+cd      enddo
+c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
+ccc      eel_loc=eel_loc+eello_turn3
+cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
+      return
+      end
+C-------------------------------------------------------------------------------
+      subroutine eelecij_scale(i,j,ees,evdw1,eel_loc)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TIME1'
+      dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
+     &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
+      double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+      common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
+     &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
+     &    num_conti,j1,j2
+c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
+#ifdef MOMENT
+      double precision scal_el /1.0d0/
+#else
+      double precision scal_el /0.5d0/
+#endif
+C 12/13/98 
+C 13-go grudnia roku pamietnego... 
+      double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
+     &                   0.0d0,1.0d0,0.0d0,
+     &                   0.0d0,0.0d0,1.0d0/
+c          time00=MPI_Wtime()
+cd      write (iout,*) "eelecij",i,j
+          ind=ind+1
+          iteli=itel(i)
+          itelj=itel(j)
+          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
+          aaa=app(iteli,itelj)
+          bbb=bpp(iteli,itelj)
+          ael6i=ael6(iteli,itelj)
+          ael3i=ael3(iteli,itelj) 
+          dxj=dc(1,j)
+          dyj=dc(2,j)
+          dzj=dc(3,j)
+          dx_normj=dc_norm(1,j)
+          dy_normj=dc_norm(2,j)
+          dz_normj=dc_norm(3,j)
+          xj=c(1,j)+0.5D0*dxj-xmedi
+          yj=c(2,j)+0.5D0*dyj-ymedi
+          zj=c(3,j)+0.5D0*dzj-zmedi
+          rij=xj*xj+yj*yj+zj*zj
+          rrmij=1.0D0/rij
+          rij=dsqrt(rij)
+          rmij=1.0D0/rij
+c For extracting the short-range part of Evdwpp
+          sss=sscale(rij/rpp(iteli,itelj))
+
+          r3ij=rrmij*rmij
+          r6ij=r3ij*r3ij  
+          cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
+          cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
+          cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
+          fac=cosa-3.0D0*cosb*cosg
+          ev1=aaa*r6ij*r6ij
+c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
+          if (j.eq.i+2) ev1=scal_el*ev1
+          ev2=bbb*r6ij
+          fac3=ael6i*r6ij
+          fac4=ael3i*r3ij
+          evdwij=ev1+ev2
+          el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
+          el2=fac4*fac       
+          eesij=el1+el2
+C 12/26/95 - for the evaluation of multi-body H-bonding interactions
+          ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
+          ees=ees+eesij
+          evdw1=evdw1+evdwij*(1.0d0-sss)
+cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
+cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
+cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
+cd     &      xmedi,ymedi,zmedi,xj,yj,zj
+
+          if (energy_dec) then 
+              write (iout,'(a6,2i5,0pf7.3,f7.3)') 'evdw1',i,j,evdwij,sss
+              write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
+          endif
+
+C
+C Calculate contributions to the Cartesian gradient.
+C
+#ifdef SPLITELE
+          facvdw=-6*rrmij*(ev1+evdwij)*(1.0d0-sss)
+          facel=-3*rrmij*(el1+eesij)
+          fac1=fac
+          erij(1)=xj*rmij
+          erij(2)=yj*rmij
+          erij(3)=zj*rmij
+*
+* Radial derivatives. First process both termini of the fragment (i,j)
+*
+          ggg(1)=facel*xj
+          ggg(2)=facel*yj
+          ggg(3)=facel*zj
+c          do k=1,3
+c            ghalf=0.5D0*ggg(k)
+c            gelc(k,i)=gelc(k,i)+ghalf
+c            gelc(k,j)=gelc(k,j)+ghalf
+c          enddo
+c 9/28/08 AL Gradient compotents will be summed only at the end
+          do k=1,3
+            gelc_long(k,j)=gelc_long(k,j)+ggg(k)
+            gelc_long(k,i)=gelc_long(k,i)-ggg(k)
+          enddo
+*
+* Loop over residues i+1 thru j-1.
+*
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+          ggg(1)=facvdw*xj
+          ggg(2)=facvdw*yj
+          ggg(3)=facvdw*zj
+c          do k=1,3
+c            ghalf=0.5D0*ggg(k)
+c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
+c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
+c          enddo
+c 9/28/08 AL Gradient compotents will be summed only at the end
+          do k=1,3
+            gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
+            gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
+          enddo
+*
+* Loop over residues i+1 thru j-1.
+*
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+#else
+          facvdw=ev1+evdwij*(1.0d0-sss) 
+          facel=el1+eesij  
+          fac1=fac
+          fac=-3*rrmij*(facvdw+facvdw+facel)
+          erij(1)=xj*rmij
+          erij(2)=yj*rmij
+          erij(3)=zj*rmij
+*
+* Radial derivatives. First process both termini of the fragment (i,j)
+* 
+          ggg(1)=fac*xj
+          ggg(2)=fac*yj
+          ggg(3)=fac*zj
+c          do k=1,3
+c            ghalf=0.5D0*ggg(k)
+c            gelc(k,i)=gelc(k,i)+ghalf
+c            gelc(k,j)=gelc(k,j)+ghalf
+c          enddo
+c 9/28/08 AL Gradient compotents will be summed only at the end
+          do k=1,3
+            gelc_long(k,j)=gelc(k,j)+ggg(k)
+            gelc_long(k,i)=gelc(k,i)-ggg(k)
+          enddo
+*
+* Loop over residues i+1 thru j-1.
+*
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+c 9/28/08 AL Gradient compotents will be summed only at the end
+          ggg(1)=facvdw*xj
+          ggg(2)=facvdw*yj
+          ggg(3)=facvdw*zj
+          do k=1,3
+            gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
+            gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
+          enddo
+#endif
+*
+* Angular part
+*          
+          ecosa=2.0D0*fac3*fac1+fac4
+          fac4=-3.0D0*fac4
+          fac3=-6.0D0*fac3
+          ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
+          ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
+          do k=1,3
+            dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
+            dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
+          enddo
+cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
+cd   &          (dcosg(k),k=1,3)
+          do k=1,3
+            ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
+          enddo
+c          do k=1,3
+c            ghalf=0.5D0*ggg(k)
+c            gelc(k,i)=gelc(k,i)+ghalf
+c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
+c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+c            gelc(k,j)=gelc(k,j)+ghalf
+c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
+c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+c          enddo
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+          do k=1,3
+            gelc(k,i)=gelc(k,i)
+     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+            gelc(k,j)=gelc(k,j)
+     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+            gelc_long(k,j)=gelc_long(k,j)+ggg(k)
+            gelc_long(k,i)=gelc_long(k,i)-ggg(k)
+          enddo
+          IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
+     &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
+     &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
+C
+C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
+C   energy of a peptide unit is assumed in the form of a second-order 
+C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
+C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
+C   are computed for EVERY pair of non-contiguous peptide groups.
+C
+          if (j.lt.nres-1) then
+            j1=j+1
+            j2=j-1
+          else
+            j1=j-1
+            j2=j-2
+          endif
+          kkk=0
+          do k=1,2
+            do l=1,2
+              kkk=kkk+1
+              muij(kkk)=mu(k,i)*mu(l,j)
+            enddo
+          enddo  
+cd         write (iout,*) 'EELEC: i',i,' j',j
+cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
+cd          write(iout,*) 'muij',muij
+          ury=scalar(uy(1,i),erij)
+          urz=scalar(uz(1,i),erij)
+          vry=scalar(uy(1,j),erij)
+          vrz=scalar(uz(1,j),erij)
+          a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
+          a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
+          a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
+          a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
+          fac=dsqrt(-ael6i)*r3ij
+          a22=a22*fac
+          a23=a23*fac
+          a32=a32*fac
+          a33=a33*fac
+cd          write (iout,'(4i5,4f10.5)')
+cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
+cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
+cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
+cd     &      uy(:,j),uz(:,j)
+cd          write (iout,'(4f10.5)') 
+cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
+cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
+cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
+cd           write (iout,'(9f10.5/)') 
+cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
+C Derivatives of the elements of A in virtual-bond vectors
+          call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
+          do k=1,3
+            uryg(k,1)=scalar(erder(1,k),uy(1,i))
+            uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
+            uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
+            urzg(k,1)=scalar(erder(1,k),uz(1,i))
+            urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
+            urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
+            vryg(k,1)=scalar(erder(1,k),uy(1,j))
+            vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
+            vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
+            vrzg(k,1)=scalar(erder(1,k),uz(1,j))
+            vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
+            vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
+          enddo
+C Compute radial contributions to the gradient
+          facr=-3.0d0*rrmij
+          a22der=a22*facr
+          a23der=a23*facr
+          a32der=a32*facr
+          a33der=a33*facr
+          agg(1,1)=a22der*xj
+          agg(2,1)=a22der*yj
+          agg(3,1)=a22der*zj
+          agg(1,2)=a23der*xj
+          agg(2,2)=a23der*yj
+          agg(3,2)=a23der*zj
+          agg(1,3)=a32der*xj
+          agg(2,3)=a32der*yj
+          agg(3,3)=a32der*zj
+          agg(1,4)=a33der*xj
+          agg(2,4)=a33der*yj
+          agg(3,4)=a33der*zj
+C Add the contributions coming from er
+          fac3=-3.0d0*fac
+          do k=1,3
+            agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
+            agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
+            agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
+            agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
+          enddo
+          do k=1,3
+C Derivatives in DC(i) 
+cgrad            ghalf1=0.5d0*agg(k,1)
+cgrad            ghalf2=0.5d0*agg(k,2)
+cgrad            ghalf3=0.5d0*agg(k,3)
+cgrad            ghalf4=0.5d0*agg(k,4)
+            aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
+     &      -3.0d0*uryg(k,2)*vry)!+ghalf1
+            aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
+     &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
+            aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
+     &      -3.0d0*urzg(k,2)*vry)!+ghalf3
+            aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
+     &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
+C Derivatives in DC(i+1)
+            aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
+     &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
+            aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
+     &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
+            aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
+     &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
+            aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
+     &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
+C Derivatives in DC(j)
+            aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
+     &      -3.0d0*vryg(k,2)*ury)!+ghalf1
+            aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
+     &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
+            aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
+     &      -3.0d0*vryg(k,2)*urz)!+ghalf3
+            aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
+     &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
+C Derivatives in DC(j+1) or DC(nres-1)
+            aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
+     &      -3.0d0*vryg(k,3)*ury)
+            aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
+     &      -3.0d0*vrzg(k,3)*ury)
+            aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
+     &      -3.0d0*vryg(k,3)*urz)
+            aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
+     &      -3.0d0*vrzg(k,3)*urz)
+cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
+cgrad              do l=1,4
+cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
+cgrad              enddo
+cgrad            endif
+          enddo
+          acipa(1,1)=a22
+          acipa(1,2)=a23
+          acipa(2,1)=a32
+          acipa(2,2)=a33
+          a22=-a22
+          a23=-a23
+          do l=1,2
+            do k=1,3
+              agg(k,l)=-agg(k,l)
+              aggi(k,l)=-aggi(k,l)
+              aggi1(k,l)=-aggi1(k,l)
+              aggj(k,l)=-aggj(k,l)
+              aggj1(k,l)=-aggj1(k,l)
+            enddo
+          enddo
+          if (j.lt.nres-1) then
+            a22=-a22
+            a32=-a32
+            do l=1,3,2
+              do k=1,3
+                agg(k,l)=-agg(k,l)
+                aggi(k,l)=-aggi(k,l)
+                aggi1(k,l)=-aggi1(k,l)
+                aggj(k,l)=-aggj(k,l)
+                aggj1(k,l)=-aggj1(k,l)
+              enddo
+            enddo
+          else
+            a22=-a22
+            a23=-a23
+            a32=-a32
+            a33=-a33
+            do l=1,4
+              do k=1,3
+                agg(k,l)=-agg(k,l)
+                aggi(k,l)=-aggi(k,l)
+                aggi1(k,l)=-aggi1(k,l)
+                aggj(k,l)=-aggj(k,l)
+                aggj1(k,l)=-aggj1(k,l)
+              enddo
+            enddo 
+          endif    
+          ENDIF ! WCORR
+          IF (wel_loc.gt.0.0d0) THEN
+C Contribution to the local-electrostatic energy coming from the i-j pair
+          eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
+     &     +a33*muij(4)
+cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
+
+          if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &            'eelloc',i,j,eel_loc_ij
+
+          eel_loc=eel_loc+eel_loc_ij
+C Partial derivatives in virtual-bond dihedral angles gamma
+          if (i.gt.1)
+     &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
+     &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
+     &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
+          gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
+     &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
+     &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
+C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
+          do l=1,3
+            ggg(l)=agg(l,1)*muij(1)+
+     &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
+            gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
+            gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
+cgrad            ghalf=0.5d0*ggg(l)
+cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
+cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
+          enddo
+cgrad          do k=i+1,j2
+cgrad            do l=1,3
+cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+C Remaining derivatives of eello
+          do l=1,3
+            gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
+     &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
+            gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
+     &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
+            gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
+     &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
+            gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
+     &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
+          enddo
+          ENDIF
+C Change 12/26/95 to calculate four-body contributions to H-bonding energy
+c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
+          if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
+     &       .and. num_conti.le.maxconts) then
+c            write (iout,*) i,j," entered corr"
+C
+C Calculate the contact function. The ith column of the array JCONT will 
+C contain the numbers of atoms that make contacts with the atom I (of numbers
+C greater than I). The arrays FACONT and GACONT will contain the values of
+C the contact function and its derivative.
+c           r0ij=1.02D0*rpp(iteli,itelj)
+c           r0ij=1.11D0*rpp(iteli,itelj)
+            r0ij=2.20D0*rpp(iteli,itelj)
+c           r0ij=1.55D0*rpp(iteli,itelj)
+            call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
+            if (fcont.gt.0.0D0) then
+              num_conti=num_conti+1
+              if (num_conti.gt.maxconts) then
+                write (iout,*) 'WARNING - max. # of contacts exceeded;',
+     &                         ' will skip next contacts for this conf.'
+              else
+                jcont_hb(num_conti,i)=j
+cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
+cd     &           " jcont_hb",jcont_hb(num_conti,i)
+                IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
+     &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
+C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
+C  terms.
+                d_cont(num_conti,i)=rij
+cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
+C     --- Electrostatic-interaction matrix --- 
+                a_chuj(1,1,num_conti,i)=a22
+                a_chuj(1,2,num_conti,i)=a23
+                a_chuj(2,1,num_conti,i)=a32
+                a_chuj(2,2,num_conti,i)=a33
+C     --- Gradient of rij
+                do kkk=1,3
+                  grij_hb_cont(kkk,num_conti,i)=erij(kkk)
+                enddo
+                kkll=0
+                do k=1,2
+                  do l=1,2
+                    kkll=kkll+1
+                    do m=1,3
+                      a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
+                      a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
+                      a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
+                      a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
+                      a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
+                    enddo
+                  enddo
+                enddo
+                ENDIF
+                IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
+C Calculate contact energies
+                cosa4=4.0D0*cosa
+                wij=cosa-3.0D0*cosb*cosg
+                cosbg1=cosb+cosg
+                cosbg2=cosb-cosg
+c               fac3=dsqrt(-ael6i)/r0ij**3     
+                fac3=dsqrt(-ael6i)*r3ij
+c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
+                ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
+                if (ees0tmp.gt.0) then
+                  ees0pij=dsqrt(ees0tmp)
+                else
+                  ees0pij=0
+                endif
+c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
+                ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
+                if (ees0tmp.gt.0) then
+                  ees0mij=dsqrt(ees0tmp)
+                else
+                  ees0mij=0
+                endif
+c               ees0mij=0.0D0
+                ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
+                ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
+C Diagnostics. Comment out or remove after debugging!
+c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
+c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
+c               ees0m(num_conti,i)=0.0D0
+C End diagnostics.
+c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
+c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
+C Angular derivatives of the contact function
+                ees0pij1=fac3/ees0pij 
+                ees0mij1=fac3/ees0mij
+                fac3p=-3.0D0*fac3*rrmij
+                ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
+                ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
+c               ees0mij1=0.0D0
+                ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
+                ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
+                ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
+                ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
+                ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
+                ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
+                ecosap=ecosa1+ecosa2
+                ecosbp=ecosb1+ecosb2
+                ecosgp=ecosg1+ecosg2
+                ecosam=ecosa1-ecosa2
+                ecosbm=ecosb1-ecosb2
+                ecosgm=ecosg1-ecosg2
+C Diagnostics
+c               ecosap=ecosa1
+c               ecosbp=ecosb1
+c               ecosgp=ecosg1
+c               ecosam=0.0D0
+c               ecosbm=0.0D0
+c               ecosgm=0.0D0
+C End diagnostics
+                facont_hb(num_conti,i)=fcont
+                fprimcont=fprimcont/rij
+cd              facont_hb(num_conti,i)=1.0D0
+C Following line is for diagnostics.
+cd              fprimcont=0.0D0
+                do k=1,3
+                  dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
+                  dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
+                enddo
+                do k=1,3
+                  gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
+                  gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
+                enddo
+                gggp(1)=gggp(1)+ees0pijp*xj
+                gggp(2)=gggp(2)+ees0pijp*yj
+                gggp(3)=gggp(3)+ees0pijp*zj
+                gggm(1)=gggm(1)+ees0mijp*xj
+                gggm(2)=gggm(2)+ees0mijp*yj
+                gggm(3)=gggm(3)+ees0mijp*zj
+C Derivatives due to the contact function
+                gacont_hbr(1,num_conti,i)=fprimcont*xj
+                gacont_hbr(2,num_conti,i)=fprimcont*yj
+                gacont_hbr(3,num_conti,i)=fprimcont*zj
+                do k=1,3
+c
+c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
+c          following the change of gradient-summation algorithm.
+c
+cgrad                  ghalfp=0.5D0*gggp(k)
+cgrad                  ghalfm=0.5D0*gggm(k)
+                  gacontp_hb1(k,num_conti,i)=!ghalfp
+     &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+                  gacontp_hb2(k,num_conti,i)=!ghalfp
+     &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+                  gacontp_hb3(k,num_conti,i)=gggp(k)
+                  gacontm_hb1(k,num_conti,i)=!ghalfm
+     &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+                  gacontm_hb2(k,num_conti,i)=!ghalfm
+     &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+                  gacontm_hb3(k,num_conti,i)=gggm(k)
+                enddo
+              ENDIF ! wcorr
+              endif  ! num_conti.le.maxconts
+            endif  ! fcont.gt.0
+          endif    ! j.gt.i+1
+          if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
+            do k=1,4
+              do l=1,3
+                ghalf=0.5d0*agg(l,k)
+                aggi(l,k)=aggi(l,k)+ghalf
+                aggi1(l,k)=aggi1(l,k)+agg(l,k)
+                aggj(l,k)=aggj(l,k)+ghalf
+              enddo
+            enddo
+            if (j.eq.nres-1 .and. i.lt.j-2) then
+              do k=1,4
+                do l=1,3
+                  aggj1(l,k)=aggj1(l,k)+agg(l,k)
+                enddo
+              enddo
+            endif
+          endif
+c          t_eelecij=t_eelecij+MPI_Wtime()-time00
+      return
+      end
+C-----------------------------------------------------------------------
+      subroutine evdwpp_short(evdw1)
+C
+C Compute Evdwpp
+C 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      dimension ggg(3)
+c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
+#ifdef MOMENT
+      double precision scal_el /1.0d0/
+#else
+      double precision scal_el /0.5d0/
+#endif
+      evdw1=0.0D0
+c      write (iout,*) "iatel_s_vdw",iatel_s_vdw,
+c     & " iatel_e_vdw",iatel_e_vdw
+      call flush(iout)
+      do i=iatel_s_vdw,iatel_e_vdw
+        dxi=dc(1,i)
+        dyi=dc(2,i)
+        dzi=dc(3,i)
+        dx_normi=dc_norm(1,i)
+        dy_normi=dc_norm(2,i)
+        dz_normi=dc_norm(3,i)
+        xmedi=c(1,i)+0.5d0*dxi
+        ymedi=c(2,i)+0.5d0*dyi
+        zmedi=c(3,i)+0.5d0*dzi
+        num_conti=0
+c        write (iout,*) 'i',i,' ielstart',ielstart_vdw(i),
+c     &   ' ielend',ielend_vdw(i)
+        call flush(iout)
+        do j=ielstart_vdw(i),ielend_vdw(i)
+          ind=ind+1
+          iteli=itel(i)
+          itelj=itel(j)
+          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
+          aaa=app(iteli,itelj)
+          bbb=bpp(iteli,itelj)
+          dxj=dc(1,j)
+          dyj=dc(2,j)
+          dzj=dc(3,j)
+          dx_normj=dc_norm(1,j)
+          dy_normj=dc_norm(2,j)
+          dz_normj=dc_norm(3,j)
+          xj=c(1,j)+0.5D0*dxj-xmedi
+          yj=c(2,j)+0.5D0*dyj-ymedi
+          zj=c(3,j)+0.5D0*dzj-zmedi
+          rij=xj*xj+yj*yj+zj*zj
+          rrmij=1.0D0/rij
+          rij=dsqrt(rij)
+          sss=sscale(rij/rpp(iteli,itelj))
+          if (sss.gt.0.0d0) then
+            rmij=1.0D0/rij
+            r3ij=rrmij*rmij
+            r6ij=r3ij*r3ij  
+            ev1=aaa*r6ij*r6ij
+c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
+            if (j.eq.i+2) ev1=scal_el*ev1
+            ev2=bbb*r6ij
+            evdwij=ev1+ev2
+            if (energy_dec) then 
+              write (iout,'(a6,2i5,0pf7.3,f7.3)') 'evdw1',i,j,evdwij,sss
+            endif
+            evdw1=evdw1+evdwij*sss
+C
+C Calculate contributions to the Cartesian gradient.
+C
+            facvdw=-6*rrmij*(ev1+evdwij)*sss
+            ggg(1)=facvdw*xj
+            ggg(2)=facvdw*yj
+            ggg(3)=facvdw*zj
+            do k=1,3
+              gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
+              gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
+            enddo
+          endif
+        enddo ! j
+      enddo   ! i
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine escp_long(evdw2,evdw2_14)
+C
+C This subroutine calculates the excluded-volume interaction energy between
+C peptide-group centers and side chains and its gradient in virtual-bond and
+C side-chain vectors.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
+      dimension ggg(3)
+      evdw2=0.0D0
+      evdw2_14=0.0d0
+cd    print '(a)','Enter ESCP'
+cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
+      do i=iatscp_s,iatscp_e
+        iteli=itel(i)
+        xi=0.5D0*(c(1,i)+c(1,i+1))
+        yi=0.5D0*(c(2,i)+c(2,i+1))
+        zi=0.5D0*(c(3,i)+c(3,i+1))
+
+        do iint=1,nscp_gr(i)
+
+        do j=iscpstart(i,iint),iscpend(i,iint)
+          itypj=itype(j)
+C Uncomment following three lines for SC-p interactions
+c         xj=c(1,nres+j)-xi
+c         yj=c(2,nres+j)-yi
+c         zj=c(3,nres+j)-zi
+C Uncomment following three lines for Ca-p interactions
+          xj=c(1,j)-xi
+          yj=c(2,j)-yi
+          zj=c(3,j)-zi
+          rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+
+          sss=sscale(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli)))
+
+          if (sss.lt.1.0d0) then
+
+            fac=rrij**expon2
+            e1=fac*fac*aad(itypj,iteli)
+            e2=fac*bad(itypj,iteli)
+            if (iabs(j-i) .le. 2) then
+              e1=scal14*e1
+              e2=scal14*e2
+              evdw2_14=evdw2_14+(e1+e2)*(1.0d0-sss)
+            endif
+            evdwij=e1+e2
+            evdw2=evdw2+evdwij*(1.0d0-sss)
+            if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &          'evdw2',i,j,evdwij
+C
+C Calculate contributions to the gradient in the virtual-bond and SC vectors.
+C
+            fac=-(evdwij+e1)*rrij*(1.0d0-sss)
+            ggg(1)=xj*fac
+            ggg(2)=yj*fac
+            ggg(3)=zj*fac
+C Uncomment following three lines for SC-p interactions
+c           do k=1,3
+c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
+c           enddo
+C Uncomment following line for SC-p interactions
+c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
+            do k=1,3
+              gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
+              gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
+            enddo
+          endif
+        enddo
+
+        enddo ! iint
+      enddo ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
+          gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
+          gradx_scp(j,i)=expon*gradx_scp(j,i)
+        enddo
+      enddo
+C******************************************************************************
+C
+C                              N O T E !!!
+C
+C To save time the factor EXPON has been extracted from ALL components
+C of GVDWC and GRADX. Remember to multiply them by this factor before further 
+C use!
+C
+C******************************************************************************
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine escp_short(evdw2,evdw2_14)
+C
+C This subroutine calculates the excluded-volume interaction energy between
+C peptide-group centers and side chains and its gradient in virtual-bond and
+C side-chain vectors.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
+      dimension ggg(3)
+      evdw2=0.0D0
+      evdw2_14=0.0d0
+cd    print '(a)','Enter ESCP'
+cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
+      do i=iatscp_s,iatscp_e
+        iteli=itel(i)
+        xi=0.5D0*(c(1,i)+c(1,i+1))
+        yi=0.5D0*(c(2,i)+c(2,i+1))
+        zi=0.5D0*(c(3,i)+c(3,i+1))
+
+        do iint=1,nscp_gr(i)
+
+        do j=iscpstart(i,iint),iscpend(i,iint)
+          itypj=itype(j)
+C Uncomment following three lines for SC-p interactions
+c         xj=c(1,nres+j)-xi
+c         yj=c(2,nres+j)-yi
+c         zj=c(3,nres+j)-zi
+C Uncomment following three lines for Ca-p interactions
+          xj=c(1,j)-xi
+          yj=c(2,j)-yi
+          zj=c(3,j)-zi
+          rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+
+          sss=sscale(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli)))
+
+          if (sss.gt.0.0d0) then
+
+            fac=rrij**expon2
+            e1=fac*fac*aad(itypj,iteli)
+            e2=fac*bad(itypj,iteli)
+            if (iabs(j-i) .le. 2) then
+              e1=scal14*e1
+              e2=scal14*e2
+              evdw2_14=evdw2_14+(e1+e2)*sss
+            endif
+            evdwij=e1+e2
+            evdw2=evdw2+evdwij*sss
+            if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &          'evdw2',i,j,evdwij
+C
+C Calculate contributions to the gradient in the virtual-bond and SC vectors.
+C
+            fac=-(evdwij+e1)*rrij*sss
+            ggg(1)=xj*fac
+            ggg(2)=yj*fac
+            ggg(3)=zj*fac
+C Uncomment following three lines for SC-p interactions
+c           do k=1,3
+c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
+c           enddo
+C Uncomment following line for SC-p interactions
+c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
+            do k=1,3
+              gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
+              gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
+            enddo
+          endif
+        enddo
+
+        enddo ! iint
+      enddo ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
+          gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
+          gradx_scp(j,i)=expon*gradx_scp(j,i)
+        enddo
+      enddo
+C******************************************************************************
+C
+C                              N O T E !!!
+C
+C To save time the factor EXPON has been extracted from ALL components
+C of GVDWC and GRADX. Remember to multiply them by this factor before further 
+C use!
+C
+C******************************************************************************
+      return
+      end
diff --git a/source/unres/src_MD_DFA/energy_p_new_barrier.F b/source/unres/src_MD_DFA/energy_p_new_barrier.F
new file mode 100644 (file)
index 0000000..9edadf8
--- /dev/null
@@ -0,0 +1,9208 @@
+      subroutine etotal(energia)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifndef ISNAN
+      external proc_proc
+#ifdef WINPGI
+cMS$ATTRIBUTES C ::  proc_proc
+#endif
+#endif
+#ifdef MPI
+      include "mpif.h"
+      double precision weights_(n_ene)
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision energia(0:n_ene)
+      include 'COMMON.LOCAL'
+      include 'COMMON.FFIELD'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.CONTROL'
+      include 'COMMON.TIME1'
+#ifdef MPI      
+c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
+c     & " nfgtasks",nfgtasks
+      if (nfgtasks.gt.1) then
+#ifdef MPI
+        time00=MPI_Wtime()
+#else
+        time00=tcpu()
+#endif
+C FG slaves call the following matching MPI_Bcast in ERGASTULUM
+        if (fg_rank.eq.0) then
+          call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
+c          print *,"Processor",myrank," BROADCAST iorder"
+C FG master sets up the WEIGHTS_ array which will be broadcast to the 
+C FG slaves as WEIGHTS array.
+          weights_(1)=wsc
+          weights_(2)=wscp
+          weights_(3)=welec
+          weights_(4)=wcorr
+          weights_(5)=wcorr5
+          weights_(6)=wcorr6
+          weights_(7)=wel_loc
+          weights_(8)=wturn3
+          weights_(9)=wturn4
+          weights_(10)=wturn6
+          weights_(11)=wang
+          weights_(12)=wscloc
+          weights_(13)=wtor
+          weights_(14)=wtor_d
+          weights_(15)=wstrain
+          weights_(16)=wvdwpp
+          weights_(17)=wbond
+          weights_(18)=scal14
+          weights_(21)=wsccor
+          weights_(22)=wsct
+C FG Master broadcasts the WEIGHTS_ array
+          call MPI_Bcast(weights_(1),n_ene,
+     &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
+        else
+C FG slaves receive the WEIGHTS array
+          call MPI_Bcast(weights(1),n_ene,
+     &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
+          wsc=weights(1)
+          wscp=weights(2)
+          welec=weights(3)
+          wcorr=weights(4)
+          wcorr5=weights(5)
+          wcorr6=weights(6)
+          wel_loc=weights(7)
+          wturn3=weights(8)
+          wturn4=weights(9)
+          wturn6=weights(10)
+          wang=weights(11)
+          wscloc=weights(12)
+          wtor=weights(13)
+          wtor_d=weights(14)
+          wstrain=weights(15)
+          wvdwpp=weights(16)
+          wbond=weights(17)
+          scal14=weights(18)
+          wsccor=weights(21)
+          wsct=weights(22)
+        endif
+        time_Bcast=time_Bcast+MPI_Wtime()-time00
+        time_Bcastw=time_Bcastw+MPI_Wtime()-time00
+c        call chainbuild_cart
+      endif
+c      print *,'Processor',myrank,' calling etotal ipot=',ipot
+c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
+#else
+c      if (modecalc.eq.12.or.modecalc.eq.14) then
+c        call int_from_cart1(.false.)
+c      endif
+#endif     
+#ifdef TIMING
+#ifdef MPI
+      time00=MPI_Wtime()
+#else
+      time00=tcpu()
+#endif
+#endif
+C 
+C Compute the side-chain and electrostatic interaction energy
+C
+      goto (101,102,103,104,105,106) ipot
+C Lennard-Jones potential.
+  101 call elj(evdw,evdw_p,evdw_m)
+cd    print '(a)','Exit ELJ'
+      goto 107
+C Lennard-Jones-Kihara potential (shifted).
+  102 call eljk(evdw,evdw_p,evdw_m)
+      goto 107
+C Berne-Pechukas potential (dilated LJ, angular dependence).
+  103 call ebp(evdw,evdw_p,evdw_m)
+      goto 107
+C Gay-Berne potential (shifted LJ, angular dependence).
+  104 call egb(evdw,evdw_p,evdw_m)
+      goto 107
+C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
+  105 call egbv(evdw,evdw_p,evdw_m)
+      goto 107
+C Soft-sphere potential
+  106 call e_softsphere(evdw)
+C
+C Calculate electrostatic (H-bonding) energy of the main chain.
+C
+  107 continue
+c      print *,"Processor",myrank," computed USCSC"
+#ifdef TIMING
+#ifdef MPI
+      time01=MPI_Wtime() 
+#else
+      time00=tcpu()
+#endif
+#endif
+      call vec_and_deriv
+#ifdef TIMING
+#ifdef MPI
+      time_vec=time_vec+MPI_Wtime()-time01
+#else
+      time_vec=time_vec+tcpu()-time01
+#endif
+#endif
+c      print *,"Processor",myrank," left VEC_AND_DERIV"
+      if (ipot.lt.6) then
+#ifdef SPLITELE
+         if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
+     &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
+     &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
+     &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
+#else
+         if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
+     &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
+     &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
+     &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
+#endif
+            call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
+         else
+            ees=0.0d0
+            evdw1=0.0d0
+            eel_loc=0.0d0
+            eello_turn3=0.0d0
+            eello_turn4=0.0d0
+         endif
+      else
+c        write (iout,*) "Soft-spheer ELEC potential"
+        call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
+     &   eello_turn4)
+      endif
+c      print *,"Processor",myrank," computed UELEC"
+C
+C Calculate excluded-volume interaction energy between peptide groups
+C and side chains.
+C
+      if (ipot.lt.6) then
+       if(wscp.gt.0d0) then
+        call escp(evdw2,evdw2_14)
+       else
+        evdw2=0
+        evdw2_14=0
+       endif
+      else
+c        write (iout,*) "Soft-sphere SCP potential"
+        call escp_soft_sphere(evdw2,evdw2_14)
+      endif
+c
+c Calculate the bond-stretching energy
+c
+      call ebond(estr)
+C 
+C Calculate the disulfide-bridge and other energy and the contributions
+C from other distance constraints.
+cd    print *,'Calling EHPB'
+      call edis(ehpb)
+cd    print *,'EHPB exitted succesfully.'
+C
+C Calculate the virtual-bond-angle energy.
+C
+      if (wang.gt.0d0) then
+        call ebend(ebe)
+      else
+        ebe=0
+      endif
+c      print *,"Processor",myrank," computed UB"
+C
+C Calculate the SC local energy.
+C
+      call esc(escloc)
+c      print *,"Processor",myrank," computed USC"
+C
+C Calculate the virtual-bond torsional energy.
+C
+cd    print *,'nterm=',nterm
+      if (wtor.gt.0) then
+       call etor(etors,edihcnstr)
+      else
+       etors=0
+       edihcnstr=0
+      endif
+c      print *,"Processor",myrank," computed Utor"
+C
+C 6/23/01 Calculate double-torsional energy
+C
+      if (wtor_d.gt.0) then
+       call etor_d(etors_d)
+      else
+       etors_d=0
+      endif
+c      print *,"Processor",myrank," computed Utord"
+C
+C 21/5/07 Calculate local sicdechain correlation energy
+C
+      if (wsccor.gt.0.0d0) then
+        call eback_sc_corr(esccor)
+      else
+        esccor=0.0d0
+      endif
+c      print *,"Processor",myrank," computed Usccorr"
+C 
+C 12/1/95 Multi-body terms
+C
+      n_corr=0
+      n_corr1=0
+      if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
+     &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
+         call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
+cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
+cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
+      else
+         ecorr=0.0d0
+         ecorr5=0.0d0
+         ecorr6=0.0d0
+         eturn6=0.0d0
+      endif
+      if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
+         call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
+cd         write (iout,*) "multibody_hb ecorr",ecorr
+      endif
+c      print *,"Processor",myrank," computed Ucorr"
+C 
+C If performing constraint dynamics, call the constraint energy
+C  after the equilibration time
+      if(usampl.and.totT.gt.eq_time) then
+         call EconstrQ   
+         call Econstr_back
+      else
+         Uconst=0.0d0
+         Uconst_back=0.0d0
+      endif
+#ifdef TIMING
+#ifdef MPI
+      time_enecalc=time_enecalc+MPI_Wtime()-time00
+#else
+      time_enecalc=time_enecalc+tcpu()-time00
+#endif
+#endif
+c      print *,"Processor",myrank," computed Uconstr"
+#ifdef TIMING
+#ifdef MPI
+      time00=MPI_Wtime()
+#else
+      time00=tcpu()
+#endif
+#endif
+c
+C Sum the energies
+C
+      energia(1)=evdw
+#ifdef SCP14
+      energia(2)=evdw2-evdw2_14
+      energia(18)=evdw2_14
+#else
+      energia(2)=evdw2
+      energia(18)=0.0d0
+#endif
+#ifdef SPLITELE
+      energia(3)=ees
+      energia(16)=evdw1
+#else
+      energia(3)=ees+evdw1
+      energia(16)=0.0d0
+#endif
+      energia(4)=ecorr
+      energia(5)=ecorr5
+      energia(6)=ecorr6
+      energia(7)=eel_loc
+      energia(8)=eello_turn3
+      energia(9)=eello_turn4
+      energia(10)=eturn6
+      energia(11)=ebe
+      energia(12)=escloc
+      energia(13)=etors
+      energia(14)=etors_d
+      energia(15)=ehpb
+      energia(19)=edihcnstr
+      energia(17)=estr
+      energia(20)=Uconst+Uconst_back
+      energia(21)=esccor
+      energia(22)=evdw_p
+      energia(23)=evdw_m
+c      print *," Processor",myrank," calls SUM_ENERGY"
+      call sum_energy(energia,.true.)
+c      print *," Processor",myrank," left SUM_ENERGY"
+#ifdef TIMING
+#ifdef MPI
+      time_sumene=time_sumene+MPI_Wtime()-time00
+#else
+      time_sumene=time_sumene+tcpu()-time00
+#endif
+#endif
+      return
+      end
+c-------------------------------------------------------------------------------
+      subroutine sum_energy(energia,reduce)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifndef ISNAN
+      external proc_proc
+#ifdef WINPGI
+cMS$ATTRIBUTES C ::  proc_proc
+#endif
+#endif
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision energia(0:n_ene),enebuff(0:n_ene+1)
+      include 'COMMON.FFIELD'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.CONTROL'
+      include 'COMMON.TIME1'
+      logical reduce
+#ifdef MPI
+      if (nfgtasks.gt.1 .and. reduce) then
+#ifdef DEBUG
+        write (iout,*) "energies before REDUCE"
+        call enerprint(energia)
+        call flush(iout)
+#endif
+        do i=0,n_ene
+          enebuff(i)=energia(i)
+        enddo
+        time00=MPI_Wtime()
+        call MPI_Barrier(FG_COMM,IERR)
+        time_barrier_e=time_barrier_e+MPI_Wtime()-time00
+        time00=MPI_Wtime()
+        call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
+     &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
+#ifdef DEBUG
+        write (iout,*) "energies after REDUCE"
+        call enerprint(energia)
+        call flush(iout)
+#endif
+        time_Reduce=time_Reduce+MPI_Wtime()-time00
+      endif
+      if (fg_rank.eq.0) then
+#endif
+#ifdef TSCSC
+      evdw=energia(22)+wsct*energia(23)
+#else
+      evdw=energia(1)
+#endif
+#ifdef SCP14
+      evdw2=energia(2)+energia(18)
+      evdw2_14=energia(18)
+#else
+      evdw2=energia(2)
+#endif
+#ifdef SPLITELE
+      ees=energia(3)
+      evdw1=energia(16)
+#else
+      ees=energia(3)
+      evdw1=0.0d0
+#endif
+      ecorr=energia(4)
+      ecorr5=energia(5)
+      ecorr6=energia(6)
+      eel_loc=energia(7)
+      eello_turn3=energia(8)
+      eello_turn4=energia(9)
+      eturn6=energia(10)
+      ebe=energia(11)
+      escloc=energia(12)
+      etors=energia(13)
+      etors_d=energia(14)
+      ehpb=energia(15)
+      edihcnstr=energia(19)
+      estr=energia(17)
+      Uconst=energia(20)
+      esccor=energia(21)
+#ifdef SPLITELE
+      etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
+     & +wang*ebe+wtor*etors+wscloc*escloc
+     & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
+     & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
+     & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
+     & +wbond*estr+Uconst+wsccor*esccor
+#else
+      etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
+     & +wang*ebe+wtor*etors+wscloc*escloc
+     & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
+     & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
+     & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
+     & +wbond*estr+Uconst+wsccor*esccor
+#endif
+      energia(0)=etot
+c detecting NaNQ
+#ifdef ISNAN
+#ifdef AIX
+      if (isnan(etot).ne.0) energia(0)=1.0d+99
+#else
+      if (isnan(etot)) energia(0)=1.0d+99
+#endif
+#else
+      i=0
+#ifdef WINPGI
+      idumm=proc_proc(etot,i)
+#else
+      call proc_proc(etot,i)
+#endif
+      if(i.eq.1)energia(0)=1.0d+99
+#endif
+#ifdef MPI
+      endif
+#endif
+      return
+      end
+c-------------------------------------------------------------------------------
+      subroutine sum_gradient
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifndef ISNAN
+      external proc_proc
+#ifdef WINPGI
+cMS$ATTRIBUTES C ::  proc_proc
+#endif
+#endif
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      double precision gradbufc(3,maxres),gradbufx(3,maxres),
+     &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.CONTROL'
+      include 'COMMON.TIME1'
+      include 'COMMON.MAXGRAD'
+      include 'COMMON.SCCOR'
+#ifdef TIMING
+#ifdef MPI
+      time01=MPI_Wtime()
+#else
+      time01=tcpu()
+#endif
+#endif
+#ifdef DEBUG
+      write (iout,*) "sum_gradient gvdwc, gvdwx"
+      do i=1,nres
+        write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
+     &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
+     &   (gvdwcT(j,i),j=1,3)
+      enddo
+      call flush(iout)
+#endif
+#ifdef MPI
+C FG slaves call the following matching MPI_Bcast in ERGASTULUM
+        if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
+     &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
+#endif
+C
+C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
+C            in virtual-bond-vector coordinates
+C
+#ifdef DEBUG
+c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
+c      do i=1,nres-1
+c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
+c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
+c      enddo
+c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
+c      do i=1,nres-1
+c        write (iout,'(i5,3f10.5,2x,f10.5)') 
+c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
+c      enddo
+      write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
+      do i=1,nres
+        write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
+     &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
+     &   g_corr5_loc(i)
+      enddo
+      call flush(iout)
+#endif
+#ifdef SPLITELE
+#ifdef TSCSC
+      do i=1,nct
+        do j=1,3
+          gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
+     &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
+     &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
+     &                wel_loc*gel_loc_long(j,i)+
+     &                wcorr*gradcorr_long(j,i)+
+     &                wcorr5*gradcorr5_long(j,i)+
+     &                wcorr6*gradcorr6_long(j,i)+
+     &                wturn6*gcorr6_turn_long(j,i)+
+     &                wstrain*ghpbc(j,i)
+        enddo
+      enddo 
+#else
+      do i=1,nct
+        do j=1,3
+          gradbufc(j,i)=wsc*gvdwc(j,i)+
+     &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
+     &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
+     &                wel_loc*gel_loc_long(j,i)+
+     &                wcorr*gradcorr_long(j,i)+
+     &                wcorr5*gradcorr5_long(j,i)+
+     &                wcorr6*gradcorr6_long(j,i)+
+     &                wturn6*gcorr6_turn_long(j,i)+
+     &                wstrain*ghpbc(j,i)
+        enddo
+      enddo 
+#endif
+#else
+      do i=1,nct
+        do j=1,3
+          gradbufc(j,i)=wsc*gvdwc(j,i)+
+     &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
+     &                welec*gelc_long(j,i)+
+     &                wbond*gradb(j,i)+
+     &                wel_loc*gel_loc_long(j,i)+
+     &                wcorr*gradcorr_long(j,i)+
+     &                wcorr5*gradcorr5_long(j,i)+
+     &                wcorr6*gradcorr6_long(j,i)+
+     &                wturn6*gcorr6_turn_long(j,i)+
+     &                wstrain*ghpbc(j,i)
+        enddo
+      enddo 
+#endif
+#ifdef MPI
+      if (nfgtasks.gt.1) then
+      time00=MPI_Wtime()
+#ifdef DEBUG
+      write (iout,*) "gradbufc before allreduce"
+      do i=1,nres
+        write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
+      enddo
+      call flush(iout)
+#endif
+      do i=1,nres
+        do j=1,3
+          gradbufc_sum(j,i)=gradbufc(j,i)
+        enddo
+      enddo
+c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
+c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
+c      time_reduce=time_reduce+MPI_Wtime()-time00
+#ifdef DEBUG
+c      write (iout,*) "gradbufc_sum after allreduce"
+c      do i=1,nres
+c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
+c      enddo
+c      call flush(iout)
+#endif
+#ifdef TIMING
+c      time_allreduce=time_allreduce+MPI_Wtime()-time00
+#endif
+      do i=nnt,nres
+        do k=1,3
+          gradbufc(k,i)=0.0d0
+        enddo
+      enddo
+#ifdef DEBUG
+      write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
+      write (iout,*) (i," jgrad_start",jgrad_start(i),
+     &                  " jgrad_end  ",jgrad_end(i),
+     &                  i=igrad_start,igrad_end)
+#endif
+c
+c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
+c do not parallelize this part.
+c
+c      do i=igrad_start,igrad_end
+c        do j=jgrad_start(i),jgrad_end(i)
+c          do k=1,3
+c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
+c          enddo
+c        enddo
+c      enddo
+      do j=1,3
+        gradbufc(j,nres-1)=gradbufc_sum(j,nres)
+      enddo
+      do i=nres-2,nnt,-1
+        do j=1,3
+          gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
+        enddo
+      enddo
+#ifdef DEBUG
+      write (iout,*) "gradbufc after summing"
+      do i=1,nres
+        write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
+      enddo
+      call flush(iout)
+#endif
+      else
+#endif
+#ifdef DEBUG
+      write (iout,*) "gradbufc"
+      do i=1,nres
+        write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
+      enddo
+      call flush(iout)
+#endif
+      do i=1,nres
+        do j=1,3
+          gradbufc_sum(j,i)=gradbufc(j,i)
+          gradbufc(j,i)=0.0d0
+        enddo
+      enddo
+      do j=1,3
+        gradbufc(j,nres-1)=gradbufc_sum(j,nres)
+      enddo
+      do i=nres-2,nnt,-1
+        do j=1,3
+          gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
+        enddo
+      enddo
+c      do i=nnt,nres-1
+c        do k=1,3
+c          gradbufc(k,i)=0.0d0
+c        enddo
+c        do j=i+1,nres
+c          do k=1,3
+c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
+c          enddo
+c        enddo
+c      enddo
+#ifdef DEBUG
+      write (iout,*) "gradbufc after summing"
+      do i=1,nres
+        write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
+      enddo
+      call flush(iout)
+#endif
+#ifdef MPI
+      endif
+#endif
+      do k=1,3
+        gradbufc(k,nres)=0.0d0
+      enddo
+      do i=1,nct
+        do j=1,3
+#ifdef SPLITELE
+          gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
+     &                wel_loc*gel_loc(j,i)+
+     &                0.5d0*(wscp*gvdwc_scpp(j,i)+
+     &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
+     &                wel_loc*gel_loc_long(j,i)+
+     &                wcorr*gradcorr_long(j,i)+
+     &                wcorr5*gradcorr5_long(j,i)+
+     &                wcorr6*gradcorr6_long(j,i)+
+     &                wturn6*gcorr6_turn_long(j,i))+
+     &                wbond*gradb(j,i)+
+     &                wcorr*gradcorr(j,i)+
+     &                wturn3*gcorr3_turn(j,i)+
+     &                wturn4*gcorr4_turn(j,i)+
+     &                wcorr5*gradcorr5(j,i)+
+     &                wcorr6*gradcorr6(j,i)+
+     &                wturn6*gcorr6_turn(j,i)+
+     &                wsccor*gsccorc(j,i)
+     &               +wscloc*gscloc(j,i)
+#else
+          gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
+     &                wel_loc*gel_loc(j,i)+
+     &                0.5d0*(wscp*gvdwc_scpp(j,i)+
+     &                welec*gelc_long(j,i)+
+     &                wel_loc*gel_loc_long(j,i)+
+     &                wcorr*gcorr_long(j,i)+
+     &                wcorr5*gradcorr5_long(j,i)+
+     &                wcorr6*gradcorr6_long(j,i)+
+     &                wturn6*gcorr6_turn_long(j,i))+
+     &                wbond*gradb(j,i)+
+     &                wcorr*gradcorr(j,i)+
+     &                wturn3*gcorr3_turn(j,i)+
+     &                wturn4*gcorr4_turn(j,i)+
+     &                wcorr5*gradcorr5(j,i)+
+     &                wcorr6*gradcorr6(j,i)+
+     &                wturn6*gcorr6_turn(j,i)+
+     &                wsccor*gsccorc(j,i)
+     &               +wscloc*gscloc(j,i)
+#endif
+#ifdef TSCSC
+          gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
+     &                  wscp*gradx_scp(j,i)+
+     &                  wbond*gradbx(j,i)+
+     &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
+     &                  wsccor*gsccorx(j,i)
+     &                 +wscloc*gsclocx(j,i)
+#else
+          gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
+     &                  wbond*gradbx(j,i)+
+     &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
+     &                  wsccor*gsccorx(j,i)
+     &                 +wscloc*gsclocx(j,i)
+#endif
+        enddo
+      enddo 
+#ifdef DEBUG
+      write (iout,*) "gloc before adding corr"
+      do i=1,4*nres
+        write (iout,*) i,gloc(i,icg)
+      enddo
+#endif
+      do i=1,nres-3
+        gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
+     &   +wcorr5*g_corr5_loc(i)
+     &   +wcorr6*g_corr6_loc(i)
+     &   +wturn4*gel_loc_turn4(i)
+     &   +wturn3*gel_loc_turn3(i)
+     &   +wturn6*gel_loc_turn6(i)
+     &   +wel_loc*gel_loc_loc(i)
+      enddo
+#ifdef DEBUG
+      write (iout,*) "gloc after adding corr"
+      do i=1,4*nres
+        write (iout,*) i,gloc(i,icg)
+      enddo
+#endif
+#ifdef MPI
+      if (nfgtasks.gt.1) then
+        do j=1,3
+          do i=1,nres
+            gradbufc(j,i)=gradc(j,i,icg)
+            gradbufx(j,i)=gradx(j,i,icg)
+          enddo
+        enddo
+        do i=1,4*nres
+          glocbuf(i)=gloc(i,icg)
+        enddo
+#define DEBUG
+#ifdef DEBUG
+      write (iout,*) "gloc_sc before reduce"
+      do i=1,nres
+       do j=1,3
+        write (iout,*) i,j,gloc_sc(j,i,icg)
+       enddo
+      enddo
+#endif
+#undef DEBUG
+        do i=1,nres
+         do j=1,3
+          gloc_scbuf(j,i)=gloc_sc(j,i,icg)
+         enddo
+        enddo
+        time00=MPI_Wtime()
+        call MPI_Barrier(FG_COMM,IERR)
+        time_barrier_g=time_barrier_g+MPI_Wtime()-time00
+        time00=MPI_Wtime()
+        call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
+     &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
+        call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
+     &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
+        call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
+     &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
+        call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
+     &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
+        time_reduce=time_reduce+MPI_Wtime()-time00
+#define DEBUG
+#ifdef DEBUG
+      write (iout,*) "gloc_sc after reduce"
+      do i=1,nres
+       do j=1,3
+        write (iout,*) i,j,gloc_sc(j,i,icg)
+       enddo
+      enddo
+#endif
+#undef DEBUG
+#ifdef DEBUG
+      write (iout,*) "gloc after reduce"
+      do i=1,4*nres
+        write (iout,*) i,gloc(i,icg)
+      enddo
+#endif
+      endif
+#endif
+      if (gnorm_check) then
+c
+c Compute the maximum elements of the gradient
+c
+      gvdwc_max=0.0d0
+      gvdwc_scp_max=0.0d0
+      gelc_max=0.0d0
+      gvdwpp_max=0.0d0
+      gradb_max=0.0d0
+      ghpbc_max=0.0d0
+      gradcorr_max=0.0d0
+      gel_loc_max=0.0d0
+      gcorr3_turn_max=0.0d0
+      gcorr4_turn_max=0.0d0
+      gradcorr5_max=0.0d0
+      gradcorr6_max=0.0d0
+      gcorr6_turn_max=0.0d0
+      gsccorc_max=0.0d0
+      gscloc_max=0.0d0
+      gvdwx_max=0.0d0
+      gradx_scp_max=0.0d0
+      ghpbx_max=0.0d0
+      gradxorr_max=0.0d0
+      gsccorx_max=0.0d0
+      gsclocx_max=0.0d0
+      do i=1,nct
+        gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
+        if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
+#ifdef TSCSC
+        gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
+        if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
+#endif
+        gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
+        if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
+     &   gvdwc_scp_max=gvdwc_scp_norm
+        gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
+        if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
+        gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
+        if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
+        gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
+        if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
+        ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
+        if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
+        gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
+        if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
+        gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
+        if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
+        gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
+     &    gcorr3_turn(1,i)))
+        if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
+     &    gcorr3_turn_max=gcorr3_turn_norm
+        gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
+     &    gcorr4_turn(1,i)))
+        if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
+     &    gcorr4_turn_max=gcorr4_turn_norm
+        gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
+        if (gradcorr5_norm.gt.gradcorr5_max) 
+     &    gradcorr5_max=gradcorr5_norm
+        gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
+        if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
+        gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
+     &    gcorr6_turn(1,i)))
+        if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
+     &    gcorr6_turn_max=gcorr6_turn_norm
+        gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
+        if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
+        gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
+        if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
+        gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
+        if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
+#ifdef TSCSC
+        gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
+        if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
+#endif
+        gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
+        if (gradx_scp_norm.gt.gradx_scp_max) 
+     &    gradx_scp_max=gradx_scp_norm
+        ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
+        if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
+        gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
+        if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
+        gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
+        if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
+        gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
+        if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
+      enddo 
+      if (gradout) then
+#ifdef AIX
+        open(istat,file=statname,position="append")
+#else
+        open(istat,file=statname,access="append")
+#endif
+        write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
+     &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
+     &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
+     &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
+     &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
+     &     gsccorx_max,gsclocx_max
+        close(istat)
+        if (gvdwc_max.gt.1.0d4) then
+          write (iout,*) "gvdwc gvdwx gradb gradbx"
+          do i=nnt,nct
+            write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
+     &        gradb(j,i),gradbx(j,i),j=1,3)
+          enddo
+          call pdbout(0.0d0,'cipiszcze',iout)
+          call flush(iout)
+        endif
+      endif
+      endif
+#ifdef DEBUG
+      write (iout,*) "gradc gradx gloc"
+      do i=1,nres
+        write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
+     &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
+      enddo 
+#endif
+#ifdef TIMING
+#ifdef MPI
+      time_sumgradient=time_sumgradient+MPI_Wtime()-time01
+#else
+      time_sumgradient=time_sumgradient+tcpu()-time01
+#endif
+#endif
+      return
+      end
+c-------------------------------------------------------------------------------
+      subroutine rescale_weights(t_bath)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      double precision kfac /2.4d0/
+      double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
+c      facT=temp0/t_bath
+c      facT=2*temp0/(t_bath+temp0)
+      if (rescale_mode.eq.0) then
+        facT=1.0d0
+        facT2=1.0d0
+        facT3=1.0d0
+        facT4=1.0d0
+        facT5=1.0d0
+      else if (rescale_mode.eq.1) then
+        facT=kfac/(kfac-1.0d0+t_bath/temp0)
+        facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
+        facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
+        facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
+        facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
+      else if (rescale_mode.eq.2) then
+        x=t_bath/temp0
+        x2=x*x
+        x3=x2*x
+        x4=x3*x
+        x5=x4*x
+        facT=licznik/dlog(dexp(x)+dexp(-x))
+        facT2=licznik/dlog(dexp(x2)+dexp(-x2))
+        facT3=licznik/dlog(dexp(x3)+dexp(-x3))
+        facT4=licznik/dlog(dexp(x4)+dexp(-x4))
+        facT5=licznik/dlog(dexp(x5)+dexp(-x5))
+      else
+        write (iout,*) "Wrong RESCALE_MODE",rescale_mode
+        write (*,*) "Wrong RESCALE_MODE",rescale_mode
+#ifdef MPI
+       call MPI_Finalize(MPI_COMM_WORLD,IERROR)
+#endif
+       stop 555
+      endif
+      welec=weights(3)*fact
+      wcorr=weights(4)*fact3
+      wcorr5=weights(5)*fact4
+      wcorr6=weights(6)*fact5
+      wel_loc=weights(7)*fact2
+      wturn3=weights(8)*fact2
+      wturn4=weights(9)*fact3
+      wturn6=weights(10)*fact5
+      wtor=weights(13)*fact
+      wtor_d=weights(14)*fact2
+      wsccor=weights(21)*fact
+#ifdef TSCSC
+c      wsct=t_bath/temp0
+      wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
+#endif
+      return
+      end
+C------------------------------------------------------------------------
+      subroutine enerprint(energia)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.MD'
+      double precision energia(0:n_ene)
+      etot=energia(0)
+#ifdef TSCSC
+      evdw=energia(22)+wsct*energia(23)
+#else
+      evdw=energia(1)
+#endif
+      evdw2=energia(2)
+#ifdef SCP14
+      evdw2=energia(2)+energia(18)
+#else
+      evdw2=energia(2)
+#endif
+      ees=energia(3)
+#ifdef SPLITELE
+      evdw1=energia(16)
+#endif
+      ecorr=energia(4)
+      ecorr5=energia(5)
+      ecorr6=energia(6)
+      eel_loc=energia(7)
+      eello_turn3=energia(8)
+      eello_turn4=energia(9)
+      eello_turn6=energia(10)
+      ebe=energia(11)
+      escloc=energia(12)
+      etors=energia(13)
+      etors_d=energia(14)
+      ehpb=energia(15)
+      edihcnstr=energia(19)
+      estr=energia(17)
+      Uconst=energia(20)
+      esccor=energia(21)
+#ifdef SPLITELE
+      write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
+     &  estr,wbond,ebe,wang,
+     &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
+     &  ecorr,wcorr,
+     &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
+     &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
+     &  edihcnstr,ebr*nss,
+     &  Uconst,etot
+   10 format (/'Virtual-chain energies:'//
+     & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
+     & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
+     & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
+     & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
+     & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
+     & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
+     & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
+     & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
+     & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
+     & 'EHPB=  ',1pE16.6,' WEIGHT=',1pD16.6,
+     & ' (SS bridges & dist. cnstr.)'/
+     & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
+     & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
+     & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
+     & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
+     & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
+     & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
+     & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
+     & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
+     & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
+     & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
+     & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
+     & 'ETOT=  ',1pE16.6,' (total)')
+#else
+      write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
+     &  estr,wbond,ebe,wang,
+     &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
+     &  ecorr,wcorr,
+     &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
+     &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
+     &  ebr*nss,Uconst,etot
+   10 format (/'Virtual-chain energies:'//
+     & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
+     & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
+     & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
+     & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
+     & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
+     & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
+     & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
+     & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
+     & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
+     & ' (SS bridges & dist. cnstr.)'/
+     & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
+     & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
+     & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
+     & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
+     & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
+     & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
+     & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
+     & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
+     & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
+     & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
+     & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
+     & 'ETOT=  ',1pE16.6,' (total)')
+#endif
+      return
+      end
+C-----------------------------------------------------------------------
+      subroutine elj(evdw,evdw_p,evdw_m)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the LJ potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (accur=1.0d-10)
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.TORSION'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTACTS'
+      dimension gg(3)
+c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+C Change 12/1/95
+        num_conti=0
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
+cd   &                  'iend=',iend(i,iint)
+          do j=istart(i,iint),iend(i,iint)
+            itypj=itype(j)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+C Change 12/1/95 to calculate four-body interactions
+            rij=xj*xj+yj*yj+zj*zj
+            rrij=1.0D0/rij
+c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
+            eps0ij=eps(itypi,itypj)
+            fac=rrij**expon2
+            e1=fac*fac*aa(itypi,itypj)
+            e2=fac*bb(itypi,itypj)
+            evdwij=e1+e2
+cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
+cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
+cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
+cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0) then
+               evdw_p=evdw_p+evdwij
+            else
+               evdw_m=evdw_m+evdwij
+            endif
+#else
+            evdw=evdw+evdwij
+#endif
+C 
+C Calculate the components of the gradient in DC and X
+C
+            fac=-rrij*(e1+evdwij)
+            gg(1)=xj*fac
+            gg(2)=yj*fac
+            gg(3)=zj*fac
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0.0d0) then
+              do k=1,3
+                gvdwx(k,i)=gvdwx(k,i)-gg(k)
+                gvdwx(k,j)=gvdwx(k,j)+gg(k)
+                gvdwc(k,i)=gvdwc(k,i)-gg(k)
+                gvdwc(k,j)=gvdwc(k,j)+gg(k)
+              enddo
+            else
+              do k=1,3
+                gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
+                gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
+                gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
+                gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
+              enddo
+            endif
+#else
+            do k=1,3
+              gvdwx(k,i)=gvdwx(k,i)-gg(k)
+              gvdwx(k,j)=gvdwx(k,j)+gg(k)
+              gvdwc(k,i)=gvdwc(k,i)-gg(k)
+              gvdwc(k,j)=gvdwc(k,j)+gg(k)
+            enddo
+#endif
+cgrad            do k=i,j-1
+cgrad              do l=1,3
+cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
+cgrad              enddo
+cgrad            enddo
+C
+C 12/1/95, revised on 5/20/97
+C
+C Calculate the contact function. The ith column of the array JCONT will 
+C contain the numbers of atoms that make contacts with the atom I (of numbers
+C greater than I). The arrays FACONT and GACONT will contain the values of
+C the contact function and its derivative.
+C
+C Uncomment next line, if the correlation interactions include EVDW explicitly.
+c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
+C Uncomment next line, if the correlation interactions are contact function only
+            if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
+              rij=dsqrt(rij)
+              sigij=sigma(itypi,itypj)
+              r0ij=rs0(itypi,itypj)
+C
+C Check whether the SC's are not too far to make a contact.
+C
+              rcut=1.5d0*r0ij
+              call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
+C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
+C
+              if (fcont.gt.0.0D0) then
+C If the SC-SC distance if close to sigma, apply spline.
+cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
+cAdam &             fcont1,fprimcont1)
+cAdam           fcont1=1.0d0-fcont1
+cAdam           if (fcont1.gt.0.0d0) then
+cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
+cAdam             fcont=fcont*fcont1
+cAdam           endif
+C Uncomment following 4 lines to have the geometric average of the epsilon0's
+cga             eps0ij=1.0d0/dsqrt(eps0ij)
+cga             do k=1,3
+cga               gg(k)=gg(k)*eps0ij
+cga             enddo
+cga             eps0ij=-evdwij*eps0ij
+C Uncomment for AL's type of SC correlation interactions.
+cadam           eps0ij=-evdwij
+                num_conti=num_conti+1
+                jcont(num_conti,i)=j
+                facont(num_conti,i)=fcont*eps0ij
+                fprimcont=eps0ij*fprimcont/rij
+                fcont=expon*fcont
+cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
+cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
+cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
+C Uncomment following 3 lines for Skolnick's type of SC correlation.
+                gacont(1,num_conti,i)=-fprimcont*xj
+                gacont(2,num_conti,i)=-fprimcont*yj
+                gacont(3,num_conti,i)=-fprimcont*zj
+cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
+cd              write (iout,'(2i3,3f10.5)') 
+cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
+              endif
+            endif
+          enddo      ! j
+        enddo        ! iint
+C Change 12/1/95
+        num_cont(i)=num_conti
+      enddo          ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc(j,i)=expon*gvdwc(j,i)
+          gvdwx(j,i)=expon*gvdwx(j,i)
+        enddo
+      enddo
+C******************************************************************************
+C
+C                              N O T E !!!
+C
+C To save time, the factor of EXPON has been extracted from ALL components
+C of GVDWC and GRADX. Remember to multiply them by this factor before further 
+C use!
+C
+C******************************************************************************
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine eljk(evdw,evdw_p,evdw_m)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the LJK potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      dimension gg(3)
+      logical scheck
+c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            itypj=itype(j)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            fac_augm=rrij**expon
+            e_augm=augm(itypi,itypj)*fac_augm
+            r_inv_ij=dsqrt(rrij)
+            rij=1.0D0/r_inv_ij 
+            r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
+            fac=r_shift_inv**expon
+            e1=fac*fac*aa(itypi,itypj)
+            e2=fac*bb(itypi,itypj)
+            evdwij=e_augm+e1+e2
+cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
+cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
+cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
+cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
+cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0) then
+               evdw_p=evdw_p+evdwij
+            else
+               evdw_m=evdw_m+evdwij
+            endif
+#else
+            evdw=evdw+evdwij
+#endif
+C 
+C Calculate the components of the gradient in DC and X
+C
+            fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
+            gg(1)=xj*fac
+            gg(2)=yj*fac
+            gg(3)=zj*fac
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0.0d0) then
+              do k=1,3
+                gvdwx(k,i)=gvdwx(k,i)-gg(k)
+                gvdwx(k,j)=gvdwx(k,j)+gg(k)
+                gvdwc(k,i)=gvdwc(k,i)-gg(k)
+                gvdwc(k,j)=gvdwc(k,j)+gg(k)
+              enddo
+            else
+              do k=1,3
+                gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
+                gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
+                gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
+                gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
+              enddo
+            endif
+#else
+            do k=1,3
+              gvdwx(k,i)=gvdwx(k,i)-gg(k)
+              gvdwx(k,j)=gvdwx(k,j)+gg(k)
+              gvdwc(k,i)=gvdwc(k,i)-gg(k)
+              gvdwc(k,j)=gvdwc(k,j)+gg(k)
+            enddo
+#endif
+cgrad            do k=i,j-1
+cgrad              do l=1,3
+cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
+cgrad              enddo
+cgrad            enddo
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc(j,i)=expon*gvdwc(j,i)
+          gvdwx(j,i)=expon*gvdwx(j,i)
+        enddo
+      enddo
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine ebp(evdw,evdw_p,evdw_m)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Berne-Pechukas potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      common /srutu/ icall
+c     double precision rrsave(maxdim)
+      logical lprn
+      evdw=0.0D0
+c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+c     if (icall.eq.0) then
+c       lprn=.true.
+c     else
+        lprn=.false.
+c     endif
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+C For diagnostics only!!!
+c           chi1=0.0D0
+c           chi2=0.0D0
+c           chi12=0.0D0
+c           chip1=0.0D0
+c           chip2=0.0D0
+c           chip12=0.0D0
+c           alf1=0.0D0
+c           alf2=0.0D0
+c           alf12=0.0D0
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+cd          if (icall.eq.0) then
+cd            rrsave(ind)=rrij
+cd          else
+cd            rrij=rrsave(ind)
+cd          endif
+            rij=dsqrt(rrij)
+C Calculate the angle-dependent terms of energy & contributions to derivatives.
+            call sc_angular
+C Calculate whole angle-dependent part of epsilon and contributions
+C to its derivatives
+            fac=(rrij*sigsq)**expon2
+            e1=fac*fac*aa(itypi,itypj)
+            e2=fac*bb(itypi,itypj)
+            evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+            eps2der=evdwij*eps3rt
+            eps3der=evdwij*eps2rt
+            evdwij=evdwij*eps2rt*eps3rt
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0) then
+               evdw_p=evdw_p+evdwij
+            else
+               evdw_m=evdw_m+evdwij
+            endif
+#else
+            evdw=evdw+evdwij
+#endif
+            if (lprn) then
+            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
+cd     &        restyp(itypi),i,restyp(itypj),j,
+cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
+cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
+cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
+cd     &        evdwij
+            endif
+C Calculate gradient components.
+            e1=e1*eps1*eps2rt**2*eps3rt**2
+            fac=-expon*(e1+evdwij)
+            sigder=fac/sigsq
+            fac=rrij*fac
+C Calculate radial part of the gradient
+            gg(1)=xj*fac
+            gg(2)=yj*fac
+            gg(3)=zj*fac
+C Calculate the angular part of the gradient and sum add the contributions
+C to the appropriate components of the Cartesian gradient.
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0) then
+               call sc_grad
+            else
+               call sc_grad_T
+            endif
+#else
+            call sc_grad
+#endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+c     stop
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine egb(evdw,evdw_p,evdw_m)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Gay-Berne potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      logical lprn
+      evdw=0.0D0
+ccccc      energy_dec=.false.
+c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      evdw_p=0.0D0
+      evdw_m=0.0D0
+      lprn=.false.
+c     if (icall.eq.0) lprn=.false.
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
+c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
+c     &       1.0d0/vbld(j+nres)
+c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
+            sig0ij=sigma(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+C For diagnostics only!!!
+c           chi1=0.0D0
+c           chi2=0.0D0
+c           chi12=0.0D0
+c           chip1=0.0D0
+c           chip2=0.0D0
+c           chip12=0.0D0
+c           alf1=0.0D0
+c           alf2=0.0D0
+c           alf12=0.0D0
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
+c            write (iout,*) "j",j," dc_norm",
+c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+C Calculate angle-dependent terms of energy and contributions to their
+C derivatives.
+            call sc_angular
+            sigsq=1.0D0/sigsq
+            sig=sig0ij*dsqrt(sigsq)
+            rij_shift=1.0D0/rij-sig+sig0ij
+c for diagnostics; uncomment
+c            rij_shift=1.2*sig0ij
+C I hate to put IF's in the loops, but here don't have another choice!!!!
+            if (rij_shift.le.0.0D0) then
+              evdw=1.0D20
+cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+cd     &        restyp(itypi),i,restyp(itypj),j,
+cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
+              return
+            endif
+            sigder=-sig*sigsq
+c---------------------------------------------------------------
+            rij_shift=1.0D0/rij_shift 
+            fac=rij_shift**expon
+            e1=fac*fac*aa(itypi,itypj)
+            e2=fac*bb(itypi,itypj)
+            evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+            eps2der=evdwij*eps3rt
+            eps3der=evdwij*eps2rt
+c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
+c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
+            evdwij=evdwij*eps2rt*eps3rt
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0) then
+               evdw_p=evdw_p+evdwij
+            else
+               evdw_m=evdw_m+evdwij
+            endif
+#else
+            evdw=evdw+evdwij
+#endif
+            if (lprn) then
+            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+     &        restyp(itypi),i,restyp(itypj),j,
+     &        epsi,sigm,chi1,chi2,chip1,chip2,
+     &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
+     &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
+     &        evdwij
+            endif
+
+            if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
+     &                        'evdw',i,j,evdwij
+
+C Calculate gradient components.
+            e1=e1*eps1*eps2rt**2*eps3rt**2
+            fac=-expon*(e1+evdwij)*rij_shift
+            sigder=fac*sigder
+            fac=rij*fac
+c            fac=0.0d0
+C Calculate the radial part of the gradient
+            gg(1)=xj*fac
+            gg(2)=yj*fac
+            gg(3)=zj*fac
+C Calculate angular part of the gradient.
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0) then
+               call sc_grad
+            else
+               call sc_grad_T
+            endif
+#else
+            call sc_grad
+#endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+c      write (iout,*) "Number of loop steps in EGB:",ind
+cccc      energy_dec=.false.
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine egbv(evdw,evdw_p,evdw_m)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Gay-Berne-Vorobjev potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      common /srutu/ icall
+      logical lprn
+      evdw=0.0D0
+c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      lprn=.false.
+c     if (icall.eq.0) lprn=.true.
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+c        dsci_inv=dsc_inv(itypi)
+        dsci_inv=vbld_inv(i+nres)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+c            dscj_inv=dsc_inv(itypj)
+            dscj_inv=vbld_inv(j+nres)
+            sig0ij=sigma(itypi,itypj)
+            r0ij=r0(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+C For diagnostics only!!!
+c           chi1=0.0D0
+c           chi2=0.0D0
+c           chi12=0.0D0
+c           chip1=0.0D0
+c           chip2=0.0D0
+c           chip12=0.0D0
+c           alf1=0.0D0
+c           alf2=0.0D0
+c           alf12=0.0D0
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+C Calculate angle-dependent terms of energy and contributions to their
+C derivatives.
+            call sc_angular
+            sigsq=1.0D0/sigsq
+            sig=sig0ij*dsqrt(sigsq)
+            rij_shift=1.0D0/rij-sig+r0ij
+C I hate to put IF's in the loops, but here don't have another choice!!!!
+            if (rij_shift.le.0.0D0) then
+              evdw=1.0D20
+              return
+            endif
+            sigder=-sig*sigsq
+c---------------------------------------------------------------
+            rij_shift=1.0D0/rij_shift 
+            fac=rij_shift**expon
+            e1=fac*fac*aa(itypi,itypj)
+            e2=fac*bb(itypi,itypj)
+            evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+            eps2der=evdwij*eps3rt
+            eps3der=evdwij*eps2rt
+            fac_augm=rrij**expon
+            e_augm=augm(itypi,itypj)*fac_augm
+            evdwij=evdwij*eps2rt*eps3rt
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0) then
+               evdw_p=evdw_p+evdwij+e_augm
+            else
+               evdw_m=evdw_m+evdwij+e_augm
+            endif
+#else
+            evdw=evdw+evdwij+e_augm
+#endif
+            if (lprn) then
+            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+     &        restyp(itypi),i,restyp(itypj),j,
+     &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
+     &        chi1,chi2,chip1,chip2,
+     &        eps1,eps2rt**2,eps3rt**2,
+     &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
+     &        evdwij+e_augm
+            endif
+C Calculate gradient components.
+            e1=e1*eps1*eps2rt**2*eps3rt**2
+            fac=-expon*(e1+evdwij)*rij_shift
+            sigder=fac*sigder
+            fac=rij*fac-2*expon*rrij*e_augm
+C Calculate the radial part of the gradient
+            gg(1)=xj*fac
+            gg(2)=yj*fac
+            gg(3)=zj*fac
+C Calculate angular part of the gradient.
+#ifdef TSCSC
+            if (bb(itypi,itypj).gt.0) then
+               call sc_grad
+            else
+               call sc_grad_T
+            endif
+#else
+            call sc_grad
+#endif
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      end
+C-----------------------------------------------------------------------------
+      subroutine sc_angular
+C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
+C om12. Called by ebp, egb, and egbv.
+      implicit none
+      include 'COMMON.CALC'
+      include 'COMMON.IOUNITS'
+      erij(1)=xj*rij
+      erij(2)=yj*rij
+      erij(3)=zj*rij
+      om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
+      om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
+      om12=dxi*dxj+dyi*dyj+dzi*dzj
+      chiom12=chi12*om12
+C Calculate eps1(om12) and its derivative in om12
+      faceps1=1.0D0-om12*chiom12
+      faceps1_inv=1.0D0/faceps1
+      eps1=dsqrt(faceps1_inv)
+C Following variable is eps1*deps1/dom12
+      eps1_om12=faceps1_inv*chiom12
+c diagnostics only
+c      faceps1_inv=om12
+c      eps1=om12
+c      eps1_om12=1.0d0
+c      write (iout,*) "om12",om12," eps1",eps1
+C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
+C and om12.
+      om1om2=om1*om2
+      chiom1=chi1*om1
+      chiom2=chi2*om2
+      facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
+      sigsq=1.0D0-facsig*faceps1_inv
+      sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
+      sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
+      sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
+c diagnostics only
+c      sigsq=1.0d0
+c      sigsq_om1=0.0d0
+c      sigsq_om2=0.0d0
+c      sigsq_om12=0.0d0
+c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
+c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
+c     &    " eps1",eps1
+C Calculate eps2 and its derivatives in om1, om2, and om12.
+      chipom1=chip1*om1
+      chipom2=chip2*om2
+      chipom12=chip12*om12
+      facp=1.0D0-om12*chipom12
+      facp_inv=1.0D0/facp
+      facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
+c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
+c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
+C Following variable is the square root of eps2
+      eps2rt=1.0D0-facp1*facp_inv
+C Following three variables are the derivatives of the square root of eps
+C in om1, om2, and om12.
+      eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
+      eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
+      eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
+C Evaluate the "asymmetric" factor in the VDW constant, eps3
+      eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
+c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
+c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
+c     &  " eps2rt_om12",eps2rt_om12
+C Calculate whole angle-dependent part of epsilon and contributions
+C to its derivatives
+      return
+      end
+
+C----------------------------------------------------------------------------
+      subroutine sc_grad_T
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.CALC'
+      include 'COMMON.IOUNITS'
+      double precision dcosom1(3),dcosom2(3)
+      eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
+      eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
+      eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
+     &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
+c diagnostics only
+c      eom1=0.0d0
+c      eom2=0.0d0
+c      eom12=evdwij*eps1_om12
+c end diagnostics
+c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
+c     &  " sigder",sigder
+c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
+c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
+      do k=1,3
+        dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
+        dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
+      enddo
+      do k=1,3
+        gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
+      enddo 
+c      write (iout,*) "gg",(gg(k),k=1,3)
+      do k=1,3
+        gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
+     &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+        gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
+     &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+      enddo
+C 
+C Calculate the components of the gradient in DC and X
+C
+cgrad      do k=i,j-1
+cgrad        do l=1,3
+cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
+cgrad        enddo
+cgrad      enddo
+      do l=1,3
+        gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
+        gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
+      enddo
+      return
+      end
+
+C----------------------------------------------------------------------------
+      subroutine sc_grad
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.CALC'
+      include 'COMMON.IOUNITS'
+      double precision dcosom1(3),dcosom2(3)
+      eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
+      eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
+      eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
+     &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
+c diagnostics only
+c      eom1=0.0d0
+c      eom2=0.0d0
+c      eom12=evdwij*eps1_om12
+c end diagnostics
+c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
+c     &  " sigder",sigder
+c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
+c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
+      do k=1,3
+        dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
+        dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
+      enddo
+      do k=1,3
+        gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
+      enddo 
+c      write (iout,*) "gg",(gg(k),k=1,3)
+      do k=1,3
+        gvdwx(k,i)=gvdwx(k,i)-gg(k)
+     &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+        gvdwx(k,j)=gvdwx(k,j)+gg(k)
+     &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+      enddo
+C 
+C Calculate the components of the gradient in DC and X
+C
+cgrad      do k=i,j-1
+cgrad        do l=1,3
+cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
+cgrad        enddo
+cgrad      enddo
+      do l=1,3
+        gvdwc(l,i)=gvdwc(l,i)-gg(l)
+        gvdwc(l,j)=gvdwc(l,j)+gg(l)
+      enddo
+      return
+      end
+C-----------------------------------------------------------------------
+      subroutine e_softsphere(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the LJ potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (accur=1.0d-10)
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.TORSION'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTACTS'
+      dimension gg(3)
+cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
+      evdw=0.0D0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
+cd   &                  'iend=',iend(i,iint)
+          do j=istart(i,iint),iend(i,iint)
+            itypj=itype(j)
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            rij=xj*xj+yj*yj+zj*zj
+c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
+            r0ij=r0(itypi,itypj)
+            r0ijsq=r0ij*r0ij
+c            print *,i,j,r0ij,dsqrt(rij)
+            if (rij.lt.r0ijsq) then
+              evdwij=0.25d0*(rij-r0ijsq)**2
+              fac=rij-r0ijsq
+            else
+              evdwij=0.0d0
+              fac=0.0d0
+            endif
+            evdw=evdw+evdwij
+C 
+C Calculate the components of the gradient in DC and X
+C
+            gg(1)=xj*fac
+            gg(2)=yj*fac
+            gg(3)=zj*fac
+            do k=1,3
+              gvdwx(k,i)=gvdwx(k,i)-gg(k)
+              gvdwx(k,j)=gvdwx(k,j)+gg(k)
+              gvdwc(k,i)=gvdwc(k,i)-gg(k)
+              gvdwc(k,j)=gvdwc(k,j)+gg(k)
+            enddo
+cgrad            do k=i,j-1
+cgrad              do l=1,3
+cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
+cgrad              enddo
+cgrad            enddo
+          enddo ! j
+        enddo ! iint
+      enddo ! i
+      return
+      end
+C--------------------------------------------------------------------------
+      subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
+     &              eello_turn4)
+C
+C Soft-sphere potential of p-p interaction
+C 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      dimension ggg(3)
+cd      write(iout,*) 'In EELEC_soft_sphere'
+      ees=0.0D0
+      evdw1=0.0D0
+      eel_loc=0.0d0 
+      eello_turn3=0.0d0
+      eello_turn4=0.0d0
+      ind=0
+      do i=iatel_s,iatel_e
+        dxi=dc(1,i)
+        dyi=dc(2,i)
+        dzi=dc(3,i)
+        xmedi=c(1,i)+0.5d0*dxi
+        ymedi=c(2,i)+0.5d0*dyi
+        zmedi=c(3,i)+0.5d0*dzi
+        num_conti=0
+c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
+        do j=ielstart(i),ielend(i)
+          ind=ind+1
+          iteli=itel(i)
+          itelj=itel(j)
+          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
+          r0ij=rpp(iteli,itelj)
+          r0ijsq=r0ij*r0ij 
+          dxj=dc(1,j)
+          dyj=dc(2,j)
+          dzj=dc(3,j)
+          xj=c(1,j)+0.5D0*dxj-xmedi
+          yj=c(2,j)+0.5D0*dyj-ymedi
+          zj=c(3,j)+0.5D0*dzj-zmedi
+          rij=xj*xj+yj*yj+zj*zj
+          if (rij.lt.r0ijsq) then
+            evdw1ij=0.25d0*(rij-r0ijsq)**2
+            fac=rij-r0ijsq
+          else
+            evdw1ij=0.0d0
+            fac=0.0d0
+          endif
+          evdw1=evdw1+evdw1ij
+C
+C Calculate contributions to the Cartesian gradient.
+C
+          ggg(1)=fac*xj
+          ggg(2)=fac*yj
+          ggg(3)=fac*zj
+          do k=1,3
+            gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
+            gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
+          enddo
+*
+* Loop over residues i+1 thru j-1.
+*
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+        enddo ! j
+      enddo   ! i
+cgrad      do i=nnt,nct-1
+cgrad        do k=1,3
+cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
+cgrad        enddo
+cgrad        do j=i+1,nct-1
+cgrad          do k=1,3
+cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
+cgrad          enddo
+cgrad        enddo
+cgrad      enddo
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine vec_and_deriv
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VECTORS'
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+      dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
+C Compute the local reference systems. For reference system (i), the
+C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
+C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
+#ifdef PARVEC
+      do i=ivec_start,ivec_end
+#else
+      do i=1,nres-1
+#endif
+          if (i.eq.nres-1) then
+C Case of the last full residue
+C Compute the Z-axis
+            call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
+            costh=dcos(pi-theta(nres))
+            fac=1.0d0/dsqrt(1.0d0-costh*costh)
+            do k=1,3
+              uz(k,i)=fac*uz(k,i)
+            enddo
+C Compute the derivatives of uz
+            uzder(1,1,1)= 0.0d0
+            uzder(2,1,1)=-dc_norm(3,i-1)
+            uzder(3,1,1)= dc_norm(2,i-1) 
+            uzder(1,2,1)= dc_norm(3,i-1)
+            uzder(2,2,1)= 0.0d0
+            uzder(3,2,1)=-dc_norm(1,i-1)
+            uzder(1,3,1)=-dc_norm(2,i-1)
+            uzder(2,3,1)= dc_norm(1,i-1)
+            uzder(3,3,1)= 0.0d0
+            uzder(1,1,2)= 0.0d0
+            uzder(2,1,2)= dc_norm(3,i)
+            uzder(3,1,2)=-dc_norm(2,i) 
+            uzder(1,2,2)=-dc_norm(3,i)
+            uzder(2,2,2)= 0.0d0
+            uzder(3,2,2)= dc_norm(1,i)
+            uzder(1,3,2)= dc_norm(2,i)
+            uzder(2,3,2)=-dc_norm(1,i)
+            uzder(3,3,2)= 0.0d0
+C Compute the Y-axis
+            facy=fac
+            do k=1,3
+              uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
+            enddo
+C Compute the derivatives of uy
+            do j=1,3
+              do k=1,3
+                uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
+     &                        -dc_norm(k,i)*dc_norm(j,i-1)
+                uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
+              enddo
+              uyder(j,j,1)=uyder(j,j,1)-costh
+              uyder(j,j,2)=1.0d0+uyder(j,j,2)
+            enddo
+            do j=1,2
+              do k=1,3
+                do l=1,3
+                  uygrad(l,k,j,i)=uyder(l,k,j)
+                  uzgrad(l,k,j,i)=uzder(l,k,j)
+                enddo
+              enddo
+            enddo 
+            call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
+            call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
+            call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
+            call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
+          else
+C Other residues
+C Compute the Z-axis
+            call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
+            costh=dcos(pi-theta(i+2))
+            fac=1.0d0/dsqrt(1.0d0-costh*costh)
+            do k=1,3
+              uz(k,i)=fac*uz(k,i)
+            enddo
+C Compute the derivatives of uz
+            uzder(1,1,1)= 0.0d0
+            uzder(2,1,1)=-dc_norm(3,i+1)
+            uzder(3,1,1)= dc_norm(2,i+1) 
+            uzder(1,2,1)= dc_norm(3,i+1)
+            uzder(2,2,1)= 0.0d0
+            uzder(3,2,1)=-dc_norm(1,i+1)
+            uzder(1,3,1)=-dc_norm(2,i+1)
+            uzder(2,3,1)= dc_norm(1,i+1)
+            uzder(3,3,1)= 0.0d0
+            uzder(1,1,2)= 0.0d0
+            uzder(2,1,2)= dc_norm(3,i)
+            uzder(3,1,2)=-dc_norm(2,i) 
+            uzder(1,2,2)=-dc_norm(3,i)
+            uzder(2,2,2)= 0.0d0
+            uzder(3,2,2)= dc_norm(1,i)
+            uzder(1,3,2)= dc_norm(2,i)
+            uzder(2,3,2)=-dc_norm(1,i)
+            uzder(3,3,2)= 0.0d0
+C Compute the Y-axis
+            facy=fac
+            do k=1,3
+              uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
+            enddo
+C Compute the derivatives of uy
+            do j=1,3
+              do k=1,3
+                uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
+     &                        -dc_norm(k,i)*dc_norm(j,i+1)
+                uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
+              enddo
+              uyder(j,j,1)=uyder(j,j,1)-costh
+              uyder(j,j,2)=1.0d0+uyder(j,j,2)
+            enddo
+            do j=1,2
+              do k=1,3
+                do l=1,3
+                  uygrad(l,k,j,i)=uyder(l,k,j)
+                  uzgrad(l,k,j,i)=uzder(l,k,j)
+                enddo
+              enddo
+            enddo 
+            call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
+            call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
+            call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
+            call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
+          endif
+      enddo
+      do i=1,nres-1
+        vbld_inv_temp(1)=vbld_inv(i+1)
+        if (i.lt.nres-1) then
+          vbld_inv_temp(2)=vbld_inv(i+2)
+          else
+          vbld_inv_temp(2)=vbld_inv(i)
+          endif
+        do j=1,2
+          do k=1,3
+            do l=1,3
+              uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
+              uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
+            enddo
+          enddo
+        enddo
+      enddo
+#if defined(PARVEC) && defined(MPI)
+      if (nfgtasks1.gt.1) then
+        time00=MPI_Wtime()
+c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
+c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
+c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
+        call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
+     &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
+     &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
+        call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
+     &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
+     &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
+        time_gather=time_gather+MPI_Wtime()-time00
+      endif
+c      if (fg_rank.eq.0) then
+c        write (iout,*) "Arrays UY and UZ"
+c        do i=1,nres-1
+c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
+c     &     (uz(k,i),k=1,3)
+c        enddo
+c      endif
+#endif
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine check_vecgrad
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VECTORS'
+      dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
+      dimension uyt(3,maxres),uzt(3,maxres)
+      dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
+      double precision delta /1.0d-7/
+      call vec_and_deriv
+cd      do i=1,nres
+crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
+crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
+crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
+cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
+cd     &     (dc_norm(if90,i),if90=1,3)
+cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
+cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
+cd          write(iout,'(a)')
+cd      enddo
+      do i=1,nres
+        do j=1,2
+          do k=1,3
+            do l=1,3
+              uygradt(l,k,j,i)=uygrad(l,k,j,i)
+              uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
+            enddo
+          enddo
+        enddo
+      enddo
+      call vec_and_deriv
+      do i=1,nres
+        do j=1,3
+          uyt(j,i)=uy(j,i)
+          uzt(j,i)=uz(j,i)
+        enddo
+      enddo
+      do i=1,nres
+cd        write (iout,*) 'i=',i
+        do k=1,3
+          erij(k)=dc_norm(k,i)
+        enddo
+        do j=1,3
+          do k=1,3
+            dc_norm(k,i)=erij(k)
+          enddo
+          dc_norm(j,i)=dc_norm(j,i)+delta
+c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
+c          do k=1,3
+c            dc_norm(k,i)=dc_norm(k,i)/fac
+c          enddo
+c          write (iout,*) (dc_norm(k,i),k=1,3)
+c          write (iout,*) (erij(k),k=1,3)
+          call vec_and_deriv
+          do k=1,3
+            uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
+            uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
+            uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
+            uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
+          enddo 
+c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
+c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
+c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
+        enddo
+        do k=1,3
+          dc_norm(k,i)=erij(k)
+        enddo
+cd        do k=1,3
+cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
+cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
+cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
+cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
+cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
+cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
+cd          write (iout,'(a)')
+cd        enddo
+      enddo
+      return
+      end
+C--------------------------------------------------------------------------
+      subroutine set_matrices
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+      include "COMMON.SETUP"
+      integer IERR
+      integer status(MPI_STATUS_SIZE)
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      double precision auxvec(2),auxmat(2,2)
+C
+C Compute the virtual-bond-torsional-angle dependent quantities needed
+C to calculate the el-loc multibody terms of various order.
+C
+#ifdef PARMAT
+      do i=ivec_start+2,ivec_end+2
+#else
+      do i=3,nres+1
+#endif
+        if (i .lt. nres+1) then
+          sin1=dsin(phi(i))
+          cos1=dcos(phi(i))
+          sintab(i-2)=sin1
+          costab(i-2)=cos1
+          obrot(1,i-2)=cos1
+          obrot(2,i-2)=sin1
+          sin2=dsin(2*phi(i))
+          cos2=dcos(2*phi(i))
+          sintab2(i-2)=sin2
+          costab2(i-2)=cos2
+          obrot2(1,i-2)=cos2
+          obrot2(2,i-2)=sin2
+          Ug(1,1,i-2)=-cos1
+          Ug(1,2,i-2)=-sin1
+          Ug(2,1,i-2)=-sin1
+          Ug(2,2,i-2)= cos1
+          Ug2(1,1,i-2)=-cos2
+          Ug2(1,2,i-2)=-sin2
+          Ug2(2,1,i-2)=-sin2
+          Ug2(2,2,i-2)= cos2
+        else
+          costab(i-2)=1.0d0
+          sintab(i-2)=0.0d0
+          obrot(1,i-2)=1.0d0
+          obrot(2,i-2)=0.0d0
+          obrot2(1,i-2)=0.0d0
+          obrot2(2,i-2)=0.0d0
+          Ug(1,1,i-2)=1.0d0
+          Ug(1,2,i-2)=0.0d0
+          Ug(2,1,i-2)=0.0d0
+          Ug(2,2,i-2)=1.0d0
+          Ug2(1,1,i-2)=0.0d0
+          Ug2(1,2,i-2)=0.0d0
+          Ug2(2,1,i-2)=0.0d0
+          Ug2(2,2,i-2)=0.0d0
+        endif
+        if (i .gt. 3 .and. i .lt. nres+1) then
+          obrot_der(1,i-2)=-sin1
+          obrot_der(2,i-2)= cos1
+          Ugder(1,1,i-2)= sin1
+          Ugder(1,2,i-2)=-cos1
+          Ugder(2,1,i-2)=-cos1
+          Ugder(2,2,i-2)=-sin1
+          dwacos2=cos2+cos2
+          dwasin2=sin2+sin2
+          obrot2_der(1,i-2)=-dwasin2
+          obrot2_der(2,i-2)= dwacos2
+          Ug2der(1,1,i-2)= dwasin2
+          Ug2der(1,2,i-2)=-dwacos2
+          Ug2der(2,1,i-2)=-dwacos2
+          Ug2der(2,2,i-2)=-dwasin2
+        else
+          obrot_der(1,i-2)=0.0d0
+          obrot_der(2,i-2)=0.0d0
+          Ugder(1,1,i-2)=0.0d0
+          Ugder(1,2,i-2)=0.0d0
+          Ugder(2,1,i-2)=0.0d0
+          Ugder(2,2,i-2)=0.0d0
+          obrot2_der(1,i-2)=0.0d0
+          obrot2_der(2,i-2)=0.0d0
+          Ug2der(1,1,i-2)=0.0d0
+          Ug2der(1,2,i-2)=0.0d0
+          Ug2der(2,1,i-2)=0.0d0
+          Ug2der(2,2,i-2)=0.0d0
+        endif
+c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
+        if (i.gt. nnt+2 .and. i.lt.nct+2) then
+          iti = itortyp(itype(i-2))
+        else
+          iti=ntortyp+1
+        endif
+c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
+        if (i.gt. nnt+1 .and. i.lt.nct+1) then
+          iti1 = itortyp(itype(i-1))
+        else
+          iti1=ntortyp+1
+        endif
+cd        write (iout,*) '*******i',i,' iti1',iti
+cd        write (iout,*) 'b1',b1(:,iti)
+cd        write (iout,*) 'b2',b2(:,iti)
+cd        write (iout,*) 'Ug',Ug(:,:,i-2)
+c        if (i .gt. iatel_s+2) then
+        if (i .gt. nnt+2) then
+          call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
+          call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
+          if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
+     &    then
+          call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
+          call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
+          call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
+          call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
+          call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
+          endif
+        else
+          do k=1,2
+            Ub2(k,i-2)=0.0d0
+            Ctobr(k,i-2)=0.0d0 
+            Dtobr2(k,i-2)=0.0d0
+            do l=1,2
+              EUg(l,k,i-2)=0.0d0
+              CUg(l,k,i-2)=0.0d0
+              DUg(l,k,i-2)=0.0d0
+              DtUg2(l,k,i-2)=0.0d0
+            enddo
+          enddo
+        endif
+        call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
+        call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
+        do k=1,2
+          muder(k,i-2)=Ub2der(k,i-2)
+        enddo
+c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
+        if (i.gt. nnt+1 .and. i.lt.nct+1) then
+          iti1 = itortyp(itype(i-1))
+        else
+          iti1=ntortyp+1
+        endif
+        do k=1,2
+          mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
+        enddo
+cd        write (iout,*) 'mu ',mu(:,i-2)
+cd        write (iout,*) 'mu1',mu1(:,i-2)
+cd        write (iout,*) 'mu2',mu2(:,i-2)
+        if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
+     &  then  
+        call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
+        call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
+        call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
+        call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
+        call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
+C Vectors and matrices dependent on a single virtual-bond dihedral.
+        call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
+        call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
+        call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
+        call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
+        call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
+        call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
+        call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
+        call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
+        call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
+        endif
+      enddo
+C Matrices dependent on two consecutive virtual-bond dihedrals.
+C The order of matrices is from left to right.
+      if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
+     &then
+c      do i=max0(ivec_start,2),ivec_end
+      do i=2,nres-1
+        call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
+        call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
+        call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
+        call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
+        call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
+        call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
+        call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
+        call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
+      enddo
+      endif
+#if defined(MPI) && defined(PARMAT)
+#ifdef DEBUG
+c      if (fg_rank.eq.0) then
+        write (iout,*) "Arrays UG and UGDER before GATHER"
+        do i=1,nres-1
+          write (iout,'(i5,4f10.5,5x,4f10.5)') i,
+     &     ((ug(l,k,i),l=1,2),k=1,2),
+     &     ((ugder(l,k,i),l=1,2),k=1,2)
+        enddo
+        write (iout,*) "Arrays UG2 and UG2DER"
+        do i=1,nres-1
+          write (iout,'(i5,4f10.5,5x,4f10.5)') i,
+     &     ((ug2(l,k,i),l=1,2),k=1,2),
+     &     ((ug2der(l,k,i),l=1,2),k=1,2)
+        enddo
+        write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
+        do i=1,nres-1
+          write (iout,'(i5,4f10.5,5x,4f10.5)') i,
+     &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
+     &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
+        enddo
+        write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
+        do i=1,nres-1
+          write (iout,'(i5,4f10.5,5x,4f10.5)') i,
+     &     costab(i),sintab(i),costab2(i),sintab2(i)
+        enddo
+        write (iout,*) "Array MUDER"
+        do i=1,nres-1
+          write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
+        enddo
+c      endif
+#endif
+      if (nfgtasks.gt.1) then
+        time00=MPI_Wtime()
+c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
+c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
+c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
+#ifdef MATGATHER
+        call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+        call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+        call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+        call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
+     &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
+     &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
+        if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
+     &  then
+        call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+       call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
+     &   ivec_count(fg_rank1),
+     &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
+     &   ivec_count(fg_rank1),
+     &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+       call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+       call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
+     &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
+     &   ivec_count(fg_rank1),
+     &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
+     &   ivec_count(fg_rank1),
+     &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
+     &   FG_COMM1,IERR)
+        call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
+     &   ivec_count(fg_rank1),
+     &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
+     &   MPI_MAT2,FG_COMM1,IERR)
+        call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
+     &   ivec_count(fg_rank1),
+     &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
+     &   MPI_MAT2,FG_COMM1,IERR)
+        endif
+#else
+c Passes matrix info through the ring
+      isend=fg_rank1
+      irecv=fg_rank1-1
+      if (irecv.lt.0) irecv=nfgtasks1-1 
+      iprev=irecv
+      inext=fg_rank1+1
+      if (inext.ge.nfgtasks1) inext=0
+      do i=1,nfgtasks1-1
+c        write (iout,*) "isend",isend," irecv",irecv
+c        call flush(iout)
+        lensend=lentyp(isend)
+        lenrecv=lentyp(irecv)
+c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
+c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
+c     &   MPI_ROTAT1(lensend),inext,2200+isend,
+c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
+c     &   iprev,2200+irecv,FG_COMM,status,IERR)
+c        write (iout,*) "Gather ROTAT1"
+c        call flush(iout)
+c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
+c     &   MPI_ROTAT2(lensend),inext,3300+isend,
+c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
+c     &   iprev,3300+irecv,FG_COMM,status,IERR)
+c        write (iout,*) "Gather ROTAT2"
+c        call flush(iout)
+        call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
+     &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
+     &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
+     &   iprev,4400+irecv,FG_COMM,status,IERR)
+c        write (iout,*) "Gather ROTAT_OLD"
+c        call flush(iout)
+        call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
+     &   MPI_PRECOMP11(lensend),inext,5500+isend,
+     &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
+     &   iprev,5500+irecv,FG_COMM,status,IERR)
+c        write (iout,*) "Gather PRECOMP11"
+c        call flush(iout)
+        call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
+     &   MPI_PRECOMP12(lensend),inext,6600+isend,
+     &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
+     &   iprev,6600+irecv,FG_COMM,status,IERR)
+c        write (iout,*) "Gather PRECOMP12"
+c        call flush(iout)
+        if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
+     &  then
+        call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
+     &   MPI_ROTAT2(lensend),inext,7700+isend,
+     &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
+     &   iprev,7700+irecv,FG_COMM,status,IERR)
+c        write (iout,*) "Gather PRECOMP21"
+c        call flush(iout)
+        call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
+     &   MPI_PRECOMP22(lensend),inext,8800+isend,
+     &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
+     &   iprev,8800+irecv,FG_COMM,status,IERR)
+c        write (iout,*) "Gather PRECOMP22"
+c        call flush(iout)
+        call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
+     &   MPI_PRECOMP23(lensend),inext,9900+isend,
+     &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
+     &   MPI_PRECOMP23(lenrecv),
+     &   iprev,9900+irecv,FG_COMM,status,IERR)
+c        write (iout,*) "Gather PRECOMP23"
+c        call flush(iout)
+        endif
+        isend=irecv
+        irecv=irecv-1
+        if (irecv.lt.0) irecv=nfgtasks1-1
+      enddo
+#endif
+        time_gather=time_gather+MPI_Wtime()-time00
+      endif
+#ifdef DEBUG
+c      if (fg_rank.eq.0) then
+        write (iout,*) "Arrays UG and UGDER"
+        do i=1,nres-1
+          write (iout,'(i5,4f10.5,5x,4f10.5)') i,
+     &     ((ug(l,k,i),l=1,2),k=1,2),
+     &     ((ugder(l,k,i),l=1,2),k=1,2)
+        enddo
+        write (iout,*) "Arrays UG2 and UG2DER"
+        do i=1,nres-1
+          write (iout,'(i5,4f10.5,5x,4f10.5)') i,
+     &     ((ug2(l,k,i),l=1,2),k=1,2),
+     &     ((ug2der(l,k,i),l=1,2),k=1,2)
+        enddo
+        write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
+        do i=1,nres-1
+          write (iout,'(i5,4f10.5,5x,4f10.5)') i,
+     &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
+     &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
+        enddo
+        write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
+        do i=1,nres-1
+          write (iout,'(i5,4f10.5,5x,4f10.5)') i,
+     &     costab(i),sintab(i),costab2(i),sintab2(i)
+        enddo
+        write (iout,*) "Array MUDER"
+        do i=1,nres-1
+          write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
+        enddo
+c      endif
+#endif
+#endif
+cd      do i=1,nres
+cd        iti = itortyp(itype(i))
+cd        write (iout,*) i
+cd        do j=1,2
+cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
+cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
+cd        enddo
+cd      enddo
+      return
+      end
+C--------------------------------------------------------------------------
+      subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
+C
+C This subroutine calculates the average interaction energy and its gradient
+C in the virtual-bond vectors between non-adjacent peptide groups, based on 
+C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
+C The potential depends both on the distance of peptide-group centers and on 
+C the orientation of the CA-CA virtual bonds.
+C 
+      implicit real*8 (a-h,o-z)
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TIME1'
+      dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
+     &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
+      double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+      common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
+     &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
+     &    num_conti,j1,j2
+c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
+#ifdef MOMENT
+      double precision scal_el /1.0d0/
+#else
+      double precision scal_el /0.5d0/
+#endif
+C 12/13/98 
+C 13-go grudnia roku pamietnego... 
+      double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
+     &                   0.0d0,1.0d0,0.0d0,
+     &                   0.0d0,0.0d0,1.0d0/
+cd      write(iout,*) 'In EELEC'
+cd      do i=1,nloctyp
+cd        write(iout,*) 'Type',i
+cd        write(iout,*) 'B1',B1(:,i)
+cd        write(iout,*) 'B2',B2(:,i)
+cd        write(iout,*) 'CC',CC(:,:,i)
+cd        write(iout,*) 'DD',DD(:,:,i)
+cd        write(iout,*) 'EE',EE(:,:,i)
+cd      enddo
+cd      call check_vecgrad
+cd      stop
+      if (icheckgrad.eq.1) then
+        do i=1,nres-1
+          fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
+          do k=1,3
+            dc_norm(k,i)=dc(k,i)*fac
+          enddo
+c          write (iout,*) 'i',i,' fac',fac
+        enddo
+      endif
+      if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
+     &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
+     &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
+c        call vec_and_deriv
+#ifdef TIMING
+        time01=MPI_Wtime()
+#endif
+        call set_matrices
+#ifdef TIMING
+        time_mat=time_mat+MPI_Wtime()-time01
+#endif
+      endif
+cd      do i=1,nres-1
+cd        write (iout,*) 'i=',i
+cd        do k=1,3
+cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
+cd        enddo
+cd        do k=1,3
+cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
+cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
+cd        enddo
+cd      enddo
+      t_eelecij=0.0d0
+      ees=0.0D0
+      evdw1=0.0D0
+      eel_loc=0.0d0 
+      eello_turn3=0.0d0
+      eello_turn4=0.0d0
+      ind=0
+      do i=1,nres
+        num_cont_hb(i)=0
+      enddo
+cd      print '(a)','Enter EELEC'
+cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
+      do i=1,nres
+        gel_loc_loc(i)=0.0d0
+        gcorr_loc(i)=0.0d0
+      enddo
+c
+c
+c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
+C
+C Loop over i,i+2 and i,i+3 pairs of the peptide groups
+C
+      do i=iturn3_start,iturn3_end
+        dxi=dc(1,i)
+        dyi=dc(2,i)
+        dzi=dc(3,i)
+        dx_normi=dc_norm(1,i)
+        dy_normi=dc_norm(2,i)
+        dz_normi=dc_norm(3,i)
+        xmedi=c(1,i)+0.5d0*dxi
+        ymedi=c(2,i)+0.5d0*dyi
+        zmedi=c(3,i)+0.5d0*dzi
+        num_conti=0
+        call eelecij(i,i+2,ees,evdw1,eel_loc)
+        if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
+        num_cont_hb(i)=num_conti
+      enddo
+      do i=iturn4_start,iturn4_end
+        dxi=dc(1,i)
+        dyi=dc(2,i)
+        dzi=dc(3,i)
+        dx_normi=dc_norm(1,i)
+        dy_normi=dc_norm(2,i)
+        dz_normi=dc_norm(3,i)
+        xmedi=c(1,i)+0.5d0*dxi
+        ymedi=c(2,i)+0.5d0*dyi
+        zmedi=c(3,i)+0.5d0*dzi
+        num_conti=num_cont_hb(i)
+        call eelecij(i,i+3,ees,evdw1,eel_loc)
+        if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
+        num_cont_hb(i)=num_conti
+      enddo   ! i
+c
+c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
+c
+      do i=iatel_s,iatel_e
+        dxi=dc(1,i)
+        dyi=dc(2,i)
+        dzi=dc(3,i)
+        dx_normi=dc_norm(1,i)
+        dy_normi=dc_norm(2,i)
+        dz_normi=dc_norm(3,i)
+        xmedi=c(1,i)+0.5d0*dxi
+        ymedi=c(2,i)+0.5d0*dyi
+        zmedi=c(3,i)+0.5d0*dzi
+c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
+        num_conti=num_cont_hb(i)
+        do j=ielstart(i),ielend(i)
+          call eelecij(i,j,ees,evdw1,eel_loc)
+        enddo ! j
+        num_cont_hb(i)=num_conti
+      enddo   ! i
+c      write (iout,*) "Number of loop steps in EELEC:",ind
+cd      do i=1,nres
+cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
+cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
+cd      enddo
+c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
+ccc      eel_loc=eel_loc+eello_turn3
+cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
+      return
+      end
+C-------------------------------------------------------------------------------
+      subroutine eelecij(i,j,ees,evdw1,eel_loc)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TIME1'
+      dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
+     &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
+      double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+      common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
+     &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
+     &    num_conti,j1,j2
+c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
+#ifdef MOMENT
+      double precision scal_el /1.0d0/
+#else
+      double precision scal_el /0.5d0/
+#endif
+C 12/13/98 
+C 13-go grudnia roku pamietnego... 
+      double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
+     &                   0.0d0,1.0d0,0.0d0,
+     &                   0.0d0,0.0d0,1.0d0/
+c          time00=MPI_Wtime()
+cd      write (iout,*) "eelecij",i,j
+c          ind=ind+1
+          iteli=itel(i)
+          itelj=itel(j)
+          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
+          aaa=app(iteli,itelj)
+          bbb=bpp(iteli,itelj)
+          ael6i=ael6(iteli,itelj)
+          ael3i=ael3(iteli,itelj) 
+          dxj=dc(1,j)
+          dyj=dc(2,j)
+          dzj=dc(3,j)
+          dx_normj=dc_norm(1,j)
+          dy_normj=dc_norm(2,j)
+          dz_normj=dc_norm(3,j)
+          xj=c(1,j)+0.5D0*dxj-xmedi
+          yj=c(2,j)+0.5D0*dyj-ymedi
+          zj=c(3,j)+0.5D0*dzj-zmedi
+          rij=xj*xj+yj*yj+zj*zj
+          rrmij=1.0D0/rij
+          rij=dsqrt(rij)
+          rmij=1.0D0/rij
+          r3ij=rrmij*rmij
+          r6ij=r3ij*r3ij  
+          cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
+          cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
+          cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
+          fac=cosa-3.0D0*cosb*cosg
+          ev1=aaa*r6ij*r6ij
+c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
+          if (j.eq.i+2) ev1=scal_el*ev1
+          ev2=bbb*r6ij
+          fac3=ael6i*r6ij
+          fac4=ael3i*r3ij
+          evdwij=ev1+ev2
+          el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
+          el2=fac4*fac       
+          eesij=el1+el2
+C 12/26/95 - for the evaluation of multi-body H-bonding interactions
+          ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
+          ees=ees+eesij
+          evdw1=evdw1+evdwij
+cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
+cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
+cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
+cd     &      xmedi,ymedi,zmedi,xj,yj,zj
+
+          if (energy_dec) then 
+              write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
+              write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
+          endif
+
+C
+C Calculate contributions to the Cartesian gradient.
+C
+#ifdef SPLITELE
+          facvdw=-6*rrmij*(ev1+evdwij)
+          facel=-3*rrmij*(el1+eesij)
+          fac1=fac
+          erij(1)=xj*rmij
+          erij(2)=yj*rmij
+          erij(3)=zj*rmij
+*
+* Radial derivatives. First process both termini of the fragment (i,j)
+*
+          ggg(1)=facel*xj
+          ggg(2)=facel*yj
+          ggg(3)=facel*zj
+c          do k=1,3
+c            ghalf=0.5D0*ggg(k)
+c            gelc(k,i)=gelc(k,i)+ghalf
+c            gelc(k,j)=gelc(k,j)+ghalf
+c          enddo
+c 9/28/08 AL Gradient compotents will be summed only at the end
+          do k=1,3
+            gelc_long(k,j)=gelc_long(k,j)+ggg(k)
+            gelc_long(k,i)=gelc_long(k,i)-ggg(k)
+          enddo
+*
+* Loop over residues i+1 thru j-1.
+*
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+          ggg(1)=facvdw*xj
+          ggg(2)=facvdw*yj
+          ggg(3)=facvdw*zj
+c          do k=1,3
+c            ghalf=0.5D0*ggg(k)
+c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
+c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
+c          enddo
+c 9/28/08 AL Gradient compotents will be summed only at the end
+          do k=1,3
+            gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
+            gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
+          enddo
+*
+* Loop over residues i+1 thru j-1.
+*
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+#else
+          facvdw=ev1+evdwij 
+          facel=el1+eesij  
+          fac1=fac
+          fac=-3*rrmij*(facvdw+facvdw+facel)
+          erij(1)=xj*rmij
+          erij(2)=yj*rmij
+          erij(3)=zj*rmij
+*
+* Radial derivatives. First process both termini of the fragment (i,j)
+* 
+          ggg(1)=fac*xj
+          ggg(2)=fac*yj
+          ggg(3)=fac*zj
+c          do k=1,3
+c            ghalf=0.5D0*ggg(k)
+c            gelc(k,i)=gelc(k,i)+ghalf
+c            gelc(k,j)=gelc(k,j)+ghalf
+c          enddo
+c 9/28/08 AL Gradient compotents will be summed only at the end
+          do k=1,3
+            gelc_long(k,j)=gelc(k,j)+ggg(k)
+            gelc_long(k,i)=gelc(k,i)-ggg(k)
+          enddo
+*
+* Loop over residues i+1 thru j-1.
+*
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+c 9/28/08 AL Gradient compotents will be summed only at the end
+          ggg(1)=facvdw*xj
+          ggg(2)=facvdw*yj
+          ggg(3)=facvdw*zj
+          do k=1,3
+            gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
+            gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
+          enddo
+#endif
+*
+* Angular part
+*          
+          ecosa=2.0D0*fac3*fac1+fac4
+          fac4=-3.0D0*fac4
+          fac3=-6.0D0*fac3
+          ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
+          ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
+          do k=1,3
+            dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
+            dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
+          enddo
+cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
+cd   &          (dcosg(k),k=1,3)
+          do k=1,3
+            ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
+          enddo
+c          do k=1,3
+c            ghalf=0.5D0*ggg(k)
+c            gelc(k,i)=gelc(k,i)+ghalf
+c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
+c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+c            gelc(k,j)=gelc(k,j)+ghalf
+c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
+c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+c          enddo
+cgrad          do k=i+1,j-1
+cgrad            do l=1,3
+cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+          do k=1,3
+            gelc(k,i)=gelc(k,i)
+     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+            gelc(k,j)=gelc(k,j)
+     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+            gelc_long(k,j)=gelc_long(k,j)+ggg(k)
+            gelc_long(k,i)=gelc_long(k,i)-ggg(k)
+          enddo
+          IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
+     &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
+     &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
+C
+C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
+C   energy of a peptide unit is assumed in the form of a second-order 
+C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
+C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
+C   are computed for EVERY pair of non-contiguous peptide groups.
+C
+          if (j.lt.nres-1) then
+            j1=j+1
+            j2=j-1
+          else
+            j1=j-1
+            j2=j-2
+          endif
+          kkk=0
+          do k=1,2
+            do l=1,2
+              kkk=kkk+1
+              muij(kkk)=mu(k,i)*mu(l,j)
+            enddo
+          enddo  
+cd         write (iout,*) 'EELEC: i',i,' j',j
+cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
+cd          write(iout,*) 'muij',muij
+          ury=scalar(uy(1,i),erij)
+          urz=scalar(uz(1,i),erij)
+          vry=scalar(uy(1,j),erij)
+          vrz=scalar(uz(1,j),erij)
+          a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
+          a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
+          a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
+          a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
+          fac=dsqrt(-ael6i)*r3ij
+          a22=a22*fac
+          a23=a23*fac
+          a32=a32*fac
+          a33=a33*fac
+cd          write (iout,'(4i5,4f10.5)')
+cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
+cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
+cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
+cd     &      uy(:,j),uz(:,j)
+cd          write (iout,'(4f10.5)') 
+cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
+cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
+cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
+cd           write (iout,'(9f10.5/)') 
+cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
+C Derivatives of the elements of A in virtual-bond vectors
+          call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
+          do k=1,3
+            uryg(k,1)=scalar(erder(1,k),uy(1,i))
+            uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
+            uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
+            urzg(k,1)=scalar(erder(1,k),uz(1,i))
+            urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
+            urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
+            vryg(k,1)=scalar(erder(1,k),uy(1,j))
+            vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
+            vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
+            vrzg(k,1)=scalar(erder(1,k),uz(1,j))
+            vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
+            vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
+          enddo
+C Compute radial contributions to the gradient
+          facr=-3.0d0*rrmij
+          a22der=a22*facr
+          a23der=a23*facr
+          a32der=a32*facr
+          a33der=a33*facr
+          agg(1,1)=a22der*xj
+          agg(2,1)=a22der*yj
+          agg(3,1)=a22der*zj
+          agg(1,2)=a23der*xj
+          agg(2,2)=a23der*yj
+          agg(3,2)=a23der*zj
+          agg(1,3)=a32der*xj
+          agg(2,3)=a32der*yj
+          agg(3,3)=a32der*zj
+          agg(1,4)=a33der*xj
+          agg(2,4)=a33der*yj
+          agg(3,4)=a33der*zj
+C Add the contributions coming from er
+          fac3=-3.0d0*fac
+          do k=1,3
+            agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
+            agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
+            agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
+            agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
+          enddo
+          do k=1,3
+C Derivatives in DC(i) 
+cgrad            ghalf1=0.5d0*agg(k,1)
+cgrad            ghalf2=0.5d0*agg(k,2)
+cgrad            ghalf3=0.5d0*agg(k,3)
+cgrad            ghalf4=0.5d0*agg(k,4)
+            aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
+     &      -3.0d0*uryg(k,2)*vry)!+ghalf1
+            aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
+     &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
+            aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
+     &      -3.0d0*urzg(k,2)*vry)!+ghalf3
+            aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
+     &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
+C Derivatives in DC(i+1)
+            aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
+     &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
+            aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
+     &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
+            aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
+     &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
+            aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
+     &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
+C Derivatives in DC(j)
+            aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
+     &      -3.0d0*vryg(k,2)*ury)!+ghalf1
+            aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
+     &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
+            aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
+     &      -3.0d0*vryg(k,2)*urz)!+ghalf3
+            aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
+     &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
+C Derivatives in DC(j+1) or DC(nres-1)
+            aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
+     &      -3.0d0*vryg(k,3)*ury)
+            aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
+     &      -3.0d0*vrzg(k,3)*ury)
+            aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
+     &      -3.0d0*vryg(k,3)*urz)
+            aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
+     &      -3.0d0*vrzg(k,3)*urz)
+cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
+cgrad              do l=1,4
+cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
+cgrad              enddo
+cgrad            endif
+          enddo
+          acipa(1,1)=a22
+          acipa(1,2)=a23
+          acipa(2,1)=a32
+          acipa(2,2)=a33
+          a22=-a22
+          a23=-a23
+          do l=1,2
+            do k=1,3
+              agg(k,l)=-agg(k,l)
+              aggi(k,l)=-aggi(k,l)
+              aggi1(k,l)=-aggi1(k,l)
+              aggj(k,l)=-aggj(k,l)
+              aggj1(k,l)=-aggj1(k,l)
+            enddo
+          enddo
+          if (j.lt.nres-1) then
+            a22=-a22
+            a32=-a32
+            do l=1,3,2
+              do k=1,3
+                agg(k,l)=-agg(k,l)
+                aggi(k,l)=-aggi(k,l)
+                aggi1(k,l)=-aggi1(k,l)
+                aggj(k,l)=-aggj(k,l)
+                aggj1(k,l)=-aggj1(k,l)
+              enddo
+            enddo
+          else
+            a22=-a22
+            a23=-a23
+            a32=-a32
+            a33=-a33
+            do l=1,4
+              do k=1,3
+                agg(k,l)=-agg(k,l)
+                aggi(k,l)=-aggi(k,l)
+                aggi1(k,l)=-aggi1(k,l)
+                aggj(k,l)=-aggj(k,l)
+                aggj1(k,l)=-aggj1(k,l)
+              enddo
+            enddo 
+          endif    
+          ENDIF ! WCORR
+          IF (wel_loc.gt.0.0d0) THEN
+C Contribution to the local-electrostatic energy coming from the i-j pair
+          eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
+     &     +a33*muij(4)
+cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
+
+          if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &            'eelloc',i,j,eel_loc_ij
+
+          eel_loc=eel_loc+eel_loc_ij
+C Partial derivatives in virtual-bond dihedral angles gamma
+          if (i.gt.1)
+     &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
+     &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
+     &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
+          gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
+     &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
+     &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
+C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
+          do l=1,3
+            ggg(l)=agg(l,1)*muij(1)+
+     &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
+            gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
+            gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
+cgrad            ghalf=0.5d0*ggg(l)
+cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
+cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
+          enddo
+cgrad          do k=i+1,j2
+cgrad            do l=1,3
+cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
+cgrad            enddo
+cgrad          enddo
+C Remaining derivatives of eello
+          do l=1,3
+            gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
+     &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
+            gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
+     &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
+            gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
+     &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
+            gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
+     &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
+          enddo
+          ENDIF
+C Change 12/26/95 to calculate four-body contributions to H-bonding energy
+c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
+          if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
+     &       .and. num_conti.le.maxconts) then
+c            write (iout,*) i,j," entered corr"
+C
+C Calculate the contact function. The ith column of the array JCONT will 
+C contain the numbers of atoms that make contacts with the atom I (of numbers
+C greater than I). The arrays FACONT and GACONT will contain the values of
+C the contact function and its derivative.
+c           r0ij=1.02D0*rpp(iteli,itelj)
+c           r0ij=1.11D0*rpp(iteli,itelj)
+            r0ij=2.20D0*rpp(iteli,itelj)
+c           r0ij=1.55D0*rpp(iteli,itelj)
+            call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
+            if (fcont.gt.0.0D0) then
+              num_conti=num_conti+1
+              if (num_conti.gt.maxconts) then
+                write (iout,*) 'WARNING - max. # of contacts exceeded;',
+     &                         ' will skip next contacts for this conf.'
+              else
+                jcont_hb(num_conti,i)=j
+cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
+cd     &           " jcont_hb",jcont_hb(num_conti,i)
+                IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
+     &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
+C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
+C  terms.
+                d_cont(num_conti,i)=rij
+cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
+C     --- Electrostatic-interaction matrix --- 
+                a_chuj(1,1,num_conti,i)=a22
+                a_chuj(1,2,num_conti,i)=a23
+                a_chuj(2,1,num_conti,i)=a32
+                a_chuj(2,2,num_conti,i)=a33
+C     --- Gradient of rij
+                do kkk=1,3
+                  grij_hb_cont(kkk,num_conti,i)=erij(kkk)
+                enddo
+                kkll=0
+                do k=1,2
+                  do l=1,2
+                    kkll=kkll+1
+                    do m=1,3
+                      a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
+                      a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
+                      a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
+                      a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
+                      a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
+                    enddo
+                  enddo
+                enddo
+                ENDIF
+                IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
+C Calculate contact energies
+                cosa4=4.0D0*cosa
+                wij=cosa-3.0D0*cosb*cosg
+                cosbg1=cosb+cosg
+                cosbg2=cosb-cosg
+c               fac3=dsqrt(-ael6i)/r0ij**3     
+                fac3=dsqrt(-ael6i)*r3ij
+c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
+                ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
+                if (ees0tmp.gt.0) then
+                  ees0pij=dsqrt(ees0tmp)
+                else
+                  ees0pij=0
+                endif
+c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
+                ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
+                if (ees0tmp.gt.0) then
+                  ees0mij=dsqrt(ees0tmp)
+                else
+                  ees0mij=0
+                endif
+c               ees0mij=0.0D0
+                ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
+                ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
+C Diagnostics. Comment out or remove after debugging!
+c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
+c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
+c               ees0m(num_conti,i)=0.0D0
+C End diagnostics.
+c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
+c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
+C Angular derivatives of the contact function
+                ees0pij1=fac3/ees0pij 
+                ees0mij1=fac3/ees0mij
+                fac3p=-3.0D0*fac3*rrmij
+                ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
+                ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
+c               ees0mij1=0.0D0
+                ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
+                ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
+                ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
+                ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
+                ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
+                ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
+                ecosap=ecosa1+ecosa2
+                ecosbp=ecosb1+ecosb2
+                ecosgp=ecosg1+ecosg2
+                ecosam=ecosa1-ecosa2
+                ecosbm=ecosb1-ecosb2
+                ecosgm=ecosg1-ecosg2
+C Diagnostics
+c               ecosap=ecosa1
+c               ecosbp=ecosb1
+c               ecosgp=ecosg1
+c               ecosam=0.0D0
+c               ecosbm=0.0D0
+c               ecosgm=0.0D0
+C End diagnostics
+                facont_hb(num_conti,i)=fcont
+                fprimcont=fprimcont/rij
+cd              facont_hb(num_conti,i)=1.0D0
+C Following line is for diagnostics.
+cd              fprimcont=0.0D0
+                do k=1,3
+                  dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
+                  dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
+                enddo
+                do k=1,3
+                  gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
+                  gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
+                enddo
+                gggp(1)=gggp(1)+ees0pijp*xj
+                gggp(2)=gggp(2)+ees0pijp*yj
+                gggp(3)=gggp(3)+ees0pijp*zj
+                gggm(1)=gggm(1)+ees0mijp*xj
+                gggm(2)=gggm(2)+ees0mijp*yj
+                gggm(3)=gggm(3)+ees0mijp*zj
+C Derivatives due to the contact function
+                gacont_hbr(1,num_conti,i)=fprimcont*xj
+                gacont_hbr(2,num_conti,i)=fprimcont*yj
+                gacont_hbr(3,num_conti,i)=fprimcont*zj
+                do k=1,3
+c
+c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
+c          following the change of gradient-summation algorithm.
+c
+cgrad                  ghalfp=0.5D0*gggp(k)
+cgrad                  ghalfm=0.5D0*gggm(k)
+                  gacontp_hb1(k,num_conti,i)=!ghalfp
+     &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+                  gacontp_hb2(k,num_conti,i)=!ghalfp
+     &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+                  gacontp_hb3(k,num_conti,i)=gggp(k)
+                  gacontm_hb1(k,num_conti,i)=!ghalfm
+     &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+                  gacontm_hb2(k,num_conti,i)=!ghalfm
+     &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+                  gacontm_hb3(k,num_conti,i)=gggm(k)
+                enddo
+C Diagnostics. Comment out or remove after debugging!
+cdiag           do k=1,3
+cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
+cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
+cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
+cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
+cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
+cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
+cdiag           enddo
+              ENDIF ! wcorr
+              endif  ! num_conti.le.maxconts
+            endif  ! fcont.gt.0
+          endif    ! j.gt.i+1
+          if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
+            do k=1,4
+              do l=1,3
+                ghalf=0.5d0*agg(l,k)
+                aggi(l,k)=aggi(l,k)+ghalf
+                aggi1(l,k)=aggi1(l,k)+agg(l,k)
+                aggj(l,k)=aggj(l,k)+ghalf
+              enddo
+            enddo
+            if (j.eq.nres-1 .and. i.lt.j-2) then
+              do k=1,4
+                do l=1,3
+                  aggj1(l,k)=aggj1(l,k)+agg(l,k)
+                enddo
+              enddo
+            endif
+          endif
+c          t_eelecij=t_eelecij+MPI_Wtime()-time00
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine eturn3(i,eello_turn3)
+C Third- and fourth-order contributions from turns
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.CONTROL'
+      dimension ggg(3)
+      double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
+     &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+      double precision agg(3,4),aggi(3,4),aggi1(3,4),
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
+      common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
+     &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
+     &    num_conti,j1,j2
+      j=i+2
+c      write (iout,*) "eturn3",i,j,j1,j2
+      a_temp(1,1)=a22
+      a_temp(1,2)=a23
+      a_temp(2,1)=a32
+      a_temp(2,2)=a33
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C
+C               Third-order contributions
+C        
+C                 (i+2)o----(i+3)
+C                      | |
+C                      | |
+C                 (i+1)o----i
+C
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
+cd        call checkint_turn3(i,a_temp,eello_turn3_num)
+        call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
+        call transpose2(auxmat(1,1),auxmat1(1,1))
+        call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+        eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
+        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
+cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
+cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
+cd     &    ' eello_turn3_num',4*eello_turn3_num
+C Derivatives in gamma(i)
+        call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
+        call transpose2(auxmat2(1,1),auxmat3(1,1))
+        call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
+        gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
+C Derivatives in gamma(i+1)
+        call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
+        call transpose2(auxmat2(1,1),auxmat3(1,1))
+        call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
+        gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
+     &    +0.5d0*(pizda(1,1)+pizda(2,2))
+C Cartesian derivatives
+        do l=1,3
+c            ghalf1=0.5d0*agg(l,1)
+c            ghalf2=0.5d0*agg(l,2)
+c            ghalf3=0.5d0*agg(l,3)
+c            ghalf4=0.5d0*agg(l,4)
+          a_temp(1,1)=aggi(l,1)!+ghalf1
+          a_temp(1,2)=aggi(l,2)!+ghalf2
+          a_temp(2,1)=aggi(l,3)!+ghalf3
+          a_temp(2,2)=aggi(l,4)!+ghalf4
+          call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+          gcorr3_turn(l,i)=gcorr3_turn(l,i)
+     &      +0.5d0*(pizda(1,1)+pizda(2,2))
+          a_temp(1,1)=aggi1(l,1)!+agg(l,1)
+          a_temp(1,2)=aggi1(l,2)!+agg(l,2)
+          a_temp(2,1)=aggi1(l,3)!+agg(l,3)
+          a_temp(2,2)=aggi1(l,4)!+agg(l,4)
+          call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+          gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
+     &      +0.5d0*(pizda(1,1)+pizda(2,2))
+          a_temp(1,1)=aggj(l,1)!+ghalf1
+          a_temp(1,2)=aggj(l,2)!+ghalf2
+          a_temp(2,1)=aggj(l,3)!+ghalf3
+          a_temp(2,2)=aggj(l,4)!+ghalf4
+          call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+          gcorr3_turn(l,j)=gcorr3_turn(l,j)
+     &      +0.5d0*(pizda(1,1)+pizda(2,2))
+          a_temp(1,1)=aggj1(l,1)
+          a_temp(1,2)=aggj1(l,2)
+          a_temp(2,1)=aggj1(l,3)
+          a_temp(2,2)=aggj1(l,4)
+          call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+          gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
+     &      +0.5d0*(pizda(1,1)+pizda(2,2))
+        enddo
+      return
+      end
+C-------------------------------------------------------------------------------
+      subroutine eturn4(i,eello_turn4)
+C Third- and fourth-order contributions from turns
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VECTORS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.CONTROL'
+      dimension ggg(3)
+      double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
+     &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+      double precision agg(3,4),aggi(3,4),aggi1(3,4),
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
+      common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
+     &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
+     &    num_conti,j1,j2
+      j=i+3
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C
+C               Fourth-order contributions
+C        
+C                 (i+3)o----(i+4)
+C                     /  |
+C               (i+2)o   |
+C                     \  |
+C                 (i+1)o----i
+C
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
+cd        call checkint_turn4(i,a_temp,eello_turn4_num)
+c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
+        a_temp(1,1)=a22
+        a_temp(1,2)=a23
+        a_temp(2,1)=a32
+        a_temp(2,2)=a33
+        iti1=itortyp(itype(i+1))
+        iti2=itortyp(itype(i+2))
+        iti3=itortyp(itype(i+3))
+c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
+        call transpose2(EUg(1,1,i+1),e1t(1,1))
+        call transpose2(Eug(1,1,i+2),e2t(1,1))
+        call transpose2(Eug(1,1,i+3),e3t(1,1))
+        call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+        call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
+        s1=scalar2(b1(1,iti2),auxvec(1))
+        call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+        call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
+        s2=scalar2(b1(1,iti1),auxvec(1))
+        call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+        call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+        s3=0.5d0*(pizda(1,1)+pizda(2,2))
+        eello_turn4=eello_turn4-(s1+s2+s3)
+        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &      'eturn4',i,j,-(s1+s2+s3)
+cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
+cd     &    ' eello_turn4_num',8*eello_turn4_num
+C Derivatives in gamma(i)
+        call transpose2(EUgder(1,1,i+1),e1tder(1,1))
+        call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
+        call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
+        s1=scalar2(b1(1,iti2),auxvec(1))
+        call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
+        s3=0.5d0*(pizda(1,1)+pizda(2,2))
+        gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
+C Derivatives in gamma(i+1)
+        call transpose2(EUgder(1,1,i+2),e2tder(1,1))
+        call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
+        s2=scalar2(b1(1,iti1),auxvec(1))
+        call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
+        call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
+        s3=0.5d0*(pizda(1,1)+pizda(2,2))
+        gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
+C Derivatives in gamma(i+2)
+        call transpose2(EUgder(1,1,i+3),e3tder(1,1))
+        call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
+        s1=scalar2(b1(1,iti2),auxvec(1))
+        call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
+        call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
+        s2=scalar2(b1(1,iti1),auxvec(1))
+        call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
+        call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
+        s3=0.5d0*(pizda(1,1)+pizda(2,2))
+        gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
+C Cartesian derivatives
+C Derivatives of this turn contributions in DC(i+2)
+        if (j.lt.nres-1) then
+          do l=1,3
+            a_temp(1,1)=agg(l,1)
+            a_temp(1,2)=agg(l,2)
+            a_temp(2,1)=agg(l,3)
+            a_temp(2,2)=agg(l,4)
+            call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+            call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
+            s1=scalar2(b1(1,iti2),auxvec(1))
+            call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+            call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
+            s2=scalar2(b1(1,iti1),auxvec(1))
+            call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+            call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+            s3=0.5d0*(pizda(1,1)+pizda(2,2))
+            ggg(l)=-(s1+s2+s3)
+            gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
+          enddo
+        endif
+C Remaining derivatives of this turn contribution
+        do l=1,3
+          a_temp(1,1)=aggi(l,1)
+          a_temp(1,2)=aggi(l,2)
+          a_temp(2,1)=aggi(l,3)
+          a_temp(2,2)=aggi(l,4)
+          call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+          call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
+          s1=scalar2(b1(1,iti2),auxvec(1))
+          call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+          call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
+          s2=scalar2(b1(1,iti1),auxvec(1))
+          call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+          call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+          s3=0.5d0*(pizda(1,1)+pizda(2,2))
+          gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
+          a_temp(1,1)=aggi1(l,1)
+          a_temp(1,2)=aggi1(l,2)
+          a_temp(2,1)=aggi1(l,3)
+          a_temp(2,2)=aggi1(l,4)
+          call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+          call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
+          s1=scalar2(b1(1,iti2),auxvec(1))
+          call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+          call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
+          s2=scalar2(b1(1,iti1),auxvec(1))
+          call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+          call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+          s3=0.5d0*(pizda(1,1)+pizda(2,2))
+          gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
+          a_temp(1,1)=aggj(l,1)
+          a_temp(1,2)=aggj(l,2)
+          a_temp(2,1)=aggj(l,3)
+          a_temp(2,2)=aggj(l,4)
+          call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+          call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
+          s1=scalar2(b1(1,iti2),auxvec(1))
+          call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+          call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
+          s2=scalar2(b1(1,iti1),auxvec(1))
+          call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+          call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+          s3=0.5d0*(pizda(1,1)+pizda(2,2))
+          gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
+          a_temp(1,1)=aggj1(l,1)
+          a_temp(1,2)=aggj1(l,2)
+          a_temp(2,1)=aggj1(l,3)
+          a_temp(2,2)=aggj1(l,4)
+          call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+          call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
+          s1=scalar2(b1(1,iti2),auxvec(1))
+          call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+          call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
+          s2=scalar2(b1(1,iti1),auxvec(1))
+          call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+          call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+          s3=0.5d0*(pizda(1,1)+pizda(2,2))
+c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
+          gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
+        enddo
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine vecpr(u,v,w)
+      implicit real*8(a-h,o-z)
+      dimension u(3),v(3),w(3)
+      w(1)=u(2)*v(3)-u(3)*v(2)
+      w(2)=-u(1)*v(3)+u(3)*v(1)
+      w(3)=u(1)*v(2)-u(2)*v(1)
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine unormderiv(u,ugrad,unorm,ungrad)
+C This subroutine computes the derivatives of a normalized vector u, given
+C the derivatives computed without normalization conditions, ugrad. Returns
+C ungrad.
+      implicit none
+      double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
+      double precision vec(3)
+      double precision scalar
+      integer i,j
+c      write (2,*) 'ugrad',ugrad
+c      write (2,*) 'u',u
+      do i=1,3
+        vec(i)=scalar(ugrad(1,i),u(1))
+      enddo
+c      write (2,*) 'vec',vec
+      do i=1,3
+        do j=1,3
+          ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
+        enddo
+      enddo
+c      write (2,*) 'ungrad',ungrad
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine escp_soft_sphere(evdw2,evdw2_14)
+C
+C This subroutine calculates the excluded-volume interaction energy between
+C peptide-group centers and side chains and its gradient in virtual-bond and
+C side-chain vectors.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
+      dimension ggg(3)
+      evdw2=0.0D0
+      evdw2_14=0.0d0
+      r0_scp=4.5d0
+cd    print '(a)','Enter ESCP'
+cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
+      do i=iatscp_s,iatscp_e
+        iteli=itel(i)
+        xi=0.5D0*(c(1,i)+c(1,i+1))
+        yi=0.5D0*(c(2,i)+c(2,i+1))
+        zi=0.5D0*(c(3,i)+c(3,i+1))
+
+        do iint=1,nscp_gr(i)
+
+        do j=iscpstart(i,iint),iscpend(i,iint)
+          itypj=itype(j)
+C Uncomment following three lines for SC-p interactions
+c         xj=c(1,nres+j)-xi
+c         yj=c(2,nres+j)-yi
+c         zj=c(3,nres+j)-zi
+C Uncomment following three lines for Ca-p interactions
+          xj=c(1,j)-xi
+          yj=c(2,j)-yi
+          zj=c(3,j)-zi
+          rij=xj*xj+yj*yj+zj*zj
+          r0ij=r0_scp
+          r0ijsq=r0ij*r0ij
+          if (rij.lt.r0ijsq) then
+            evdwij=0.25d0*(rij-r0ijsq)**2
+            fac=rij-r0ijsq
+          else
+            evdwij=0.0d0
+            fac=0.0d0
+          endif 
+          evdw2=evdw2+evdwij
+C
+C Calculate contributions to the gradient in the virtual-bond and SC vectors.
+C
+          ggg(1)=xj*fac
+          ggg(2)=yj*fac
+          ggg(3)=zj*fac
+cgrad          if (j.lt.i) then
+cd          write (iout,*) 'j<i'
+C Uncomment following three lines for SC-p interactions
+c           do k=1,3
+c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
+c           enddo
+cgrad          else
+cd          write (iout,*) 'j>i'
+cgrad            do k=1,3
+cgrad              ggg(k)=-ggg(k)
+C Uncomment following line for SC-p interactions
+c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
+cgrad            enddo
+cgrad          endif
+cgrad          do k=1,3
+cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
+cgrad          enddo
+cgrad          kstart=min0(i+1,j)
+cgrad          kend=max0(i-1,j-1)
+cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
+cd        write (iout,*) ggg(1),ggg(2),ggg(3)
+cgrad          do k=kstart,kend
+cgrad            do l=1,3
+cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
+cgrad            enddo
+cgrad          enddo
+          do k=1,3
+            gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
+            gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
+          enddo
+        enddo
+
+        enddo ! iint
+      enddo ! i
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine escp(evdw2,evdw2_14)
+C
+C This subroutine calculates the excluded-volume interaction energy between
+C peptide-group centers and side chains and its gradient in virtual-bond and
+C side-chain vectors.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
+      dimension ggg(3)
+      evdw2=0.0D0
+      evdw2_14=0.0d0
+cd    print '(a)','Enter ESCP'
+cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
+      do i=iatscp_s,iatscp_e
+        iteli=itel(i)
+        xi=0.5D0*(c(1,i)+c(1,i+1))
+        yi=0.5D0*(c(2,i)+c(2,i+1))
+        zi=0.5D0*(c(3,i)+c(3,i+1))
+
+        do iint=1,nscp_gr(i)
+
+        do j=iscpstart(i,iint),iscpend(i,iint)
+          itypj=itype(j)
+C Uncomment following three lines for SC-p interactions
+c         xj=c(1,nres+j)-xi
+c         yj=c(2,nres+j)-yi
+c         zj=c(3,nres+j)-zi
+C Uncomment following three lines for Ca-p interactions
+          xj=c(1,j)-xi
+          yj=c(2,j)-yi
+          zj=c(3,j)-zi
+          rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+          fac=rrij**expon2
+          e1=fac*fac*aad(itypj,iteli)
+          e2=fac*bad(itypj,iteli)
+          if (iabs(j-i) .le. 2) then
+            e1=scal14*e1
+            e2=scal14*e2
+            evdw2_14=evdw2_14+e1+e2
+          endif
+          evdwij=e1+e2
+          evdw2=evdw2+evdwij
+          if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &        'evdw2',i,j,evdwij
+C
+C Calculate contributions to the gradient in the virtual-bond and SC vectors.
+C
+          fac=-(evdwij+e1)*rrij
+          ggg(1)=xj*fac
+          ggg(2)=yj*fac
+          ggg(3)=zj*fac
+cgrad          if (j.lt.i) then
+cd          write (iout,*) 'j<i'
+C Uncomment following three lines for SC-p interactions
+c           do k=1,3
+c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
+c           enddo
+cgrad          else
+cd          write (iout,*) 'j>i'
+cgrad            do k=1,3
+cgrad              ggg(k)=-ggg(k)
+C Uncomment following line for SC-p interactions
+ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
+c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
+cgrad            enddo
+cgrad          endif
+cgrad          do k=1,3
+cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
+cgrad          enddo
+cgrad          kstart=min0(i+1,j)
+cgrad          kend=max0(i-1,j-1)
+cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
+cd        write (iout,*) ggg(1),ggg(2),ggg(3)
+cgrad          do k=kstart,kend
+cgrad            do l=1,3
+cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
+cgrad            enddo
+cgrad          enddo
+          do k=1,3
+            gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
+            gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
+          enddo
+        enddo
+
+        enddo ! iint
+      enddo ! i
+      do i=1,nct
+        do j=1,3
+          gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
+          gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
+          gradx_scp(j,i)=expon*gradx_scp(j,i)
+        enddo
+      enddo
+C******************************************************************************
+C
+C                              N O T E !!!
+C
+C To save time the factor EXPON has been extracted from ALL components
+C of GVDWC and GRADX. Remember to multiply them by this factor before further 
+C use!
+C
+C******************************************************************************
+      return
+      end
+C--------------------------------------------------------------------------
+      subroutine edis(ehpb)
+C 
+C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      dimension ggg(3)
+      ehpb=0.0D0
+cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
+cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
+      if (link_end.eq.0) return
+      do i=link_start,link_end
+C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
+C CA-CA distance used in regularization of structure.
+        ii=ihpb(i)
+        jj=jhpb(i)
+C iii and jjj point to the residues for which the distance is assigned.
+        if (ii.gt.nres) then
+          iii=ii-nres
+          jjj=jj-nres 
+        else
+          iii=ii
+          jjj=jj
+        endif
+c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
+c     &    dhpb(i),dhpb1(i),forcon(i)
+C 24/11/03 AL: SS bridges handled separately because of introducing a specific
+C    distance and angle dependent SS bond potential.
+        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
+          call ssbond_ene(iii,jjj,eij)
+          ehpb=ehpb+2*eij
+cd          write (iout,*) "eij",eij
+        else if (ii.gt.nres .and. jj.gt.nres) then
+c Restraints from contact prediction
+          dd=dist(ii,jj)
+          if (dhpb1(i).gt.0.0d0) then
+            ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
+            fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
+c            write (iout,*) "beta nmr",
+c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
+          else
+            dd=dist(ii,jj)
+            rdis=dd-dhpb(i)
+C Get the force constant corresponding to this distance.
+            waga=forcon(i)
+C Calculate the contribution to energy.
+            ehpb=ehpb+waga*rdis*rdis
+c            write (iout,*) "beta reg",dd,waga*rdis*rdis
+C
+C Evaluate gradient.
+C
+            fac=waga*rdis/dd
+          endif  
+          do j=1,3
+            ggg(j)=fac*(c(j,jj)-c(j,ii))
+          enddo
+          do j=1,3
+            ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
+            ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
+          enddo
+          do k=1,3
+            ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
+            ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
+          enddo
+        else
+C Calculate the distance between the two points and its difference from the
+C target distance.
+          dd=dist(ii,jj)
+          if (dhpb1(i).gt.0.0d0) then
+            ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
+            fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
+c            write (iout,*) "alph nmr",
+c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
+          else
+            rdis=dd-dhpb(i)
+C Get the force constant corresponding to this distance.
+            waga=forcon(i)
+C Calculate the contribution to energy.
+            ehpb=ehpb+waga*rdis*rdis
+c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
+C
+C Evaluate gradient.
+C
+            fac=waga*rdis/dd
+          endif
+cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
+cd   &   ' waga=',waga,' fac=',fac
+            do j=1,3
+              ggg(j)=fac*(c(j,jj)-c(j,ii))
+            enddo
+cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
+C If this is a SC-SC distance, we need to calculate the contributions to the
+C Cartesian gradient in the SC vectors (ghpbx).
+          if (iii.lt.ii) then
+          do j=1,3
+            ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
+            ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
+          enddo
+          endif
+cgrad        do j=iii,jjj-1
+cgrad          do k=1,3
+cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
+cgrad          enddo
+cgrad        enddo
+          do k=1,3
+            ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
+            ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
+          enddo
+        endif
+      enddo
+      ehpb=0.5D0*ehpb
+      return
+      end
+C--------------------------------------------------------------------------
+      subroutine ssbond_ene(i,j,eij)
+C 
+C Calculate the distance and angle dependent SS-bond potential energy
+C using a free-energy function derived based on RHF/6-31G** ab initio
+C calculations of diethyl disulfide.
+C
+C A. Liwo and U. Kozlowska, 11/24/03
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
+      itypi=itype(i)
+      xi=c(1,nres+i)
+      yi=c(2,nres+i)
+      zi=c(3,nres+i)
+      dxi=dc_norm(1,nres+i)
+      dyi=dc_norm(2,nres+i)
+      dzi=dc_norm(3,nres+i)
+c      dsci_inv=dsc_inv(itypi)
+      dsci_inv=vbld_inv(nres+i)
+      itypj=itype(j)
+c      dscj_inv=dsc_inv(itypj)
+      dscj_inv=vbld_inv(nres+j)
+      xj=c(1,nres+j)-xi
+      yj=c(2,nres+j)-yi
+      zj=c(3,nres+j)-zi
+      dxj=dc_norm(1,nres+j)
+      dyj=dc_norm(2,nres+j)
+      dzj=dc_norm(3,nres+j)
+      rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+      rij=dsqrt(rrij)
+      erij(1)=xj*rij
+      erij(2)=yj*rij
+      erij(3)=zj*rij
+      om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
+      om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
+      om12=dxi*dxj+dyi*dyj+dzi*dzj
+      do k=1,3
+        dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
+        dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
+      enddo
+      rij=1.0d0/rij
+      deltad=rij-d0cm
+      deltat1=1.0d0-om1
+      deltat2=1.0d0+om2
+      deltat12=om2-om1+2.0d0
+      cosphi=om12-om1*om2
+      eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
+     &  +akct*deltad*deltat12
+     &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
+c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
+c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
+c     &  " deltat12",deltat12," eij",eij 
+      ed=2*akcm*deltad+akct*deltat12
+      pom1=akct*deltad
+      pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
+      eom1=-2*akth*deltat1-pom1-om2*pom2
+      eom2= 2*akth*deltat2+pom1-om1*pom2
+      eom12=pom2
+      do k=1,3
+        ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
+        ghpbx(k,i)=ghpbx(k,i)-ggk
+     &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
+     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
+        ghpbx(k,j)=ghpbx(k,j)+ggk
+     &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
+     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+        ghpbc(k,i)=ghpbc(k,i)-ggk
+        ghpbc(k,j)=ghpbc(k,j)+ggk
+      enddo
+C
+C Calculate the components of the gradient in DC and X
+C
+cgrad      do k=i,j-1
+cgrad        do l=1,3
+cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
+cgrad        enddo
+cgrad      enddo
+      return
+      end
+C--------------------------------------------------------------------------
+      subroutine ebond(estr)
+c
+c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.FFIELD'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SETUP'
+      double precision u(3),ud(3)
+      estr=0.0d0
+      do i=ibondp_start,ibondp_end
+        diff = vbld(i)-vbldp0
+c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
+        estr=estr+diff*diff
+        do j=1,3
+          gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
+        enddo
+c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
+      enddo
+      estr=0.5d0*AKP*estr
+c
+c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
+c
+      do i=ibond_start,ibond_end
+        iti=itype(i)
+        if (iti.ne.10) then
+          nbi=nbondterm(iti)
+          if (nbi.eq.1) then
+            diff=vbld(i+nres)-vbldsc0(1,iti)
+c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
+c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
+            estr=estr+0.5d0*AKSC(1,iti)*diff*diff
+            do j=1,3
+              gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
+            enddo
+          else
+            do j=1,nbi
+              diff=vbld(i+nres)-vbldsc0(j,iti) 
+              ud(j)=aksc(j,iti)*diff
+              u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
+            enddo
+            uprod=u(1)
+            do j=2,nbi
+              uprod=uprod*u(j)
+            enddo
+            usum=0.0d0
+            usumsqder=0.0d0
+            do j=1,nbi
+              uprod1=1.0d0
+              uprod2=1.0d0
+              do k=1,nbi
+                if (k.ne.j) then
+                  uprod1=uprod1*u(k)
+                  uprod2=uprod2*u(k)*u(k)
+                endif
+              enddo
+              usum=usum+uprod1
+              usumsqder=usumsqder+ud(j)*uprod2   
+            enddo
+            estr=estr+uprod/usum
+            do j=1,3
+             gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
+            enddo
+          endif
+        endif
+      enddo
+      return
+      end 
+#ifdef CRYST_THETA
+C--------------------------------------------------------------------------
+      subroutine ebend(etheta)
+C
+C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
+C angles gamma and its derivatives in consecutive thetas and gammas.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.FFIELD'
+      include 'COMMON.CONTROL'
+      common /calcthet/ term1,term2,termm,diffak,ratak,
+     & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
+     & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
+      double precision y(2),z(2)
+      delta=0.02d0*pi
+c      time11=dexp(-2*time)
+c      time12=1.0d0
+      etheta=0.0D0
+c     write (*,'(a,i2)') 'EBEND ICG=',icg
+      do i=ithet_start,ithet_end
+C Zero the energy function and its derivative at 0 or pi.
+        call splinthet(theta(i),0.5d0*delta,ss,ssd)
+        it=itype(i-1)
+        if (i.gt.3) then
+#ifdef OSF
+         phii=phi(i)
+          if (phii.ne.phii) phii=150.0
+#else
+          phii=phi(i)
+#endif
+          y(1)=dcos(phii)
+          y(2)=dsin(phii)
+        else 
+          y(1)=0.0D0
+          y(2)=0.0D0
+        endif
+        if (i.lt.nres) then
+#ifdef OSF
+         phii1=phi(i+1)
+          if (phii1.ne.phii1) phii1=150.0
+          phii1=pinorm(phii1)
+          z(1)=cos(phii1)
+#else
+          phii1=phi(i+1)
+          z(1)=dcos(phii1)
+#endif
+          z(2)=dsin(phii1)
+        else
+          z(1)=0.0D0
+          z(2)=0.0D0
+        endif  
+C Calculate the "mean" value of theta from the part of the distribution
+C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
+C In following comments this theta will be referred to as t_c.
+        thet_pred_mean=0.0d0
+        do k=1,2
+          athetk=athet(k,it)
+          bthetk=bthet(k,it)
+          thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
+        enddo
+        dthett=thet_pred_mean*ssd
+        thet_pred_mean=thet_pred_mean*ss+a0thet(it)
+C Derivatives of the "mean" values in gamma1 and gamma2.
+        dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
+        dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
+        if (theta(i).gt.pi-delta) then
+          call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
+     &         E_tc0)
+          call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
+          call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
+          call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
+     &        E_theta)
+          call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
+     &        E_tc)
+        else if (theta(i).lt.delta) then
+          call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
+          call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
+          call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
+     &        E_theta)
+          call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
+          call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
+     &        E_tc)
+        else
+          call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
+     &        E_theta,E_tc)
+        endif
+        etheta=etheta+ethetai
+        if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
+     &      'ebend',i,ethetai
+        if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
+        if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
+        gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
+      enddo
+C Ufff.... We've done all this!!! 
+      return
+      end
+C---------------------------------------------------------------------------
+      subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
+     &     E_tc)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.IOUNITS'
+      common /calcthet/ term1,term2,termm,diffak,ratak,
+     & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
+     & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
+C Calculate the contributions to both Gaussian lobes.
+C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
+C The "polynomial part" of the "standard deviation" of this part of 
+C the distribution.
+        sig=polthet(3,it)
+        do j=2,0,-1
+          sig=sig*thet_pred_mean+polthet(j,it)
+        enddo
+C Derivative of the "interior part" of the "standard deviation of the" 
+C gamma-dependent Gaussian lobe in t_c.
+        sigtc=3*polthet(3,it)
+        do j=2,1,-1
+          sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
+        enddo
+        sigtc=sig*sigtc
+C Set the parameters of both Gaussian lobes of the distribution.
+C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
+        fac=sig*sig+sigc0(it)
+        sigcsq=fac+fac
+        sigc=1.0D0/sigcsq
+C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
+        sigsqtc=-4.0D0*sigcsq*sigtc
+c       print *,i,sig,sigtc,sigsqtc
+C Following variable (sigtc) is d[sigma(t_c)]/dt_c
+        sigtc=-sigtc/(fac*fac)
+C Following variable is sigma(t_c)**(-2)
+        sigcsq=sigcsq*sigcsq
+        sig0i=sig0(it)
+        sig0inv=1.0D0/sig0i**2
+        delthec=thetai-thet_pred_mean
+        delthe0=thetai-theta0i
+        term1=-0.5D0*sigcsq*delthec*delthec
+        term2=-0.5D0*sig0inv*delthe0*delthe0
+C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
+C NaNs in taking the logarithm. We extract the largest exponent which is added
+C to the energy (this being the log of the distribution) at the end of energy
+C term evaluation for this virtual-bond angle.
+        if (term1.gt.term2) then
+          termm=term1
+          term2=dexp(term2-termm)
+          term1=1.0d0
+        else
+          termm=term2
+          term1=dexp(term1-termm)
+          term2=1.0d0
+        endif
+C The ratio between the gamma-independent and gamma-dependent lobes of
+C the distribution is a Gaussian function of thet_pred_mean too.
+        diffak=gthet(2,it)-thet_pred_mean
+        ratak=diffak/gthet(3,it)**2
+        ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
+C Let's differentiate it in thet_pred_mean NOW.
+        aktc=ak*ratak
+C Now put together the distribution terms to make complete distribution.
+        termexp=term1+ak*term2
+        termpre=sigc+ak*sig0i
+C Contribution of the bending energy from this theta is just the -log of
+C the sum of the contributions from the two lobes and the pre-exponential
+C factor. Simple enough, isn't it?
+        ethetai=(-dlog(termexp)-termm+dlog(termpre))
+C NOW the derivatives!!!
+C 6/6/97 Take into account the deformation.
+        E_theta=(delthec*sigcsq*term1
+     &       +ak*delthe0*sig0inv*term2)/termexp
+        E_tc=((sigtc+aktc*sig0i)/termpre
+     &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
+     &       aktc*term2)/termexp)
+      return
+      end
+c-----------------------------------------------------------------------------
+      subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.IOUNITS'
+      common /calcthet/ term1,term2,termm,diffak,ratak,
+     & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
+     & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
+      delthec=thetai-thet_pred_mean
+      delthe0=thetai-theta0i
+C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
+      t3 = thetai-thet_pred_mean
+      t6 = t3**2
+      t9 = term1
+      t12 = t3*sigcsq
+      t14 = t12+t6*sigsqtc
+      t16 = 1.0d0
+      t21 = thetai-theta0i
+      t23 = t21**2
+      t26 = term2
+      t27 = t21*t26
+      t32 = termexp
+      t40 = t32**2
+      E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
+     & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
+     & *(-t12*t9-ak*sig0inv*t27)
+      return
+      end
+#else
+C--------------------------------------------------------------------------
+      subroutine ebend(etheta)
+C
+C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
+C angles gamma and its derivatives in consecutive thetas and gammas.
+C ab initio-derived potentials from 
+c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.FFIELD'
+      include 'COMMON.CONTROL'
+      double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
+     & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
+     & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
+     & sinph1ph2(maxdouble,maxdouble)
+      logical lprn /.false./, lprn1 /.false./
+      etheta=0.0D0
+      do i=ithet_start,ithet_end
+        dethetai=0.0d0
+        dephii=0.0d0
+        dephii1=0.0d0
+        theti2=0.5d0*theta(i)
+        ityp2=ithetyp(itype(i-1))
+        do k=1,nntheterm
+          coskt(k)=dcos(k*theti2)
+          sinkt(k)=dsin(k*theti2)
+        enddo
+        if (i.gt.3) then
+#ifdef OSF
+          phii=phi(i)
+          if (phii.ne.phii) phii=150.0
+#else
+          phii=phi(i)
+#endif
+          ityp1=ithetyp(itype(i-2))
+          do k=1,nsingle
+            cosph1(k)=dcos(k*phii)
+            sinph1(k)=dsin(k*phii)
+          enddo
+        else
+          phii=0.0d0
+          ityp1=nthetyp+1
+          do k=1,nsingle
+            cosph1(k)=0.0d0
+            sinph1(k)=0.0d0
+          enddo 
+        endif
+        if (i.lt.nres) then
+#ifdef OSF
+          phii1=phi(i+1)
+          if (phii1.ne.phii1) phii1=150.0
+          phii1=pinorm(phii1)
+#else
+          phii1=phi(i+1)
+#endif
+          ityp3=ithetyp(itype(i))
+          do k=1,nsingle
+            cosph2(k)=dcos(k*phii1)
+            sinph2(k)=dsin(k*phii1)
+          enddo
+        else
+          phii1=0.0d0
+          ityp3=nthetyp+1
+          do k=1,nsingle
+            cosph2(k)=0.0d0
+            sinph2(k)=0.0d0
+          enddo
+        endif  
+        ethetai=aa0thet(ityp1,ityp2,ityp3)
+        do k=1,ndouble
+          do l=1,k-1
+            ccl=cosph1(l)*cosph2(k-l)
+            ssl=sinph1(l)*sinph2(k-l)
+            scl=sinph1(l)*cosph2(k-l)
+            csl=cosph1(l)*sinph2(k-l)
+            cosph1ph2(l,k)=ccl-ssl
+            cosph1ph2(k,l)=ccl+ssl
+            sinph1ph2(l,k)=scl+csl
+            sinph1ph2(k,l)=scl-csl
+          enddo
+        enddo
+        if (lprn) then
+        write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
+     &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
+        write (iout,*) "coskt and sinkt"
+        do k=1,nntheterm
+          write (iout,*) k,coskt(k),sinkt(k)
+        enddo
+        endif
+        do k=1,ntheterm
+          ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
+          dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
+     &      *coskt(k)
+          if (lprn)
+     &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
+     &     " ethetai",ethetai
+        enddo
+        if (lprn) then
+        write (iout,*) "cosph and sinph"
+        do k=1,nsingle
+          write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
+        enddo
+        write (iout,*) "cosph1ph2 and sinph2ph2"
+        do k=2,ndouble
+          do l=1,k-1
+            write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
+     &         sinph1ph2(l,k),sinph1ph2(k,l) 
+          enddo
+        enddo
+        write(iout,*) "ethetai",ethetai
+        endif
+        do m=1,ntheterm2
+          do k=1,nsingle
+            aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
+     &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
+     &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
+     &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
+            ethetai=ethetai+sinkt(m)*aux
+            dethetai=dethetai+0.5d0*m*aux*coskt(m)
+            dephii=dephii+k*sinkt(m)*(
+     &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
+     &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
+            dephii1=dephii1+k*sinkt(m)*(
+     &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
+     &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
+            if (lprn)
+     &      write (iout,*) "m",m," k",k," bbthet",
+     &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
+     &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
+     &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
+     &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
+          enddo
+        enddo
+        if (lprn)
+     &  write(iout,*) "ethetai",ethetai
+        do m=1,ntheterm3
+          do k=2,ndouble
+            do l=1,k-1
+              aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
+              ethetai=ethetai+sinkt(m)*aux
+              dethetai=dethetai+0.5d0*m*coskt(m)*aux
+              dephii=dephii+l*sinkt(m)*(
+     &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
+              dephii1=dephii1+(k-l)*sinkt(m)*(
+     &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
+              if (lprn) then
+              write (iout,*) "m",m," k",k," l",l," ffthet",
+     &            ffthet(l,k,m,ityp1,ityp2,ityp3),
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3),
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
+              write (iout,*) cosph1ph2(l,k)*sinkt(m),
+     &            cosph1ph2(k,l)*sinkt(m),
+     &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
+              endif
+            enddo
+          enddo
+        enddo
+10      continue
+        if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
+     &   i,theta(i)*rad2deg,phii*rad2deg,
+     &   phii1*rad2deg,ethetai
+        etheta=etheta+ethetai
+        if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
+        if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
+        gloc(nphi+i-2,icg)=wang*dethetai
+      enddo
+      return
+      end
+#endif
+#ifdef CRYST_SC
+c-----------------------------------------------------------------------------
+      subroutine esc(escloc)
+C Calculate the local energy of a side chain and its derivatives in the
+C corresponding virtual-bond valence angles THETA and the spherical angles 
+C ALPHA and OMEGA.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.FFIELD'
+      include 'COMMON.CONTROL'
+      double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
+     &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
+      common /sccalc/ time11,time12,time112,theti,it,nlobit
+      delta=0.02d0*pi
+      escloc=0.0D0
+c     write (iout,'(a)') 'ESC'
+      do i=loc_start,loc_end
+        it=itype(i)
+        if (it.eq.10) goto 1
+        nlobit=nlob(it)
+c       print *,'i=',i,' it=',it,' nlobit=',nlobit
+c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
+        theti=theta(i+1)-pipol
+        x(1)=dtan(theti)
+        x(2)=alph(i)
+        x(3)=omeg(i)
+
+        if (x(2).gt.pi-delta) then
+          xtemp(1)=x(1)
+          xtemp(2)=pi-delta
+          xtemp(3)=x(3)
+          call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
+          xtemp(2)=pi
+          call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
+          call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
+     &        escloci,dersc(2))
+          call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
+     &        ddersc0(1),dersc(1))
+          call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
+     &        ddersc0(3),dersc(3))
+          xtemp(2)=pi-delta
+          call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
+          xtemp(2)=pi
+          call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
+          call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
+     &            dersc0(2),esclocbi,dersc02)
+          call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
+     &            dersc12,dersc01)
+          call splinthet(x(2),0.5d0*delta,ss,ssd)
+          dersc0(1)=dersc01
+          dersc0(2)=dersc02
+          dersc0(3)=0.0d0
+          do k=1,3
+            dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
+          enddo
+          dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
+c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
+c    &             esclocbi,ss,ssd
+          escloci=ss*escloci+(1.0d0-ss)*esclocbi
+c         escloci=esclocbi
+c         write (iout,*) escloci
+        else if (x(2).lt.delta) then
+          xtemp(1)=x(1)
+          xtemp(2)=delta
+          xtemp(3)=x(3)
+          call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
+          xtemp(2)=0.0d0
+          call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
+          call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
+     &        escloci,dersc(2))
+          call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
+     &        ddersc0(1),dersc(1))
+          call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
+     &        ddersc0(3),dersc(3))
+          xtemp(2)=delta
+          call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
+          xtemp(2)=0.0d0
+          call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
+          call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
+     &            dersc0(2),esclocbi,dersc02)
+          call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
+     &            dersc12,dersc01)
+          dersc0(1)=dersc01
+          dersc0(2)=dersc02
+          dersc0(3)=0.0d0
+          call splinthet(x(2),0.5d0*delta,ss,ssd)
+          do k=1,3
+            dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
+          enddo
+          dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
+c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
+c    &             esclocbi,ss,ssd
+          escloci=ss*escloci+(1.0d0-ss)*esclocbi
+c         write (iout,*) escloci
+        else
+          call enesc(x,escloci,dersc,ddummy,.false.)
+        endif
+
+        escloc=escloc+escloci
+        if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
+     &     'escloc',i,escloci
+c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
+
+        gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
+     &   wscloc*dersc(1)
+        gloc(ialph(i,1),icg)=wscloc*dersc(2)
+        gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
+    1   continue
+      enddo
+      return
+      end
+C---------------------------------------------------------------------------
+      subroutine enesc(x,escloci,dersc,ddersc,mixed)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.IOUNITS'
+      common /sccalc/ time11,time12,time112,theti,it,nlobit
+      double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
+      double precision contr(maxlob,-1:1)
+      logical mixed
+c       write (iout,*) 'it=',it,' nlobit=',nlobit
+        escloc_i=0.0D0
+        do j=1,3
+          dersc(j)=0.0D0
+          if (mixed) ddersc(j)=0.0d0
+        enddo
+        x3=x(3)
+
+C Because of periodicity of the dependence of the SC energy in omega we have
+C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
+C To avoid underflows, first compute & store the exponents.
+
+        do iii=-1,1
+
+          x(3)=x3+iii*dwapi
+          do j=1,nlobit
+            do k=1,3
+              z(k)=x(k)-censc(k,j,it)
+            enddo
+            do k=1,3
+              Axk=0.0D0
+              do l=1,3
+                Axk=Axk+gaussc(l,k,j,it)*z(l)
+              enddo
+              Ax(k,j,iii)=Axk
+            enddo 
+            expfac=0.0D0 
+            do k=1,3
+              expfac=expfac+Ax(k,j,iii)*z(k)
+            enddo
+            contr(j,iii)=expfac
+          enddo ! j
+
+        enddo ! iii
+
+        x(3)=x3
+C As in the case of ebend, we want to avoid underflows in exponentiation and
+C subsequent NaNs and INFs in energy calculation.
+C Find the largest exponent
+        emin=contr(1,-1)
+        do iii=-1,1
+          do j=1,nlobit
+            if (emin.gt.contr(j,iii)) emin=contr(j,iii)
+          enddo 
+        enddo
+        emin=0.5D0*emin
+cd      print *,'it=',it,' emin=',emin
+
+C Compute the contribution to SC energy and derivatives
+        do iii=-1,1
+
+          do j=1,nlobit
+#ifdef OSF
+            adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
+            if(adexp.ne.adexp) adexp=1.0
+            expfac=dexp(adexp)
+#else
+            expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
+#endif
+cd          print *,'j=',j,' expfac=',expfac
+            escloc_i=escloc_i+expfac
+            do k=1,3
+              dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
+            enddo
+            if (mixed) then
+              do k=1,3,2
+                ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
+     &            +gaussc(k,2,j,it))*expfac
+              enddo
+            endif
+          enddo
+
+        enddo ! iii
+
+        dersc(1)=dersc(1)/cos(theti)**2
+        ddersc(1)=ddersc(1)/cos(theti)**2
+        ddersc(3)=ddersc(3)
+
+        escloci=-(dlog(escloc_i)-emin)
+        do j=1,3
+          dersc(j)=dersc(j)/escloc_i
+        enddo
+        if (mixed) then
+          do j=1,3,2
+            ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
+          enddo
+        endif
+      return
+      end
+C------------------------------------------------------------------------------
+      subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.IOUNITS'
+      common /sccalc/ time11,time12,time112,theti,it,nlobit
+      double precision x(3),z(3),Ax(3,maxlob),dersc(3)
+      double precision contr(maxlob)
+      logical mixed
+
+      escloc_i=0.0D0
+
+      do j=1,3
+        dersc(j)=0.0D0
+      enddo
+
+      do j=1,nlobit
+        do k=1,2
+          z(k)=x(k)-censc(k,j,it)
+        enddo
+        z(3)=dwapi
+        do k=1,3
+          Axk=0.0D0
+          do l=1,3
+            Axk=Axk+gaussc(l,k,j,it)*z(l)
+          enddo
+          Ax(k,j)=Axk
+        enddo 
+        expfac=0.0D0 
+        do k=1,3
+          expfac=expfac+Ax(k,j)*z(k)
+        enddo
+        contr(j)=expfac
+      enddo ! j
+
+C As in the case of ebend, we want to avoid underflows in exponentiation and
+C subsequent NaNs and INFs in energy calculation.
+C Find the largest exponent
+      emin=contr(1)
+      do j=1,nlobit
+        if (emin.gt.contr(j)) emin=contr(j)
+      enddo 
+      emin=0.5D0*emin
+C Compute the contribution to SC energy and derivatives
+
+      dersc12=0.0d0
+      do j=1,nlobit
+        expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
+        escloc_i=escloc_i+expfac
+        do k=1,2
+          dersc(k)=dersc(k)+Ax(k,j)*expfac
+        enddo
+        if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
+     &            +gaussc(1,2,j,it))*expfac
+        dersc(3)=0.0d0
+      enddo
+
+      dersc(1)=dersc(1)/cos(theti)**2
+      dersc12=dersc12/cos(theti)**2
+      escloci=-(dlog(escloc_i)-emin)
+      do j=1,2
+        dersc(j)=dersc(j)/escloc_i
+      enddo
+      if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
+      return
+      end
+#else
+c----------------------------------------------------------------------------------
+      subroutine esc(escloc)
+C Calculate the local energy of a side chain and its derivatives in the
+C corresponding virtual-bond valence angles THETA and the spherical angles 
+C ALPHA and OMEGA derived from AM1 all-atom calculations.
+C added by Urszula Kozlowska. 07/11/2007
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.VAR'
+      include 'COMMON.SCROT'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.FFIELD'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VECTORS'
+      double precision x_prime(3),y_prime(3),z_prime(3)
+     &    , sumene,dsc_i,dp2_i,x(65),
+     &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
+     &    de_dxx,de_dyy,de_dzz,de_dt
+      double precision s1_t,s1_6_t,s2_t,s2_6_t
+      double precision 
+     & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
+     & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
+     & dt_dCi(3),dt_dCi1(3)
+      common /sccalc/ time11,time12,time112,theti,it,nlobit
+      delta=0.02d0*pi
+      escloc=0.0D0
+      do i=loc_start,loc_end
+        costtab(i+1) =dcos(theta(i+1))
+        sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
+        cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
+        sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
+        cosfac2=0.5d0/(1.0d0+costtab(i+1))
+        cosfac=dsqrt(cosfac2)
+        sinfac2=0.5d0/(1.0d0-costtab(i+1))
+        sinfac=dsqrt(sinfac2)
+        it=itype(i)
+        if (it.eq.10) goto 1
+c
+C  Compute the axes of tghe local cartesian coordinates system; store in
+c   x_prime, y_prime and z_prime 
+c
+        do j=1,3
+          x_prime(j) = 0.00
+          y_prime(j) = 0.00
+          z_prime(j) = 0.00
+        enddo
+C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
+C     &   dc_norm(3,i+nres)
+        do j = 1,3
+          x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
+          y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
+        enddo
+        do j = 1,3
+          z_prime(j) = -uz(j,i-1)
+        enddo     
+c       write (2,*) "i",i
+c       write (2,*) "x_prime",(x_prime(j),j=1,3)
+c       write (2,*) "y_prime",(y_prime(j),j=1,3)
+c       write (2,*) "z_prime",(z_prime(j),j=1,3)
+c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
+c      & " xy",scalar(x_prime(1),y_prime(1)),
+c      & " xz",scalar(x_prime(1),z_prime(1)),
+c      & " yy",scalar(y_prime(1),y_prime(1)),
+c      & " yz",scalar(y_prime(1),z_prime(1)),
+c      & " zz",scalar(z_prime(1),z_prime(1))
+c
+C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
+C to local coordinate system. Store in xx, yy, zz.
+c
+        xx=0.0d0
+        yy=0.0d0
+        zz=0.0d0
+        do j = 1,3
+          xx = xx + x_prime(j)*dc_norm(j,i+nres)
+          yy = yy + y_prime(j)*dc_norm(j,i+nres)
+          zz = zz + z_prime(j)*dc_norm(j,i+nres)
+        enddo
+
+        xxtab(i)=xx
+        yytab(i)=yy
+        zztab(i)=zz
+C
+C Compute the energy of the ith side cbain
+C
+c        write (2,*) "xx",xx," yy",yy," zz",zz
+        it=itype(i)
+        do j = 1,65
+          x(j) = sc_parmin(j,it) 
+        enddo
+#ifdef CHECK_COORD
+Cc diagnostics - remove later
+        xx1 = dcos(alph(2))
+        yy1 = dsin(alph(2))*dcos(omeg(2))
+        zz1 = -dsin(alph(2))*dsin(omeg(2))
+        write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
+     &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
+     &    xx1,yy1,zz1
+C,"  --- ", xx_w,yy_w,zz_w
+c end diagnostics
+#endif
+        sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
+     &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
+     &   + x(10)*yy*zz
+        sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
+     & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
+     & + x(20)*yy*zz
+        sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
+     &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
+     &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
+     &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
+     &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
+     &  +x(40)*xx*yy*zz
+        sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
+     &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
+     &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
+     &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
+     &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
+     &  +x(60)*xx*yy*zz
+        dsc_i   = 0.743d0+x(61)
+        dp2_i   = 1.9d0+x(62)
+        dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
+     &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
+        dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
+     &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
+        s1=(1+x(63))/(0.1d0 + dscp1)
+        s1_6=(1+x(64))/(0.1d0 + dscp1**6)
+        s2=(1+x(65))/(0.1d0 + dscp2)
+        s2_6=(1+x(65))/(0.1d0 + dscp2**6)
+        sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
+     & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
+c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
+c     &   sumene4,
+c     &   dscp1,dscp2,sumene
+c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
+        escloc = escloc + sumene
+c        write (2,*) "i",i," escloc",sumene,escloc
+#ifdef DEBUG
+C
+C This section to check the numerical derivatives of the energy of ith side
+C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
+C #define DEBUG in the code to turn it on.
+C
+        write (2,*) "sumene               =",sumene
+        aincr=1.0d-7
+        xxsave=xx
+        xx=xx+aincr
+        write (2,*) xx,yy,zz
+        sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
+        de_dxx_num=(sumenep-sumene)/aincr
+        xx=xxsave
+        write (2,*) "xx+ sumene from enesc=",sumenep
+        yysave=yy
+        yy=yy+aincr
+        write (2,*) xx,yy,zz
+        sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
+        de_dyy_num=(sumenep-sumene)/aincr
+        yy=yysave
+        write (2,*) "yy+ sumene from enesc=",sumenep
+        zzsave=zz
+        zz=zz+aincr
+        write (2,*) xx,yy,zz
+        sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
+        de_dzz_num=(sumenep-sumene)/aincr
+        zz=zzsave
+        write (2,*) "zz+ sumene from enesc=",sumenep
+        costsave=cost2tab(i+1)
+        sintsave=sint2tab(i+1)
+        cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
+        sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
+        sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
+        de_dt_num=(sumenep-sumene)/aincr
+        write (2,*) " t+ sumene from enesc=",sumenep
+        cost2tab(i+1)=costsave
+        sint2tab(i+1)=sintsave
+C End of diagnostics section.
+#endif
+C        
+C Compute the gradient of esc
+C
+        pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
+        pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
+        pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
+        pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
+        pom_dx=dsc_i*dp2_i*cost2tab(i+1)
+        pom_dy=dsc_i*dp2_i*sint2tab(i+1)
+        pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
+        pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
+        pom1=(sumene3*sint2tab(i+1)+sumene1)
+     &     *(pom_s1/dscp1+pom_s16*dscp1**4)
+        pom2=(sumene4*cost2tab(i+1)+sumene2)
+     &     *(pom_s2/dscp2+pom_s26*dscp2**4)
+        sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
+        sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
+     &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
+     &  +x(40)*yy*zz
+        sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
+        sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
+     &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
+     &  +x(60)*yy*zz
+        de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
+     &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
+     &        +(pom1+pom2)*pom_dx
+#ifdef DEBUG
+        write(2,*), "de_dxx = ", de_dxx,de_dxx_num
+#endif
+C
+        sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
+        sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
+     &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
+     &  +x(40)*xx*zz
+        sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
+        sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
+     &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
+     &  +x(59)*zz**2 +x(60)*xx*zz
+        de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
+     &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
+     &        +(pom1-pom2)*pom_dy
+#ifdef DEBUG
+        write(2,*), "de_dyy = ", de_dyy,de_dyy_num
+#endif
+C
+        de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
+     &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
+     &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
+     &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
+     &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
+     &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
+     &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
+     &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
+#ifdef DEBUG
+        write(2,*), "de_dzz = ", de_dzz,de_dzz_num
+#endif
+C
+        de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
+     &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
+     &  +pom1*pom_dt1+pom2*pom_dt2
+#ifdef DEBUG
+        write(2,*), "de_dt = ", de_dt,de_dt_num
+#endif
+c 
+C
+       cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
+       cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
+       cosfac2xx=cosfac2*xx
+       sinfac2yy=sinfac2*yy
+       do k = 1,3
+         dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
+     &      vbld_inv(i+1)
+         dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
+     &      vbld_inv(i)
+         pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
+         pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
+c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
+c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
+c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
+c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
+         dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
+         dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
+         dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
+         dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
+         dZZ_Ci1(k)=0.0d0
+         dZZ_Ci(k)=0.0d0
+         do j=1,3
+           dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
+           dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
+         enddo
+          
+         dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
+         dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
+         dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
+c
+         dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
+         dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
+       enddo
+
+       do k=1,3
+         dXX_Ctab(k,i)=dXX_Ci(k)
+         dXX_C1tab(k,i)=dXX_Ci1(k)
+         dYY_Ctab(k,i)=dYY_Ci(k)
+         dYY_C1tab(k,i)=dYY_Ci1(k)
+         dZZ_Ctab(k,i)=dZZ_Ci(k)
+         dZZ_C1tab(k,i)=dZZ_Ci1(k)
+         dXX_XYZtab(k,i)=dXX_XYZ(k)
+         dYY_XYZtab(k,i)=dYY_XYZ(k)
+         dZZ_XYZtab(k,i)=dZZ_XYZ(k)
+       enddo
+
+       do k = 1,3
+c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
+c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
+c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
+c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
+c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
+c     &    dt_dci(k)
+c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
+c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
+         gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
+     &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
+         gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
+     &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
+         gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
+     &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
+       enddo
+c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
+c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
+
+C to check gradient call subroutine check_grad
+
+    1 continue
+      enddo
+      return
+      end
+c------------------------------------------------------------------------------
+      double precision function enesc(x,xx,yy,zz,cost2,sint2)
+      implicit none
+      double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
+     & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
+      sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
+     &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
+     &   + x(10)*yy*zz
+      sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
+     & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
+     & + x(20)*yy*zz
+      sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
+     &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
+     &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
+     &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
+     &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
+     &  +x(40)*xx*yy*zz
+      sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
+     &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
+     &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
+     &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
+     &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
+     &  +x(60)*xx*yy*zz
+      dsc_i   = 0.743d0+x(61)
+      dp2_i   = 1.9d0+x(62)
+      dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
+     &          *(xx*cost2+yy*sint2))
+      dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
+     &          *(xx*cost2-yy*sint2))
+      s1=(1+x(63))/(0.1d0 + dscp1)
+      s1_6=(1+x(64))/(0.1d0 + dscp1**6)
+      s2=(1+x(65))/(0.1d0 + dscp2)
+      s2_6=(1+x(65))/(0.1d0 + dscp2**6)
+      sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
+     & + (sumene4*cost2 +sumene2)*(s2+s2_6)
+      enesc=sumene
+      return
+      end
+#endif
+c------------------------------------------------------------------------------
+      subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
+C
+C This procedure calculates two-body contact function g(rij) and its derivative:
+C
+C           eps0ij                                     !       x < -1
+C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
+C            0                                         !       x > 1
+C
+C where x=(rij-r0ij)/delta
+C
+C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
+C
+      implicit none
+      double precision rij,r0ij,eps0ij,fcont,fprimcont
+      double precision x,x2,x4,delta
+c     delta=0.02D0*r0ij
+c      delta=0.2D0*r0ij
+      x=(rij-r0ij)/delta
+      if (x.lt.-1.0D0) then
+        fcont=eps0ij
+        fprimcont=0.0D0
+      else if (x.le.1.0D0) then  
+        x2=x*x
+        x4=x2*x2
+        fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
+        fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
+      else
+        fcont=0.0D0
+        fprimcont=0.0D0
+      endif
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine splinthet(theti,delta,ss,ssder)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      thetup=pi-delta
+      thetlow=delta
+      if (theti.gt.pipol) then
+        call gcont(theti,thetup,1.0d0,delta,ss,ssder)
+      else
+        call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
+        ssder=-ssder
+      endif
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
+      implicit none
+      double precision x,x0,delta,f0,f1,fprim0,f,fprim
+      double precision ksi,ksi2,ksi3,a1,a2,a3
+      a1=fprim0*delta/(f1-f0)
+      a2=3.0d0-2.0d0*a1
+      a3=a1-2.0d0
+      ksi=(x-x0)/delta
+      ksi2=ksi*ksi
+      ksi3=ksi2*ksi  
+      f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
+      fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
+      implicit none
+      double precision x,x0,delta,f0x,f1x,fprim0x,fx
+      double precision ksi,ksi2,ksi3,a1,a2,a3
+      ksi=(x-x0)/delta  
+      ksi2=ksi*ksi
+      ksi3=ksi2*ksi
+      a1=fprim0x*delta
+      a2=3*(f1x-f0x)-2*fprim0x*delta
+      a3=fprim0x*delta-2*(f1x-f0x)
+      fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
+      return
+      end
+C-----------------------------------------------------------------------------
+#ifdef CRYST_TOR
+C-----------------------------------------------------------------------------
+      subroutine etor(etors,edihcnstr)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.TORSION'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TORCNSTR'
+      include 'COMMON.CONTROL'
+      logical lprn
+C Set lprn=.true. for debugging
+      lprn=.false.
+c      lprn=.true.
+      etors=0.0D0
+      do i=iphi_start,iphi_end
+      etors_ii=0.0D0
+       itori=itortyp(itype(i-2))
+       itori1=itortyp(itype(i-1))
+        phii=phi(i)
+        gloci=0.0D0
+C Proline-Proline pair is a special case...
+        if (itori.eq.3 .and. itori1.eq.3) then
+          if (phii.gt.-dwapi3) then
+            cosphi=dcos(3*phii)
+            fac=1.0D0/(1.0D0-cosphi)
+            etorsi=v1(1,3,3)*fac
+            etorsi=etorsi+etorsi
+            etors=etors+etorsi-v1(1,3,3)
+            if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
+            gloci=gloci-3*fac*etorsi*dsin(3*phii)
+          endif
+          do j=1,3
+            v1ij=v1(j+1,itori,itori1)
+            v2ij=v2(j+1,itori,itori1)
+            cosphi=dcos(j*phii)
+            sinphi=dsin(j*phii)
+            etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
+            if (energy_dec) etors_ii=etors_ii+
+     &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
+            gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
+          enddo
+        else 
+          do j=1,nterm_old
+            v1ij=v1(j,itori,itori1)
+            v2ij=v2(j,itori,itori1)
+            cosphi=dcos(j*phii)
+            sinphi=dsin(j*phii)
+            etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
+            if (energy_dec) etors_ii=etors_ii+
+     &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
+            gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
+          enddo
+        endif
+        if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
+     &        'etor',i,etors_ii
+        if (lprn)
+     &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
+     &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
+     &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
+        gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
+        write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
+      enddo
+! 6/20/98 - dihedral angle constraints
+      edihcnstr=0.0d0
+      do i=1,ndih_constr
+        itori=idih_constr(i)
+        phii=phi(itori)
+        difi=phii-phi0(i)
+        if (difi.gt.drange(i)) then
+          difi=difi-drange(i)
+          edihcnstr=edihcnstr+0.25d0*ftors*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
+        else if (difi.lt.-drange(i)) then
+          difi=difi+drange(i)
+          edihcnstr=edihcnstr+0.25d0*ftors*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
+        endif
+!        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
+!     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
+      enddo
+!      write (iout,*) 'edihcnstr',edihcnstr
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine etor_d(etors_d)
+      etors_d=0.0d0
+      return
+      end
+c----------------------------------------------------------------------------
+#else
+      subroutine etor(etors,edihcnstr)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.TORSION'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TORCNSTR'
+      include 'COMMON.CONTROL'
+      logical lprn
+C Set lprn=.true. for debugging
+      lprn=.false.
+c     lprn=.true.
+      etors=0.0D0
+      do i=iphi_start,iphi_end
+      etors_ii=0.0D0
+        itori=itortyp(itype(i-2))
+        itori1=itortyp(itype(i-1))
+        phii=phi(i)
+        gloci=0.0D0
+C Regular cosine and sine terms
+        do j=1,nterm(itori,itori1)
+          v1ij=v1(j,itori,itori1)
+          v2ij=v2(j,itori,itori1)
+          cosphi=dcos(j*phii)
+          sinphi=dsin(j*phii)
+          etors=etors+v1ij*cosphi+v2ij*sinphi
+          if (energy_dec) etors_ii=etors_ii+
+     &                v1ij*cosphi+v2ij*sinphi
+          gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
+        enddo
+C Lorentz terms
+C                         v1
+C  E = SUM ----------------------------------- - v1
+C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
+C
+        cosphi=dcos(0.5d0*phii)
+        sinphi=dsin(0.5d0*phii)
+        do j=1,nlor(itori,itori1)
+          vl1ij=vlor1(j,itori,itori1)
+          vl2ij=vlor2(j,itori,itori1)
+          vl3ij=vlor3(j,itori,itori1)
+          pom=vl2ij*cosphi+vl3ij*sinphi
+          pom1=1.0d0/(pom*pom+1.0d0)
+          etors=etors+vl1ij*pom1
+          if (energy_dec) etors_ii=etors_ii+
+     &                vl1ij*pom1
+          pom=-pom*pom1*pom1
+          gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
+        enddo
+C Subtract the constant term
+        etors=etors-v0(itori,itori1)
+          if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
+     &         'etor',i,etors_ii-v0(itori,itori1)
+        if (lprn)
+     &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
+     &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
+     &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
+        gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
+c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
+      enddo
+! 6/20/98 - dihedral angle constraints
+      edihcnstr=0.0d0
+c      do i=1,ndih_constr
+      do i=idihconstr_start,idihconstr_end
+        itori=idih_constr(i)
+        phii=phi(itori)
+        difi=pinorm(phii-phi0(i))
+        if (difi.gt.drange(i)) then
+          difi=difi-drange(i)
+          edihcnstr=edihcnstr+0.25d0*ftors*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
+        else if (difi.lt.-drange(i)) then
+          difi=difi+drange(i)
+          edihcnstr=edihcnstr+0.25d0*ftors*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
+        else
+          difi=0.0
+        endif
+c        write (iout,*) "gloci", gloc(i-3,icg)
+cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
+cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
+cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
+      enddo
+cd       write (iout,*) 'edihcnstr',edihcnstr
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine etor_d(etors_d)
+C 6/23/01 Compute double torsional energy
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.TORSION'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TORCNSTR'
+      logical lprn
+C Set lprn=.true. for debugging
+      lprn=.false.
+c     lprn=.true.
+      etors_d=0.0D0
+      do i=iphid_start,iphid_end
+        itori=itortyp(itype(i-2))
+        itori1=itortyp(itype(i-1))
+        itori2=itortyp(itype(i))
+        phii=phi(i)
+        phii1=phi(i+1)
+        gloci1=0.0D0
+        gloci2=0.0D0
+        do j=1,ntermd_1(itori,itori1,itori2)
+          v1cij=v1c(1,j,itori,itori1,itori2)
+          v1sij=v1s(1,j,itori,itori1,itori2)
+          v2cij=v1c(2,j,itori,itori1,itori2)
+          v2sij=v1s(2,j,itori,itori1,itori2)
+          cosphi1=dcos(j*phii)
+          sinphi1=dsin(j*phii)
+          cosphi2=dcos(j*phii1)
+          sinphi2=dsin(j*phii1)
+          etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
+     &     v2cij*cosphi2+v2sij*sinphi2
+          gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
+          gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
+        enddo
+        do k=2,ntermd_2(itori,itori1,itori2)
+          do l=1,k-1
+            v1cdij = v2c(k,l,itori,itori1,itori2)
+            v2cdij = v2c(l,k,itori,itori1,itori2)
+            v1sdij = v2s(k,l,itori,itori1,itori2)
+            v2sdij = v2s(l,k,itori,itori1,itori2)
+            cosphi1p2=dcos(l*phii+(k-l)*phii1)
+            cosphi1m2=dcos(l*phii-(k-l)*phii1)
+            sinphi1p2=dsin(l*phii+(k-l)*phii1)
+            sinphi1m2=dsin(l*phii-(k-l)*phii1)
+            etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
+     &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
+            gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
+     &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
+            gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
+     &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
+          enddo
+        enddo
+        gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
+        gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
+c        write (iout,*) "gloci", gloc(i-3,icg)
+      enddo
+      return
+      end
+#endif
+c------------------------------------------------------------------------------
+      subroutine eback_sc_corr(esccor)
+c 7/21/2007 Correlations between the backbone-local and side-chain-local
+c        conformational states; temporarily implemented as differences
+c        between UNRES torsional potentials (dependent on three types of
+c        residues) and the torsional potentials dependent on all 20 types
+c        of residues computed from AM1  energy surfaces of terminally-blocked
+c        amino-acid residues.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.TORSION'
+      include 'COMMON.SCCOR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.CONTROL'
+      logical lprn
+C Set lprn=.true. for debugging
+      lprn=.false.
+c      lprn=.true.
+c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
+      esccor=0.0D0
+      do i=itau_start,itau_end
+        esccor_ii=0.0D0
+        isccori=isccortyp(itype(i-2))
+        isccori1=isccortyp(itype(i-1))
+        phii=phi(i)
+cccc  Added 9 May 2012
+cc Tauangle is torsional engle depending on the value of first digit 
+c(see comment below)
+cc Omicron is flat angle depending on the value of first digit 
+c(see comment below)
+
+        
+        do intertyp=1,3 !intertyp
+cc Added 09 May 2012 (Adasko)
+cc  Intertyp means interaction type of backbone mainchain correlation: 
+c   1 = SC...Ca...Ca...Ca
+c   2 = Ca...Ca...Ca...SC
+c   3 = SC...Ca...Ca...SCi
+        gloci=0.0D0
+        if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
+     &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
+     &      (itype(i-1).eq.21)))
+     &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
+     &     .or.(itype(i-2).eq.21)))
+     &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
+     &      (itype(i-1).eq.21)))) cycle  
+        if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
+        if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
+     & cycle
+        do j=1,nterm_sccor(isccori,isccori1)
+          v1ij=v1sccor(j,intertyp,isccori,isccori1)
+          v2ij=v2sccor(j,intertyp,isccori,isccori1)
+          cosphi=dcos(j*tauangle(intertyp,i))
+          sinphi=dsin(j*tauangle(intertyp,i))
+          esccor=esccor+v1ij*cosphi+v2ij*sinphi
+          gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
+        enddo
+        gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
+c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
+c     &gloc_sc(intertyp,i-3,icg)
+        if (lprn)
+     &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
+     &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
+     &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
+     & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
+        gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
+       enddo !intertyp
+      enddo
+c        do i=1,nres
+c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
+c        enddo
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine multibody(ecorr)
+C This subroutine calculates multi-body contributions to energy following
+C the idea of Skolnick et al. If side chains I and J make a contact and
+C at the same time side chains I+1 and J+1 make a contact, an extra 
+C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      double precision gx(3),gx1(3)
+      logical lprn
+
+C Set lprn=.true. for debugging
+      lprn=.false.
+
+      if (lprn) then
+        write (iout,'(a)') 'Contact function values:'
+        do i=nnt,nct-2
+          write (iout,'(i2,20(1x,i2,f10.5))') 
+     &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
+        enddo
+      endif
+      ecorr=0.0D0
+      do i=nnt,nct
+        do j=1,3
+          gradcorr(j,i)=0.0D0
+          gradxorr(j,i)=0.0D0
+        enddo
+      enddo
+      do i=nnt,nct-2
+
+        DO ISHIFT = 3,4
+
+        i1=i+ishift
+        num_conti=num_cont(i)
+        num_conti1=num_cont(i1)
+        do jj=1,num_conti
+          j=jcont(jj,i)
+          do kk=1,num_conti1
+            j1=jcont(kk,i1)
+            if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
+cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
+cd   &                   ' ishift=',ishift
+C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
+C The system gains extra energy.
+              ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
+            endif   ! j1==j+-ishift
+          enddo     ! kk  
+        enddo       ! jj
+
+        ENDDO ! ISHIFT
+
+      enddo         ! i
+      return
+      end
+c------------------------------------------------------------------------------
+      double precision function esccorr(i,j,k,l,jj,kk)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      double precision gx(3),gx1(3)
+      logical lprn
+      lprn=.false.
+      eij=facont(jj,i)
+      ekl=facont(kk,k)
+cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
+C Calculate the multi-body contribution to energy.
+C Calculate multi-body contributions to the gradient.
+cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
+cd   & k,l,(gacont(m,kk,k),m=1,3)
+      do m=1,3
+        gx(m) =ekl*gacont(m,jj,i)
+        gx1(m)=eij*gacont(m,kk,k)
+        gradxorr(m,i)=gradxorr(m,i)-gx(m)
+        gradxorr(m,j)=gradxorr(m,j)+gx(m)
+        gradxorr(m,k)=gradxorr(m,k)-gx1(m)
+        gradxorr(m,l)=gradxorr(m,l)+gx1(m)
+      enddo
+      do m=i,j-1
+        do ll=1,3
+          gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
+        enddo
+      enddo
+      do m=k,l-1
+        do ll=1,3
+          gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
+        enddo
+      enddo 
+      esccorr=-eij*ekl
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
+C This subroutine calculates multi-body contributions to hydrogen-bonding 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+#ifdef MPI
+      include "mpif.h"
+      parameter (max_cont=maxconts)
+      parameter (max_dim=26)
+      integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
+      double precision zapas(max_dim,maxconts,max_fg_procs),
+     &  zapas_recv(max_dim,maxconts,max_fg_procs)
+      common /przechowalnia/ zapas
+      integer status(MPI_STATUS_SIZE),req(maxconts*2),
+     &  status_array(MPI_STATUS_SIZE,maxconts*2)
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.FFIELD'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.LOCAL'
+      double precision gx(3),gx1(3),time00
+      logical lprn,ldone
+
+C Set lprn=.true. for debugging
+      lprn=.false.
+#ifdef MPI
+      n_corr=0
+      n_corr1=0
+      if (nfgtasks.le.1) goto 30
+      if (lprn) then
+        write (iout,'(a)') 'Contact function values before RECEIVE:'
+        do i=nnt,nct-2
+          write (iout,'(2i3,50(1x,i2,f5.2))') 
+     &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
+     &    j=1,num_cont_hb(i))
+        enddo
+      endif
+      call flush(iout)
+      do i=1,ntask_cont_from
+        ncont_recv(i)=0
+      enddo
+      do i=1,ntask_cont_to
+        ncont_sent(i)=0
+      enddo
+c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
+c     & ntask_cont_to
+C Make the list of contacts to send to send to other procesors
+c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
+c      call flush(iout)
+      do i=iturn3_start,iturn3_end
+c        write (iout,*) "make contact list turn3",i," num_cont",
+c     &    num_cont_hb(i)
+        call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
+      enddo
+      do i=iturn4_start,iturn4_end
+c        write (iout,*) "make contact list turn4",i," num_cont",
+c     &   num_cont_hb(i)
+        call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
+      enddo
+      do ii=1,nat_sent
+        i=iat_sent(ii)
+c        write (iout,*) "make contact list longrange",i,ii," num_cont",
+c     &    num_cont_hb(i)
+        do j=1,num_cont_hb(i)
+        do k=1,4
+          jjc=jcont_hb(j,i)
+          iproc=iint_sent_local(k,jjc,ii)
+c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
+          if (iproc.gt.0) then
+            ncont_sent(iproc)=ncont_sent(iproc)+1
+            nn=ncont_sent(iproc)
+            zapas(1,nn,iproc)=i
+            zapas(2,nn,iproc)=jjc
+            zapas(3,nn,iproc)=facont_hb(j,i)
+            zapas(4,nn,iproc)=ees0p(j,i)
+            zapas(5,nn,iproc)=ees0m(j,i)
+            zapas(6,nn,iproc)=gacont_hbr(1,j,i)
+            zapas(7,nn,iproc)=gacont_hbr(2,j,i)
+            zapas(8,nn,iproc)=gacont_hbr(3,j,i)
+            zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
+            zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
+            zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
+            zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
+            zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
+            zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
+            zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
+            zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
+            zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
+            zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
+            zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
+            zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
+            zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
+            zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
+            zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
+            zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
+            zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
+            zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
+          endif
+        enddo
+        enddo
+      enddo
+      if (lprn) then
+      write (iout,*) 
+     &  "Numbers of contacts to be sent to other processors",
+     &  (ncont_sent(i),i=1,ntask_cont_to)
+      write (iout,*) "Contacts sent"
+      do ii=1,ntask_cont_to
+        nn=ncont_sent(ii)
+        iproc=itask_cont_to(ii)
+        write (iout,*) nn," contacts to processor",iproc,
+     &   " of CONT_TO_COMM group"
+        do i=1,nn
+          write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
+        enddo
+      enddo
+      call flush(iout)
+      endif
+      CorrelType=477
+      CorrelID=fg_rank+1
+      CorrelType1=478
+      CorrelID1=nfgtasks+fg_rank+1
+      ireq=0
+C Receive the numbers of needed contacts from other processors 
+      do ii=1,ntask_cont_from
+        iproc=itask_cont_from(ii)
+        ireq=ireq+1
+        call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
+     &    FG_COMM,req(ireq),IERR)
+      enddo
+c      write (iout,*) "IRECV ended"
+c      call flush(iout)
+C Send the number of contacts needed by other processors
+      do ii=1,ntask_cont_to
+        iproc=itask_cont_to(ii)
+        ireq=ireq+1
+        call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
+     &    FG_COMM,req(ireq),IERR)
+      enddo
+c      write (iout,*) "ISEND ended"
+c      write (iout,*) "number of requests (nn)",ireq
+      call flush(iout)
+      if (ireq.gt.0) 
+     &  call MPI_Waitall(ireq,req,status_array,ierr)
+c      write (iout,*) 
+c     &  "Numbers of contacts to be received from other processors",
+c     &  (ncont_recv(i),i=1,ntask_cont_from)
+c      call flush(iout)
+C Receive contacts
+      ireq=0
+      do ii=1,ntask_cont_from
+        iproc=itask_cont_from(ii)
+        nn=ncont_recv(ii)
+c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
+c     &   " of CONT_TO_COMM group"
+        call flush(iout)
+        if (nn.gt.0) then
+          ireq=ireq+1
+          call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
+     &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
+c          write (iout,*) "ireq,req",ireq,req(ireq)
+        endif
+      enddo
+C Send the contacts to processors that need them
+      do ii=1,ntask_cont_to
+        iproc=itask_cont_to(ii)
+        nn=ncont_sent(ii)
+c        write (iout,*) nn," contacts to processor",iproc,
+c     &   " of CONT_TO_COMM group"
+        if (nn.gt.0) then
+          ireq=ireq+1 
+          call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
+     &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
+c          write (iout,*) "ireq,req",ireq,req(ireq)
+c          do i=1,nn
+c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
+c          enddo
+        endif  
+      enddo
+c      write (iout,*) "number of requests (contacts)",ireq
+c      write (iout,*) "req",(req(i),i=1,4)
+c      call flush(iout)
+      if (ireq.gt.0) 
+     & call MPI_Waitall(ireq,req,status_array,ierr)
+      do iii=1,ntask_cont_from
+        iproc=itask_cont_from(iii)
+        nn=ncont_recv(iii)
+        if (lprn) then
+        write (iout,*) "Received",nn," contacts from processor",iproc,
+     &   " of CONT_FROM_COMM group"
+        call flush(iout)
+        do i=1,nn
+          write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
+        enddo
+        call flush(iout)
+        endif
+        do i=1,nn
+          ii=zapas_recv(1,i,iii)
+c Flag the received contacts to prevent double-counting
+          jj=-zapas_recv(2,i,iii)
+c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
+c          call flush(iout)
+          nnn=num_cont_hb(ii)+1
+          num_cont_hb(ii)=nnn
+          jcont_hb(nnn,ii)=jj
+          facont_hb(nnn,ii)=zapas_recv(3,i,iii)
+          ees0p(nnn,ii)=zapas_recv(4,i,iii)
+          ees0m(nnn,ii)=zapas_recv(5,i,iii)
+          gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
+          gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
+          gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
+          gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
+          gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
+          gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
+          gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
+          gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
+          gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
+          gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
+          gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
+          gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
+          gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
+          gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
+          gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
+          gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
+          gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
+          gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
+          gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
+          gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
+          gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
+        enddo
+      enddo
+      call flush(iout)
+      if (lprn) then
+        write (iout,'(a)') 'Contact function values after receive:'
+        do i=nnt,nct-2
+          write (iout,'(2i3,50(1x,i3,f5.2))') 
+     &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
+     &    j=1,num_cont_hb(i))
+        enddo
+        call flush(iout)
+      endif
+   30 continue
+#endif
+      if (lprn) then
+        write (iout,'(a)') 'Contact function values:'
+        do i=nnt,nct-2
+          write (iout,'(2i3,50(1x,i3,f5.2))') 
+     &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
+     &    j=1,num_cont_hb(i))
+        enddo
+      endif
+      ecorr=0.0D0
+C Remove the loop below after debugging !!!
+      do i=nnt,nct
+        do j=1,3
+          gradcorr(j,i)=0.0D0
+          gradxorr(j,i)=0.0D0
+        enddo
+      enddo
+C Calculate the local-electrostatic correlation terms
+      do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
+        i1=i+1
+        num_conti=num_cont_hb(i)
+        num_conti1=num_cont_hb(i+1)
+        do jj=1,num_conti
+          j=jcont_hb(jj,i)
+          jp=iabs(j)
+          do kk=1,num_conti1
+            j1=jcont_hb(kk,i1)
+            jp1=iabs(j1)
+c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
+c     &         ' jj=',jj,' kk=',kk
+            if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
+     &          .or. j.lt.0 .and. j1.gt.0) .and.
+     &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
+C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
+C The system gains extra energy.
+              ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
+              if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
+              n_corr=n_corr+1
+            else if (j1.eq.j) then
+C Contacts I-J and I-(J+1) occur simultaneously. 
+C The system loses extra energy.
+c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
+            endif
+          enddo ! kk
+          do kk=1,num_conti
+            j1=jcont_hb(kk,i)
+c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
+c    &         ' jj=',jj,' kk=',kk
+            if (j1.eq.j+1) then
+C Contacts I-J and (I+1)-J occur simultaneously. 
+C The system loses extra energy.
+c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
+            endif ! j1==j+1
+          enddo ! kk
+        enddo ! jj
+      enddo ! i
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine add_hb_contact(ii,jj,itask)
+      implicit real*8 (a-h,o-z)
+      include "DIMENSIONS"
+      include "COMMON.IOUNITS"
+      integer max_cont
+      integer max_dim
+      parameter (max_cont=maxconts)
+      parameter (max_dim=26)
+      include "COMMON.CONTACTS"
+      double precision zapas(max_dim,maxconts,max_fg_procs),
+     &  zapas_recv(max_dim,maxconts,max_fg_procs)
+      common /przechowalnia/ zapas
+      integer i,j,ii,jj,iproc,itask(4),nn
+c      write (iout,*) "itask",itask
+      do i=1,2
+        iproc=itask(i)
+        if (iproc.gt.0) then
+          do j=1,num_cont_hb(ii)
+            jjc=jcont_hb(j,ii)
+c            write (iout,*) "i",ii," j",jj," jjc",jjc
+            if (jjc.eq.jj) then
+              ncont_sent(iproc)=ncont_sent(iproc)+1
+              nn=ncont_sent(iproc)
+              zapas(1,nn,iproc)=ii
+              zapas(2,nn,iproc)=jjc
+              zapas(3,nn,iproc)=facont_hb(j,ii)
+              zapas(4,nn,iproc)=ees0p(j,ii)
+              zapas(5,nn,iproc)=ees0m(j,ii)
+              zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
+              zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
+              zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
+              zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
+              zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
+              zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
+              zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
+              zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
+              zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
+              zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
+              zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
+              zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
+              zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
+              zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
+              zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
+              zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
+              zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
+              zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
+              zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
+              zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
+              zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
+              exit
+            endif
+          enddo
+        endif
+      enddo
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
+     &  n_corr1)
+C This subroutine calculates multi-body contributions to hydrogen-bonding 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+#ifdef MPI
+      include "mpif.h"
+      parameter (max_cont=maxconts)
+      parameter (max_dim=70)
+      integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
+      double precision zapas(max_dim,maxconts,max_fg_procs),
+     &  zapas_recv(max_dim,maxconts,max_fg_procs)
+      common /przechowalnia/ zapas
+      integer status(MPI_STATUS_SIZE),req(maxconts*2),
+     &  status_array(MPI_STATUS_SIZE,maxconts*2)
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.FFIELD'
+      include 'COMMON.DERIV'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.CONTROL'
+      double precision gx(3),gx1(3)
+      integer num_cont_hb_old(maxres)
+      logical lprn,ldone
+      double precision eello4,eello5,eelo6,eello_turn6
+      external eello4,eello5,eello6,eello_turn6
+C Set lprn=.true. for debugging
+      lprn=.false.
+      eturn6=0.0d0
+#ifdef MPI
+      do i=1,nres
+        num_cont_hb_old(i)=num_cont_hb(i)
+      enddo
+      n_corr=0
+      n_corr1=0
+      if (nfgtasks.le.1) goto 30
+      if (lprn) then
+        write (iout,'(a)') 'Contact function values before RECEIVE:'
+        do i=nnt,nct-2
+          write (iout,'(2i3,50(1x,i2,f5.2))') 
+     &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
+     &    j=1,num_cont_hb(i))
+        enddo
+      endif
+      call flush(iout)
+      do i=1,ntask_cont_from
+        ncont_recv(i)=0
+      enddo
+      do i=1,ntask_cont_to
+        ncont_sent(i)=0
+      enddo
+c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
+c     & ntask_cont_to
+C Make the list of contacts to send to send to other procesors
+      do i=iturn3_start,iturn3_end
+c        write (iout,*) "make contact list turn3",i," num_cont",
+c     &    num_cont_hb(i)
+        call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
+      enddo
+      do i=iturn4_start,iturn4_end
+c        write (iout,*) "make contact list turn4",i," num_cont",
+c     &   num_cont_hb(i)
+        call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
+      enddo
+      do ii=1,nat_sent
+        i=iat_sent(ii)
+c        write (iout,*) "make contact list longrange",i,ii," num_cont",
+c     &    num_cont_hb(i)
+        do j=1,num_cont_hb(i)
+        do k=1,4
+          jjc=jcont_hb(j,i)
+          iproc=iint_sent_local(k,jjc,ii)
+c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
+          if (iproc.ne.0) then
+            ncont_sent(iproc)=ncont_sent(iproc)+1
+            nn=ncont_sent(iproc)
+            zapas(1,nn,iproc)=i
+            zapas(2,nn,iproc)=jjc
+            zapas(3,nn,iproc)=d_cont(j,i)
+            ind=3
+            do kk=1,3
+              ind=ind+1
+              zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
+            enddo
+            do kk=1,2
+              do ll=1,2
+                ind=ind+1
+                zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
+              enddo
+            enddo
+            do jj=1,5
+              do kk=1,3
+                do ll=1,2
+                  do mm=1,2
+                    ind=ind+1
+                    zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
+                  enddo
+                enddo
+              enddo
+            enddo
+          endif
+        enddo
+        enddo
+      enddo
+      if (lprn) then
+      write (iout,*) 
+     &  "Numbers of contacts to be sent to other processors",
+     &  (ncont_sent(i),i=1,ntask_cont_to)
+      write (iout,*) "Contacts sent"
+      do ii=1,ntask_cont_to
+        nn=ncont_sent(ii)
+        iproc=itask_cont_to(ii)
+        write (iout,*) nn," contacts to processor",iproc,
+     &   " of CONT_TO_COMM group"
+        do i=1,nn
+          write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
+        enddo
+      enddo
+      call flush(iout)
+      endif
+      CorrelType=477
+      CorrelID=fg_rank+1
+      CorrelType1=478
+      CorrelID1=nfgtasks+fg_rank+1
+      ireq=0
+C Receive the numbers of needed contacts from other processors 
+      do ii=1,ntask_cont_from
+        iproc=itask_cont_from(ii)
+        ireq=ireq+1
+        call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
+     &    FG_COMM,req(ireq),IERR)
+      enddo
+c      write (iout,*) "IRECV ended"
+c      call flush(iout)
+C Send the number of contacts needed by other processors
+      do ii=1,ntask_cont_to
+        iproc=itask_cont_to(ii)
+        ireq=ireq+1
+        call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
+     &    FG_COMM,req(ireq),IERR)
+      enddo
+c      write (iout,*) "ISEND ended"
+c      write (iout,*) "number of requests (nn)",ireq
+      call flush(iout)
+      if (ireq.gt.0) 
+     &  call MPI_Waitall(ireq,req,status_array,ierr)
+c      write (iout,*) 
+c     &  "Numbers of contacts to be received from other processors",
+c     &  (ncont_recv(i),i=1,ntask_cont_from)
+c      call flush(iout)
+C Receive contacts
+      ireq=0
+      do ii=1,ntask_cont_from
+        iproc=itask_cont_from(ii)
+        nn=ncont_recv(ii)
+c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
+c     &   " of CONT_TO_COMM group"
+        call flush(iout)
+        if (nn.gt.0) then
+          ireq=ireq+1
+          call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
+     &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
+c          write (iout,*) "ireq,req",ireq,req(ireq)
+        endif
+      enddo
+C Send the contacts to processors that need them
+      do ii=1,ntask_cont_to
+        iproc=itask_cont_to(ii)
+        nn=ncont_sent(ii)
+c        write (iout,*) nn," contacts to processor",iproc,
+c     &   " of CONT_TO_COMM group"
+        if (nn.gt.0) then
+          ireq=ireq+1 
+          call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
+     &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
+c          write (iout,*) "ireq,req",ireq,req(ireq)
+c          do i=1,nn
+c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
+c          enddo
+        endif  
+      enddo
+c      write (iout,*) "number of requests (contacts)",ireq
+c      write (iout,*) "req",(req(i),i=1,4)
+c      call flush(iout)
+      if (ireq.gt.0) 
+     & call MPI_Waitall(ireq,req,status_array,ierr)
+      do iii=1,ntask_cont_from
+        iproc=itask_cont_from(iii)
+        nn=ncont_recv(iii)
+        if (lprn) then
+        write (iout,*) "Received",nn," contacts from processor",iproc,
+     &   " of CONT_FROM_COMM group"
+        call flush(iout)
+        do i=1,nn
+          write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
+        enddo
+        call flush(iout)
+        endif
+        do i=1,nn
+          ii=zapas_recv(1,i,iii)
+c Flag the received contacts to prevent double-counting
+          jj=-zapas_recv(2,i,iii)
+c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
+c          call flush(iout)
+          nnn=num_cont_hb(ii)+1
+          num_cont_hb(ii)=nnn
+          jcont_hb(nnn,ii)=jj
+          d_cont(nnn,ii)=zapas_recv(3,i,iii)
+          ind=3
+          do kk=1,3
+            ind=ind+1
+            grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
+          enddo
+          do kk=1,2
+            do ll=1,2
+              ind=ind+1
+              a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
+            enddo
+          enddo
+          do jj=1,5
+            do kk=1,3
+              do ll=1,2
+                do mm=1,2
+                  ind=ind+1
+                  a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
+                enddo
+              enddo
+            enddo
+          enddo
+        enddo
+      enddo
+      call flush(iout)
+      if (lprn) then
+        write (iout,'(a)') 'Contact function values after receive:'
+        do i=nnt,nct-2
+          write (iout,'(2i3,50(1x,i3,5f6.3))') 
+     &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
+     &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
+        enddo
+        call flush(iout)
+      endif
+   30 continue
+#endif
+      if (lprn) then
+        write (iout,'(a)') 'Contact function values:'
+        do i=nnt,nct-2
+          write (iout,'(2i3,50(1x,i2,5f6.3))') 
+     &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
+     &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
+        enddo
+      endif
+      ecorr=0.0D0
+      ecorr5=0.0d0
+      ecorr6=0.0d0
+C Remove the loop below after debugging !!!
+      do i=nnt,nct
+        do j=1,3
+          gradcorr(j,i)=0.0D0
+          gradxorr(j,i)=0.0D0
+        enddo
+      enddo
+C Calculate the dipole-dipole interaction energies
+      if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
+      do i=iatel_s,iatel_e+1
+        num_conti=num_cont_hb(i)
+        do jj=1,num_conti
+          j=jcont_hb(jj,i)
+#ifdef MOMENT
+          call dipole(i,j,jj)
+#endif
+        enddo
+      enddo
+      endif
+C Calculate the local-electrostatic correlation terms
+c                write (iout,*) "gradcorr5 in eello5 before loop"
+c                do iii=1,nres
+c                  write (iout,'(i5,3f10.5)') 
+c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
+c                enddo
+      do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
+c        write (iout,*) "corr loop i",i
+        i1=i+1
+        num_conti=num_cont_hb(i)
+        num_conti1=num_cont_hb(i+1)
+        do jj=1,num_conti
+          j=jcont_hb(jj,i)
+          jp=iabs(j)
+          do kk=1,num_conti1
+            j1=jcont_hb(kk,i1)
+            jp1=iabs(j1)
+c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
+c     &         ' jj=',jj,' kk=',kk
+c            if (j1.eq.j+1 .or. j1.eq.j-1) then
+            if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
+     &          .or. j.lt.0 .and. j1.gt.0) .and.
+     &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
+C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
+C The system gains extra energy.
+              n_corr=n_corr+1
+              sqd1=dsqrt(d_cont(jj,i))
+              sqd2=dsqrt(d_cont(kk,i1))
+              sred_geom = sqd1*sqd2
+              IF (sred_geom.lt.cutoff_corr) THEN
+                call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
+     &            ekont,fprimcont)
+cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
+cd     &         ' jj=',jj,' kk=',kk
+                fac_prim1=0.5d0*sqd2/sqd1*fprimcont
+                fac_prim2=0.5d0*sqd1/sqd2*fprimcont
+                do l=1,3
+                  g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
+                  g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
+                enddo
+                n_corr1=n_corr1+1
+cd               write (iout,*) 'sred_geom=',sred_geom,
+cd     &          ' ekont=',ekont,' fprim=',fprimcont,
+cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
+cd               write (iout,*) "g_contij",g_contij
+cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
+cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
+                call calc_eello(i,jp,i+1,jp1,jj,kk)
+                if (wcorr4.gt.0.0d0) 
+     &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
+                  if (energy_dec.and.wcorr4.gt.0.0d0) 
+     1                 write (iout,'(a6,4i5,0pf7.3)')
+     2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
+c                write (iout,*) "gradcorr5 before eello5"
+c                do iii=1,nres
+c                  write (iout,'(i5,3f10.5)') 
+c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
+c                enddo
+                if (wcorr5.gt.0.0d0)
+     &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
+c                write (iout,*) "gradcorr5 after eello5"
+c                do iii=1,nres
+c                  write (iout,'(i5,3f10.5)') 
+c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
+c                enddo
+                  if (energy_dec.and.wcorr5.gt.0.0d0) 
+     1                 write (iout,'(a6,4i5,0pf7.3)')
+     2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
+cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
+cd                write(2,*)'ijkl',i,jp,i+1,jp1 
+                if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
+     &               .or. wturn6.eq.0.0d0))then
+cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
+                  ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
+                  if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
+     1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
+cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
+cd     &            'ecorr6=',ecorr6
+cd                write (iout,'(4e15.5)') sred_geom,
+cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
+cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
+cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
+                else if (wturn6.gt.0.0d0
+     &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
+cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
+                  eturn6=eturn6+eello_turn6(i,jj,kk)
+                  if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
+     1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
+cd                  write (2,*) 'multibody_eello:eturn6',eturn6
+                endif
+              ENDIF
+1111          continue
+            endif
+          enddo ! kk
+        enddo ! jj
+      enddo ! i
+      do i=1,nres
+        num_cont_hb(i)=num_cont_hb_old(i)
+      enddo
+c                write (iout,*) "gradcorr5 in eello5"
+c                do iii=1,nres
+c                  write (iout,'(i5,3f10.5)') 
+c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
+c                enddo
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine add_hb_contact_eello(ii,jj,itask)
+      implicit real*8 (a-h,o-z)
+      include "DIMENSIONS"
+      include "COMMON.IOUNITS"
+      integer max_cont
+      integer max_dim
+      parameter (max_cont=maxconts)
+      parameter (max_dim=70)
+      include "COMMON.CONTACTS"
+      double precision zapas(max_dim,maxconts,max_fg_procs),
+     &  zapas_recv(max_dim,maxconts,max_fg_procs)
+      common /przechowalnia/ zapas
+      integer i,j,ii,jj,iproc,itask(4),nn
+c      write (iout,*) "itask",itask
+      do i=1,2
+        iproc=itask(i)
+        if (iproc.gt.0) then
+          do j=1,num_cont_hb(ii)
+            jjc=jcont_hb(j,ii)
+c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
+            if (jjc.eq.jj) then
+              ncont_sent(iproc)=ncont_sent(iproc)+1
+              nn=ncont_sent(iproc)
+              zapas(1,nn,iproc)=ii
+              zapas(2,nn,iproc)=jjc
+              zapas(3,nn,iproc)=d_cont(j,ii)
+              ind=3
+              do kk=1,3
+                ind=ind+1
+                zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
+              enddo
+              do kk=1,2
+                do ll=1,2
+                  ind=ind+1
+                  zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
+                enddo
+              enddo
+              do jj=1,5
+                do kk=1,3
+                  do ll=1,2
+                    do mm=1,2
+                      ind=ind+1
+                      zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
+                    enddo
+                  enddo
+                enddo
+              enddo
+              exit
+            endif
+          enddo
+        endif
+      enddo
+      return
+      end
+c------------------------------------------------------------------------------
+      double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      double precision gx(3),gx1(3)
+      logical lprn
+      lprn=.false.
+      eij=facont_hb(jj,i)
+      ekl=facont_hb(kk,k)
+      ees0pij=ees0p(jj,i)
+      ees0pkl=ees0p(kk,k)
+      ees0mij=ees0m(jj,i)
+      ees0mkl=ees0m(kk,k)
+      ekont=eij*ekl
+      ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
+cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
+C Following 4 lines for diagnostics.
+cd    ees0pkl=0.0D0
+cd    ees0pij=1.0D0
+cd    ees0mkl=0.0D0
+cd    ees0mij=1.0D0
+c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
+c     & 'Contacts ',i,j,
+c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
+c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
+c     & 'gradcorr_long'
+C Calculate the multi-body contribution to energy.
+c      ecorr=ecorr+ekont*ees
+C Calculate multi-body contributions to the gradient.
+      coeffpees0pij=coeffp*ees0pij
+      coeffmees0mij=coeffm*ees0mij
+      coeffpees0pkl=coeffp*ees0pkl
+      coeffmees0mkl=coeffm*ees0mkl
+      do ll=1,3
+cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
+        gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
+     &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
+     &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
+        gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
+     &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
+     &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
+cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
+        gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
+     &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
+     &  coeffmees0mij*gacontm_hb1(ll,kk,k))
+        gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
+     &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
+     &  coeffmees0mij*gacontm_hb2(ll,kk,k))
+        gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
+     &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
+     &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
+        gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
+        gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
+        gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
+     &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
+     &     coeffmees0mij*gacontm_hb3(ll,kk,k))
+        gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
+        gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
+c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
+      enddo
+c      write (iout,*)
+cgrad      do m=i+1,j-1
+cgrad        do ll=1,3
+cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
+cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
+cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
+cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+1,l-1
+cgrad        do ll=1,3
+cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
+cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
+cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
+cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
+cgrad        enddo
+cgrad      enddo 
+c      write (iout,*) "ehbcorr",ekont*ees
+      ehbcorr=ekont*ees
+      return
+      end
+#ifdef MOMENT
+C---------------------------------------------------------------------------
+      subroutine dipole(i,j,jj)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
+     &  auxmat(2,2)
+      iti1 = itortyp(itype(i+1))
+      if (j.lt.nres-1) then
+        itj1 = itortyp(itype(j+1))
+      else
+        itj1=ntortyp+1
+      endif
+      do iii=1,2
+        dipi(iii,1)=Ub2(iii,i)
+        dipderi(iii)=Ub2der(iii,i)
+        dipi(iii,2)=b1(iii,iti1)
+        dipj(iii,1)=Ub2(iii,j)
+        dipderj(iii)=Ub2der(iii,j)
+        dipj(iii,2)=b1(iii,itj1)
+      enddo
+      kkk=0
+      do iii=1,2
+        call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
+        do jjj=1,2
+          kkk=kkk+1
+          dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
+        enddo
+      enddo
+      do kkk=1,5
+        do lll=1,3
+          mmm=0
+          do iii=1,2
+            call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
+     &        auxvec(1))
+            do jjj=1,2
+              mmm=mmm+1
+              dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
+            enddo
+          enddo
+        enddo
+      enddo
+      call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
+      call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
+      do iii=1,2
+        dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
+      enddo
+      call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
+      do iii=1,2
+        dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
+      enddo
+      return
+      end
+#endif
+C---------------------------------------------------------------------------
+      subroutine calc_eello(i,j,k,l,jj,kk)
+C 
+C This subroutine computes matrices and vectors needed to calculate 
+C the fourth-, fifth-, and sixth-order local-electrostatic terms.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.FFIELD'
+      double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
+     &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
+      logical lprn
+      common /kutas/ lprn
+cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
+cd     & ' jj=',jj,' kk=',kk
+cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
+cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
+cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
+      do iii=1,2
+        do jjj=1,2
+          aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
+          aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
+        enddo
+      enddo
+      call transpose2(aa1(1,1),aa1t(1,1))
+      call transpose2(aa2(1,1),aa2t(1,1))
+      do kkk=1,5
+        do lll=1,3
+          call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
+     &      aa1tder(1,1,lll,kkk))
+          call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
+     &      aa2tder(1,1,lll,kkk))
+        enddo
+      enddo 
+      if (l.eq.j+1) then
+C parallel orientation of the two CA-CA-CA frames.
+        if (i.gt.1) then
+          iti=itortyp(itype(i))
+        else
+          iti=ntortyp+1
+        endif
+        itk1=itortyp(itype(k+1))
+        itj=itortyp(itype(j))
+        if (l.lt.nres-1) then
+          itl1=itortyp(itype(l+1))
+        else
+          itl1=ntortyp+1
+        endif
+C A1 kernel(j+1) A2T
+cd        do iii=1,2
+cd          write (iout,'(3f10.5,5x,3f10.5)') 
+cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
+cd        enddo
+        call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
+     &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
+     &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
+C Following matrices are needed only for 6-th order cumulants
+        IF (wcorr6.gt.0.0d0) THEN
+        call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
+     &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
+     &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
+        call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
+     &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
+     &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
+     &   ADtEAderx(1,1,1,1,1,1))
+        lprn=.false.
+        call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
+     &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
+     &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
+     &   ADtEA1derx(1,1,1,1,1,1))
+        ENDIF
+C End 6-th order cumulants
+cd        lprn=.false.
+cd        if (lprn) then
+cd        write (2,*) 'In calc_eello6'
+cd        do iii=1,2
+cd          write (2,*) 'iii=',iii
+cd          do kkk=1,5
+cd            write (2,*) 'kkk=',kkk
+cd            do jjj=1,2
+cd              write (2,'(3(2f10.5),5x)') 
+cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
+cd            enddo
+cd          enddo
+cd        enddo
+cd        endif
+        call transpose2(EUgder(1,1,k),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
+        call transpose2(EUg(1,1,k),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
+        call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
+     &          EAEAderx(1,1,lll,kkk,iii,1))
+            enddo
+          enddo
+        enddo
+C A1T kernel(i+1) A2
+        call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
+     &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
+     &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
+C Following matrices are needed only for 6-th order cumulants
+        IF (wcorr6.gt.0.0d0) THEN
+        call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
+     &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
+     &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
+        call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
+     &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
+     &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
+     &   ADtEAderx(1,1,1,1,1,2))
+        call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
+     &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
+     &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
+     &   ADtEA1derx(1,1,1,1,1,2))
+        ENDIF
+C End 6-th order cumulants
+        call transpose2(EUgder(1,1,l),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
+        call transpose2(EUg(1,1,l),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
+        call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
+     &          EAEAderx(1,1,lll,kkk,iii,2))
+            enddo
+          enddo
+        enddo
+C AEAb1 and AEAb2
+C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
+C They are needed only when the fifth- or the sixth-order cumulants are
+C indluded.
+        IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
+        call transpose2(AEA(1,1,1),auxmat(1,1))
+        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
+        call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
+        call transpose2(AEAderg(1,1,1),auxmat(1,1))
+        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
+        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
+        call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
+        call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
+        call transpose2(AEA(1,1,2),auxmat(1,1))
+        call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
+        call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
+        call transpose2(AEAderg(1,1,2),auxmat(1,1))
+        call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
+        call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
+        call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
+        call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
+        call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
+C Calculate the Cartesian derivatives of the vectors.
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
+              call matvec2(auxmat(1,1),b1(1,iti),
+     &          AEAb1derx(1,lll,kkk,iii,1,1))
+              call matvec2(auxmat(1,1),Ub2(1,i),
+     &          AEAb2derx(1,lll,kkk,iii,1,1))
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+     &          AEAb1derx(1,lll,kkk,iii,2,1))
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
+     &          AEAb2derx(1,lll,kkk,iii,2,1))
+              call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
+              call matvec2(auxmat(1,1),b1(1,itj),
+     &          AEAb1derx(1,lll,kkk,iii,1,2))
+              call matvec2(auxmat(1,1),Ub2(1,j),
+     &          AEAb2derx(1,lll,kkk,iii,1,2))
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+     &          AEAb1derx(1,lll,kkk,iii,2,2))
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
+     &          AEAb2derx(1,lll,kkk,iii,2,2))
+            enddo
+          enddo
+        enddo
+        ENDIF
+C End vectors
+      else
+C Antiparallel orientation of the two CA-CA-CA frames.
+        if (i.gt.1) then
+          iti=itortyp(itype(i))
+        else
+          iti=ntortyp+1
+        endif
+        itk1=itortyp(itype(k+1))
+        itl=itortyp(itype(l))
+        itj=itortyp(itype(j))
+        if (j.lt.nres-1) then
+          itj1=itortyp(itype(j+1))
+        else 
+          itj1=ntortyp+1
+        endif
+C A2 kernel(j-1)T A1T
+        call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
+     &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
+     &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
+C Following matrices are needed only for 6-th order cumulants
+        IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
+     &     j.eq.i+4 .and. l.eq.i+3)) THEN
+        call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
+     &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
+     &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
+        call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
+     &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
+     &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
+     &   ADtEAderx(1,1,1,1,1,1))
+        call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
+     &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
+     &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
+     &   ADtEA1derx(1,1,1,1,1,1))
+        ENDIF
+C End 6-th order cumulants
+        call transpose2(EUgder(1,1,k),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
+        call transpose2(EUg(1,1,k),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
+        call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
+     &          EAEAderx(1,1,lll,kkk,iii,1))
+            enddo
+          enddo
+        enddo
+C A2T kernel(i+1)T A1
+        call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
+     &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
+     &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
+C Following matrices are needed only for 6-th order cumulants
+        IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
+     &     j.eq.i+4 .and. l.eq.i+3)) THEN
+        call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
+     &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
+     &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
+        call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
+     &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
+     &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
+     &   ADtEAderx(1,1,1,1,1,2))
+        call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
+     &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
+     &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
+     &   ADtEA1derx(1,1,1,1,1,2))
+        ENDIF
+C End 6-th order cumulants
+        call transpose2(EUgder(1,1,j),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
+        call transpose2(EUg(1,1,j),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
+        call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
+     &          EAEAderx(1,1,lll,kkk,iii,2))
+            enddo
+          enddo
+        enddo
+C AEAb1 and AEAb2
+C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
+C They are needed only when the fifth- or the sixth-order cumulants are
+C indluded.
+        IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
+     &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
+        call transpose2(AEA(1,1,1),auxmat(1,1))
+        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
+        call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
+        call transpose2(AEAderg(1,1,1),auxmat(1,1))
+        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
+        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
+        call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
+        call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
+        call transpose2(AEA(1,1,2),auxmat(1,1))
+        call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
+        call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
+        call transpose2(AEAderg(1,1,2),auxmat(1,1))
+        call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
+        call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
+        call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
+        call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
+C Calculate the Cartesian derivatives of the vectors.
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
+              call matvec2(auxmat(1,1),b1(1,iti),
+     &          AEAb1derx(1,lll,kkk,iii,1,1))
+              call matvec2(auxmat(1,1),Ub2(1,i),
+     &          AEAb2derx(1,lll,kkk,iii,1,1))
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+     &          AEAb1derx(1,lll,kkk,iii,2,1))
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
+     &          AEAb2derx(1,lll,kkk,iii,2,1))
+              call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
+              call matvec2(auxmat(1,1),b1(1,itl),
+     &          AEAb1derx(1,lll,kkk,iii,1,2))
+              call matvec2(auxmat(1,1),Ub2(1,l),
+     &          AEAb2derx(1,lll,kkk,iii,1,2))
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
+     &          AEAb1derx(1,lll,kkk,iii,2,2))
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
+     &          AEAb2derx(1,lll,kkk,iii,2,2))
+            enddo
+          enddo
+        enddo
+        ENDIF
+C End vectors
+      endif
+      return
+      end
+C---------------------------------------------------------------------------
+      subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
+     &  KK,KKderg,AKA,AKAderg,AKAderx)
+      implicit none
+      integer nderg
+      logical transp
+      double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
+     &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
+     &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
+      integer iii,kkk,lll
+      integer jjj,mmm
+      logical lprn
+      common /kutas/ lprn
+      call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
+      do iii=1,nderg 
+        call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
+     &    AKAderg(1,1,iii))
+      enddo
+cd      if (lprn) write (2,*) 'In kernel'
+      do kkk=1,5
+cd        if (lprn) write (2,*) 'kkk=',kkk
+        do lll=1,3
+          call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
+     &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
+cd          if (lprn) then
+cd            write (2,*) 'lll=',lll
+cd            write (2,*) 'iii=1'
+cd            do jjj=1,2
+cd              write (2,'(3(2f10.5),5x)') 
+cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
+cd            enddo
+cd          endif
+          call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
+     &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
+cd          if (lprn) then
+cd            write (2,*) 'lll=',lll
+cd            write (2,*) 'iii=2'
+cd            do jjj=1,2
+cd              write (2,'(3(2f10.5),5x)') 
+cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
+cd            enddo
+cd          endif
+        enddo
+      enddo
+      return
+      end
+C---------------------------------------------------------------------------
+      double precision function eello4(i,j,k,l,jj,kk)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      double precision pizda(2,2),ggg1(3),ggg2(3)
+cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
+cd        eello4=0.0d0
+cd        return
+cd      endif
+cd      print *,'eello4:',i,j,k,l,jj,kk
+cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
+cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
+cold      eij=facont_hb(jj,i)
+cold      ekl=facont_hb(kk,k)
+cold      ekont=eij*ekl
+      eel4=-EAEA(1,1,1)-EAEA(2,2,1)
+cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
+      gcorr_loc(k-1)=gcorr_loc(k-1)
+     &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
+      if (l.eq.j+1) then
+        gcorr_loc(l-1)=gcorr_loc(l-1)
+     &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
+      else
+        gcorr_loc(j-1)=gcorr_loc(j-1)
+     &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
+      endif
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+            derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
+     &                        -EAEAderx(2,2,lll,kkk,iii,1)
+cd            derx(lll,kkk,iii)=0.0d0
+          enddo
+        enddo
+      enddo
+cd      gcorr_loc(l-1)=0.0d0
+cd      gcorr_loc(j-1)=0.0d0
+cd      gcorr_loc(k-1)=0.0d0
+cd      eel4=1.0d0
+cd      write (iout,*)'Contacts have occurred for peptide groups',
+cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
+cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
+      if (j.lt.nres-1) then
+        j1=j+1
+        j2=j-1
+      else
+        j1=j-1
+        j2=j-2
+      endif
+      if (l.lt.nres-1) then
+        l1=l+1
+        l2=l-1
+      else
+        l1=l-1
+        l2=l-2
+      endif
+      do ll=1,3
+cgrad        ggg1(ll)=eel4*g_contij(ll,1)
+cgrad        ggg2(ll)=eel4*g_contij(ll,2)
+        glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
+        glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
+cgrad        ghalf=0.5d0*ggg1(ll)
+        gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
+        gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
+        gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
+        gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
+        gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
+        gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
+cgrad        ghalf=0.5d0*ggg2(ll)
+        gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
+        gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
+        gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
+        gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
+        gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
+        gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
+      enddo
+cgrad      do m=i+1,j-1
+cgrad        do ll=1,3
+cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+1,l-1
+cgrad        do ll=1,3
+cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=i+2,j2
+cgrad        do ll=1,3
+cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+2,l2
+cgrad        do ll=1,3
+cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
+cgrad        enddo
+cgrad      enddo 
+cd      do iii=1,nres-3
+cd        write (2,*) iii,gcorr_loc(iii)
+cd      enddo
+      eello4=ekont*eel4
+cd      write (2,*) 'ekont',ekont
+cd      write (iout,*) 'eello4',ekont*eel4
+      return
+      end
+C---------------------------------------------------------------------------
+      double precision function eello5(i,j,k,l,jj,kk)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
+      double precision ggg1(3),ggg2(3)
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C                                                                              C
+C                            Parallel chains                                   C
+C                                                                              C
+C          o             o                   o             o                   C
+C         /l\           / \             \   / \           / \   /              C
+C        /   \         /   \             \ /   \         /   \ /               C
+C       j| o |l1       | o |             o| o |         | o |o                C
+C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
+C      \i/   \         /   \ /             /   \         /   \                 C
+C       o    k1             o                                                  C
+C         (I)          (II)                (III)          (IV)                 C
+C                                                                              C
+C      eello5_1        eello5_2            eello5_3       eello5_4             C
+C                                                                              C
+C                            Antiparallel chains                               C
+C                                                                              C
+C          o             o                   o             o                   C
+C         /j\           / \             \   / \           / \   /              C
+C        /   \         /   \             \ /   \         /   \ /               C
+C      j1| o |l        | o |             o| o |         | o |o                C
+C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
+C      \i/   \         /   \ /             /   \         /   \                 C
+C       o     k1            o                                                  C
+C         (I)          (II)                (III)          (IV)                 C
+C                                                                              C
+C      eello5_1        eello5_2            eello5_3       eello5_4             C
+C                                                                              C
+C o denotes a local interaction, vertical lines an electrostatic interaction.  C
+C                                                                              C
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
+cd        eello5=0.0d0
+cd        return
+cd      endif
+cd      write (iout,*)
+cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
+cd     &   ' and',k,l
+      itk=itortyp(itype(k))
+      itl=itortyp(itype(l))
+      itj=itortyp(itype(j))
+      eello5_1=0.0d0
+      eello5_2=0.0d0
+      eello5_3=0.0d0
+      eello5_4=0.0d0
+cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
+cd     &   eel5_3_num,eel5_4_num)
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+            derx(lll,kkk,iii)=0.0d0
+          enddo
+        enddo
+      enddo
+cd      eij=facont_hb(jj,i)
+cd      ekl=facont_hb(kk,k)
+cd      ekont=eij*ekl
+cd      write (iout,*)'Contacts have occurred for peptide groups',
+cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
+cd      goto 1111
+C Contribution from the graph I.
+cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
+cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
+      call transpose2(EUg(1,1,k),auxmat(1,1))
+      call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
+      vv(1)=pizda(1,1)-pizda(2,2)
+      vv(2)=pizda(1,2)+pizda(2,1)
+      eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
+     & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
+C Explicit gradient in virtual-dihedral angles.
+      if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
+     & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
+     & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
+      call transpose2(EUgder(1,1,k),auxmat1(1,1))
+      call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
+      vv(1)=pizda(1,1)-pizda(2,2)
+      vv(2)=pizda(1,2)+pizda(2,1)
+      g_corr5_loc(k-1)=g_corr5_loc(k-1)
+     & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
+     & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
+      call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
+      vv(1)=pizda(1,1)-pizda(2,2)
+      vv(2)=pizda(1,2)+pizda(2,1)
+      if (l.eq.j+1) then
+        if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
+     &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
+     &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
+      else
+        if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
+     &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
+     &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
+      endif 
+C Cartesian gradient
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+            call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
+     &        pizda(1,1))
+            vv(1)=pizda(1,1)-pizda(2,2)
+            vv(2)=pizda(1,2)+pizda(2,1)
+            derx(lll,kkk,iii)=derx(lll,kkk,iii)
+     &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
+     &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
+          enddo
+        enddo
+      enddo
+c      goto 1112
+c1111  continue
+C Contribution from graph II 
+      call transpose2(EE(1,1,itk),auxmat(1,1))
+      call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
+      vv(1)=pizda(1,1)+pizda(2,2)
+      vv(2)=pizda(2,1)-pizda(1,2)
+      eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
+     & -0.5d0*scalar2(vv(1),Ctobr(1,k))
+C Explicit gradient in virtual-dihedral angles.
+      g_corr5_loc(k-1)=g_corr5_loc(k-1)
+     & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
+      call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
+      vv(1)=pizda(1,1)+pizda(2,2)
+      vv(2)=pizda(2,1)-pizda(1,2)
+      if (l.eq.j+1) then
+        g_corr5_loc(l-1)=g_corr5_loc(l-1)
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
+      else
+        g_corr5_loc(j-1)=g_corr5_loc(j-1)
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
+      endif
+C Cartesian gradient
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+            call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
+     &        pizda(1,1))
+            vv(1)=pizda(1,1)+pizda(2,2)
+            vv(2)=pizda(2,1)-pizda(1,2)
+            derx(lll,kkk,iii)=derx(lll,kkk,iii)
+     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
+     &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
+          enddo
+        enddo
+      enddo
+cd      goto 1112
+cd1111  continue
+      if (l.eq.j+1) then
+cd        goto 1110
+C Parallel orientation
+C Contribution from graph III
+        call transpose2(EUg(1,1,l),auxmat(1,1))
+        call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(1,2)+pizda(2,1)
+        eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
+     &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
+C Explicit gradient in virtual-dihedral angles.
+        g_corr5_loc(j-1)=g_corr5_loc(j-1)
+     &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
+     &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
+        call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(1,2)+pizda(2,1)
+        g_corr5_loc(k-1)=g_corr5_loc(k-1)
+     &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
+     &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
+        call transpose2(EUgder(1,1,l),auxmat1(1,1))
+        call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(1,2)+pizda(2,1)
+        g_corr5_loc(l-1)=g_corr5_loc(l-1)
+     &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
+     &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
+C Cartesian gradient
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
+     &          pizda(1,1))
+              vv(1)=pizda(1,1)-pizda(2,2)
+              vv(2)=pizda(1,2)+pizda(2,1)
+              derx(lll,kkk,iii)=derx(lll,kkk,iii)
+     &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
+     &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
+            enddo
+          enddo
+        enddo
+cd        goto 1112
+C Contribution from graph IV
+cd1110    continue
+        call transpose2(EE(1,1,itl),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
+        vv(1)=pizda(1,1)+pizda(2,2)
+        vv(2)=pizda(2,1)-pizda(1,2)
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
+     &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
+C Explicit gradient in virtual-dihedral angles.
+        g_corr5_loc(l-1)=g_corr5_loc(l-1)
+     &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
+        call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
+        vv(1)=pizda(1,1)+pizda(2,2)
+        vv(2)=pizda(2,1)-pizda(1,2)
+        g_corr5_loc(k-1)=g_corr5_loc(k-1)
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
+     &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
+C Cartesian gradient
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
+     &          pizda(1,1))
+              vv(1)=pizda(1,1)+pizda(2,2)
+              vv(2)=pizda(2,1)-pizda(1,2)
+              derx(lll,kkk,iii)=derx(lll,kkk,iii)
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
+     &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
+            enddo
+          enddo
+        enddo
+      else
+C Antiparallel orientation
+C Contribution from graph III
+c        goto 1110
+        call transpose2(EUg(1,1,j),auxmat(1,1))
+        call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(1,2)+pizda(2,1)
+        eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
+     &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
+C Explicit gradient in virtual-dihedral angles.
+        g_corr5_loc(l-1)=g_corr5_loc(l-1)
+     &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
+     &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
+        call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(1,2)+pizda(2,1)
+        g_corr5_loc(k-1)=g_corr5_loc(k-1)
+     &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
+     &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
+        call transpose2(EUgder(1,1,j),auxmat1(1,1))
+        call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(1,2)+pizda(2,1)
+        g_corr5_loc(j-1)=g_corr5_loc(j-1)
+     &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
+     &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
+C Cartesian gradient
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
+     &          pizda(1,1))
+              vv(1)=pizda(1,1)-pizda(2,2)
+              vv(2)=pizda(1,2)+pizda(2,1)
+              derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
+     &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
+     &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
+            enddo
+          enddo
+        enddo
+cd        goto 1112
+C Contribution from graph IV
+1110    continue
+        call transpose2(EE(1,1,itj),auxmat(1,1))
+        call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
+        vv(1)=pizda(1,1)+pizda(2,2)
+        vv(2)=pizda(2,1)-pizda(1,2)
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
+     &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
+C Explicit gradient in virtual-dihedral angles.
+        g_corr5_loc(j-1)=g_corr5_loc(j-1)
+     &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
+        call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
+        vv(1)=pizda(1,1)+pizda(2,2)
+        vv(2)=pizda(2,1)-pizda(1,2)
+        g_corr5_loc(k-1)=g_corr5_loc(k-1)
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
+     &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
+C Cartesian gradient
+        do iii=1,2
+          do kkk=1,5
+            do lll=1,3
+              call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
+     &          pizda(1,1))
+              vv(1)=pizda(1,1)+pizda(2,2)
+              vv(2)=pizda(2,1)-pizda(1,2)
+              derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
+     &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
+            enddo
+          enddo
+        enddo
+      endif
+1112  continue
+      eel5=eello5_1+eello5_2+eello5_3+eello5_4
+cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
+cd        write (2,*) 'ijkl',i,j,k,l
+cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
+cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
+cd      endif
+cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
+cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
+cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
+cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
+      if (j.lt.nres-1) then
+        j1=j+1
+        j2=j-1
+      else
+        j1=j-1
+        j2=j-2
+      endif
+      if (l.lt.nres-1) then
+        l1=l+1
+        l2=l-1
+      else
+        l1=l-1
+        l2=l-2
+      endif
+cd      eij=1.0d0
+cd      ekl=1.0d0
+cd      ekont=1.0d0
+cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
+C 2/11/08 AL Gradients over DC's connecting interacting sites will be
+C        summed up outside the subrouine as for the other subroutines 
+C        handling long-range interactions. The old code is commented out
+C        with "cgrad" to keep track of changes.
+      do ll=1,3
+cgrad        ggg1(ll)=eel5*g_contij(ll,1)
+cgrad        ggg2(ll)=eel5*g_contij(ll,2)
+        gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
+        gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
+c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
+c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
+c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
+c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
+c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
+c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
+c     &   gradcorr5ij,
+c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
+cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
+cgrad        ghalf=0.5d0*ggg1(ll)
+cd        ghalf=0.0d0
+        gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
+        gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
+        gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
+        gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
+        gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
+        gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
+cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
+cgrad        ghalf=0.5d0*ggg2(ll)
+cd        ghalf=0.0d0
+        gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
+        gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
+        gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
+        gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
+        gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
+        gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
+      enddo
+cd      goto 1112
+cgrad      do m=i+1,j-1
+cgrad        do ll=1,3
+cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
+cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+1,l-1
+cgrad        do ll=1,3
+cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
+cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
+cgrad        enddo
+cgrad      enddo
+c1112  continue
+cgrad      do m=i+2,j2
+cgrad        do ll=1,3
+cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+2,l2
+cgrad        do ll=1,3
+cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
+cgrad        enddo
+cgrad      enddo 
+cd      do iii=1,nres-3
+cd        write (2,*) iii,g_corr5_loc(iii)
+cd      enddo
+      eello5=ekont*eel5
+cd      write (2,*) 'ekont',ekont
+cd      write (iout,*) 'eello5',ekont*eel5
+      return
+      end
+c--------------------------------------------------------------------------
+      double precision function eello6(i,j,k,l,jj,kk)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.FFIELD'
+      double precision ggg1(3),ggg2(3)
+cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
+cd        eello6=0.0d0
+cd        return
+cd      endif
+cd      write (iout,*)
+cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
+cd     &   ' and',k,l
+      eello6_1=0.0d0
+      eello6_2=0.0d0
+      eello6_3=0.0d0
+      eello6_4=0.0d0
+      eello6_5=0.0d0
+      eello6_6=0.0d0
+cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
+cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+            derx(lll,kkk,iii)=0.0d0
+          enddo
+        enddo
+      enddo
+cd      eij=facont_hb(jj,i)
+cd      ekl=facont_hb(kk,k)
+cd      ekont=eij*ekl
+cd      eij=1.0d0
+cd      ekl=1.0d0
+cd      ekont=1.0d0
+      if (l.eq.j+1) then
+        eello6_1=eello6_graph1(i,j,k,l,1,.false.)
+        eello6_2=eello6_graph1(j,i,l,k,2,.false.)
+        eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
+        eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
+        eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
+        eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
+      else
+        eello6_1=eello6_graph1(i,j,k,l,1,.false.)
+        eello6_2=eello6_graph1(l,k,j,i,2,.true.)
+        eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
+        eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
+        if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
+          eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
+        else
+          eello6_5=0.0d0
+        endif
+        eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
+      endif
+C If turn contributions are considered, they will be handled separately.
+      eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
+cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
+cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
+cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
+cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
+cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
+cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
+cd      goto 1112
+      if (j.lt.nres-1) then
+        j1=j+1
+        j2=j-1
+      else
+        j1=j-1
+        j2=j-2
+      endif
+      if (l.lt.nres-1) then
+        l1=l+1
+        l2=l-1
+      else
+        l1=l-1
+        l2=l-2
+      endif
+      do ll=1,3
+cgrad        ggg1(ll)=eel6*g_contij(ll,1)
+cgrad        ggg2(ll)=eel6*g_contij(ll,2)
+cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
+cgrad        ghalf=0.5d0*ggg1(ll)
+cd        ghalf=0.0d0
+        gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
+        gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
+        gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
+        gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
+        gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
+        gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
+        gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
+        gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
+cgrad        ghalf=0.5d0*ggg2(ll)
+cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
+cd        ghalf=0.0d0
+        gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
+        gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
+        gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
+        gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
+        gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
+        gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
+      enddo
+cd      goto 1112
+cgrad      do m=i+1,j-1
+cgrad        do ll=1,3
+cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
+cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+1,l-1
+cgrad        do ll=1,3
+cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
+cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
+cgrad        enddo
+cgrad      enddo
+cgrad1112  continue
+cgrad      do m=i+2,j2
+cgrad        do ll=1,3
+cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+2,l2
+cgrad        do ll=1,3
+cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
+cgrad        enddo
+cgrad      enddo 
+cd      do iii=1,nres-3
+cd        write (2,*) iii,g_corr6_loc(iii)
+cd      enddo
+      eello6=ekont*eel6
+cd      write (2,*) 'ekont',ekont
+cd      write (iout,*) 'eello6',ekont*eel6
+      return
+      end
+c--------------------------------------------------------------------------
+      double precision function eello6_graph1(i,j,k,l,imat,swap)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
+      logical swap
+      logical lprn
+      common /kutas/ lprn
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C                                              
+C      Parallel       Antiparallel
+C                                             
+C          o             o         
+C         /l\           /j\
+C        /   \         /   \
+C       /| o |         | o |\
+C     \ j|/k\|  /   \  |/k\|l /   
+C      \ /   \ /     \ /   \ /    
+C       o     o       o     o                
+C       i             i                     
+C
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+      itk=itortyp(itype(k))
+      s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
+      s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
+      s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
+      call transpose2(EUgC(1,1,k),auxmat(1,1))
+      call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
+      vv1(1)=pizda1(1,1)-pizda1(2,2)
+      vv1(2)=pizda1(1,2)+pizda1(2,1)
+      s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
+      vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
+      vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
+      s5=scalar2(vv(1),Dtobr2(1,i))
+cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
+      eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
+      if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
+     & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
+     & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
+     & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
+     & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
+     & +scalar2(vv(1),Dtobr2der(1,i)))
+      call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
+      vv1(1)=pizda1(1,1)-pizda1(2,2)
+      vv1(2)=pizda1(1,2)+pizda1(2,1)
+      vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
+      vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
+      if (l.eq.j+1) then
+        g_corr6_loc(l-1)=g_corr6_loc(l-1)
+     & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
+     & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
+     & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
+     & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
+      else
+        g_corr6_loc(j-1)=g_corr6_loc(j-1)
+     & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
+     & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
+     & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
+     & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
+      endif
+      call transpose2(EUgCder(1,1,k),auxmat(1,1))
+      call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
+      vv1(1)=pizda1(1,1)-pizda1(2,2)
+      vv1(2)=pizda1(1,2)+pizda1(2,1)
+      if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
+     & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
+     & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
+     & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
+      do iii=1,2
+        if (swap) then
+          ind=3-iii
+        else
+          ind=iii
+        endif
+        do kkk=1,5
+          do lll=1,3
+            s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
+            s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
+            s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
+            call transpose2(EUgC(1,1,k),auxmat(1,1))
+            call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
+     &        pizda1(1,1))
+            vv1(1)=pizda1(1,1)-pizda1(2,2)
+            vv1(2)=pizda1(1,2)+pizda1(2,1)
+            s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
+            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
+     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
+            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
+     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
+            s5=scalar2(vv(1),Dtobr2(1,i))
+            derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
+          enddo
+        enddo
+      enddo
+      return
+      end
+c----------------------------------------------------------------------------
+      double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      logical swap
+      double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
+     & auxvec1(2),auxvec2(1),auxmat1(2,2)
+      logical lprn
+      common /kutas/ lprn
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C                                                                              C
+C      Parallel       Antiparallel                                             C
+C                                                                              C
+C          o             o                                                     C
+C     \   /l\           /j\   /                                                C
+C      \ /   \         /   \ /                                                 C
+C       o| o |         | o |o                                                  C                
+C     \ j|/k\|      \  |/k\|l                                                  C
+C      \ /   \       \ /   \                                                   C
+C       o             o                                                        C
+C       i             i                                                        C 
+C                                                                              C           
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
+C AL 7/4/01 s1 would occur in the sixth-order moment, 
+C           but not in a cluster cumulant
+#ifdef MOMENT
+      s1=dip(1,jj,i)*dip(1,kk,k)
+#endif
+      call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
+      s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
+      call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
+      s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
+      call transpose2(EUg(1,1,k),auxmat(1,1))
+      call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
+      vv(1)=pizda(1,1)-pizda(2,2)
+      vv(2)=pizda(1,2)+pizda(2,1)
+      s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
+cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
+#ifdef MOMENT
+      eello6_graph2=-(s1+s2+s3+s4)
+#else
+      eello6_graph2=-(s2+s3+s4)
+#endif
+c      eello6_graph2=-s3
+C Derivatives in gamma(i-1)
+      if (i.gt.1) then
+#ifdef MOMENT
+        s1=dipderg(1,jj,i)*dip(1,kk,k)
+#endif
+        s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
+        call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
+        s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
+        s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
+#ifdef MOMENT
+        g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
+#else
+        g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
+#endif
+c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
+      endif
+C Derivatives in gamma(k-1)
+#ifdef MOMENT
+      s1=dip(1,jj,i)*dipderg(1,kk,k)
+#endif
+      call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
+      s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
+      call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
+      s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
+      call transpose2(EUgder(1,1,k),auxmat1(1,1))
+      call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
+      vv(1)=pizda(1,1)-pizda(2,2)
+      vv(2)=pizda(1,2)+pizda(2,1)
+      s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
+#ifdef MOMENT
+      g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
+#else
+      g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
+#endif
+c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
+C Derivatives in gamma(j-1) or gamma(l-1)
+      if (j.gt.1) then
+#ifdef MOMENT
+        s1=dipderg(3,jj,i)*dip(1,kk,k) 
+#endif
+        call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
+        s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
+        s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
+        call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(1,2)+pizda(2,1)
+        s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
+#ifdef MOMENT
+        if (swap) then
+          g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
+        else
+          g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
+        endif
+#endif
+        g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
+c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
+      endif
+C Derivatives in gamma(l-1) or gamma(j-1)
+      if (l.gt.1) then 
+#ifdef MOMENT
+        s1=dip(1,jj,i)*dipderg(3,kk,k)
+#endif
+        call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
+        s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
+        call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
+        s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
+        call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(1,2)+pizda(2,1)
+        s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
+#ifdef MOMENT
+        if (swap) then
+          g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
+        else
+          g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
+        endif
+#endif
+        g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
+c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
+      endif
+C Cartesian derivatives.
+      if (lprn) then
+        write (2,*) 'In eello6_graph2'
+        do iii=1,2
+          write (2,*) 'iii=',iii
+          do kkk=1,5
+            write (2,*) 'kkk=',kkk
+            do jjj=1,2
+              write (2,'(3(2f10.5),5x)') 
+     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
+            enddo
+          enddo
+        enddo
+      endif
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+#ifdef MOMENT
+            if (iii.eq.1) then
+              s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
+            else
+              s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
+            endif
+#endif
+            call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
+     &        auxvec(1))
+            s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
+            call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
+     &        auxvec(1))
+            s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
+            call transpose2(EUg(1,1,k),auxmat(1,1))
+            call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
+     &        pizda(1,1))
+            vv(1)=pizda(1,1)-pizda(2,2)
+            vv(2)=pizda(1,2)+pizda(2,1)
+            s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
+cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
+#ifdef MOMENT
+            derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
+#else
+            derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
+#endif
+            if (swap) then
+              derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
+            else
+              derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
+            endif
+          enddo
+        enddo
+      enddo
+      return
+      end
+c----------------------------------------------------------------------------
+      double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
+      logical swap
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C                                                                              C 
+C      Parallel       Antiparallel                                             C
+C                                                                              C
+C          o             o                                                     C 
+C         /l\   /   \   /j\                                                    C 
+C        /   \ /     \ /   \                                                   C
+C       /| o |o       o| o |\                                                  C
+C       j|/k\|  /      |/k\|l /                                                C
+C        /   \ /       /   \ /                                                 C
+C       /     o       /     o                                                  C
+C       i             i                                                        C
+C                                                                              C
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C
+C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
+C           energy moment and not to the cluster cumulant.
+      iti=itortyp(itype(i))
+      if (j.lt.nres-1) then
+        itj1=itortyp(itype(j+1))
+      else
+        itj1=ntortyp+1
+      endif
+      itk=itortyp(itype(k))
+      itk1=itortyp(itype(k+1))
+      if (l.lt.nres-1) then
+        itl1=itortyp(itype(l+1))
+      else
+        itl1=ntortyp+1
+      endif
+#ifdef MOMENT
+      s1=dip(4,jj,i)*dip(4,kk,k)
+#endif
+      call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
+      call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      call transpose2(EE(1,1,itk),auxmat(1,1))
+      call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
+      vv(1)=pizda(1,1)+pizda(2,2)
+      vv(2)=pizda(2,1)-pizda(1,2)
+      s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
+cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
+cd     & "sum",-(s2+s3+s4)
+#ifdef MOMENT
+      eello6_graph3=-(s1+s2+s3+s4)
+#else
+      eello6_graph3=-(s2+s3+s4)
+#endif
+c      eello6_graph3=-s4
+C Derivatives in gamma(k-1)
+      call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
+      g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
+C Derivatives in gamma(l-1)
+      call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
+      call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
+      vv(1)=pizda(1,1)+pizda(2,2)
+      vv(2)=pizda(2,1)-pizda(1,2)
+      s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
+      g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
+C Cartesian derivatives.
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+#ifdef MOMENT
+            if (iii.eq.1) then
+              s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
+            else
+              s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
+            endif
+#endif
+            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+     &        auxvec(1))
+            s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
+            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+     &        auxvec(1))
+            s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+            call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
+     &        pizda(1,1))
+            vv(1)=pizda(1,1)+pizda(2,2)
+            vv(2)=pizda(2,1)-pizda(1,2)
+            s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
+#ifdef MOMENT
+            derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
+#else
+            derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
+#endif
+            if (swap) then
+              derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
+            else
+              derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
+            endif
+c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
+          enddo
+        enddo
+      enddo
+      return
+      end
+c----------------------------------------------------------------------------
+      double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.FFIELD'
+      double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
+     & auxvec1(2),auxmat1(2,2)
+      logical swap
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C                                                                              C                       
+C      Parallel       Antiparallel                                             C
+C                                                                              C
+C          o             o                                                     C
+C         /l\   /   \   /j\                                                    C
+C        /   \ /     \ /   \                                                   C
+C       /| o |o       o| o |\                                                  C
+C     \ j|/k\|      \  |/k\|l                                                  C
+C      \ /   \       \ /   \                                                   C 
+C       o     \       o     \                                                  C
+C       i             i                                                        C
+C                                                                              C 
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C
+C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
+C           energy moment and not to the cluster cumulant.
+cd      write (2,*) 'eello_graph4: wturn6',wturn6
+      iti=itortyp(itype(i))
+      itj=itortyp(itype(j))
+      if (j.lt.nres-1) then
+        itj1=itortyp(itype(j+1))
+      else
+        itj1=ntortyp+1
+      endif
+      itk=itortyp(itype(k))
+      if (k.lt.nres-1) then
+        itk1=itortyp(itype(k+1))
+      else
+        itk1=ntortyp+1
+      endif
+      itl=itortyp(itype(l))
+      if (l.lt.nres-1) then
+        itl1=itortyp(itype(l+1))
+      else
+        itl1=ntortyp+1
+      endif
+cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
+cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
+cd     & ' itl',itl,' itl1',itl1
+#ifdef MOMENT
+      if (imat.eq.1) then
+        s1=dip(3,jj,i)*dip(3,kk,k)
+      else
+        s1=dip(2,jj,j)*dip(2,kk,l)
+      endif
+#endif
+      call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
+      s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
+      if (j.eq.l+1) then
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+      else
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+      endif
+      call transpose2(EUg(1,1,k),auxmat(1,1))
+      call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
+      vv(1)=pizda(1,1)-pizda(2,2)
+      vv(2)=pizda(2,1)+pizda(1,2)
+      s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
+cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
+#ifdef MOMENT
+      eello6_graph4=-(s1+s2+s3+s4)
+#else
+      eello6_graph4=-(s2+s3+s4)
+#endif
+C Derivatives in gamma(i-1)
+      if (i.gt.1) then
+#ifdef MOMENT
+        if (imat.eq.1) then
+          s1=dipderg(2,jj,i)*dip(3,kk,k)
+        else
+          s1=dipderg(4,jj,j)*dip(2,kk,l)
+        endif
+#endif
+        s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
+        if (j.eq.l+1) then
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        else
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        endif
+        s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
+        if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
+cd          write (2,*) 'turn6 derivatives'
+#ifdef MOMENT
+          gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
+#else
+          gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
+#endif
+        else
+#ifdef MOMENT
+          g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
+#else
+          g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
+#endif
+        endif
+      endif
+C Derivatives in gamma(k-1)
+#ifdef MOMENT
+      if (imat.eq.1) then
+        s1=dip(3,jj,i)*dipderg(2,kk,k)
+      else
+        s1=dip(2,jj,j)*dipderg(4,kk,l)
+      endif
+#endif
+      call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
+      s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
+      if (j.eq.l+1) then
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+      else
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+      endif
+      call transpose2(EUgder(1,1,k),auxmat1(1,1))
+      call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
+      vv(1)=pizda(1,1)-pizda(2,2)
+      vv(2)=pizda(2,1)+pizda(1,2)
+      s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
+      if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
+#ifdef MOMENT
+        gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
+#else
+        gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
+#endif
+      else
+#ifdef MOMENT
+        g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
+#else
+        g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
+#endif
+      endif
+C Derivatives in gamma(j-1) or gamma(l-1)
+      if (l.eq.j+1 .and. l.gt.1) then
+        call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
+        s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
+        call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(2,1)+pizda(1,2)
+        s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
+        g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
+      else if (j.gt.1) then
+        call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
+        s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
+        call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
+        vv(1)=pizda(1,1)-pizda(2,2)
+        vv(2)=pizda(2,1)+pizda(1,2)
+        s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
+        if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
+          gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
+        else
+          g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
+        endif
+      endif
+C Cartesian derivatives.
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+#ifdef MOMENT
+            if (iii.eq.1) then
+              if (imat.eq.1) then
+                s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
+              else
+                s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
+              endif
+            else
+              if (imat.eq.1) then
+                s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
+              else
+                s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
+              endif
+            endif
+#endif
+            call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
+     &        auxvec(1))
+            s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
+            if (j.eq.l+1) then
+              call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
+     &          b1(1,itj1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
+            else
+              call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
+     &          b1(1,itl1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
+            endif
+            call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
+     &        pizda(1,1))
+            vv(1)=pizda(1,1)-pizda(2,2)
+            vv(2)=pizda(2,1)+pizda(1,2)
+            s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
+            if (swap) then
+              if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
+#ifdef MOMENT
+                derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
+     &             -(s1+s2+s4)
+#else
+                derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
+     &             -(s2+s4)
+#endif
+                derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
+              else
+#ifdef MOMENT
+                derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
+#else
+                derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
+#endif
+                derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
+              endif
+            else
+#ifdef MOMENT
+              derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
+#else
+              derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
+#endif
+              if (l.eq.j+1) then
+                derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
+              else 
+                derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
+              endif
+            endif 
+          enddo
+        enddo
+      enddo
+      return
+      end
+c----------------------------------------------------------------------------
+      double precision function eello_turn6(i,jj,kk)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORSION'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
+     &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
+     &  ggg1(3),ggg2(3)
+      double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
+     &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
+C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
+C           the respective energy moment and not to the cluster cumulant.
+      s1=0.0d0
+      s8=0.0d0
+      s13=0.0d0
+c
+      eello_turn6=0.0d0
+      j=i+4
+      k=i+1
+      l=i+3
+      iti=itortyp(itype(i))
+      itk=itortyp(itype(k))
+      itk1=itortyp(itype(k+1))
+      itl=itortyp(itype(l))
+      itj=itortyp(itype(j))
+cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
+cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
+cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
+cd        eello6=0.0d0
+cd        return
+cd      endif
+cd      write (iout,*)
+cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
+cd     &   ' and',k,l
+cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+            derx_turn(lll,kkk,iii)=0.0d0
+          enddo
+        enddo
+      enddo
+cd      eij=1.0d0
+cd      ekl=1.0d0
+cd      ekont=1.0d0
+      eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
+cd      eello6_5=0.0d0
+cd      write (2,*) 'eello6_5',eello6_5
+#ifdef MOMENT
+      call transpose2(AEA(1,1,1),auxmat(1,1))
+      call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
+      ss1=scalar2(Ub2(1,i+2),b1(1,itl))
+      s1 = (auxmat(1,1)+auxmat(2,2))*ss1
+#endif
+      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+      call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
+      s2 = scalar2(b1(1,itk),vtemp1(1))
+#ifdef MOMENT
+      call transpose2(AEA(1,1,2),atemp(1,1))
+      call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
+      call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
+      s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
+#endif
+      call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
+      call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
+      s12 = scalar2(Ub2(1,i+2),vtemp3(1))
+#ifdef MOMENT
+      call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
+      call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
+      call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
+      call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
+      ss13 = scalar2(b1(1,itk),vtemp4(1))
+      s13 = (gtemp(1,1)+gtemp(2,2))*ss13
+#endif
+c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
+c      s1=0.0d0
+c      s2=0.0d0
+c      s8=0.0d0
+c      s12=0.0d0
+c      s13=0.0d0
+      eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
+C Derivatives in gamma(i+2)
+      s1d =0.0d0
+      s8d =0.0d0
+#ifdef MOMENT
+      call transpose2(AEA(1,1,1),auxmatd(1,1))
+      call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
+      s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
+      call transpose2(AEAderg(1,1,2),atempd(1,1))
+      call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
+      s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
+#endif
+      call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
+      call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
+      s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
+c      s1d=0.0d0
+c      s2d=0.0d0
+c      s8d=0.0d0
+c      s12d=0.0d0
+c      s13d=0.0d0
+      gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
+C Derivatives in gamma(i+3)
+#ifdef MOMENT
+      call transpose2(AEA(1,1,1),auxmatd(1,1))
+      call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
+      ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
+      s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
+#endif
+      call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
+      s2d = scalar2(b1(1,itk),vtemp1d(1))
+#ifdef MOMENT
+      call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
+      s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
+#endif
+      s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
+#ifdef MOMENT
+      call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
+      call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
+      s13d = (gtempd(1,1)+gtempd(2,2))*ss13
+#endif
+c      s1d=0.0d0
+c      s2d=0.0d0
+c      s8d=0.0d0
+c      s12d=0.0d0
+c      s13d=0.0d0
+#ifdef MOMENT
+      gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
+     &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
+#else
+      gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
+     &               -0.5d0*ekont*(s2d+s12d)
+#endif
+C Derivatives in gamma(i+4)
+      call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
+      call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
+      s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
+#ifdef MOMENT
+      call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
+      call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
+      s13d = (gtempd(1,1)+gtempd(2,2))*ss13
+#endif
+c      s1d=0.0d0
+c      s2d=0.0d0
+c      s8d=0.0d0
+C      s12d=0.0d0
+c      s13d=0.0d0
+#ifdef MOMENT
+      gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
+#else
+      gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
+#endif
+C Derivatives in gamma(i+5)
+#ifdef MOMENT
+      call transpose2(AEAderg(1,1,1),auxmatd(1,1))
+      call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
+      s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
+#endif
+      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
+      s2d = scalar2(b1(1,itk),vtemp1d(1))
+#ifdef MOMENT
+      call transpose2(AEA(1,1,2),atempd(1,1))
+      call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
+      s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
+#endif
+      call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
+      s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
+#ifdef MOMENT
+      call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
+      ss13d = scalar2(b1(1,itk),vtemp4d(1))
+      s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
+#endif
+c      s1d=0.0d0
+c      s2d=0.0d0
+c      s8d=0.0d0
+c      s12d=0.0d0
+c      s13d=0.0d0
+#ifdef MOMENT
+      gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
+     &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
+#else
+      gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
+     &               -0.5d0*ekont*(s2d+s12d)
+#endif
+C Cartesian derivatives
+      do iii=1,2
+        do kkk=1,5
+          do lll=1,3
+#ifdef MOMENT
+            call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
+            call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
+            s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
+#endif
+            call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+            call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
+     &          vtemp1d(1))
+            s2d = scalar2(b1(1,itk),vtemp1d(1))
+#ifdef MOMENT
+            call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
+            call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
+            s8d = -(atempd(1,1)+atempd(2,2))*
+     &           scalar2(cc(1,1,itl),vtemp2(1))
+#endif
+            call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
+     &           auxmatd(1,1))
+            call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
+            s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
+c      s1d=0.0d0
+c      s2d=0.0d0
+c      s8d=0.0d0
+c      s12d=0.0d0
+c      s13d=0.0d0
+#ifdef MOMENT
+            derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
+     &        - 0.5d0*(s1d+s2d)
+#else
+            derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
+     &        - 0.5d0*s2d
+#endif
+#ifdef MOMENT
+            derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
+     &        - 0.5d0*(s8d+s12d)
+#else
+            derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
+     &        - 0.5d0*s12d
+#endif
+          enddo
+        enddo
+      enddo
+#ifdef MOMENT
+      do kkk=1,5
+        do lll=1,3
+          call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
+     &      achuj_tempd(1,1))
+          call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
+          call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
+          s13d=(gtempd(1,1)+gtempd(2,2))*ss13
+          derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
+          call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
+     &      vtemp4d(1)) 
+          ss13d = scalar2(b1(1,itk),vtemp4d(1))
+          s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
+          derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
+        enddo
+      enddo
+#endif
+cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
+cd     &  16*eel_turn6_num
+cd      goto 1112
+      if (j.lt.nres-1) then
+        j1=j+1
+        j2=j-1
+      else
+        j1=j-1
+        j2=j-2
+      endif
+      if (l.lt.nres-1) then
+        l1=l+1
+        l2=l-1
+      else
+        l1=l-1
+        l2=l-2
+      endif
+      do ll=1,3
+cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
+cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
+cgrad        ghalf=0.5d0*ggg1(ll)
+cd        ghalf=0.0d0
+        gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
+        gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
+        gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
+     &    +ekont*derx_turn(ll,2,1)
+        gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
+        gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
+     &    +ekont*derx_turn(ll,4,1)
+        gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
+        gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
+        gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
+cgrad        ghalf=0.5d0*ggg2(ll)
+cd        ghalf=0.0d0
+        gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
+     &    +ekont*derx_turn(ll,2,2)
+        gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
+        gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
+     &    +ekont*derx_turn(ll,4,2)
+        gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
+        gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
+        gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
+      enddo
+cd      goto 1112
+cgrad      do m=i+1,j-1
+cgrad        do ll=1,3
+cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+1,l-1
+cgrad        do ll=1,3
+cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
+cgrad        enddo
+cgrad      enddo
+cgrad1112  continue
+cgrad      do m=i+2,j2
+cgrad        do ll=1,3
+cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
+cgrad        enddo
+cgrad      enddo
+cgrad      do m=k+2,l2
+cgrad        do ll=1,3
+cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
+cgrad        enddo
+cgrad      enddo 
+cd      do iii=1,nres-3
+cd        write (2,*) iii,g_corr6_loc(iii)
+cd      enddo
+      eello_turn6=ekont*eel_turn6
+cd      write (2,*) 'ekont',ekont
+cd      write (2,*) 'eel_turn6',ekont*eel_turn6
+      return
+      end
+
+C-----------------------------------------------------------------------------
+      double precision function scalar(u,v)
+!DIR$ INLINEALWAYS scalar
+#ifndef OSF
+cDEC$ ATTRIBUTES FORCEINLINE::scalar
+#endif
+      implicit none
+      double precision u(3),v(3)
+cd      double precision sc
+cd      integer i
+cd      sc=0.0d0
+cd      do i=1,3
+cd        sc=sc+u(i)*v(i)
+cd      enddo
+cd      scalar=sc
+
+      scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
+      return
+      end
+crc-------------------------------------------------
+      SUBROUTINE MATVEC2(A1,V1,V2)
+!DIR$ INLINEALWAYS MATVEC2
+#ifndef OSF
+cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
+#endif
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      DIMENSION A1(2,2),V1(2),V2(2)
+c      DO 1 I=1,2
+c        VI=0.0
+c        DO 3 K=1,2
+c    3     VI=VI+A1(I,K)*V1(K)
+c        Vaux(I)=VI
+c    1 CONTINUE
+
+      vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
+      vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
+
+      v2(1)=vaux1
+      v2(2)=vaux2
+      END
+C---------------------------------------
+      SUBROUTINE MATMAT2(A1,A2,A3)
+#ifndef OSF
+cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
+#endif
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      DIMENSION A1(2,2),A2(2,2),A3(2,2)
+c      DIMENSION AI3(2,2)
+c        DO  J=1,2
+c          A3IJ=0.0
+c          DO K=1,2
+c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
+c          enddo
+c          A3(I,J)=A3IJ
+c       enddo
+c      enddo
+
+      ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
+      ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
+      ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
+      ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
+
+      A3(1,1)=AI3_11
+      A3(2,1)=AI3_21
+      A3(1,2)=AI3_12
+      A3(2,2)=AI3_22
+      END
+
+c-------------------------------------------------------------------------
+      double precision function scalar2(u,v)
+!DIR$ INLINEALWAYS scalar2
+      implicit none
+      double precision u(2),v(2)
+      double precision sc
+      integer i
+      scalar2=u(1)*v(1)+u(2)*v(2)
+      return
+      end
+
+C-----------------------------------------------------------------------------
+
+      subroutine transpose2(a,at)
+!DIR$ INLINEALWAYS transpose2
+#ifndef OSF
+cDEC$ ATTRIBUTES FORCEINLINE::transpose2
+#endif
+      implicit none
+      double precision a(2,2),at(2,2)
+      at(1,1)=a(1,1)
+      at(1,2)=a(2,1)
+      at(2,1)=a(1,2)
+      at(2,2)=a(2,2)
+      return
+      end
+c--------------------------------------------------------------------------
+      subroutine transpose(n,a,at)
+      implicit none
+      integer n,i,j
+      double precision a(n,n),at(n,n)
+      do i=1,n
+        do j=1,n
+          at(j,i)=a(i,j)
+        enddo
+      enddo
+      return
+      end
+C---------------------------------------------------------------------------
+      subroutine prodmat3(a1,a2,kk,transp,prod)
+!DIR$ INLINEALWAYS prodmat3
+#ifndef OSF
+cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
+#endif
+      implicit none
+      integer i,j
+      double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
+      logical transp
+crc      double precision auxmat(2,2),prod_(2,2)
+
+      if (transp) then
+crc        call transpose2(kk(1,1),auxmat(1,1))
+crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
+crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
+        
+           prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
+     & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
+           prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
+     & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
+           prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
+     & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
+           prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
+     & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
+
+      else
+crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
+crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
+
+           prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
+     &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
+           prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
+     &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
+           prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
+     &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
+           prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
+     &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
+
+      endif
+c      call transpose2(a2(1,1),a2t(1,1))
+
+crc      print *,transp
+crc      print *,((prod_(i,j),i=1,2),j=1,2)
+crc      print *,((prod(i,j),i=1,2),j=1,2)
+
+      return
+      end
+
diff --git a/source/unres/src_MD_DFA/energy_split-sep.F b/source/unres/src_MD_DFA/energy_split-sep.F
new file mode 100644 (file)
index 0000000..81e4d81
--- /dev/null
@@ -0,0 +1,476 @@
+      subroutine etotal_long(energia)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+c
+c Compute the long-range slow-varying contributions to the energy
+c
+#ifndef ISNAN
+      external proc_proc
+#ifdef WINPGI
+cMS$ATTRIBUTES C ::  proc_proc
+#endif
+#endif
+#ifdef MPI
+      include "mpif.h"
+      double precision weights_(n_ene)
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision energia(0:n_ene)
+      include 'COMMON.FFIELD'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.MD'
+c      write(iout,'(a,i2)')'Calling etotal_long ipot=',ipot
+      if (modecalc.eq.12.or.modecalc.eq.14) then
+#ifdef MPI
+c        if (fg_rank.eq.0) call int_from_cart1(.false.)
+#else
+        call int_from_cart1(.false.)
+#endif
+      endif
+#ifdef MPI      
+c      write(iout,*) "ETOTAL_LONG Processor",fg_rank,
+c     & " absolute rank",myrank," nfgtasks",nfgtasks
+      call flush(iout)
+      if (nfgtasks.gt.1) then
+        time00=MPI_Wtime()
+C FG slaves call the following matching MPI_Bcast in ERGASTULUM
+        if (fg_rank.eq.0) then
+          call MPI_Bcast(3,1,MPI_INTEGER,king,FG_COMM,IERROR)
+c          write (iout,*) "Processor",myrank," BROADCAST iorder"
+c          call flush(iout)
+C FG master sets up the WEIGHTS_ array which will be broadcast to the 
+C FG slaves as WEIGHTS array.
+          weights_(1)=wsc
+          weights_(2)=wscp
+          weights_(3)=welec
+          weights_(4)=wcorr
+          weights_(5)=wcorr5
+          weights_(6)=wcorr6
+          weights_(7)=wel_loc
+          weights_(8)=wturn3
+          weights_(9)=wturn4
+          weights_(10)=wturn6
+          weights_(11)=wang
+          weights_(12)=wscloc
+          weights_(13)=wtor
+          weights_(14)=wtor_d
+          weights_(15)=wstrain
+          weights_(16)=wvdwpp
+          weights_(17)=wbond
+          weights_(18)=scal14
+          weights_(21)=wsccor
+C FG Master broadcasts the WEIGHTS_ array
+          call MPI_Bcast(weights_(1),n_ene,
+     &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
+        else
+C FG slaves receive the WEIGHTS array
+          call MPI_Bcast(weights(1),n_ene,
+     &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
+          wsc=weights(1)
+          wscp=weights(2)
+          welec=weights(3)
+          wcorr=weights(4)
+          wcorr5=weights(5)
+          wcorr6=weights(6)
+          wel_loc=weights(7)
+          wturn3=weights(8)
+          wturn4=weights(9)
+          wturn6=weights(10)
+          wang=weights(11)
+          wscloc=weights(12)
+          wtor=weights(13)
+          wtor_d=weights(14)
+          wstrain=weights(15)
+          wvdwpp=weights(16)
+          wbond=weights(17)
+          scal14=weights(18)
+          wsccor=weights(21)
+        endif
+        call MPI_Bcast(dc(1,1),6*nres,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+         time_Bcast=time_Bcast+MPI_Wtime()-time00
+         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
+c        call chainbuild_cart
+c        call int_from_cart1(.false.)
+      endif
+c      write (iout,*) 'Processor',myrank,
+c     &  ' calling etotal_short ipot=',ipot
+c      call flush(iout)
+c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
+#endif     
+cd    print *,'nnt=',nnt,' nct=',nct
+C
+C Compute the side-chain and electrostatic interaction energy
+C
+      goto (101,102,103,104,105,106) ipot
+C Lennard-Jones potential.
+  101 call elj_long(evdw)
+cd    print '(a)','Exit ELJ'
+      goto 107
+C Lennard-Jones-Kihara potential (shifted).
+  102 call eljk_long(evdw)
+      goto 107
+C Berne-Pechukas potential (dilated LJ, angular dependence).
+  103 call ebp_long(evdw)
+      goto 107
+C Gay-Berne potential (shifted LJ, angular dependence).
+  104 call egb_long(evdw,evdw_p,evdw_m)
+      goto 107
+C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
+  105 call egbv_long(evdw)
+      goto 107
+C Soft-sphere potential
+  106 call e_softsphere(evdw)
+C
+C Calculate electrostatic (H-bonding) energy of the main chain.
+C
+  107 continue
+      call vec_and_deriv
+      if (ipot.lt.6) then
+#ifdef SPLITELE
+         if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
+     &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
+     &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
+     &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
+#else
+         if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
+     &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
+     &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
+     &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
+#endif
+           call eelec_scale(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
+         else
+            ees=0
+            evdw1=0
+            eel_loc=0
+            eello_turn3=0
+            eello_turn4=0
+         endif
+      else
+c        write (iout,*) "Soft-spheer ELEC potential"
+        call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
+     &   eello_turn4)
+      endif
+C
+C Calculate excluded-volume interaction energy between peptide groups
+C and side chains.
+C
+      if (ipot.lt.6) then
+       if(wscp.gt.0d0) then
+        call escp_long(evdw2,evdw2_14)
+       else
+        evdw2=0
+        evdw2_14=0
+       endif
+      else
+        call escp_soft_sphere(evdw2,evdw2_14)
+      endif
+C 
+C 12/1/95 Multi-body terms
+C
+      n_corr=0
+      n_corr1=0
+      if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
+     &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
+         call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
+c         write (2,*) 'n_corr=',n_corr,' n_corr1=',n_corr1,
+c     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
+      else
+         ecorr=0.0d0
+         ecorr5=0.0d0
+         ecorr6=0.0d0
+         eturn6=0.0d0
+      endif
+      if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
+         call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
+      endif
+C 
+C If performing constraint dynamics, call the constraint energy
+C  after the equilibration time
+      if(usampl.and.totT.gt.eq_time) then
+         call EconstrQ   
+         call Econstr_back
+      else
+         Uconst=0.0d0
+         Uconst_back=0.0d0
+      endif
+C 
+C Sum the energies
+C
+      do i=1,n_ene
+        energia(i)=0.0d0
+      enddo
+      energia(1)=evdw
+#ifdef SCP14
+      energia(2)=evdw2-evdw2_14
+      energia(18)=evdw2_14
+#else
+      energia(2)=evdw2
+      energia(18)=0.0d0
+#endif
+#ifdef SPLITELE
+      energia(3)=ees
+      energia(16)=evdw1
+#else
+      energia(3)=ees+evdw1
+      energia(16)=0.0d0
+#endif
+      energia(4)=ecorr
+      energia(5)=ecorr5
+      energia(6)=ecorr6
+      energia(7)=eel_loc
+      energia(8)=eello_turn3
+      energia(9)=eello_turn4
+      energia(10)=eturn6
+      energia(20)=Uconst+Uconst_back
+      energia(22)=evdw_p
+      energia(23)=evdw_m
+      call sum_energy(energia,.true.)
+c      write (iout,*) "Exit ETOTAL_LONG"
+      call flush(iout)
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine etotal_short(energia)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+c
+c Compute the short-range fast-varying contributions to the energy
+c
+#ifndef ISNAN
+      external proc_proc
+#ifdef WINPGI
+cMS$ATTRIBUTES C ::  proc_proc
+#endif
+#endif
+#ifdef MPI
+      include "mpif.h"
+      double precision weights_(n_ene)
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision energia(0:n_ene)
+      include 'COMMON.FFIELD'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+
+c      write(iout,'(a,i2)')'Calling etotal_short ipot=',ipot
+c      call flush(iout)
+      if (modecalc.eq.12.or.modecalc.eq.14) then
+#ifdef MPI
+        if (fg_rank.eq.0) call int_from_cart1(.false.)
+#else
+        call int_from_cart1(.false.)
+#endif
+      endif
+#ifdef MPI      
+c      write(iout,*) "ETOTAL_SHORT Processor",fg_rank,
+c     & " absolute rank",myrank," nfgtasks",nfgtasks
+c      call flush(iout)
+      if (nfgtasks.gt.1) then
+        time00=MPI_Wtime()
+C FG slaves call the following matching MPI_Bcast in ERGASTULUM
+        if (fg_rank.eq.0) then
+          call MPI_Bcast(2,1,MPI_INTEGER,king,FG_COMM,IERROR)
+c          write (iout,*) "Processor",myrank," BROADCAST iorder"
+c          call flush(iout)
+C FG master sets up the WEIGHTS_ array which will be broadcast to the 
+C FG slaves as WEIGHTS array.
+          weights_(1)=wsc
+          weights_(2)=wscp
+          weights_(3)=welec
+          weights_(4)=wcorr
+          weights_(5)=wcorr5
+          weights_(6)=wcorr6
+          weights_(7)=wel_loc
+          weights_(8)=wturn3
+          weights_(9)=wturn4
+          weights_(10)=wturn6
+          weights_(11)=wang
+          weights_(12)=wscloc
+          weights_(13)=wtor
+          weights_(14)=wtor_d
+          weights_(15)=wstrain
+          weights_(16)=wvdwpp
+          weights_(17)=wbond
+          weights_(18)=scal14
+          weights_(21)=wsccor
+C FG Master broadcasts the WEIGHTS_ array
+          call MPI_Bcast(weights_(1),n_ene,
+     &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
+        else
+C FG slaves receive the WEIGHTS array
+          call MPI_Bcast(weights(1),n_ene,
+     &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
+          wsc=weights(1)
+          wscp=weights(2)
+          welec=weights(3)
+          wcorr=weights(4)
+          wcorr5=weights(5)
+          wcorr6=weights(6)
+          wel_loc=weights(7)
+          wturn3=weights(8)
+          wturn4=weights(9)
+          wturn6=weights(10)
+          wang=weights(11)
+          wscloc=weights(12)
+          wtor=weights(13)
+          wtor_d=weights(14)
+          wstrain=weights(15)
+          wvdwpp=weights(16)
+          wbond=weights(17)
+          scal14=weights(18)
+          wsccor=weights(21)
+        endif
+c        write (iout,*),"Processor",myrank," BROADCAST weights"
+        call MPI_Bcast(c(1,1),maxres6,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c        write (iout,*) "Processor",myrank," BROADCAST c"
+        call MPI_Bcast(dc(1,1),maxres6,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c        write (iout,*) "Processor",myrank," BROADCAST dc"
+        call MPI_Bcast(dc_norm(1,1),maxres6,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c        write (iout,*) "Processor",myrank," BROADCAST dc_norm"
+        call MPI_Bcast(theta(1),nres,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c        write (iout,*) "Processor",myrank," BROADCAST theta"
+        call MPI_Bcast(phi(1),nres,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c        write (iout,*) "Processor",myrank," BROADCAST phi"
+        call MPI_Bcast(alph(1),nres,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c        write (iout,*) "Processor",myrank," BROADCAST alph"
+        call MPI_Bcast(omeg(1),nres,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c        write (iout,*) "Processor",myrank," BROADCAST omeg"
+        call MPI_Bcast(vbld(1),2*nres,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c        write (iout,*) "Processor",myrank," BROADCAST vbld"
+        call MPI_Bcast(vbld_inv(1),2*nres,MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+         time_Bcast=time_Bcast+MPI_Wtime()-time00
+c        write (iout,*) "Processor",myrank," BROADCAST vbld_inv"
+      endif
+c      write (iout,*) 'Processor',myrank,
+c     &  ' calling etotal_short ipot=',ipot
+c      call flush(iout)
+c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
+#endif     
+c      call int_from_cart1(.false.)
+C
+C Compute the side-chain and electrostatic interaction energy
+C
+      goto (101,102,103,104,105,106) ipot
+C Lennard-Jones potential.
+  101 call elj_short(evdw)
+cd    print '(a)','Exit ELJ'
+      goto 107
+C Lennard-Jones-Kihara potential (shifted).
+  102 call eljk_short(evdw)
+      goto 107
+C Berne-Pechukas potential (dilated LJ, angular dependence).
+  103 call ebp_short(evdw)
+      goto 107
+C Gay-Berne potential (shifted LJ, angular dependence).
+  104 call egb_short(evdw,evdw_p,evdw_m)
+      goto 107
+C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
+  105 call egbv_short(evdw)
+      goto 107
+C Soft-sphere potential - already dealt with in the long-range part
+  106 evdw=0.0d0
+c  106 call e_softsphere_short(evdw)
+C
+C Calculate electrostatic (H-bonding) energy of the main chain.
+C
+  107 continue
+c
+c Calculate the short-range part of Evdwpp
+c
+      call evdwpp_short(evdw1)
+c
+c Calculate the short-range part of ESCp
+c
+      if (ipot.lt.6) then
+        call escp_short(evdw2,evdw2_14)
+      endif
+c
+c Calculate the bond-stretching energy
+c
+      call ebond(estr)
+C 
+C Calculate the disulfide-bridge and other energy and the contributions
+C from other distance constraints.
+      call edis(ehpb)
+C
+C Calculate the virtual-bond-angle energy.
+C
+      call ebend(ebe)
+C
+C Calculate the SC local energy.
+C
+      call vec_and_deriv
+      call esc(escloc)
+C
+C Calculate the virtual-bond torsional energy.
+C
+      call etor(etors,edihcnstr)
+C
+C 6/23/01 Calculate double-torsional energy
+C
+      call etor_d(etors_d)
+C
+C 21/5/07 Calculate local sicdechain correlation energy
+C
+      if (wsccor.gt.0.0d0) then
+        call eback_sc_corr(esccor)
+      else
+        esccor=0.0d0
+      endif
+C
+C Put energy components into an array
+C
+      do i=1,n_ene
+        energia(i)=0.0d0
+      enddo
+      energia(1)=evdw
+#ifdef SCP14
+      energia(2)=evdw2-evdw2_14
+      energia(18)=evdw2_14
+#else
+      energia(2)=evdw2
+      energia(18)=0.0d0
+#endif
+#ifdef SPLITELE
+      energia(16)=evdw1
+#else
+      energia(3)=evdw1
+#endif
+      energia(11)=ebe
+      energia(12)=escloc
+      energia(13)=etors
+      energia(14)=etors_d
+      energia(15)=ehpb
+      energia(17)=estr
+      energia(19)=edihcnstr
+      energia(21)=esccor
+      energia(22)=evdw_p
+      energia(23)=evdw_m
+c      write (iout,*) "ETOTAL_SHORT before SUM_ENERGY"
+      call flush(iout)
+      call sum_energy(energia,.true.)
+c      write (iout,*) "Exit ETOTAL_SHORT"
+      call flush(iout)
+      return
+      end
diff --git a/source/unres/src_MD_DFA/entmcm.F b/source/unres/src_MD_DFA/entmcm.F
new file mode 100644 (file)
index 0000000..3c2dc5a
--- /dev/null
@@ -0,0 +1,684 @@
+      subroutine entmcm
+C Does modified entropic sampling in the space of minima.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+#ifdef MPL
+      include 'COMMON.INFO'
+#endif
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.MCM'
+      include 'COMMON.MCE'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.THREAD'
+      include 'COMMON.NAMES'
+      logical accepted,not_done,over,ovrtim,error,lprint
+      integer MoveType,nbond
+      integer conf_comp
+      double precision RandOrPert
+      double precision varia(maxvar),elowest,ehighest,eold
+      double precision przes(3),obr(3,3)
+      double precision varold(maxvar)
+      logical non_conv
+      double precision energia(0:n_ene),energia_ave(0:n_ene)
+C
+cd    write (iout,*) 'print_mc=',print_mc
+      WhatsUp=0
+      maxtrial_iter=50
+c---------------------------------------------------------------------------
+C Initialize counters.
+c---------------------------------------------------------------------------
+C Total number of generated confs.
+      ngen=0
+C Total number of moves. In general this won't be equal to the number of
+C attempted moves, because we may want to reject some "bad" confs just by
+C overlap check.
+      nmove=0
+C Total number of shift (nbond_move(1)), spike, crankshaft, three-bond,...
+C motions.
+      do i=1,nres
+        nbond_move(i)=0
+      enddo
+C Initialize total and accepted number of moves of various kind.
+      do i=0,MaxMoveType
+        moves(i)=0
+        moves_acc(i)=0
+      enddo
+C Total number of energy evaluations.
+      neneval=0
+      nfun=0
+      indminn=-max_ene
+      indmaxx=max_ene
+      delte=0.5D0
+      facee=1.0D0/(maxacc*delte)
+      conste=dlog(facee)
+C Read entropy from previous simulations. 
+      if (ent_read) then
+        read (ientin,*) indminn,indmaxx,emin,emax 
+        print *,'indminn=',indminn,' indmaxx=',indmaxx,' emin=',emin,
+     &          ' emax=',emax
+        do i=-max_ene,max_ene
+          entropy(i)=(emin+i*delte)*betbol
+        enddo
+        read (ientin,*) (ijunk,ejunk,entropy(i),i=indminn,indmaxx)
+        indmin=indminn
+        indmax=indmaxx
+        write (iout,*) 'indminn=',indminn,' indmaxx=',indmaxx,
+     &                 ' emin=',emin,' emax=',emax
+        write (iout,'(/a)') 'Initial entropy'
+        do i=indminn,indmaxx
+          write (iout,'(i5,2f10.5)') i,emin+i*delte,entropy(i)
+        enddo
+      endif ! ent_read
+C Read the pool of conformations
+      call read_pool
+C----------------------------------------------------------------------------
+C Entropy-sampling simulations with continually updated entropy
+C Loop thru simulations
+C----------------------------------------------------------------------------
+      DO ISWEEP=1,NSWEEP
+C----------------------------------------------------------------------------
+C Take a conformation from the pool
+C----------------------------------------------------------------------------
+      if (npool.gt.0) then
+        ii=iran_num(1,npool)
+        do i=1,nvar
+          varia(i)=xpool(i,ii)
+        enddo
+        write (iout,*) 'Took conformation',ii,' from the pool energy=',
+     &               epool(ii)
+        call var_to_geom(nvar,varia)
+C Print internal coordinates of the initial conformation
+        call intout
+      else
+        call gen_rand_conf(1,*20)
+      endif
+C----------------------------------------------------------------------------
+C Compute and print initial energies.
+C----------------------------------------------------------------------------
+      nsave=0
+#ifdef MPL
+      if (MyID.eq.MasterID) then
+        do i=1,nctasks
+          nsave_part(i)=0
+        enddo
+      endif
+#endif
+      Kwita=0
+      WhatsUp=0
+      write (iout,'(/80(1h*)/a,i2/80(1h*)/)') 'MCE iteration #',isweep
+      write (iout,'(/80(1h*)/a)') 'Initial energies:'
+      call chainbuild
+      call etotal(energia(0))
+      etot = energia(0)
+      call enerprint(energia(0))
+C Minimize the energy of the first conformation.
+      if (minim) then
+        call geom_to_var(nvar,varia)
+        call minimize(etot,varia,iretcode,nfun)
+        call etotal(energia(0))
+        etot = energia(0)
+        write (iout,'(/80(1h*)/a/80(1h*))') 
+     &    'Results of the first energy minimization:'
+        call enerprint(energia(0))
+      endif
+      if (refstr) then
+        call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),nsup,przes,
+     &             obr,non_conv)
+        rms=dsqrt(rms)
+        call contact(.false.,ncont,icont,co)
+        frac=contact_fract(ncont,ncont_ref,icont,icont_ref)
+        write (iout,'(a,f8.3,a,f8.3,a,f8.3)') 
+     &    'RMS deviation from the reference structure:',rms,
+     &    ' % of native contacts:',frac*100,' contact order:',co
+        write (istat,'(i5,11(1pe14.5))') 0,
+     &   (energia(print_order(i)),i=1,nprint_ene),etot,rms,frac,co
+      else
+        write (istat,'(i5,9(1pe14.5))') 0,
+     &   (energia(print_order(i)),i=1,nprint_ene),etot
+      endif
+      close(istat)
+      neneval=neneval+nfun+1
+      if (.not. ent_read) then
+C Initialize the entropy array
+        do i=-max_ene,max_ene
+         emin=etot
+C Uncomment the line below for actual entropic sampling (start with uniform
+C energy distribution).
+c        entropy(i)=0.0D0
+C Uncomment the line below for multicanonical sampling (start with Boltzmann
+C distribution).
+         entropy(i)=(emin+i*delte)*betbol 
+        enddo
+        emax=10000000.0D0
+        emin=etot
+        write (iout,'(/a)') 'Initial entropy'
+        do i=indminn,indmaxx
+          write (iout,'(i5,2f10.5)') i,emin+i*delte,entropy(i)
+        enddo
+      endif ! ent_read
+#ifdef MPL
+      call recv_stop_sig(Kwita)
+      if (whatsup.eq.1) then
+        call send_stop_sig(-2)
+        not_done=.false.
+      else if (whatsup.le.-2) then
+        not_done=.false.
+      else if (whatsup.eq.2) then
+        not_done=.false.
+      else 
+        not_done=.true.
+      endif
+#else
+      not_done = (iretcode.ne.11)
+#endif 
+      write (iout,'(/80(1h*)/20x,a/80(1h*))')
+     &    'Enter Monte Carlo procedure.'
+      close(igeom)
+      call briefout(0,etot)
+      do i=1,nvar
+        varold(i)=varia(i)
+      enddo
+      eold=etot
+      indeold=(eold-emin)/delte
+      deix=eold-(emin+indeold*delte)
+      dent=entropy(indeold+1)-entropy(indeold)
+cd    write (iout,*) 'indeold=',indeold,' deix=',deix,' dent=',dent
+cd    write (*,*) 'Processor',MyID,' indeold=',indeold,' deix=',deix,
+cd   & ' dent=',dent
+      sold=entropy(indeold)+(dent/delte)*deix
+      elowest=etot
+      write (iout,*) 'eold=',eold,' sold=',sold,' elowest=',etot
+      write (*,*) 'Processor',MyID,' eold=',eold,' sold=',sold,
+     & ' elowest=',etot
+      if (minim) call zapis(varia,etot)
+      nminima(1)=1.0D0
+C NACC is the counter for the accepted conformations of a given processor
+      nacc=0
+C NACC_TOT counts the total number of accepted conformations
+      nacc_tot=0
+#ifdef MPL
+      if (MyID.eq.MasterID) then
+        call receive_MCM_info
+      else
+        call send_MCM_info(2)
+      endif
+#endif
+      do iene=indminn,indmaxx
+        nhist(iene)=0.0D0
+      enddo
+      do i=2,maxsave
+        nminima(i)=0.0D0
+      enddo
+C Main loop.
+c----------------------------------------------------------------------------
+      elowest=1.0D10
+      ehighest=-1.0D10
+      it=0
+      do while (not_done)
+        it=it+1
+        if (print_mc.gt.0) write (iout,'(80(1h*)/20x,a,i7)')
+     &                             'Beginning iteration #',it
+C Initialize local counter.
+        ntrial=0 ! # of generated non-overlapping confs.
+        noverlap=0 ! # of overlapping confs.
+        accepted=.false.
+        do while (.not. accepted .and. WhatsUp.eq.0 .and. Kwita.eq.0)
+          ntrial=ntrial+1
+C Retrieve the angles of previously accepted conformation
+          do j=1,nvar
+            varia(j)=varold(j)
+          enddo
+cd        write (iout,'(a)') 'Old variables:'
+cd        write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+          call var_to_geom(nvar,varia)
+C Rebuild the chain.
+          call chainbuild
+          MoveType=0
+          nbond=0
+          lprint=.true.
+C Decide whether to generate a random conformation or perturb the old one
+          RandOrPert=ran_number(0.0D0,1.0D0)
+          if (RandOrPert.gt.RanFract) then
+            if (print_mc.gt.0) 
+     &        write (iout,'(a)') 'Perturbation-generated conformation.'
+            call perturb(error,lprint,MoveType,nbond,1.0D0)
+            if (error) goto 20
+            if (MoveType.lt.1 .or. MoveType.gt.MaxMoveType) then
+              write (iout,'(/a,i7,a/)') 'Error - unknown MoveType=',
+     &           MoveType,' returned from PERTURB.'
+              goto 20
+            endif
+            call chainbuild
+          else
+            MoveType=0
+            moves(0)=moves(0)+1
+            nstart_grow=iran_num(3,nres)
+            if (print_mc.gt.0) 
+     &        write (iout,'(2a,i3)') 'Random-generated conformation',
+     &        ' - chain regrown from residue',nstart_grow
+            call gen_rand_conf(nstart_grow,*30)
+          endif
+          call geom_to_var(nvar,varia)
+cd        write (iout,'(a)') 'New variables:'
+cd        write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+          ngen=ngen+1
+          if (print_mc.gt.0) write (iout,'(a,i5,a,i10,a,i10)') 
+     &   'Processor',MyId,' trial move',ntrial,' total generated:',ngen
+          if (print_mc.gt.0) write (*,'(a,i5,a,i10,a,i10)') 
+     &   'Processor',MyId,' trial move',ntrial,' total generated:',ngen
+          call etotal(energia(0))
+          etot = energia(0)
+c         call enerprint(energia(0))
+c         write (iout,'(2(a,1pe14.5))') 'Etot=',Etot,' Elowest=',Elowest
+          if (etot-elowest.gt.overlap_cut) then
+            write (iout,'(a,i5,a,1pe14.5)')  'Iteration',it,
+     &      ' Overlap detected in the current conf.; energy is',etot
+            neneval=neneval+1 
+            accepted=.false.
+            noverlap=noverlap+1
+            if (noverlap.gt.maxoverlap) then
+              write (iout,'(a)') 'Too many overlapping confs.'
+              goto 20
+            endif
+          else
+            if (minim) then
+              call minimize(etot,varia,iretcode,nfun)
+cd            write (iout,'(a)') 'Variables after minimization:'
+cd            write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+              call etotal(energia(0))
+              etot = energia(0)
+              neneval=neneval+nfun+1
+            endif
+            if (print_mc.gt.2) then
+              write (iout,'(a)') 'Total energies of trial conf:'
+              call enerprint(energia(0))
+            else if (print_mc.eq.1) then
+               write (iout,'(a,i6,a,1pe16.6)') 
+     &         'Trial conformation:',ngen,' energy:',etot
+            endif 
+C--------------------------------------------------------------------------
+C... Acceptance test
+C--------------------------------------------------------------------------
+            accepted=.false.
+            if (WhatsUp.eq.0) 
+     &        call accepting(etot,eold,scur,sold,varia,varold,
+     &                       accepted)
+            if (accepted) then
+              nacc=nacc+1
+              nacc_tot=nacc_tot+1
+              if (elowest.gt.etot) elowest=etot
+              if (ehighest.lt.etot) ehighest=etot
+              moves_acc(MoveType)=moves_acc(MoveType)+1
+              if (MoveType.eq.1) then
+                nbond_acc(nbond)=nbond_acc(nbond)+1
+              endif
+C Check against conformation repetitions.
+              irep=conf_comp(varia,etot)
+#if defined(AIX) || defined(PGI)
+              open (istat,file=statname,position='append')
+#else
+              open (istat,file=statname,access='append')
+#endif
+              if (refstr) then
+                call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),nsup,
+     &                      przes,obr,non_conv)
+                rms=dsqrt(rms)
+                call contact(.false.,ncont,icont,co)
+                frac=contact_fract(ncont,ncont_ref,icont,icont_ref)
+                if (print_mc.gt.0) 
+     &          write (iout,'(a,f8.3,a,f8.3,a,f8.3)') 
+     &          'RMS deviation from the reference structure:',rms,
+     &          ' % of native contacts:',frac*100,' contact order:',co
+                if (print_stat)
+     &          write (istat,'(i5,11(1pe14.5))') it,
+     &           (energia(print_order(i)),i=1,nprint_ene),etot,
+     &           rms,frac,co
+              elseif (print_stat) then
+                write (istat,'(i5,10(1pe14.5))') it,
+     &             (energia(print_order(i)),i=1,nprint_ene),etot
+              endif  
+              close(istat)
+              if (print_mc.gt.1) 
+     &          call statprint(nacc,nfun,iretcode,etot,elowest)
+C Print internal coordinates.
+              if (print_int) call briefout(nacc,etot)
+#ifdef MPL
+              if (MyID.ne.MasterID) then
+                call recv_stop_sig(Kwita)
+cd              print *,'Processor:',MyID,' STOP=',Kwita
+                if (irep.eq.0) then
+                  call send_MCM_info(2)
+                else
+                  call send_MCM_info(1)
+                endif
+              endif
+#endif
+C Store the accepted conf. and its energy.
+              eold=etot
+              sold=scur
+              do i=1,nvar
+                varold(i)=varia(i)
+              enddo
+              if (irep.eq.0) then
+                irep=nsave+1
+cd              write (iout,*) 'Accepted conformation:'
+cd              write (iout,*) (rad2deg*varia(i),i=1,nphi)
+                if (minim) call zapis(varia,etot)
+                do i=1,n_ene
+                  ener(i,nsave)=energia(i)
+                enddo
+                ener(n_ene+1,nsave)=etot
+                ener(n_ene+2,nsave)=frac
+              endif
+              nminima(irep)=nminima(irep)+1.0D0
+c             print *,'irep=',irep,' nminima=',nminima(irep)
+#ifdef MPL
+              if (Kwita.eq.0) call recv_stop_sig(kwita)
+#endif
+            endif ! accepted
+          endif ! overlap
+#ifdef MPL
+          if (MyID.eq.MasterID) then
+            call receive_MCM_info
+            if (nacc_tot.ge.maxacc) accepted=.true.
+          endif
+#endif
+          if (ntrial.gt.maxtrial_iter .and. npool.gt.0) then
+C Take a conformation from the pool
+            ii=iran_num(1,npool)
+            do i=1,nvar
+              varia(i)=xpool(i,ii)
+            enddo
+            write (iout,*) 'Iteration',it,' max. # of trials exceeded.'
+            write (iout,*) 
+     &     'Take conformation',ii,' from the pool energy=',epool(ii)
+            if (print_mc.gt.2)
+     &      write (iout,'(10f8.3)') (rad2deg*varia(i),i=1,nvar)
+            ntrial=0
+         endif ! (ntrial.gt.maxtrial_iter .and. npool.gt.0)
+   30    continue
+        enddo ! accepted
+#ifdef MPL
+        if (MyID.eq.MasterID) then
+          call receive_MCM_info
+        endif
+        if (Kwita.eq.0) call recv_stop_sig(kwita)
+#endif
+        if (ovrtim()) WhatsUp=-1
+cd      write (iout,*) 'WhatsUp=',WhatsUp,' Kwita=',Kwita
+        not_done = (nacc_tot.lt.maxacc) .and. (WhatsUp.eq.0) 
+     &         .and. (Kwita.eq.0)
+cd      write (iout,*) 'not_done=',not_done
+#ifdef MPL
+        if (Kwita.lt.0) then
+          print *,'Processor',MyID,
+     &    ' has received STOP signal =',Kwita,' in EntSamp.'
+cd        print *,'not_done=',not_done
+          if (Kwita.lt.-1) WhatsUp=Kwita
+        else if (nacc_tot.ge.maxacc) then
+          print *,'Processor',MyID,' calls send_stop_sig,',
+     &     ' because a sufficient # of confs. have been collected.'
+cd        print *,'not_done=',not_done
+          call send_stop_sig(-1)
+        else if (WhatsUp.eq.-1) then
+          print *,'Processor',MyID,
+     &               ' calls send_stop_sig because of timeout.'
+cd        print *,'not_done=',not_done
+          call send_stop_sig(-2)
+        endif
+#endif
+      enddo ! not_done
+
+C-----------------------------------------------------------------
+C... Construct energy histogram & update entropy
+C-----------------------------------------------------------------
+      go to 21
+   20 WhatsUp=-3
+#ifdef MPL
+      write (iout,*) 'Processor',MyID,
+     &       ' is broadcasting ERROR-STOP signal.'
+      write (*,*) 'Processor',MyID,
+     &       ' is broadcasting ERROR-STOP signal.'
+      call send_stop_sig(-3)
+#endif
+   21 continue
+#ifdef MPL
+      if (MyID.eq.MasterID) then
+c       call receive_MCM_results
+        call receive_energies
+#endif
+      do i=1,nsave
+        if (esave(i).lt.elowest) elowest=esave(i)
+        if (esave(i).gt.ehighest) ehighest=esave(i)
+      enddo
+      write (iout,'(a,i10)') '# of accepted confs:',nacc_tot
+      write (iout,'(a,f10.5,a,f10.5)') 'Lowest energy:',elowest,
+     & ' Highest energy',ehighest
+      if (isweep.eq.1 .and. .not.ent_read) then
+        emin=elowest
+        emax=ehighest
+        write (iout,*) 'EMAX=',emax
+        indminn=0
+        indmaxx=(ehighest-emin)/delte
+        indmin=indminn
+        indmax=indmaxx
+        do i=-max_ene,max_ene
+          entropy(i)=(emin+i*delte)*betbol
+        enddo
+        ent_read=.true.
+      else
+        indmin=(elowest-emin)/delte
+        indmax=(ehighest-emin)/delte
+        if (indmin.lt.indminn) indminn=indmin
+        if (indmax.gt.indmaxx) indmaxx=indmax
+      endif
+      write(iout,*)'indminn=',indminn,' indmaxx=',indmaxx
+C Construct energy histogram
+      do i=1,nsave
+        inde=(esave(i)-emin)/delte
+        nhist(inde)=nhist(inde)+nminima(i)
+      enddo
+C Update entropy (density of states)
+      do i=indmin,indmax
+        if (nhist(i).gt.0) then
+          entropy(i)=entropy(i)+dlog(nhist(i)+0.0D0)
+        endif
+      enddo
+Cd    do i=indmaxx+1
+Cd      entropy(i)=1.0D+10
+Cd    enddo
+      write (iout,'(/80(1h*)/a,i2/80(1h*)/)') 
+     &      'End of macroiteration',isweep
+      write (iout,'(a,f10.5,a,f10.5)') 'Elowest=',elowest,
+     &      ' Ehighest=',ehighest
+      write (iout,'(a)') 'Frequecies of minima'
+      do i=1,nsave
+        write (iout,'(i5,f5.0,f10.5)') i,nminima(i),esave(i)
+      enddo
+      write (iout,'(/a)') 'Energy histogram'
+      do i=indminn,indmaxx
+        write (iout,'(i5,2f10.5)') i,emin+i*delte,nhist(i)
+      enddo
+      write (iout,'(/a)') 'Entropy'
+      do i=indminn,indmaxx
+        write (iout,'(i5,2f10.5)') i,emin+i*delte,entropy(i)
+      enddo
+C-----------------------------------------------------------------
+C... End of energy histogram construction
+C-----------------------------------------------------------------
+#ifdef MPL
+        entropy(-max_ene-4)=dfloat(indminn)
+        entropy(-max_ene-3)=dfloat(indmaxx)
+        entropy(-max_ene-2)=emin
+        entropy(-max_ene-1)=emax
+        call send_MCM_update
+cd      print *,entname,ientout
+        open (ientout,file=entname,status='unknown')
+        write (ientout,'(2i5,2e25.17)') indminn,indmaxx,emin,emax
+        do i=indminn,indmaxx
+          write (ientout,'(i5,f10.5,f20.15)') i,emin+i*delte,entropy(i)
+        enddo
+        close(ientout)
+      else
+        write (iout,'(a)') 'Frequecies of minima'
+        do i=1,nsave
+          write (iout,'(i5,f5.0,f10.5)') i,nminima(i),esave(i)
+        enddo
+c       call send_MCM_results
+        call send_energies
+        call receive_MCM_update
+        indminn=entropy(-max_ene-4)
+        indmaxx=entropy(-max_ene-3)
+        emin=entropy(-max_ene-2)
+        emax=entropy(-max_ene-1)
+        write (iout,*) 'Received from master:'
+        write (iout,*) 'indminn=',indminn,' indmaxx=',indmaxx,
+     &                 ' emin=',emin,' emax=',emax
+        write (iout,'(/a)') 'Entropy'
+        do i=indminn,indmaxx
+          write (iout,'(i5,2f10.5)') i,emin+i*delte,entropy(i)
+        enddo
+      endif
+      if (WhatsUp.lt.-1) return
+#else
+      if (ovrtim() .or. WhatsUp.lt.0) return
+#endif
+
+      write (iout,'(/80(1h*)/20x,a)') 'Summary run statistics:'
+      call statprint(nacc,nfun,iretcode,etot,elowest)
+      write (iout,'(a)') 
+     & 'Statistics of multiple-bond motions. Total motions:' 
+      write (iout,'(16i5)') (nbond_move(i),i=1,Nbm)
+      write (iout,'(a)') 'Accepted motions:'
+      write (iout,'(16i5)') (nbond_acc(i),i=1,Nbm)
+      write (iout,'(a,i10)') 'Number of chain regrowths:',nregrow
+      write (iout,'(a,i10)') 'Accepted chain regrowths:',nregrow_acc
+
+C---------------------------------------------------------------------------
+      ENDDO ! ISWEEP
+C---------------------------------------------------------------------------
+
+      runtime=tcpu()
+
+      if (isweep.eq.nsweep .and. it.ge.maxacc)
+     &write (iout,'(/80(1h*)/20x,a/80(1h*)/)') 'All iterations done.'
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine accepting(ecur,eold,scur,sold,x,xold,accepted)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.MCE'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+#ifdef MPL
+      include 'COMMON.INFO'
+#endif
+      include 'COMMON.GEO'
+      double precision ecur,eold,xx,ran_number,bol
+      double precision x(maxvar),xold(maxvar)
+      double precision tole /1.0D-1/, tola /5.0D0/
+      logical accepted
+C Check if the conformation is similar.
+cd    write (iout,*) 'Enter ACCEPTING'
+cd    write (iout,*) 'Old PHI angles:'
+cd    write (iout,*) (rad2deg*xold(i),i=1,nphi)
+cd    write (iout,*) 'Current angles'
+cd    write (iout,*) (rad2deg*x(i),i=1,nphi)
+cd    ddif=dif_ang(nphi,x,xold)
+cd    write (iout,*) 'Angle norm:',ddif
+cd    write (iout,*) 'ecur=',ecur,' emax=',emax
+      if (ecur.gt.emax) then
+        accepted=.false.
+        if (print_mc.gt.0)
+     & write (iout,'(a)') 'Conformation rejected as too high in energy'
+        return
+      else if (dabs(ecur-eold).lt.tole .and. 
+     &       dif_ang(nphi,x,xold).lt.tola) then
+        accepted=.false.
+        if (print_mc.gt.0)
+     & write (iout,'(a)') 'Conformation rejected as too similar'
+        return
+      endif
+C Else evaluate the entropy of the conf and compare it with that of the previous
+C one.
+      indecur=(ecur-emin)/delte
+      if (iabs(indecur).gt.max_ene) then
+        write (iout,'(a,2i5)') 
+     &   'Accepting: Index out of range:',indecur
+        scur=1000.0D0 
+      else if (indecur.eq.indmaxx) then
+        scur=entropy(indecur)
+        if (print_mc.gt.0) write (iout,*)'Energy boundary reached',
+     &            indmaxx,indecur,entropy(indecur)
+      else
+        deix=ecur-(emin+indecur*delte)
+        dent=entropy(indecur+1)-entropy(indecur)
+        scur=entropy(indecur)+(dent/delte)*deix
+      endif
+cd    print *,'Processor',MyID,' ecur=',ecur,' indecur=',indecur,
+cd   & ' scur=',scur,' eold=',eold,' sold=',sold
+cd    print *,'deix=',deix,' dent=',dent,' delte=',delte
+      if (print_mc.gt.1) then
+        write(iout,*)'ecur=',ecur,' indecur=',indecur,' scur=',scur
+        write(iout,*)'eold=',eold,' sold=',sold
+      endif
+      if (scur.le.sold) then
+        accepted=.true.
+      else
+C Else carry out acceptance test
+        xx=ran_number(0.0D0,1.0D0) 
+        xxh=scur-sold
+        if (xxh.gt.50.0D0) then
+          bol=0.0D0
+        else
+          bol=exp(-xxh)
+        endif
+        if (bol.gt.xx) then
+          accepted=.true. 
+          if (print_mc.gt.0) write (iout,'(a)') 
+     &    'Conformation accepted.'
+        else
+          accepted=.false.
+          if (print_mc.gt.0) write (iout,'(a)') 
+     & 'Conformation rejected.'
+        endif
+      endif
+      return
+      end 
+c-----------------------------------------------------------------------------
+      subroutine read_pool
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.MCM'
+      include 'COMMON.MCE'
+      include 'COMMON.VAR'
+      double precision varia(maxvar)
+      print '(a)','Call READ_POOL'
+      do npool=1,max_pool
+        print *,'i=',i
+        read (intin,'(i5,f10.5)',end=10,err=10) iconf,epool(npool)
+        if (epool(npool).eq.0.0D0) goto 10
+        call read_angles(intin,*10)
+        call geom_to_var(nvar,xpool(1,npool))
+      enddo
+      goto 11
+   10 npool=npool-1
+   11 write (iout,'(a,i5)') 'Number of pool conformations:',npool
+      if (print_mc.gt.2) then
+      do i=1,npool
+        write (iout,'(a,i5,a,1pe14.5)') 'Pool conformation',i,' energy',
+     &    epool(i)
+        write (iout,'(10f8.3)') (rad2deg*xpool(j,i),j=1,nvar)
+      enddo
+      endif ! (print_mc.gt.2)
+      return
+      end
diff --git a/source/unres/src_MD_DFA/fitsq.f b/source/unres/src_MD_DFA/fitsq.f
new file mode 100644 (file)
index 0000000..36cbd30
--- /dev/null
@@ -0,0 +1,364 @@
+      subroutine fitsq(rms,x,y,nn,t,b,non_conv)
+      implicit real*8 (a-h,o-z)
+      include 'COMMON.IOUNITS'
+c  x and y are the vectors of coordinates (dimensioned (3,n)) of the two
+c  structures to be superimposed.  nn is 3*n, where n is the number of  
+c  points.   t and b are respectively the translation vector and the    
+c  rotation matrix that transforms the second set of coordinates to the 
+c  frame of the first set.                                              
+c  eta =  machine-specific variable                                     
+                                                                        
+      dimension x(3*nn),y(3*nn),t(3)                                          
+      dimension b(3,3),q(3,3),r(3,3),v(3),xav(3),yav(3),e(3),c(3,3)     
+      logical non_conv
+c      eta = z00100000                                                   
+c     small=25.0*rmdcon(3)                                              
+c     small=25.0*eta                                                    
+c     small=25.0*10.e-10                                                
+c the following is a very lenient value for 'small'                     
+      small = 0.0001D0                                                  
+      non_conv=.false.
+      fn=nn                                                             
+      do 10 i=1,3                                                       
+      xav(i)=0.0D0                                                      
+      yav(i)=0.0D0                                                      
+      do 10 j=1,3                                                       
+   10 b(j,i)=0.0D0                                                      
+      nc=0                                                              
+c                                                                       
+      do 30 n=1,nn                                                      
+      do 20 i=1,3                                                       
+c      write(iout,*)'x = ',x(nc+i),'  y = ',y(nc+i)                           
+      xav(i)=xav(i)+x(nc+i)/fn                                          
+   20 yav(i)=yav(i)+y(nc+i)/fn                                          
+   30 nc=nc+3                                                           
+c                                                                       
+      do i=1,3
+        t(i)=yav(i)-xav(i)
+      enddo
+
+      rms=0.0d0
+      do n=1,nn
+        do i=1,3
+          rms=rms+(y(3*(n-1)+i)-x(3*(n-1)+i)-t(i))**2
+        enddo
+      enddo
+      rms=dabs(rms/fn)
+
+c     write(iout,*)'xav = ',(xav(j),j=1,3)                                    
+c     write(iout,*)'yav = ',(yav(j),j=1,3)                                    
+c     write(iout,*)'t   = ',(t(j),j=1,3)
+c     write(iout,*)'rms=',rms
+      if (rms.lt.small) return
+                                                                        
+                                                                        
+      nc=0                                                              
+      rms=0.0D0                                                         
+      do 50 n=1,nn                                                      
+      do 40 i=1,3                                                       
+      rms=rms+((x(nc+i)-xav(i))**2+(y(nc+i)-yav(i))**2)/fn              
+      do 40 j=1,3                                                       
+      b(j,i)=b(j,i)+(x(nc+i)-xav(i))*(y(nc+j)-yav(j))/fn                
+   40 c(j,i)=b(j,i)                                                     
+   50 nc=nc+3                                                           
+      call sivade(b,q,r,d,non_conv)
+      sn3=dsign(1.0d0,d)                                                   
+      do 120 i=1,3                                                      
+      do 120 j=1,3                                                      
+  120 b(j,i)=-q(j,1)*r(i,1)-q(j,2)*r(i,2)-sn3*q(j,3)*r(i,3)             
+      call mvvad(b,xav,yav,t)                                           
+      do 130 i=1,3                                                      
+      do 130 j=1,3                                                      
+      rms=rms+2.0*c(j,i)*b(j,i)                                         
+  130 b(j,i)=-b(j,i)                                                    
+      if (dabs(rms).gt.small) go to 140                                  
+*     write (6,301)                                                     
+      return                                                            
+  140 if (rms.gt.0.0d0) go to 150                                         
+c     write (iout,303) rms                                                 
+      rms=0.0d0
+*     stop                                                              
+c 150 write (iout,302) dsqrt(rms)                                           
+  150 continue
+      return                                                            
+  301 format (5x,'rms deviation negligible')                            
+  302 format (5x,'rms deviation ',f14.6)                                
+  303 format (//,5x,'negative ms deviation - ',f14.6)                   
+      end                                                               
+c
+      subroutine sivade(x,q,r,dt,non_conv)
+      implicit real*8(a-h,o-z)
+c  computes q,e and r such that q(t)xr = diag(e)                        
+      dimension x(3,3),q(3,3),r(3,3),e(3)                               
+      dimension h(3,3),p(3,3),u(3,3),d(3)                               
+      logical non_conv
+c      eta = z00100000                                                   
+c      write (2,*) "SIVADE"
+      nit = 0
+      small=25.0*10.d-10                                                
+c     small=25.0*eta                                                    
+c     small=2.0*rmdcon(3)                                               
+      xnrm=0.0d0                                                          
+      do 20 i=1,3                                                       
+      do 10 j=1,3                                                       
+      xnrm=xnrm+x(j,i)*x(j,i)                                           
+      u(j,i)=0.0d0                                                        
+      r(j,i)=0.0d0                                                        
+   10 h(j,i)=0.0d0                                                        
+      u(i,i)=1.0                                                        
+   20 r(i,i)=1.0                                                        
+      xnrm=dsqrt(xnrm)                                                   
+      do 110 n=1,2                                                      
+      xmax=0.0d0                                                          
+      do 30 j=n,3                                                       
+   30 if (dabs(x(j,n)).gt.xmax) xmax=dabs(x(j,n))                         
+      a=0.0d0                                                             
+      do 40 j=n,3                                                       
+      h(j,n)=x(j,n)/xmax                                                
+   40 a=a+h(j,n)*h(j,n)                                                 
+      a=dsqrt(a)                                                         
+      den=a*(a+dabs(h(n,n)))                                             
+      d(n)=1.0/den                                                      
+      h(n,n)=h(n,n)+dsign(a,h(n,n))                                      
+      do 70 i=n,3                                                       
+      s=0.0d0                                                             
+      do 50 j=n,3                                                       
+   50 s=s+h(j,n)*x(j,i)                                                 
+      s=d(n)*s                                                          
+      do 60 j=n,3                                                       
+   60 x(j,i)=x(j,i)-s*h(j,n)                                            
+   70 continue                                                          
+      if (n.gt.1) go to 110                                             
+      xmax=dmax1(dabs(x(1,2)),dabs(x(1,3)))                               
+      h(2,3)=x(1,2)/xmax                                                
+      h(3,3)=x(1,3)/xmax                                                
+      a=dsqrt(h(2,3)*h(2,3)+h(3,3)*h(3,3))                               
+      den=a*(a+dabs(h(2,3)))                                             
+      d(3)=1.0/den                                                      
+      h(2,3)=h(2,3)+sign(a,h(2,3))                                      
+      do 100 i=1,3                                                      
+      s=0.0d0                                                             
+      do 80 j=2,3                                                       
+   80 s=s+h(j,3)*x(i,j)                                                 
+      s=d(3)*s                                                          
+      do 90 j=2,3                                                       
+   90 x(i,j)=x(i,j)-s*h(j,3)                                            
+  100 continue                                                          
+  110 continue                                                          
+      do 130 i=1,3                                                      
+      do 120 j=1,3                                                      
+  120 p(j,i)=-d(1)*h(j,1)*h(i,1)                                        
+  130 p(i,i)=1.0+p(i,i)                                                 
+      do 140 i=2,3                                                      
+      do 140 j=2,3                                                      
+      u(j,i)=u(j,i)-d(2)*h(j,2)*h(i,2)                                  
+  140 r(j,i)=r(j,i)-d(3)*h(j,3)*h(i,3)                                  
+      call mmmul(p,u,q)                                                 
+  150 np=1                                                              
+      nq=1                                                              
+      nit=nit+1
+c      write (2,*) "nit",nit," e",(x(i,i),i=1,3)
+      if (nit.gt.10000) then
+        print '(a)','!!!! Over 10000 iterations in SIVADE!!!!!'
+        non_conv=.true.
+        return
+      endif
+      if (dabs(x(2,3)).gt.small*(dabs(x(2,2))+abs(x(3,3)))) go to 160     
+      x(2,3)=0.0d0                                                        
+      nq=nq+1                                                           
+  160 if (dabs(x(1,2)).gt.small*(dabs(x(1,1))+dabs(x(2,2)))) go to 180     
+      x(1,2)=0.0d0                                                        
+      if (x(2,3).ne.0.0d0) go to 170                                      
+      nq=nq+1                                                           
+      go to 180                                                         
+  170 np=np+1                                                           
+  180 if (nq.eq.3) go to 310                                            
+      npq=4-np-nq                                                       
+c      write (2,*) "np",np," npq",npq
+      if (np.gt.npq) go to 230                                          
+      n0=0                                                              
+      do 220 n=np,npq                                                   
+      nn=n+np-1                                                         
+c      write (2,*) "nn",nn
+      if (dabs(x(nn,nn)).gt.small*xnrm) go to 220                        
+      x(nn,nn)=0.0d0                                                      
+      if (x(nn,nn+1).eq.0.0d0) go to 220                                  
+      n0=n0+1                                                           
+c      write (2,*) "nn",nn
+      go to (190,210,220),nn                                            
+  190 do 200 j=2,3                                                      
+  200 call givns(x,q,1,j)                                               
+      go to 220                                                         
+  210 call givns(x,q,2,3)                                               
+  220 continue                                                          
+c      write (2,*) "nn",nn," np",np," nq",nq," n0",n0
+c      write (2,*) "x",(x(i,i),i=1,3)
+      if (n0.ne.0) go to 150                                            
+  230 nn=3-nq                                                           
+      a=x(nn,nn)*x(nn,nn)                                               
+      if (nn.gt.1) a=a+x(nn-1,nn)*x(nn-1,nn)                            
+      b=x(nn+1,nn+1)*x(nn+1,nn+1)+x(nn,nn+1)*x(nn,nn+1)                 
+      c=x(nn,nn)*x(nn,nn+1)                                             
+      dd=0.5*(a-b)                                                      
+      xn2=c*c                                                           
+      rt=b-xn2/(dd+sign(dsqrt(dd*dd+xn2),dd))                            
+      y=x(np,np)*x(np,np)-rt                                            
+      z=x(np,np)*x(np,np+1)                                             
+      do 300 n=np,nn                                                    
+c      write (2,*) "n",n," a",a," b",b," c",c," y",y," z",z
+      if (dabs(y).lt.dabs(z)) go to 240                                   
+      t=z/y                                                             
+      c=1.0/dsqrt(1.0d0+t*t)                                               
+      s=c*t                                                             
+      go to 250                                                         
+  240 t=y/z                                                             
+      s=1.0/dsqrt(1.0d0+t*t)                                               
+      c=s*t                                                             
+  250 do 260 j=1,3                                                      
+      v=x(j,n)                                                          
+      w=x(j,n+1)                                                        
+      x(j,n)=c*v+s*w                                                    
+      x(j,n+1)=-s*v+c*w                                                 
+      a=r(j,n)                                                          
+      b=r(j,n+1)                                                        
+      r(j,n)=c*a+s*b                                                    
+  260 r(j,n+1)=-s*a+c*b                                                 
+      y=x(n,n)                                                          
+      z=x(n+1,n)                                                        
+      if (dabs(y).lt.dabs(z)) go to 270                                   
+      t=z/y                                                             
+      c=1.0/dsqrt(1.0+t*t)                                               
+      s=c*t                                                             
+      go to 280                                                         
+  270 t=y/z                                                             
+      s=1.0/dsqrt(1.0+t*t)                                               
+      c=s*t                                                             
+  280 do 290 j=1,3                                                      
+      v=x(n,j)                                                          
+      w=x(n+1,j)                                                        
+      a=q(j,n)                                                          
+      b=q(j,n+1)                                                        
+      x(n,j)=c*v+s*w                                                    
+      x(n+1,j)=-s*v+c*w                                                 
+      q(j,n)=c*a+s*b                                                    
+  290 q(j,n+1)=-s*a+c*b                                                 
+      if (n.ge.nn) go to 300                                            
+      y=x(n,n+1)                                                        
+      z=x(n,n+2)                                                        
+  300 continue                                                          
+      go to 150                                                         
+  310 do 320 i=1,3                                                      
+  320 e(i)=x(i,i)                                                       
+      nit=0
+  330 n0=0                                                              
+      nit=nit+1
+      if (nit.gt.10000) then
+        print '(a)','!!!! Over 10000 iterations in SIVADE!!!!!'
+        non_conv=.true.
+        return
+      endif
+c      write (2,*) "e",(e(i),i=1,3)
+      do 360 i=1,3                                                      
+      if (e(i).ge.0.0d0) go to 350                                        
+      e(i)=-e(i)                                                        
+      do 340 j=1,3                                                      
+  340 q(j,i)=-q(j,i)                                                    
+  350 if (i.eq.1) go to 360                                             
+      if (dabs(e(i)).lt.dabs(e(i-1))) go to 360                           
+      call switch(i,1,q,r,e)                                            
+      n0=n0+1                                                           
+  360 continue                                                          
+      if (n0.ne.0) go to 330                                            
+c      write (2,*) "e",(e(i),i=1,3)
+      if (dabs(e(3)).gt.small*xnrm) go to 370                            
+      e(3)=0.0d0                                                          
+      if (dabs(e(2)).gt.small*xnrm) go to 370                            
+      e(2)=0.0d0                                                          
+  370 dt=det(q(1,1),q(1,2),q(1,3))*det(r(1,1),r(1,2),r(1,3))            
+c      write (2,*) "nit",nit
+c      write (2,501) (e(i),i=1,3)                                        
+      return                                                            
+  501 format (/,5x,'singular values - ',3e15.5)                         
+      end                                                               
+      subroutine givns(a,b,m,n)                                         
+      implicit real*8 (a-h,o-z)
+      dimension a(3,3),b(3,3)                                           
+      if (dabs(a(m,n)).lt.dabs(a(n,n))) go to 10                          
+      t=a(n,n)/a(m,n)                                                   
+      s=1.0/dsqrt(1.0+t*t)                                               
+      c=s*t                                                             
+      go to 20                                                          
+   10 t=a(m,n)/a(n,n)                                                   
+      c=1.0/dsqrt(1.0+t*t)                                               
+      s=c*t                                                             
+   20 do 30 j=1,3                                                       
+      v=a(m,j)                                                          
+      w=a(n,j)                                                          
+      x=b(j,m)                                                          
+      y=b(j,n)                                                          
+      a(m,j)=c*v-s*w                                                    
+      a(n,j)=s*v+c*w                                                    
+      b(j,m)=c*x-s*y                                                    
+   30 b(j,n)=s*x+c*y                                                    
+      return                                                            
+      end                                                               
+      subroutine switch(n,m,u,v,d)                                      
+      implicit real*8 (a-h,o-z)
+      dimension u(3,3),v(3,3),d(3)                                      
+      do 10 i=1,3                                                       
+      tem=u(i,n)                                                        
+      u(i,n)=u(i,n-1)                                                   
+      u(i,n-1)=tem                                                      
+      if (m.eq.0) go to 10                                              
+      tem=v(i,n)                                                        
+      v(i,n)=v(i,n-1)                                                   
+      v(i,n-1)=tem                                                      
+   10 continue                                                          
+      tem=d(n)                                                          
+      d(n)=d(n-1)                                                       
+      d(n-1)=tem                                                        
+      return                                                            
+      end                                                               
+      subroutine mvvad(b,xav,yav,t)                                     
+      implicit real*8 (a-h,o-z)
+      dimension b(3,3),xav(3),yav(3),t(3)                               
+c     dimension a(3,3),b(3),c(3),d(3)                                   
+c     do 10 j=1,3                                                       
+c     d(j)=c(j)                                                         
+c     do 10 i=1,3                                                       
+c  10 d(j)=d(j)+a(j,i)*b(i)                                             
+      do 10 j=1,3                                                       
+      t(j)=yav(j)                                                       
+      do 10 i=1,3                                                       
+   10 t(j)=t(j)+b(j,i)*xav(i)                                           
+      return                                                            
+      end                                                               
+      double precision function det (a,b,c)
+      implicit real*8 (a-h,o-z)
+      dimension a(3),b(3),c(3)                                          
+      det=a(1)*(b(2)*c(3)-b(3)*c(2))+a(2)*(b(3)*c(1)-b(1)*c(3))         
+     1  +a(3)*(b(1)*c(2)-b(2)*c(1))                                     
+      return                                                            
+      end                                                               
+      subroutine mmmul(a,b,c)                                           
+      implicit real*8 (a-h,o-z)
+      dimension a(3,3),b(3,3),c(3,3)                                    
+      do 10 i=1,3                                                       
+      do 10 j=1,3                                                       
+      c(i,j)=0.0d0                                                        
+      do 10 k=1,3                                                       
+   10 c(i,j)=c(i,j)+a(i,k)*b(k,j)                                       
+      return                                                            
+      end                                                               
+      subroutine matvec(uvec,tmat,pvec,nback)                           
+      implicit real*8 (a-h,o-z)
+      real*8 tmat(3,3),uvec(3,nback), pvec(3,nback)                     
+c                                                                       
+      do 2 j=1,nback                                                    
+         do 1 i=1,3                                                     
+         uvec(i,j) = 0.0d0                                                
+         do 1 k=1,3                                                     
+    1    uvec(i,j)=uvec(i,j)+tmat(i,k)*pvec(k,j)                        
+    2 continue                                                          
+      return                                                            
+      end                                                               
diff --git a/source/unres/src_MD_DFA/gauss.f b/source/unres/src_MD_DFA/gauss.f
new file mode 100644 (file)
index 0000000..7ba6e1d
--- /dev/null
@@ -0,0 +1,69 @@
+      subroutine gauss(RO,AP,MT,M,N,*)
+c
+c CALCULATES (RO**(-1))*AP BY GAUSS ELIMINATION
+c RO IS A SQUARE MATRIX
+c THE CALCULATED PRODUCT IS STORED IN AP
+c ABNORMAL EXIT IF RO IS SINGULAR
+c       
+      integer MT, M, N, M1,I,J,IM,
+     & I1,MI,MI1    
+      double precision RO(MT,M),AP(MT,N),X,RM,PR,
+     &  Y  
+      if(M.ne.1)goto 10
+      X=RO(1,1)
+      if(dabs(X).le.1.0D-13) return 1
+      X=1.0/X
+      do 16 I=1,N
+16     AP(1,I)=AP(1,I)*X
+       return
+10     continue
+        M1=M-1
+        DO1 I=1,M1
+        IM=I
+        RM=DABS(RO(I,I))
+        I1=I+1
+        do 2 J=I1,M
+        if(DABS(RO(J,I)).LE.RM) goto 2
+        RM=DABS(RO(J,I))
+        IM=J
+2       continue
+        If(IM.eq.I)goto 17
+        do 3 J=1,N
+        PR=AP(I,J)
+        AP(I,J)=AP(IM,J)
+3       AP(IM,J)=PR
+        do 4 J=I,M
+        PR=RO(I,J)
+        RO(I,J)=RO(IM,J)
+4       RO(IM,J)=PR
+17      X=RO(I,I)
+        if(dabs(X).le.1.0E-13) return 1
+        X=1.0/X
+        do 5 J=1,N
+5       AP(I,J)=X*AP(I,J)
+        do 6 J=I1,M
+6       RO(I,J)=X*RO(I,J)
+        do 7 J=I1,M
+        Y=RO(J,I)
+        do 8 K=1,N
+8       AP(J,K)=AP(J,K)-Y*AP(I,K)
+        do 9 K=I1,M
+9       RO(J,K)=RO(J,K)-Y*RO(I,K)
+7       continue
+1       continue
+        X=RO(M,M)
+        if(dabs(X).le.1.0E-13) return 1
+        X=1.0/X
+        do 11 J=1,N
+11      AP(M,J)=X*AP(M,J)
+        do 12 I=1,M1
+        MI=M-I
+        MI1=MI+1
+        do 14 J=1,N
+        X=AP(MI,J)
+        do 15 K=MI1,M
+15      X=X-AP(K,J)*RO(MI,K)
+14      AP(MI,J)=X
+12      continue
+        return
+        end
diff --git a/source/unres/src_MD_DFA/gen_rand_conf.F b/source/unres/src_MD_DFA/gen_rand_conf.F
new file mode 100644 (file)
index 0000000..6cc31ba
--- /dev/null
@@ -0,0 +1,910 @@
+      subroutine gen_rand_conf(nstart,*)
+C Generate random conformation or chain cut and regrowth.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.LOCAL'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MCM'
+      include 'COMMON.GEO'
+      include 'COMMON.CONTROL'
+      logical overlap,back,fail
+cd    print *,' CG Processor',me,' maxgen=',maxgen
+      maxsi=100
+cd    write (iout,*) 'Gen_Rand_conf: nstart=',nstart
+      if (nstart.lt.5) then
+        it1=itype(2)
+        phi(4)=gen_phi(4,itype(2),itype(3))
+c       write(iout,*)'phi(4)=',rad2deg*phi(4)
+        if (nstart.lt.3) theta(3)=gen_theta(itype(2),pi,phi(4))
+c       write(iout,*)'theta(3)=',rad2deg*theta(3) 
+        if (it1.ne.10) then
+          nsi=0
+          fail=.true.
+          do while (fail.and.nsi.le.maxsi)
+            call gen_side(it1,theta(3),alph(2),omeg(2),fail)
+            nsi=nsi+1
+          enddo
+          if (nsi.gt.maxsi) return1
+        endif ! it1.ne.10
+        call orig_frame
+        i=4
+        nstart=4
+      else
+        i=nstart
+        nstart=max0(i,4)
+      endif
+
+      maxnit=0
+
+      nit=0
+      niter=0
+      back=.false.
+      do while (i.le.nres .and. niter.lt.maxgen)
+        if (i.lt.nstart) then
+          if(iprint.gt.1) then
+          write (iout,'(/80(1h*)/2a/80(1h*))') 
+     &          'Generation procedure went down to ',
+     &          'chain beginning. Cannot continue...'
+          write (*,'(/80(1h*)/2a/80(1h*))') 
+     &          'Generation procedure went down to ',
+     &          'chain beginning. Cannot continue...'
+          endif
+          return1
+        endif
+       it1=itype(i-1)
+       it2=itype(i-2)
+       it=itype(i)
+c       print *,'Gen_Rand_Conf: i=',i,' it=',it,' it1=',it1,' it2=',it2,
+c    &    ' nit=',nit,' niter=',niter,' maxgen=',maxgen
+       phi(i+1)=gen_phi(i+1,it1,it)
+       if (back) then
+          phi(i)=gen_phi(i+1,it2,it1)
+c         print *,'phi(',i,')=',phi(i)
+         theta(i-1)=gen_theta(it2,phi(i-1),phi(i))
+         if (it2.ne.10) then
+            nsi=0
+            fail=.true.
+            do while (fail.and.nsi.le.maxsi)
+              call gen_side(it2,theta(i-1),alph(i-2),omeg(i-2),fail)
+              nsi=nsi+1
+            enddo
+            if (nsi.gt.maxsi) return1
+          endif
+         call locate_next_res(i-1)
+       endif
+       theta(i)=gen_theta(it1,phi(i),phi(i+1))
+        if (it1.ne.10) then 
+        nsi=0
+        fail=.true.
+        do while (fail.and.nsi.le.maxsi)
+          call gen_side(it1,theta(i),alph(i-1),omeg(i-1),fail)
+          nsi=nsi+1
+        enddo
+        if (nsi.gt.maxsi) return1
+        endif
+       call locate_next_res(i)
+       if (overlap(i-1)) then
+         if (nit.lt.maxnit) then
+           back=.true.
+           nit=nit+1
+          else
+           nit=0
+           if (i.gt.3) then
+             back=.true.
+             i=i-1
+            else
+             write (iout,'(a)') 
+     &  'Cannot generate non-overlaping conformation. Increase MAXNIT.'
+             write (*,'(a)') 
+     &  'Cannot generate non-overlaping conformation. Increase MAXNIT.'
+             return1
+           endif
+          endif
+        else
+         back=.false.
+         nit=0 
+         i=i+1
+        endif
+       niter=niter+1
+      enddo
+      if (niter.ge.maxgen) then
+       write (iout,'(a,2i5)') 
+     & 'Too many trials in conformation generation',niter,maxgen
+       write (*,'(a,2i5)') 
+     & 'Too many trials in conformation generation',niter,maxgen
+       return1
+      endif
+      do j=1,3
+       c(j,nres+1)=c(j,1)
+       c(j,nres+nres)=c(j,nres)
+      enddo
+      return
+      end
+c-------------------------------------------------------------------------
+      logical function overlap(i)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      data redfac /0.5D0/
+      overlap=.false.
+      iti=itype(i)
+      if (iti.gt.ntyp) return
+C Check for SC-SC overlaps.
+cd    print *,'nnt=',nnt,' nct=',nct
+      do j=nnt,i-1
+        itj=itype(j)
+        if (j.lt.i-1 .or. ipot.ne.4) then
+          rcomp=sigmaii(iti,itj)
+        else 
+          rcomp=sigma(iti,itj)
+        endif
+cd      print *,'j=',j
+       if (dist(nres+i,nres+j).lt.redfac*rcomp) then
+          overlap=.true.
+c        print *,'overlap, SC-SC: i=',i,' j=',j,
+c     &     ' dist=',dist(nres+i,nres+j),' rcomp=',
+c     &     rcomp
+         return
+        endif
+      enddo
+C Check for overlaps between the added peptide group and the preceding
+C SCs.
+      iteli=itel(i)
+      do j=1,3
+       c(j,maxres2+1)=0.5D0*(c(j,i)+c(j,i+1))
+      enddo
+      do j=nnt,i-2
+       itj=itype(j)
+cd      print *,'overlap, p-Sc: i=',i,' j=',j,
+cd   &         ' dist=',dist(nres+j,maxres2+1)
+       if (dist(nres+j,maxres2+1).lt.4.0D0*redfac) then
+         overlap=.true.
+         return
+        endif
+      enddo
+C Check for overlaps between the added side chain and the preceding peptide
+C groups.
+      do j=1,nnt-2
+       do k=1,3
+         c(k,maxres2+1)=0.5D0*(c(k,j)+c(k,j+1))
+        enddo
+cd      print *,'overlap, SC-p: i=',i,' j=',j,
+cd   &         ' dist=',dist(nres+i,maxres2+1)
+       if (dist(nres+i,maxres2+1).lt.4.0D0*redfac) then
+          overlap=.true.
+         return
+        endif
+      enddo
+C Check for p-p overlaps
+      do j=1,3
+       c(j,maxres2+2)=0.5D0*(c(j,i)+c(j,i+1))
+      enddo
+      do j=nnt,i-2
+        itelj=itel(j)
+       do k=1,3
+         c(k,maxres2+2)=0.5D0*(c(k,j)+c(k,j+1))
+        enddo
+cd      print *,'overlap, p-p: i=',i,' j=',j,
+cd   &         ' dist=',dist(maxres2+1,maxres2+2)
+        if(iteli.ne.0.and.itelj.ne.0)then
+        if (dist(maxres2+1,maxres2+2).lt.rpp(iteli,itelj)*redfac) then
+          overlap=.true.
+          return
+        endif
+        endif
+      enddo
+      return
+      end
+c--------------------------------------------------------------------------
+      double precision function gen_phi(i,it1,it2)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.BOUNDS'
+c      gen_phi=ran_number(-pi,pi) 
+C 8/13/98 Generate phi using pre-defined boundaries
+      gen_phi=ran_number(phibound(1,i),phibound(2,i)) 
+      return
+      end
+c---------------------------------------------------------------------------
+      double precision function gen_theta(it,gama,gama1)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      double precision y(2),z(2)
+      double precision theta_max,theta_min
+c     print *,'gen_theta: it=',it
+      theta_min=0.05D0*pi
+      theta_max=0.95D0*pi
+      if (dabs(gama).gt.dwapi) then
+        y(1)=dcos(gama)
+        y(2)=dsin(gama)
+      else
+        y(1)=0.0D0
+        y(2)=0.0D0
+      endif
+      if (dabs(gama1).gt.dwapi) then
+        z(1)=dcos(gama1)
+        z(2)=dsin(gama1)
+      else
+       z(1)=0.0D0
+       z(2)=0.0D0
+      endif  
+      thet_pred_mean=a0thet(it)
+      do k=1,2
+        thet_pred_mean=thet_pred_mean+athet(k,it)*y(k)+bthet(k,it)*z(k)
+      enddo
+      sig=polthet(3,it)
+      do j=2,0,-1
+        sig=sig*thet_pred_mean+polthet(j,it)
+      enddo
+      sig=0.5D0/(sig*sig+sigc0(it))
+      ak=dexp(gthet(1,it)-
+     &0.5D0*((gthet(2,it)-thet_pred_mean)/gthet(3,it))**2)
+c     print '(i5,5(1pe14.4))',it,(gthet(j,it),j=1,3)
+c     print '(5(1pe14.4))',thet_pred_mean,theta0(it),sig,sig0(it),ak
+      theta_temp=binorm(thet_pred_mean,theta0(it),sig,sig0(it),ak) 
+      if (theta_temp.lt.theta_min) theta_temp=theta_min
+      if (theta_temp.gt.theta_max) theta_temp=theta_max
+      gen_theta=theta_temp
+c     print '(a)','Exiting GENTHETA.'
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine gen_side(it,the,al,om,fail)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision MaxBoxLen /10.0D0/
+      double precision Ap_inv(3,3),a(3,3),z(3,maxlob),W1(maxlob),
+     & sumW(0:maxlob),y(2),cm(2),eig(2),box(2,2),work(100),detAp(maxlob)
+      double precision eig_limit /1.0D-8/
+      double precision Big /10.0D0/
+      double precision vec(3,3)
+      logical lprint,fail,lcheck
+      lcheck=.false.
+      lprint=.false.
+      fail=.false.
+      if (the.eq.0.0D0 .or. the.eq.pi) then
+#ifdef MPI
+        write (*,'(a,i4,a,i3,a,1pe14.5)') 
+     & 'CG Processor:',me,' Error in GenSide: it=',it,' theta=',the
+#else
+cd        write (iout,'(a,i3,a,1pe14.5)') 
+cd     &   'Error in GenSide: it=',it,' theta=',the
+#endif
+        fail=.true.
+        return
+      endif
+      tant=dtan(the-pipol)
+      nlobit=nlob(it)
+      if (lprint) then
+#ifdef MPI
+        print '(a,i4,a)','CG Processor:',me,' Enter Gen_Side.'
+        write (iout,'(a,i4,a)') 'Processor:',me,' Enter Gen_Side.'
+#endif
+        print *,'it=',it,' nlobit=',nlobit,' the=',the,' tant=',tant
+        write (iout,*) 'it=',it,' nlobit=',nlobit,' the=',the,
+     &     ' tant=',tant
+      endif
+      do i=1,nlobit
+       zz1=tant-censc(1,i,it)
+        do k=1,3
+          do l=1,3
+            a(k,l)=gaussc(k,l,i,it)
+          enddo
+        enddo
+        detApi=a(2,2)*a(3,3)-a(2,3)**2
+        Ap_inv(2,2)=a(3,3)/detApi
+        Ap_inv(2,3)=-a(2,3)/detApi
+        Ap_inv(3,2)=Ap_inv(2,3)
+        Ap_inv(3,3)=a(2,2)/detApi
+        if (lprint) then
+          write (*,'(/a,i2/)') 'Cluster #',i
+          write (*,'(3(1pe14.5),5x,1pe14.5)') 
+     &    ((a(l,k),l=1,3),censc(k,i,it),k=1,3)
+          write (iout,'(/a,i2/)') 'Cluster #',i
+          write (iout,'(3(1pe14.5),5x,1pe14.5)') 
+     &    ((a(l,k),l=1,3),censc(k,i,it),k=1,3)
+        endif
+        W1i=0.0D0
+        do k=2,3
+          do l=2,3
+            W1i=W1i+a(k,1)*a(l,1)*Ap_inv(k,l)
+          enddo
+        enddo
+        W1i=a(1,1)-W1i
+        W1(i)=dexp(bsc(i,it)-0.5D0*W1i*zz1*zz1)
+c        if (lprint) write(*,'(a,3(1pe15.5)/)')
+c     &          'detAp, W1, anormi',detApi,W1i,anormi
+       do k=2,3
+         zk=censc(k,i,it)
+         do l=2,3
+            zk=zk+zz1*Ap_inv(k,l)*a(l,1)
+          enddo
+         z(k,i)=zk
+        enddo
+        detAp(i)=dsqrt(detApi)
+      enddo
+
+      if (lprint) then
+        print *,'W1:',(w1(i),i=1,nlobit)
+        print *,'detAp:',(detAp(i),i=1,nlobit)
+        print *,'Z'
+        do i=1,nlobit
+          print '(i2,3f10.5)',i,(rad2deg*z(j,i),j=2,3)
+        enddo
+        write (iout,*) 'W1:',(w1(i),i=1,nlobit)
+        write (iout,*) 'detAp:',(detAp(i),i=1,nlobit)
+        write (iout,*) 'Z'
+        do i=1,nlobit
+          write (iout,'(i2,3f10.5)') i,(rad2deg*z(j,i),j=2,3)
+        enddo
+      endif
+      if (lcheck) then
+C Writing the distribution just to check the procedure
+      fac=0.0D0
+      dV=deg2rad**2*10.0D0
+      sum=0.0D0
+      sum1=0.0D0
+      do i=1,nlobit
+        fac=fac+W1(i)/detAp(i)
+      enddo 
+      fac=1.0D0/(2.0D0*fac*pi)
+cd    print *,it,'fac=',fac
+      do ial=90,180,2
+        y(1)=deg2rad*ial
+        do iom=-180,180,5
+          y(2)=deg2rad*iom
+          wart=0.0D0
+          do i=1,nlobit
+            do j=2,3
+              do k=2,3
+                a(j-1,k-1)=gaussc(j,k,i,it)
+              enddo
+            enddo
+            y2=y(2)
+
+            do iii=-1,1
+          
+              y(2)=y2+iii*dwapi
+
+              wykl=0.0D0
+              do j=1,2
+                do k=1,2 
+                  wykl=wykl+a(j,k)*(y(j)-z(j+1,i))*(y(k)-z(k+1,i))
+                enddo
+              enddo
+              wart=wart+W1(i)*dexp(-0.5D0*wykl)
+
+            enddo
+
+            y(2)=y2
+
+          enddo
+c         print *,'y',y(1),y(2),' fac=',fac
+          wart=fac*wart
+          write (20,'(2f10.3,1pd15.5)') y(1)*rad2deg,y(2)*rad2deg,wart
+          sum=sum+wart
+          sum1=sum1+1.0D0
+        enddo
+      enddo
+c     print *,'it=',it,' sum=',sum*dV,' sum1=',sum1*dV
+      return
+      endif
+
+C Calculate the CM of the system
+C
+      do i=1,nlobit
+        W1(i)=W1(i)/detAp(i)
+      enddo
+      sumW(0)=0.0D0
+      do i=1,nlobit
+       sumW(i)=sumW(i-1)+W1(i)
+      enddo
+      cm(1)=z(2,1)*W1(1)
+      cm(2)=z(3,1)*W1(1)
+      do j=2,nlobit
+        cm(1)=cm(1)+z(2,j)*W1(j) 
+        cm(2)=cm(2)+W1(j)*(z(3,1)+pinorm(z(3,j)-z(3,1)))
+      enddo
+      cm(1)=cm(1)/sumW(nlobit)
+      cm(2)=cm(2)/sumW(nlobit)
+      if (cm(1).gt.Big .or. cm(1).lt.-Big .or.
+     & cm(2).gt.Big .or. cm(2).lt.-Big) then
+cd        write (iout,'(a)') 
+cd     & 'Unexpected error in GenSide - CM coordinates too large.'
+cd        write (iout,'(i5,2(1pe14.5))') it,cm(1),cm(2)
+cd        write (*,'(a)') 
+cd     & 'Unexpected error in GenSide - CM coordinates too large.'
+cd        write (*,'(i5,2(1pe14.5))') it,cm(1),cm(2)
+        fail=.true. 
+        return
+      endif
+cd    print *,'CM:',cm(1),cm(2)
+C
+C Find the largest search distance from CM
+C
+      radmax=0.0D0
+      do i=1,nlobit
+       do j=2,3
+         do k=2,3
+           a(j-1,k-1)=gaussc(j,k,i,it) 
+          enddo
+       enddo
+#ifdef NAG
+        call f02faf('N','U',2,a,3,eig,work,100,ifail)
+#else
+        call djacob(2,3,10000,1.0d-10,a,vec,eig)
+#endif
+#ifdef MPI
+        if (lprint) then
+          print *,'*************** CG Processor',me
+          print *,'CM:',cm(1),cm(2)
+          write (iout,*) '*************** CG Processor',me
+          write (iout,*) 'CM:',cm(1),cm(2)
+          print '(A,8f10.5)','Eigenvalues: ',(1.0/dsqrt(eig(k)),k=1,2)
+          write (iout,'(A,8f10.5)')
+     &        'Eigenvalues: ',(1.0/dsqrt(eig(k)),k=1,2)
+        endif
+#endif
+        if (eig(1).lt.eig_limit) then
+          write(iout,'(a)')
+     &     'From Mult_Norm: Eigenvalues of A are too small.'
+          write(*,'(a)')
+     &     'From Mult_Norm: Eigenvalues of A are too small.'
+         fail=.true.
+          return
+        endif
+       radius=0.0D0
+cd      print *,'i=',i
+       do j=1,2
+         radius=radius+pinorm(z(j+1,i)-cm(j))**2
+        enddo
+       radius=dsqrt(radius)+3.0D0/dsqrt(eig(1))
+       if (radius.gt.radmax) radmax=radius
+      enddo
+      if (radmax.gt.pi) radmax=pi
+C
+C Determine the boundaries of the search rectangle.
+C
+      if (lprint) then
+        print '(a,4(1pe14.4))','W1: ',(W1(i),i=1,nlob(it) )
+        print '(a,4(1pe14.4))','radmax: ',radmax
+      endif
+      box(1,1)=dmax1(cm(1)-radmax,0.0D0)
+      box(2,1)=dmin1(cm(1)+radmax,pi)
+      box(1,2)=cm(2)-radmax
+      box(2,2)=cm(2)+radmax
+      if (lprint) then
+#ifdef MPI
+        print *,'CG Processor',me,' Array BOX:'
+#else
+        print *,'Array BOX:'
+#endif
+        print '(4(1pe14.4))',((box(k,j),k=1,2),j=1,2)
+        print '(a,4(1pe14.4))','sumW: ',(sumW(i),i=0,nlob(it) )
+#ifdef MPI
+        write (iout,*)'CG Processor',me,' Array BOX:'
+#else
+        write (iout,*)'Array BOX:'
+#endif
+        write(iout,'(4(1pe14.4))') ((box(k,j),k=1,2),j=1,2)
+        write(iout,'(a,4(1pe14.4))')'sumW: ',(sumW(i),i=0,nlob(it) )
+      endif
+      if (box(1,2).lt.-MaxBoxLen .or. box(2,2).gt.MaxBoxLen) then
+#ifdef MPI
+        write (iout,'(a,i4,a)') 'CG Processor:',me,': bad sampling box.'
+        write (*,'(a,i4,a)') 'CG Processor:',me,': bad sampling box.'
+#else
+c        write (iout,'(a)') 'Bad sampling box.'
+#endif
+        fail=.true.
+        return
+      endif
+      which_lobe=ran_number(0.0D0,sumW(nlobit))
+c     print '(a,1pe14.4)','which_lobe=',which_lobe
+      do i=1,nlobit
+        if (sumW(i-1).le.which_lobe .and. sumW(i).ge.which_lobe) goto 1
+      enddo
+    1 ilob=i
+c     print *,'ilob=',ilob,' nlob=',nlob(it)
+      do i=2,3
+       cm(i-1)=z(i,ilob)
+       do j=2,3
+         a(i-1,j-1)=gaussc(i,j,ilob,it)
+        enddo
+      enddo
+cd    print '(a,i4,a)','CG Processor',me,' Calling MultNorm1.'
+      call mult_norm1(3,2,a,cm,box,y,fail)
+      if (fail) return
+      al=y(1)
+      om=pinorm(y(2))
+cd    print *,'al=',al,' om=',om
+cd    stop
+      return
+      end
+c---------------------------------------------------------------------------
+      double precision function ran_number(x1,x2)
+C Calculate a random real number from the range (x1,x2).
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      double precision x1,x2,fctor
+      data fctor /2147483647.0D0/
+#ifdef MPI
+      include "mpif.h"
+      include 'COMMON.SETUP'
+      ran_number=x1+(x2-x1)*prng_next(me)
+#else
+      call vrnd(ix,1)
+      ran_number=x1+(x2-x1)*ix/fctor
+#endif
+      return
+      end
+c--------------------------------------------------------------------------
+      integer function iran_num(n1,n2)
+C Calculate a random integer number from the range (n1,n2).
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      integer n1,n2,ix
+      real fctor /2147483647.0/
+#ifdef MPI
+      include "mpif.h"
+      include 'COMMON.SETUP'
+      ix=n1+(n2-n1+1)*prng_next(me)
+      if (ix.lt.n1) ix=n1
+      if (ix.gt.n2) ix=n2
+      iran_num=ix
+#else
+      call vrnd(ix,1)
+      ix=n1+(n2-n1+1)*(ix/fctor)
+      if (ix.gt.n2) ix=n2
+      iran_num=ix
+#endif
+      return
+      end
+c--------------------------------------------------------------------------
+      double precision function binorm(x1,x2,sigma1,sigma2,ak)
+      implicit real*8 (a-h,o-z)
+c     print '(a)','Enter BINORM.'
+      alowb=dmin1(x1-3.0D0*sigma1,x2-3.0D0*sigma2)
+      aupb=dmax1(x1+3.0D0*sigma1,x2+3.0D0*sigma2)
+      seg=sigma1/(sigma1+ak*sigma2)
+      alen=ran_number(0.0D0,1.0D0)
+      if (alen.lt.seg) then
+        binorm=anorm_distr(x1,sigma1,alowb,aupb)
+      else
+        binorm=anorm_distr(x2,sigma2,alowb,aupb)
+      endif
+c     print '(a)','Exiting BINORM.'
+      return
+      end
+c-----------------------------------------------------------------------
+c      double precision function anorm_distr(x,sigma,alowb,aupb)
+c      implicit real*8 (a-h,o-z)
+c     print '(a)','Enter ANORM_DISTR.'
+c   10 y=ran_number(alowb,aupb)
+c      expon=dexp(-0.5D0*((y-x)/sigma)**2)
+c      ran=ran_number(0.0D0,1.0D0)
+c      if (expon.lt.ran) goto 10
+c      anorm_distr=y
+c     print '(a)','Exiting ANORM_DISTR.'
+c      return
+c      end
+c-----------------------------------------------------------------------
+        double precision function anorm_distr(x,sigma,alowb,aupb)
+        implicit real*8 (a-h,o-z)
+c  to make a normally distributed deviate with zero mean and unit variance
+c
+        integer iset
+        real fac,gset,rsq,v1,v2,ran1
+        save iset,gset
+        data iset/0/
+        if(iset.eq.0) then
+1               v1=2.0d0*ran_number(0.0d0,1.0d0)-1.0d0
+                v2=2.0d0*ran_number(0.0d0,1.0d0)-1.0d0
+                rsq=v1**2+v2**2
+                if(rsq.ge.1.d0.or.rsq.eq.0.0d0) goto 1
+                fac=sqrt(-2.0d0*log(rsq)/rsq)
+                gset=v1*fac
+                gaussdev=v2*fac
+                iset=1
+        else
+                gaussdev=gset
+                iset=0
+        endif
+        anorm_distr=x+gaussdev*sigma
+      return
+      end
+c------------------------------------------------------------------------ 
+      subroutine mult_norm(lda,n,a,x,fail)
+C
+C Generate the vector X whose elements obey the multiple-normal distribution
+C from exp(-0.5*X'AX). LDA is the leading dimension of the moment matrix A,
+C n is the dimension of the problem. FAIL is set at .TRUE., if the smallest
+C eigenvalue of the matrix A is close to 0.
+C
+      implicit double precision (a-h,o-z)
+      double precision a(lda,n),x(n),eig(100),vec(3,3),work(100)
+      double precision eig_limit /1.0D-8/
+      logical fail
+      fail=.false.
+c     print '(a)','Enter MULT_NORM.'
+C
+C Find the smallest eigenvalue of the matrix A.
+C
+c     do i=1,n
+c       print '(8f10.5)',(a(i,j),j=1,n)
+c     enddo
+#ifdef NAG
+      call f02faf('V','U',2,a,lda,eig,work,100,ifail)
+#else
+      call djacob(2,lda,10000,1.0d-10,a,vec,eig)
+#endif
+c     print '(8f10.5)',(eig(i),i=1,n)
+C     print '(a)'
+c     do i=1,n
+c       print '(8f10.5)',(a(i,j),j=1,n)
+c     enddo
+      if (eig(1).lt.eig_limit) then
+        print *,'From Mult_Norm: Eigenvalues of A are too small.'
+        fail=.true.    
+       return
+      endif
+C 
+C Generate points following the normal distributions along the principal
+C axes of the moment matrix. Store in WORK.
+C
+      do i=1,n
+       sigma=1.0D0/dsqrt(eig(i))
+       alim=-3.0D0*sigma
+       work(i)=anorm_distr(0.0D0,sigma,-alim,alim)
+      enddo
+C
+C Transform the vector of normal variables back to the original basis.
+C
+      do i=1,n
+       xi=0.0D0
+       do j=1,n
+         xi=xi+a(i,j)*work(j)
+        enddo
+       x(i)=xi
+      enddo
+      return
+      end
+c------------------------------------------------------------------------ 
+      subroutine mult_norm1(lda,n,a,z,box,x,fail)
+C
+C Generate the vector X whose elements obey the multi-gaussian multi-dimensional
+C distribution from sum_{i=1}^m W(i)exp[-0.5*X'(i)A(i)X(i)]. LDA is the 
+C leading dimension of the moment matrix A, n is the dimension of the 
+C distribution, nlob is the number of lobes. FAIL is set at .TRUE., if the 
+C smallest eigenvalue of the matrix A is close to 0.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      double precision a(lda,n),z(n),x(n),box(n,n)
+      double precision etmp
+      include 'COMMON.IOUNITS'
+#ifdef MP
+      include 'COMMON.SETUP' 
+#endif
+      logical fail
+C 
+C Generate points following the normal distributions along the principal
+C axes of the moment matrix. Store in WORK.
+C
+cd    print *,'CG Processor',me,' entered MultNorm1.'
+cd    print '(2(1pe14.4),3x,1pe14.4)',((a(i,j),j=1,2),z(i),i=1,2)
+cd    do i=1,n
+cd      print *,i,box(1,i),box(2,i)
+cd    enddo
+      istep = 0
+   10 istep = istep + 1
+      if (istep.gt.10000) then
+c        write (iout,'(a,i4,2a)') 'CG Processor: ',me,': too many steps',
+c     & ' in MultNorm1.'
+c        write (*,'(a,i4,2a)') 'CG Processor: ',me,': too many steps',
+c     & ' in MultNorm1.'
+c        write (iout,*) 'box',box
+c        write (iout,*) 'a',a
+c        write (iout,*) 'z',z
+        fail=.true.
+        return
+      endif
+      do i=1,n
+       x(i)=ran_number(box(1,i),box(2,i))
+      enddo
+      ww=0.0D0
+      do i=1,n
+       xi=pinorm(x(i)-z(i))
+       ww=ww+0.5D0*a(i,i)*xi*xi
+       do j=i+1,n
+         ww=ww+a(i,j)*xi*pinorm(x(j)-z(j))
+        enddo
+      enddo
+      dec=ran_number(0.0D0,1.0D0)
+c      print *,(x(i),i=1,n),ww,dexp(-ww),dec
+crc   if (dec.gt.dexp(-ww)) goto 10
+      if(-ww.lt.100) then
+       etmp=dexp(-ww)
+      else
+       return  
+      endif
+      if (dec.gt.etmp) goto 10
+cd    print *,'CG Processor',me,' exitting MultNorm1.'
+      return
+      end
+c
+crc--------------------------------------
+      subroutine overlap_sc(scfail)
+c     Internal and cartesian coordinates must be consistent as input,
+c     and will be up-to-date on return.
+c     At the end of this procedure, scfail is true if there are
+c     overlapping residues left, or false otherwise (success)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.VAR'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.IOUNITS'
+      logical had_overlaps,fail,scfail
+      integer ioverlap(maxres),ioverlap_last
+
+      had_overlaps=.false.
+      call overlap_sc_list(ioverlap,ioverlap_last)
+      if (ioverlap_last.gt.0) then
+        write (iout,*) '#OVERLAPing residues ',ioverlap_last
+        write (iout,'(20i4)') (ioverlap(k),k=1,ioverlap_last)
+        had_overlaps=.true.
+      endif
+
+      maxsi=1000
+      do k=1,1000
+        if (ioverlap_last.eq.0) exit
+
+        do ires=1,ioverlap_last 
+          i=ioverlap(ires)
+          iti=itype(i)
+          if (iti.ne.10) then
+            nsi=0
+            fail=.true.
+            do while (fail.and.nsi.le.maxsi)
+              call gen_side(iti,theta(i+1),alph(i),omeg(i),fail)
+              nsi=nsi+1
+            enddo
+            if(fail) goto 999
+          endif
+        enddo
+
+        call chainbuild
+        call overlap_sc_list(ioverlap,ioverlap_last)
+c        write (iout,*) 'Overlaping residues ',ioverlap_last,
+c     &           (ioverlap(j),j=1,ioverlap_last)
+      enddo
+
+      if (k.le.1000.and.ioverlap_last.eq.0) then
+        scfail=.false.
+        if (had_overlaps) then
+          write (iout,*) '#OVERLAPing all corrected after ',k,
+     &         ' random generation'
+        endif
+      else
+        scfail=.true.
+        write (iout,*) '#OVERLAPing NOT all corrected ',ioverlap_last
+        write (iout,'(20i4)') (ioverlap(j),j=1,ioverlap_last)
+      endif
+
+      return
+
+ 999  continue
+      write (iout,'(a30,i5,a12,i4)') 
+     &               '#OVERLAP FAIL in gen_side after',maxsi,
+     &               'iter for RES',i
+      scfail=.true.
+      return
+      end
+
+      subroutine overlap_sc_list(ioverlap,ioverlap_last)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.VAR'
+      include 'COMMON.CALC'
+      logical fail
+      integer ioverlap(maxres),ioverlap_last
+      data redfac /0.5D0/
+
+      ioverlap_last=0
+C Check for SC-SC overlaps and mark residues
+c      print *,'>>overlap_sc nnt=',nnt,' nct=',nct
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+        dsci_inv=dsc_inv(itypi)
+c
+       do iint=1,nint_gr(i)
+         do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=itype(j)
+            dscj_inv=dsc_inv(itypj)
+            sig0ij=sigma(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)   
+            alf2=alp(itypj)   
+            alf12=0.5D0*(alf1+alf2)
+          if (j.gt.i+1) then
+           rcomp=sigmaii(itypi,itypj)
+          else 
+           rcomp=sigma(itypi,itypj)
+          endif
+c         print '(2(a3,2i3),a3,2f10.5)',
+c     &        ' i=',i,iti,' j=',j,itj,' d=',dist(nres+i,nres+j)
+c     &        ,rcomp
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+            call sc_angular
+            sigsq=1.0D0/sigsq
+            sig=sig0ij*dsqrt(sigsq)
+            rij_shift=1.0D0/rij-sig+sig0ij
+
+ct          if ( 1.0/rij .lt. redfac*rcomp .or. 
+ct     &       rij_shift.le.0.0D0 ) then
+            if ( rij_shift.le.0.0D0 ) then
+cd           write (iout,'(a,i3,a,i3,a,f10.5,a,3f10.5)')
+cd     &     'overlap SC-SC: i=',i,' j=',j,
+cd     &     ' dist=',dist(nres+i,nres+j),' rcomp=',
+cd     &     rcomp,1.0/rij,rij_shift
+          ioverlap_last=ioverlap_last+1
+          ioverlap(ioverlap_last)=i         
+          do k=1,ioverlap_last-1
+           if (ioverlap(k).eq.i) ioverlap_last=ioverlap_last-1
+          enddo
+          ioverlap_last=ioverlap_last+1
+          ioverlap(ioverlap_last)=j         
+          do k=1,ioverlap_last-1
+           if (ioverlap(k).eq.j) ioverlap_last=ioverlap_last-1
+          enddo 
+         endif
+        enddo
+       enddo
+      enddo
+      return
+      end
diff --git a/source/unres/src_MD_DFA/geomout.F b/source/unres/src_MD_DFA/geomout.F
new file mode 100644 (file)
index 0000000..69d7802
--- /dev/null
@@ -0,0 +1,491 @@
+      subroutine pdbout(etot,tytul,iunit)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.HEADER'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.DISTFIT'
+      include 'COMMON.MD'
+      character*50 tytul
+      dimension ica(maxres)
+      write (iunit,'(3a,1pe15.5)') 'REMARK ',tytul,' ENERGY ',etot
+cmodel      write (iunit,'(a5,i6)') 'MODEL',1
+      if (nhfrag.gt.0) then
+       do j=1,nhfrag
+        iti=itype(hfrag(1,j))
+        itj=itype(hfrag(2,j))
+        if (j.lt.10) then
+           write (iunit,'(a5,i5,1x,a1,i1,2x,a3,i7,2x,a3,i7,i3,t76,i5)') 
+     &           'HELIX',j,'H',j,
+     &           restyp(iti),hfrag(1,j)-1,
+     &           restyp(itj),hfrag(2,j)-1,1,hfrag(2,j)-hfrag(1,j)
+        else
+             write (iunit,'(a5,i5,1x,a1,i2,1x,a3,i7,2x,a3,i7,i3)') 
+     &           'HELIX',j,'H',j,
+     &           restyp(iti),hfrag(1,j)-1,
+     &           restyp(itj),hfrag(2,j)-1,1,hfrag(2,j)-hfrag(1,j)
+        endif
+       enddo
+      endif
+
+      if (nbfrag.gt.0) then
+
+       do j=1,nbfrag
+
+        iti=itype(bfrag(1,j))
+        itj=itype(bfrag(2,j)-1)
+
+        write (iunit,'(a5,i5,1x,a1,i1,i3,1x,a3,i6,2x,a3,i6,i3)') 
+     &           'SHEET',1,'B',j,2,
+     &           restyp(iti),bfrag(1,j)-1,
+     &           restyp(itj),bfrag(2,j)-2,0
+
+        if (bfrag(3,j).gt.bfrag(4,j)) then
+
+         itk=itype(bfrag(3,j))
+         itl=itype(bfrag(4,j)+1)
+
+         write (iunit,'(a5,i5,1x,a1,i1,i3,1x,a3,i6,2x,a3,i6,i3,
+     &              2x,a1,2x,a3,i6,3x,a1,2x,a3,i6)') 
+     &           'SHEET',2,'B',j,2,
+     &           restyp(itl),bfrag(4,j),
+     &           restyp(itk),bfrag(3,j)-1,-1,
+     &           "N",restyp(itk),bfrag(3,j)-1,
+     &           "O",restyp(iti),bfrag(1,j)-1
+
+        else
+
+         itk=itype(bfrag(3,j))
+         itl=itype(bfrag(4,j)-1)
+
+
+        write (iunit,'(a5,i5,1x,a1,i1,i3,1x,a3,i6,2x,a3,i6,i3,
+     &              2x,a1,2x,a3,i6,3x,a1,2x,a3,i6)') 
+     &           'SHEET',2,'B',j,2,
+     &           restyp(itk),bfrag(3,j)-1,
+     &           restyp(itl),bfrag(4,j)-2,1,
+     &           "N",restyp(itk),bfrag(3,j)-1,
+     &           "O",restyp(iti),bfrag(1,j)-1
+
+
+
+        endif
+         
+       enddo
+      endif 
+
+      if (nss.gt.0) then
+        do i=1,nss
+          write(iunit,'(a6,i4,1x,a3,i7,4x,a3,i7)') 
+     &         'SSBOND',i,'CYS',ihpb(i)-1-nres,
+     &                    'CYS',jhpb(i)-1-nres
+        enddo
+      endif
+      
+      iatom=0
+      do i=nnt,nct
+        ires=i-nnt+1
+        iatom=iatom+1
+        ica(i)=iatom
+        iti=itype(i)
+        write (iunit,10) iatom,restyp(iti),ires,(c(j,i),j=1,3),vtot(i)
+        if (iti.ne.10) then
+          iatom=iatom+1
+          write (iunit,20) iatom,restyp(iti),ires,(c(j,nres+i),j=1,3),
+     &      vtot(i+nres)
+        endif
+      enddo
+      write (iunit,'(a)') 'TER'
+      do i=nnt,nct-1
+        if (itype(i).eq.10) then
+          write (iunit,30) ica(i),ica(i+1)
+        else
+          write (iunit,30) ica(i),ica(i+1),ica(i)+1
+        endif
+      enddo
+      if (itype(nct).ne.10) then
+        write (iunit,30) ica(nct),ica(nct)+1
+      endif
+      do i=1,nss
+        write (iunit,30) ica(ihpb(i)-nres)+1,ica(jhpb(i)-nres)+1
+      enddo
+      write (iunit,'(a6)') 'ENDMDL'     
+  10  FORMAT ('ATOM',I7,'  CA  ',A3,I6,4X,3F8.3,f15.3)
+  20  FORMAT ('ATOM',I7,'  CB  ',A3,I6,4X,3F8.3,f15.3)
+  30  FORMAT ('CONECT',8I5)
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine MOL2out(etot,tytul)
+C Prints the Cartesian coordinates of the alpha-carbons in the Tripos mol2 
+C format.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.HEADER'
+      include 'COMMON.SBRIDGE'
+      character*32 tytul,fd
+      character*3 zahl
+      character*6 res_num,pom,ucase
+#ifdef AIX
+      call fdate_(fd)
+#elif (defined CRAY)
+      call date(fd)
+#else
+      call fdate(fd)
+#endif
+      write (imol2,'(a)') '#'
+      write (imol2,'(a)') 
+     & '#         Creating user name:           unres'
+      write (imol2,'(2a)') '#         Creation time:                ',
+     & fd
+      write (imol2,'(/a)') '\@<TRIPOS>MOLECULE'
+      write (imol2,'(a)') tytul
+      write (imol2,'(5i5)') nct-nnt+1,nct-nnt+nss+1,nct-nnt+nss+1,0,0
+      write (imol2,'(a)') 'SMALL'
+      write (imol2,'(a)') 'USER_CHARGES'
+      write (imol2,'(a)') '\@<TRIPOS>ATOM' 
+      do i=nnt,nct
+        write (zahl,'(i3)') i
+        pom=ucase(restyp(itype(i)))
+        res_num = pom(:3)//zahl(2:)
+        write (imol2,10) i,(c(j,i),j=1,3),i,res_num,0.0
+      enddo
+      write (imol2,'(a)') '\@<TRIPOS>BOND'
+      do i=nnt,nct-1
+        write (imol2,'(i5,2i6,i2)') i-nnt+1,i-nnt+1,i-nnt+2,1
+      enddo
+      do i=1,nss
+        write (imol2,'(i5,2i6,i2)') nct-nnt+i,ihpb(i),jhpb(i),1
+      enddo
+      write (imol2,'(a)') '\@<TRIPOS>SUBSTRUCTURE'
+      do i=nnt,nct
+        write (zahl,'(i3)') i
+        pom = ucase(restyp(itype(i)))
+        res_num = pom(:3)//zahl(2:)
+        write (imol2,30) i-nnt+1,res_num,i-nnt+1,0
+      enddo
+  10  FORMAT (I7,' CA      ',3F10.4,' C.3',I8,1X,A,F11.4,' ****')
+  30  FORMAT (I7,1x,A,I14,' RESIDUE',I13,' ****  ****')
+      return
+      end
+c------------------------------------------------------------------------
+      subroutine intout
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      write (iout,'(/a)') 'Geometry of the virtual chain.'
+      write (iout,'(7a)') '  Res  ','         d','     Theta',
+     & '     Gamma','       Dsc','     Alpha','      Beta '
+      do i=1,nres
+       iti=itype(i)
+        write (iout,'(a3,i4,6f10.3)') restyp(iti),i,vbld(i),
+     &     rad2deg*theta(i),rad2deg*phi(i),vbld(nres+i),rad2deg*alph(i),
+     &     rad2deg*omeg(i)
+      enddo
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine briefout(it,ener)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.SBRIDGE'
+c     print '(a,i5)',intname,igeom
+#if defined(AIX) || defined(PGI)
+      open (igeom,file=intname,position='append')
+#else
+      open (igeom,file=intname,access='append')
+#endif
+      IF (NSS.LE.9) THEN
+        WRITE (igeom,180) IT,ENER,NSS,(IHPB(I),JHPB(I),I=1,NSS)
+      ELSE
+        WRITE (igeom,180) IT,ENER,NSS,(IHPB(I),JHPB(I),I=1,9)
+        WRITE (igeom,190) (IHPB(I),JHPB(I),I=10,NSS)
+      ENDIF
+c     IF (nvar.gt.nphi) WRITE (igeom,200) (RAD2DEG*THETA(I),I=3,NRES)
+      WRITE (igeom,200) (RAD2DEG*THETA(I),I=3,NRES)
+      WRITE (igeom,200) (RAD2DEG*PHI(I),I=4,NRES)
+c     if (nvar.gt.nphi+ntheta) then
+        write (igeom,200) (rad2deg*alph(i),i=2,nres-1)
+        write (igeom,200) (rad2deg*omeg(i),i=2,nres-1)
+c     endif
+      close(igeom)
+  180 format (I5,F12.3,I2,9(1X,2I3))
+  190 format (3X,11(1X,2I3))
+  200 format (8F10.4)
+      return
+      end
+#ifdef WINIFL
+      subroutine fdate(fd)
+      character*32 fd
+      write(fd,'(32x)')
+      return
+      end
+#endif
+c----------------------------------------------------------------
+#ifdef NOXDR
+      subroutine cartout(time)
+#else
+      subroutine cartoutx(time)
+#endif
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.HEADER'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.DISTFIT'
+      include 'COMMON.MD'
+      double precision time
+#if defined(AIX) || defined(PGI)
+      open(icart,file=cartname,position="append")
+#else
+      open(icart,file=cartname,access="append")
+#endif
+      write (icart,'(e15.8,2e15.5,f12.5,$)') time,potE,uconst,t_bath
+      write (icart,'(i4,$)')
+     &   nss,(ihpb(j),jhpb(j),j=1,nss)
+       write (icart,'(i4,20f7.4)') nfrag+npair+3*nfrag_back,
+     & (qfrag(i),i=1,nfrag),(qpair(i),i=1,npair),
+     & (utheta(i),ugamma(i),uscdiff(i),i=1,nfrag_back)
+      write (icart,'(8f10.5)')
+     & ((c(k,j),k=1,3),j=1,nres),
+     & ((c(k,j+nres),k=1,3),j=nnt,nct)
+      close(icart)
+      return
+      end
+c-----------------------------------------------------------------
+#ifndef NOXDR
+      subroutine cartout(time)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+#else
+      parameter (me=0)
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.HEADER'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.DISTFIT'
+      include 'COMMON.MD'
+      double precision time
+      integer iret,itmp
+      real xcoord(3,maxres2+2),prec
+
+#ifdef AIX
+      call xdrfopen_(ixdrf,cartname, "a", iret)
+      call xdrffloat_(ixdrf, real(time), iret)
+      call xdrffloat_(ixdrf, real(potE), iret)
+      call xdrffloat_(ixdrf, real(uconst), iret)
+      call xdrffloat_(ixdrf, real(uconst_back), iret)
+      call xdrffloat_(ixdrf, real(t_bath), iret)
+      call xdrfint_(ixdrf, nss, iret) 
+      do j=1,nss
+        call xdrfint_(ixdrf, ihpb(j), iret)
+        call xdrfint_(ixdrf, jhpb(j), iret)
+      enddo
+      call xdrfint_(ixdrf, nfrag+npair+3*nfrag_back, iret)
+      do i=1,nfrag
+        call xdrffloat_(ixdrf, real(qfrag(i)), iret)
+      enddo
+      do i=1,npair
+        call xdrffloat_(ixdrf, real(qpair(i)), iret)
+      enddo
+      do i=1,nfrag_back
+        call xdrffloat_(ixdrf, real(utheta(i)), iret)
+        call xdrffloat_(ixdrf, real(ugamma(i)), iret)
+        call xdrffloat_(ixdrf, real(uscdiff(i)), iret)
+      enddo
+#else
+      call xdrfopen(ixdrf,cartname, "a", iret)
+      call xdrffloat(ixdrf, real(time), iret)
+      call xdrffloat(ixdrf, real(potE), iret)
+      call xdrffloat(ixdrf, real(uconst), iret)
+      call xdrffloat(ixdrf, real(uconst_back), iret)
+      call xdrffloat(ixdrf, real(t_bath), iret)
+      call xdrfint(ixdrf, nss, iret) 
+      do j=1,nss
+        call xdrfint(ixdrf, ihpb(j), iret)
+        call xdrfint(ixdrf, jhpb(j), iret)
+      enddo
+      call xdrfint(ixdrf, nfrag+npair+3*nfrag_back, iret)
+      do i=1,nfrag
+        call xdrffloat(ixdrf, real(qfrag(i)), iret)
+      enddo
+      do i=1,npair
+        call xdrffloat(ixdrf, real(qpair(i)), iret)
+      enddo
+      do i=1,nfrag_back
+        call xdrffloat(ixdrf, real(utheta(i)), iret)
+        call xdrffloat(ixdrf, real(ugamma(i)), iret)
+        call xdrffloat(ixdrf, real(uscdiff(i)), iret)
+      enddo
+#endif
+      prec=10000.0
+      do i=1,nres
+       do j=1,3
+        xcoord(j,i)=c(j,i)
+       enddo
+      enddo
+      do i=nnt,nct
+       do j=1,3
+        xcoord(j,nres+i-nnt+1)=c(j,i+nres)
+       enddo
+      enddo
+
+      itmp=nres+nct-nnt+1
+#ifdef AIX
+      call xdrf3dfcoord_(ixdrf, xcoord, itmp, prec, iret)
+      call xdrfclose_(ixdrf, iret)
+#else
+      call xdrf3dfcoord(ixdrf, xcoord, itmp, prec, iret)
+      call xdrfclose(ixdrf, iret)
+#endif
+      return
+      end
+#endif
+c-----------------------------------------------------------------
+      subroutine statout(itime)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.HEADER'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.DISTFIT'
+      include 'COMMON.MD'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      integer itime
+      double precision energia(0:n_ene)
+      double precision gyrate
+      external gyrate
+      common /gucio/ cm
+      character*256 line1,line2
+      character*4 format1,format2
+      character*30 format
+#ifdef AIX
+      if(itime.eq.0) then
+       open(istat,file=statname,position="append")
+      endif
+#else
+#ifdef PGI
+      open(istat,file=statname,position="append")
+#else
+      open(istat,file=statname,access="append")
+#endif
+#endif
+       if (refstr) then
+         call rms_nac_nnc(rms,frac,frac_nn,co,.false.)
+        if(tnp .or. tnp1 .or. tnh) then
+        write (line1,'(i10,f15.2,3f12.3,f12.6,f7.2,4f6.3,3f12.3,i5,$)')
+     &          itime,totT,EK,potE,totE,hhh,
+     &          rms,frac,frac_nn,co,amax,kinetic_T,t_bath,gyrate(),me
+          format1="a145"
+        else
+          write (line1,'(i10,f15.2,3f12.3,f7.2,4f6.3,3f12.3,i5,$)')
+     &          itime,totT,EK,potE,totE,
+     &          rms,frac,frac_nn,co,amax,kinetic_T,t_bath,gyrate(),me
+          format1="a133"
+        endif
+       else
+        if(tnp .or. tnp1 .or. tnh) then
+          write (line1,'(i10,f15.2,7f12.3,f12.6,i5,$)')
+     &           itime,totT,EK,potE,totE,hhh,
+     &           amax,kinetic_T,t_bath,gyrate(),me
+          format1="a126"
+        else
+          write (line1,'(i10,f15.2,7f12.3,i5,$)')
+     &           itime,totT,EK,potE,totE,
+     &           amax,kinetic_T,t_bath,gyrate(),me
+          format1="a114"
+        endif
+       endif
+        if(usampl.and.totT.gt.eq_time) then
+           write(line2,'(i5,2f9.4,300f7.4)') iset,uconst,uconst_back,
+     &      (qfrag(ii1),ii1=1,nfrag),(qpair(ii2),ii2=1,npair),
+     &      (utheta(i),ugamma(i),uscdiff(i),i=1,nfrag_back)
+           write(format2,'(a1,i3.3)') "a",23+7*nfrag+7*npair
+     &             +21*nfrag_back
+        elseif(hremd.gt.0) then
+           write(line2,'(i5)') iset
+           format2="a005"
+        else
+           format2="a001"
+           line2=' '
+        endif
+        if (print_compon) then
+          write(format,'(a1,a4,a1,a4,a10)') "(",format1,",",format2,
+     &                                                     ",20f12.3)"
+          write (istat,format) line1,line2,
+     &      (potEcomp(print_order(i)),i=1,nprint_ene)
+        else
+          write(format,'(a1,a4,a1,a4,a1)') "(",format1,",",format2,")"
+          write (istat,format) line1,line2
+        endif
+#if defined(AIX)
+        call flush(istat)
+#else
+        close(istat)
+#endif
+       return
+      end
+c---------------------------------------------------------------                     
+      double precision function gyrate()
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CHAIN'
+      double precision cen(3),rg
+
+      do j=1,3
+       cen(j)=0.0d0
+      enddo
+
+      do i=nnt,nct
+          do j=1,3
+            cen(j)=cen(j)+c(j,i)
+          enddo
+      enddo
+      do j=1,3
+            cen(j)=cen(j)/dble(nct-nnt+1)
+      enddo
+      rg = 0.0d0
+      do i = nnt, nct
+        do j=1,3
+         rg = rg + (c(j,i)-cen(j))**2 
+        enddo
+      end do
+      gyrate = sqrt(rg/dble(nct-nnt+1))
+      return
+      end
+
diff --git a/source/unres/src_MD_DFA/gnmr1.f b/source/unres/src_MD_DFA/gnmr1.f
new file mode 100644 (file)
index 0000000..905e746
--- /dev/null
@@ -0,0 +1,43 @@
+      double precision function gnmr1(y,ymin,ymax)
+      implicit none
+      double precision y,ymin,ymax
+      double precision wykl /4.0d0/
+      if (y.lt.ymin) then
+        gnmr1=(ymin-y)**wykl/wykl
+      else if (y.gt.ymax) then
+        gnmr1=(y-ymax)**wykl/wykl
+      else
+        gnmr1=0.0d0
+      endif
+      return
+      end
+c------------------------------------------------------------------------------
+      double precision function gnmr1prim(y,ymin,ymax)
+      implicit none
+      double precision y,ymin,ymax
+      double precision wykl /4.0d0/
+      if (y.lt.ymin) then
+        gnmr1prim=-(ymin-y)**(wykl-1)
+      else if (y.gt.ymax) then
+        gnmr1prim=(y-ymax)**(wykl-1)
+      else
+        gnmr1prim=0.0d0
+      endif
+      return
+      end
+c------------------------------------------------------------------------------
+      double precision function harmonic(y,ymax)
+      implicit none
+      double precision y,ymax
+      double precision wykl /2.0d0/
+      harmonic=(y-ymax)**wykl
+      return
+      end
+c-------------------------------------------------------------------------------
+      double precision function harmonicprim(y,ymax)
+      double precision y,ymin,ymax
+      double precision wykl /2.0d0/
+      harmonicprim=(y-ymax)*wykl
+      return
+      end
+c---------------------------------------------------------------------------------
diff --git a/source/unres/src_MD_DFA/gradient_p.F b/source/unres/src_MD_DFA/gradient_p.F
new file mode 100644 (file)
index 0000000..7fec1e8
--- /dev/null
@@ -0,0 +1,421 @@
+      subroutine gradient(n,x,nf,g,uiparm,urparm,ufparm)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SCCOR'
+      external ufparm
+      integer uiparm(1)
+      double precision urparm(1)
+      dimension x(maxvar),g(maxvar)
+c
+c This subroutine calculates total internal coordinate gradient.
+c Depending on the number of function evaluations, either whole energy 
+c is evaluated beforehand, Cartesian coordinates and their derivatives in 
+c internal coordinates are reevaluated or only the cartesian-in-internal
+c coordinate derivatives are evaluated. The subroutine was designed to work
+c with SUMSL.
+c 
+c
+      icg=mod(nf,2)+1
+
+cd      print *,'grad',nf,icg
+      if (nf-nfl+1) 20,30,40
+   20 call func(n,x,nf,f,uiparm,urparm,ufparm)
+c     write (iout,*) 'grad 20'
+      if (nf.eq.0) return
+      goto 40
+   30 call var_to_geom(n,x)
+      call chainbuild 
+c     write (iout,*) 'grad 30'
+C
+C Evaluate the derivatives of virtual bond lengths and SC vectors in variables.
+C
+   40 call cartder
+c     write (iout,*) 'grad 40'
+c     print *,'GRADIENT: nnt=',nnt,' nct=',nct,' expon=',expon
+C
+C Convert the Cartesian gradient into internal-coordinate gradient.
+C
+      ind=0
+      ind1=0
+      do i=1,nres-2
+       gthetai=0.0D0
+       gphii=0.0D0
+       do j=i+1,nres-1
+          ind=ind+1
+c         ind=indmat(i,j)
+c         print *,'GRAD: i=',i,' jc=',j,' ind=',ind
+         do k=1,3
+            gthetai=gthetai+dcdv(k,ind)*gradc(k,j,icg)
+          enddo
+         do k=1,3
+           gphii=gphii+dcdv(k+3,ind)*gradc(k,j,icg)
+          enddo
+        enddo
+       do j=i+1,nres-1
+          ind1=ind1+1
+c         ind1=indmat(i,j)
+c         print *,'GRAD: i=',i,' jx=',j,' ind1=',ind1
+         do k=1,3
+           gthetai=gthetai+dxdv(k,ind1)*gradx(k,j,icg)
+           gphii=gphii+dxdv(k+3,ind1)*gradx(k,j,icg)
+          enddo
+        enddo
+       if (i.gt.1) g(i-1)=gphii
+       if (n.gt.nphi) g(nphi+i)=gthetai
+      enddo
+      if (n.le.nphi+ntheta) goto 10
+      do i=2,nres-1
+       if (itype(i).ne.10) then
+          galphai=0.0D0
+         gomegai=0.0D0
+         do k=1,3
+           galphai=galphai+dxds(k,i)*gradx(k,i,icg)
+          enddo
+         do k=1,3
+           gomegai=gomegai+dxds(k+3,i)*gradx(k,i,icg)
+          enddo
+          g(ialph(i,1))=galphai
+         g(ialph(i,1)+nside)=gomegai
+        endif
+      enddo
+C
+C Add the components corresponding to local energy terms.
+C
+   10 continue
+      do i=1,nvar
+cd      write (iout,*) 'i=',i,'g=',g(i),' gloc=',gloc(i,icg)
+        g(i)=g(i)+gloc(i,icg)
+      enddo
+C Uncomment following three lines for diagnostics.
+cd    call intout
+cd    call briefout(0,0.0d0)
+cd    write (iout,'(i3,1pe15.5)') (k,g(k),k=1,n)
+      return
+      end
+C-------------------------------------------------------------------------
+      subroutine grad_restr(n,x,nf,g,uiparm,urparm,ufparm)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.IOUNITS'
+      external ufparm
+      integer uiparm(1)
+      double precision urparm(1)
+      dimension x(maxvar),g(maxvar)
+
+      icg=mod(nf,2)+1
+      if (nf-nfl+1) 20,30,40
+   20 call func_restr(n,x,nf,f,uiparm,urparm,ufparm)
+c     write (iout,*) 'grad 20'
+      if (nf.eq.0) return
+      goto 40
+   30 continue
+#ifdef OSF
+c     Intercept NaNs in the coordinates
+c      write(iout,*) (var(i),i=1,nvar)
+      x_sum=0.D0
+      do i=1,n
+        x_sum=x_sum+x(i)
+      enddo
+      if (x_sum.ne.x_sum) then
+        write(iout,*)" *** grad_restr : Found NaN in coordinates"
+        call flush(iout)
+        print *," *** grad_restr : Found NaN in coordinates"
+        return
+      endif
+#endif
+      call var_to_geom_restr(n,x)
+      call chainbuild 
+C
+C Evaluate the derivatives of virtual bond lengths and SC vectors in variables.
+C
+   40 call cartder
+C
+C Convert the Cartesian gradient into internal-coordinate gradient.
+C
+
+      ig=0
+      ind=nres-2                                                                    
+      do i=2,nres-2                
+       IF (mask_phi(i+2).eq.1) THEN                                             
+        gphii=0.0D0                                                             
+        do j=i+1,nres-1                                                         
+          ind=ind+1                                 
+          do k=1,3                                                              
+            gphii=gphii+dcdv(k+3,ind)*gradc(k,j,icg)                            
+            gphii=gphii+dxdv(k+3,ind)*gradx(k,j,icg)                           
+          enddo                                                                 
+        enddo                                                                   
+        ig=ig+1
+        g(ig)=gphii
+       ELSE
+        ind=ind+nres-1-i
+       ENDIF
+      enddo                                        
+
+
+      ind=0
+      do i=1,nres-2
+       IF (mask_theta(i+2).eq.1) THEN
+        ig=ig+1
+       gthetai=0.0D0
+       do j=i+1,nres-1
+          ind=ind+1
+         do k=1,3
+            gthetai=gthetai+dcdv(k,ind)*gradc(k,j,icg)
+            gthetai=gthetai+dxdv(k,ind)*gradx(k,j,icg)
+          enddo
+        enddo
+        g(ig)=gthetai
+       ELSE
+        ind=ind+nres-1-i
+       ENDIF
+      enddo
+
+      do i=2,nres-1
+       if (itype(i).ne.10) then
+         IF (mask_side(i).eq.1) THEN
+          ig=ig+1
+          galphai=0.0D0
+         do k=1,3
+           galphai=galphai+dxds(k,i)*gradx(k,i,icg)
+          enddo
+          g(ig)=galphai
+         ENDIF
+        endif
+      enddo
+
+      
+      do i=2,nres-1
+        if (itype(i).ne.10) then
+         IF (mask_side(i).eq.1) THEN
+          ig=ig+1
+         gomegai=0.0D0
+         do k=1,3
+           gomegai=gomegai+dxds(k+3,i)*gradx(k,i,icg)
+          enddo
+         g(ig)=gomegai
+         ENDIF
+        endif
+      enddo
+
+C
+C Add the components corresponding to local energy terms.
+C
+
+      ig=0
+      igall=0
+      do i=4,nres
+        igall=igall+1
+        if (mask_phi(i).eq.1) then
+          ig=ig+1
+          g(ig)=g(ig)+gloc(igall,icg)
+        endif
+      enddo
+
+      do i=3,nres
+        igall=igall+1
+        if (mask_theta(i).eq.1) then
+          ig=ig+1
+          g(ig)=g(ig)+gloc(igall,icg)
+        endif
+      enddo
+     
+      do ij=1,2
+      do i=2,nres-1
+        if (itype(i).ne.10) then
+          igall=igall+1
+          if (mask_side(i).eq.1) then
+            ig=ig+1
+            g(ig)=g(ig)+gloc(igall,icg)
+          endif
+        endif
+      enddo
+      enddo
+
+cd      do i=1,ig
+cd        write (iout,'(a2,i5,a3,f25.8)') 'i=',i,' g=',g(i)
+cd      enddo
+      return
+      end
+C-------------------------------------------------------------------------
+      subroutine cartgrad
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      include 'COMMON.SCCOR'
+c
+c This subrouting calculates total Cartesian coordinate gradient. 
+c The subroutine chainbuild_cart and energy MUST be called beforehand.
+c
+c        do i=1,nres
+c        write (iout,*) "przed sum_grad", gloc_sc(1,i,icg),gloc(i,icg)
+c        enddo
+
+#ifdef TIMING
+      time00=MPI_Wtime()
+#endif
+      icg=1
+      call sum_gradient
+#ifdef TIMING
+#endif
+c        do i=1,nres
+c        write (iout,*) "checkgrad", gloc_sc(1,i,icg),gloc(i,icg)
+c        enddo     
+cd      write (iout,*) "After sum_gradient"
+cd      do i=1,nres-1
+cd        write (iout,*) i," gradc  ",(gradc(j,i,icg),j=1,3)
+cd        write (iout,*) i," gradx  ",(gradx(j,i,icg),j=1,3)
+cd      enddo
+c If performing constraint dynamics, add the gradients of the constraint energy
+      if(usampl.and.totT.gt.eq_time) then
+         do i=1,nct
+           do j=1,3
+             gradc(j,i,icg)=gradc(j,i,icg)+dudconst(j,i)+duscdiff(j,i)
+             gradx(j,i,icg)=gradx(j,i,icg)+dudxconst(j,i)+duscdiffx(j,i)
+           enddo
+         enddo
+         do i=1,nres-3
+           gloc(i,icg)=gloc(i,icg)+dugamma(i)
+         enddo
+         do i=1,nres-2
+           gloc(nphi+i,icg)=gloc(nphi+i,icg)+dutheta(i)
+         enddo
+      endif 
+#ifdef TIMING
+      time01=MPI_Wtime()
+#endif
+      call intcartderiv
+#ifdef TIMING
+      time_intcartderiv=time_intcartderiv+MPI_Wtime()-time01
+#endif
+cd      call checkintcartgrad
+cd      write(iout,*) 'calling int_to_cart'
+cd      write (iout,*) "gcart, gxcart, gloc before int_to_cart"
+      do i=1,nct
+        do j=1,3
+          gcart(j,i)=gradc(j,i,icg)
+          gxcart(j,i)=gradx(j,i,icg)
+        enddo
+cd        write (iout,'(i5,2(3f10.5,5x),f10.5)') i,(gcart(j,i),j=1,3),
+cd     &    (gxcart(j,i),j=1,3),gloc(i,icg)
+      enddo
+#ifdef TIMING
+      time01=MPI_Wtime()
+#endif
+      call int_to_cart
+#ifdef TIMING
+      time_inttocart=time_inttocart+MPI_Wtime()-time01
+#endif
+cd      write (iout,*) "gcart and gxcart after int_to_cart"
+cd      do i=0,nres-1
+cd        write (iout,'(i5,3f10.5,5x,3f10.5)') i,(gcart(j,i),j=1,3),
+cd     &      (gxcart(j,i),j=1,3)
+cd      enddo
+#ifdef TIMING
+      time_cartgrad=time_cartgrad+MPI_Wtime()-time00
+#endif
+      return
+      end
+C-------------------------------------------------------------------------
+      subroutine zerograd
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      include 'COMMON.SCCOR'
+C
+C Initialize Cartesian-coordinate gradient
+C
+      do i=1,nres
+       do j=1,3
+         gvdwx(j,i)=0.0D0
+          gvdwxT(j,i)=0.0D0
+          gradx_scp(j,i)=0.0D0
+         gvdwc(j,i)=0.0D0
+          gvdwcT(j,i)=0.0D0
+          gvdwc_scp(j,i)=0.0D0
+          gvdwc_scpp(j,i)=0.0d0
+         gelc (j,i)=0.0D0
+         gelc_long(j,i)=0.0D0
+          gradb(j,i)=0.0d0
+          gradbx(j,i)=0.0d0
+          gvdwpp(j,i)=0.0d0
+          gel_loc(j,i)=0.0d0
+          gel_loc_long(j,i)=0.0d0
+         ghpbc(j,i)=0.0D0
+         ghpbx(j,i)=0.0D0
+          gcorr3_turn(j,i)=0.0d0
+          gcorr4_turn(j,i)=0.0d0
+          gradcorr(j,i)=0.0d0
+          gradcorr_long(j,i)=0.0d0
+          gradcorr5_long(j,i)=0.0d0
+          gradcorr6_long(j,i)=0.0d0
+          gcorr6_turn_long(j,i)=0.0d0
+          gradcorr5(j,i)=0.0d0
+          gradcorr6(j,i)=0.0d0
+          gcorr6_turn(j,i)=0.0d0
+          gsccorc(j,i)=0.0d0
+          gsccorx(j,i)=0.0d0
+          gradc(j,i,icg)=0.0d0
+          gradx(j,i,icg)=0.0d0
+          gscloc(j,i)=0.0d0
+          gsclocx(j,i)=0.0d0
+          do intertyp=1,3
+           gloc_sc(intertyp,i,icg)=0.0d0
+          enddo
+        enddo
+      enddo
+C
+C Initialize the gradient of local energy terms.
+C
+      do i=1,4*nres
+        gloc(i,icg)=0.0D0
+      enddo
+      do i=1,nres
+        gel_loc_loc(i)=0.0d0
+        gcorr_loc(i)=0.0d0
+        g_corr5_loc(i)=0.0d0
+        g_corr6_loc(i)=0.0d0
+        gel_loc_turn3(i)=0.0d0
+        gel_loc_turn4(i)=0.0d0
+        gel_loc_turn6(i)=0.0d0
+        gsccor_loc(i)=0.0d0
+      enddo
+c initialize gcart and gxcart
+      do i=0,nres
+        do j=1,3
+          gcart(j,i)=0.0d0
+          gxcart(j,i)=0.0d0
+        enddo
+      enddo
+      return
+      end
+c-------------------------------------------------------------------------
+      double precision function fdum()
+      fdum=0.0D0
+      return
+      end
diff --git a/source/unres/src_MD_DFA/initialize_p.F b/source/unres/src_MD_DFA/initialize_p.F
new file mode 100644 (file)
index 0000000..7db117d
--- /dev/null
@@ -0,0 +1,1390 @@
+      block data
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.MD'
+      data MovTypID
+     &  /'pool','chain regrow','multi-bond','phi','theta','side chain',
+     &   'total'/
+c Conversion from poises to molecular unit and the gas constant
+      data cPoise /2.9361d0/, Rb /0.001986d0/
+      end
+c--------------------------------------------------------------------------
+      subroutine initialize
+C 
+C Define constants and zero out tables.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+#ifndef ISNAN
+      external proc_proc
+#ifdef WINPGI
+cMS$ATTRIBUTES C ::  proc_proc
+#endif
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.TORSION'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.MCM'
+      include 'COMMON.MINIM' 
+      include 'COMMON.DERIV'
+      include 'COMMON.SPLITELE'
+c Common blocks from the diagonalization routines
+      COMMON /IOFILE/ IR,IW,IP,IJK,IPK,IDAF,NAV,IODA(400)
+      COMMON /MACHSW/ KDIAG,ICORFL,IXDR
+      logical mask_r
+c      real*8 text1 /'initial_i'/
+
+      mask_r=.false.
+#ifndef ISNAN
+c NaNQ initialization
+      i=-1
+      arg=100.0d0
+      rr=dacos(arg)
+#ifdef WINPGI
+      idumm=proc_proc(rr,i)
+#else
+      call proc_proc(rr,i)
+#endif
+#endif
+
+      kdiag=0
+      icorfl=0
+      iw=2
+C
+C The following is just to define auxiliary variables used in angle conversion
+C
+      pi=4.0D0*datan(1.0D0)
+      dwapi=2.0D0*pi
+      dwapi3=dwapi/3.0D0
+      pipol=0.5D0*pi
+      deg2rad=pi/180.0D0
+      rad2deg=1.0D0/deg2rad
+      angmin=10.0D0*deg2rad
+C
+C Define I/O units.
+C
+      inp=    1
+      iout=   2
+      ipdbin= 3
+      ipdb=   7
+      icart = 30
+      imol2=  4
+      igeom=  8
+      intin=  9
+      ithep= 11
+      ithep_pdb=51
+      irotam=12
+      irotam_pdb=52
+      itorp= 13
+      itordp= 23
+      ielep= 14
+      isidep=15 
+      iscpp=25
+      icbase=16
+      ifourier=20
+      istat= 17
+      irest1=55
+      irest2=56
+      iifrag=57
+      ientin=18
+      ientout=19
+      ibond = 28
+      isccor = 29
+crc for write_rmsbank1  
+      izs1=21
+cdr  include secondary structure prediction bias
+      isecpred=27
+C
+C CSA I/O units (separated from others especially for Jooyoung)
+C
+      icsa_rbank=30
+      icsa_seed=31
+      icsa_history=32
+      icsa_bank=33
+      icsa_bank1=34
+      icsa_alpha=35
+      icsa_alpha1=36
+      icsa_bankt=37
+      icsa_int=39
+      icsa_bank_reminimized=38
+      icsa_native_int=41
+      icsa_in=40
+crc for ifc error 118
+      icsa_pdb=42
+C
+C Set default weights of the energy terms.
+C
+      wlong=1.0D0
+      welec=1.0D0
+      wtor =1.0D0
+      wang =1.0D0
+      wscloc=1.0D0
+      wstrain=1.0D0
+C
+C Zero out tables.
+C
+      print '(a,$)','Inside initialize'
+c      call memmon_print_usage()
+      do i=1,maxres2
+       do j=1,3
+         c(j,i)=0.0D0
+         dc(j,i)=0.0D0
+        enddo
+      enddo
+      do i=1,maxres
+       do j=1,3
+         xloc(j,i)=0.0D0
+        enddo
+      enddo
+      do i=1,ntyp
+       do j=1,ntyp
+         aa(i,j)=0.0D0
+         bb(i,j)=0.0D0
+         augm(i,j)=0.0D0
+         sigma(i,j)=0.0D0
+         r0(i,j)=0.0D0
+         chi(i,j)=0.0D0
+        enddo
+       do j=1,2
+         bad(i,j)=0.0D0
+        enddo
+       chip(i)=0.0D0
+       alp(i)=0.0D0
+       sigma0(i)=0.0D0
+       sigii(i)=0.0D0
+       rr0(i)=0.0D0
+       a0thet(i)=0.0D0
+       do j=1,2
+         athet(j,i)=0.0D0
+         bthet(j,i)=0.0D0
+        enddo
+       do j=0,3
+         polthet(j,i)=0.0D0
+        enddo
+       do j=1,3
+         gthet(j,i)=0.0D0
+        enddo
+       theta0(i)=0.0D0
+       sig0(i)=0.0D0
+       sigc0(i)=0.0D0
+       do j=1,maxlob
+         bsc(j,i)=0.0D0
+         do k=1,3
+           censc(k,j,i)=0.0D0
+          enddo
+          do k=1,3
+           do l=1,3
+             gaussc(l,k,j,i)=0.0D0
+            enddo
+          enddo
+         nlob(i)=0
+        enddo
+      enddo
+      nlob(ntyp1)=0
+      dsc(ntyp1)=0.0D0
+      do i=1,maxtor
+       itortyp(i)=0
+       do j=1,maxtor
+         do k=1,maxterm
+           v1(k,j,i)=0.0D0
+           v2(k,j,i)=0.0D0
+          enddo
+        enddo
+      enddo
+      do i=1,maxres
+       itype(i)=0
+       itel(i)=0
+      enddo
+C Initialize the bridge arrays
+      ns=0
+      nss=0 
+      nhpb=0
+      do i=1,maxss
+       iss(i)=0
+      enddo
+      do i=1,maxdim
+       dhpb(i)=0.0D0
+      enddo
+      do i=1,maxres
+       ihpb(i)=0
+       jhpb(i)=0
+      enddo
+C
+C Initialize timing.
+C
+      call set_timers
+C
+C Initialize variables used in minimization.
+C   
+c     maxfun=5000
+c     maxit=2000
+      maxfun=500
+      maxit=200
+      tolf=1.0D-2
+      rtolf=5.0D-4
+C 
+C Initialize the variables responsible for the mode of gradient storage.
+C
+      nfl=0
+      icg=1
+C
+C Initialize constants used to split the energy into long- and short-range
+C components
+C
+      r_cut=2.0d0
+      rlamb=0.3d0
+#ifndef SPLITELE
+      nprint_ene=nprint_ene-1
+#endif
+      return
+      end
+c-------------------------------------------------------------------------
+      block data nazwy
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.NAMES'
+      include 'COMMON.FFIELD'
+      data restyp /
+     &'CYS','MET','PHE','ILE','LEU','VAL','TRP','TYR','ALA','GLY','THR',
+     &'SER','GLN','ASN','GLU','ASP','HIS','ARG','LYS','PRO','D'/
+      data onelet /
+     &'C','M','F','I','L','V','W','Y','A','G','T',
+     &'S','Q','N','E','D','H','R','K','P','X'/
+      data potname /'LJ','LJK','BP','GB','GBV'/
+      data ename /
+     &   "EVDW SC-SC","EVDW2 SC-p","EES p-p","ECORR4 ","ECORR5 ",
+     &   "ECORR6 ","EELLO ","ETURN3 ","ETURN4 ","ETURN6 ",
+     &   "EBE bend","ESC SCloc","ETORS ","ETORSD ","EHPB ","EVDWPP ",
+     &   "ESTR ","EVDW2_14 ","UCONST ", "      ","ESCCOR"," "," "/
+      data wname /
+     &   "WSC","WSCP","WELEC","WCORR","WCORR5","WCORR6","WEL_LOC",
+     &   "WTURN3","WTURN4","WTURN6","WANG","WSCLOC","WTOR","WTORD",
+     &   "WSTRAIN","WVDWPP","WBOND","SCAL14","     ","    ","WSCCOR",
+     &   " "," "/
+      data nprint_ene /20/
+      data print_order/1,2,3,11,12,13,14,4,5,6,7,8,9,10,19,18,15,17,16,
+     & 21,0,0,0/
+      end 
+c---------------------------------------------------------------------------
+      subroutine init_int_table
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      integer blocklengths(15),displs(15)
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.LOCAL'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.TORCNSTR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.DERIV'
+      include 'COMMON.CONTACTS'
+      common /przechowalnia/ iturn3_start_all(0:MaxProcs),
+     & iturn3_end_all(0:MaxProcs),iturn4_start_all(0:MaxProcs),
+     & iturn4_end_all(0:MaxProcs),iatel_s_all(0:MaxProcs),
+     & iatel_e_all(0:MaxProcs),ielstart_all(maxres,0:MaxProcs-1),
+     & ielend_all(maxres,0:MaxProcs-1),
+     & ntask_cont_from_all(0:max_fg_procs-1),
+     & itask_cont_from_all(0:max_fg_procs-1,0:max_fg_procs-1),
+     & ntask_cont_to_all(0:max_fg_procs-1),
+     & itask_cont_to_all(0:max_fg_procs-1,0:max_fg_procs-1)
+      integer FG_GROUP,CONT_FROM_GROUP,CONT_TO_GROUP
+      logical scheck,lprint,flag
+#ifdef MPI
+      integer my_sc_int(0:max_fg_Procs-1),my_sc_intt(0:max_fg_Procs),
+     & my_ele_int(0:max_fg_Procs-1),my_ele_intt(0:max_fg_Procs)
+C... Determine the numbers of start and end SC-SC interaction 
+C... to deal with by current processor.
+      do i=0,nfgtasks-1
+        itask_cont_from(i)=fg_rank
+        itask_cont_to(i)=fg_rank
+      enddo
+      lprint=.false.
+      if (lprint)
+     &write (iout,*) 'INIT_INT_TABLE nres=',nres,' nnt=',nnt,' nct=',nct
+      n_sc_int_tot=(nct-nnt+1)*(nct-nnt)/2-nss
+      call int_bounds(n_sc_int_tot,my_sc_inds,my_sc_inde)
+      if (lprint)
+     &  write (iout,*) 'Processor',fg_rank,' CG group',kolor,
+     &  ' absolute rank',MyRank,
+     &  ' n_sc_int_tot',n_sc_int_tot,' my_sc_inds=',my_sc_inds,
+     &  ' my_sc_inde',my_sc_inde
+      ind_sctint=0
+      iatsc_s=0
+      iatsc_e=0
+#endif
+c      lprint=.false.
+      do i=1,maxres
+        nint_gr(i)=0
+        nscp_gr(i)=0
+        do j=1,maxint_gr
+          istart(i,1)=0
+          iend(i,1)=0
+          ielstart(i)=0
+          ielend(i)=0
+          iscpstart(i,1)=0
+          iscpend(i,1)=0    
+        enddo
+      enddo
+      ind_scint=0
+      ind_scint_old=0
+cd    write (iout,*) 'ns=',ns,' nss=',nss,' ihpb,jhpb',
+cd   &   (ihpb(i),jhpb(i),i=1,nss)
+      do i=nnt,nct-1
+        scheck=.false.
+        do ii=1,nss
+          if (ihpb(ii).eq.i+nres) then
+            scheck=.true.
+            jj=jhpb(ii)-nres
+            goto 10
+          endif
+        enddo
+   10   continue
+cd      write (iout,*) 'i=',i,' scheck=',scheck,' jj=',jj
+        if (scheck) then
+          if (jj.eq.i+1) then
+#ifdef MPI
+c            write (iout,*) 'jj=i+1'
+            call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,
+     & iatsc_s,iatsc_e,i+2,nct,nint_gr(i),istart(i,1),iend(i,1),*12)
+#else
+            nint_gr(i)=1
+            istart(i,1)=i+2
+            iend(i,1)=nct
+#endif
+          else if (jj.eq.nct) then
+#ifdef MPI
+c            write (iout,*) 'jj=nct'
+            call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,
+     &  iatsc_s,iatsc_e,i+1,nct-1,nint_gr(i),istart(i,1),iend(i,1),*12)
+#else
+            nint_gr(i)=1
+            istart(i,1)=i+1
+            iend(i,1)=nct-1
+#endif
+          else
+#ifdef MPI
+            call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,
+     & iatsc_s,iatsc_e,i+1,jj-1,nint_gr(i),istart(i,1),iend(i,1),*12)
+            ii=nint_gr(i)+1
+            call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,
+     & iatsc_s,iatsc_e,jj+1,nct,nint_gr(i),istart(i,ii),iend(i,ii),*12)
+#else
+            nint_gr(i)=2
+            istart(i,1)=i+1
+            iend(i,1)=jj-1
+            istart(i,2)=jj+1
+            iend(i,2)=nct
+#endif
+          endif
+        else
+#ifdef MPI
+          call int_partition(ind_scint,my_sc_inds,my_sc_inde,i,
+     &    iatsc_s,iatsc_e,i+1,nct,nint_gr(i),istart(i,1),iend(i,1),*12)
+#else
+          nint_gr(i)=1
+          istart(i,1)=i+1
+          iend(i,1)=nct
+          ind_scint=ind_scint+nct-i
+#endif
+        endif
+#ifdef MPI
+        ind_scint_old=ind_scint
+#endif
+      enddo
+   12 continue
+#ifndef MPI
+      iatsc_s=nnt
+      iatsc_e=nct-1
+#endif
+#ifdef MPI
+      if (lprint) write (*,*) 'Processor',fg_rank,' CG Group',kolor,
+     &   ' absolute rank',myrank,' iatsc_s=',iatsc_s,' iatsc_e=',iatsc_e
+#endif
+      if (lprint) then
+      write (iout,'(a)') 'Interaction array:'
+      do i=iatsc_s,iatsc_e
+        write (iout,'(i3,2(2x,2i3))') 
+     & i,(istart(i,iint),iend(i,iint),iint=1,nint_gr(i))
+      enddo
+      endif
+      ispp=4
+#ifdef MPI
+C Now partition the electrostatic-interaction array
+      npept=nct-nnt
+      nele_int_tot=(npept-ispp)*(npept-ispp+1)/2
+      call int_bounds(nele_int_tot,my_ele_inds,my_ele_inde)
+      if (lprint)
+     & write (*,*) 'Processor',fg_rank,' CG group',kolor,
+     &  ' absolute rank',MyRank,
+     &  ' nele_int_tot',nele_int_tot,' my_ele_inds=',my_ele_inds,
+     &               ' my_ele_inde',my_ele_inde
+      iatel_s=0
+      iatel_e=0
+      ind_eleint=0
+      ind_eleint_old=0
+      do i=nnt,nct-3
+        ijunk=0
+        call int_partition(ind_eleint,my_ele_inds,my_ele_inde,i,
+     &    iatel_s,iatel_e,i+ispp,nct-1,ijunk,ielstart(i),ielend(i),*13)
+      enddo ! i 
+   13 continue
+      if (iatel_s.eq.0) iatel_s=1
+      nele_int_tot_vdw=(npept-2)*(npept-2+1)/2
+c      write (iout,*) "nele_int_tot_vdw",nele_int_tot_vdw
+      call int_bounds(nele_int_tot_vdw,my_ele_inds_vdw,my_ele_inde_vdw)
+c      write (iout,*) "my_ele_inds_vdw",my_ele_inds_vdw,
+c     & " my_ele_inde_vdw",my_ele_inde_vdw
+      ind_eleint_vdw=0
+      ind_eleint_vdw_old=0
+      iatel_s_vdw=0
+      iatel_e_vdw=0
+      do i=nnt,nct-3
+        ijunk=0
+        call int_partition(ind_eleint_vdw,my_ele_inds_vdw,
+     &    my_ele_inde_vdw,i,
+     &    iatel_s_vdw,iatel_e_vdw,i+2,nct-1,ijunk,ielstart_vdw(i),
+     &    ielend_vdw(i),*15)
+c        write (iout,*) i," ielstart_vdw",ielstart_vdw(i),
+c     &   " ielend_vdw",ielend_vdw(i)
+      enddo ! i 
+      if (iatel_s_vdw.eq.0) iatel_s_vdw=1
+   15 continue
+#else
+      iatel_s=nnt
+      iatel_e=nct-5
+      do i=iatel_s,iatel_e
+        ielstart(i)=i+4
+        ielend(i)=nct-1
+      enddo
+      iatel_s_vdw=nnt
+      iatel_e_vdw=nct-3
+      do i=iatel_s_vdw,iatel_e_vdw
+        ielstart_vdw(i)=i+2
+        ielend_vdw(i)=nct-1
+      enddo
+#endif
+      if (lprint) then
+        write (*,'(a)') 'Processor',fg_rank,' CG group',kolor,
+     &  ' absolute rank',MyRank
+        write (iout,*) 'Electrostatic interaction array:'
+        do i=iatel_s,iatel_e
+          write (iout,'(i3,2(2x,2i3))') i,ielstart(i),ielend(i)
+        enddo
+      endif ! lprint
+c     iscp=3
+      iscp=2
+C Partition the SC-p interaction array
+#ifdef MPI
+      nscp_int_tot=(npept-iscp+1)*(npept-iscp+1)
+      call int_bounds(nscp_int_tot,my_scp_inds,my_scp_inde)
+      if (lprint) write (iout,*) 'Processor',fg_rank,' CG group',kolor,
+     &  ' absolute rank',myrank,
+     &  ' nscp_int_tot',nscp_int_tot,' my_scp_inds=',my_scp_inds,
+     &               ' my_scp_inde',my_scp_inde
+      iatscp_s=0
+      iatscp_e=0
+      ind_scpint=0
+      ind_scpint_old=0
+      do i=nnt,nct-1
+        if (i.lt.nnt+iscp) then
+cd        write (iout,*) 'i.le.nnt+iscp'
+          call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,
+     &      iatscp_s,iatscp_e,i+iscp,nct,nscp_gr(i),iscpstart(i,1),
+     &      iscpend(i,1),*14)
+        else if (i.gt.nct-iscp) then
+cd        write (iout,*) 'i.gt.nct-iscp'
+          call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,
+     &      iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),
+     &      iscpend(i,1),*14)
+        else
+          call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,
+     &      iatscp_s,iatscp_e,nnt,i-iscp,nscp_gr(i),iscpstart(i,1),
+     &      iscpend(i,1),*14)
+          ii=nscp_gr(i)+1
+          call int_partition(ind_scpint,my_scp_inds,my_scp_inde,i,
+     &      iatscp_s,iatscp_e,i+iscp,nct,nscp_gr(i),iscpstart(i,ii),
+     &      iscpend(i,ii),*14)
+        endif
+      enddo ! i
+   14 continue
+#else
+      iatscp_s=nnt
+      iatscp_e=nct-1
+      do i=nnt,nct-1
+        if (i.lt.nnt+iscp) then
+          nscp_gr(i)=1
+          iscpstart(i,1)=i+iscp
+          iscpend(i,1)=nct
+        elseif (i.gt.nct-iscp) then
+          nscp_gr(i)=1
+          iscpstart(i,1)=nnt
+          iscpend(i,1)=i-iscp
+        else
+          nscp_gr(i)=2
+          iscpstart(i,1)=nnt
+          iscpend(i,1)=i-iscp
+          iscpstart(i,2)=i+iscp
+          iscpend(i,2)=nct
+        endif 
+      enddo ! i
+#endif
+      if (lprint) then
+        write (iout,'(a)') 'SC-p interaction array:'
+        do i=iatscp_s,iatscp_e
+          write (iout,'(i3,2(2x,2i3))') 
+     &         i,(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
+        enddo
+      endif ! lprint
+C Partition local interactions
+#ifdef MPI
+      call int_bounds(nres-2,loc_start,loc_end)
+      loc_start=loc_start+1
+      loc_end=loc_end+1
+      call int_bounds(nres-2,ithet_start,ithet_end)
+      ithet_start=ithet_start+2
+      ithet_end=ithet_end+2
+      call int_bounds(nct-nnt-2,iturn3_start,iturn3_end) 
+      iturn3_start=iturn3_start+nnt
+      iphi_start=iturn3_start+2
+      iturn3_end=iturn3_end+nnt
+      iphi_end=iturn3_end+2
+      iturn3_start=iturn3_start-1
+      iturn3_end=iturn3_end-1
+      call int_bounds(nres-3,itau_start,itau_end) 
+      itau_start=itau_start+3
+      itau_end=itau_end+3
+      call int_bounds(nres-3,iphi1_start,iphi1_end)
+      iphi1_start=iphi1_start+3
+      iphi1_end=iphi1_end+3
+      call int_bounds(nct-nnt-3,iturn4_start,iturn4_end) 
+      iturn4_start=iturn4_start+nnt
+      iphid_start=iturn4_start+2
+      iturn4_end=iturn4_end+nnt
+      iphid_end=iturn4_end+2
+      iturn4_start=iturn4_start-1
+      iturn4_end=iturn4_end-1
+      call int_bounds(nres-2,ibond_start,ibond_end) 
+      ibond_start=ibond_start+1
+      ibond_end=ibond_end+1
+      call int_bounds(nct-nnt,ibondp_start,ibondp_end) 
+      ibondp_start=ibondp_start+nnt
+      ibondp_end=ibondp_end+nnt
+      call int_bounds1(nres-1,ivec_start,ivec_end) 
+      print *,"Processor",myrank,fg_rank,fg_rank1,
+     &  " ivec_start",ivec_start," ivec_end",ivec_end
+      iset_start=loc_start+2
+      iset_end=loc_end+2
+      if (ndih_constr.eq.0) then
+        idihconstr_start=1
+        idihconstr_end=0
+      else
+        call int_bounds(ndih_constr,idihconstr_start,idihconstr_end)
+      endif
+      nsumgrad=(nres-nnt)*(nres-nnt+1)/2
+      nlen=nres-nnt+1
+      call int_bounds(nsumgrad,ngrad_start,ngrad_end)
+      igrad_start=((2*nlen+1)
+     &    -sqrt(float((2*nlen-1)**2-8*(ngrad_start-1))))/2
+      jgrad_start(igrad_start)=
+     &    ngrad_start-(2*nlen-igrad_start)*(igrad_start-1)/2
+     &    +igrad_start
+      jgrad_end(igrad_start)=nres
+      igrad_end=((2*nlen+1)
+     &    -sqrt(float((2*nlen-1)**2-8*(ngrad_end-1))))/2
+      if (igrad_end.gt.igrad_start) jgrad_start(igrad_end)=igrad_end+1
+      jgrad_end(igrad_end)=ngrad_end-(2*nlen-igrad_end)*(igrad_end-1)/2
+     &    +igrad_end
+      do i=igrad_start+1,igrad_end-1
+        jgrad_start(i)=i+1
+        jgrad_end(i)=nres
+      enddo
+      if (lprint) then 
+        write (*,*) 'Processor:',fg_rank,' CG group',kolor,
+     & ' absolute rank',myrank,
+     & ' loc_start',loc_start,' loc_end',loc_end,
+     & ' ithet_start',ithet_start,' ithet_end',ithet_end,
+     & ' iphi_start',iphi_start,' iphi_end',iphi_end,
+     & ' iphid_start',iphid_start,' iphid_end',iphid_end,
+     & ' ibond_start',ibond_start,' ibond_end',ibond_end,
+     & ' ibondp_start',ibondp_start,' ibondp_end',ibondp_end,
+     & ' iturn3_start',iturn3_start,' iturn3_end',iturn3_end,
+     & ' iturn4_start',iturn4_start,' iturn4_end',iturn4_end,
+     & ' ivec_start',ivec_start,' ivec_end',ivec_end,
+     & ' iset_start',iset_start,' iset_end',iset_end,
+     & ' idihconstr_start',idihconstr_start,' idihconstr_end',
+     &   idihconstr_end
+       write (*,*) 'Processor:',fg_rank,myrank,' igrad_start',
+     &   igrad_start,' igrad_end',igrad_end,' ngrad_start',ngrad_start,
+     &   ' ngrad_end',ngrad_end
+       do i=igrad_start,igrad_end
+         write(*,*) 'Processor:',fg_rank,myrank,i,
+     &    jgrad_start(i),jgrad_end(i)
+       enddo
+      endif
+      if (nfgtasks.gt.1) then
+        call MPI_Allgather(ivec_start,1,MPI_INTEGER,ivec_displ(0),1,
+     &    MPI_INTEGER,FG_COMM1,IERROR)
+        iaux=ivec_end-ivec_start+1
+        call MPI_Allgather(iaux,1,MPI_INTEGER,ivec_count(0),1,
+     &    MPI_INTEGER,FG_COMM1,IERROR)
+        call MPI_Allgather(iset_start-2,1,MPI_INTEGER,iset_displ(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        iaux=iset_end-iset_start+1
+        call MPI_Allgather(iaux,1,MPI_INTEGER,iset_count(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(ibond_start,1,MPI_INTEGER,ibond_displ(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        iaux=ibond_end-ibond_start+1
+        call MPI_Allgather(iaux,1,MPI_INTEGER,ibond_count(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(ithet_start,1,MPI_INTEGER,ithet_displ(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        iaux=ithet_end-ithet_start+1
+        call MPI_Allgather(iaux,1,MPI_INTEGER,ithet_count(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(iphi_start,1,MPI_INTEGER,iphi_displ(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        iaux=iphi_end-iphi_start+1
+        call MPI_Allgather(iaux,1,MPI_INTEGER,iphi_count(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(iphi1_start,1,MPI_INTEGER,iphi1_displ(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        iaux=iphi1_end-iphi1_start+1
+        call MPI_Allgather(iaux,1,MPI_INTEGER,iphi1_count(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+        do i=0,maxprocs-1
+          do j=1,maxres
+            ielstart_all(j,i)=0
+            ielend_all(j,i)=0
+          enddo
+        enddo
+        call MPI_Allgather(iturn3_start,1,MPI_INTEGER,
+     &    iturn3_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(iturn4_start,1,MPI_INTEGER,
+     &    iturn4_start_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(iturn3_end,1,MPI_INTEGER,
+     &    iturn3_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(iturn4_end,1,MPI_INTEGER,
+     &    iturn4_end_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(iatel_s,1,MPI_INTEGER,
+     &    iatel_s_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(iatel_e,1,MPI_INTEGER,
+     &    iatel_e_all(0),1,MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(ielstart(1),maxres,MPI_INTEGER,
+     &    ielstart_all(1,0),maxres,MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(ielend(1),maxres,MPI_INTEGER,
+     &    ielend_all(1,0),maxres,MPI_INTEGER,FG_COMM,IERROR)
+        if (lprint) then
+        write (iout,*) "iatel_s_all",(iatel_s_all(i),i=0,nfgtasks)
+        write (iout,*) "iatel_e_all",(iatel_e_all(i),i=0,nfgtasks)
+        write (iout,*) "iturn3_start_all",
+     &    (iturn3_start_all(i),i=0,nfgtasks-1)
+        write (iout,*) "iturn3_end_all",
+     &    (iturn3_end_all(i),i=0,nfgtasks-1)
+        write (iout,*) "iturn4_start_all",
+     &    (iturn4_start_all(i),i=0,nfgtasks-1)
+        write (iout,*) "iturn4_end_all",
+     &    (iturn4_end_all(i),i=0,nfgtasks-1)
+        write (iout,*) "The ielstart_all array"
+        do i=nnt,nct
+          write (iout,'(20i4)') i,(ielstart_all(i,j),j=0,nfgtasks-1)
+        enddo
+        write (iout,*) "The ielend_all array"
+        do i=nnt,nct
+          write (iout,'(20i4)') i,(ielend_all(i,j),j=0,nfgtasks-1)
+        enddo
+        call flush(iout)
+        endif
+        ntask_cont_from=0
+        ntask_cont_to=0
+        itask_cont_from(0)=fg_rank
+        itask_cont_to(0)=fg_rank
+        flag=.false.
+        do ii=iturn3_start,iturn3_end
+          call add_int(ii,ii+2,iturn3_sent(1,ii),
+     &                 ntask_cont_to,itask_cont_to,flag)
+        enddo
+        do ii=iturn4_start,iturn4_end
+          call add_int(ii,ii+3,iturn4_sent(1,ii),
+     &                 ntask_cont_to,itask_cont_to,flag)
+        enddo
+        do ii=iturn3_start,iturn3_end
+          call add_int_from(ii,ii+2,ntask_cont_from,itask_cont_from)
+        enddo
+        do ii=iturn4_start,iturn4_end
+          call add_int_from(ii,ii+3,ntask_cont_from,itask_cont_from)
+        enddo
+        if (lprint) then
+        write (iout,*) "After turn3 ntask_cont_from",ntask_cont_from,
+     &   " ntask_cont_to",ntask_cont_to
+        write (iout,*) "itask_cont_from",
+     &    (itask_cont_from(i),i=1,ntask_cont_from)
+        write (iout,*) "itask_cont_to",
+     &    (itask_cont_to(i),i=1,ntask_cont_to)
+        call flush(iout)
+        endif
+c        write (iout,*) "Loop forward"
+c        call flush(iout)
+        do i=iatel_s,iatel_e
+c          write (iout,*) "from loop i=",i
+c          call flush(iout)
+          do j=ielstart(i),ielend(i)
+            call add_int_from(i,j,ntask_cont_from,itask_cont_from)
+          enddo
+        enddo
+c        write (iout,*) "Loop backward iatel_e-1",iatel_e-1,
+c     &     " iatel_e",iatel_e
+c        call flush(iout)
+        nat_sent=0
+        do i=iatel_s,iatel_e
+c          write (iout,*) "i",i," ielstart",ielstart(i),
+c     &      " ielend",ielend(i)
+c          call flush(iout)
+          flag=.false.
+          do j=ielstart(i),ielend(i)
+            call add_int(i,j,iint_sent(1,j,nat_sent+1),ntask_cont_to,
+     &                   itask_cont_to,flag)
+          enddo
+          if (flag) then
+            nat_sent=nat_sent+1
+            iat_sent(nat_sent)=i
+          endif
+        enddo
+        if (lprint) then
+        write (iout,*)"After longrange ntask_cont_from",ntask_cont_from,
+     &   " ntask_cont_to",ntask_cont_to
+        write (iout,*) "itask_cont_from",
+     &    (itask_cont_from(i),i=1,ntask_cont_from)
+        write (iout,*) "itask_cont_to",
+     &    (itask_cont_to(i),i=1,ntask_cont_to)
+        call flush(iout)
+        write (iout,*) "iint_sent"
+        do i=1,nat_sent
+          ii=iat_sent(i)
+          write (iout,'(20i4)') ii,(j,(iint_sent(k,j,i),k=1,4),
+     &      j=ielstart(ii),ielend(ii))
+        enddo
+        write (iout,*) "iturn3_sent iturn3_start",iturn3_start,
+     &    " iturn3_end",iturn3_end
+        write (iout,'(20i4)') (i,(iturn3_sent(j,i),j=1,4),
+     &      i=iturn3_start,iturn3_end)
+        write (iout,*) "iturn4_sent iturn4_start",iturn4_start,
+     &    " iturn4_end",iturn4_end
+        write (iout,'(20i4)') (i,(iturn4_sent(j,i),j=1,4),
+     &      i=iturn4_start,iturn4_end)
+        call flush(iout)
+        endif
+        call MPI_Gather(ntask_cont_from,1,MPI_INTEGER,
+     &   ntask_cont_from_all,1,MPI_INTEGER,king,FG_COMM,IERR)
+c        write (iout,*) "Gather ntask_cont_from ended"
+c        call flush(iout)
+        call MPI_Gather(itask_cont_from(0),max_fg_procs,MPI_INTEGER,
+     &   itask_cont_from_all(0,0),max_fg_procs,MPI_INTEGER,king,
+     &   FG_COMM,IERR)
+c        write (iout,*) "Gather itask_cont_from ended"
+c        call flush(iout)
+        call MPI_Gather(ntask_cont_to,1,MPI_INTEGER,ntask_cont_to_all,
+     &   1,MPI_INTEGER,king,FG_COMM,IERR)
+c        write (iout,*) "Gather ntask_cont_to ended"
+c        call flush(iout)
+        call MPI_Gather(itask_cont_to,max_fg_procs,MPI_INTEGER,
+     &   itask_cont_to_all,max_fg_procs,MPI_INTEGER,king,FG_COMM,IERR)
+c        write (iout,*) "Gather itask_cont_to ended"
+c        call flush(iout)
+        if (fg_rank.eq.king) then
+          write (iout,*)"Contact receive task map (proc, #tasks, tasks)"
+          do i=0,nfgtasks-1
+            write (iout,'(20i4)') i,ntask_cont_from_all(i),
+     &       (itask_cont_from_all(j,i),j=1,ntask_cont_from_all(i)) 
+          enddo
+          write (iout,*)
+          call flush(iout)
+          write (iout,*) "Contact send task map (proc, #tasks, tasks)"
+          do i=0,nfgtasks-1
+            write (iout,'(20i4)') i,ntask_cont_to_all(i),
+     &       (itask_cont_to_all(j,i),j=1,ntask_cont_to_all(i)) 
+          enddo
+          write (iout,*)
+          call flush(iout)
+C Check if every send will have a matching receive
+          ncheck_to=0
+          ncheck_from=0
+          do i=0,nfgtasks-1
+            ncheck_to=ncheck_to+ntask_cont_to_all(i)
+            ncheck_from=ncheck_from+ntask_cont_from_all(i)
+          enddo
+          write (iout,*) "Control sums",ncheck_from,ncheck_to
+          if (ncheck_from.ne.ncheck_to) then
+            write (iout,*) "Error: #receive differs from #send."
+            write (iout,*) "Terminating program...!"
+            call flush(iout)
+            flag=.false.
+          else
+            flag=.true.
+            do i=0,nfgtasks-1
+              do j=1,ntask_cont_to_all(i)
+                ii=itask_cont_to_all(j,i)
+                do k=1,ntask_cont_from_all(ii)
+                  if (itask_cont_from_all(k,ii).eq.i) then
+                    if(lprint)write(iout,*)"Matching send/receive",i,ii
+                    exit
+                  endif
+                enddo
+                if (k.eq.ntask_cont_from_all(ii)+1) then
+                  flag=.false.
+                  write (iout,*) "Error: send by",j," to",ii,
+     &            " would have no matching receive"
+                endif
+              enddo
+            enddo
+          endif
+          if (.not.flag) then
+            write (iout,*) "Unmatched sends; terminating program"
+            call flush(iout)
+          endif
+        endif
+        call MPI_Bcast(flag,1,MPI_LOGICAL,king,FG_COMM,IERROR)
+c        write (iout,*) "flag broadcast ended flag=",flag
+c        call flush(iout)
+        if (.not.flag) then
+          call MPI_Finalize(IERROR)
+          stop "Error in INIT_INT_TABLE: unmatched send/receive."
+        endif
+        call MPI_Comm_group(FG_COMM,fg_group,IERR)
+c        write (iout,*) "MPI_Comm_group ended"
+c        call flush(iout)
+        call MPI_Group_incl(fg_group,ntask_cont_from+1,
+     &    itask_cont_from(0),CONT_FROM_GROUP,IERR)
+        call MPI_Group_incl(fg_group,ntask_cont_to+1,itask_cont_to(0),
+     &    CONT_TO_GROUP,IERR)
+        do i=1,nat_sent
+          ii=iat_sent(i)
+          iaux=4*(ielend(ii)-ielstart(ii)+1)
+          call MPI_Group_translate_ranks(fg_group,iaux,
+     &      iint_sent(1,ielstart(ii),i),CONT_TO_GROUP, 
+     &      iint_sent_local(1,ielstart(ii),i),IERR )
+c          write (iout,*) "Ranks translated i=",i
+c          call flush(iout)
+        enddo
+        iaux=4*(iturn3_end-iturn3_start+1)
+        call MPI_Group_translate_ranks(fg_group,iaux,
+     &      iturn3_sent(1,iturn3_start),CONT_TO_GROUP,
+     &      iturn3_sent_local(1,iturn3_start),IERR)
+        iaux=4*(iturn4_end-iturn4_start+1)
+        call MPI_Group_translate_ranks(fg_group,iaux,
+     &      iturn4_sent(1,iturn4_start),CONT_TO_GROUP,
+     &      iturn4_sent_local(1,iturn4_start),IERR)
+        if (lprint) then
+        write (iout,*) "iint_sent_local"
+        do i=1,nat_sent
+          ii=iat_sent(i)
+          write (iout,'(20i4)') ii,(j,(iint_sent_local(k,j,i),k=1,4),
+     &      j=ielstart(ii),ielend(ii))
+          call flush(iout)
+        enddo
+        write (iout,*) "iturn3_sent_local iturn3_start",iturn3_start,
+     &    " iturn3_end",iturn3_end
+        write (iout,'(20i4)') (i,(iturn3_sent_local(j,i),j=1,4),
+     &      i=iturn3_start,iturn3_end)
+        write (iout,*) "iturn4_sent_local iturn4_start",iturn4_start,
+     &    " iturn4_end",iturn4_end
+        write (iout,'(20i4)') (i,(iturn4_sent_local(j,i),j=1,4),
+     &      i=iturn4_start,iturn4_end)
+        call flush(iout)
+        endif
+        call MPI_Group_free(fg_group,ierr)
+        call MPI_Group_free(cont_from_group,ierr)
+        call MPI_Group_free(cont_to_group,ierr)
+        call MPI_Type_contiguous(3,MPI_DOUBLE_PRECISION,MPI_UYZ,IERROR)
+        call MPI_Type_commit(MPI_UYZ,IERROR)
+        call MPI_Type_contiguous(18,MPI_DOUBLE_PRECISION,MPI_UYZGRAD,
+     &    IERROR)
+        call MPI_Type_commit(MPI_UYZGRAD,IERROR)
+        call MPI_Type_contiguous(2,MPI_DOUBLE_PRECISION,MPI_MU,IERROR)
+        call MPI_Type_commit(MPI_MU,IERROR)
+        call MPI_Type_contiguous(4,MPI_DOUBLE_PRECISION,MPI_MAT1,IERROR)
+        call MPI_Type_commit(MPI_MAT1,IERROR)
+        call MPI_Type_contiguous(8,MPI_DOUBLE_PRECISION,MPI_MAT2,IERROR)
+        call MPI_Type_commit(MPI_MAT2,IERROR)
+        call MPI_Type_contiguous(6,MPI_DOUBLE_PRECISION,MPI_THET,IERROR)
+        call MPI_Type_commit(MPI_THET,IERROR)
+        call MPI_Type_contiguous(9,MPI_DOUBLE_PRECISION,MPI_GAM,IERROR)
+        call MPI_Type_commit(MPI_GAM,IERROR)
+#ifndef MATGATHER
+c 9/22/08 Derived types to send matrices which appear in correlation terms
+        do i=0,nfgtasks-1
+          if (ivec_count(i).eq.ivec_count(0)) then
+            lentyp(i)=0
+          else
+            lentyp(i)=1
+          endif
+        enddo
+        do ind_typ=lentyp(0),lentyp(nfgtasks-1)
+        if (ind_typ.eq.0) then
+          ichunk=ivec_count(0)
+        else
+          ichunk=ivec_count(1)
+        endif
+c        do i=1,4
+c          blocklengths(i)=4
+c        enddo
+c        displs(1)=0
+c        do i=2,4
+c          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
+c        enddo
+c        do i=1,4
+c          blocklengths(i)=blocklengths(i)*ichunk
+c        enddo
+c        write (iout,*) "blocklengths and displs"
+c        do i=1,4
+c          write (iout,*) i,blocklengths(i),displs(i)
+c        enddo
+c        call flush(iout)
+c        call MPI_Type_indexed(4,blocklengths(1),displs(1),
+c     &    MPI_DOUBLE_PRECISION,MPI_ROTAT1(ind_typ),IERROR)
+c        call MPI_Type_commit(MPI_ROTAT1(ind_typ),IERROR)
+c        write (iout,*) "MPI_ROTAT1",MPI_ROTAT1 
+c        do i=1,4
+c          blocklengths(i)=2
+c        enddo
+c        displs(1)=0
+c        do i=2,4
+c          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
+c        enddo
+c        do i=1,4
+c          blocklengths(i)=blocklengths(i)*ichunk
+c        enddo
+c        write (iout,*) "blocklengths and displs"
+c        do i=1,4
+c          write (iout,*) i,blocklengths(i),displs(i)
+c        enddo
+c        call flush(iout)
+c        call MPI_Type_indexed(4,blocklengths(1),displs(1),
+c     &    MPI_DOUBLE_PRECISION,MPI_ROTAT2(ind_typ),IERROR)
+c        call MPI_Type_commit(MPI_ROTAT2(ind_typ),IERROR)
+c        write (iout,*) "MPI_ROTAT2",MPI_ROTAT2 
+        do i=1,8
+          blocklengths(i)=2
+        enddo
+        displs(1)=0
+        do i=2,8
+          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
+        enddo
+        do i=1,15
+          blocklengths(i)=blocklengths(i)*ichunk
+        enddo
+        call MPI_Type_indexed(8,blocklengths,displs,
+     &    MPI_DOUBLE_PRECISION,MPI_PRECOMP11(ind_typ),IERROR)
+        call MPI_Type_commit(MPI_PRECOMP11(ind_typ),IERROR)
+        do i=1,8
+          blocklengths(i)=4
+        enddo
+        displs(1)=0
+        do i=2,8
+          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
+        enddo
+        do i=1,15
+          blocklengths(i)=blocklengths(i)*ichunk
+        enddo
+        call MPI_Type_indexed(8,blocklengths,displs,
+     &    MPI_DOUBLE_PRECISION,MPI_PRECOMP12(ind_typ),IERROR)
+        call MPI_Type_commit(MPI_PRECOMP12(ind_typ),IERROR)
+        do i=1,6
+          blocklengths(i)=4
+        enddo
+        displs(1)=0
+        do i=2,6
+          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
+        enddo
+        do i=1,6
+          blocklengths(i)=blocklengths(i)*ichunk
+        enddo
+        call MPI_Type_indexed(6,blocklengths,displs,
+     &    MPI_DOUBLE_PRECISION,MPI_PRECOMP22(ind_typ),IERROR)
+        call MPI_Type_commit(MPI_PRECOMP22(ind_typ),IERROR)
+        do i=1,2
+          blocklengths(i)=8
+        enddo
+        displs(1)=0
+        do i=2,2
+          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
+        enddo
+        do i=1,2
+          blocklengths(i)=blocklengths(i)*ichunk
+        enddo
+        call MPI_Type_indexed(2,blocklengths,displs,
+     &    MPI_DOUBLE_PRECISION,MPI_PRECOMP23(ind_typ),IERROR)
+        call MPI_Type_commit(MPI_PRECOMP23(ind_typ),IERROR)
+        do i=1,4
+          blocklengths(i)=1
+        enddo
+        displs(1)=0
+        do i=2,4
+          displs(i)=displs(i-1)+blocklengths(i-1)*maxres
+        enddo
+        do i=1,4
+          blocklengths(i)=blocklengths(i)*ichunk
+        enddo
+        call MPI_Type_indexed(4,blocklengths,displs,
+     &    MPI_DOUBLE_PRECISION,MPI_ROTAT_OLD(ind_typ),IERROR)
+        call MPI_Type_commit(MPI_ROTAT_OLD(ind_typ),IERROR)
+        enddo
+#endif
+      endif
+      iint_start=ivec_start+1
+      iint_end=ivec_end+1
+      do i=0,nfgtasks-1
+          iint_count(i)=ivec_count(i)
+          iint_displ(i)=ivec_displ(i)
+          ivec_displ(i)=ivec_displ(i)-1
+          iset_displ(i)=iset_displ(i)-1
+          ithet_displ(i)=ithet_displ(i)-1
+          iphi_displ(i)=iphi_displ(i)-1
+          iphi1_displ(i)=iphi1_displ(i)-1
+          ibond_displ(i)=ibond_displ(i)-1
+      enddo
+      if (nfgtasks.gt.1 .and. fg_rank.eq.king 
+     &     .and. (me.eq.0 .or. out1file)) then
+        write (iout,*) "IVEC_DISPL, IVEC_COUNT, ISET_START, ISET_COUNT"
+        do i=0,nfgtasks-1
+          write (iout,*) i,ivec_displ(i),ivec_count(i),iset_displ(i),
+     &      iset_count(i)
+        enddo
+        write (iout,*) "iphi_start",iphi_start," iphi_end",iphi_end,
+     &    " iphi1_start",iphi1_start," iphi1_end",iphi1_end
+        write (iout,*)"IPHI_COUNT, IPHI_DISPL, IPHI1_COUNT, IPHI1_DISPL"
+        do i=0,nfgtasks-1
+          write (iout,*) i,iphi_count(i),iphi_displ(i),iphi1_count(i),
+     &      iphi1_displ(i)
+        enddo
+        write(iout,'(i10,a,i10,a,i10,a/a,i3,a)') n_sc_int_tot,' SC-SC ',
+     & nele_int_tot,' electrostatic and ',nscp_int_tot,
+     & ' SC-p interactions','were distributed among',nfgtasks,
+     & ' fine-grain processors.'
+      endif
+#else
+      loc_start=2
+      loc_end=nres-1
+      ithet_start=3 
+      ithet_end=nres
+      iturn3_start=nnt
+      iturn3_end=nct-3
+      iturn4_start=nnt
+      iturn4_end=nct-4
+      iphi_start=nnt+3
+      iphi_end=nct
+      iphi1_start=4
+      iphi1_end=nres
+      idihconstr_start=1
+      idihconstr_end=ndih_constr
+      iphid_start=iphi_start
+      iphid_end=iphi_end-1
+      itau_start=4
+      itau_end=nres
+      ibond_start=2
+      ibond_end=nres-1
+      ibondp_start=nnt+1
+      ibondp_end=nct
+      ivec_start=1
+      ivec_end=nres-1
+      iset_start=3
+      iset_end=nres+1
+      iint_start=2
+      iint_end=nres-1
+#endif
+      return
+      end 
+#ifdef MPI
+c---------------------------------------------------------------------------
+      subroutine add_int(ii,jj,itask,ntask_cont_to,itask_cont_to,flag)
+      implicit none
+      include "DIMENSIONS"
+      include "COMMON.INTERACT"
+      include "COMMON.SETUP"
+      include "COMMON.IOUNITS"
+      integer ii,jj,itask(4),ntask_cont_to,itask_cont_to(0:MaxProcs-1)
+      logical flag
+      integer iturn3_start_all,iturn3_end_all,iturn4_start_all,
+     & iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
+      common /przechowalnia/ iturn3_start_all(0:MaxProcs),
+     & iturn3_end_all(0:MaxProcs),iturn4_start_all(0:MaxProcs),
+     & iturn4_end_all(0:MaxProcs),iatel_s_all(0:MaxProcs),
+     & iatel_e_all(0:MaxProcs),ielstart_all(maxres,0:MaxProcs-1),
+     & ielend_all(maxres,0:MaxProcs-1)
+      integer iproc,isent,k,l
+c Determines whether to send interaction ii,jj to other processors; a given
+c interaction can be sent to at most 2 processors.
+c Sets flag=.true. if interaction ii,jj needs to be sent to at least 
+c one processor, otherwise flag is unchanged from the input value.
+      isent=0
+      itask(1)=fg_rank
+      itask(2)=fg_rank
+      itask(3)=fg_rank
+      itask(4)=fg_rank
+c      write (iout,*) "ii",ii," jj",jj
+c Loop over processors to check if anybody could need interaction ii,jj
+      do iproc=0,fg_rank-1
+c Check if the interaction matches any turn3 at iproc
+        do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
+          l=k+2
+          if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1
+     &   .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1)
+     &    then 
+c            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj,"kl",k,l
+c            call flush(iout)
+            flag=.true.
+            if (iproc.ne.itask(1).and.iproc.ne.itask(2)
+     &        .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
+              isent=isent+1
+              itask(isent)=iproc
+              call add_task(iproc,ntask_cont_to,itask_cont_to)
+            endif
+          endif
+        enddo
+C Check if the interaction matches any turn4 at iproc
+        do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
+          l=k+3
+          if (k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1
+     &   .or. k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1 .and. l.eq.jj-1)
+     &    then 
+c            write (iout,*) "turn3 to iproc",iproc," ij",ii,jj," kl",k,l
+c            call flush(iout)
+            flag=.true.
+            if (iproc.ne.itask(1).and.iproc.ne.itask(2)
+     &        .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
+              isent=isent+1
+              itask(isent)=iproc
+              call add_task(iproc,ntask_cont_to,itask_cont_to)
+            endif
+          endif
+        enddo
+        if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0 .and. 
+     &  iatel_s_all(iproc).le.ii-1 .and. iatel_e_all(iproc).ge.ii-1)then
+          if (ielstart_all(ii-1,iproc).le.jj-1.and.
+     &        ielend_all(ii-1,iproc).ge.jj-1) then
+            flag=.true.
+            if (iproc.ne.itask(1).and.iproc.ne.itask(2)
+     &        .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
+              isent=isent+1
+              itask(isent)=iproc
+              call add_task(iproc,ntask_cont_to,itask_cont_to)
+            endif
+          endif
+          if (ielstart_all(ii-1,iproc).le.jj+1.and.
+     &        ielend_all(ii-1,iproc).ge.jj+1) then
+            flag=.true.
+            if (iproc.ne.itask(1).and.iproc.ne.itask(2)
+     &        .and.iproc.ne.itask(3).and.iproc.ne.itask(4)) then
+              isent=isent+1
+              itask(isent)=iproc
+              call add_task(iproc,ntask_cont_to,itask_cont_to)
+            endif
+          endif
+        endif
+      enddo
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine add_int_from(ii,jj,ntask_cont_from,itask_cont_from)
+      implicit none
+      include "DIMENSIONS"
+      include "COMMON.INTERACT"
+      include "COMMON.SETUP"
+      include "COMMON.IOUNITS"
+      integer ii,jj,itask(2),ntask_cont_from,
+     & itask_cont_from(0:MaxProcs-1)
+      logical flag
+      integer iturn3_start_all,iturn3_end_all,iturn4_start_all,
+     & iturn4_end_all,iatel_s_all,iatel_e_all,ielstart_all,ielend_all
+      common /przechowalnia/ iturn3_start_all(0:MaxProcs),
+     & iturn3_end_all(0:MaxProcs),iturn4_start_all(0:MaxProcs),
+     & iturn4_end_all(0:MaxProcs),iatel_s_all(0:MaxProcs),
+     & iatel_e_all(0:MaxProcs),ielstart_all(maxres,0:MaxProcs-1),
+     & ielend_all(maxres,0:MaxProcs-1)
+      integer iproc,k,l
+      do iproc=fg_rank+1,nfgtasks-1
+        do k=iturn3_start_all(iproc),iturn3_end_all(iproc)
+          l=k+2
+          if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 
+     &   .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) 
+     &    then
+c            write (iout,*)"turn3 from iproc",iproc," ij",ii,jj," kl",k,l
+            call add_task(iproc,ntask_cont_from,itask_cont_from)
+          endif
+        enddo 
+        do k=iturn4_start_all(iproc),iturn4_end_all(iproc)
+          l=k+3
+          if (k.eq.ii+1 .and. l.eq.jj+1 .or. k.eq.ii+1.and.l.eq.jj-1 
+     &   .or. k.eq.ii-1 .and. l.eq.jj-1 .or. k.eq.ii-1 .and. l.eq.jj+1) 
+     &    then
+c            write (iout,*)"turn4 from iproc",iproc," ij",ii,jj," kl",k,l
+            call add_task(iproc,ntask_cont_from,itask_cont_from)
+          endif
+        enddo 
+        if (iatel_s_all(iproc).gt.0 .and. iatel_e_all(iproc).gt.0) then
+          if (ii+1.ge.iatel_s_all(iproc).and.ii+1.le.iatel_e_all(iproc))
+     &    then
+            if (jj+1.ge.ielstart_all(ii+1,iproc).and.
+     &          jj+1.le.ielend_all(ii+1,iproc)) then
+              call add_task(iproc,ntask_cont_from,itask_cont_from)
+            endif            
+            if (jj-1.ge.ielstart_all(ii+1,iproc).and.
+     &          jj-1.le.ielend_all(ii+1,iproc)) then
+              call add_task(iproc,ntask_cont_from,itask_cont_from)
+            endif
+          endif
+          if (ii-1.ge.iatel_s_all(iproc).and.ii-1.le.iatel_e_all(iproc))
+     &    then
+            if (jj-1.ge.ielstart_all(ii-1,iproc).and.
+     &          jj-1.le.ielend_all(ii-1,iproc)) then
+              call add_task(iproc,ntask_cont_from,itask_cont_from)
+            endif
+            if (jj+1.ge.ielstart_all(ii-1,iproc).and.
+     &          jj+1.le.ielend_all(ii-1,iproc)) then
+               call add_task(iproc,ntask_cont_from,itask_cont_from)
+            endif
+          endif
+        endif
+      enddo
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine add_task(iproc,ntask_cont,itask_cont)
+      implicit none
+      include "DIMENSIONS"
+      integer iproc,ntask_cont,itask_cont(0:MaxProcs-1)
+      integer ii
+      do ii=1,ntask_cont
+        if (itask_cont(ii).eq.iproc) return
+      enddo
+      ntask_cont=ntask_cont+1
+      itask_cont(ntask_cont)=iproc
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine int_bounds(total_ints,lower_bound,upper_bound)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+      integer total_ints,lower_bound,upper_bound
+      integer int4proc(0:max_fg_procs),sint4proc(0:max_fg_procs)
+      nint=total_ints/nfgtasks
+      do i=1,nfgtasks
+        int4proc(i-1)=nint
+      enddo
+      nexcess=total_ints-nint*nfgtasks
+      do i=1,nexcess
+        int4proc(nfgtasks-i)=int4proc(nfgtasks-i)+1
+      enddo
+      lower_bound=0
+      do i=0,fg_rank-1
+        lower_bound=lower_bound+int4proc(i)
+      enddo 
+      upper_bound=lower_bound+int4proc(fg_rank)
+      lower_bound=lower_bound+1
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine int_bounds1(total_ints,lower_bound,upper_bound)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+      integer total_ints,lower_bound,upper_bound
+      integer int4proc(0:max_fg_procs),sint4proc(0:max_fg_procs)
+      nint=total_ints/nfgtasks1
+      do i=1,nfgtasks1
+        int4proc(i-1)=nint
+      enddo
+      nexcess=total_ints-nint*nfgtasks1
+      do i=1,nexcess
+        int4proc(nfgtasks1-i)=int4proc(nfgtasks1-i)+1
+      enddo
+      lower_bound=0
+      do i=0,fg_rank1-1
+        lower_bound=lower_bound+int4proc(i)
+      enddo 
+      upper_bound=lower_bound+int4proc(fg_rank1)
+      lower_bound=lower_bound+1
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine int_partition(int_index,lower_index,upper_index,atom,
+     & at_start,at_end,first_atom,last_atom,int_gr,jat_start,jat_end,*)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      integer int_index,lower_index,upper_index,atom,at_start,at_end,
+     & first_atom,last_atom,int_gr,jat_start,jat_end
+      logical lprn
+      lprn=.false.
+      if (lprn) write (iout,*) 'int_index=',int_index
+      int_index_old=int_index
+      int_index=int_index+last_atom-first_atom+1
+      if (lprn) 
+     &   write (iout,*) 'int_index=',int_index,
+     &               ' int_index_old',int_index_old,
+     &               ' lower_index=',lower_index,
+     &               ' upper_index=',upper_index,
+     &               ' atom=',atom,' first_atom=',first_atom,
+     &               ' last_atom=',last_atom
+      if (int_index.ge.lower_index) then
+        int_gr=int_gr+1
+        if (at_start.eq.0) then
+          at_start=atom
+          jat_start=first_atom-1+lower_index-int_index_old
+        else
+          jat_start=first_atom
+        endif
+        if (lprn) write (iout,*) 'jat_start',jat_start
+        if (int_index.ge.upper_index) then
+          at_end=atom
+          jat_end=first_atom-1+upper_index-int_index_old
+          return1
+        else
+          jat_end=last_atom
+        endif
+        if (lprn) write (iout,*) 'jat_end',jat_end
+      endif
+      return
+      end
+#endif
+c------------------------------------------------------------------------------
+      subroutine hpb_partition
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+#ifdef MPI
+      call int_bounds(nhpb,link_start,link_end)
+      if (.not. out1file) 
+     &  write (iout,*) 'Processor',fg_rank,' CG group',kolor,
+     &  ' absolute rank',MyRank,
+     &  ' nhpb',nhpb,' link_start=',link_start,
+     &  ' link_end',link_end
+#else
+      link_start=1
+      link_end=nhpb
+#endif
+      return
+      end
diff --git a/source/unres/src_MD_DFA/int_to_cart.f b/source/unres/src_MD_DFA/int_to_cart.f
new file mode 100644 (file)
index 0000000..73e8384
--- /dev/null
@@ -0,0 +1,278 @@
+       subroutine int_to_cart
+c--------------------------------------------------------------         
+c  This subroutine converts the energy derivatives from internal 
+c  coordinates to cartesian coordinates
+c-------------------------------------------------------------
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SCCOR' 
+c   calculating dE/ddc1      
+       if (nres.lt.3) goto 18
+c       do i=1,nres
+c c       do intertyp=1,3
+c          write (iout,*) "przed tosyjnymi",i,intertyp,gcart(intertyp,i)
+c     &,gloc_sc(1,i,icg),gloc(i,icg)
+c          enddo
+c       enddo
+       do j=1,3
+         gcart(j,1)=gcart(j,1)+gloc(1,icg)*dphi(j,1,4)
+     &     +gloc(nres-2,icg)*dtheta(j,1,3)      
+         if(itype(2).ne.10) then
+          gcart(j,1)=gcart(j,1)+gloc(ialph(2,1),icg)*dalpha(j,1,2)+
+     &    gloc(ialph(2,1)+nside,icg)*domega(j,1,2)             
+        endif
+       enddo
+c     Calculating the remainder of dE/ddc2
+       do j=1,3
+         gcart(j,2)=gcart(j,2)+gloc(1,icg)*dphi(j,2,4)+
+     &  gloc(nres-2,icg)*dtheta(j,2,3)+gloc(nres-1,icg)*dtheta(j,1,4)
+        if(itype(2).ne.10) then
+          gcart(j,2)=gcart(j,2)+gloc(ialph(2,1),icg)*dalpha(j,2,2)+
+     &    gloc(ialph(2,1)+nside,icg)*domega(j,2,2)
+        endif
+               if(itype(3).ne.10) then
+         gcart(j,2)=gcart(j,2)+gloc(ialph(3,1),icg)*dalpha(j,1,3)+
+     &    gloc(ialph(3,1)+nside,icg)*domega(j,1,3)
+        endif
+        if(nres.gt.4) then
+          gcart(j,2)=gcart(j,2)+gloc(2,icg)*dphi(j,1,5)
+        endif                  
+       enddo
+c  If there are only five residues       
+       if(nres.eq.5) then
+         do j=1,3
+           gcart(j,3)=gcart(j,3)+gloc(1,icg)*dphi(j,3,4)+gloc(2,icg)*
+     &     dphi(j,2,5)+gloc(nres-1,icg)*dtheta(j,2,4)+gloc(nres,icg)*
+     &     dtheta(j,1,5)
+         if(itype(3).ne.10) then
+          gcart(j,3)=gcart(j,3)+gloc(ialph(3,1),icg)*
+     &    dalpha(j,2,3)+gloc(ialph(3,1)+nside,icg)*domega(j,2,3)
+         endif
+        if(itype(4).ne.10) then
+          gcart(j,3)=gcart(j,3)+gloc(ialph(4,1),icg)*
+     &    dalpha(j,1,4)+gloc(ialph(4,1)+nside,icg)*domega(j,1,4)
+         endif
+       enddo
+       endif
+c    If there are more than five residues
+      if(nres.gt.5) then                          
+        do i=3,nres-3
+         do j=1,3
+          gcart(j,i)=gcart(j,i)+gloc(i-2,icg)*dphi(j,3,i+1)
+     &    +gloc(i-1,icg)*dphi(j,2,i+2)+
+     &    gloc(i,icg)*dphi(j,1,i+3)+gloc(nres+i-4,icg)*dtheta(j,2,i+1)+
+     &    gloc(nres+i-3,icg)*dtheta(j,1,i+2)
+          if(itype(i).ne.10) then
+           gcart(j,i)=gcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,2,i)+
+     &     gloc(ialph(i,1)+nside,icg)*domega(j,2,i)
+          endif
+          if(itype(i+1).ne.10) then
+           gcart(j,i)=gcart(j,i)+gloc(ialph(i+1,1),icg)*dalpha(j,1,i+1)
+     &     +gloc(ialph(i+1,1)+nside,icg)*domega(j,1,i+1)
+          endif
+         enddo
+        enddo
+      endif    
+c  Setting dE/ddnres-2       
+      if(nres.gt.5) then
+         do j=1,3
+           gcart(j,nres-2)=gcart(j,nres-2)+gloc(nres-4,icg)*
+     &    dphi(j,3,nres-1)+gloc(nres-3,icg)*dphi(j,2,nres)
+     &     +gloc(2*nres-6,icg)*
+     &     dtheta(j,2,nres-1)+gloc(2*nres-5,icg)*dtheta(j,1,nres)
+          if(itype(nres-2).ne.10) then
+              gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-2,1),icg)*
+     &       dalpha(j,2,nres-2)+gloc(ialph(nres-2,1)+nside,icg)*
+     &        domega(j,2,nres-2)
+          endif
+          if(itype(nres-1).ne.10) then
+             gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-1,1),icg)*
+     &      dalpha(j,1,nres-1)+gloc(ialph(nres-1,1)+nside,icg)*
+     &       domega(j,1,nres-1)
+          endif
+         enddo
+      endif 
+c  Settind dE/ddnres-1       
+       do j=1,3
+        gcart(j,nres-1)=gcart(j,nres-1)+gloc(nres-3,icg)*dphi(j,3,nres)+
+     & gloc(2*nres-5,icg)*dtheta(j,2,nres)
+        if(itype(nres-1).ne.10) then
+          gcart(j,nres-1)=gcart(j,nres-1)+gloc(ialph(nres-1,1),icg)*
+     &   dalpha(j,2,nres-1)+gloc(ialph(nres-1,1)+nside,icg)*
+     &    domega(j,2,nres-1)
+        endif
+        enddo
+c   The side-chain vector derivatives
+        do i=2,nres-1
+         if(itype(i).ne.10) then       
+            do j=1,3   
+              gxcart(j,i)=gxcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,3,i)
+     &        +gloc(ialph(i,1)+nside,icg)*domega(j,3,i)
+            enddo
+         endif     
+       enddo                                                                                                                                                   
+c----------------------------------------------------------------------
+C INTERTYP=1 SC...Ca...Ca...Ca
+C INTERTYP=2 Ca...Ca...Ca...SC
+C INTERTYP=3 SC...Ca...Ca...SC
+c   calculating dE/ddc1      
+  18   continue
+c       do i=1,nres
+c       gloc(i,icg)=0.0D0
+c          write (iout,*) "poczotkoawy",i,gloc_sc(1,i,icg)
+c       enddo
+       if (nres.lt.2) return
+       if ((nres.lt.3).and.(itype(1).eq.10)) return
+       if ((itype(1).ne.10).and.(itype(1).ne.21)) then
+        do j=1,3
+cc Derviative was calculated for oposite vector of side chain therefore
+c there is "-" sign before gloc_sc
+         gxcart(j,1)=gxcart(j,1)-gloc_sc(1,0,icg)*
+     &     dtauangle(j,1,1,3)
+         gcart(j,1)=gcart(j,1)+gloc_sc(1,0,icg)*
+     &     dtauangle(j,1,2,3)
+          if ((itype(2).ne.10).and.(itype(2).ne.21)) then
+         gxcart(j,1)= gxcart(j,1)
+     &               -gloc_sc(3,0,icg)*dtauangle(j,3,1,3)
+         gcart(j,1)=gcart(j,1)+gloc_sc(3,0,icg)*
+     &       dtauangle(j,3,2,3)
+          endif
+       enddo
+       endif
+         if ((nres.ge.3).and.(itype(3).ne.10).and.(itype(3).ne.21))
+     & then
+         do j=1,3
+         gcart(j,1)=gcart(j,1)+gloc_sc(2,1,icg)*dtauangle(j,2,1,4)
+         enddo
+         endif
+c   As potetnial DO NOT depend on omicron anlge their derivative is
+c   ommited 
+c     &     +gloc_sc(intertyp,nres-2,icg)*dtheta(j,1,3)         
+     
+c     Calculating the remainder of dE/ddc2
+       do j=1,3
+         if((itype(2).ne.10).and.(itype(2).ne.21)) then
+           if (itype(1).ne.10) gxcart(j,2)=gxcart(j,2)+
+     &                         gloc_sc(3,0,icg)*dtauangle(j,3,3,3)
+        if ((itype(3).ne.10).and.(nres.ge.3).and.(itype(3).ne.21)) then
+           gxcart(j,2)=gxcart(j,2)-gloc_sc(3,1,icg)*dtauangle(j,3,1,4)
+cc                  the   - above is due to different vector direction
+           gcart(j,2)=gcart(j,2)+gloc_sc(3,1,icg)*dtauangle(j,3,2,4)
+          endif
+          if (nres.gt.3) then
+           gxcart(j,2)=gxcart(j,2)-gloc_sc(1,1,icg)*dtauangle(j,1,1,4)
+cc                  the   - above is due to different vector direction
+           gcart(j,2)=gcart(j,2)+gloc_sc(1,1,icg)*dtauangle(j,1,2,4)
+c          write(iout,*) gloc_sc(1,1,icg),dtauangle(j,1,2,4),"gcart"
+c           write(iout,*) gloc_sc(1,1,icg),dtauangle(j,1,1,4),"gx"
+          endif
+         endif
+         if ((itype(1).ne.10).and.(itype(1).ne.21)) then
+          gcart(j,2)=gcart(j,2)+gloc_sc(1,0,icg)*dtauangle(j,1,3,3)
+c           write(iout,*)  gloc_sc(1,0,icg),dtauangle(j,1,3,3)
+         endif
+         if ((itype(3).ne.10).and.(nres.ge.3)) then
+          gcart(j,2)=gcart(j,2)+gloc_sc(2,1,icg)*dtauangle(j,2,2,4)
+c           write(iout,*) gloc_sc(2,1,icg),dtauangle(j,2,2,4)
+         endif
+         if ((itype(4).ne.10).and.(nres.ge.4)) then
+          gcart(j,2)=gcart(j,2)+gloc_sc(2,2,icg)*dtauangle(j,2,1,5)
+c           write(iout,*) gloc_sc(2,2,icg),dtauangle(j,2,1,5)
+         endif
+
+c      write(iout,*) gcart(j,2),itype(2),itype(1),itype(3), "gcart2"
+       enddo
+c    If there are more than five residues
+      if(nres.ge.5) then                          
+        do i=3,nres-2
+         do j=1,3
+c          write(iout,*) "before", gcart(j,i)
+          if (itype(i).ne.10) then
+          gxcart(j,i)=gxcart(j,i)+gloc_sc(2,i-2,icg)
+     &    *dtauangle(j,2,3,i+1)
+     &    -gloc_sc(1,i-1,icg)*dtauangle(j,1,1,i+2)
+          gcart(j,i)=gcart(j,i)+gloc_sc(1,i-1,icg)
+     &    *dtauangle(j,1,2,i+2)
+c                   write(iout,*) "new",j,i,
+c     &  gcart(j,i),gloc_sc(1,i-1,icg),dtauangle(j,1,2,i+2)
+
+          if (itype(i-1).ne.10) then
+           gxcart(j,i)=gxcart(j,i)+gloc_sc(3,i-2,icg)
+     &*dtauangle(j,3,3,i+1)
+          endif
+          if (itype(i+1).ne.10) then
+           gxcart(j,i)=gxcart(j,i)-gloc_sc(3,i-1,icg)
+     &*dtauangle(j,3,1,i+2)
+           gcart(j,i)=gcart(j,i)+gloc_sc(3,i-1,icg)
+     &*dtauangle(j,3,2,i+2)
+          endif
+          endif
+          if (itype(i-1).ne.10) then
+           gcart(j,i)=gcart(j,i)+gloc_sc(1,i-2,icg)*
+     &     dtauangle(j,1,3,i+1)
+          endif
+          if (itype(i+1).ne.10) then
+           gcart(j,i)=gcart(j,i)+gloc_sc(2,i-1,icg)*
+     &     dtauangle(j,2,2,i+2)
+c          write(iout,*) "numer",i,gloc_sc(2,i-1,icg),
+c     &    dtauangle(j,2,2,i+2)
+          endif
+          if (itype(i+2).ne.10) then
+           gcart(j,i)=gcart(j,i)+gloc_sc(2,i,icg)*
+     &     dtauangle(j,2,1,i+3)
+          endif
+         enddo
+        enddo
+      endif    
+c  Setting dE/ddnres-1       
+      if(nres.ge.4) then
+         do j=1,3
+         if ((itype(nres-1).ne.10).and.(itype(nres-1).ne.21)) then
+         gxcart(j,nres-1)=gxcart(j,nres-1)+gloc_sc(2,nres-3,icg)
+     &    *dtauangle(j,2,3,nres)
+c          write (iout,*) "gxcart(nres-1)", gloc_sc(2,nres-3,icg),
+c     &     dtauangle(j,2,3,nres), gxcart(j,nres-1)
+         if (itype(nres-2).ne.10) then
+        gxcart(j,nres-1)=gxcart(j,nres-1)+gloc_sc(3,nres-3,icg)
+     &    *dtauangle(j,3,3,nres)
+          endif
+         if ((itype(nres).ne.10).and.(itype(nres).ne.21)) then
+        gxcart(j,nres-1)=gxcart(j,nres-1)-gloc_sc(3,nres-2,icg)
+     &    *dtauangle(j,3,1,nres+1)
+        gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(3,nres-2,icg)
+     &    *dtauangle(j,3,2,nres+1)
+          endif
+         endif
+         if ((itype(nres-2).ne.10).and.(itype(nres-2).ne.21)) then
+            gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(1,nres-3,icg)*
+     &   dtauangle(j,1,3,nres)
+         endif
+          if ((itype(nres).ne.10).and.(itype(nres).ne.21)) then
+            gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(2,nres-2,icg)*
+     &     dtauangle(j,2,2,nres+1)
+c           write (iout,*) "gcart(nres-1)", gloc_sc(2,nres-2,icg),
+c     &     dtauangle(j,2,2,nres+1), itype(nres-1),itype(nres)
+           endif
+         enddo
+      endif 
+c  Settind dE/ddnres       
+       if ((nres.ge.3).and.(itype(nres).ne.10))then
+       do j=1,3
+        gxcart(j,nres)=gxcart(j,nres)+gloc_sc(3,nres-2,icg)
+     & *dtauangle(j,3,3,nres+1)+gloc_sc(2,nres-2,icg)
+     & *dtauangle(j,2,3,nres+1)
+        enddo
+       endif
+c   The side-chain vector derivatives
+      return
+      end      
+       
+       
diff --git a/source/unres/src_MD_DFA/intcartderiv.F b/source/unres/src_MD_DFA/intcartderiv.F
new file mode 100644 (file)
index 0000000..c220540
--- /dev/null
@@ -0,0 +1,725 @@
+      subroutine intcartderiv
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.SCCOR'
+      double precision dcostheta(3,2,maxres),
+     & dcosphi(3,3,maxres),dsinphi(3,3,maxres),
+     & dcosalpha(3,3,maxres),dcosomega(3,3,maxres),
+     & dsinomega(3,3,maxres),vo1(3),vo2(3),vo3(3),
+     & dummy(3),vp1(3),vp2(3),vp3(3),vpp1(3),n(3)
+       
+#if defined(MPI) && defined(PARINTDER)
+      if (nfgtasks.gt.1 .and. me.eq.king) 
+     &  call MPI_Bcast(8,1,MPI_INTEGER,king,FG_COMM,IERROR)
+#endif
+      pi4 = 0.5d0*pipol
+      pi34 = 3*pi4
+      
+c      write (iout,*) "iphi1_start",iphi1_start," iphi1_end",iphi1_end      
+c Derivatives of theta's
+#if defined(MPI) && defined(PARINTDER)
+c We need dtheta(:,:,i-1) to compute dphi(:,:,i)
+      do i=max0(ithet_start-1,3),ithet_end
+#else
+      do i=3,nres
+#endif
+        cost=dcos(theta(i))
+       sint=sqrt(1-cost*cost)
+        do j=1,3
+          dcostheta(j,1,i)=-(dc_norm(j,i-1)+cost*dc_norm(j,i-2))/
+     &   vbld(i-1)
+          dtheta(j,1,i)=-1/sint*dcostheta(j,1,i)     
+          dcostheta(j,2,i)=-(dc_norm(j,i-2)+cost*dc_norm(j,i-1))/
+     &   vbld(i)
+          dtheta(j,2,i)=-1/sint*dcostheta(j,2,i)     
+        enddo
+      enddo
+
+#if defined(MPI) && defined(PARINTDER)
+c We need dtheta(:,:,i-1) to compute dphi(:,:,i)
+      do i=max0(ithet_start-1,3),ithet_end
+#else
+      do i=3,nres
+#endif
+      if ((itype(i-1).ne.10).and.(itype(i-1).ne.21)) then
+        cost1=dcos(omicron(1,i))
+       sint1=sqrt(1-cost1*cost1)
+        cost2=dcos(omicron(2,i))
+        sint2=sqrt(1-cost2*cost2)
+        do j=1,3
+CC Calculate derivative over first omicron (Cai-2,Cai-1,SCi-1) 
+          dcosomicron(j,1,1,i)=-(dc_norm(j,i-1+nres)+
+     &    cost1*dc_norm(j,i-2))/
+     &   vbld(i-1)
+          domicron(j,1,1,i)=-1/sint1*dcosomicron(j,1,1,i)     
+          dcosomicron(j,1,2,i)=-(dc_norm(j,i-2)
+     &    +cost1*(dc_norm(j,i-1+nres)))/
+     &   vbld(i-1+nres)
+          domicron(j,1,2,i)=-1/sint1*dcosomicron(j,1,2,i)  
+CC Calculate derivative over second omicron Sci-1,Cai-1 Cai
+CC Looks messy but better than if in loop
+          dcosomicron(j,2,1,i)=-(-dc_norm(j,i-1+nres)
+     &    +cost2*dc_norm(j,i-1))/
+     &    vbld(i)
+          domicron(j,2,1,i)=-1/sint2*dcosomicron(j,2,1,i)
+          dcosomicron(j,2,2,i)=-(dc_norm(j,i-1)
+     &     +cost2*(-dc_norm(j,i-1+nres)))/
+     &    vbld(i-1+nres)
+c          write(iout,*) "vbld", i,itype(i),vbld(i-1+nres)
+          domicron(j,2,2,i)=-1/sint2*dcosomicron(j,2,2,i)   
+        enddo
+       endif
+      enddo
+
+
+      
+c Derivatives of phi:
+c If phi is 0 or 180 degrees, then the formulas 
+c have to be derived by power series expansion of the
+c conventional formulas around 0 and 180.
+#ifdef PARINTDER
+      do i=iphi1_start,iphi1_end
+#else
+      do i=4,nres      
+#endif
+c the conventional case
+        sint=dsin(theta(i))
+       sint1=dsin(theta(i-1))
+        sing=dsin(phi(i))
+       cost=dcos(theta(i))
+        cost1=dcos(theta(i-1))
+       cosg=dcos(phi(i))
+        scalp=scalar(dc_norm(1,i-3),dc_norm(1,i-1))
+        fac0=1.0d0/(sint1*sint)
+        fac1=cost*fac0
+        fac2=cost1*fac0
+        fac3=cosg*cost1/(sint1*sint1)
+        fac4=cosg*cost/(sint*sint)
+c    Obtaining the gamma derivatives from sine derivative                               
+       if (phi(i).gt.-pi4.and.phi(i).le.pi4.or.
+     &     phi(i).gt.pi34.and.phi(i).le.pi.or.
+     &     phi(i).gt.-pi.and.phi(i).le.-pi34) then
+         call vecpr(dc_norm(1,i-1),dc_norm(1,i-2),vp1)
+         call vecpr(dc_norm(1,i-3),dc_norm(1,i-1),vp2)
+         call vecpr(dc_norm(1,i-3),dc_norm(1,i-2),vp3) 
+         do j=1,3
+            ctgt=cost/sint
+            ctgt1=cost1/sint1
+            cosg_inv=1.0d0/cosg
+           dsinphi(j,1,i)=-sing*ctgt1*dtheta(j,1,i-1)
+     &        -(fac0*vp1(j)+sing*dc_norm(j,i-3))*vbld_inv(i-2)
+            dphi(j,1,i)=cosg_inv*dsinphi(j,1,i)
+            dsinphi(j,2,i)=
+     &        -sing*(ctgt1*dtheta(j,2,i-1)+ctgt*dtheta(j,1,i))
+     &        -(fac0*vp2(j)+sing*dc_norm(j,i-2))*vbld_inv(i-1)
+            dphi(j,2,i)=cosg_inv*dsinphi(j,2,i)
+c Bug fixed 3/24/05 (AL)
+            dsinphi(j,3,i)=-sing*ctgt*dtheta(j,2,i)
+     &        +(fac0*vp3(j)-sing*dc_norm(j,i-1))*vbld_inv(i)
+c     &        +(fac0*vp3(j)-sing*dc_norm(j,i-1))*vbld_inv(i-1)
+            dphi(j,3,i)=cosg_inv*dsinphi(j,3,i)
+        enddo                                              
+c   Obtaining the gamma derivatives from cosine derivative
+        else
+           do j=1,3
+           dcosphi(j,1,i)=fac1*dcostheta(j,1,i-1)+fac3*
+     &    dcostheta(j,1,i-1)-fac0*(dc_norm(j,i-1)-scalp*
+     &     dc_norm(j,i-3))/vbld(i-2)
+           dphi(j,1,i)=-1/sing*dcosphi(j,1,i)       
+           dcosphi(j,2,i)=fac1*dcostheta(j,2,i-1)+fac2*
+     &    dcostheta(j,1,i)+fac3*dcostheta(j,2,i-1)+fac4*
+     &     dcostheta(j,1,i)
+           dphi(j,2,i)=-1/sing*dcosphi(j,2,i)      
+           dcosphi(j,3,i)=fac2*dcostheta(j,2,i)+fac4*
+     &    dcostheta(j,2,i)-fac0*(dc_norm(j,i-3)-scalp*
+     &     dc_norm(j,i-1))/vbld(i)
+           dphi(j,3,i)=-1/sing*dcosphi(j,3,i)       
+         enddo
+        endif                                                                                           
+      enddo
+
+Calculate derivative of Tauangle
+#ifdef PARINTDER
+      do i=itau_start,itau_end
+#else
+      do i=3,nres
+#endif
+       if ((itype(i-2).eq.21).or.(itype(i-2).eq.10)) cycle
+cc dtauangle(j,intertyp,dervityp,residue number)
+cc INTERTYP=1 SC...Ca...Ca..Ca
+c the conventional case
+        sint=dsin(theta(i))
+        sint1=dsin(omicron(2,i-1))
+        sing=dsin(tauangle(1,i))
+        cost=dcos(theta(i))
+        cost1=dcos(omicron(2,i-1))
+        cosg=dcos(tauangle(1,i))
+        do j=1,3
+        dc_norm2(j,i-2+nres)=-dc_norm(j,i-2+nres)
+cc       write(iout,*) dc_norm2(j,i-2+nres),"dcnorm"
+        enddo
+        scalp=scalar(dc_norm2(1,i-2+nres),dc_norm(1,i-1))
+        fac0=1.0d0/(sint1*sint)
+        fac1=cost*fac0
+        fac2=cost1*fac0
+        fac3=cosg*cost1/(sint1*sint1)
+        fac4=cosg*cost/(sint*sint)
+cc         write(iout,*) "faki",fac0,fac1,fac2,fac3,fac4
+c    Obtaining the gamma derivatives from sine derivative                                
+       if (tauangle(1,i).gt.-pi4.and.tauangle(1,i).le.pi4.or.
+     &     tauangle(1,i).gt.pi34.and.tauangle(1,i).le.pi.or.
+     &     tauangle(1,i).gt.-pi.and.tauangle(1,i).le.-pi34) then
+         call vecpr(dc_norm(1,i-1),dc_norm(1,i-2),vp1)
+         call vecpr(dc_norm2(1,i-2+nres),dc_norm(1,i-1),vp2)
+         call vecpr(dc_norm2(1,i-2+nres),dc_norm(1,i-2),vp3)
+        do j=1,3
+            ctgt=cost/sint
+            ctgt1=cost1/sint1
+            cosg_inv=1.0d0/cosg
+            dsintau(j,1,1,i)=-sing*ctgt1*domicron(j,2,2,i-1)
+     &-(fac0*vp1(j)+sing*(dc_norm2(j,i-2+nres)))
+     & *vbld_inv(i-2+nres)
+            dtauangle(j,1,1,i)=cosg_inv*dsintau(j,1,1,i)
+            dsintau(j,1,2,i)=
+     &        -sing*(ctgt1*domicron(j,2,1,i-1)+ctgt*dtheta(j,1,i))
+     &        -(fac0*vp2(j)+sing*dc_norm(j,i-2))*vbld_inv(i-1)
+c            write(iout,*) "dsintau", dsintau(j,1,2,i)
+            dtauangle(j,1,2,i)=cosg_inv*dsintau(j,1,2,i)
+c Bug fixed 3/24/05 (AL)
+            dsintau(j,1,3,i)=-sing*ctgt*dtheta(j,2,i)
+     &        +(fac0*vp3(j)-sing*dc_norm(j,i-1))*vbld_inv(i)
+c     &        +(fac0*vp3(j)-sing*dc_norm(j,i-1))*vbld_inv(i-1)
+            dtauangle(j,1,3,i)=cosg_inv*dsintau(j,1,3,i)
+         enddo                                          
+c   Obtaining the gamma derivatives from cosine derivative
+        else
+           do j=1,3
+           dcostau(j,1,1,i)=fac1*dcosomicron(j,2,2,i-1)+fac3*
+     &     dcosomicron(j,2,2,i-1)-fac0*(dc_norm(j,i-1)-scalp*
+     &     (dc_norm2(j,i-2+nres)))/vbld(i-2+nres)
+           dtauangle(j,1,1,i)=-1/sing*dcostau(j,1,1,i)
+           dcostau(j,1,2,i)=fac1*dcosomicron(j,2,1,i-1)+fac2*
+     &     dcostheta(j,1,i)+fac3*dcosomicron(j,2,1,i-1)+fac4*
+     &     dcostheta(j,1,i)
+           dtauangle(j,1,2,i)=-1/sing*dcostau(j,1,2,i)
+           dcostau(j,1,3,i)=fac2*dcostheta(j,2,i)+fac4*
+     &     dcostheta(j,2,i)-fac0*(-dc_norm(j,i-2+nres)-scalp*
+     &     dc_norm(j,i-1))/vbld(i)
+           dtauangle(j,1,3,i)=-1/sing*dcostau(j,1,3,i)
+c         write (iout,*) "else",i
+         enddo
+        endif
+c        do k=1,3                 
+c        write(iout,*) "tu",i,k,(dtauangle(j,1,k,i),j=1,3)        
+c        enddo                
+      enddo
+CC Second case Ca...Ca...Ca...SC
+#ifdef PARINTDER
+      do i=itau_start,itau_end
+#else
+      do i=4,nres
+#endif
+       if ((itype(i-1).eq.21).or.(itype(i-1).eq.10)) cycle
+c the conventional case
+        sint=dsin(omicron(1,i))
+        sint1=dsin(theta(i-1))
+        sing=dsin(tauangle(2,i))
+        cost=dcos(omicron(1,i))
+        cost1=dcos(theta(i-1))
+        cosg=dcos(tauangle(2,i))
+c        do j=1,3
+c        dc_norm2(j,i-1+nres)=-dc_norm(j,i-1+nres)
+c        enddo
+        scalp=scalar(dc_norm(1,i-3),dc_norm(1,i-1+nres))
+        fac0=1.0d0/(sint1*sint)
+        fac1=cost*fac0
+        fac2=cost1*fac0
+        fac3=cosg*cost1/(sint1*sint1)
+        fac4=cosg*cost/(sint*sint)
+c    Obtaining the gamma derivatives from sine derivative                                
+       if (tauangle(2,i).gt.-pi4.and.tauangle(2,i).le.pi4.or.
+     &     tauangle(2,i).gt.pi34.and.tauangle(2,i).le.pi.or.
+     &     tauangle(2,i).gt.-pi.and.tauangle(2,i).le.-pi34) then
+         call vecpr(dc_norm2(1,i-1+nres),dc_norm(1,i-2),vp1)
+         call vecpr(dc_norm(1,i-3),dc_norm(1,i-1+nres),vp2)
+         call vecpr(dc_norm(1,i-3),dc_norm(1,i-2),vp3)
+        do j=1,3
+            ctgt=cost/sint
+            ctgt1=cost1/sint1
+            cosg_inv=1.0d0/cosg
+            dsintau(j,2,1,i)=-sing*ctgt1*dtheta(j,1,i-1)
+     &        +(fac0*vp1(j)-sing*dc_norm(j,i-3))*vbld_inv(i-2)
+c       write(iout,*) i,j,dsintau(j,2,1,i),sing*ctgt1*dtheta(j,1,i-1),
+c     &fac0*vp1(j),sing*dc_norm(j,i-3),vbld_inv(i-2),"dsintau(2,1)"
+            dtauangle(j,2,1,i)=cosg_inv*dsintau(j,2,1,i)
+            dsintau(j,2,2,i)=
+     &        -sing*(ctgt1*dtheta(j,2,i-1)+ctgt*domicron(j,1,1,i))
+     &        -(fac0*vp2(j)+sing*dc_norm(j,i-2))*vbld_inv(i-1)
+c            write(iout,*) "sprawdzenie",i,j,sing*ctgt1*dtheta(j,2,i-1),
+c     & sing*ctgt*domicron(j,1,2,i),
+c     & (fac0*vp2(j)+sing*dc_norm(j,i-2))*vbld_inv(i-1)
+            dtauangle(j,2,2,i)=cosg_inv*dsintau(j,2,2,i)
+c Bug fixed 3/24/05 (AL)
+            dsintau(j,2,3,i)=-sing*ctgt*domicron(j,1,2,i)
+     &       +(fac0*vp3(j)-sing*dc_norm(j,i-1+nres))*vbld_inv(i-1+nres)
+c     &        +(fac0*vp3(j)-sing*dc_norm(j,i-1))*vbld_inv(i-1)
+            dtauangle(j,2,3,i)=cosg_inv*dsintau(j,2,3,i)
+         enddo                                          
+c   Obtaining the gamma derivatives from cosine derivative
+        else
+           do j=1,3
+           dcostau(j,2,1,i)=fac1*dcostheta(j,1,i-1)+fac3*
+     &     dcostheta(j,1,i-1)-fac0*(dc_norm(j,i-1+nres)-scalp*
+     &     dc_norm(j,i-3))/vbld(i-2)
+           dtauangle(j,2,1,i)=-1/sing*dcostau(j,2,1,i)
+           dcostau(j,2,2,i)=fac1*dcostheta(j,2,i-1)+fac2*
+     &     dcosomicron(j,1,1,i)+fac3*dcostheta(j,2,i-1)+fac4*
+     &     dcosomicron(j,1,1,i)
+           dtauangle(j,2,2,i)=-1/sing*dcostau(j,2,2,i)
+           dcostau(j,2,3,i)=fac2*dcosomicron(j,1,2,i)+fac4*
+     &     dcosomicron(j,1,2,i)-fac0*(dc_norm(j,i-3)-scalp*
+     &     dc_norm(j,i-1+nres))/vbld(i-1+nres)
+           dtauangle(j,2,3,i)=-1/sing*dcostau(j,2,3,i)
+c        write(iout,*) i,j,"else", dtauangle(j,2,3,i) 
+         enddo
+        endif                                                                                            
+      enddo
+
+
+CCC third case SC...Ca...Ca...SC
+#ifdef PARINTDER
+
+      do i=itau_start,itau_end
+#else
+      do i=3,nres
+#endif
+c the conventional case
+      if ((itype(i-1).eq.21).or.(itype(i-1).eq.10).or.
+     &(itype(i-2).eq.21).or.(itype(i-2).eq.10)) cycle
+        sint=dsin(omicron(1,i))
+        sint1=dsin(omicron(2,i-1))
+        sing=dsin(tauangle(3,i))
+        cost=dcos(omicron(1,i))
+        cost1=dcos(omicron(2,i-1))
+        cosg=dcos(tauangle(3,i))
+        do j=1,3
+        dc_norm2(j,i-2+nres)=-dc_norm(j,i-2+nres)
+c        dc_norm2(j,i-1+nres)=-dc_norm(j,i-1+nres)
+        enddo
+        scalp=scalar(dc_norm2(1,i-2+nres),dc_norm(1,i-1+nres))
+        fac0=1.0d0/(sint1*sint)
+        fac1=cost*fac0
+        fac2=cost1*fac0
+        fac3=cosg*cost1/(sint1*sint1)
+        fac4=cosg*cost/(sint*sint)
+c    Obtaining the gamma derivatives from sine derivative                                
+       if (tauangle(3,i).gt.-pi4.and.tauangle(3,i).le.pi4.or.
+     &     tauangle(3,i).gt.pi34.and.tauangle(3,i).le.pi.or.
+     &     tauangle(3,i).gt.-pi.and.tauangle(3,i).le.-pi34) then
+         call vecpr(dc_norm(1,i-1+nres),dc_norm(1,i-2),vp1)
+         call vecpr(dc_norm2(1,i-2+nres),dc_norm(1,i-1+nres),vp2)
+         call vecpr(dc_norm2(1,i-2+nres),dc_norm(1,i-2),vp3)
+        do j=1,3
+            ctgt=cost/sint
+            ctgt1=cost1/sint1
+            cosg_inv=1.0d0/cosg
+            dsintau(j,3,1,i)=-sing*ctgt1*domicron(j,2,2,i-1)
+     &        -(fac0*vp1(j)-sing*dc_norm(j,i-2+nres))
+     &        *vbld_inv(i-2+nres)
+            dtauangle(j,3,1,i)=cosg_inv*dsintau(j,3,1,i)
+            dsintau(j,3,2,i)=
+     &        -sing*(ctgt1*domicron(j,2,1,i-1)+ctgt*domicron(j,1,1,i))
+     &        -(fac0*vp2(j)+sing*dc_norm(j,i-2))*vbld_inv(i-1)
+            dtauangle(j,3,2,i)=cosg_inv*dsintau(j,3,2,i)
+c Bug fixed 3/24/05 (AL)
+            dsintau(j,3,3,i)=-sing*ctgt*domicron(j,1,2,i)
+     &        +(fac0*vp3(j)-sing*dc_norm(j,i-1+nres))
+     &        *vbld_inv(i-1+nres)
+c     &        +(fac0*vp3(j)-sing*dc_norm(j,i-1))*vbld_inv(i-1)
+            dtauangle(j,3,3,i)=cosg_inv*dsintau(j,3,3,i)
+         enddo                                          
+c   Obtaining the gamma derivatives from cosine derivative
+        else
+           do j=1,3
+           dcostau(j,3,1,i)=fac1*dcosomicron(j,2,2,i-1)+fac3*
+     &     dcosomicron(j,2,2,i-1)-fac0*(dc_norm(j,i-1+nres)-scalp*
+     &     dc_norm2(j,i-2+nres))/vbld(i-2+nres)
+           dtauangle(j,3,1,i)=-1/sing*dcostau(j,3,1,i)
+           dcostau(j,3,2,i)=fac1*dcosomicron(j,2,1,i-1)+fac2*
+     &     dcosomicron(j,1,1,i)+fac3*dcosomicron(j,2,1,i-1)+fac4*
+     &     dcosomicron(j,1,1,i)
+           dtauangle(j,3,2,i)=-1/sing*dcostau(j,3,2,i)
+           dcostau(j,3,3,i)=fac2*dcosomicron(j,1,2,i)+fac4*
+     &     dcosomicron(j,1,2,i)-fac0*(dc_norm2(j,i-2+nres)-scalp*
+     &     dc_norm(j,i-1+nres))/vbld(i-1+nres)
+           dtauangle(j,3,3,i)=-1/sing*dcostau(j,3,3,i)
+c          write(iout,*) "else",i 
+         enddo
+        endif                                                                                            
+      enddo
+#ifdef CRYST_SC
+c   Derivatives of side-chain angles alpha and omega
+#if defined(MPI) && defined(PARINTDER)
+        do i=ibond_start,ibond_end
+#else
+        do i=2,nres-1          
+#endif
+          if(itype(i).ne.10) then        
+             fac5=1.0d0/dsqrt(2*(1+dcos(theta(i+1))))
+             fac6=fac5/vbld(i)
+             fac7=fac5*fac5
+             fac8=fac5/vbld(i+1)     
+             fac9=fac5/vbld(i+nres)                 
+             scala1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
+            scala2=scalar(dc_norm(1,i),dc_norm(1,i+nres))
+            cosa=dsqrt(0.5d0/(1.0d0+dcos(theta(i+1))))*(
+     &       scalar(dC_norm(1,i),dC_norm(1,i+nres))
+     &       -scalar(dC_norm(1,i-1),dC_norm(1,i+nres)))
+             sina=sqrt(1-cosa*cosa)
+             sino=dsin(omeg(i))                                                                                                     
+             do j=1,3    
+                dcosalpha(j,1,i)=fac6*(scala1*dc_norm(j,i-1)-
+     &          dc_norm(j,i+nres))-cosa*fac7*dcostheta(j,1,i+1)
+                dalpha(j,1,i)=-1/sina*dcosalpha(j,1,i)
+                dcosalpha(j,2,i)=fac8*(dc_norm(j,i+nres)-
+     &          scala2*dc_norm(j,i))-cosa*fac7*dcostheta(j,2,i+1)
+                dalpha(j,2,i)=-1/sina*dcosalpha(j,2,i)
+                dcosalpha(j,3,i)=(fac9*(dc_norm(j,i)-
+     &         dc_norm(j,i-1))-(cosa*dc_norm(j,i+nres))/
+     &          vbld(i+nres))
+                dalpha(j,3,i)=-1/sina*dcosalpha(j,3,i)
+                   enddo
+c obtaining the derivatives of omega from sines            
+            if(omeg(i).gt.-pi4.and.omeg(i).le.pi4.or.
+     &         omeg(i).gt.pi34.and.omeg(i).le.pi.or.
+     &         omeg(i).gt.-pi.and.omeg(i).le.-pi34) then
+               fac15=dcos(theta(i+1))/(dsin(theta(i+1))*
+     &        dsin(theta(i+1)))
+               fac16=dcos(alph(i))/(dsin(alph(i))*dsin(alph(i)))
+               fac17=1.0d0/(dsin(theta(i+1))*dsin(alph(i)))            
+               call vecpr(dc_norm(1,i+nres),dc_norm(1,i),vo1)
+               call vecpr(dc_norm(1,i+nres),dc_norm(1,i-1),vo2)
+               call vecpr(dc_norm(1,i),dc_norm(1,i-1),vo3)
+               coso_inv=1.0d0/dcos(omeg(i))                           
+               do j=1,3
+                 dsinomega(j,1,i)=sino*(fac15*dcostheta(j,1,i+1)
+     &           +fac16*dcosalpha(j,1,i))-fac17/vbld(i)*vo1(j)-(
+     &           sino*dc_norm(j,i-1))/vbld(i)
+                 domega(j,1,i)=coso_inv*dsinomega(j,1,i)
+                 dsinomega(j,2,i)=sino*(fac15*dcostheta(j,2,i+1)
+     &           +fac16*dcosalpha(j,2,i))+fac17/vbld(i+1)*vo2(j)
+     &           -sino*dc_norm(j,i)/vbld(i+1)
+                 domega(j,2,i)=coso_inv*dsinomega(j,2,i)                                                      
+                 dsinomega(j,3,i)=sino*fac16*dcosalpha(j,3,i)-
+     &           fac17/vbld(i+nres)*vo3(j)-sino*dc_norm(j,i+nres)/
+     &           vbld(i+nres)
+                 domega(j,3,i)=coso_inv*dsinomega(j,3,i)
+              enddo                             
+           else
+c   obtaining the derivatives of omega from cosines
+             fac10=sqrt(0.5d0*(1-dcos(theta(i+1))))
+             fac11=sqrt(0.5d0*(1+dcos(theta(i+1))))
+             fac12=fac10*sina
+             fac13=fac12*fac12
+             fac14=sina*sina
+             do j=1,3                                   
+                dcosomega(j,1,i)=(-(0.25d0*cosa/fac11*
+     &         dcostheta(j,1,i+1)+fac11*dcosalpha(j,1,i))*fac12+
+     &          (0.25d0/fac10*sina*dcostheta(j,1,i+1)+cosa/sina*
+     &          fac10*dcosalpha(j,1,i))*(scala2-fac11*cosa))/fac13
+                domega(j,1,i)=-1/sino*dcosomega(j,1,i)
+                dcosomega(j,2,i)=(((dc_norm(j,i+nres)-scala2*
+     &         dc_norm(j,i))/vbld(i+1)-0.25d0*cosa/fac11*
+     &          dcostheta(j,2,i+1)-fac11*dcosalpha(j,2,i))*fac12+
+     &          (scala2-fac11*cosa)*(0.25d0*sina/fac10*
+     &          dcostheta(j,2,i+1)+fac10*cosa/sina*dcosalpha(j,2,i)
+     &          ))/fac13
+                domega(j,2,i)=-1/sino*dcosomega(j,2,i)                 
+                dcosomega(j,3,i)=1/fac10*((1/vbld(i+nres)*(dc_norm(j,i)-
+     &          scala2*dc_norm(j,i+nres))-fac11*dcosalpha(j,3,i))*sina+
+     &          (scala2-fac11*cosa)*(cosa/sina*dcosalpha(j,3,i)))/fac14
+                domega(j,3,i)=-1/sino*dcosomega(j,3,i)                         
+            enddo          
+         endif
+        endif   
+       enddo                                         
+#endif
+#if defined(MPI) && defined(PARINTDER)
+      if (nfgtasks.gt.1) then
+#ifdef DEBUG
+       write (iout,*) "Gather dtheta"
+cd      call flush(iout)
+c      write (iout,*) "dtheta before gather"
+c      do i=1,nres
+c        write (iout,'(i3,3(3f8.5,3x))') i,((dtheta(j,k,i),k=1,3),j=1,2)
+c      enddo
+#endif
+      call MPI_Gatherv(dtheta(1,1,ithet_start),ithet_count(fg_rank),
+     &  MPI_THET,dtheta(1,1,1),ithet_count(0),ithet_displ(0),MPI_THET,
+     &  king,FG_COMM,IERROR)
+#ifdef DEBUG
+cd      write (iout,*) "Gather dphi"
+cd      call flush(iout)
+      write (iout,*) "dphi before gather"
+      do i=1,nres
+        write (iout,'(i3,3(3f8.5,3x))') i,((dphi(j,k,i),k=1,3),j=1,3)
+      enddo
+#endif
+      call MPI_Gatherv(dphi(1,1,iphi1_start),iphi1_count(fg_rank),
+     &  MPI_GAM,dphi(1,1,1),iphi1_count(0),iphi1_displ(0),MPI_GAM,
+     &  king,FG_COMM,IERROR)
+cd      write (iout,*) "Gather dalpha"
+cd      call flush(iout)
+#ifdef CRYST_SC
+      call MPI_Gatherv(dalpha(1,1,ibond_start),ibond_count(fg_rank),
+     &  MPI_GAM,dalpha(1,1,1),ibond_count(0),ibond_displ(0),MPI_GAM,
+     &  king,FG_COMM,IERROR)
+cd      write (iout,*) "Gather domega"
+cd      call flush(iout)
+      call MPI_Gatherv(domega(1,1,ibond_start),ibond_count(fg_rank),
+     &  MPI_GAM,domega(1,1,1),ibond_count(0),ibond_displ(0),MPI_GAM,
+     &  king,FG_COMM,IERROR)
+#endif
+      endif
+#endif
+#ifdef DEBUG
+      write (iout,*) "dtheta after gather"
+      do i=1,nres
+        write (iout,'(i3,3(3f8.5,3x))') i,((dtheta(j,k,i),j=1,3),j=1,2)
+      enddo
+      write (iout,*) "dphi after gather"
+      do i=1,nres
+        write (iout,'(i3,3(3f8.5,3x))') i,((dphi(j,k,i),j=1,3),k=1,3)
+      enddo
+#endif
+      return
+      end
+       
+      subroutine checkintcartgrad
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CHAIN' 
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SETUP'
+      double precision dthetanum(3,2,maxres),dphinum(3,3,maxres)
+     & ,dalphanum(3,3,maxres), domeganum(3,3,maxres)
+      double precision theta_s(maxres),phi_s(maxres),alph_s(maxres),
+     & omeg_s(maxres),dc_norm_s(3)
+      double precision aincr /1.0d-5/
+      
+      do i=1,nres
+        phi_s(i)=phi(i)
+        theta_s(i)=theta(i)    
+        alph_s(i)=alph(i)
+        omeg_s(i)=omeg(i)
+      enddo
+c Check theta gradient
+      write (iout,*) 
+     & "Analytical (upper) and numerical (lower) gradient of theta"
+      write (iout,*) 
+      do i=3,nres
+        do j=1,3
+          dcji=dc(j,i-2)
+          dc(j,i-2)=dcji+aincr
+          call chainbuild_cart
+          call int_from_cart1(.false.)
+          dthetanum(j,1,i)=(theta(i)-theta_s(i))/aincr 
+          dc(j,i-2)=dcji
+          dcji=dc(j,i-1)
+          dc(j,i-1)=dc(j,i-1)+aincr
+          call chainbuild_cart   
+          dthetanum(j,2,i)=(theta(i)-theta_s(i))/aincr
+          dc(j,i-1)=dcji
+        enddo 
+        write (iout,'(i5,3f10.5,5x,3f10.5)') i,(dtheta(j,1,i),j=1,3),
+     &    (dtheta(j,2,i),j=1,3)
+        write (iout,'(5x,3f10.5,5x,3f10.5)') (dthetanum(j,1,i),j=1,3),
+     &    (dthetanum(j,2,i),j=1,3)
+        write (iout,'(5x,3f10.5,5x,3f10.5)') 
+     &    (dthetanum(j,1,i)/dtheta(j,1,i),j=1,3),
+     &    (dthetanum(j,2,i)/dtheta(j,2,i),j=1,3)
+        write (iout,*)
+      enddo
+c Check gamma gradient
+      write (iout,*) 
+     & "Analytical (upper) and numerical (lower) gradient of gamma"
+      do i=4,nres
+        do j=1,3
+          dcji=dc(j,i-3)
+          dc(j,i-3)=dcji+aincr
+          call chainbuild_cart
+          dphinum(j,1,i)=(phi(i)-phi_s(i))/aincr  
+         dc(j,i-3)=dcji
+          dcji=dc(j,i-2)
+          dc(j,i-2)=dcji+aincr
+          call chainbuild_cart
+          dphinum(j,2,i)=(phi(i)-phi_s(i))/aincr 
+          dc(j,i-2)=dcji
+          dcji=dc(j,i-1)
+          dc(j,i-1)=dc(j,i-1)+aincr
+          call chainbuild_cart
+          dphinum(j,3,i)=(phi(i)-phi_s(i))/aincr
+          dc(j,i-1)=dcji
+        enddo 
+        write (iout,'(i5,3(3f10.5,5x))') i,(dphi(j,1,i),j=1,3),
+     &    (dphi(j,2,i),j=1,3),(dphi(j,3,i),j=1,3)
+        write (iout,'(5x,3(3f10.5,5x))') (dphinum(j,1,i),j=1,3),
+     &    (dphinum(j,2,i),j=1,3),(dphinum(j,3,i),j=1,3)
+        write (iout,'(5x,3(3f10.5,5x))') 
+     &    (dphinum(j,1,i)/dphi(j,1,i),j=1,3),
+     &    (dphinum(j,2,i)/dphi(j,2,i),j=1,3),
+     &    (dphinum(j,3,i)/dphi(j,3,i),j=1,3)
+        write (iout,*)
+      enddo
+c Check alpha gradient
+      write (iout,*) 
+     & "Analytical (upper) and numerical (lower) gradient of alpha"
+      do i=2,nres-1
+       if(itype(i).ne.10) then
+                   do j=1,3
+             dcji=dc(j,i-1)
+                     dc(j,i-1)=dcji+aincr
+              call chainbuild_cart
+              dalphanum(j,1,i)=(alph(i)-alph_s(i))
+     &       /aincr  
+             dc(j,i-1)=dcji
+              dcji=dc(j,i)
+              dc(j,i)=dcji+aincr
+              call chainbuild_cart
+              dalphanum(j,2,i)=(alph(i)-alph_s(i))
+     &       /aincr 
+              dc(j,i)=dcji
+              dcji=dc(j,i+nres)
+              dc(j,i+nres)=dc(j,i+nres)+aincr
+              call chainbuild_cart
+              dalphanum(j,3,i)=(alph(i)-alph_s(i))
+     &       /aincr
+             dc(j,i+nres)=dcji
+            enddo
+          endif             
+        write (iout,'(i5,3(3f10.5,5x))') i,(dalpha(j,1,i),j=1,3),
+     &    (dalpha(j,2,i),j=1,3),(dalpha(j,3,i),j=1,3)
+        write (iout,'(5x,3(3f10.5,5x))') (dalphanum(j,1,i),j=1,3),
+     &    (dalphanum(j,2,i),j=1,3),(dalphanum(j,3,i),j=1,3)
+        write (iout,'(5x,3(3f10.5,5x))') 
+     &    (dalphanum(j,1,i)/dalpha(j,1,i),j=1,3),
+     &    (dalphanum(j,2,i)/dalpha(j,2,i),j=1,3),
+     &    (dalphanum(j,3,i)/dalpha(j,3,i),j=1,3)
+        write (iout,*)
+      enddo
+c     Check omega gradient
+      write (iout,*) 
+     & "Analytical (upper) and numerical (lower) gradient of omega"
+      do i=2,nres-1
+       if(itype(i).ne.10) then
+                   do j=1,3
+             dcji=dc(j,i-1)
+                     dc(j,i-1)=dcji+aincr
+              call chainbuild_cart
+              domeganum(j,1,i)=(omeg(i)-omeg_s(i))
+     &       /aincr  
+             dc(j,i-1)=dcji
+              dcji=dc(j,i)
+              dc(j,i)=dcji+aincr
+              call chainbuild_cart
+              domeganum(j,2,i)=(omeg(i)-omeg_s(i))
+     &       /aincr 
+              dc(j,i)=dcji
+              dcji=dc(j,i+nres)
+              dc(j,i+nres)=dc(j,i+nres)+aincr
+              call chainbuild_cart
+              domeganum(j,3,i)=(omeg(i)-omeg_s(i))
+     &       /aincr
+             dc(j,i+nres)=dcji
+            enddo
+          endif             
+        write (iout,'(i5,3(3f10.5,5x))') i,(domega(j,1,i),j=1,3),
+     &    (domega(j,2,i),j=1,3),(domega(j,3,i),j=1,3)
+        write (iout,'(5x,3(3f10.5,5x))') (domeganum(j,1,i),j=1,3),
+     &    (domeganum(j,2,i),j=1,3),(domeganum(j,3,i),j=1,3)
+        write (iout,'(5x,3(3f10.5,5x))') 
+     &    (domeganum(j,1,i)/domega(j,1,i),j=1,3),
+     &    (domeganum(j,2,i)/domega(j,2,i),j=1,3),
+     &    (domeganum(j,3,i)/domega(j,3,i),j=1,3)
+        write (iout,*)
+      enddo
+      return
+      end
+
+      subroutine chainbuild_cart
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.LOCAL'
+      include 'COMMON.TIME1'
+      include 'COMMON.IOUNITS'
+      
+#ifdef MPI
+      if (nfgtasks.gt.1) then
+c        write (iout,*) "BCAST in chainbuild_cart"
+c        call flush(iout)
+c Broadcast the order to build the chain and compute internal coordinates
+c to the slaves. The slaves receive the order in ERGASTULUM.
+        time00=MPI_Wtime()
+c      write (iout,*) "CHAINBUILD_CART: DC before BCAST"
+c      do i=0,nres
+c        write (iout,'(i3,3f10.5,5x,3f10.5)') i,(dc(j,i),j=1,3),
+c     &   (dc(j,i+nres),j=1,3)
+c      enddo 
+        if (fg_rank.eq.0) 
+     &    call MPI_Bcast(7,1,MPI_INTEGER,king,FG_COMM,IERROR)
+        time_bcast7=time_bcast7+MPI_Wtime()-time00
+        time01=MPI_Wtime()
+        call MPI_Bcast(dc(1,0),6*(nres+1),MPI_DOUBLE_PRECISION,
+     &    king,FG_COMM,IERR)
+c      write (iout,*) "CHAINBUILD_CART: DC after BCAST"
+c      do i=0,nres
+c        write (iout,'(i3,3f10.5,5x,3f10.5)') i,(dc(j,i),j=1,3),
+c     &   (dc(j,i+nres),j=1,3)
+c      enddo 
+c        write (iout,*) "End BCAST in chainbuild_cart"
+c        call flush(iout)
+        time_bcast=time_bcast+MPI_Wtime()-time00
+        time_bcastc=time_bcastc+MPI_Wtime()-time01
+      endif
+#endif
+      do j=1,3
+        c(j,1)=dc(j,0)
+      enddo
+      do i=2,nres
+        do j=1,3
+          c(j,i)=c(j,i-1)+dc(j,i-1)
+        enddo
+      enddo 
+      do i=1,nres
+        do j=1,3
+          c(j,i+nres)=c(j,i)+dc(j,i+nres)
+        enddo
+      enddo
+c      write (iout,*) "CHAINBUILD_CART"
+c      call cartprint
+      call int_from_cart1(.false.)
+      return
+      end
diff --git a/source/unres/src_MD_DFA/intcor.f b/source/unres/src_MD_DFA/intcor.f
new file mode 100644 (file)
index 0000000..a3cd5d0
--- /dev/null
@@ -0,0 +1,91 @@
+C
+C------------------------------------------------------------------------------
+C
+      double precision function alpha(i1,i2,i3)
+c
+c  Calculates the planar angle between atoms (i1), (i2), and (i3).
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      x12=c(1,i1)-c(1,i2)
+      x23=c(1,i3)-c(1,i2)
+      y12=c(2,i1)-c(2,i2)
+      y23=c(2,i3)-c(2,i2)
+      z12=c(3,i1)-c(3,i2)
+      z23=c(3,i3)-c(3,i2)
+      vnorm=dsqrt(x12*x12+y12*y12+z12*z12)
+      wnorm=dsqrt(x23*x23+y23*y23+z23*z23)
+      scalar=(x12*x23+y12*y23+z12*z23)/(vnorm*wnorm)
+      alpha=arcos(scalar)
+      return
+      end
+C
+C------------------------------------------------------------------------------
+C
+      double precision function beta(i1,i2,i3,i4)
+c
+c  Calculates the dihedral angle between atoms (i1), (i2), (i3) and (i4)
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      x12=c(1,i1)-c(1,i2)
+      x23=c(1,i3)-c(1,i2)
+      x34=c(1,i4)-c(1,i3)
+      y12=c(2,i1)-c(2,i2)
+      y23=c(2,i3)-c(2,i2)
+      y34=c(2,i4)-c(2,i3)
+      z12=c(3,i1)-c(3,i2)
+      z23=c(3,i3)-c(3,i2)
+      z34=c(3,i4)-c(3,i3)
+cd    print '(2i3,3f10.5)',i1,i2,x12,y12,z12
+cd    print '(2i3,3f10.5)',i2,i3,x23,y23,z23
+cd    print '(2i3,3f10.5)',i3,i4,x34,y34,z34
+      wx=-y23*z34+y34*z23
+      wy=x23*z34-z23*x34
+      wz=-x23*y34+y23*x34
+      wnorm=dsqrt(wx*wx+wy*wy+wz*wz)
+      vx=y12*z23-z12*y23
+      vy=-x12*z23+z12*x23
+      vz=x12*y23-y12*x23
+      vnorm=dsqrt(vx*vx+vy*vy+vz*vz)
+      if (vnorm.gt.1.0D-13 .and. wnorm.gt.1.0D-13) then
+      scalar=(vx*wx+vy*wy+vz*wz)/(vnorm*wnorm)
+      if (dabs(scalar).gt.1.0D0) 
+     &scalar=0.99999999999999D0*scalar/dabs(scalar)
+      angle=dacos(scalar)
+cd    print '(2i4,10f7.3)',i2,i3,vx,vy,vz,wx,wy,wz,vnorm,wnorm,
+cd   &scalar,angle
+      else
+      angle=pi
+      endif 
+c     if (angle.le.0.0D0) angle=pi+angle
+      tx=vy*wz-vz*wy
+      ty=-vx*wz+vz*wx
+      tz=vx*wy-vy*wx
+      scalar=tx*x23+ty*y23+tz*z23
+      if (scalar.lt.0.0D0) angle=-angle
+      beta=angle
+      return
+      end
+C
+C------------------------------------------------------------------------------
+C
+      function dist(i1,i2)
+c
+c  Calculates the distance between atoms (i1) and (i2).
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      x12=c(1,i1)-c(1,i2)
+      y12=c(2,i1)-c(2,i2)
+      z12=c(3,i1)-c(3,i2)
+      dist=dsqrt(x12*x12+y12*y12+z12*z12)
+      return
+      end
+C
diff --git a/source/unres/src_MD_DFA/intlocal.f b/source/unres/src_MD_DFA/intlocal.f
new file mode 100644 (file)
index 0000000..2dbcc88
--- /dev/null
@@ -0,0 +1,517 @@
+      subroutine integral(gamma1,gamma2,gamma3,gamma4,ity1,ity2,a1,a2,
+     &  si1,si2,si3,si4,transp,q)
+      implicit none
+      integer ity1,ity2
+      integer ilam1,ilam2,ilam3,ilam4,iincr
+      double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1,
+     &  lambda2,lambda3,lambda4
+      logical transp
+      double precision elocal,ele
+      double precision delta,delta2,sum,ene,sumene,boltz
+      double precision q,a1(2,2),a2(2,2),si1,si2,si3,si4
+      double precision conv /.01745329252d0/,pi /3.141592654d0/
+      
+      iincr=20
+      delta=iincr*conv
+      delta2=0.5d0*delta
+cd      print *,'iincr',iincr,' delta',delta 
+cd      write(2,*) gamma1,gamma2,ity1,ity2,a1,a2,si1,si2,si3,si4,transp
+
+cd      do ilam1=-180,180,5
+cd        do ilam2=-180,180,5
+cd          lambda1=ilam1*conv+delta2
+cd          lambda2=ilam2*conv+delta2
+cd          write(2,'(2i5,2f10.5)') ilam1,ilam2,elocal(2,lambda1,lambda2),
+cd     &    ele(lambda1,lambda2,a1,1.0d0,1.d00)
+cd        enddo
+cd      enddo
+cd      stop
+
+      sum=0.0d0
+      sumene=0.0d0
+      do ilam1=-180,179,iincr
+        do ilam2=-180,179,iincr
+          do ilam3=-180,179,iincr
+            do ilam4=-180,179,iincr
+              lambda1=ilam1*conv+delta2
+              lambda2=ilam2*conv+delta2
+              lambda3=ilam3*conv+delta2
+              lambda4=ilam4*conv+delta2
+cd              write (2,*) ilam1,ilam2,ilam3,ilam4
+cd              write (2,*) lambda1,lambda2,lambda3,lambda4
+              ene=
+     &         -elocal(ity1,lambda1,lambda2,.false.)*
+     &          elocal(ity2,lambda3,lambda4,transp)*
+     &          ele(si1*lambda1+gamma1,si3*lambda3+gamma3,a1)*
+     &          ele(si2*lambda2+gamma2,si4*lambda4+gamma4,a2)
+cd              write (2,*) elocal(ity1,lambda1,gamma1-pi-lambda2),
+cd     &        elocal(ity2,lambda3,gamma2-pi-lambda4),
+cd     &        ele(lambda1,lambda2,a1,si1,si3),
+cd     &        ele(lambda3,lambda4,a2,si2,si4) 
+              sum=sum+ene
+            enddo
+          enddo
+        enddo
+      enddo
+      q=sum/(2*pi)**4*delta**4
+      write (2,* )'sum',sum,' q',q
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine integral3(gamma1,gamma2,ity1,ity2,ity3,ity4,
+     &  a1,koniec,q1,q2,q3,q4)
+      implicit none
+      integer ity1,ity2,ity3,ity4
+      integer ilam1,ilam2,ilam3,ilam4,iincr
+      double precision gamma1,gamma2,gamma3,gamma4,beta,lambda1,
+     &  lambda2,lambda3,lambda4
+      logical koniec
+      double precision elocal,ele
+      double precision delta,delta2,sum1,sum2,sum3,sum4,
+     &  ene1,ene2,ene3,ene4,boltz
+      double precision q1,q2,q3,q4,a1(2,2),a2(2,2)
+      double precision conv /.01745329252d0/,pi /3.141592654d0/
+      
+      iincr=60
+      delta=iincr*conv
+      delta2=0.5d0*delta
+cd      print *,'iincr',iincr,' delta',delta 
+      write(2,*) gamma1,gamma2,ity1,ity2,ity3,ity4,a1,koniec
+
+cd      do ilam1=-180,180,5
+cd        do ilam2=-180,180,5
+cd          lambda1=ilam1*conv+delta2
+cd          lambda2=ilam2*conv+delta2
+cd          write(2,'(2i5,2f10.5)') ilam1,ilam2,elocal(2,lambda1,lambda2),
+cd     &    ele(lambda1,lambda2,a1,1.0d0,1.d00)
+cd        enddo
+cd      enddo
+cd      stop
+
+      sum1=0.0d0
+      sum2=0.0d0
+      sum3=0.0d0
+      sum4=0.0d0
+      do ilam1=-180,179,iincr
+        do ilam2=-180,179,iincr
+          do ilam3=-180,179,iincr
+            do ilam4=-180,179,iincr
+              lambda1=ilam1*conv+delta2
+              lambda2=ilam2*conv+delta2
+              lambda3=ilam3*conv+delta2
+              lambda4=ilam4*conv+delta2
+cd              write (2,*) ilam1,ilam2,ilam3,ilam4
+cd              write (2,*) lambda1,lambda2,lambda3,lambda4
+              if (.not.koniec) then
+              ene1=
+     &          elocal(ity1,lambda1,gamma1-pi-lambda2,.false.)*
+     &          elocal(ity3,lambda3,gamma2-pi-lambda4,.false.)*
+     &          ele(lambda2,lambda4,a1)
+              else
+              ene1=
+     &          elocal(ity1,lambda1,gamma1-pi-lambda2,.false.)*
+     &          elocal(ity3,lambda3,lambda4,.false.)*
+     &          ele(lambda2,-lambda4,a1)
+              endif
+              ene2=
+     &          elocal(ity1,lambda1,gamma1-pi-lambda2,.false.)*
+     &          elocal(ity4,lambda3,lambda4,.false.)*
+     &          ele(lambda2,lambda3,a1)
+              if (.not.koniec) then
+              ene3=
+     &          elocal(ity2,lambda1,lambda2,.false.)*
+     &          elocal(ity3,lambda3,gamma2-pi-lambda4,.false.)*
+     &          ele(lambda1,lambda4,a1)
+              else
+              ene3=
+     &          elocal(ity2,lambda1,lambda2,.false.)*
+     &          elocal(ity3,lambda3,lambda4,.false.)*
+     &          ele(lambda1,-lambda4,a1)
+              endif
+              ene4=
+     &          elocal(ity2,lambda1,lambda2,.false.)*
+     &          elocal(ity4,lambda3,lambda4,.false.)*
+     &          ele(lambda1,lambda3,a1)
+              sum1=sum1+ene1
+              sum2=sum2+ene2
+              sum3=sum3+ene3
+              sum4=sum4+ene4
+            enddo
+          enddo
+        enddo
+      enddo
+      q1=sum1/(2*pi)**4*delta**4
+      q2=sum2/(2*pi)**4*delta**4
+      q3=sum3/(2*pi)**4*delta**4
+      q4=sum4/(2*pi)**4*delta**4
+      write (2,* )'sum',sum1,sum2,sum3,sum4,' q',q1,q2,q3,q4
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine integral5(gamma1,gamma2,gamma3,gamma4,ity1,ity2,ity3,
+     &  ity4,ity5,ity6,a1,a2,si1,si2,si3,si4,transp,ene1,ene2,ene3,ene4)
+      implicit none
+      integer ity1,ity2,ity3,ity4,ity5,ity6
+      integer ilam1,ilam2,ilam3,ilam4,ilam5,iincr
+      double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1,
+     &  lambda2,lambda3,lambda4,lambda5
+      logical transp
+      double precision elocal,ele
+      double precision eloc1,eloc2,eloc3,eloc4,eloc5,eloc6,ele1,ele2
+      double precision delta,delta2,sum,ene,sumene,pom
+      double precision ene1,ene2,ene3,ene4,sum1,sum2,sum3,sum4,
+     &  a1(2,2),a2(2,2)
+      integer si1,si2,si3,si4
+      double precision conv /.01745329252d0/,pi /3.141592654d0/
+      
+      iincr=60
+      delta=iincr*conv
+      delta2=0.5d0*delta
+cd      print *,'iincr',iincr,' delta',delta 
+cd      write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2,
+cd     &  ' gamma3=',gamma3,' gamma4=',gamma4
+cd      write(2,*) ity1,ity2,ity3,ity4,ity5,ity6
+cd      write(2,*) 'a1=',a1
+cd      write(2,*) 'a2=',a2
+cd      write(2,*) si1,si2,si3,si4,transp
+
+      sum1=0.0d0
+      sum2=0.0d0
+      sum3=0.0d0
+      sum4=0.0d0
+      do ilam1=-180,179,iincr
+        do ilam2=-180,179,iincr
+          do ilam3=-180,179,iincr
+            do ilam4=-180,179,iincr
+              do ilam5=-180,179,iincr
+                lambda1=ilam1*conv+delta2
+                lambda2=ilam2*conv+delta2
+                lambda3=ilam3*conv+delta2
+                lambda4=ilam4*conv+delta2
+                lambda5=ilam5*conv+delta2
+                if (transp) then
+                  ele1=ele(lambda1,si4*lambda4,a1)
+                  ele2=ele(lambda2,lambda3,a2)
+                else
+                  ele1=ele(lambda1,lambda3,a1)
+                  ele2=ele(lambda2,si4*lambda4,a2)
+                endif
+                eloc2=elocal(ity2,lambda1,gamma2-pi-lambda2,.false.)
+                eloc5=elocal(ity5,lambda3,gamma4-pi-si4*lambda4,.false.)
+                pom=ele1*ele2*eloc2*eloc5
+                if (si1.gt.0) then
+                  eloc1=elocal(ity1,lambda5,gamma1-pi-lambda1,.false.)
+                  sum1=sum1+pom*eloc1
+                endif
+                eloc3=elocal(ity3,lambda2,lambda5,.false.)
+                sum2=sum2+pom*eloc3
+                eloc4=elocal(ity4,lambda5,gamma3-pi-lambda3,.false.)
+                sum3=sum3+pom*eloc4
+                if (si4.gt.0) then
+                  eloc6=elocal(ity6,lambda4,lambda5,.false.)
+                  sum4=sum4+pom*eloc6
+                endif
+              enddo
+            enddo
+          enddo
+        enddo
+      enddo
+      pom=1.0d0/(2*pi)**5*delta**5
+      ene1=sum1*pom
+      ene2=sum2*pom
+      ene3=sum3*pom
+      ene4=sum4*pom 
+c      write (2,* )'sum',sum1,sum2,sum3,sum4,' q',ene1,ene2,ene3,ene4
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine integral_turn6(gamma1,gamma2,gamma3,gamma4,ity1,ity2,
+     &  ity3,ity4,ity5,ity6,a1,a2,ene_turn6)
+      implicit none
+      integer ity1,ity2,ity3,ity4,ity5,ity6
+      integer ilam1,ilam2,ilam3,ilam4,ilam5,ilam6,iincr
+      double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1,
+     &  lambda2,lambda3,lambda4,lambda5,lambda6
+      logical transp
+      double precision elocal,ele
+      double precision eloc1,eloc2,eloc3,eloc4,eloc41,eloc5,eloc6,
+     &  eloc61,ele1,ele2
+      double precision delta,delta2,sum,ene,sumene,pom,ene5
+      double precision ene_turn6,sum5,a1(2,2),a2(2,2)
+      double precision conv /.01745329252d0/,pi /3.141592654d0/
+      
+      iincr=60
+      delta=iincr*conv
+      delta2=0.5d0*delta
+cd      print *,'iincr',iincr,' delta',delta 
+      write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2,
+     &  ' gamma3=',gamma3,' gamma4=',gamma4
+      write(2,*) ity1,ity2,ity3,ity4,ity5,ity6
+      write(2,*) 'a1=',a1
+      write(2,*) 'a2=',a2
+
+      sum5=0.0d0
+      do ilam1=-180,179,iincr
+        do ilam2=-180,179,iincr
+          do ilam3=-180,179,iincr
+            do ilam4=-180,179,iincr
+              do ilam5=-180,179,iincr
+                lambda1=ilam1*conv+delta2
+                lambda2=ilam2*conv+delta2
+                lambda3=ilam3*conv+delta2
+                lambda4=ilam4*conv+delta2
+                lambda5=ilam5*conv+delta2
+                ele1=ele(lambda1,-lambda4,a1)
+                ele2=ele(lambda2,lambda3,a2)
+                eloc2=elocal(ity2,lambda1,gamma2-pi-lambda2,.false.)
+                eloc5=elocal(ity5,lambda3,lambda4,.false.)
+                pom=ele1*ele2*eloc2*eloc5
+                eloc3=elocal(ity3,lambda2,gamma3-pi-lambda5,.false.)
+                eloc4=elocal(ity4,lambda5,gamma4-pi-lambda3,.false.)
+                sum5=sum5+pom*eloc3*eloc4
+              enddo
+            enddo
+          enddo
+        enddo
+      enddo
+      pom=-1.0d0/(2*pi)**5*delta**5
+      ene_turn6=sum5*pom 
+c      print *,'sum6',sum6,' ene6',ene6
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine integral6(gamma1,gamma2,gamma3,gamma4,ity1,ity2,ity3,
+     &  ity4,ity5,ity6,a1,a2,si1,si2,si3,si4,transp,ene1,ene2,ene3,ene4,
+     &  ene5,ene6)
+      implicit none
+      integer ity1,ity2,ity3,ity4,ity5,ity6
+      integer ilam1,ilam2,ilam3,ilam4,ilam5,ilam6,iincr
+      double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1,
+     &  lambda2,lambda3,lambda4,lambda5,lambda6
+      logical transp
+      double precision elocal,ele
+      double precision eloc1,eloc2,eloc3,eloc4,eloc41,eloc5,eloc6,
+     &  eloc61,ele1,ele2
+      double precision delta,delta2,sum,ene,sumene,pom
+      double precision ene1,ene2,ene3,ene4,ene5,ene6,sum1,sum2,sum3,
+     &  sum4,sum5,sum6,a1(2,2),a2(2,2)
+      integer si1,si2,si3,si4
+      double precision conv /.01745329252d0/,pi /3.141592654d0/
+      
+      iincr=60
+      delta=iincr*conv
+      delta2=0.5d0*delta
+cd      print *,'iincr',iincr,' delta',delta 
+cd      write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2,
+cd     &  ' gamma3=',gamma3,' gamma4=',gamma4
+cd      write(2,*) ity1,ity2,ity3,ity4,ity5,ity6
+cd      write(2,*) 'a1=',a1
+cd      write(2,*) 'a2=',a2
+cd      write(2,*) si1,si2,si3,si4,transp
+
+      sum1=0.0d0
+      sum2=0.0d0
+      sum3=0.0d0
+      sum4=0.0d0
+      sum5=0.0d0
+      sum6=0.0d0
+      eloc1=0.0d0
+      eloc6=0.0d0
+      eloc61=0.0d0
+      do ilam1=-180,179,iincr
+        do ilam2=-180,179,iincr
+          do ilam3=-180,179,iincr
+            do ilam4=-180,179,iincr
+              do ilam5=-180,179,iincr
+                do ilam6=-180,179,iincr
+                lambda1=ilam1*conv+delta2
+                lambda2=ilam2*conv+delta2
+                lambda3=ilam3*conv+delta2
+                lambda4=ilam4*conv+delta2
+                lambda5=ilam5*conv+delta2
+                lambda6=ilam6*conv+delta2
+                if (transp) then
+                  ele1=ele(lambda1,si4*lambda4,a1)
+                  ele2=ele(lambda2,lambda3,a2)
+                else
+                  ele1=ele(lambda1,lambda3,a1)
+                  ele2=ele(lambda2,si4*lambda4,a2)
+                endif
+                eloc2=elocal(ity2,lambda1,gamma2-pi-lambda2,.false.)
+                eloc5=elocal(ity5,lambda3,gamma4-pi-si4*lambda4,.false.)
+                pom=ele1*ele2*eloc2*eloc5
+                if (si1.gt.0) then
+                  eloc1=elocal(ity1,lambda5,gamma1-pi-lambda1,.false.)
+                endif
+                eloc3=elocal(ity3,lambda2,lambda6,.false.)
+                sum1=sum1+pom*eloc1*eloc3
+                eloc4=elocal(ity4,lambda5,gamma3-pi-lambda3,.false.)
+                if (si4.gt.0) then
+                  eloc6=elocal(ity6,lambda4,lambda6,.false.)
+                  eloc61=elocal(ity6,lambda4,lambda5,.false.)
+                endif
+                sum2=sum2+pom*eloc4*eloc6
+                eloc41=elocal(ity4,lambda6,gamma3-pi-lambda3,.false.)
+                sum3=sum3+pom*eloc1*eloc41
+                sum4=sum4+pom*eloc1*eloc6
+                sum5=sum5+pom*eloc3*eloc4
+                sum6=sum6+pom*eloc3*eloc61
+                enddo
+              enddo
+            enddo
+          enddo
+        enddo
+      enddo
+      pom=-1.0d0/(2*pi)**6*delta**6
+      ene1=sum1*pom
+      ene2=sum2*pom
+      ene3=sum3*pom
+      ene4=sum4*pom 
+      ene5=sum5*pom 
+      ene6=sum6*pom 
+c      print *,'sum6',sum6,' ene6',ene6
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine integral3a(gamma1,gamma2,ity1,ity2,a1,si1,ene1)
+      implicit none
+      integer ity1,ity2,ity3,ity4,ity5,ity6
+      integer ilam1,ilam2,ilam3,ilam4,ilam5,ilam6,iincr
+      double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1,
+     &  lambda2,lambda3,lambda4,lambda5,lambda6
+      logical transp
+      double precision elocal,ele
+      double precision eloc1,eloc2,eloc3,eloc4,eloc41,eloc5,eloc6,
+     &  eloc61,ele1,ele2
+      double precision delta,delta2,sum,ene,sumene,pom
+      double precision ene1,ene2,ene3,ene4,ene5,ene6,sum1,sum2,sum3,
+     &  sum4,sum5,sum6,a1(2,2),a2(2,2)
+      integer si1,si2,si3,si4
+      double precision conv /.01745329252d0/,pi /3.141592654d0/
+      
+      iincr=60
+      delta=iincr*conv
+      delta2=0.5d0*delta
+cd      print *,'iincr',iincr,' delta',delta 
+cd      write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2
+cd      write(2,*) ity1,ity2
+cd      write(2,*) 'a1=',a1
+cd      write(2,*) si1,
+
+      sum1=0.0d0
+      eloc1=0.0d0
+      do ilam1=-180,179,iincr
+        do ilam2=-180,179,iincr
+          do ilam3=-180,179,iincr
+            lambda1=ilam1*conv+delta2
+            lambda2=ilam2*conv+delta2
+            lambda3=ilam3*conv+delta2
+            ele1=ele(lambda1,si1*lambda3,a1)
+            eloc1=elocal(ity1,lambda1,gamma1-pi-lambda2,.false.)
+            if (si1.gt.0) then
+              eloc2=elocal(ity2,lambda2,gamma2-pi-lambda3,.false.)
+            else
+              eloc2=elocal(ity2,lambda2,lambda3,.false.)
+            endif
+            sum1=sum1+ele1*eloc1*eloc2
+          enddo
+        enddo
+      enddo
+      pom=1.0d0/(2*pi)**3*delta**3
+      ene1=sum1*pom
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine integral4a(gamma1,gamma2,gamma3,ity1,ity2,ity3,a1,si1,
+     &  ene1)
+      implicit none
+      integer ity1,ity2,ity3,ity4,ity5,ity6
+      integer ilam1,ilam2,ilam3,ilam4,ilam5,ilam6,iincr
+      double precision gamma1,gamma2,gamma3,gamma4,beta,b(2,90),lambda1,
+     &  lambda2,lambda3,lambda4,lambda5,lambda6
+      logical transp
+      double precision elocal,ele
+      double precision eloc1,eloc2,eloc3,eloc4,eloc41,eloc5,eloc6,
+     &  eloc61,ele1,ele2
+      double precision delta,delta2,sum,ene,sumene,pom
+      double precision ene1,ene2,ene3,ene4,ene5,ene6,sum1,sum2,sum3,
+     &  sum4,sum5,sum6,a1(2,2),a2(2,2)
+      integer si1,si2,si3,si4
+      double precision conv /.01745329252d0/,pi /3.141592654d0/
+      
+      iincr=60
+      delta=iincr*conv
+      delta2=0.5d0*delta
+cd      print *,'iincr',iincr,' delta',delta 
+cd      write(2,*) 'gamma1=',gamma1,' gamma2=',gamma2,
+cd     &  ' gamma3=',gamma3
+cd      write(2,*) ity1,ity2,ity3
+cd      write(2,*) 'a1=',a1
+cd      write(2,*) 'si1=',si1
+      sum1=0.0d0
+      do ilam1=-180,179,iincr
+        do ilam2=-180,179,iincr
+          do ilam3=-180,179,iincr
+            do ilam4=-180,179,iincr
+              lambda1=ilam1*conv+delta2
+              lambda2=ilam2*conv+delta2
+              lambda3=ilam3*conv+delta2
+              lambda4=ilam4*conv+delta2
+              ele1=ele(lambda1,si1*lambda4,a1)
+              eloc1=elocal(ity1,lambda1,gamma1-pi-lambda2,.false.)
+              eloc2=elocal(ity2,lambda2,gamma2-pi-lambda3,.false.)
+              if (si1.gt.0) then
+                eloc3=elocal(ity3,lambda3,gamma3-pi-lambda4,.false.)
+              else
+                eloc3=elocal(ity3,lambda3,lambda4,.false.)
+              endif
+              sum1=sum1+ele1*eloc1*eloc2*eloc3
+            enddo
+          enddo
+        enddo
+      enddo
+      pom=-1.0d0/(2*pi)**4*delta**4
+      ene1=sum1*pom
+      return
+      end
+c-------------------------------------------------------------------------
+      double precision function elocal(i,x,y,transp)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.TORSION'
+      integer i
+      double precision x,y,u(2),v(2),cu(2),dv(2),ev(2) 
+      double precision scalar2
+      logical transp
+      u(1)=dcos(x)
+      u(2)=dsin(x)
+      v(1)=dcos(y)
+      v(2)=dsin(y) 
+      if (transp) then
+        call matvec2(cc(1,1,i),v,cu)
+        call matvec2(dd(1,1,i),u,dv)
+        call matvec2(ee(1,1,i),u,ev)
+        elocal=scalar2(b1(1,i),v)+scalar2(b2(1,i),u)+scalar2(cu,v)+
+     &   scalar2(dv,u)+scalar2(ev,v)
+      else 
+        call matvec2(cc(1,1,i),u,cu)
+        call matvec2(dd(1,1,i),v,dv)
+        call matvec2(ee(1,1,i),v,ev)
+        elocal=scalar2(b1(1,i),u)+scalar2(b2(1,i),v)+scalar2(cu,u)+
+     &   scalar2(dv,v)+scalar2(ev,u)
+      endif
+      return
+      end
+c-------------------------------------------------------------------------
+      double precision function ele(x,y,a)
+      implicit none
+      double precision x,y,a(2,2),si1,si2,u(2),v(2),av(2)
+      double precision scalar2
+      u(1)=-cos(x)
+      u(2)= sin(x)
+      v(1)=-cos(y)
+      v(2)= sin(y)
+      call matvec2(a,v,av)
+      ele=scalar2(u,av) 
+      return
+      end
diff --git a/source/unres/src_MD_DFA/kinetic_lesyng.f b/source/unres/src_MD_DFA/kinetic_lesyng.f
new file mode 100644 (file)
index 0000000..8535f5d
--- /dev/null
@@ -0,0 +1,104 @@
+       subroutine kinetic(KE_total)
+c----------------------------------------------------------------
+c   This subroutine calculates the total kinetic energy of the chain
+c-----------------------------------------------------------------
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      double precision KE_total
+                                                             
+      integer i,j,k
+      double precision KEt_p,KEt_sc,KEr_p,KEr_sc,incr(3),
+     & mag1,mag2,v(3) 
+       
+      KEt_p=0.0d0
+      KEt_sc=0.0d0
+c      write (iout,*) "ISC",(isc(itype(i)),i=1,nres)
+c   The translational part for peptide virtual bonds      
+      do j=1,3
+        incr(j)=d_t(j,0)
+      enddo
+      do i=nnt,nct-1
+c        write (iout,*) "Kinetic trp:",i,(incr(j),j=1,3)
+        do j=1,3
+          v(j)=incr(j)+0.5d0*d_t(j,i)
+       enddo
+        vtot(i)=v(1)*v(1)+v(2)*v(2)+v(3)*v(3)
+        KEt_p=KEt_p+(v(1)*v(1)+v(2)*v(2)+v(3)*v(3))            
+        do j=1,3
+          incr(j)=incr(j)+d_t(j,i)
+        enddo
+      enddo
+c      write(iout,*) 'KEt_p', KEt_p
+c The translational part for the side chain virtual bond     
+c Only now we can initialize incr with zeros. It must be equal
+c to the velocities of the first Calpha.
+      do j=1,3
+        incr(j)=d_t(j,0)
+      enddo
+      do i=nnt,nct
+        iti=itype(i)
+        if (itype(i).eq.10) then
+          do j=1,3
+            v(j)=incr(j)
+         enddo   
+        else
+          do j=1,3
+            v(j)=incr(j)+d_t(j,nres+i)
+         enddo
+        endif
+c        write (iout,*) "Kinetic trsc:",i,(incr(j),j=1,3)
+c        write (iout,*) "i",i," msc",msc(iti)," v",(v(j),j=1,3)
+        KEt_sc=KEt_sc+msc(iti)*(v(1)*v(1)+v(2)*v(2)+v(3)*v(3))         
+        vtot(i+nres)=v(1)*v(1)+v(2)*v(2)+v(3)*v(3)
+        do j=1,3
+          incr(j)=incr(j)+d_t(j,i)
+        enddo
+      enddo
+c      goto 111
+c      write(iout,*) 'KEt_sc', KEt_sc
+c  The part due to stretching and rotation of the peptide groups
+       KEr_p=0.0D0
+       do i=nnt,nct-1
+c        write (iout,*) "i",i
+c        write (iout,*) "i",i," mag1",mag1," mag2",mag2
+        do j=1,3
+         incr(j)=d_t(j,i)
+       enddo
+c        write (iout,*) "Kinetic rotp:",i,(incr(j),j=1,3)
+         KEr_p=KEr_p+(incr(1)*incr(1)+incr(2)*incr(2)
+     &   +incr(3)*incr(3))
+       enddo  
+c      goto 111
+c       write(iout,*) 'KEr_p', KEr_p
+c  The rotational part of the side chain virtual bond
+       KEr_sc=0.0D0
+       do i=nnt,nct
+        iti=itype(i)
+        if (itype(i).ne.10) then
+        do j=1,3
+         incr(j)=d_t(j,nres+i)
+       enddo
+c        write (iout,*) "Kinetic rotsc:",i,(incr(j),j=1,3)
+       KEr_sc=KEr_sc+Isc(iti)*(incr(1)*incr(1)+incr(2)*incr(2)+
+     &   incr(3)*incr(3))
+        endif
+       enddo
+c The total kinetic energy     
+  111  continue
+c       write(iout,*) 'KEr_sc', KEr_sc
+       KE_total=0.5d0*(mp*KEt_p+KEt_sc+0.25d0*Ip*KEr_p+KEr_sc)         
+c       write (iout,*) "KE_total",KE_total
+       return
+       end     
+       
+       
+       
+                                                                     
diff --git a/source/unres/src_MD_DFA/lagrangian_lesyng.F b/source/unres/src_MD_DFA/lagrangian_lesyng.F
new file mode 100644 (file)
index 0000000..8a9163a
--- /dev/null
@@ -0,0 +1,726 @@
+       subroutine lagrangian
+c-------------------------------------------------------------------------       
+c  This subroutine contains the total lagrangain from which the accelerations
+c  are obtained.  For numerical gradient checking, the derivetive of the     
+c  lagrangian in the velocities and coordinates are calculated seperately      
+c-------------------------------------------------------------------------
+       implicit real*8 (a-h,o-z)
+       include 'DIMENSIONS'
+#ifdef MPI
+       include 'mpif.h'
+#endif
+       include 'COMMON.VAR'
+       include 'COMMON.CHAIN'
+       include 'COMMON.DERIV'
+       include 'COMMON.GEO'
+       include 'COMMON.LOCAL'
+       include 'COMMON.INTERACT'
+       include 'COMMON.MD'
+       include 'COMMON.IOUNITS'
+       include 'COMMON.CONTROL'
+       include 'COMMON.MUCA'
+       include 'COMMON.TIME1'
+       
+       integer i,j,ind
+       double precision zapas(MAXRES6),muca_factor
+       logical lprn /.false./
+       common /cipiszcze/ itime
+
+#ifdef TIMING
+       time00=MPI_Wtime()
+#endif
+       do j=1,3
+         zapas(j)=-gcart(j,0)
+       enddo
+      ind=3      
+      if (lprn) then
+        write (iout,*) "Potential forces backbone"
+      endif
+      do i=nnt,nct-1
+        if (lprn) write (iout,'(i5,3e15.5,5x,3e15.5)') 
+     &    i,(-gcart(j,i),j=1,3)
+        do j=1,3
+          ind=ind+1
+          zapas(ind)=-gcart(j,i)
+        enddo
+      enddo
+      if (lprn) write (iout,*) "Potential forces sidechain"
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          if (lprn) write (iout,'(i5,3e15.5,5x,3e15.5)') 
+     &       i,(-gcart(j,i),j=1,3)
+          do j=1,3
+            ind=ind+1
+            zapas(ind)=-gxcart(j,i)
+          enddo
+        endif
+      enddo
+
+      call ginv_mult(zapas,d_a_work)
+       
+      do j=1,3
+        d_a(j,0)=d_a_work(j)
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3
+          ind=ind+1
+          d_a(j,i)=d_a_work(ind)
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            ind=ind+1
+            d_a(j,i+nres)=d_a_work(ind)
+          enddo
+        endif
+      enddo
+      
+      if(lmuca) then
+       imtime=imtime+1
+       if(mucadyn.gt.0) call muca_update(potE)       
+       factor=muca_factor(potE)*t_bath*Rb
+
+cd       print *,'lmuca ',factor,potE
+       do j=1,3
+          d_a(j,0)=d_a(j,0)*factor
+       enddo
+       do i=nnt,nct-1
+         do j=1,3
+          d_a(j,i)=d_a(j,i)*factor              
+         enddo
+       enddo
+       do i=nnt,nct
+         do j=1,3
+          d_a(j,i+nres)=d_a(j,i+nres)*factor              
+         enddo
+       enddo       
+       
+      endif
+      
+      if (lprn) then
+        write(iout,*) 'acceleration 3D'
+        write (iout,'(i3,3f10.5,3x,3f10.5)') 0,(d_a(j,0),j=1,3)
+        do i=nnt,nct-1
+         write (iout,'(i3,3f10.5,3x,3f10.5)') i,(d_a(j,i),j=1,3)
+        enddo
+        do i=nnt,nct
+         write (iout,'(i3,3f10.5,3x,3f10.5)') 
+     &     i+nres,(d_a(j,i+nres),j=1,3)
+        enddo
+      endif
+#ifdef TIMING
+      time_lagrangian=time_lagrangian+MPI_Wtime()-time00
+#endif
+      return        
+      end                                                        
+c------------------------------------------------------------------
+      subroutine setup_MD_matrices
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      integer ierror
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      integer i,j
+      logical lprn /.false./
+      logical osob
+      double precision dtdi,massvec(maxres2),Gcopy(maxres2,maxres2),
+     &  Ghalf(mmaxres2),sqreig(maxres2), invsqreig(maxres2), Gcopytmp,
+     &  Gsqrptmp, Gsqrmtmp, Gvec2tmp,Gvectmp(maxres2,maxres2)
+      double precision work(8*maxres6)
+      integer iwork(maxres6)
+      common /przechowalnia/ Gcopy,Ghalf,invsqreig,Gvectmp
+c
+c Set up the matrix of the (dC,dX)-->(C,X) transformation (A), the
+c inertia matrix (Gmat) and the inverse of the inertia matrix (Ginv)
+c
+c Determine the number of degrees of freedom (dimen) and the number of 
+c sites (dimen1)
+      dimen=(nct-nnt+1)+nside
+      dimen1=(nct-nnt)+(nct-nnt+1)
+      dimen3=dimen*3
+#ifdef MPI
+      if (nfgtasks.gt.1) then
+      time00=MPI_Wtime()
+      call MPI_Bcast(5,1,MPI_INTEGER,king,FG_COMM,IERROR)
+      time_Bcast=time_Bcast+MPI_Wtime()-time00
+      call int_bounds(dimen,igmult_start,igmult_end)
+      igmult_start=igmult_start-1
+      call MPI_Allgather(3*igmult_start,1,MPI_INTEGER,
+     &    ng_start(0),1,MPI_INTEGER,FG_COMM,IERROR)
+      my_ng_count=igmult_end-igmult_start
+      call MPI_Allgather(3*my_ng_count,1,MPI_INTEGER,ng_counts(0),1,
+     &    MPI_INTEGER,FG_COMM,IERROR)
+      write (iout,*) 'Processor:',fg_rank,' CG group',kolor,
+     & ' absolute rank',myrank,' igmult_start',igmult_start,
+     & ' igmult_end',igmult_end,' count',my_ng_count
+      write (iout,*) "ng_start",(ng_start(i),i=0,nfgtasks-1)
+      write (iout,*) "ng_counts",(ng_counts(i),i=0,nfgtasks-1)
+      call flush(iout)
+      else
+#endif
+      igmult_start=1
+      igmult_end=dimen
+      my_ng_count=dimen
+#ifdef MPI
+      endif
+#endif
+c      write (iout,*) "dimen",dimen," dimen1",dimen1," dimen3",dimen3
+c  Zeroing out A and fricmat
+      do i=1,dimen
+        do j=1,dimen
+          A(i,j)=0.0D0     
+        enddo   
+      enddo
+c  Diagonal elements of the dC part of A and the respective friction coefficients
+      ind=1
+      ind1=0
+      do i=nnt,nct-1
+        ind=ind+1
+        ind1=ind1+1
+        coeff=0.25d0*IP
+        massvec(ind1)=mp
+        Gmat(ind,ind)=coeff
+        A(ind1,ind)=0.5d0
+      enddo
+      
+c  Off-diagonal elements of the dC part of A 
+      k=3
+      do i=1,nct-nnt
+        do j=1,i
+          A(i,j)=1.0d0
+        enddo
+      enddo
+c  Diagonal elements of the dX part of A and the respective friction coefficients
+      m=nct-nnt
+      m1=nct-nnt+1
+      ind=0
+      ind1=0
+      do i=nnt,nct
+        ind=ind+1
+        ii = ind+m
+        iti=itype(i)
+        massvec(ii)=msc(iti)
+        if (iti.ne.10) then
+          ind1=ind1+1
+          ii1= ind1+m1
+          A(ii,ii1)=1.0d0
+          Gmat(ii1,ii1)=ISC(iti)
+        endif
+      enddo
+c  Off-diagonal elements of the dX part of A
+      ind=0
+      k=nct-nnt
+      do i=nnt,nct
+        iti=itype(i)
+        ind=ind+1
+        do j=nnt,i
+          ii = ind
+          jj = j-nnt+1
+          A(k+ii,jj)=1.0d0
+        enddo
+      enddo
+      if (lprn) then
+        write (iout,*)
+        write (iout,*) "Vector massvec"
+        do i=1,dimen1
+          write (iout,*) i,massvec(i)
+        enddo
+        write (iout,'(//a)') "A"
+        call matout(dimen,dimen1,maxres2,maxres2,A)
+      endif
+
+c Calculate the G matrix (store in Gmat)
+      do k=1,dimen
+       do i=1,dimen
+         dtdi=0.0d0
+         do j=1,dimen1
+           dtdi=dtdi+A(j,k)*A(j,i)*massvec(j)
+         enddo
+         Gmat(k,i)=Gmat(k,i)+dtdi
+       enddo
+      enddo 
+      
+      if (lprn) then
+        write (iout,'(//a)') "Gmat"
+        call matout(dimen,dimen,maxres2,maxres2,Gmat)
+      endif
+      do i=1,dimen
+        do j=1,dimen
+          Ginv(i,j)=0.0d0
+          Gcopy(i,j)=Gmat(i,j)
+        enddo
+        Ginv(i,i)=1.0d0
+      enddo
+c Invert the G matrix
+      call MATINVERT(dimen,maxres2,Gcopy,Ginv,osob)
+      if (lprn) then
+        write (iout,'(//a)') "Ginv"
+        call matout(dimen,dimen,maxres2,maxres2,Ginv)
+      endif
+#ifdef MPI
+      if (nfgtasks.gt.1) then
+        myginv_ng_count=maxres2*my_ng_count
+        call MPI_Allgather(maxres2*igmult_start,1,MPI_INTEGER,
+     &    nginv_start(0),1,MPI_INTEGER,FG_COMM,IERROR)
+        call MPI_Allgather(myginv_ng_count,1,MPI_INTEGER,
+     &    nginv_counts(0),1,MPI_INTEGER,FG_COMM,IERROR)
+        if (lprn .and. (me.eq.king .or. .not. out1file) ) then
+          write (iout,*) "nginv_start",(nginv_start(i),i=0,nfgtasks-1)
+          write (iout,*) "nginv_counts",(nginv_counts(i),i=0,nfgtasks-1)
+          call flush(iout)
+        endif
+c        call MPI_Scatterv(ginv(1,1),nginv_counts(0),
+c     &    nginv_start(0),MPI_DOUBLE_PRECISION,ginv,
+c     &    myginv_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
+c        call MPI_Barrier(FG_COMM,IERR)
+        time00=MPI_Wtime()
+        call MPI_Scatterv(ginv(1,1),nginv_counts(0),
+     &    nginv_start(0),MPI_DOUBLE_PRECISION,gcopy(1,1),
+     &    myginv_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
+#ifdef TIMING
+        time_scatter_ginv=time_scatter_ginv+MPI_Wtime()-time00
+#endif
+        do i=1,dimen
+          do j=1,2*my_ng_count
+            ginv(j,i)=gcopy(i,j)
+          enddo
+        enddo
+c        write (iout,*) "Master's chunk of ginv"
+c        call MATOUT2(my_ng_count,dimen,maxres2,maxres2,ginv)
+      endif
+#endif
+      if (osob) then
+        write (iout,*) "The G matrix is singular."
+        stop
+      endif
+c Compute G**(-1/2) and G**(1/2) 
+      ind=0
+      do i=1,dimen
+        do j=1,i
+          ind=ind+1
+          Ghalf(ind)=Gmat(i,j)
+        enddo
+      enddo
+      call gldiag(maxres2,dimen,dimen,Ghalf,work,Geigen,Gvec,
+     &  ierr,iwork)
+      if (lprn) then
+        write (iout,'(//a)') 
+     &   "Eigenvectors and eigenvalues of the G matrix"
+        call eigout(dimen,dimen,maxres2,maxres2,Gvec,Geigen)
+      endif
+
+      do i=1,dimen
+        sqreig(i)=dsqrt(Geigen(i))
+        invsqreig(i)=1.d0/sqreig(i)
+      enddo
+      do i=1,dimen
+         do j=1,dimen
+            Gvectmp(i,j)=Gvec(j,i)
+         enddo
+      enddo
+
+      do i=1,dimen
+        do j=1,dimen
+          Gsqrptmp=0.0d0
+          Gsqrmtmp=0.0d0
+          Gcopytmp=0.0d0
+          do k=1,dimen
+c             Gvec2tmp=Gvec(i,k)*Gvec(j,k)
+             Gvec2tmp=Gvec(k,i)*Gvec(k,j)
+             Gsqrptmp=Gsqrptmp+Gvec2tmp*sqreig(k)
+             Gsqrmtmp=Gsqrmtmp+Gvec2tmp*invsqreig(k)
+             Gcopytmp=Gcopytmp+Gvec2tmp*Geigen(k)
+          enddo
+          Gsqrp(i,j)=Gsqrptmp
+          Gsqrm(i,j)=Gsqrmtmp
+          Gcopy(i,j)=Gcopytmp
+        enddo
+      enddo
+
+      do i=1,dimen
+         do j=1,dimen
+            Gvec(i,j)=Gvectmp(j,i)
+         enddo
+      enddo
+
+      if (lprn) then
+        write (iout,*) "Comparison of original and restored G"
+        do i=1,dimen
+          do j=1,dimen
+            write (iout,'(2i5,5f10.5)') i,j,Gmat(i,j),Gcopy(i,j),
+     &        Gmat(i,j)-Gcopy(i,j),Gsqrp(i,j),Gsqrm(i,j)
+          enddo
+        enddo
+      endif
+      return
+      end 
+c-------------------------------------------------------------------------------
+      SUBROUTINE EIGOUT(NC,NR,LM2,LM3,A,B)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      double precision A(LM2,LM3),B(LM2)
+      KA=1
+      KC=6
+    1 KB=MIN0(KC,NC)
+      WRITE(IOUT,600) (I,I=KA,KB)
+      WRITE(IOUT,601) (B(I),I=KA,KB)
+      WRITE(IOUT,602)
+    2 N=0
+      DO 3  I=1,NR
+      WRITE(IOUT,603) I,(A(I,J),J=KA,KB)
+      N=N+1
+      IF(N.LT.10) GO TO 3
+      WRITE(IOUT,602)
+      N=0
+    3 CONTINUE
+    4 IF (KB.EQ.NC) RETURN
+      KA=KC+1
+      KC=KC+6
+      GO TO 1
+  600 FORMAT (// 9H ROOT NO.,I4,9I11)
+  601 FORMAT (/5X,10(1PE11.4))
+  602 FORMAT (2H  )
+  603 FORMAT (I5,10F11.5)
+  604 FORMAT (1H1)
+      END
+c-------------------------------------------------------------------------------
+      SUBROUTINE MATOUT(NC,NR,LM2,LM3,A)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      double precision A(LM2,LM3)
+      KA=1
+      KC=6
+    1 KB=MIN0(KC,NC)
+      WRITE(IOUT,600) (I,I=KA,KB)
+      WRITE(IOUT,602)
+    2 N=0
+      DO 3  I=1,NR
+      WRITE(IOUT,603) I,(A(I,J),J=KA,KB)
+      N=N+1
+      IF(N.LT.10) GO TO 3
+      WRITE(IOUT,602)
+      N=0
+    3 CONTINUE
+    4 IF (KB.EQ.NC) RETURN
+      KA=KC+1
+      KC=KC+6
+      GO TO 1
+  600 FORMAT (//5x,9I11)
+  602 FORMAT (2H  )
+  603 FORMAT (I5,10F11.3)
+  604 FORMAT (1H1)
+      END
+c-------------------------------------------------------------------------------
+      SUBROUTINE MATOUT1(NC,NR,LM2,LM3,A)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      double precision A(LM2,LM3)
+      KA=1
+      KC=21
+    1 KB=MIN0(KC,NC)
+      WRITE(IOUT,600) (I,I=KA,KB)
+      WRITE(IOUT,602)
+    2 N=0
+      DO 3  I=1,NR
+      WRITE(IOUT,603) I,(A(I,J),J=KA,KB)
+      N=N+1
+      IF(N.LT.3) GO TO 3
+      WRITE(IOUT,602)
+      N=0
+    3 CONTINUE
+    4 IF (KB.EQ.NC) RETURN
+      KA=KC+1
+      KC=KC+21
+      GO TO 1
+  600 FORMAT (//5x,7(3I5,2x))
+  602 FORMAT (2H  )
+  603 FORMAT (I5,7(3F5.1,2x))
+  604 FORMAT (1H1)
+      END
+c-------------------------------------------------------------------------------
+      SUBROUTINE MATOUT2(NC,NR,LM2,LM3,A)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      double precision A(LM2,LM3)
+      KA=1
+      KC=12
+    1 KB=MIN0(KC,NC)
+      WRITE(IOUT,600) (I,I=KA,KB)
+      WRITE(IOUT,602)
+    2 N=0
+      DO 3  I=1,NR
+      WRITE(IOUT,603) I,(A(I,J),J=KA,KB)
+      N=N+1
+      IF(N.LT.3) GO TO 3
+      WRITE(IOUT,602)
+      N=0
+    3 CONTINUE
+    4 IF (KB.EQ.NC) RETURN
+      KA=KC+1
+      KC=KC+12
+      GO TO 1
+  600 FORMAT (//5x,4(3I9,2x))
+  602 FORMAT (2H  )
+  603 FORMAT (I5,4(3F9.3,2x))
+  604 FORMAT (1H1)
+      END
+c---------------------------------------------------------------------------
+      SUBROUTINE ginv_mult(z,d_a_tmp)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      integer ierr
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+      include 'COMMON.MD'
+      double precision z(dimen3),d_a_tmp(dimen3),temp(maxres6),time00
+     &time01
+#ifdef MPI
+      if (nfgtasks.gt.1) then
+        if (fg_rank.eq.0) then
+c The matching BROADCAST for fg processors is called in ERGASTULUM
+          time00=MPI_Wtime()
+          call MPI_Bcast(4,1,MPI_INTEGER,king,FG_COMM,IERROR)
+          time_Bcast=time_Bcast+MPI_Wtime()-time00
+c          print *,"Processor",myrank," BROADCAST iorder in GINV_MULT"
+        endif
+c        write (2,*) "time00",time00
+c        write (2,*) "Before Scatterv"
+c        call flush(2)
+c        write (2,*) "Whole z (for FG master)"
+c        do i=1,dimen
+c          write (2,*) i,z(i)
+c        enddo
+c        call MPI_Barrier(FG_COMM,IERROR)
+        time00=MPI_Wtime()
+        call MPI_Scatterv(z,ng_counts(0),ng_start(0),
+     &    MPI_DOUBLE_PRECISION,
+     &    z,3*my_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
+c        write (2,*) "My chunk of z"
+c        do i=1,3*my_ng_count
+c          write (2,*) i,z(i)
+c        enddo
+c        write (2,*) "After SCATTERV"
+c        call flush(2)
+c        write (2,*) "MPI_Wtime",MPI_Wtime()
+        time_scatter=time_scatter+MPI_Wtime()-time00
+#ifdef TIMING
+        time_scatter_ginvmult=time_scatter_ginvmult+MPI_Wtime()-time00
+#endif
+c        write (2,*) "time_scatter",time_scatter
+c        write (2,*) "dimen",dimen," dimen3",dimen3," my_ng_count",
+c     &    my_ng_count
+c        call flush(2)
+        time01=MPI_Wtime()
+        do k=0,2
+          do i=1,dimen
+            ind=(i-1)*3+k+1
+            temp(ind)=0.0d0
+            do j=1,my_ng_count
+c              write (2,*) "k,i,j,ind",k,i,j,ind,(j-1)*3+k+1,
+c     &         Ginv(i,j),z((j-1)*3+k+1),
+c     &          Ginv(i,j)*z((j-1)*3+k+1)
+c              temp(ind)=temp(ind)+Ginv(i,j)*z((j-1)*3+k+1)
+              temp(ind)=temp(ind)+Ginv(j,i)*z((j-1)*3+k+1)
+            enddo
+          enddo 
+        enddo
+        time_ginvmult=time_ginvmult+MPI_Wtime()-time01
+c        write (2,*) "Before REDUCE"
+c        call flush(2)
+c        write (2,*) "z before reduce"
+c        do i=1,dimen
+c          write (2,*) i,temp(i)
+c        enddo
+        time00=MPI_Wtime()
+        call MPI_Reduce(temp(1),d_a_tmp(1),dimen3,MPI_DOUBLE_PRECISION,
+     &      MPI_SUM,king,FG_COMM,IERR)
+        time_reduce=time_reduce+MPI_Wtime()-time00
+c        write (2,*) "After REDUCE"
+c        call flush(2)
+      else
+#endif
+#ifdef TIMING
+        time01=MPI_Wtime()
+#endif
+        do k=0,2
+          do i=1,dimen
+            ind=(i-1)*3+k+1
+            d_a_tmp(ind)=0.0d0
+            do j=1,dimen
+c              write (2,*) "k,i,j,ind",k,i,j,ind,(j-1)*3+k+1
+c              call flush(2)
+c     &         Ginv(i,j),z((j-1)*3+k+1),
+c     &          Ginv(i,j)*z((j-1)*3+k+1)
+              d_a_tmp(ind)=d_a_tmp(ind)
+     &                         +Ginv(j,i)*z((j-1)*3+k+1)
+c              d_a_tmp(ind)=d_a_tmp(ind)
+c     &                         +Ginv(i,j)*z((j-1)*3+k+1)
+            enddo
+          enddo 
+        enddo
+#ifdef TIMING
+        time_ginvmult=time_ginvmult+MPI_Wtime()-time01
+#endif
+#ifdef MPI
+      endif
+#endif
+      return
+      end
+c---------------------------------------------------------------------------
+#ifdef GINV_MULT
+      SUBROUTINE ginv_mult_test(z,d_a_tmp)
+      include 'DIMENSIONS'
+      integer dimen
+c      include 'COMMON.MD'
+      double precision z(dimen),d_a_tmp(dimen)
+      double precision ztmp(dimen/3),dtmp(dimen/3)
+
+c      do i=1,dimen
+c        d_a_tmp(i)=0.0d0
+c        do j=1,dimen
+c          d_a_tmp(i)=d_a_tmp(i)+Ginv(i,j)*z(j)
+c        enddo
+c      enddo
+c
+c      return
+
+!ibm* unroll(3)
+      do k=0,2
+       do j=1,dimen/3
+        ztmp(j)=z((j-1)*3+k+1)
+       enddo
+
+       call alignx(16,ztmp(1))
+       call alignx(16,dtmp(1))
+       call alignx(16,Ginv(1,1)) 
+
+       do i=1,dimen/3
+        dtmp(i)=0.0d0
+        do j=1,dimen/3
+           dtmp(i)=dtmp(i)+Ginv(i,j)*ztmp(j)
+        enddo
+       enddo
+       do i=1,dimen/3
+        ind=(i-1)*3+k+1
+        d_a_tmp(ind)=dtmp(i)
+       enddo 
+      enddo
+      return
+      end
+#endif
+c---------------------------------------------------------------------------
+      SUBROUTINE fricmat_mult(z,d_a_tmp)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      integer IERROR
+#endif
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      double precision z(dimen3),d_a_tmp(dimen3),temp(maxres6),time00
+     &time01
+#ifdef MPI
+      if (nfgtasks.gt.1) then
+        if (fg_rank.eq.0) then
+c The matching BROADCAST for fg processors is called in ERGASTULUM
+          time00=MPI_Wtime()
+          call MPI_Bcast(9,1,MPI_INTEGER,king,FG_COMM,IERROR)
+          time_Bcast=time_Bcast+MPI_Wtime()-time00
+c          print *,"Processor",myrank," BROADCAST iorder in FRICMAT_MULT"
+        endif
+c        call MPI_Barrier(FG_COMM,IERROR)
+        time00=MPI_Wtime()
+        call MPI_Scatterv(z,ng_counts(0),ng_start(0),
+     &    MPI_DOUBLE_PRECISION,
+     &    z,3*my_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
+c        write (2,*) "My chunk of z"
+c        do i=1,3*my_ng_count
+c          write (2,*) i,z(i)
+c        enddo
+        time_scatter=time_scatter+MPI_Wtime()-time00
+#ifdef TIMING
+        time_scatter_fmatmult=time_scatter_fmatmult+MPI_Wtime()-time00
+#endif
+        time01=MPI_Wtime()
+        do k=0,2
+          do i=1,dimen
+            ind=(i-1)*3+k+1
+            temp(ind)=0.0d0
+            do j=1,my_ng_count
+              temp(ind)=temp(ind)-fricmat(j,i)*z((j-1)*3+k+1)
+            enddo
+          enddo 
+        enddo
+        time_fricmatmult=time_fricmatmult+MPI_Wtime()-time01
+c        write (2,*) "Before REDUCE"
+c        write (2,*) "d_a_tmp before reduce"
+c        do i=1,dimen3
+c          write (2,*) i,temp(i)
+c        enddo
+c        call flush(2)
+        time00=MPI_Wtime()
+        call MPI_Reduce(temp(1),d_a_tmp(1),dimen3,MPI_DOUBLE_PRECISION,
+     &      MPI_SUM,king,FG_COMM,IERR)
+        time_reduce=time_reduce+MPI_Wtime()-time00
+c        write (2,*) "After REDUCE"
+c        call flush(2)
+      else
+#endif
+#ifdef TIMING
+        time01=MPI_Wtime()
+#endif
+        do k=0,2
+         do i=1,dimen
+          ind=(i-1)*3+k+1
+          d_a_tmp(ind)=0.0d0
+          do j=1,dimen
+             d_a_tmp(ind)=d_a_tmp(ind)
+     &                           -fricmat(j,i)*z((j-1)*3+k+1)
+          enddo
+         enddo 
+        enddo
+#ifdef TIMING
+        time_fricmatmult=time_fricmatmult+MPI_Wtime()-time01
+#endif
+#ifdef MPI
+      endif
+#endif
+c      write (iout,*) "Vector d_a"
+c      do i=1,dimen3
+c        write (2,*) i,d_a_tmp(i)
+c      enddo
+      return
+      end
diff --git a/source/unres/src_MD_DFA/local_move.f b/source/unres/src_MD_DFA/local_move.f
new file mode 100644 (file)
index 0000000..d02a9d1
--- /dev/null
@@ -0,0 +1,970 @@
+c-------------------------------------------------------------
+
+      subroutine local_move_init(debug)
+crc      implicit none
+
+c     Includes
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'  ! Needed by COMMON.LOCAL
+      include 'COMMON.GEO'  ! For pi, deg2rad
+      include 'COMMON.LOCAL'  ! For vbl
+      include 'COMMON.LOCMOVE'
+
+c     INPUT arguments
+      logical debug
+
+
+c     Determine wheter to do some debugging output
+      locmove_output=debug
+
+c     Set the init_called flag to 1
+      init_called=1
+
+c     The following are never changed
+      min_theta=60.D0*deg2rad  ! (0,PI)
+      max_theta=175.D0*deg2rad  ! (0,PI)
+      dmin2=vbl*vbl*2.*(1.-cos(min_theta))
+      dmax2=vbl*vbl*2.*(1.-cos(max_theta))
+      flag=1.0D300
+      small=1.0D-5
+      small2=0.5*small*small
+
+c     Not really necessary...
+      a_n=0
+      b_n=0
+      res_n=0
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine local_move(n_start, n_end, PHImin, PHImax)
+c     Perform a local move between residues m and n (inclusive)
+c     PHImin and PHImax [0,PI] determine the size of the move
+c     Works on whatever structure is in the variables theta and phi,
+c     sidechain variables are left untouched
+c     The final structure is NOT minimized, but both the cartesian
+c     variables c and the angles are up-to-date at the end (no further
+c     chainbuild is required)
+crc      implicit none
+
+c     Includes
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.MINIM'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.LOCMOVE'
+
+c     External functions
+      integer move_res
+      external move_res
+      double precision ran_number
+      external ran_number
+
+c     INPUT arguments
+      integer n_start, n_end  ! First and last residues to move
+      double precision PHImin, PHImax  ! min/max angles [0,PI]
+
+c     Local variables
+      integer i,j
+      double precision min,max
+      integer iretcode
+
+
+c     Check if local_move_init was called.  This assumes that it
+c     would not be 1 if not explicitely initialized
+      if (init_called.ne.1) then
+        write(6,*)'   ***   local_move_init not called!!!'
+        stop
+      endif
+
+c     Quick check for crazy range
+      if (n_start.gt.n_end .or. n_start.lt.1 .or. n_end.gt.nres) then
+        write(6,'(a,i3,a,i3)')
+     +       '   ***   Cannot make local move between n_start = ',
+     +       n_start,' and n_end = ',n_end
+        return
+      endif
+
+c     Take care of end residues first...
+      if (n_start.eq.1) then
+c     Move residue 1 (completely random)
+        theta(3)=ran_number(min_theta,max_theta)
+        phi(4)=ran_number(-PI,PI)
+        i=2
+      else
+        i=n_start
+      endif
+      if (n_end.eq.nres) then
+c     Move residue nres (completely random)
+        theta(nres)=ran_number(min_theta,max_theta)
+        phi(nres)=ran_number(-PI,PI)
+        j=nres-1
+      else
+        j=n_end
+      endif
+
+c     ...then go through all other residues one by one
+c     Start from the two extremes and converge
+      call chainbuild
+      do while (i.le.j)
+        min=PHImin
+        max=PHImax
+c$$$c     Move the first two residues by less than the others
+c$$$        if (i-n_start.lt.3) then
+c$$$          if (i-n_start.eq.0) then
+c$$$            min=0.4*PHImin
+c$$$            max=0.4*PHImax
+c$$$          else if (i-n_start.eq.1) then
+c$$$            min=0.8*PHImin
+c$$$            max=0.8*PHImax
+c$$$          else if (i-n_start.eq.2) then
+c$$$            min=PHImin
+c$$$            max=PHImax
+c$$$          endif
+c$$$        endif
+
+c     The actual move, on residue i
+        iretcode=move_res(min,max,i,c)  ! Discard iretcode
+        i=i+1
+
+        if (i.le.j) then
+          min=PHImin
+          max=PHImax
+c$$$c     Move the last two residues by less than the others
+c$$$          if (n_end-j.lt.3) then
+c$$$            if (n_end-j.eq.0) then
+c$$$              min=0.4*PHImin
+c$$$              max=0.4*PHImax
+c$$$            else if (n_end-j.eq.1) then
+c$$$              min=0.8*PHImin
+c$$$              max=0.8*PHImax
+c$$$            else if (n_end-j.eq.2) then
+c$$$              min=PHImin
+c$$$              max=PHImax
+c$$$            endif
+c$$$          endif
+
+c     The actual move, on residue j
+          iretcode=move_res(min,max,j,c)  ! Discard iretcode
+          j=j-1
+        endif
+      enddo
+
+      call int_from_cart(.false.,.false.)
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine output_tabs
+c     Prints out the contents of a_..., b_..., res_...
+      implicit none
+
+c     Includes
+      include 'COMMON.GEO'
+      include 'COMMON.LOCMOVE'
+
+c     Local variables
+      integer i,j
+
+
+      write(6,*)'a_...'
+      write(6,'(8f7.1)')(a_ang(i)*rad2deg,i=0,a_n-1)
+      write(6,'(8(2x,3l1,2x))')((a_tab(i,j),i=0,2),j=0,a_n-1)
+
+      write(6,*)'b_...'
+      write(6,'(4f7.1)')(b_ang(i)*rad2deg,i=0,b_n-1)
+      write(6,'(4(2x,3l1,2x))')((b_tab(i,j),i=0,2),j=0,b_n-1)
+
+      write(6,*)'res_...'
+      write(6,'(12f7.1)')(res_ang(i)*rad2deg,i=0,res_n-1)
+      write(6,'(12(2x,3l1,2x))')((res_tab(0,i,j),i=0,2),j=0,res_n-1)
+      write(6,'(12(2x,3l1,2x))')((res_tab(1,i,j),i=0,2),j=0,res_n-1)
+      write(6,'(12(2x,3l1,2x))')((res_tab(2,i,j),i=0,2),j=0,res_n-1)
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine angles2tab(PHImin,PHImax,n,ang,tab)
+c     Only uses angles if [0,PI] (but PHImin cannot be 0.,
+c     and PHImax cannot be PI)
+      implicit none
+
+c     Includes
+      include 'COMMON.GEO'
+
+c     INPUT arguments
+      double precision PHImin,PHImax
+
+c     OUTPUT arguments
+      integer n
+      double precision ang(0:3)
+      logical tab(0:2,0:3)
+
+
+      if (PHImin .eq. PHImax) then
+c     Special case with two 010's
+        n = 2;
+        ang(0) = -PHImin;
+        ang(1) = PHImin;
+        tab(0,0) = .false.
+        tab(2,0) = .false.
+        tab(0,1) = .false.
+        tab(2,1) = .false.
+        tab(1,0) = .true.
+        tab(1,1) = .true.
+      else if (PHImin .eq. PI) then
+c     Special case with one 010
+        n = 1
+        ang(0) = PI
+        tab(0,0) = .false.
+        tab(2,0) = .false.
+        tab(1,0) = .true.
+      else if (PHImax .eq. 0.) then
+c     Special case with one 010
+        n = 1
+        ang(0) = 0.
+        tab(0,0) = .false.
+        tab(2,0) = .false.
+        tab(1,0) = .true.
+      else
+c     Standard cases
+        n = 0
+        if (PHImin .gt. 0.) then
+c     Start of range (011)
+          ang(n) = PHImin
+          tab(0,n) = .false.
+          tab(1,n) = .true.
+          tab(2,n) = .true.
+c     End of range (110)
+          ang(n+1) = -PHImin
+          tab(0,n+1) = .true.
+          tab(1,n+1) = .true.
+          tab(2,n+1) = .false.
+          n = n+2
+        endif
+        if (PHImax .lt. PI) then
+c     Start of range (011)
+          ang(n) = -PHImax
+          tab(0,n) = .false.
+          tab(1,n) = .true.
+          tab(2,n) = .true.
+c     End of range (110)
+          ang(n+1) = PHImax
+          tab(0,n+1) = .true.
+          tab(1,n+1) = .true.
+          tab(2,n+1) = .false.
+          n = n+2
+        endif
+      endif
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine minmax_angles(x,y,z,r,n,ang,tab)
+c     When solutions do not exist, assume all angles
+c     are acceptable - i.e., initial geometry must be correct
+      implicit none
+
+c     Includes
+      include 'COMMON.GEO'
+      include 'COMMON.LOCMOVE'
+
+c     Input arguments
+      double precision x,y,z,r
+
+c     Output arguments
+      integer n
+      double precision ang(0:3)
+      logical tab(0:2,0:3)
+
+c     Local variables
+      double precision num, denom, phi
+      double precision Kmin, Kmax
+      integer i
+
+
+      num = x*x + y*y + z*z
+      denom = x*x + y*y
+      n = 0
+      if (denom .gt. 0.) then
+        phi = atan2(y,x)
+        denom = 2.*r*sqrt(denom)
+        num = num+r*r
+        Kmin = (num - dmin2)/denom
+        Kmax = (num - dmax2)/denom
+
+c     Allowed values of K (else all angles are acceptable)
+c     -1 <= Kmin <  1
+c     -1 <  Kmax <= 1
+        if (Kmin .gt. 1. .or. abs(Kmin-1.) .lt. small2) then
+          Kmin = -flag
+        else if (Kmin .lt. -1. .or. abs(Kmin+1.) .lt. small2) then
+          Kmin = PI
+        else
+          Kmin = acos(Kmin)
+        endif
+
+        if (Kmax .lt. -1. .or. abs(Kmax+1.) .lt. small2) then
+          Kmax = flag
+        else if (Kmax .gt. 1. .or. abs(Kmax-1.) .lt. small2) then
+          Kmax = 0.
+        else
+          Kmax = acos(Kmax)
+        endif
+
+        if (Kmax .lt. Kmin) Kmax = Kmin
+
+        call angles2tab(Kmin, Kmax, n, ang, tab)
+
+c     Add phi and check that angles are within range (-PI,PI]
+        do i=0,n-1
+          ang(i) = ang(i)+phi
+          if (ang(i) .le. -PI) then
+            ang(i) = ang(i)+2.*PI
+          else if (ang(i) .gt. PI) then
+            ang(i) = ang(i)-2.*PI
+          endif
+        enddo
+      endif
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine construct_tab
+c     Take a_... and b_... values and produces the results res_...
+c     x_ang are assumed to be all different (diff > small)
+c     x_tab(1,i) must be 1 for all i (i.e., all x_ang are acceptable)
+      implicit none
+
+c     Includes
+      include 'COMMON.LOCMOVE'
+
+c     Local variables
+      integer n_max,i,j,index
+      logical done
+      double precision phi
+
+
+      n_max = a_n + b_n
+      if (n_max .eq. 0) then
+        res_n = 0
+        return
+      endif
+
+      do i=0,n_max-1
+        do j=0,1
+          res_tab(j,0,i) = .true.
+          res_tab(j,2,i) = .true.
+          res_tab(j,1,i) = .false.
+        enddo
+      enddo
+
+      index = 0
+      phi = -flag
+      done = .false.
+      do while (.not.done)
+        res_ang(index) = flag
+
+c     Check a first...
+        do i=0,a_n-1
+          if ((a_ang(i)-phi).gt.small .and.
+     +         a_ang(i) .lt. res_ang(index)) then
+c     Found a lower angle
+            res_ang(index) = a_ang(i)
+c     Copy the values from a_tab into res_tab(0,,)
+            res_tab(0,0,index) = a_tab(0,i)
+            res_tab(0,1,index) = a_tab(1,i)
+            res_tab(0,2,index) = a_tab(2,i)
+c     Set default values for res_tab(1,,)
+            res_tab(1,0,index) = .true.
+            res_tab(1,1,index) = .false.
+            res_tab(1,2,index) = .true.
+          else if (abs(a_ang(i)-res_ang(index)).lt.small) then
+c     Found an equal angle (can only be equal to a b_ang)
+            res_tab(0,0,index) = a_tab(0,i)
+            res_tab(0,1,index) = a_tab(1,i)
+            res_tab(0,2,index) = a_tab(2,i)
+          endif
+        enddo
+c     ...then check b
+        do i=0,b_n-1
+          if ((b_ang(i)-phi).gt.small .and.
+     +         b_ang(i) .lt. res_ang(index)) then
+c     Found a lower angle
+            res_ang(index) = b_ang(i)
+c     Copy the values from b_tab into res_tab(1,,)
+            res_tab(1,0,index) = b_tab(0,i)
+            res_tab(1,1,index) = b_tab(1,i)
+            res_tab(1,2,index) = b_tab(2,i)
+c     Set default values for res_tab(0,,)
+            res_tab(0,0,index) = .true.
+            res_tab(0,1,index) = .false.
+            res_tab(0,2,index) = .true.
+          else if (abs(b_ang(i)-res_ang(index)).lt.small) then
+c     Found an equal angle (can only be equal to an a_ang)
+            res_tab(1,0,index) = b_tab(0,i)
+            res_tab(1,1,index) = b_tab(1,i)
+            res_tab(1,2,index) = b_tab(2,i)
+          endif
+        enddo
+
+        if (res_ang(index) .eq. flag) then
+          res_n = index
+          done = .true.
+        else if (index .eq. n_max-1) then
+          res_n = n_max
+          done = .true.
+        else
+          phi = res_ang(index)  ! Store previous angle
+          index = index+1
+        endif
+      enddo
+
+c     Fill the gaps
+c     First a...
+      index = 0
+      if (a_n .gt. 0) then
+        do while (.not.res_tab(0,1,index))
+          index=index+1
+        enddo
+        done = res_tab(0,2,index)
+        do i=index+1,res_n-1
+          if (res_tab(0,1,i)) then
+            done = res_tab(0,2,i)
+          else
+            res_tab(0,0,i) = done
+            res_tab(0,1,i) = done
+            res_tab(0,2,i) = done
+          endif
+        enddo
+        done = res_tab(0,0,index)
+        do i=index-1,0,-1
+          if (res_tab(0,1,i)) then
+            done = res_tab(0,0,i)
+          else
+            res_tab(0,0,i) = done
+            res_tab(0,1,i) = done
+            res_tab(0,2,i) = done
+          endif
+        enddo
+      else
+        do i=0,res_n-1
+          res_tab(0,0,i) = .true.
+          res_tab(0,1,i) = .true.
+          res_tab(0,2,i) = .true.
+        enddo
+      endif
+c     ...then b
+      index = 0
+      if (b_n .gt. 0) then
+        do while (.not.res_tab(1,1,index))
+          index=index+1
+        enddo
+        done = res_tab(1,2,index)
+        do i=index+1,res_n-1
+          if (res_tab(1,1,i)) then
+            done = res_tab(1,2,i)
+          else
+            res_tab(1,0,i) = done
+            res_tab(1,1,i) = done
+            res_tab(1,2,i) = done
+          endif
+        enddo
+        done = res_tab(1,0,index)
+        do i=index-1,0,-1
+          if (res_tab(1,1,i)) then
+            done = res_tab(1,0,i)
+          else
+            res_tab(1,0,i) = done
+            res_tab(1,1,i) = done
+            res_tab(1,2,i) = done
+          endif
+        enddo
+      else
+        do i=0,res_n-1
+          res_tab(1,0,i) = .true.
+          res_tab(1,1,i) = .true.
+          res_tab(1,2,i) = .true.
+        enddo
+      endif
+
+c     Finally fill the last row with AND operation
+      do i=0,res_n-1
+        do j=0,2
+          res_tab(2,j,i) = (res_tab(0,j,i) .and. res_tab(1,j,i))
+        enddo
+      enddo
+
+      return 
+      end
+
+c-------------------------------------------------------------
+
+      subroutine construct_ranges(phi_n,phi_start,phi_end)
+c     Given the data in res_..., construct a table of 
+c     min/max allowed angles
+      implicit none
+
+c     Includes
+      include 'COMMON.GEO'
+      include 'COMMON.LOCMOVE'
+
+c     Output arguments
+      integer phi_n
+      double precision phi_start(0:11),phi_end(0:11)
+
+c     Local variables
+      logical done
+      integer index
+
+
+      if (res_n .eq. 0) then
+c     Any move is allowed
+        phi_n = 1
+        phi_start(0) = -PI
+        phi_end(0) = PI
+      else
+        phi_n = 0
+        index = 0
+        done = .false.
+        do while (.not.done)
+c     Find start of range (01x)
+          done = .false.
+          do while (.not.done)
+            if (res_tab(2,0,index).or.(.not.res_tab(2,1,index))) then
+              index=index+1
+            else
+              done = .true.
+              phi_start(phi_n) = res_ang(index)
+            endif
+            if (index .eq. res_n) done = .true.
+          enddo
+c     If a start was found (index < res_n), find the end of range (x10)
+c     It may not be found without wrapping around
+          if (index .lt. res_n) then
+            done = .false.
+            do while (.not.done)
+              if ((.not.res_tab(2,1,index)).or.res_tab(2,2,index)) then
+                index=index+1
+              else
+                done = .true.
+              endif
+              if (index .eq. res_n) done = .true.
+            enddo
+            if (index .lt. res_n) then
+c     Found the end of the range
+              phi_end(phi_n) = res_ang(index)
+              phi_n=phi_n+1
+              index=index+1
+              if (index .eq. res_n) then
+                done = .true.
+              else
+                done = .false.
+              endif
+            else
+c     Need to wrap around
+              done = .true.
+              phi_end(phi_n) = flag
+            endif
+          endif
+        enddo
+c     Take care of the last one if need to wrap around
+        if (phi_end(phi_n) .eq. flag) then
+          index = 0
+          do while ((.not.res_tab(2,1,index)).or.res_tab(2,2,index))
+            index=index+1
+          enddo
+          phi_end(phi_n) = res_ang(index) + 2.*PI
+          phi_n=phi_n+1
+        endif
+      endif
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine fix_no_moves(phi)
+      implicit none
+
+c     Includes
+      include 'COMMON.GEO'
+      include 'COMMON.LOCMOVE'
+
+c     Output arguments
+      double precision phi
+
+c     Local variables
+      integer index
+      double precision diff,temp
+
+
+c     Look for first 01x in gammas (there MUST be at least one)
+      diff = flag
+      index = 0
+      do while (res_tab(1,0,index) .or. (.not.res_tab(1,1,index)))
+        index=index+1
+      enddo
+      if (res_ang(index) .le. 0.D0) then ! Make sure it's from PHImax
+c     Try to increase PHImax
+        if (index .gt. 0) then
+          phi = res_ang(index-1)
+          diff = abs(res_ang(index) - res_ang(index-1))
+        endif
+c     Look for last (corresponding) x10
+        index = res_n - 1
+        do while ((.not.res_tab(1,1,index)) .or. res_tab(1,2,index))
+          index=index-1
+        enddo
+        if (index .lt. res_n-1) then
+          temp = abs(res_ang(index) - res_ang(index+1))
+          if (temp .lt. diff) then
+            phi = res_ang(index+1)
+            diff = temp
+          endif
+        endif
+      endif
+
+c     If increasing PHImax didn't work, decreasing PHImin
+c     will (with one exception)
+c     Look for first x10 (there MUST be at least one)
+      index = 0
+      do while ((.not.res_tab(1,1,index)) .or. res_tab(1,2,index))
+        index=index+1
+      enddo
+      if (res_ang(index) .lt. 0.D0) then ! Make sure it's from PHImin
+c     Try to decrease PHImin
+        if (index .lt. res_n-1) then
+          temp = abs(res_ang(index) - res_ang(index+1))
+          if (res_ang(index+1) .le. 0.D0 .and. temp .lt. diff) then
+            phi = res_ang(index+1)
+            diff = temp
+          endif
+        endif
+c     Look for last (corresponding) 01x
+        index = res_n - 1
+        do while (res_tab(1,0,index) .or. (.not.res_tab(1,1,index)))
+          index=index-1
+        enddo
+        if (index .gt. 0) then
+          temp = abs(res_ang(index) - res_ang(index-1))
+          if (res_ang(index-1) .ge. 0.D0 .and. temp .lt. diff) then
+            phi = res_ang(index-1)
+            diff = temp
+          endif
+        endif
+      endif
+
+c     If it still didn't work, it must be PHImax == 0. or PHImin == PI
+      if (diff .eq. flag) then
+        index = 0
+        if (res_tab(index,1,0) .or. (.not.res_tab(index,1,1)) .or.
+     +       res_tab(index,1,2)) index = res_n - 1
+c     This MUST work at this point
+        if (index .eq. 0) then
+          phi = res_ang(1)
+        else
+          phi = res_ang(index - 1)
+        endif
+      endif
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      integer function move_res(PHImin,PHImax,i_move)
+c     Moves residue i_move (in array c), leaving everything else fixed
+c     Starting geometry is not checked, it should be correct!
+c     R(,i_move) is the only residue that will move, but must have
+c     1 < i_move < nres (i.e., cannot move ends)
+c     Whether any output is done is controlled by locmove_output
+crc      implicit none
+
+c     Includes
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCMOVE'
+
+c     External functions
+      double precision ran_number
+      external ran_number
+
+c     Input arguments
+      double precision PHImin,PHImax
+      integer i_move
+
+c     RETURN VALUES:
+c     0: move successfull
+c     1: Dmin or Dmax had to be modified
+c     2: move failed - check your input geometry
+
+
+c     Local variables
+      double precision X(0:2),Y(0:2),Z(0:2),Orig(0:2)
+      double precision P(0:2)
+      logical no_moves,done
+      integer index,i,j
+      double precision phi,temp,radius
+      double precision phi_start(0:11), phi_end(0:11)
+      integer phi_n
+
+c     Set up the coordinate system
+      do i=0,2
+        Orig(i)=0.5*(c(i+1,i_move-1)+c(i+1,i_move+1)) ! Position of origin
+      enddo
+
+      do i=0,2
+        Z(i)=c(i+1,i_move+1)-c(i+1,i_move-1)
+      enddo
+      temp=sqrt(Z(0)*Z(0)+Z(1)*Z(1)+Z(2)*Z(2))
+      do i=0,2
+        Z(i)=Z(i)/temp
+      enddo
+
+      do i=0,2
+        X(i)=c(i+1,i_move)-Orig(i)
+      enddo
+c     radius is the radius of the circle on which c(,i_move) can move
+      radius=sqrt(X(0)*X(0)+X(1)*X(1)+X(2)*X(2))
+      do i=0,2
+        X(i)=X(i)/radius
+      enddo
+
+      Y(0)=Z(1)*X(2)-X(1)*Z(2)
+      Y(1)=X(0)*Z(2)-Z(0)*X(2)
+      Y(2)=Z(0)*X(1)-X(0)*Z(1)
+
+c     Calculate min, max angles coming from dmin, dmax to c(,i_move-2)
+      if (i_move.gt.2) then
+        do i=0,2
+          P(i)=c(i+1,i_move-2)-Orig(i)
+        enddo
+        call minmax_angles(P(0)*X(0)+P(1)*X(1)+P(2)*X(2),
+     +       P(0)*Y(0)+P(1)*Y(1)+P(2)*Y(2),
+     +       P(0)*Z(0)+P(1)*Z(1)+P(2)*Z(2),
+     +       radius,a_n,a_ang,a_tab)
+      else
+        a_n=0
+      endif
+
+c     Calculate min, max angles coming from dmin, dmax to c(,i_move+2)
+      if (i_move.lt.nres-2) then
+        do i=0,2
+          P(i)=c(i+1,i_move+2)-Orig(i)
+        enddo
+        call minmax_angles(P(0)*X(0)+P(1)*X(1)+P(2)*X(2),
+     +       P(0)*Y(0)+P(1)*Y(1)+P(2)*Y(2),
+     +       P(0)*Z(0)+P(1)*Z(1)+P(2)*Z(2),
+     +       radius,b_n,b_ang,b_tab)
+      else
+        b_n=0
+      endif
+
+c     Construct the resulting table for alpha and beta
+      call construct_tab()
+
+      if (locmove_output) then
+        print *,'ALPHAS & BETAS TABLE'
+        call output_tabs()
+      endif
+
+c     Check that there is at least one possible move
+      no_moves = .true.
+      if (res_n .eq. 0) then
+        no_moves = .false.
+      else
+        index = 0
+        do while ((index .lt. res_n) .and. no_moves)
+          if (res_tab(2,1,index)) no_moves = .false.
+          index=index+1
+        enddo
+      endif
+      if (no_moves) then
+        if (locmove_output) print *,'   ***   Cannot move anywhere'
+        move_res=2
+        return
+      endif
+
+c     Transfer res_... into a_...
+      a_n = 0
+      do i=0,res_n-1
+        if ( (res_tab(2,0,i).neqv.res_tab(2,1,i)) .or.
+     +       (res_tab(2,0,i).neqv.res_tab(2,2,i)) ) then
+          a_ang(a_n) = res_ang(i)
+          do j=0,2
+            a_tab(j,a_n) = res_tab(2,j,i)
+          enddo
+          a_n=a_n+1
+        endif
+      enddo
+
+c     Check that the PHI's are within [0,PI]
+      if (PHImin .lt. 0. .or. abs(PHImin) .lt. small) PHImin = -flag
+      if (PHImin .gt. PI .or. abs(PHImin-PI) .lt. small) PHImin = PI
+      if (PHImax .gt. PI .or. abs(PHImax-PI) .lt. small) PHImax = flag
+      if (PHImax .lt. 0. .or. abs(PHImax) .lt. small) PHImax = 0.
+      if (PHImax .lt. PHImin) PHImax = PHImin
+c     Calculate min and max angles coming from PHImin and PHImax,
+c     and put them in b_...
+      call angles2tab(PHImin, PHImax, b_n, b_ang, b_tab)
+c     Construct the final table
+      call construct_tab()
+
+      if (locmove_output) then
+        print *,'FINAL TABLE'
+        call output_tabs()
+      endif
+
+c     Check that there is at least one possible move
+      no_moves = .true.
+      if (res_n .eq. 0) then
+        no_moves = .false.
+      else
+        index = 0
+        do while ((index .lt. res_n) .and. no_moves)
+          if (res_tab(2,1,index)) no_moves = .false.
+          index=index+1
+        enddo
+      endif
+
+      if (no_moves) then
+c     Take care of the case where no solution exists...
+        call fix_no_moves(phi)
+        if (locmove_output) then
+          print *,'   ***   Had to modify PHImin or PHImax'
+          print *,'phi: ',phi*rad2deg
+        endif
+        move_res=1
+      else
+c     ...or calculate the solution
+c     Construct phi_start/phi_end arrays
+        call construct_ranges(phi_n, phi_start, phi_end)
+c     Choose random angle phi in allowed range(s)
+        temp = 0.
+        do i=0,phi_n-1
+          temp = temp + phi_end(i) - phi_start(i)
+        enddo
+        phi = ran_number(phi_start(0),phi_start(0)+temp)
+        index = 0
+        done = .false.
+        do while (.not.done)
+          if (phi .lt. phi_end(index)) then
+            done = .true.
+          else
+            index=index+1
+          endif
+          if (index .eq. phi_n) then
+            done = .true.
+          else if (.not.done) then
+            phi = phi + phi_start(index) - phi_end(index-1)
+          endif
+        enddo
+        if (index.eq.phi_n) phi=phi_end(phi_n-1) ! Fix numerical errors
+        if (phi .gt. PI) phi = phi-2.*PI
+
+        if (locmove_output) then
+          print *,'ALLOWED RANGE(S)'
+          do i=0,phi_n-1
+            print *,phi_start(i)*rad2deg,phi_end(i)*rad2deg
+          enddo
+          print *,'phi: ',phi*rad2deg
+        endif
+        move_res=0
+      endif
+
+c     Re-use radius as temp variable
+      temp=radius*cos(phi)
+      radius=radius*sin(phi)
+      do i=0,2
+        c(i+1,i_move)=Orig(i)+temp*X(i)+radius*Y(i)
+      enddo
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine loc_test
+crc      implicit none
+
+c     Includes
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.LOCMOVE'
+
+c     External functions
+      integer move_res
+      external move_res
+
+c     Local variables
+      integer i,j
+      integer phi_n
+      double precision phi_start(0:11),phi_end(0:11)
+      double precision phi
+      double precision R(0:2,0:5)
+
+      locmove_output=.true.
+
+c      call angles2tab(30.*deg2rad,70.*deg2rad,a_n,a_ang,a_tab)
+c      call angles2tab(80.*deg2rad,130.*deg2rad,b_n,b_ang,b_tab)
+c      call minmax_angles(0.D0,3.8D0,0.D0,3.8D0,b_n,b_ang,b_tab)
+c      call construct_tab
+c      call output_tabs
+
+c      call construct_ranges(phi_n,phi_start,phi_end)
+c      do i=0,phi_n-1
+c        print *,phi_start(i)*rad2deg,phi_end(i)*rad2deg
+c      enddo
+
+c      call fix_no_moves(phi)
+c      print *,'NO MOVES FOUND, BEST PHI IS',phi*rad2deg
+
+      R(0,0)=0.D0
+      R(1,0)=0.D0
+      R(2,0)=0.D0
+      R(0,1)=0.D0
+      R(1,1)=-cos(28.D0*deg2rad)
+      R(2,1)=-0.5D0-sin(28.D0*deg2rad)
+      R(0,2)=0.D0
+      R(1,2)=0.D0
+      R(2,2)=-0.5D0
+      R(0,3)=cos(30.D0*deg2rad)
+      R(1,3)=0.D0
+      R(2,3)=0.D0
+      R(0,4)=0.D0
+      R(1,4)=0.D0
+      R(2,4)=0.5D0
+      R(0,5)=0.D0
+      R(1,5)=cos(26.D0*deg2rad)
+      R(2,5)=0.5D0+sin(26.D0*deg2rad)
+      do i=1,5
+        do j=0,2
+          R(j,i)=vbl*R(j,i)
+        enddo
+      enddo
+      i=move_res(R(0,1),0.D0*deg2rad,180.D0*deg2rad)
+      print *,'RETURNED ',i
+      print *,(R(i,3)/vbl,i=0,2)
+
+      return
+      end
+
+c-------------------------------------------------------------
diff --git a/source/unres/src_MD_DFA/map.f b/source/unres/src_MD_DFA/map.f
new file mode 100644 (file)
index 0000000..9dbe64e
--- /dev/null
@@ -0,0 +1,90 @@
+      subroutine map
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MAP'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.CONTROL'
+      include 'COMMON.TORCNSTR'
+      double precision energia(0:n_ene)
+      character*5 angid(4) /'PHI','THETA','ALPHA','OMEGA'/
+      double precision ang_list(10)
+      double precision g(maxvar),x(maxvar)
+      integer nn(10)
+      write (iout,'(a,i3,a)')'Energy map constructed in the following ',
+     &       nmap,' groups of variables:'
+      do i=1,nmap
+        write (iout,'(2a,i3,a,i3)') angid(kang(i)),' of residues ',
+     &   res1(i),' to ',res2(i)
+      enddo
+      nmax=nstep(1)
+      do i=2,nmap
+        if (nmax.lt.nstep(i)) nmax=nstep(i)
+      enddo
+      ntot=nmax**nmap
+      iii=0
+      write (istat,'(1h#,a14,29a15)') (" ",k=1,nmap),
+     &    (ename(print_order(k)),k=1,nprint_ene),"ETOT","GNORM"
+      do i=0,ntot-1
+        ii=i
+        do j=1,nmap
+          nn(j)=mod(ii,nmax)+1
+          ii=ii/nmax
+        enddo
+        do j=1,nmap
+          if (nn(j).gt.nstep(j)) goto 10
+        enddo
+        iii=iii+1
+Cd      write (iout,*) i,iii,(nn(j),j=1,nmap)
+        do j=1,nmap
+          ang_list(j)=ang_from(j)
+     &       +(nn(j)-1)*(ang_to(j)-ang_from(j))/nstep(j)
+          do k=res1(j),res2(j)
+            goto (1,2,3,4), kang(j)
+    1       phi(k)=deg2rad*ang_list(j)
+            if (minim) phi0(k-res1(j)+1)=deg2rad*ang_list(j)
+            goto 5
+    2       theta(k)=deg2rad*ang_list(j)
+            goto 5
+    3       alph(k)=deg2rad*ang_list(j)
+            goto 5
+    4       omeg(k)=deg2rad*ang_list(j)
+    5       continue
+          enddo ! k
+        enddo ! j
+        call chainbuild
+        call int_from_cart1(.false.)
+        if (minim) then 
+         call geom_to_var(nvar,x)
+         call minimize(etot,x,iretcode,nfun)
+         print *,'SUMSL return code is',iretcode,' eval ',nfun
+c         call intout
+        else
+         call zerograd
+         call geom_to_var(nvar,x)
+        endif
+         call etotal(energia(0))
+         etot = energia(0)
+         nf=1
+         nfl=3
+         call gradient(nvar,x,nf,g,uiparm,urparm,fdum)
+         gnorm=0.0d0
+         do k=1,nvar
+           gnorm=gnorm+g(k)**2
+         enddo
+        etot=energia(0)
+
+        gnorm=dsqrt(gnorm)
+c        write (iout,'(6(1pe15.5))') (ang_list(k),k=1,nmap),etot,gnorm
+        write (istat,'(30e15.5)') (ang_list(k),k=1,nmap),
+     &   (energia(print_order(ii)),ii=1,nprint_ene),etot,gnorm
+c        write (iout,*) 'POINT',I,' ANGLES:',(ang_list(k),k=1,nmap)
+c        call intout
+c        call enerprint(energia)
+   10   continue
+      enddo ! i
+      return
+      end
diff --git a/source/unres/src_MD_DFA/matmult.f b/source/unres/src_MD_DFA/matmult.f
new file mode 100644 (file)
index 0000000..e9257cf
--- /dev/null
@@ -0,0 +1,18 @@
+      SUBROUTINE MATMULT(A1,A2,A3)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      DIMENSION A1(3,3),A2(3,3),A3(3,3)
+      DIMENSION AI3(3,3)
+      DO 1 I=1,3
+        DO 2 J=1,3
+          A3IJ=0.0
+          DO 3 K=1,3
+    3       A3IJ=A3IJ+A1(I,K)*A2(K,J)
+          AI3(I,J)=A3IJ
+    2   CONTINUE
+    1 CONTINUE
+      DO 4 I=1,3
+      DO 4 J=1,3
+    4   A3(I,J)=AI3(I,J)
+      RETURN
+      END
diff --git a/source/unres/src_MD_DFA/mc.F b/source/unres/src_MD_DFA/mc.F
new file mode 100644 (file)
index 0000000..0f39d48
--- /dev/null
@@ -0,0 +1,819 @@
+      subroutine monte_carlo
+C Does Boltzmann and entropic sampling without energy minimization
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+#ifdef MPL
+      include 'COMMON.INFO'
+#endif
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.MCM'
+      include 'COMMON.MCE'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.THREAD'
+      include 'COMMON.NAMES'
+      logical accepted,not_done,over,ovrtim,error,lprint
+      integer MoveType,nbond,nbins
+      integer conf_comp
+      double precision RandOrPert
+      double precision varia(maxvar),elowest,elowest1,
+     &                 ehighest,ehighest1,eold
+      double precision przes(3),obr(3,3)
+      double precision varold(maxvar)
+      logical non_conv
+      integer moves1(-1:MaxMoveType+1,0:MaxProcs-1),
+     &        moves_acc1(-1:MaxMoveType+1,0:MaxProcs-1)
+#ifdef MPL
+      double precision etot_temp,etot_all(0:MaxProcs)
+      external d_vadd,d_vmin,d_vmax
+      double precision entropy1(-max_ene:max_ene),
+     &                 nhist1(-max_ene:max_ene)
+      integer nbond_move1(maxres*(MaxProcs+1)),
+     &   nbond_acc1(maxres*(MaxProcs+1)),itemp(2)
+#endif
+      double precision var_lowest(maxvar)
+      double precision energia(0:n_ene),energia_ave(0:n_ene)
+C
+      write(iout,'(a,i8,2x,a,f10.5)')
+     & 'pool_read_freq=',pool_read_freq,' pool_fraction=',pool_fraction
+      open (istat,file=statname)
+      WhatsUp=0
+      indminn=-max_ene
+      indmaxx=max_ene
+      facee=1.0D0/(maxacc*delte)
+C Number of bins in energy histogram
+      nbins=e_up/delte-1
+      write (iout,*) 'NBINS=',nbins
+      conste=dlog(facee)
+C Read entropy from previous simulations. 
+      if (ent_read) then
+        read (ientin,*) indminn,indmaxx,emin,emax 
+        print *,'indminn=',indminn,' indmaxx=',indmaxx,' emin=',emin,
+     &          ' emax=',emax
+        do i=-max_ene,max_ene
+          entropy(i)=0.0D0
+        enddo
+        read (ientin,*) (ijunk,ejunk,entropy(i),i=indminn,indmaxx)
+        indmin=indminn
+        indmax=indmaxx
+        write (iout,*) 'indminn=',indminn,' indmaxx=',indmaxx,
+     &                 ' emin=',emin,' emax=',emax
+        write (iout,'(/a)') 'Initial entropy'
+        do i=indminn,indmaxx
+          write (iout,'(i5,2f10.5)') i,emin+i*delte,entropy(i)
+        enddo
+      endif ! ent_read
+C Read the pool of conformations
+      call read_pool
+      elowest=1.0D+10
+      ehighest=-1.0D+10
+C----------------------------------------------------------------------------
+C Entropy-sampling simulations with continually updated entropy;
+C set NSWEEP=1 for Boltzmann sampling.
+C Loop thru simulations
+C----------------------------------------------------------------------------
+      DO ISWEEP=1,NSWEEP
+C
+C Initialize the IFINISH array.
+C
+#ifdef MPL
+        do i=1,nctasks
+          ifinish(i)=0
+        enddo
+#endif
+c---------------------------------------------------------------------------
+C Initialize counters.
+c---------------------------------------------------------------------------
+C Total number of generated confs.
+        ngen=0
+C Total number of moves. In general this won't be equal to the number of
+C attempted moves, because we may want to reject some "bad" confs just by
+C overlap check.
+        nmove=0
+C Total number of shift (nbond_move(1)), spike, crankshaft, three-bond,...
+C motions.
+        do i=1,nres
+          nbond_move(i)=0
+          nbond_acc(i)=0
+        enddo
+C Initialize total and accepted number of moves of various kind.
+        do i=-1,MaxMoveType
+          moves(i)=0
+          moves_acc(i)=0
+        enddo
+C Total number of energy evaluations.
+        neneval=0
+        nfun=0
+C----------------------------------------------------------------------------
+C Take a conformation from the pool
+C----------------------------------------------------------------------------
+      rewind(istat)
+      write (iout,*) 'emin=',emin,' emax=',emax
+      if (npool.gt.0) then
+        ii=iran_num(1,npool)
+        do i=1,nvar
+          varia(i)=xpool(i,ii)
+        enddo
+        write (iout,*) 'Took conformation',ii,' from the pool energy=',
+     &               epool(ii)
+        call var_to_geom(nvar,varia)
+C Print internal coordinates of the initial conformation
+        call intout
+      else if (isweep.gt.1) then
+        if (eold.lt.emax) then
+        do i=1,nvar
+          varia(i)=varold(i)
+        enddo
+        else
+        do i=1,nvar
+          varia(i)=var_lowest(i)
+        enddo
+        endif
+        call var_to_geom(nvar,varia)
+      endif
+C----------------------------------------------------------------------------
+C Compute and print initial energies.
+C----------------------------------------------------------------------------
+      nsave=0
+      Kwita=0
+      WhatsUp=0
+      write (iout,'(/80(1h*)/a,i2/80(1h*)/)') 'MCE iteration #',isweep
+      write (iout,'(/80(1h*)/a)') 'Initial energies:'
+      call chainbuild
+      call geom_to_var(nvar,varia)
+      call etotal(energia(0))
+      etot = energia(0)
+      call enerprint(energia(0))
+      if (refstr) then
+        call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),nsup,przes,
+     &             obr,non_conv)
+        rms=dsqrt(rms)
+        call contact(.false.,ncont,icont,co)
+        frac=contact_fract(ncont,ncont_ref,icont,icont_ref)
+        write (iout,'(a,f8.3,a,f8.3,a,f8.3)') 
+     &    'RMS deviation from the reference structure:',rms,
+     &    ' % of native contacts:',frac*100,' contact order',co
+        write (istat,'(i10,16(1pe14.5))') 0,
+     &   (energia(print_order(i)),i=1,nprint_ene),
+     &   etot,rms,frac,co
+      else
+        write (istat,'(i10,14(1pe14.5))') 0,
+     &   (energia(print_order(i)),i=1,nprint_ene),etot
+      endif
+c     close(istat)
+      neneval=neneval+1
+      if (.not. ent_read) then
+C Initialize the entropy array
+#ifdef MPL
+C Collect total energies from other processors.
+        etot_temp=etot
+        etot_all(0)=etot
+        call mp_gather(etot_temp,etot_all,8,MasterID,cgGroupID)
+        if (MyID.eq.MasterID) then
+C Get the lowest and the highest energy. 
+          print *,'MASTER: etot_temp: ',(etot_all(i),i=0,nprocs-1),
+     &     ' emin=',emin,' emax=',emax
+          emin=1.0D10
+          emax=-1.0D10
+          do i=0,nprocs
+            if (emin.gt.etot_all(i)) emin=etot_all(i)
+            if (emax.lt.etot_all(i)) emax=etot_all(i)
+          enddo
+          emax=emin+e_up
+        endif ! MyID.eq.MasterID
+        etot_all(1)=emin
+        etot_all(2)=emax
+        print *,'Processor',MyID,' calls MP_BCAST to send/recv etot_all'
+        call mp_bcast(etot_all(1),16,MasterID,cgGroupID)
+        print *,'Processor',MyID,' MP_BCAST to send/recv etot_all ended'
+        if (MyID.ne.MasterID) then
+          print *,'Processor:',MyID,etot_all(1),etot_all(2),
+     &          etot_all(1),etot_all(2)
+          emin=etot_all(1)
+          emax=etot_all(2)
+        endif ! MyID.ne.MasterID
+        write (iout,*) 'After MP_GATHER etot_temp=',
+     &                 etot_temp,' emin=',emin
+#else
+        emin=etot
+        emax=emin+e_up
+        indminn=0
+        indmin=0
+#endif
+        IF (MULTICAN) THEN
+C Multicanonical sampling - start from Boltzmann distribution
+          do i=-max_ene,max_ene
+            entropy(i)=(emin+i*delte)*betbol 
+          enddo
+        ELSE
+C Entropic sampling - start from uniform distribution of the density of states
+          do i=-max_ene,max_ene
+            entropy(i)=0.0D0
+          enddo
+        ENDIF ! MULTICAN
+        write (iout,'(/a)') 'Initial entropy'
+        do i=indminn,indmaxx
+          write (iout,'(i5,2f10.5)') i,emin+i*delte,entropy(i)
+        enddo
+        if (isweep.eq.1) then
+          emax=emin+e_up
+          indminn=0
+          indmin=0
+          indmaxx=indminn+nbins
+          indmax=indmaxx
+        endif ! isweep.eq.1
+      endif ! .not. ent_read
+#ifdef MPL
+      call recv_stop_sig(Kwita)
+      if (whatsup.eq.1) then
+        call send_stop_sig(-2)
+        not_done=.false.
+      else if (whatsup.le.-2) then
+        not_done=.false.
+      else if (whatsup.eq.2) then
+        not_done=.false.
+      else 
+        not_done=.true.
+      endif
+#else
+      not_done=.true.
+#endif 
+      write (iout,'(/80(1h*)/20x,a/80(1h*))')
+     &    'Enter Monte Carlo procedure.'
+      close(igeom)
+      call briefout(0,etot)
+      do i=1,nvar
+        varold(i)=varia(i)
+      enddo
+      eold=etot
+      call entropia(eold,sold,indeold)
+C NACC is the counter for the accepted conformations of a given processor
+      nacc=0
+C NACC_TOT counts the total number of accepted conformations
+      nacc_tot=0
+C Main loop.
+c----------------------------------------------------------------------------
+C Zero out average energies
+      do i=0,n_ene
+        energia_ave(i)=0.0d0
+      enddo
+C Initialize energy histogram
+      do i=-max_ene,max_ene
+        nhist(i)=0.0D0
+      enddo   ! i
+C Zero out iteration counter.
+      it=0
+      do j=1,nvar
+        varold(j)=varia(j)
+       enddo
+C Begin MC iteration loop.
+      do while (not_done)
+        it=it+1
+C Initialize local counter.
+        ntrial=0 ! # of generated non-overlapping confs.
+        noverlap=0 ! # of overlapping confs.
+        accepted=.false.
+        do while (.not. accepted .and. WhatsUp.eq.0 .and. Kwita.eq.0)
+          ntrial=ntrial+1
+C Retrieve the angles of previously accepted conformation
+          do j=1,nvar
+            varia(j)=varold(j)
+          enddo
+          call var_to_geom(nvar,varia)
+C Rebuild the chain.
+          call chainbuild
+          MoveType=0
+          nbond=0
+          lprint=.true.
+C Decide whether to take a conformation from the pool or generate/perturb one
+C randomly
+          from_pool=ran_number(0.0D0,1.0D0)
+          if (npool.gt.0 .and. from_pool.lt.pool_fraction) then
+C Throw a dice to choose the conformation from the pool
+            ii=iran_num(1,npool)
+            do i=1,nvar
+              varia(i)=xpool(i,ii)
+            enddo
+            call var_to_geom(nvar,varia)
+            call chainbuild  
+cd          call intout
+cd          write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+            if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it)
+     &        write (iout,'(a,i3,a,f10.5)') 
+     &     'Try conformation',ii,' from the pool energy=',epool(ii)
+            MoveType=-1
+            moves(-1)=moves(-1)+1
+          else
+C Decide whether to generate a random conformation or perturb the old one
+          RandOrPert=ran_number(0.0D0,1.0D0)
+          if (RandOrPert.gt.RanFract) then
+            if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it) 
+     &        write (iout,'(a)') 'Perturbation-generated conformation.'
+            call perturb(error,lprint,MoveType,nbond,0.1D0)
+            if (error) goto 20
+            if (MoveType.lt.1 .or. MoveType.gt.MaxMoveType) then
+              write (iout,'(/a,i7,a/)') 'Error - unknown MoveType=',
+     &           MoveType,' returned from PERTURB.'
+              goto 20
+            endif
+            call chainbuild
+          else
+            MoveType=0
+            moves(0)=moves(0)+1
+            nstart_grow=iran_num(3,nres)
+            if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it) 
+     &        write (iout,'(2a,i3)') 'Random-generated conformation',
+     &        ' - chain regrown from residue',nstart_grow
+            call gen_rand_conf(nstart_grow,*30)
+          endif
+          call geom_to_var(nvar,varia)
+          endif ! pool
+Cd        write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+          ngen=ngen+1
+          if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it) 
+     &      write (iout,'(a,i5,a,i10,a,i10)') 
+     &   'Processor',MyId,' trial move',ntrial,' total generated:',ngen
+          if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it) 
+     &      write (*,'(a,i5,a,i10,a,i10)') 
+     &   'Processor',MyId,' trial move',ntrial,' total generated:',ngen
+          call etotal(energia(0))
+          etot = energia(0)
+          neneval=neneval+1 
+cd        call enerprint(energia(0))
+cd        write(iout,*)'it=',it,' etot=',etot
+          if (etot-elowest.gt.overlap_cut) then
+            if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it) 
+     &        write (iout,'(a,i5,a,1pe14.5)')  'Iteration',it,
+     &       ' Overlap detected in the current conf.; energy is',etot
+            accepted=.false.
+            noverlap=noverlap+1
+            if (noverlap.gt.maxoverlap) then
+              write (iout,'(a)') 'Too many overlapping confs.'
+              goto 20
+            endif
+          else
+C--------------------------------------------------------------------------
+C... Acceptance test
+C--------------------------------------------------------------------------
+            accepted=.false.
+            if (WhatsUp.eq.0) 
+     &      call accept_mc(it,etot,eold,scur,sold,varia,varold,accepted)
+            if (accepted) then
+              nacc=nacc+1
+              nacc_tot=nacc_tot+1
+              if (elowest.gt.etot) then
+                elowest=etot
+                do i=1,nvar
+                  var_lowest(i)=varia(i)
+                enddo
+              endif
+              if (ehighest.lt.etot) ehighest=etot
+              moves_acc(MoveType)=moves_acc(MoveType)+1
+              if (MoveType.eq.1) then
+                nbond_acc(nbond)=nbond_acc(nbond)+1
+              endif
+C Compare with reference structure.
+              if (refstr) then
+                call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),
+     &                      nsup,przes,obr,non_conv)
+                rms=dsqrt(rms)
+                call contact(.false.,ncont,icont,co)
+                frac=contact_fract(ncont,ncont_ref,icont,icont_ref)
+              endif ! refstr
+C
+C Periodically save average energies and confs.
+C
+              do i=0,n_ene
+                energia_ave(i)=energia_ave(i)+energia(i)
+              enddo
+              moves(MaxMoveType+1)=nmove
+              moves_acc(MaxMoveType+1)=nacc
+              IF ((it/save_frequency)*save_frequency.eq.it) THEN
+                do i=0,n_ene
+                  energia_ave(i)=energia_ave(i)/save_frequency
+                enddo
+                etot_ave=energia_ave(0)
+C#ifdef AIX
+C                open (istat,file=statname,position='append')
+C#else
+C                open (istat,file=statname,access='append')
+Cendif
+                if (print_mc.gt.0) 
+     &            write (iout,'(80(1h*)/20x,a,i20)')
+     &                             'Iteration #',it
+                if (refstr .and. print_mc.gt.0)  then
+                  write (iout,'(a,f8.3,a,f8.3,a,f8.3)') 
+     &            'RMS deviation from the reference structure:',rms,
+     &            ' % of native contacts:',frac*100,' contact order:',co
+                endif
+                if (print_stat) then
+                  if (refstr) then
+                    write (istat,'(i10,10(1pe14.5))') it,
+     &              (energia_ave(print_order(i)),i=1,nprint_ene),
+     &                etot_ave,rms_ave,frac_ave
+                  else
+                    write (istat,'(i10,10(1pe14.5))') it,
+     &              (energia_ave(print_order(i)),i=1,nprint_ene),
+     &               etot_ave
+                  endif
+                endif 
+c               close(istat)
+                if (print_mc.gt.0) 
+     &            call statprint(nacc,nfun,iretcode,etot,elowest)
+C Print internal coordinates.
+                if (print_int) call briefout(nacc,etot)
+                do i=0,n_ene
+                  energia_ave(i)=0.0d0
+                enddo
+              ENDIF ! ( (it/save_frequency)*save_frequency.eq.it)
+C Update histogram
+              inde=icialosc((etot-emin)/delte)
+              nhist(inde)=nhist(inde)+1.0D0
+#ifdef MPL
+              if ( (it/message_frequency)*message_frequency.eq.it
+     &                              .and. (MyID.ne.MasterID) ) then
+                call recv_stop_sig(Kwita)
+                call send_MCM_info(message_frequency)
+              endif
+#endif
+C Store the accepted conf. and its energy.
+              eold=etot
+              sold=scur
+              do i=1,nvar
+                varold(i)=varia(i)
+              enddo
+#ifdef MPL
+              if (Kwita.eq.0) call recv_stop_sig(kwita)
+#endif
+            endif ! accepted
+          endif ! overlap
+#ifdef MPL
+          if (MyID.eq.MasterID .and. 
+     &        (it/message_frequency)*message_frequency.eq.it) then
+            call receive_MC_info
+            if (nacc_tot.ge.maxacc) accepted=.true.
+          endif
+#endif
+C         if ((ntrial.gt.maxtrial_iter 
+C    &       .or. (it/pool_read_freq)*pool_read_freq.eq.it) 
+C    &       .and. npool.gt.0) then
+C Take a conformation from the pool
+C           ii=iran_num(1,npool)
+C           do i=1,nvar
+C             varold(i)=xpool(i,ii)
+C           enddo
+C           if (ntrial.gt.maxtrial_iter) 
+C    &      write (iout,*) 'Iteration',it,' max. # of trials exceeded.'
+C           write (iout,*) 
+C    &     'Take conformation',ii,' from the pool energy=',epool(ii)
+C           if (print_mc.gt.2)
+C    &      write (iout,'(10f8.3)') (rad2deg*varold(i),i=1,nvar)
+C           ntrial=0
+C           eold=epool(ii)
+C           call entropia(eold,sold,indeold)
+C           accepted=.true.
+C        endif ! (ntrial.gt.maxtrial_iter .and. npool.gt.0)
+   30    continue
+        enddo ! accepted
+#ifdef MPL
+        if (MyID.eq.MasterID .and.
+     &      (it/message_frequency)*message_frequency.eq.it) then
+          call receive_MC_info
+        endif
+        if (Kwita.eq.0) call recv_stop_sig(kwita)
+#endif
+        if (ovrtim()) WhatsUp=-1
+cd      write (iout,*) 'WhatsUp=',WhatsUp,' Kwita=',Kwita
+        not_done = (nacc_tot.lt.maxacc) .and. (WhatsUp.eq.0) 
+     &         .and. (Kwita.eq.0)
+cd      write (iout,*) 'not_done=',not_done
+#ifdef MPL
+        if (Kwita.lt.0) then
+          print *,'Processor',MyID,
+     &    ' has received STOP signal =',Kwita,' in EntSamp.'
+cd        print *,'not_done=',not_done
+          if (Kwita.lt.-1) WhatsUp=Kwita
+          if (MyID.ne.MasterID) call send_MCM_info(-1)
+        else if (nacc_tot.ge.maxacc) then
+          print *,'Processor',MyID,' calls send_stop_sig,',
+     &     ' because a sufficient # of confs. have been collected.'
+cd        print *,'not_done=',not_done
+          call send_stop_sig(-1)
+          if (MyID.ne.MasterID) call send_MCM_info(-1)
+        else if (WhatsUp.eq.-1) then
+          print *,'Processor',MyID,
+     &               ' calls send_stop_sig because of timeout.'
+cd        print *,'not_done=',not_done
+          call send_stop_sig(-2)
+          if (MyID.ne.MasterID) call send_MCM_info(-1)
+        endif
+#endif
+      enddo ! not_done
+
+C-----------------------------------------------------------------
+C... Construct energy histogram & update entropy
+C-----------------------------------------------------------------
+      go to 21
+   20 WhatsUp=-3
+#ifdef MPL
+      write (iout,*) 'Processor',MyID,
+     &       ' is broadcasting ERROR-STOP signal.'
+      write (*,*) 'Processor',MyID,
+     &       ' is broadcasting ERROR-STOP signal.'
+      call send_stop_sig(-3)
+      if (MyID.ne.MasterID) call send_MCM_info(-1)
+#endif
+   21 continue
+      write (iout,'(/a)') 'Energy histogram'
+      do i=-100,100
+        write (iout,'(i5,2f20.5)') i,emin+i*delte,nhist(i)
+      enddo
+#ifdef MPL
+C Wait until every processor has sent complete MC info.
+      if (MyID.eq.MasterID) then
+        not_done=.true.
+        do while (not_done)
+C         write (*,*) 'The IFINISH array:'
+C         write (*,*) (ifinish(i),i=1,nctasks)
+          not_done=.false.
+          do i=2,nctasks
+            not_done=not_done.or.(ifinish(i).ge.0)
+          enddo
+          if (not_done) call receive_MC_info
+        enddo
+      endif
+C Make collective histogram from the work of all processors.
+      msglen=(2*max_ene+1)*8
+      print *,
+     & 'Processor',MyID,' calls MP_REDUCE to send/receive histograms',
+     & ' msglen=',msglen
+      call mp_reduce(nhist,nhist1,msglen,MasterID,d_vadd,
+     &               cgGroupID)
+      print *,'Processor',MyID,' MP_REDUCE accomplished for histogr.'
+      do i=-max_ene,max_ene
+        nhist(i)=nhist1(i)
+      enddo
+C Collect min. and max. energy
+      print *,
+     &'Processor',MyID,' calls MP_REDUCE to send/receive energy borders'
+      call mp_reduce(elowest,elowest1,8,MasterID,d_vmin,cgGroupID)
+      call mp_reduce(ehighest,ehighest1,8,MasterID,d_vmax,cgGroupID)
+      print *,'Processor',MyID,' MP_REDUCE accomplished for energies.'
+      IF (MyID.eq.MasterID) THEN
+        elowest=elowest1
+        ehighest=ehighest1
+#endif
+        write (iout,'(a,i10)') '# of accepted confs:',nacc_tot
+        write (iout,'(a,f10.5,a,f10.5)') 'Lowest energy:',elowest,
+     & ' Highest energy',ehighest
+        indmin=icialosc((elowest-emin)/delte)
+        imdmax=icialosc((ehighest-emin)/delte)
+        if (indmin.lt.indminn) then 
+          emax=emin+indmin*delte+e_up
+          indmaxx=indmin+nbins
+          indminn=indmin
+        endif
+        if (.not.ent_read) ent_read=.true.
+        write(iout,*)'indminn=',indminn,' indmaxx=',indmaxx
+C Update entropy (density of states)
+        do i=indmin,indmax
+          if (nhist(i).gt.0) then
+            entropy(i)=entropy(i)+dlog(nhist(i)+0.0D0)
+          endif
+        enddo
+        write (iout,'(/80(1h*)/a,i2/80(1h*)/)') 
+     &        'End of macroiteration',isweep
+        write (iout,'(a,f10.5,a,f10.5)') 'Elowest=',elowest,
+     &      ' Ehighest=',ehighest
+        write (iout,'(/a)') 'Energy histogram'
+        do i=indminn,indmaxx
+          write (iout,'(i5,2f20.5)') i,emin+i*delte,nhist(i)
+        enddo
+        write (iout,'(/a)') 'Entropy'
+        do i=indminn,indmaxx
+          write (iout,'(i5,2f20.5)') i,emin+i*delte,entropy(i)
+        enddo
+C-----------------------------------------------------------------
+C... End of energy histogram construction
+C-----------------------------------------------------------------
+#ifdef MPL
+      ELSE
+        if (.not. ent_read) ent_read=.true.
+      ENDIF ! MyID .eq. MaterID
+      if (MyID.eq.MasterID) then
+        itemp(1)=indminn
+        itemp(2)=indmaxx
+      endif
+      print *,'before mp_bcast processor',MyID,' indminn=',indminn,
+     & ' indmaxx=',indmaxx,' itemp=',itemp(1),itemp(2)
+      call mp_bcast(itemp(1),8,MasterID,cgGroupID)
+      call mp_bcast(emax,8,MasterID,cgGroupID)
+      print *,'after mp_bcast processor',MyID,' indminn=',indminn,
+     & ' indmaxx=',indmaxx,' itemp=',itemp(1),itemp(2)
+      if (MyID .ne. MasterID) then
+        indminn=itemp(1)
+        indmaxx=itemp(2)
+      endif
+      msglen=(indmaxx-indminn+1)*8
+      print *,'processor',MyID,' calling mp_bcast msglen=',msglen,
+     & ' indminn=',indminn,' indmaxx=',indmaxx,' isweep=',isweep
+      call mp_bcast(entropy(indminn),msglen,MasterID,cgGroupID)
+      IF(MyID.eq.MasterID .and. .not. ovrtim() .and. WhatsUp.ge.0)THEN
+        open (ientout,file=entname,status='unknown')
+        write (ientout,'(2i5,2e25.17)') indminn,indmaxx,emin,emax
+        do i=indminn,indmaxx
+          write (ientout,'(i5,f10.5,f20.15)') i,emin+i*delte,entropy(i)
+        enddo
+        close(ientout)
+      ELSE
+        write (iout,*) 'Received from master:'
+        write (iout,*) 'indminn=',indminn,' indmaxx=',indmaxx,
+     &                 ' emin=',emin,' emax=',emax
+        write (iout,'(/a)') 'Entropy'
+        do i=indminn,indmaxx
+           write (iout,'(i5,2f10.5)') i,emin+i*delte,entropy(i)
+        enddo
+      ENDIF ! MyID.eq.MasterID
+      print *,'Processor',MyID,' calls MP_GATHER'
+      call mp_gather(nbond_move,nbond_move1,4*Nbm,MasterID,
+     &               cgGroupID)
+      call mp_gather(nbond_acc,nbond_acc1,4*Nbm,MasterID,
+     &               cgGroupID)
+      print *,'Processor',MyID,' MP_GATHER call accomplished'
+      if (MyID.eq.MasterID) then
+
+        write (iout,'(/80(1h*)/20x,a)') 'Summary run statistics:'
+        call statprint(nacc_tot,nfun,iretcode,etot,elowest)
+        write (iout,'(a)') 
+     &   'Statistics of multiple-bond motions. Total motions:' 
+        write (iout,'(8i10)') (nbond_move(i),i=1,Nbm)
+        write (iout,'(a)') 'Accepted motions:'
+        write (iout,'(8i10)') (nbond_acc(i),i=1,Nbm)
+
+        write (iout,'(a)') 
+     & 'Statistics of multi-bond moves of respective processors:'
+        do iproc=1,Nprocs-1
+          do i=1,Nbm
+            ind=iproc*nbm+i
+            nbond_move(i)=nbond_move(i)+nbond_move1(ind)
+            nbond_acc(i)=nbond_acc(i)+nbond_acc1(ind)
+          enddo
+        enddo
+        do iproc=0,NProcs-1
+          write (iout,*) 'Processor',iproc,' nbond_move:', 
+     &        (nbond_move1(iproc*nbm+i),i=1,Nbm),
+     &        ' nbond_acc:',(nbond_acc1(iproc*nbm+i),i=1,Nbm)
+        enddo
+      endif
+      call mp_gather(moves,moves1,4*(MaxMoveType+3),MasterID,
+     &               cgGroupID)
+      call mp_gather(moves_acc,moves_acc1,4*(MaxMoveType+3),
+     &               MasterID,cgGroupID)
+      if (MyID.eq.MasterID) then
+        do iproc=1,Nprocs-1 
+          do i=-1,MaxMoveType+1
+            moves(i)=moves(i)+moves1(i,iproc)
+            moves_acc(i)=moves_acc(i)+moves_acc1(i,iproc)
+          enddo
+        enddo
+        nmove=0
+        do i=0,MaxMoveType+1
+          nmove=nmove+moves(i)
+        enddo
+        do iproc=0,NProcs-1
+          write (iout,*) 'Processor',iproc,' moves',
+     &     (moves1(i,iproc),i=0,MaxMoveType+1),
+     &    ' moves_acc:',(moves_acc1(i,iproc),i=0,MaxMoveType+1)
+        enddo   
+      endif
+#else
+      open (ientout,file=entname,status='unknown')
+      write (ientout,'(2i5,2e25.17)') indminn,indmaxx,emin,emax
+      do i=indminn,indmaxx
+        write (ientout,'(i5,f10.5,f20.15)') i,emin+i*delte,entropy(i)
+      enddo
+      close(ientout)
+#endif
+      write (iout,'(/80(1h*)/20x,a)') 'Summary run statistics:'
+      call statprint(nacc_tot,nfun,iretcode,etot,elowest)
+      write (iout,'(a)') 
+     & 'Statistics of multiple-bond motions. Total motions:' 
+      write (iout,'(8i10)') (nbond_move(i),i=1,Nbm)
+      write (iout,'(a)') 'Accepted motions:'
+      write (iout,'(8i10)') (nbond_acc(i),i=1,Nbm)
+      if (ovrtim() .or. WhatsUp.lt.0) return
+
+C---------------------------------------------------------------------------
+      ENDDO ! ISWEEP
+C---------------------------------------------------------------------------
+
+      runtime=tcpu()
+
+      if (isweep.eq.nsweep .and. it.ge.maxacc)
+     &write (iout,'(/80(1h*)/20x,a/80(1h*)/)') 'All iterations done.'
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine accept_mc(it,ecur,eold,scur,sold,x,xold,accepted)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.MCE'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+#ifdef MPL
+      include 'COMMON.INFO'
+#endif
+      include 'COMMON.GEO'
+      double precision ecur,eold,xx,ran_number,bol
+      double precision x(maxvar),xold(maxvar)
+      logical accepted
+C Check if the conformation is similar.
+cd    write (iout,*) 'Enter ACCEPTING'
+cd    write (iout,*) 'Old PHI angles:'
+cd    write (iout,*) (rad2deg*xold(i),i=1,nphi)
+cd    write (iout,*) 'Current angles'
+cd    write (iout,*) (rad2deg*x(i),i=1,nphi)
+cd    ddif=dif_ang(nphi,x,xold)
+cd    write (iout,*) 'Angle norm:',ddif
+cd    write (iout,*) 'ecur=',ecur,' emax=',emax
+      if (ecur.gt.emax) then
+        accepted=.false.
+        if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it)
+     & write (iout,'(a)') 'Conformation rejected as too high in energy'
+        return
+      endif
+C Else evaluate the entropy of the conf and compare it with that of the previous
+C one.
+      call entropia(ecur,scur,indecur)
+cd    print *,'Processor',MyID,' ecur=',ecur,' indecur=',indecur,
+cd   & ' scur=',scur,' eold=',eold,' sold=',sold
+cd    print *,'deix=',deix,' dent=',dent,' delte=',delte
+      if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it) then
+        write(iout,*)'it=',it,'ecur=',ecur,' indecur=',indecur,
+     &   ' scur=',scur
+        write(iout,*)'eold=',eold,' sold=',sold
+      endif
+      if (scur.le.sold) then
+        accepted=.true.
+      else
+C Else carry out acceptance test
+        xx=ran_number(0.0D0,1.0D0) 
+        xxh=scur-sold
+        if (xxh.gt.50.0D0) then
+          bol=0.0D0
+        else
+          bol=exp(-xxh)
+        endif
+        if (bol.gt.xx) then
+          accepted=.true. 
+          if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it) 
+     &       write (iout,'(a)') 'Conformation accepted.'
+        else
+          accepted=.false.
+          if (print_mc.gt.0 .and. (it/print_freq)*print_freq.eq.it) 
+     &       write (iout,'(a)') 'Conformation rejected.'
+        endif
+      endif
+      return
+      end 
+c--------------------------------------------------------------------------
+      integer function icialosc(x)
+      double precision x
+      if (x.lt.0.0D0) then
+        icialosc=dint(x)-1
+      else
+        icialosc=dint(x)
+      endif
+      return
+      end 
+c--------------------------------------------------------------------------
+      subroutine entropia(ecur,scur,indecur)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.MCE'
+      include 'COMMON.IOUNITS'
+      double precision ecur,scur
+      integer indecur
+      indecur=icialosc((ecur-emin)/delte)
+      if (iabs(indecur).gt.max_ene) then
+        if ((it/print_freq)*it.eq.it) write (iout,'(a,2i5)') 
+     &   'Accepting: Index out of range:',indecur
+        scur=1000.0D0 
+      else if (indecur.ge.indmaxx) then
+        scur=entropy(indecur)
+        if (print_mc.gt.0 .and. (it/print_freq)*it.eq.it) 
+     &    write (iout,*)'Energy boundary reached',
+     &            indmaxx,indecur,entropy(indecur)
+      else
+        deix=ecur-(emin+indecur*delte)
+        dent=entropy(indecur+1)-entropy(indecur)
+        scur=entropy(indecur)+(dent/delte)*deix
+      endif
+      return
+      end
diff --git a/source/unres/src_MD_DFA/mcm.F b/source/unres/src_MD_DFA/mcm.F
new file mode 100644 (file)
index 0000000..79e567b
--- /dev/null
@@ -0,0 +1,1481 @@
+      subroutine mcm_setup
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MCM'
+      include 'COMMON.CONTROL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+C
+C Set up variables used in MC/MCM.
+C    
+      write (iout,'(80(1h*)/20x,a/80(1h*))') 'MCM control parameters:'
+      write (iout,'(5(a,i7))') 'Maxacc:',maxacc,' MaxTrial:',MaxTrial,
+     & ' MaxRepm:',MaxRepm,' MaxGen:',MaxGen,' MaxOverlap:',MaxOverlap
+      write (iout,'(4(a,f8.1)/2(a,i3))') 
+     & 'Tmin:',Tmin,' Tmax:',Tmax,' TstepH:',TstepH,
+     & ' TstepC:',TstepC,'NstepH:',NstepH,' NstepC:',NstepC 
+      if (nwindow.gt.0) then
+        write (iout,'(a)') 'Perturbation windows:'
+        do i=1,nwindow
+          i1=winstart(i)
+          i2=winend(i)
+          it1=itype(i1)
+          it2=itype(i2)
+          write (iout,'(a,i3,a,i3,a,i3)') restyp(it1),i1,restyp(it2),i2,
+     &                        ' length',winlen(i)
+        enddo
+      endif
+C Rbolt=8.3143D-3*2.388459D-01 kcal/(mol*K)
+      RBol=1.9858D-3
+C Number of "end bonds".
+      koniecl=0
+c     koniecl=nphi
+      print *,'koniecl=',koniecl
+      write (iout,'(a)') 'Probabilities of move types:'
+      write (*,'(a)') 'Probabilities of move types:'
+      do i=1,MaxMoveType
+        write (iout,'(a,f10.5)') MovTypID(i),
+     &    sumpro_type(i)-sumpro_type(i-1)
+        write (*,'(a,f10.5)') MovTypID(i),
+     &    sumpro_type(i)-sumpro_type(i-1)
+      enddo
+      write (iout,*) 
+C Maximum length of N-bond segment to be moved
+c     nbm=nres-1-(2*koniecl-1)
+      if (nwindow.gt.0) then
+        maxwinlen=winlen(1)
+        do i=2,nwindow
+          if (winlen(i).gt.maxwinlen) maxwinlen=winlen(i)
+        enddo
+        nbm=min0(maxwinlen,6)
+        write (iout,'(a,i3,a,i3)') 'Nbm=',Nbm,' Maxwinlen=',Maxwinlen
+      else
+        nbm=min0(6,nres-2)
+      endif
+      sumpro_bond(0)=0.0D0
+      sumpro_bond(1)=0.0D0 
+      do i=2,nbm
+        sumpro_bond(i)=sumpro_bond(i-1)+1.0D0/dfloat(i)
+      enddo
+      write (iout,'(a)') 'The SumPro_Bond array:'
+      write (iout,'(8f10.5)') (sumpro_bond(i),i=1,nbm)
+      write (*,'(a)') 'The SumPro_Bond array:'
+      write (*,'(8f10.5)') (sumpro_bond(i),i=1,nbm)
+C Maximum number of side chains moved simultaneously
+c     print *,'nnt=',nnt,' nct=',nct
+      ngly=0
+      do i=nnt,nct
+        if (itype(i).eq.10) ngly=ngly+1
+      enddo
+      mmm=nct-nnt-ngly+1
+      if (mmm.gt.0) then
+        MaxSideMove=min0((nct-nnt+1)/2,mmm)
+      endif
+c     print *,'MaxSideMove=',MaxSideMove
+C Max. number of generated confs (not used at present).
+      maxgen=10000
+C Set initial temperature
+      Tcur=Tmin
+      betbol=1.0D0/(Rbol*Tcur)
+      write (iout,'(a,f8.1,a,f10.5)') 'Initial temperature:',Tcur,
+     &    ' BetBol:',betbol
+      write (iout,*) 'RanFract=',ranfract
+      return
+      end
+c------------------------------------------------------------------------------
+#ifndef MPI
+      subroutine do_mcm(i_orig)
+C Monte-Carlo-with-Minimization calculations - serial code.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.MCM'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CACHE'
+crc      include 'COMMON.DEFORM'
+crc      include 'COMMON.DEFORM1'
+      include 'COMMON.NAMES'
+      logical accepted,over,ovrtim,error,lprint,not_done,my_conf,
+     &        enelower,non_conv
+      integer MoveType,nbond,conf_comp
+      integer ifeed(max_cache)
+      double precision varia(maxvar),varold(maxvar),elowest,eold,
+     & przes(3),obr(3,3)
+      double precision energia(0:n_ene)
+      double precision coord1(maxres,3)
+
+C---------------------------------------------------------------------------
+C Initialize counters.
+C---------------------------------------------------------------------------
+C Total number of generated confs.
+      ngen=0
+C Total number of moves. In general this won't be equal to the number of
+C attempted moves, because we may want to reject some "bad" confs just by
+C overlap check.
+      nmove=0
+C Total number of temperature jumps.
+      ntherm=0
+C Total number of shift (nbond_move(1)), spike, crankshaft, three-bond,...
+C motions.
+      ncache=0
+      do i=1,nres
+        nbond_move(i)=0
+      enddo
+C Initialize total and accepted number of moves of various kind.
+      do i=0,MaxMoveType
+        moves(i)=0
+        moves_acc(i)=0
+      enddo
+C Total number of energy evaluations.
+      neneval=0
+      nfun=0
+      nsave=0
+
+      write (iout,*) 'RanFract=',RanFract
+
+      WhatsUp=0
+      Kwita=0
+
+c----------------------------------------------------------------------------
+C Compute and print initial energies.
+c----------------------------------------------------------------------------
+      call intout
+      write (iout,'(/80(1h*)/a)') 'Initial energies:'
+      call chainbuild
+      nf=0
+
+      call etotal(energia(0))
+      etot = energia(0)
+C Minimize the energy of the first conformation.
+      if (minim) then
+        call geom_to_var(nvar,varia)
+!       write (iout,*) 'The VARIA array'       
+!       write (iout,'(8f10.4)') (rad2deg*varia(i),i=1,nvar)
+        call minimize(etot,varia,iretcode,nfun)
+        call var_to_geom(nvar,varia)
+        call chainbuild
+        write (iout,*) 'etot from MINIMIZE:',etot
+!       write (iout,*) 'Tha VARIA array'       
+!       write (iout,'(8f10.4)') (rad2deg*varia(i),i=1,nvar)
+
+        call etotal(energia(0))
+        etot=energia(0)
+        call enerprint(energia(0))
+      endif
+      if (refstr) then
+        call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),nsup,przes,
+     &             obr,non_conv)
+        rms=dsqrt(rms)
+        call contact(.false.,ncont,icont,co)
+        frac=contact_fract(ncont,ncont_ref,icont,icont_ref)
+        write (iout,'(a,f8.3,a,f8.3,a,f8.3)') 
+     &    'RMS deviation from the reference structure:',rms,
+     &    ' % of native contacts:',frac*100,' contact order:',co
+        if (print_stat)
+     &  write (istat,'(i5,17(1pe14.5))') 0,
+     &   (energia(print_order(i)),i=1,nprint_ene),
+     &   etot,rms,frac,co
+      else
+        if (print_stat) write (istat,'(i5,16(1pe14.5))') 0,
+     &   (energia(print_order(i)),i=1,nprint_ene),etot
+      endif
+      if (print_stat) close(istat)
+      neneval=neneval+nfun+1
+      write (iout,'(/80(1h*)/20x,a/80(1h*))')
+     &    'Enter Monte Carlo procedure.'
+      if (print_int) then
+        close(igeom)
+        call briefout(0,etot)
+      endif
+      eold=etot
+      do i=1,nvar
+        varold(i)=varia(i)
+      enddo
+      elowest=etot
+      call zapis(varia,etot)
+      nacc=0         ! total # of accepted confs of the current processor.
+      nacc_tot=0     ! total # of accepted confs of all processors.
+
+      not_done = (iretcode.ne.11)
+
+C----------------------------------------------------------------------------
+C Main loop.
+c----------------------------------------------------------------------------
+      it=0
+      nout=0
+      do while (not_done)
+        it=it+1
+        write (iout,'(80(1h*)/20x,a,i7)')
+     &                             'Beginning iteration #',it
+C Initialize local counter.
+        ntrial=0 ! # of generated non-overlapping confs.
+        accepted=.false.
+        do while (.not. accepted)
+
+C Retrieve the angles of previously accepted conformation
+          noverlap=0 ! # of overlapping confs.
+          do j=1,nvar
+            varia(j)=varold(j)
+          enddo
+          call var_to_geom(nvar,varia)
+C Rebuild the chain.
+          call chainbuild
+C Heat up the system, if necessary.
+          call heat(over)
+C If temperature cannot be further increased, stop.
+          if (over) goto 20
+          MoveType=0
+          nbond=0
+          lprint=.true.
+cd        write (iout,'(a)') 'Old variables:'
+cd        write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+C Decide whether to generate a random conformation or perturb the old one
+          RandOrPert=ran_number(0.0D0,1.0D0)
+          if (RandOrPert.gt.RanFract) then
+            if (print_mc.gt.0)
+     &        write (iout,'(a)') 'Perturbation-generated conformation.'
+            call perturb(error,lprint,MoveType,nbond,1.0D0)
+            if (error) goto 20
+            if (MoveType.lt.1 .or. MoveType.gt.MaxMoveType) then
+              write (iout,'(/a,i7,a/)') 'Error - unknown MoveType=',
+     &           MoveType,' returned from PERTURB.'
+              goto 20
+            endif
+            call chainbuild
+          else
+            MoveType=0
+            moves(0)=moves(0)+1
+            nstart_grow=iran_num(3,nres)
+            if (print_mc.gt.0)
+     &        write (iout,'(2a,i3)') 'Random-generated conformation',
+     &        ' - chain regrown from residue',nstart_grow
+            call gen_rand_conf(nstart_grow,*30)
+          endif
+          call geom_to_var(nvar,varia)
+cd        write (iout,'(a)') 'New variables:'
+cd        write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+          ngen=ngen+1
+
+          call etotal(energia(0))
+          etot=energia(0)
+c         call enerprint(energia(0))
+c         write (iout,'(2(a,1pe14.5))') 'Etot=',Etot,' Elowest=',Elowest
+          if (etot-elowest.gt.overlap_cut) then
+            if(iprint.gt.1.or.etot.lt.1d20)
+     &       write (iout,'(a,1pe14.5)') 
+     &      'Overlap detected in the current conf.; energy is',etot
+            neneval=neneval+1 
+            accepted=.false.
+            noverlap=noverlap+1
+            if (noverlap.gt.maxoverlap) then
+              write (iout,'(a)') 'Too many overlapping confs.'
+              goto 20
+            endif
+          else
+            if (minim) then
+              call minimize(etot,varia,iretcode,nfun)
+cd            write (iout,*) 'etot from MINIMIZE:',etot
+cd            write (iout,'(a)') 'Variables after minimization:'
+cd            write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+
+              call etotal(energia(0))
+              etot = energia(0)
+              neneval=neneval+nfun+2
+            endif
+c           call enerprint(energia(0))
+            write (iout,'(a,i6,a,1pe16.6)') 'Conformation:',ngen,
+     &      ' energy:',etot
+C--------------------------------------------------------------------------
+C... Do Metropolis test
+C--------------------------------------------------------------------------
+            accepted=.false.
+            my_conf=.false.
+
+            if (WhatsUp.eq.0 .and. Kwita.eq.0) then
+              call metropolis(nvar,varia,varold,etot,eold,accepted,
+     &                      my_conf,EneLower,it)
+            endif
+            write (iout,*) 'My_Conf=',My_Conf,' EneLower=',EneLower
+            if (accepted) then
+
+              nacc=nacc+1
+              nacc_tot=nacc_tot+1
+              if (elowest.gt.etot) elowest=etot
+              moves_acc(MoveType)=moves_acc(MoveType)+1
+              if (MoveType.eq.1) then
+                nbond_acc(nbond)=nbond_acc(nbond)+1
+              endif
+C Check against conformation repetitions.
+              irepet=conf_comp(varia,etot)
+              if (print_stat) then
+#if defined(AIX) || defined(PGI)
+              open (istat,file=statname,position='append')
+#else
+               open (istat,file=statname,access='append')
+#endif
+              endif
+              call statprint(nacc,nfun,iretcode,etot,elowest)
+              if (refstr) then
+                call var_to_geom(nvar,varia)
+                call chainbuild
+                call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),
+     &                    nsup,przes,obr,non_conv)
+                rms=dsqrt(rms)
+                call contact(.false.,ncont,icont,co)
+                frac=contact_fract(ncont,ncont_ref,icont,icont_ref)
+                write (iout,'(a,f8.3,a,f8.3)') 
+     &          'RMS deviation from the reference structure:',rms,
+     &          ' % of native contacts:',frac*100,' contact order',co
+              endif ! refstr
+              if (My_Conf) then
+                nout=nout+1
+                write (iout,*) 'Writing new conformation',nout
+                if (refstr) then
+                  write (istat,'(i5,16(1pe14.5))') nout,
+     &             (energia(print_order(i)),i=1,nprint_ene),
+     &             etot,rms,frac
+                else
+                  if (print_stat)
+     &             write (istat,'(i5,17(1pe14.5))') nout,
+     &              (energia(print_order(i)),i=1,nprint_ene),etot
+                endif ! refstr
+                if (print_stat) close(istat)
+C Print internal coordinates.
+                if (print_int) call briefout(nout,etot)
+C Accumulate the newly accepted conf in the coord1 array, if it is different
+C from all confs that are already there.
+                call compare_s1(n_thr,max_thread2,etot,varia,ii,
+     &           enetb1,coord1,rms_deform,.true.,iprint)
+                write (iout,*) 'After compare_ss: n_thr=',n_thr
+                if (ii.eq.1 .or. ii.eq.3) then
+                  write (iout,'(8f10.4)') 
+     &                (rad2deg*coord1(i,n_thr),i=1,nvar)
+                endif
+              else
+                write (iout,*) 'Conformation from cache, not written.'
+              endif ! My_Conf 
+
+              if (nrepm.gt.maxrepm) then
+                write (iout,'(a)') 'Too many conformation repetitions.'
+                goto 20
+              endif
+C Store the accepted conf. and its energy.
+              eold=etot
+              do i=1,nvar
+                varold(i)=varia(i)
+              enddo
+              if (irepet.eq.0) call zapis(varia,etot)
+C Lower the temperature, if necessary.
+              call cool
+
+            else
+
+              ntrial=ntrial+1
+            endif ! accepted
+          endif ! overlap
+
+   30     continue
+        enddo ! accepted
+C Check for time limit.
+        if (ovrtim()) WhatsUp=-1
+        not_done = (nacc_tot.lt.maxacc) .and. (WhatsUp.eq.0)
+     &       .and. (Kwita.eq.0)
+
+      enddo ! not_done
+      goto 21
+   20 WhatsUp=-3
+
+   21 continue
+      runtime=tcpu()
+      write (iout,'(/80(1h*)/20x,a)') 'Summary run statistics:'
+      call statprint(nacc,nfun,iretcode,etot,elowest)
+      write (iout,'(a)') 
+     & 'Statistics of multiple-bond motions. Total motions:' 
+      write (iout,'(16i5)') (nbond_move(i),i=1,Nbm)
+      write (iout,'(a)') 'Accepted motions:'
+      write (iout,'(16i5)') (nbond_acc(i),i=1,Nbm)
+      if (it.ge.maxacc)
+     &write (iout,'(/80(1h*)/20x,a/80(1h*)/)') 'All iterations done.'
+
+      return
+      end
+#endif
+#ifdef MPI
+c------------------------------------------------------------------------------
+      subroutine do_mcm(i_orig)
+C Monte-Carlo-with-Minimization calculations - parallel code.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.MCM'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.INFO'
+      include 'COMMON.CACHE'
+crc      include 'COMMON.DEFORM'
+crc      include 'COMMON.DEFORM1'
+crc      include 'COMMON.DEFORM2'
+      include 'COMMON.MINIM'
+      include 'COMMON.NAMES'
+      logical accepted,over,ovrtim,error,lprint,not_done,similar,
+     &        enelower,non_conv,flag,finish
+      integer MoveType,nbond,conf_comp
+      double precision varia(maxvar),varold(maxvar),elowest,eold,
+     & x1(maxvar), varold1(maxvar), przes(3),obr(3,3)
+      integer iparentx(max_threadss2)
+      integer iparentx1(max_threadss2)
+      integer imtasks(150),imtasks_n
+      double precision energia(0:n_ene)
+
+      print *,'Master entered DO_MCM'
+      nodenum = nprocs
+      
+      finish=.false.
+      imtasks_n=0
+      do i=1,nodenum-1
+       imtasks(i)=0
+      enddo
+C---------------------------------------------------------------------------
+C Initialize counters.
+C---------------------------------------------------------------------------
+C Total number of generated confs.
+      ngen=0
+C Total number of moves. In general this won`t be equal to the number of
+C attempted moves, because we may want to reject some "bad" confs just by
+C overlap check.
+      nmove=0
+C Total number of temperature jumps.
+      ntherm=0
+C Total number of shift (nbond_move(1)), spike, crankshaft, three-bond,...
+C motions.
+      ncache=0
+      do i=1,nres
+        nbond_move(i)=0
+      enddo
+C Initialize total and accepted number of moves of various kind.
+      do i=0,MaxMoveType
+        moves(i)=0
+        moves_acc(i)=0
+      enddo
+C Total number of energy evaluations.
+      neneval=0
+      nfun=0
+      nsave=0
+c      write (iout,*) 'RanFract=',RanFract
+      WhatsUp=0
+      Kwita=0
+c----------------------------------------------------------------------------
+C Compute and print initial energies.
+c----------------------------------------------------------------------------
+      call intout
+      write (iout,'(/80(1h*)/a)') 'Initial energies:'
+      call chainbuild
+      nf=0
+      call etotal(energia(0))
+      etot = energia(0)
+      call enerprint(energia(0))
+C Request energy computation from slave processors.
+      call geom_to_var(nvar,varia)
+!     write (iout,*) 'The VARIA array'
+!     write (iout,'(8f10.4)') (rad2deg*varia(i),i=1,nvar)
+      call minimize(etot,varia,iretcode,nfun)
+      call var_to_geom(nvar,varia)
+      call chainbuild
+      write (iout,*) 'etot from MINIMIZE:',etot
+!     write (iout,*) 'Tha VARIA array'
+!     write (iout,'(8f10.4)') (rad2deg*varia(i),i=1,nvar)
+      neneval=0
+      eneglobal=1.0d99
+      if (print_mc .gt. 0) write (iout,'(/80(1h*)/20x,a/80(1h*))')
+     &    'Enter Monte Carlo procedure.'
+      if (print_mc .gt. 0) write (iout,'(i5,1pe14.5)' ) i_orig,etot
+      eold=etot
+      do i=1,nvar
+        varold(i)=varia(i)
+      enddo
+      elowest=etot
+      call zapis(varia,etot)
+c diagnostics
+      call var_to_geom(nvar,varia)
+      call chainbuild
+      call etotal(energia(0))
+      if (print_mc.gt.0) write (iout,*) 'Initial energy:',etot
+c end diagnostics
+      nacc=0         ! total # of accepted confs of the current processor.
+      nacc_tot=0     ! total # of accepted confs of all processors.
+      not_done=.true.
+C----------------------------------------------------------------------------
+C Main loop.
+c----------------------------------------------------------------------------
+      it=0
+      nout=0
+      LOOP1:do while (not_done)
+        it=it+1
+        if (print_mc.gt.0) write (iout,'(80(1h*)/20x,a,i7)')
+     &                             'Beginning iteration #',it
+C Initialize local counter.
+        ntrial=0 ! # of generated non-overlapping confs.
+        noverlap=0 ! # of overlapping confs.
+        accepted=.false.
+        LOOP2:do while (.not. accepted)
+
+         LOOP3:do while (imtasks_n.lt.nodenum-1.and..not.finish)
+          do i=1,nodenum-1
+           if(imtasks(i).eq.0) then
+            is=i
+            exit
+           endif
+          enddo
+C Retrieve the angles of previously accepted conformation
+          do j=1,nvar
+            varia(j)=varold(j)
+          enddo
+          call var_to_geom(nvar,varia)
+C Rebuild the chain.
+          call chainbuild
+C Heat up the system, if necessary.
+          call heat(over)
+C If temperature cannot be further increased, stop.
+          if (over) then 
+           finish=.true.
+          endif
+          MoveType=0
+          nbond=0
+c          write (iout,'(a)') 'Old variables:'
+c          write (iout,'(10f8.1)') (rad2deg*varia(i),i=1,nvar)
+C Decide whether to generate a random conformation or perturb the old one
+          RandOrPert=ran_number(0.0D0,1.0D0)
+          if (RandOrPert.gt.RanFract) then
+           if (print_mc.gt.0)
+     &       write (iout,'(a)') 'Perturbation-generated conformation.'
+           call perturb(error,lprint,MoveType,nbond,1.0D0)
+c           print *,'after perturb',error,finish
+           if (error) finish = .true.
+           if (MoveType.lt.1 .or. MoveType.gt.MaxMoveType) then
+            write (iout,'(/a,i7,a/)') 'Error - unknown MoveType=',
+     &         MoveType,' returned from PERTURB.'
+            finish=.true.
+            write (*,'(/a,i7,a/)') 'Error - unknown MoveType=',
+     &         MoveType,' returned from PERTURB.'
+           endif
+           call chainbuild
+          else
+           MoveType=0
+           moves(0)=moves(0)+1
+           nstart_grow=iran_num(3,nres)
+           if (print_mc.gt.0)
+     &      write (iout,'(2a,i3)') 'Random-generated conformation',
+     &      ' - chain regrown from residue',nstart_grow
+           call gen_rand_conf(nstart_grow,*30)
+          endif
+          call geom_to_var(nvar,varia)
+          ngen=ngen+1
+c          print *,'finish=',finish
+          if (etot-elowest.gt.overlap_cut) then
+           if (print_mc.gt.1) write (iout,'(a,1pe14.5)') 
+     &    'Overlap detected in the current conf.; energy is',etot
+           if(iprint.gt.1.or.etot.lt.1d19) print *,
+     &     'Overlap detected in the current conf.; energy is',etot
+           neneval=neneval+1 
+           accepted=.false.
+           noverlap=noverlap+1
+           if (noverlap.gt.maxoverlap) then
+            write (iout,*) 'Too many overlapping confs.',
+     &      ' etot, elowest, overlap_cut', etot, elowest, overlap_cut
+            finish=.true.
+           endif
+          else if (.not. finish) then
+C Distribute tasks to processors
+c           print *,'Master sending order'
+           call MPI_SEND(12, 1, MPI_INTEGER, is, tag,
+     &             CG_COMM, ierr)
+c           write (iout,*) '12: tag=',tag
+c           print *,'Master sent order to processor',is
+           call MPI_SEND(it, 1, MPI_INTEGER, is, tag,
+     &             CG_COMM, ierr)
+c           write (iout,*) 'it: tag=',tag
+           call MPI_SEND(eold, 1, MPI_DOUBLE_PRECISION, is, tag,
+     &             CG_COMM, ierr)
+c           write (iout,*) 'eold: tag=',tag
+           call MPI_SEND(varia(1), nvar, MPI_DOUBLE_PRECISION, 
+     &             is, tag,
+     &             CG_COMM, ierr)
+c           write (iout,*) 'varia: tag=',tag
+           call MPI_SEND(varold(1), nvar, MPI_DOUBLE_PRECISION, 
+     &             is, tag,
+     &             CG_COMM, ierr)
+c           write (iout,*) 'varold: tag=',tag
+#ifdef AIX
+           call flush_(iout)
+#else
+           call flush(iout)
+#endif
+           imtasks(is)=1
+           imtasks_n=imtasks_n+1
+C End distribution
+          endif ! overlap
+         enddo LOOP3
+
+         flag = .false.
+         LOOP_RECV:do while(.not.flag)
+          do is=1, nodenum-1
+           call MPI_IPROBE(is,tag,CG_COMM,flag,status,ierr)
+           if(flag) then
+            call MPI_RECV(iitt, 1, MPI_INTEGER, is, tag,
+     &              CG_COMM, status, ierr)
+            call MPI_RECV(eold1, 1, MPI_DOUBLE_PRECISION, is, tag,
+     &              CG_COMM, status, ierr)
+            call MPI_RECV(etot, 1, MPI_DOUBLE_PRECISION, is, tag,
+     &              CG_COMM, status, ierr)
+            call MPI_RECV(varia(1), nvar, MPI_DOUBLE_PRECISION,is,tag,
+     &              CG_COMM, status, ierr)
+            call MPI_RECV(varold1(1), nvar, MPI_DOUBLE_PRECISION, is, 
+     &              tag, CG_COMM, status, ierr)
+            call MPI_RECV(ii_grnum_d, 1, MPI_INTEGER, is, tag,
+     &              CG_COMM, status, ierr)
+            call MPI_RECV(ii_ennum_d, 1, MPI_INTEGER, is, tag,
+     &              CG_COMM, status, ierr)
+            call MPI_RECV(ii_hesnum_d, 1, MPI_INTEGER, is, tag,
+     &              CG_COMM, status, ierr)
+            i_grnum_d=i_grnum_d+ii_grnum_d
+            i_ennum_d=i_ennum_d+ii_ennum_d
+            neneval = neneval+ii_ennum_d
+            i_hesnum_d=i_hesnum_d+ii_hesnum_d
+            i_minimiz=i_minimiz+1
+            imtasks(is)=0
+            imtasks_n=imtasks_n-1
+            exit 
+           endif
+          enddo
+         enddo LOOP_RECV
+
+         if(print_mc.gt.0) write (iout,'(a,i6,a,i6,a,i6,a,1pe16.6)') 
+     &      'From Worker #',is,' iitt',iitt,
+     &     ' Conformation:',ngen,' energy:',etot
+C--------------------------------------------------------------------------
+C... Do Metropolis test
+C--------------------------------------------------------------------------
+         call metropolis(nvar,varia,varold1,etot,eold1,accepted,
+     &                      similar,EneLower)
+         if(iitt.ne.it.and..not.similar) then
+          call metropolis(nvar,varia,varold,etot,eold,accepted,
+     &                      similar,EneLower)
+          accepted=enelower
+         endif
+         if(etot.lt.eneglobal)eneglobal=etot
+c         if(mod(it,100).eq.0)
+         write(iout,*)'CHUJOJEB ',neneval,eneglobal
+         if (accepted) then
+C Write the accepted conformation.
+           nout=nout+1
+           if (refstr) then
+             call var_to_geom(nvar,varia)
+             call chainbuild
+             call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),
+     &                    nsup,przes,obr,non_conv)
+             rms=dsqrt(rms)
+             call contact(.false.,ncont,icont,co)
+             frac=contact_fract(ncont,ncont_ref,icont,icont_ref)
+             write (iout,'(a,f8.3,a,f8.3,a,f8.3)')
+     &         'RMS deviation from the reference structure:',rms,
+     &         ' % of native contacts:',frac*100,' contact order:',co
+           endif ! refstr
+           if (print_mc.gt.0) 
+     &      write (iout,*) 'Writing new conformation',nout
+           if (print_stat) then
+             call var_to_geom(nvar,varia)
+#if defined(AIX) || defined(PGI)
+             open (istat,file=statname,position='append')
+#else
+             open (istat,file=statname,access='append')
+#endif
+             if (refstr) then
+               write (istat,'(i5,16(1pe14.5))') nout,
+     &          (energia(print_order(i)),i=1,nprint_ene),
+     &          etot,rms,frac
+             else
+               write (istat,'(i5,16(1pe14.5))') nout,
+     &          (energia(print_order(i)),i=1,nprint_ene),etot
+             endif ! refstr
+             close(istat)
+           endif ! print_stat
+C Print internal coordinates.
+           if (print_int) call briefout(nout,etot)
+           nacc=nacc+1
+           nacc_tot=nacc_tot+1
+           if (elowest.gt.etot) elowest=etot
+           moves_acc(MoveType)=moves_acc(MoveType)+1
+           if (MoveType.eq.1) then
+             nbond_acc(nbond)=nbond_acc(nbond)+1
+           endif
+C Check against conformation repetitions.
+          irepet=conf_comp(varia,etot)
+          if (nrepm.gt.maxrepm) then
+           if (print_mc.gt.0) 
+     &      write (iout,'(a)') 'Too many conformation repetitions.'
+            finish=.true.
+           endif
+C Store the accepted conf. and its energy.
+           eold=etot
+           do i=1,nvar
+            varold(i)=varia(i)
+           enddo
+           if (irepet.eq.0) call zapis(varia,etot)
+C Lower the temperature, if necessary.
+           call cool
+          else
+           ntrial=ntrial+1
+         endif ! accepted
+   30    continue
+         if(finish.and.imtasks_n.eq.0)exit LOOP2
+        enddo LOOP2 ! accepted
+C Check for time limit.
+        not_done = (it.lt.max_mcm_it) .and. (nacc_tot.lt.maxacc)
+        if(.not.not_done .or. finish) then
+         if(imtasks_n.gt.0) then
+          not_done=.true.
+         else
+          not_done=.false.
+         endif
+         finish=.true.
+        endif
+      enddo LOOP1 ! not_done
+      runtime=tcpu()
+      if (print_mc.gt.0) then
+        write (iout,'(/80(1h*)/20x,a)') 'Summary run statistics:'
+        call statprint(nacc,nfun,iretcode,etot,elowest)
+        write (iout,'(a)') 
+     & 'Statistics of multiple-bond motions. Total motions:' 
+        write (iout,'(16i5)') (nbond_move(i),i=1,Nbm)
+        write (iout,'(a)') 'Accepted motions:'
+        write (iout,'(16i5)') (nbond_acc(i),i=1,Nbm)
+        if (it.ge.maxacc)
+     &write (iout,'(/80(1h*)/20x,a/80(1h*)/)') 'All iterations done.'
+      endif
+#ifdef AIX
+      call flush_(iout)
+#else
+      call flush(iout)
+#endif
+      do is=1,nodenum-1
+        call MPI_SEND(999, 1, MPI_INTEGER, is, tag,
+     &             CG_COMM, ierr)
+      enddo
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine execute_slave(nodeinfo,iprint)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'mpif.h'
+      include 'COMMON.TIME1'
+      include 'COMMON.IOUNITS'
+crc      include 'COMMON.DEFORM'
+crc      include 'COMMON.DEFORM1'
+crc      include 'COMMON.DEFORM2'
+      include 'COMMON.LOCAL'
+      include 'COMMON.VAR'
+      include 'COMMON.INFO'
+      include 'COMMON.MINIM'
+      character*10 nodeinfo 
+      double precision x(maxvar),x1(maxvar)
+      nodeinfo='chujwdupe'
+c      print *,'Processor:',MyID,' Entering execute_slave'
+      tag=0
+c      call MPI_SEND(nodeinfo, 10, MPI_CHARACTER, 0, tag,
+c     &              CG_COMM, ierr)
+
+1001  call MPI_RECV(i_switch, 1, MPI_INTEGER, 0, tag,
+     &              CG_COMM, status, ierr)
+c      write(iout,*)'12: tag=',tag
+      if(iprint.ge.2)print *, MyID,' recv order ',i_switch
+      if (i_switch.eq.12) then
+       i_grnum_d=0
+       i_ennum_d=0
+       i_hesnum_d=0
+       call MPI_RECV(iitt, 1, MPI_INTEGER, 0, tag,
+     &               CG_COMM, status, ierr)
+c      write(iout,*)'12: tag=',tag
+       call MPI_RECV(ener, 1, MPI_DOUBLE_PRECISION, 0, tag,
+     &               CG_COMM, status, ierr)
+c      write(iout,*)'ener: tag=',tag
+       call MPI_RECV(x(1), nvar, MPI_DOUBLE_PRECISION, 0, tag,
+     &               CG_COMM, status, ierr)
+c      write(iout,*)'x: tag=',tag
+       call MPI_RECV(x1(1), nvar, MPI_DOUBLE_PRECISION, 0, tag,
+     &               CG_COMM, status, ierr)
+c      write(iout,*)'x1: tag=',tag
+#ifdef AIX
+       call flush_(iout)
+#else
+       call flush(iout)
+#endif
+c       print *,'calling minimize'
+       call minimize(energyx,x,iretcode,nfun)
+       if(iprint.gt.0)
+     &  write(iout,100)'minimized energy = ',energyx,
+     &    ' # funeval:',nfun,' iret ',iretcode
+        write(*,100)'minimized energy = ',energyx,
+     &    ' # funeval:',nfun,' iret ',iretcode
+ 100   format(a20,f10.5,a12,i5,a6,i2)
+       if(iretcode.eq.10) then
+         do iminrep=2,3
+          if(iprint.gt.1)
+     &    write(iout,*)' ... not converged - trying again ',iminrep
+          call minimize(energyx,x,iretcode,nfun)
+          if(iprint.gt.1)
+     &    write(iout,*)'minimized energy = ',energyx,
+     &     ' # funeval:',nfun,' iret ',iretcode
+          if(iretcode.ne.10)go to 812
+         enddo
+         if(iretcode.eq.10) then
+          if(iprint.gt.1)
+     &    write(iout,*)' ... not converged again - giving up'
+          go to 812
+         endif
+       endif
+812    continue
+c       print *,'Sending results'
+       call MPI_SEND(iitt, 1, MPI_INTEGER, 0, tag,
+     &              CG_COMM, ierr)
+       call MPI_SEND(ener, 1, MPI_DOUBLE_PRECISION, 0, tag,
+     &              CG_COMM, ierr)
+       call MPI_SEND(energyx, 1, MPI_DOUBLE_PRECISION, 0, tag,
+     &              CG_COMM, ierr)
+       call MPI_SEND(x(1), nvar, MPI_DOUBLE_PRECISION, 0, tag,
+     &              CG_COMM, ierr)
+       call MPI_SEND(x1(1), nvar, MPI_DOUBLE_PRECISION, 0, tag,
+     &              CG_COMM, ierr)
+       call MPI_SEND(i_grnum_d, 1, MPI_INTEGER, 0, tag,
+     &              CG_COMM, ierr)
+       call MPI_SEND(nfun, 1, MPI_INTEGER, 0, tag,
+     &              CG_COMM, ierr)
+       call MPI_SEND(i_hesnum_d, 1, MPI_INTEGER, 0, tag,
+     &              CG_COMM, ierr)
+c       print *,'End sending'
+       go to 1001
+      endif
+
+      return
+      end
+#endif
+c------------------------------------------------------------------------------
+      subroutine statprint(it,nfun,iretcode,etot,elowest)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.MCM'
+      if (minim) then
+        write (iout,
+     &  '(80(1h*)/a,i5,a,1pe14.5,a,1pe14.5/a,i3,a,i10,a,i5,a,i5)')
+     &  'Finished iteration #',it,' energy is',etot,
+     &  ' lowest energy:',elowest,
+     &  'SUMSL return code:',iretcode,
+     &  ' # of energy evaluations:',neneval,
+     &  '# of temperature jumps:',ntherm,
+     &  ' # of minima repetitions:',nrepm
+      else
+        write (iout,'(80(1h*)/a,i8,a,1pe14.5,a,1pe14.5)')
+     &  'Finished iteration #',it,' energy is',etot,
+     &  ' lowest energy:',elowest
+      endif
+      write (iout,'(/4a)')
+     & 'Kind of move   ','           total','       accepted',
+     & '  fraction'
+      write (iout,'(58(1h-))')
+      do i=-1,MaxMoveType
+        if (moves(i).eq.0) then
+          fr_mov_i=0.0d0
+        else
+          fr_mov_i=dfloat(moves_acc(i))/dfloat(moves(i))
+        endif
+        write(iout,'(a,2i15,f10.5)')MovTypID(i),moves(i),moves_acc(i),
+     &         fr_mov_i
+      enddo
+      write (iout,'(a,2i15,f10.5)') 'total           ',nmove,nacc_tot,
+     &         dfloat(nacc_tot)/dfloat(nmove)
+      write (iout,'(58(1h-))')
+      write (iout,'(a,1pe12.4)') 'Elapsed time:',tcpu()
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine heat(over)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.IOUNITS'
+      logical over
+C Check if there`s a need to increase temperature.
+      if (ntrial.gt.maxtrial) then
+        if (NstepH.gt.0) then
+          if (dabs(Tcur-TMax).lt.1.0D-7) then
+            if (print_mc.gt.0)
+     &      write (iout,'(/80(1h*)/a,f8.3,a/80(1h*))') 
+     &      'Upper limit of temperature reached. Terminating.'
+            over=.true.
+            Tcur=Tmin
+          else
+            Tcur=Tcur*TstepH
+            if (Tcur.gt.Tmax) Tcur=Tmax
+            betbol=1.0D0/(Rbol*Tcur)
+            if (print_mc.gt.0)
+     &      write (iout,'(/80(1h*)/a,f8.3,a,f10.5/80(1h*))')
+     &      'System heated up to ',Tcur,' K; BetBol:',betbol
+            ntherm=ntherm+1
+            ntrial=0
+            over=.false.
+          endif
+        else
+         if (print_mc.gt.0)
+     &   write (iout,'(a)') 
+     & 'Maximum number of trials in a single MCM iteration exceeded.'
+         over=.true.
+         Tcur=Tmin
+        endif
+      else
+        over=.false.
+      endif
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine cool
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.IOUNITS'
+      if (nstepC.gt.0 .and. dabs(Tcur-Tmin).gt.1.0D-7) then
+        Tcur=Tcur/TstepC
+        if (Tcur.lt.Tmin) Tcur=Tmin
+        betbol=1.0D0/(Rbol*Tcur)
+        if (print_mc.gt.0)
+     &  write (iout,'(/80(1h*)/a,f8.3,a,f10.5/80(1h*))')
+     &  'System cooled down up to ',Tcur,' K; BetBol:',betbol
+      endif
+      return
+      end
+C---------------------------------------------------------------------------
+      subroutine zapis(varia,etot)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MP
+      include 'mpif.h'
+      include 'COMMON.INFO'
+#endif
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.MCM'
+      include 'COMMON.IOUNITS'
+      integer itemp(maxsave)
+      double precision varia(maxvar)
+      logical lprint
+      lprint=.false.
+      if (lprint) then
+      write (iout,'(a,i5,a,i5)') 'Enter ZAPIS NSave=',Nsave,
+     &  ' MaxSave=',MaxSave
+      write (iout,'(a)') 'Current energy and conformation:'
+      write (iout,'(1pe14.5)') etot
+      write (iout,'(10f8.3)') (rad2deg*varia(i),i=1,nvar)
+      endif
+C Shift the contents of the esave and varsave arrays if filled up.
+      call add2cache(maxvar,maxsave,nsave,nvar,MyID,itemp,
+     &               etot,varia,esave,varsave)
+      if (lprint) then
+      write (iout,'(a)') 'Energies and the VarSave array.'
+      do i=1,nsave
+        write (iout,'(i5,1pe14.5)') i,esave(i)
+        write (iout,'(10f8.3)') (rad2deg*varsave(j,i),j=1,nvar)
+      enddo
+      endif
+      return
+      end 
+C---------------------------------------------------------------------------
+      subroutine perturb(error,lprint,MoveType,nbond,max_phi)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (MMaxSideMove=100)
+      include 'COMMON.MCM'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+crc      include 'COMMON.DEFORM1'
+      logical error,lprint,fail
+      integer MoveType,nbond,end_select,ind_side(MMaxSideMove)
+      double precision max_phi
+      double precision psi,gen_psi
+      external iran_num
+      integer iran_num
+      integer ifour 
+      data ifour /4/
+      error=.false.
+      lprint=.false.
+C Perturb the conformation according to a randomly selected move.
+      call SelectMove(MoveType)
+c      write (iout,*) 'MoveType=',MoveType
+      itrial=0
+      goto (100,200,300,400,500) MoveType
+C------------------------------------------------------------------------------
+C Backbone N-bond move.
+C Select the number of bonds (length of the segment to perturb).
+  100 continue
+      if (itrial.gt.1000) then
+        write (iout,'(a)') 'Too many attempts at multiple-bond move.'
+        error=.true.
+        return
+      endif
+      bond_prob=ran_number(0.0D0,sumpro_bond(nbm))
+c     print *,'sumpro_bond(nbm)=',sumpro_bond(nbm),
+c    & ' Bond_prob=',Bond_Prob
+      do i=1,nbm-1
+c       print *,i,Bond_Prob,sumpro_bond(i),sumpro_bond(i+1)
+        if (bond_prob.ge.sumpro_bond(i) .and. 
+     &               bond_prob.le.sumpro_bond(i+1)) then
+          nbond=i+1
+          goto 10
+        endif
+      enddo
+      write (iout,'(2a)') 'In PERTURB: Error - number of bonds',
+     &                    ' to move out of range.'
+      error=.true.
+      return
+   10 continue
+      if (nwindow.gt.0) then
+C Select the first residue to perturb
+        iwindow=iran_num(1,nwindow)
+        print *,'iwindow=',iwindow
+        iiwin=1
+        do while (winlen(iwindow).lt.nbond)
+          iwindow=iran_num(1,nwindow)
+          iiwin=iiwin+1
+          if (iiwin.gt.1000) then
+             write (iout,'(a)') 'Cannot select moveable residues.'
+             error=.true.
+             return
+          endif
+        enddo 
+        nstart=iran_num(winstart(iwindow),winend(iwindow))
+      else
+        nstart = iran_num(koniecl+2,nres-nbond-koniecl)  
+cd      print *,'nres=',nres,' nbond=',nbond,' koniecl=',koniecl,
+cd   &        ' nstart=',nstart
+      endif
+      psi = gen_psi()
+      if (psi.eq.0.0) then
+        error=.true.
+        return
+      endif
+      if (print_mc.gt.1) write (iout,'(a,i4,a,i4,a,f8.3)')
+     & 'PERTURB: nbond=',nbond,' nstart=',nstart,' psi=',psi*rad2deg
+cd    print *,'nstart=',nstart
+      call bond_move(nbond,nstart,psi,.false.,error)
+      if (error) then 
+        write (iout,'(2a)') 
+     & 'Could not define reference system in bond_move, ',
+     & 'choosing ahother segment.'
+        itrial=itrial+1
+        goto 100
+      endif
+      nbond_move(nbond)=nbond_move(nbond)+1
+      moves(1)=moves(1)+1
+      nmove=nmove+1
+      return
+C------------------------------------------------------------------------------
+C Backbone endmove. Perturb a SINGLE angle of a residue close to the end of
+C the chain.
+  200 continue
+      lprint=.true.
+c     end_select=iran_num(1,2*koniecl)
+c     if (end_select.gt.koniecl) then
+c       end_select=nphi-(end_select-koniecl)
+c     else 
+c       end_select=koniecl+3
+c     endif
+c     if (nwindow.gt.0) then
+c       iwin=iran_num(1,nwindow)
+c       i1=max0(4,winstart(iwin))
+c       i2=min0(winend(imin)+2,nres)
+c       end_select=iran_num(i1,i2)
+c     else
+c      iselect = iran_num(1,nmov_var)
+c      jj = 0
+c      do i=1,nphi
+c        if (isearch_tab(i).eq.1) jj = jj+1
+c        if (jj.eq.iselect) then
+c          end_select=i+3
+c          exit
+c        endif
+c      enddo    
+c     endif
+      end_select = iran_num(4,nres)
+      psi=max_phi*gen_psi()
+      if (psi.eq.0.0D0) then
+        error=.true.
+        return
+      endif
+      phi(end_select)=pinorm(phi(end_select)+psi)
+      if (print_mc.gt.1) write (iout,'(a,i4,a,f8.3,a,f8.3)') 
+     & 'End angle',end_select,' moved by ',psi*rad2deg,' new angle:',
+     & phi(end_select)*rad2deg   
+c     if (end_select.gt.3) 
+c    &   theta(end_select-1)=gen_theta(itype(end_select-2),
+c    &                              phi(end_select-1),phi(end_select))
+c     if (end_select.lt.nres) 
+c    &    theta(end_select)=gen_theta(itype(end_select-1),
+c    &                              phi(end_select),phi(end_select+1))
+cd    print *,'nres=',nres,' end_select=',end_select
+cd    print *,'theta',end_select-1,theta(end_select-1)
+cd    print *,'theta',end_select,theta(end_select)
+      moves(2)=moves(2)+1
+      nmove=nmove+1
+      lprint=.false.
+      return
+C------------------------------------------------------------------------------
+C Side chain move.
+C Select the number of SCs to perturb.
+  300 isctry=0 
+  301 nside_move=iran_num(1,MaxSideMove) 
+c     print *,'nside_move=',nside_move,' MaxSideMove',MaxSideMove
+C Select the indices.
+      do i=1,nside_move
+        icount=0
+  111   inds=iran_num(nnt,nct) 
+        icount=icount+1
+        if (icount.gt.1000) then
+          write (iout,'(a)')'Error - cannot select side chains to move.'
+          error=.true.
+          return
+        endif
+        if (itype(inds).eq.10) goto 111
+        do j=1,i-1
+          if (inds.eq.ind_side(j)) goto 111
+        enddo
+        do j=1,i-1
+          if (inds.lt.ind_side(j)) then
+            indx=j
+            goto 112
+          endif
+        enddo
+        indx=i
+  112   do j=i,indx+1,-1
+          ind_side(j)=ind_side(j-1)
+        enddo 
+  113   ind_side(indx)=inds
+      enddo
+C Carry out perturbation.
+      do i=1,nside_move
+        ii=ind_side(i)
+        iti=itype(ii)
+        call gen_side(iti,theta(ii+1),alph(ii),omeg(ii),fail)
+        if (fail) then
+          isctry=isctry+1
+          if (isctry.gt.1000) then
+            write (iout,'(a)') 'Too many errors in SC generation.'
+            error=.true.
+            return
+          endif
+          goto 301 
+        endif
+        if (print_mc.gt.1) write (iout,'(2a,i4,a,2f8.3)') 
+     &   'Side chain ',restyp(iti),ii,' moved to ',
+     &   alph(ii)*rad2deg,omeg(ii)*rad2deg
+      enddo
+      moves(3)=moves(3)+1
+      nmove=nmove+1
+      return
+C------------------------------------------------------------------------------
+C THETA move
+  400 end_select=iran_num(3,nres)
+      theta_new=gen_theta(itype(end_select),phi(end_select),
+     &                    phi(end_select+1))
+      if (print_mc.gt.1) write (iout,'(a,i3,a,f8.3,a,f8.3)') 
+     & 'Theta ',end_select,' moved from',theta(end_select)*rad2deg,
+     & ' to ',theta_new*rad2deg
+      theta(end_select)=theta_new  
+      moves(4)=moves(4)+1
+      nmove=nmove+1 
+      return
+C------------------------------------------------------------------------------
+C Error returned from SelectMove.
+  500 error=.true.
+      return
+      end
+C------------------------------------------------------------------------------
+      subroutine SelectMove(MoveType)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.IOUNITS'
+      what_move=ran_number(0.0D0,sumpro_type(MaxMoveType))
+      do i=1,MaxMoveType
+        if (what_move.ge.sumpro_type(i-1).and.
+     &            what_move.lt.sumpro_type(i)) then
+          MoveType=i
+          return
+        endif
+      enddo
+      write (iout,'(a)') 
+     & 'Fatal error in SelectMoveType: cannot select move.'
+      MoveType=MaxMoveType+1
+      return
+      end
+c----------------------------------------------------------------------------
+      double precision function gen_psi()
+      implicit none
+      integer i
+      double precision x,ran_number
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      x=0.0D0
+      do i=1,100
+        x=ran_number(-pi,pi)
+        if (dabs(x).gt.angmin) then
+          gen_psi=x
+          return
+        endif
+      enddo
+      write (iout,'(a)')'From Gen_Psi: Cannot generate angle increment.'
+      gen_psi=0.0D0
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine metropolis(n,xcur,xold,ecur,eold,accepted,similar,
+     &                      enelower)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+crc      include 'COMMON.DEFORM'
+      double precision ecur,eold,xx,ran_number,bol
+      double precision xcur(n),xold(n)
+      double precision ecut1 ,ecut2 ,tola
+      logical accepted,similar,not_done,enelower
+      logical lprn
+      data ecut1 /-1.0D-5/,ecut2 /5.0D-3/,tola/5.0D0/
+!      ecut1=-5*enedif
+!      ecut2=50*enedif
+!      tola=5.0d0
+C Set lprn=.true. for debugging.
+      lprn=.false.
+      if (lprn) 
+     &write(iout,*)'enedif',enedif,' ecut1',ecut1,' ecut2',ecut2
+      similar=.false.
+      enelower=.false.
+      accepted=.false.
+C Check if the conformation is similar.
+      difene=ecur-eold
+      reldife=difene/dmax1(dabs(eold),dabs(ecur),1.0D0)
+      if (lprn) then
+        write (iout,*) 'Metropolis'
+        write(iout,*)'ecur,eold,difene,reldife',ecur,eold,difene,reldife
+      endif
+C If energy went down remarkably, we accept the new conformation 
+C unconditionally.
+cjp      if (reldife.lt.ecut1) then
+      if (difene.lt.ecut1) then
+        accepted=.true.
+        EneLower=.true.
+        if (lprn) write (iout,'(a)') 
+     &   'Conformation accepted, because energy has lowered remarkably.'
+!      elseif (reldife.lt.ecut2 .and. dif_ang(nphi,xcur,xold).lt.tola) 
+cjp      elseif (reldife.lt.ecut2) 
+      elseif (difene.lt.ecut2) 
+     & then
+C Reject the conf. if energy has changed insignificantly and there is not 
+C much change in conformation.
+        if (lprn) 
+     &   write (iout,'(2a)') 'Conformation rejected, because it is',
+     &      ' similar to the preceding one.'
+        accepted=.false.
+        similar=.true.
+      else 
+C Else carry out Metropolis test.
+        EneLower=.false.
+        xx=ran_number(0.0D0,1.0D0) 
+        xxh=betbol*difene
+        if (lprn)
+     &    write (iout,*) 'betbol=',betbol,' difene=',difene,' xxh=',xxh
+        if (xxh.gt.50.0D0) then
+          bol=0.0D0
+        else
+          bol=exp(-xxh)
+        endif
+        if (lprn) write (iout,*) 'bol=',bol,' xx=',xx
+        if (bol.gt.xx) then
+          accepted=.true. 
+          if (lprn) write (iout,'(a)') 
+     &    'Conformation accepted, because it passed Metropolis test.'
+        else
+          accepted=.false.
+          if (lprn) write (iout,'(a)') 
+     & 'Conformation rejected, because it did not pass Metropolis test.'
+        endif
+      endif
+#ifdef AIX
+      call flush_(iout)
+#else
+      call flush(iout)
+#endif
+      return
+      end 
+c------------------------------------------------------------------------------
+      integer function conf_comp(x,ene)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO' 
+      double precision etol , angtol 
+      double precision x(maxvar)
+      double precision dif_ang,difa
+      data etol /0.1D0/, angtol /20.0D0/
+      do ii=nsave,1,-1
+c       write (iout,*) 'ii=',ii,'ene=',ene,esave(ii),dabs(ene-esave(ii))
+        if (dabs(ene-esave(ii)).lt.etol) then
+          difa=dif_ang(nphi,x,varsave(1,ii))
+c         do i=1,nphi
+c           write(iout,'(i3,3f8.3)')i,rad2deg*x(i),
+c    &          rad2deg*varsave(i,ii)
+c         enddo
+c         write(iout,*) 'ii=',ii,' difa=',difa,' angtol=',angtol
+          if (difa.le.angtol) then
+            if (print_mc.gt.0) then
+            write (iout,'(a,i5,2(a,1pe15.4))') 
+     &      'Current conformation matches #',ii,
+     &      ' in the store array ene=',ene,' esave=',esave(ii)
+c           write (*,'(a,i5,a)') 'Current conformation matches #',ii,
+c    &      ' in the store array.'
+            endif ! print_mc.gt.0
+            if (print_mc.gt.1) then
+            do i=1,nphi
+              write(iout,'(i3,3f8.3)')i,rad2deg*x(i),
+     &            rad2deg*varsave(i,ii)
+            enddo
+            endif ! print_mc.gt.1
+            nrepm=nrepm+1
+            conf_comp=ii
+            return
+          endif
+        endif
+      enddo 
+      conf_comp=0
+      return
+      end 
+C----------------------------------------------------------------------------
+      double precision function dif_ang(n,x,y)
+      implicit none
+      integer i,n
+      double precision x(n),y(n)
+      double precision w,wa,dif,difa
+      double precision pinorm 
+      include 'COMMON.GEO'
+      wa=0.0D0
+      difa=0.0D0
+      do i=1,n
+        dif=dabs(pinorm(y(i)-x(i)))
+        if (dabs(dif-dwapi).lt.dif) dif=dabs(dif-dwapi)
+        w=1.0D0-(2.0D0*(i-1)/(n-1)-1.0D0)**2+1.0D0/n
+        wa=wa+w
+        difa=difa+dif*dif*w
+      enddo 
+      dif_ang=rad2deg*dsqrt(difa/wa)
+      return
+      end
+c--------------------------------------------------------------------------
+      subroutine add2cache(n1,n2,ncache,nvar,SourceID,CachSrc,
+     &                     ecur,xcur,ecache,xcache)
+      implicit none 
+      include 'COMMON.GEO'
+      include 'COMMON.IOUNITS'
+      integer n1,n2,ncache,nvar,SourceID,CachSrc(n2)
+      integer i,ii,j
+      double precision ecur,xcur(nvar),ecache(n2),xcache(n1,n2) 
+cd    write (iout,*) 'Enter ADD2CACHE ncache=',ncache ,' ecur',ecur
+cd    write (iout,'(10f8.3)') (rad2deg*xcur(i),i=1,nvar)
+cd    write (iout,*) 'Old CACHE array:'
+cd    do i=1,ncache
+cd      write (iout,*) 'i=',i,' ecache=',ecache(i),' CachSrc',CachSrc(i)
+cd      write (iout,'(10f8.3)') (rad2deg*xcache(j,i),j=1,nvar)
+cd    enddo
+
+      i=ncache
+      do while (i.gt.0 .and. ecur.lt.ecache(i))
+        i=i-1
+      enddo
+      i=i+1
+cd    write (iout,*) 'i=',i,' ncache=',ncache
+      if (ncache.eq.n2) then
+        write (iout,*) 'Cache dimension exceeded',ncache,n2
+        write (iout,*) 'Highest-energy conformation will be removed.'
+        ncache=ncache-1
+      endif
+      do ii=ncache,i,-1
+        ecache(ii+1)=ecache(ii)
+        CachSrc(ii+1)=CachSrc(ii)
+        do j=1,nvar
+          xcache(j,ii+1)=xcache(j,ii)
+        enddo
+      enddo
+      ecache(i)=ecur
+      CachSrc(i)=SourceID
+      do j=1,nvar
+        xcache(j,i)=xcur(j)
+      enddo
+      ncache=ncache+1
+cd    write (iout,*) 'New CACHE array:'
+cd    do i=1,ncache
+cd      write (iout,*) 'i=',i,' ecache=',ecache(i),' CachSrc',CachSrc(i)
+cd      write (iout,'(10f8.3)') (rad2deg*xcache(j,i),j=1,nvar)
+cd    enddo
+      return
+      end
+c--------------------------------------------------------------------------
+      subroutine rm_from_cache(i,n1,n2,ncache,nvar,CachSrc,ecache,
+     &                         xcache)
+      implicit none 
+      include 'COMMON.GEO'
+      include 'COMMON.IOUNITS'
+      integer n1,n2,ncache,nvar,CachSrc(n2)
+      integer i,ii,j
+      double precision ecache(n2),xcache(n1,n2) 
+
+cd    write (iout,*) 'Enter RM_FROM_CACHE'
+cd    write (iout,*) 'Old CACHE array:'
+cd    do ii=1,ncache
+cd    write (iout,*)'i=',ii,' ecache=',ecache(ii),' CachSrc',CachSrc(ii)
+cd      write (iout,'(10f8.3)') (rad2deg*xcache(j,ii),j=1,nvar)
+cd    enddo
+
+      do ii=i+1,ncache
+        ecache(ii-1)=ecache(ii)
+        CachSrc(ii-1)=CachSrc(ii)
+        do j=1,nvar
+          xcache(j,ii-1)=xcache(j,ii)
+        enddo
+      enddo
+      ncache=ncache-1
+cd    write (iout,*) 'New CACHE array:'
+cd    do i=1,ncache
+cd      write (iout,*) 'i=',i,' ecache=',ecache(i),' CachSrc',CachSrc(i)
+cd      write (iout,'(10f8.3)') (rad2deg*xcache(j,i),j=1,nvar)
+cd    enddo
+      return
+      end
diff --git a/source/unres/src_MD_DFA/minim_mcmf.F b/source/unres/src_MD_DFA/minim_mcmf.F
new file mode 100644 (file)
index 0000000..beb3d4c
--- /dev/null
@@ -0,0 +1,121 @@
+#ifdef MPI
+      subroutine minim_mcmf
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) 
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MINIM'
+      include 'mpif.h'
+      external func,gradient,fdum
+      real ran1,ran2,ran3
+      include 'COMMON.SETUP'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+      dimension muster(mpi_status_size)
+      dimension var(maxvar),erg(mxch*(mxch+1)/2+1)
+      double precision d(maxvar),v(1:lv+1),garbage(maxvar)                     
+      dimension indx(6)
+      dimension iv(liv)                                               
+      dimension idum(1),rdum(1)
+      double precision przes(3),obrot(3,3)
+      logical non_conv
+      data rad /1.745329252d-2/
+      common /przechowalnia/ v
+
+      ichuj=0
+   10 continue
+      ichuj = ichuj + 1
+      call mpi_recv(indx,6,mpi_integer,king,idint,CG_COMM,
+     *              muster,ierr)
+      if (indx(1).eq.0) return
+c      print *, 'worker ',me,' received order ',n,ichuj
+      call mpi_recv(var,nvar,mpi_double_precision,
+     *              king,idreal,CG_COMM,muster,ierr)
+      call mpi_recv(ene0,1,mpi_double_precision,
+     *              king,idreal,CG_COMM,muster,ierr)
+c      print *, 'worker ',me,' var read '
+
+
+      call deflt(2,iv,liv,lv,v)                                         
+* 12 means fresh start, dont call deflt                                 
+      iv(1)=12                                                          
+* max num of fun calls                                                  
+      if (maxfun.eq.0) maxfun=500
+      iv(17)=maxfun
+* max num of iterations                                                 
+      if (maxmin.eq.0) maxmin=1000
+      iv(18)=maxmin
+* controls output                                                       
+      iv(19)=2                                                          
+* selects output unit                                                   
+c      iv(21)=iout                                                       
+      iv(21)=0
+* 1 means to print out result                                           
+      iv(22)=0                                                          
+* 1 means to print out summary stats                                    
+      iv(23)=0                                                          
+* 1 means to print initial x and d                                      
+      iv(24)=0                                                          
+* min val for v(radfac) default is 0.1                                  
+      v(24)=0.1D0                                                       
+* max val for v(radfac) default is 4.0                                  
+      v(25)=2.0D0                                                       
+* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease)    
+* the sumsl default is 0.1                                              
+      v(26)=0.1D0
+* false conv if (act fnctn decrease) .lt. v(34)                         
+* the sumsl default is 100*machep                                       
+      v(34)=v(34)/100.0D0                                               
+* absolute convergence                                                  
+      if (tolf.eq.0.0D0) tolf=1.0D-4
+      v(31)=tolf
+* relative convergence                                                  
+      if (rtolf.eq.0.0D0) rtolf=1.0D-4
+      v(32)=rtolf
+* controls initial step size                                            
+       v(35)=1.0D-1                                                    
+* large vals of d correspond to small components of step                
+      do i=1,nphi
+        d(i)=1.0D-1
+      enddo
+      do i=nphi+1,nvar
+        d(i)=1.0D-1
+      enddo
+c  minimize energy
+
+      call func(nvar,var,nf,eee,idum,rdum,fdum)
+      if(eee.gt.1.0d18) then
+c       print *,'MINIM_JLEE: ',me,' CHUJ NASTAPIL'
+c       print *,' energy before SUMSL =',eee
+c       print *,' aborting local minimization'
+       iv(1)=-1
+       v(10)=eee
+       nf=1
+       go to 201
+      endif
+
+      call sumsl(nvar,d,var,func,gradient,iv,liv,lv,v,idum,rdum,fdum)
+c  find which conformation was returned from sumsl
+        nf=iv(7)+1
+  201  continue
+c total # of ftn evaluations (for iwf=0, it includes all minimizations).
+        indx(4)=nf
+        indx(5)=iv(1)
+        eee=v(10)
+
+        call mpi_send(indx,6,mpi_integer,king,idint,CG_COMM,
+     *                 ierr)
+c       print '(a5,i3,15f10.5)', 'ENEX0',indx(1),v(10)
+        call mpi_send(var,nvar,mpi_double_precision,
+     *               king,idreal,CG_COMM,ierr)
+        call mpi_send(eee,1,mpi_double_precision,king,idreal,
+     *                 CG_COMM,ierr)
+        call mpi_send(ene0,1,mpi_double_precision,king,idreal,
+     *                 CG_COMM,ierr)
+        go to 10
+
+      return
+      end
+#endif
diff --git a/source/unres/src_MD_DFA/minimize_p.F b/source/unres/src_MD_DFA/minimize_p.F
new file mode 100644 (file)
index 0000000..c7922c7
--- /dev/null
@@ -0,0 +1,641 @@
+      subroutine minimize(etot,x,iretcode,nfun)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) 
+*********************************************************************
+* OPTIMIZE sets up SUMSL or DFP and provides a simple interface for *
+* the calling subprogram.                                           *     
+* when d(i)=1.0, then v(35) is the length of the initial step,      *     
+* calculated in the usual pythagorean way.                          *     
+* absolute convergence occurs when the function is within v(31) of  *     
+* zero. unless you know the minimum value in advance, abs convg     *     
+* is probably not useful.                                           *     
+* relative convergence is when the model predicts that the function *   
+* will decrease by less than v(32)*abs(fun).                        *   
+*********************************************************************
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.MINIM'
+      common /srutu/ icall
+      dimension iv(liv)                                               
+      double precision minval,x(maxvar),d(maxvar),v(1:lv),xx(maxvar)
+      double precision energia(0:n_ene)
+      external func,gradient,fdum
+      external func_restr,grad_restr
+      logical not_done,change,reduce 
+c      common /przechowalnia/ v
+
+      icall = 1
+
+      NOT_DONE=.TRUE.
+
+c     DO WHILE (NOT_DONE)
+
+      call deflt(2,iv,liv,lv,v)                                         
+* 12 means fresh start, dont call deflt                                 
+      iv(1)=12                                                          
+* max num of fun calls                                                  
+      if (maxfun.eq.0) maxfun=500
+      iv(17)=maxfun
+* max num of iterations                                                 
+      if (maxmin.eq.0) maxmin=1000
+      iv(18)=maxmin
+* controls output                                                       
+      iv(19)=2                                                          
+* selects output unit                                                   
+      iv(21)=0
+      if (print_min_ini+print_min_stat+print_min_res.gt.0) iv(21)=iout
+* 1 means to print out result                                           
+      iv(22)=print_min_res
+* 1 means to print out summary stats                                    
+      iv(23)=print_min_stat
+* 1 means to print initial x and d                                      
+      iv(24)=print_min_ini
+* min val for v(radfac) default is 0.1                                  
+      v(24)=0.1D0                                                       
+* max val for v(radfac) default is 4.0                                  
+      v(25)=2.0D0                                                       
+c     v(25)=4.0D0                                                       
+* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease)    
+* the sumsl default is 0.1                                              
+      v(26)=0.1D0
+* false conv if (act fnctn decrease) .lt. v(34)                         
+* the sumsl default is 100*machep                                       
+      v(34)=v(34)/100.0D0                                               
+* absolute convergence                                                  
+      if (tolf.eq.0.0D0) tolf=1.0D-4
+      v(31)=tolf
+* relative convergence                                                  
+      if (rtolf.eq.0.0D0) rtolf=1.0D-4
+      v(32)=rtolf
+* controls initial step size                                            
+       v(35)=1.0D-1                                                    
+* large vals of d correspond to small components of step                
+      do i=1,nphi
+        d(i)=1.0D-1
+      enddo
+      do i=nphi+1,nvar
+        d(i)=1.0D-1
+      enddo
+cd    print *,'Calling SUMSL'
+c     call var_to_geom(nvar,x)
+c     call chainbuild
+c     call etotal(energia(0))
+c     etot = energia(0)
+      IF (mask_r) THEN
+       call x2xx(x,xx,nvar_restr)
+       call sumsl(nvar_restr,d,xx,func_restr,grad_restr,
+     &                    iv,liv,lv,v,idum,rdum,fdum)      
+       call xx2x(x,xx)
+      ELSE
+       call sumsl(nvar,d,x,func,gradient,iv,liv,lv,v,idum,rdum,fdum)      
+      ENDIF
+      etot=v(10)                                                      
+      iretcode=iv(1)
+cd    print *,'Exit SUMSL; return code:',iretcode,' energy:',etot
+cd    write (iout,'(/a,i4/)') 'SUMSL return code:',iv(1)
+c     call intout
+c     change=reduce(x)
+      call var_to_geom(nvar,x)
+c     if (change) then
+c       write (iout,'(a)') 'Reduction worked, minimizing again...'
+c     else
+c       not_done=.false.
+c     endif
+      call chainbuild
+c     call etotal(energia(0))
+c     etot=energia(0)
+c     call enerprint(energia(0))
+      nfun=iv(6)
+
+c     write (*,*) 'Processor',MyID,' leaves MINIMIZE.'
+
+c     ENDDO ! NOT_DONE
+
+      return  
+      end  
+#ifdef MPI
+c----------------------------------------------------------------------------
+      subroutine ergastulum
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+      include 'COMMON.TIME1'
+      double precision z(maxres6),d_a_tmp(maxres6)
+      double precision edum(0:n_ene),time_order(0:10)
+      double precision Gcopy(maxres2,maxres2)
+      common /przechowalnia/ Gcopy
+      integer icall /0/
+C Workers wait for variables and NF, and NFL from the boss 
+      iorder=0
+      do while (iorder.ge.0)
+c      write (*,*) 'Processor',fg_rank,' CG group',kolor,
+c     & ' receives order from Master'
+        time00=MPI_Wtime()
+        call MPI_Bcast(iorder,1,MPI_INTEGER,king,FG_COMM,IERR)
+        time_Bcast=time_Bcast+MPI_Wtime()-time00
+        if (icall.gt.4 .and. iorder.ge.0) 
+     &   time_order(iorder)=time_order(iorder)+MPI_Wtime()-time00
+       icall=icall+1
+c      write (*,*) 
+c     & 'Processor',fg_rank,' completed receive MPI_BCAST order',iorder
+        if (iorder.eq.0) then
+          call zerograd
+          call etotal(edum)
+c          write (2,*) "After etotal"
+c          write (2,*) "dimen",dimen," dimen3",dimen3
+c          call flush(2)
+        else if (iorder.eq.2) then
+          call zerograd
+          call etotal_short(edum)
+c          write (2,*) "After etotal_short"
+c          write (2,*) "dimen",dimen," dimen3",dimen3
+c          call flush(2)
+        else if (iorder.eq.3) then
+          call zerograd
+          call etotal_long(edum)
+c          write (2,*) "After etotal_long"
+c          write (2,*) "dimen",dimen," dimen3",dimen3
+c          call flush(2)
+        else if (iorder.eq.1) then
+          call sum_gradient
+c          write (2,*) "After sum_gradient"
+c          write (2,*) "dimen",dimen," dimen3",dimen3
+c          call flush(2)
+        else if (iorder.eq.4) then
+          call ginv_mult(z,d_a_tmp)
+        else if (iorder.eq.5) then
+c Setup MD things for a slave
+          dimen=(nct-nnt+1)+nside
+          dimen1=(nct-nnt)+(nct-nnt+1)
+          dimen3=dimen*3
+c          write (2,*) "dimen",dimen," dimen3",dimen3
+c          call flush(2)
+          call int_bounds(dimen,igmult_start,igmult_end)
+          igmult_start=igmult_start-1
+          call MPI_Allgather(3*igmult_start,1,MPI_INTEGER,
+     &     ng_start(0),1,MPI_INTEGER,FG_COMM,IERROR)
+           my_ng_count=igmult_end-igmult_start
+          call MPI_Allgather(3*my_ng_count,1,MPI_INTEGER,ng_counts(0),1,
+     &     MPI_INTEGER,FG_COMM,IERROR)
+c          write (2,*) "ng_start",(ng_start(i),i=0,nfgtasks-1)
+c          write (2,*) "ng_counts",(ng_counts(i),i=0,nfgtasks-1)
+          myginv_ng_count=maxres2*my_ng_count
+c          write (2,*) "igmult_start",igmult_start," igmult_end",
+c     &     igmult_end," my_ng_count",my_ng_count
+c          call flush(2)
+          call MPI_Allgather(maxres2*igmult_start,1,MPI_INTEGER,
+     &     nginv_start(0),1,MPI_INTEGER,FG_COMM,IERROR)
+          call MPI_Allgather(myginv_ng_count,1,MPI_INTEGER,
+     &     nginv_counts(0),1,MPI_INTEGER,FG_COMM,IERROR)
+c          write (2,*) "nginv_start",(nginv_start(i),i=0,nfgtasks-1)
+c          write (2,*) "nginv_counts",(nginv_counts(i),i=0,nfgtasks-1)
+c          call flush(2)
+c          call MPI_Barrier(FG_COMM,IERROR)
+          time00=MPI_Wtime()
+          call MPI_Scatterv(ginv(1,1),nginv_counts(0),
+     &     nginv_start(0),MPI_DOUBLE_PRECISION,gcopy(1,1),
+     &     myginv_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERR)
+#ifdef TIMING
+          time_scatter_ginv=time_scatter_ginv+MPI_Wtime()-time00
+#endif
+          do i=1,dimen
+            do j=1,2*my_ng_count
+              ginv(j,i)=gcopy(i,j)
+            enddo
+          enddo
+c          write (2,*) "dimen",dimen," dimen3",dimen3
+c          write (2,*) "End MD setup"
+c          call flush(2)
+c           write (iout,*) "My chunk of ginv_block"
+c           call MATOUT2(my_ng_count,dimen3,maxres2,maxers2,ginv_block)
+        else if (iorder.eq.6) then
+          call int_from_cart1(.false.)
+        else if (iorder.eq.7) then
+          call chainbuild_cart
+        else if (iorder.eq.8) then
+          call intcartderiv
+        else if (iorder.eq.9) then
+          call fricmat_mult(z,d_a_tmp)
+        else if (iorder.eq.10) then
+          call setup_fricmat
+        endif
+      enddo
+      write (*,*) 'Processor',fg_rank,' CG group',kolor,
+     &  ' absolute rank',myrank,' leves ERGASTULUM.'
+      write(*,*)'Processor',fg_rank,' wait times for respective orders',
+     & (' order[',i,']',time_order(i),i=0,10)
+      return
+      end
+#endif
+************************************************************************
+      subroutine func(n,x,nf,f,uiparm,urparm,ufparm)  
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      common /chuju/ jjj
+      double precision energia(0:n_ene)
+      integer jjj
+      double precision ufparm
+      external ufparm                                                   
+      integer uiparm(1)                                                 
+      real*8 urparm(1)                                                    
+      dimension x(maxvar)
+c     if (jjj.gt.0) then
+c       write (iout,'(10f8.3)') (rad2deg*x(i),i=1,n)
+c     endif
+      nfl=nf
+      icg=mod(nf,2)+1
+cd      print *,'func',nf,nfl,icg
+      call var_to_geom(n,x)
+      call zerograd
+      call chainbuild
+cd    write (iout,*) 'ETOTAL called from FUNC'
+      call etotal(energia(0))
+      call sum_gradient
+      f=energia(0)
+c     if (jjj.gt.0) then
+c       write (iout,'(10f8.3)') (rad2deg*x(i),i=1,n)
+c       write (iout,*) 'f=',etot
+c       jjj=0
+c     endif
+      return                                                            
+      end                                                               
+************************************************************************
+      subroutine func_restr(n,x,nf,f,uiparm,urparm,ufparm)  
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      common /chuju/ jjj
+      double precision energia(0:n_ene)
+      integer jjj
+      double precision ufparm
+      external ufparm                                                   
+      integer uiparm(1)                                                 
+      real*8 urparm(1)                                                    
+      dimension x(maxvar)
+c     if (jjj.gt.0) then
+c       write (iout,'(10f8.3)') (rad2deg*x(i),i=1,n)
+c     endif
+      nfl=nf
+      icg=mod(nf,2)+1
+      call var_to_geom_restr(n,x)
+      call zerograd
+      call chainbuild
+cd    write (iout,*) 'ETOTAL called from FUNC'
+      call etotal(energia(0))
+      call sum_gradient
+      f=energia(0)
+c     if (jjj.gt.0) then
+c       write (iout,'(10f8.3)') (rad2deg*x(i),i=1,n)
+c       write (iout,*) 'f=',etot
+c       jjj=0
+c     endif
+      return                                                            
+      end                                                               
+c-------------------------------------------------------
+      subroutine x2xx(x,xx,n)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      double precision xx(maxvar),x(maxvar)
+
+      do i=1,nvar
+        varall(i)=x(i)
+      enddo
+
+      ig=0                                                                      
+      igall=0                                                                   
+      do i=4,nres                                                               
+        igall=igall+1                                                           
+        if (mask_phi(i).eq.1) then                                              
+          ig=ig+1                                                               
+          xx(ig)=x(igall)                       
+        endif                                                                   
+      enddo                                                                     
+                                                                                
+      do i=3,nres                                                               
+        igall=igall+1                                                           
+        if (mask_theta(i).eq.1) then                                            
+          ig=ig+1                                                               
+          xx(ig)=x(igall)
+        endif                                                                   
+      enddo                                          
+
+      do ij=1,2                                                                 
+      do i=2,nres-1                                                             
+        if (itype(i).ne.10) then                                                
+          igall=igall+1                                                         
+          if (mask_side(i).eq.1) then                                           
+            ig=ig+1                                                             
+            xx(ig)=x(igall)
+          endif                                                                 
+        endif                                                                   
+      enddo                                                                     
+      enddo                              
+      n=ig
+
+      return
+      end
+
+      subroutine xx2x(x,xx)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      double precision xx(maxvar),x(maxvar)
+
+      do i=1,nvar
+        x(i)=varall(i)
+      enddo
+
+      ig=0                                                                      
+      igall=0                                                                   
+      do i=4,nres                                                               
+        igall=igall+1                                                           
+        if (mask_phi(i).eq.1) then                                              
+          ig=ig+1                                                               
+          x(igall)=xx(ig)
+        endif                                                                   
+      enddo                                                                     
+                                                                                
+      do i=3,nres                                                               
+        igall=igall+1                                                           
+        if (mask_theta(i).eq.1) then                                            
+          ig=ig+1                                                               
+          x(igall)=xx(ig)
+        endif                                                                   
+      enddo                                          
+
+      do ij=1,2                                                                 
+      do i=2,nres-1                                                             
+        if (itype(i).ne.10) then                                                
+          igall=igall+1                                                         
+          if (mask_side(i).eq.1) then                                           
+            ig=ig+1                                                             
+            x(igall)=xx(ig)
+          endif                                                                 
+        endif                                                                   
+      enddo                                                             
+      enddo                              
+
+      return
+      end
+  
+c---------------------------------------------------------- 
+      subroutine minim_dc(etot,iretcode,nfun)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) 
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.MINIM'
+      include 'COMMON.CHAIN'
+      dimension iv(liv)                                               
+      double precision minval,x(maxvar),d(maxvar),v(1:lv),xx(maxvar)
+c      common /przechowalnia/ v
+
+      double precision energia(0:n_ene)
+      external func_dc,grad_dc,fdum
+      logical not_done,change,reduce 
+      double precision g(maxvar),f1
+
+      call deflt(2,iv,liv,lv,v)                                         
+* 12 means fresh start, dont call deflt                                 
+      iv(1)=12                                                          
+* max num of fun calls                                                  
+      if (maxfun.eq.0) maxfun=500
+      iv(17)=maxfun
+* max num of iterations                                                 
+      if (maxmin.eq.0) maxmin=1000
+      iv(18)=maxmin
+* controls output                                                       
+      iv(19)=2                                                          
+* selects output unit                                                   
+      iv(21)=0
+      if (print_min_ini+print_min_stat+print_min_res.gt.0) iv(21)=iout 
+* 1 means to print out result                                           
+      iv(22)=print_min_res
+* 1 means to print out summary stats                                    
+      iv(23)=print_min_stat
+* 1 means to print initial x and d                                      
+      iv(24)=print_min_ini
+* min val for v(radfac) default is 0.1                                  
+      v(24)=0.1D0                                                       
+* max val for v(radfac) default is 4.0                                  
+      v(25)=2.0D0                                                       
+c     v(25)=4.0D0                                                       
+* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease)    
+* the sumsl default is 0.1                                              
+      v(26)=0.1D0
+* false conv if (act fnctn decrease) .lt. v(34)                         
+* the sumsl default is 100*machep                                       
+      v(34)=v(34)/100.0D0                                               
+* absolute convergence                                                  
+      if (tolf.eq.0.0D0) tolf=1.0D-4
+      v(31)=tolf
+* relative convergence                                                  
+      if (rtolf.eq.0.0D0) rtolf=1.0D-4
+      v(32)=rtolf
+* controls initial step size                                            
+       v(35)=1.0D-1                                                    
+* large vals of d correspond to small components of step                
+      do i=1,6*nres
+        d(i)=1.0D-1
+      enddo
+
+      k=0
+      do i=1,nres-1
+        do j=1,3
+          k=k+1
+          x(k)=dc(j,i)
+        enddo
+      enddo
+      do i=2,nres-1
+        if (ialph(i,1).gt.0) then
+        do j=1,3
+          k=k+1
+          x(k)=dc(j,i+nres)
+        enddo
+        endif
+      enddo
+
+      call sumsl(k,d,x,func_dc,grad_dc,iv,liv,lv,v,idum,rdum,fdum)      
+
+      k=0
+      do i=1,nres-1
+        do j=1,3
+          k=k+1
+          dc(j,i)=x(k)
+        enddo
+      enddo
+      do i=2,nres-1
+        if (ialph(i,1).gt.0) then
+        do j=1,3
+          k=k+1
+          dc(j,i+nres)=x(k)
+        enddo
+        endif
+      enddo
+      call chainbuild_cart
+
+cd      call zerograd
+cd      nf=0
+cd      call func_dc(k,x,nf,f,idum,rdum,fdum)
+cd      call grad_dc(k,x,nf,g,idum,rdum,fdum)
+cd
+cd      do i=1,k
+cd       x(i)=x(i)+1.0D-5
+cd       call func_dc(k,x,nf,f1,idum,rdum,fdum)
+cd       x(i)=x(i)-1.0D-5
+cd       print '(i5,2f15.5)',i,g(i),(f1-f)/1.0D-5
+cd      enddo
+
+      etot=v(10)                                                      
+      iretcode=iv(1)
+      nfun=iv(6)
+      return  
+      end  
+
+      subroutine func_dc(n,x,nf,f,uiparm,urparm,ufparm)  
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      double precision energia(0:n_ene)
+      double precision ufparm
+      external ufparm                                                   
+      integer uiparm(1)                                                 
+      real*8 urparm(1)                                                    
+      dimension x(maxvar)
+      nfl=nf
+cbad      icg=mod(nf,2)+1
+      icg=1
+
+      k=0
+      do i=1,nres-1
+        do j=1,3
+          k=k+1
+          dc(j,i)=x(k)
+        enddo
+      enddo
+      do i=2,nres-1
+        if (ialph(i,1).gt.0) then
+        do j=1,3
+          k=k+1
+          dc(j,i+nres)=x(k)
+        enddo
+        endif
+      enddo
+      call chainbuild_cart
+
+      call zerograd
+      call etotal(energia(0))
+      f=energia(0)
+
+cd      print *,'func_dc ',nf,nfl,f
+
+      return                                                            
+      end                                                               
+
+      subroutine grad_dc(n,x,nf,g,uiparm,urparm,ufparm)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.MD'
+      include 'COMMON.IOUNITS'
+      external ufparm
+      integer uiparm(1),k
+      double precision urparm(1)
+      dimension x(maxvar),g(maxvar)
+c
+c
+c
+cbad      icg=mod(nf,2)+1
+      icg=1
+cd      print *,'grad_dc ',nf,nfl,nf-nfl+1,icg
+      if (nf-nfl+1) 20,30,40
+   20 call func_dc(n,x,nf,f,uiparm,urparm,ufparm)
+cd      print *,20
+      if (nf.eq.0) return
+      goto 40
+   30 continue
+cd      print *,30
+      k=0
+      do i=1,nres-1
+        do j=1,3
+          k=k+1
+          dc(j,i)=x(k)
+        enddo
+      enddo
+      do i=2,nres-1
+        if (ialph(i,1).gt.0) then
+        do j=1,3
+          k=k+1
+          dc(j,i+nres)=x(k)
+        enddo
+        endif
+      enddo
+      call chainbuild_cart
+
+C
+C Evaluate the derivatives of virtual bond lengths and SC vectors in variables.
+C
+   40 call cartgrad
+cd      print *,40
+      k=0
+      do i=1,nres-1
+        do j=1,3
+          k=k+1
+          g(k)=gcart(j,i)
+        enddo
+      enddo
+      do i=2,nres-1
+        if (ialph(i,1).gt.0) then
+        do j=1,3
+          k=k+1
+          g(k)=gxcart(j,i)
+        enddo
+        endif
+      enddo       
+
+      return
+      end
diff --git a/source/unres/src_MD_DFA/misc.f b/source/unres/src_MD_DFA/misc.f
new file mode 100644 (file)
index 0000000..e189839
--- /dev/null
@@ -0,0 +1,203 @@
+C $Date: 1994/10/12 17:24:21 $
+C $Revision: 2.5 $
+C
+C
+C
+      logical function find_arg(ipos,line,errflag)
+      parameter (maxlen=80)
+      character*80 line
+      character*1 empty /' '/,equal /'='/
+      logical errflag
+* This function returns .TRUE., if an argument follows keyword keywd; if so
+* IPOS will point to the first non-blank character of the argument. Returns
+* .FALSE., if no argument follows the keyword; in this case IPOS points
+* to the first non-blank character of the next keyword.
+      do while (line(ipos:ipos) .eq. empty .and. ipos.le.maxlen)
+        ipos=ipos+1
+      enddo 
+      errflag=.false.
+      if (line(ipos:ipos).eq.equal) then
+         find_arg=.true.
+         ipos=ipos+1
+         do while (line(ipos:ipos) .eq. empty .and. ipos.le.maxlen)
+           ipos=ipos+1
+         enddo
+         if (ipos.gt.maxlen) errflag=.true.
+      else
+         find_arg=.false.
+      endif
+      return
+      end
+      logical function find_group(iunit,jout,key1)
+      character*(*) key1
+      character*80 karta,ucase
+      integer ilen
+      external ilen
+      logical lcom
+      rewind (iunit)
+      karta=' '
+      ll=ilen(key1)
+      do while (index(ucase(karta),key1(1:ll)).eq.0.or.lcom(1,karta)) 
+        read (iunit,'(a)',end=10) karta
+      enddo
+      write (jout,'(2a)') '> ',karta(1:78)
+      find_group=.true.
+      return
+   10 find_group=.false.
+      return
+      end
+      logical function iblnk(charc)
+      character*1 charc
+      integer n
+      n = ichar(charc)
+      iblnk = (n.eq.9) .or. (n.eq.10) .or. (charc.eq. ' ')
+      return
+      end
+      integer function ilen(string)
+      character*(*) string
+      logical iblnk
+      ilen = len(string)
+1     if ( ilen .gt. 0 ) then
+         if ( iblnk( string(ilen:ilen) ) ) then
+            ilen = ilen - 1
+            goto 1
+         endif
+      endif
+      return
+      end
+      integer function in_keywd_set(nkey,ikey,narg,keywd,keywdset)
+      character*16 keywd,keywdset(1:nkey,0:nkey)
+      character*16 ucase
+      do i=1,narg
+        if (ucase(keywd).eq.keywdset(i,ikey)) then
+* Match found
+          in_keywd_set=i
+          return
+        endif
+      enddo
+* No match to the allowed set of keywords if this point is reached. 
+      in_keywd_set=0
+      return
+      end
+      character*(*) function lcase(string)
+      integer i, k, idiff
+      character*(*) string
+      character*1 c
+      character*40 chtmp
+c
+      i = len(lcase)
+      k = len(string)
+      if (i .lt. k) then
+         k = i
+         if (string(k+1:) .ne. ' ') then
+            chtmp = string
+         endif
+      endif
+      idiff = ichar('a') - ichar('A')
+      lcase = string
+      do 99 i = 1, k
+         c = string(i:i)
+         if (lge(c,'A') .and. lle(c,'Z')) then
+            lcase(i:i) = char(ichar(c) + idiff)
+         endif
+   99 continue
+      return
+      end
+      logical function lcom(ipos,karta)
+      character*80 karta
+      character koment(2) /'!','#'/
+      lcom=.false.
+      do i=1,2
+        if (karta(ipos:ipos).eq.koment(i)) lcom=.true.
+      enddo 
+      return
+      end
+      logical function lower_case(ch)
+      character*(*) ch
+      lower_case=(ch.ge.'a' .and. ch.le.'z')
+      return
+      end
+      subroutine mykey(line,keywd,ipos,blankline,errflag) 
+* This subroutine seeks a non-empty substring keywd in the string LINE.
+* The substring begins with the first character different from blank and
+* "=" encountered right to the pointer IPOS (inclusively) and terminates
+* at the character left to the first blank or "=". When the subroutine is 
+* exited, the pointer IPOS is moved to the position of the terminator in LINE. 
+* The logical variable BLANKLINE is set at .TRUE., if LINE(IPOS:) contains
+* only separators or the maximum length of the data line (80) has been reached.
+* The logical variable ERRFLAG is set at .TRUE. if the string 
+* consists only from a "=".
+      parameter (maxlen=80)
+      character*1 empty /' '/,equal /'='/,comma /','/
+      character*(*) keywd
+      character*80 line
+      logical blankline,errflag,lcom
+      errflag=.false.
+      do while (line(ipos:ipos).eq.empty .and. (ipos.le.maxlen))
+        ipos=ipos+1
+      enddo
+      if (ipos.gt.maxlen .or. lcom(ipos,line) ) then
+* At this point the rest of the input line turned out to contain only blanks
+* or to be commented out.
+        blankline=.true.
+        return
+      endif
+      blankline=.false.
+      istart=ipos
+* Checks whether the current char is a separator.
+      do while (line(ipos:ipos).ne.empty .and. line(ipos:ipos).ne.equal
+     & .and. line(ipos:ipos).ne.comma .and. ipos.le.maxlen) 
+        ipos=ipos+1
+      enddo
+      iend=ipos-1 
+* Error flag set to .true., if the length of the keyword was found less than 1.
+      if (iend.lt.istart) then
+        errflag=.true.
+        return
+      endif
+      keywd=line(istart:iend)
+      return
+      end      
+      subroutine numstr(inum,numm)
+      character*10 huj /'0123456789'/
+      character*(*) numm
+      inumm=inum
+      inum1=inumm/10
+      inum2=inumm-10*inum1
+      inumm=inum1
+      numm(3:3)=huj(inum2+1:inum2+1)
+      inum1=inumm/10
+      inum2=inumm-10*inum1
+      inumm=inum1
+      numm(2:2)=huj(inum2+1:inum2+1)
+      inum1=inumm/10
+      inum2=inumm-10*inum1 
+      inumm=inum1
+      numm(1:1)=huj(inum2+1:inum2+1)
+      return
+      end       
+      character*(*) function ucase(string)
+      integer i, k, idiff
+      character*(*) string
+      character*1 c
+      character*40 chtmp
+c
+      i = len(ucase)
+      k = len(string)
+      if (i .lt. k) then
+         k = i
+         if (string(k+1:) .ne. ' ') then
+            chtmp = string
+         endif
+      endif
+      idiff = ichar('a') - ichar('A')
+      ucase = string
+      do 99 i = 1, k
+         c = string(i:i)
+         if (lge(c,'a') .and. lle(c,'z')) then
+            ucase(i:i) = char(ichar(c) - idiff)
+         endif
+   99 continue
+      return
+      end
diff --git a/source/unres/src_MD_DFA/moments.f b/source/unres/src_MD_DFA/moments.f
new file mode 100644 (file)
index 0000000..5adbf21
--- /dev/null
@@ -0,0 +1,328 @@
+      subroutine inertia_tensor
+c Calculating the intertia tensor for the entire protein in order to
+c remove the perpendicular components of velocity matrix which cause
+c the molecule to rotate.       
+       implicit real*8 (a-h,o-z)
+       include 'DIMENSIONS'
+       include 'COMMON.CONTROL'
+       include 'COMMON.VAR'
+       include 'COMMON.MD'
+       include 'COMMON.CHAIN'
+       include 'COMMON.DERIV'
+       include 'COMMON.GEO'
+       include 'COMMON.LOCAL'
+       include 'COMMON.INTERACT'
+       include 'COMMON.IOUNITS'
+       include 'COMMON.NAMES'
+      
+      double precision Im(3,3),Imcp(3,3),cm(3),pr(3),M_SC,
+     & eigvec(3,3),Id(3,3),eigval(3),L(3),vp(3),vrot(3),
+     & vpp(3,0:MAXRES),vs_p(3),pr1(3,3),
+     & pr2(3,3),pp(3),incr(3),v(3),mag,mag2 
+      common /gucio/ cm
+      integer iti,inres 
+        do i=1,3
+          do j=1,3
+             Im(i,j)=0.0d0
+             pr1(i,j)=0.0d0
+             pr2(i,j)=0.0d0                 
+          enddo
+          L(i)=0.0d0
+           cm(i)=0.0d0
+           vrot(i)=0.0d0                  
+        enddo
+c   calculating the center of the mass of the protein                                  
+        do i=nnt,nct-1
+          do j=1,3
+            cm(j)=cm(j)+c(j,i)+0.5d0*dc(j,i)
+          enddo
+        enddo
+        do j=1,3
+         cm(j)=mp*cm(j)
+        enddo
+        M_SC=0.0d0                             
+        do i=nnt,nct
+           iti=itype(i)                 
+          M_SC=M_SC+msc(iti)
+           inres=i+nres
+           do j=1,3
+            cm(j)=cm(j)+msc(iti)*c(j,inres)        
+           enddo
+        enddo
+        do j=1,3
+          cm(j)=cm(j)/(M_SC+(nct-nnt)*mp)
+        enddo
+       
+        do i=nnt,nct-1
+          do j=1,3
+            pr(j)=c(j,i)+0.5d0*dc(j,i)-cm(j)
+          enddo
+          Im(1,1)=Im(1,1)+mp*(pr(2)*pr(2)+pr(3)*pr(3))
+          Im(1,2)=Im(1,2)-mp*pr(1)*pr(2)
+          Im(1,3)=Im(1,3)-mp*pr(1)*pr(3)
+          Im(2,3)=Im(2,3)-mp*pr(2)*pr(3)       
+          Im(2,2)=Im(2,2)+mp*(pr(3)*pr(3)+pr(1)*pr(1))
+          Im(3,3)=Im(3,3)+mp*(pr(1)*pr(1)+pr(2)*pr(2))
+        enddo                  
+        
+       do i=nnt,nct    
+           iti=itype(i)
+           inres=i+nres
+           do j=1,3
+             pr(j)=c(j,inres)-cm(j)        
+           enddo
+          Im(1,1)=Im(1,1)+msc(iti)*(pr(2)*pr(2)+pr(3)*pr(3))
+          Im(1,2)=Im(1,2)-msc(iti)*pr(1)*pr(2)
+          Im(1,3)=Im(1,3)-msc(iti)*pr(1)*pr(3)
+          Im(2,3)=Im(2,3)-msc(iti)*pr(2)*pr(3) 
+          Im(2,2)=Im(2,2)+msc(iti)*(pr(3)*pr(3)+pr(1)*pr(1))
+          Im(3,3)=Im(3,3)+msc(iti)*(pr(1)*pr(1)+pr(2)*pr(2))              
+        enddo
+          
+        do i=nnt,nct-1
+          Im(1,1)=Im(1,1)+Ip*(1-dc_norm(1,i)*dc_norm(1,i))*      
+     &    vbld(i+1)*vbld(i+1)*0.25d0
+         Im(1,2)=Im(1,2)+Ip*(-dc_norm(1,i)*dc_norm(2,i))*
+     &    vbld(i+1)*vbld(i+1)*0.25d0             
+          Im(1,3)=Im(1,3)+Ip*(-dc_norm(1,i)*dc_norm(3,i))*
+     &    vbld(i+1)*vbld(i+1)*0.25d0     
+          Im(2,3)=Im(2,3)+Ip*(-dc_norm(2,i)*dc_norm(3,i))*
+     &    vbld(i+1)*vbld(i+1)*0.25d0           
+          Im(2,2)=Im(2,2)+Ip*(1-dc_norm(2,i)*dc_norm(2,i))*
+     &    vbld(i+1)*vbld(i+1)*0.25d0     
+          Im(3,3)=Im(3,3)+Ip*(1-dc_norm(3,i)*dc_norm(3,i))*
+     &    vbld(i+1)*vbld(i+1)*0.25d0
+        enddo
+        
+                               
+        do i=nnt,nct
+         if (itype(i).ne.10) then
+           iti=itype(i)                 
+           inres=i+nres
+          Im(1,1)=Im(1,1)+Isc(iti)*(1-dc_norm(1,inres)*
+     &   dc_norm(1,inres))*vbld(inres)*vbld(inres)
+          Im(1,2)=Im(1,2)-Isc(iti)*(dc_norm(1,inres)*
+     &   dc_norm(2,inres))*vbld(inres)*vbld(inres)
+          Im(1,3)=Im(1,3)-Isc(iti)*(dc_norm(1,inres)*
+     &   dc_norm(3,inres))*vbld(inres)*vbld(inres)
+          Im(2,3)=Im(2,3)-Isc(iti)*(dc_norm(2,inres)*
+     &   dc_norm(3,inres))*vbld(inres)*vbld(inres)     
+          Im(2,2)=Im(2,2)+Isc(iti)*(1-dc_norm(2,inres)*
+     &   dc_norm(2,inres))*vbld(inres)*vbld(inres)
+          Im(3,3)=Im(3,3)+Isc(iti)*(1-dc_norm(3,inres)*
+     &           dc_norm(3,inres))*vbld(inres)*vbld(inres)
+         endif
+        enddo
+       
+        call angmom(cm,L)
+c        write(iout,*) "The angular momentum before adjustment:"
+c        write(iout,*) (L(j),j=1,3)                                                                                                                                                                                                                    
+        
+       Im(2,1)=Im(1,2)
+        Im(3,1)=Im(1,3)
+        Im(3,2)=Im(2,3)
+      
+c  Copying the Im matrix for the djacob subroutine
+        do i=1,3
+         do j=1,3
+           Imcp(i,j)=Im(i,j)
+            Id(i,j)=0.0d0          
+         enddo
+        enddo
+                                                             
+c   Finding the eigenvectors and eignvalues of the inertia tensor
+       call djacob(3,3,10000,1.0d-10,Imcp,eigvec,eigval)
+c       write (iout,*) "Eigenvalues & Eigenvectors"
+c       write (iout,'(5x,3f10.5)') (eigval(i),i=1,3)
+c       write (iout,*)
+c       do i=1,3
+c         write (iout,'(i5,3f10.5)') i,(eigvec(i,j),j=1,3)
+c       enddo
+c   Constructing the diagonalized matrix
+       do i=1,3
+         if (dabs(eigval(i)).gt.1.0d-15) then
+           Id(i,i)=1.0d0/eigval(i)
+         else
+           Id(i,i)=0.0d0
+         endif
+       enddo
+        do i=1,3
+          do j=1,3
+              Imcp(i,j)=eigvec(j,i)
+           enddo
+        enddo   
+        do i=1,3
+           do j=1,3
+              do k=1,3  
+                 pr1(i,j)=pr1(i,j)+Id(i,k)*Imcp(k,j)
+              enddo
+          enddo
+        enddo
+        do i=1,3
+           do j=1,3
+              do k=1,3  
+                 pr2(i,j)=pr2(i,j)+eigvec(i,k)*pr1(k,j)
+              enddo
+          enddo
+        enddo
+c  Calculating the total rotational velocity of the molecule
+       do i=1,3    
+         do j=1,3
+           vrot(i)=vrot(i)+pr2(i,j)*L(j)
+         enddo
+       enddo   
+c   Resetting the velocities
+       do i=nnt,nct-1
+         call vecpr(vrot(1),dc(1,i),vp)  
+        do j=1,3
+           d_t(j,i)=d_t(j,i)-vp(j)
+          enddo
+        enddo
+        do i=nnt,nct 
+        if(itype(i).ne.10) then
+           inres=i+nres
+           call vecpr(vrot(1),dc(1,inres),vp)                   
+          do j=1,3
+             d_t(j,inres)=d_t(j,inres)-vp(j)
+           enddo
+       endif
+       enddo
+       call angmom(cm,L)
+c       write(iout,*) "The angular momentum after adjustment:"
+c       write(iout,*) (L(j),j=1,3)                                                                                                                                                                                                                     
+       return
+       end 
+c----------------------------------------------------------------------------
+       subroutine angmom(cm,L)
+       implicit real*8 (a-h,o-z)
+       include 'DIMENSIONS'
+       include 'COMMON.CONTROL'
+       include 'COMMON.VAR'
+       include 'COMMON.MD'
+       include 'COMMON.CHAIN'
+       include 'COMMON.DERIV'
+       include 'COMMON.GEO'
+       include 'COMMON.LOCAL'
+       include 'COMMON.INTERACT'
+       include 'COMMON.IOUNITS'
+       include 'COMMON.NAMES'
+      
+      double precision L(3),cm(3),pr(3),vp(3),vrot(3),incr(3),v(3),
+     &  pp(3)
+      integer iti,inres 
+c  Calculate the angular momentum
+       do j=1,3
+          L(j)=0.0d0
+       enddo
+       do j=1,3
+          incr(j)=d_t(j,0)
+       enddo                  
+       do i=nnt,nct-1
+          do j=1,3
+            pr(j)=c(j,i)+0.5d0*dc(j,i)-cm(j)
+          enddo
+          do j=1,3
+            v(j)=incr(j)+0.5d0*d_t(j,i)
+          enddo
+         do j=1,3
+            incr(j)=incr(j)+d_t(j,i)
+          enddo                
+          call vecpr(pr(1),v(1),vp)
+          do j=1,3
+            L(j)=L(j)+mp*vp(j)
+          enddo
+          do j=1,3
+             pr(j)=0.5d0*dc(j,i)
+             pp(j)=0.5d0*d_t(j,i)                
+          enddo
+         call vecpr(pr(1),pp(1),vp)
+         do j=1,3               
+             L(j)=L(j)+Ip*vp(j)         
+          enddo
+        enddo
+        do j=1,3
+          incr(j)=d_t(j,0)
+        enddo  
+        do i=nnt,nct
+         iti=itype(i)   
+         inres=i+nres
+         do j=1,3
+           pr(j)=c(j,inres)-cm(j)          
+         enddo
+         if (itype(i).ne.10) then
+           do j=1,3
+             v(j)=incr(j)+d_t(j,inres)
+           enddo
+         else
+           do j=1,3
+             v(j)=incr(j)
+           enddo
+         endif
+         call vecpr(pr(1),v(1),vp)
+c         write (iout,*) "i",i," iti",iti," pr",(pr(j),j=1,3),
+c     &     " v",(v(j),j=1,3)," vp",(vp(j),j=1,3)
+         do j=1,3
+            L(j)=L(j)+msc(iti)*vp(j)
+         enddo
+c         write (iout,*) "L",(l(j),j=1,3)
+         if (itype(i).ne.10) then
+          do j=1,3
+            v(j)=incr(j)+d_t(j,inres)
+           enddo
+           call vecpr(dc(1,inres),d_t(1,inres),vp)
+           do j=1,3                               
+             L(j)=L(j)+Isc(iti)*vp(j)   
+          enddo                           
+         endif
+        do j=1,3
+             incr(j)=incr(j)+d_t(j,i)
+         enddo
+       enddo
+      return
+      end
+c------------------------------------------------------------------------------
+       subroutine vcm_vel(vcm)
+       implicit real*8 (a-h,o-z)
+       include 'DIMENSIONS'
+       include 'COMMON.VAR'
+       include 'COMMON.MD'
+       include 'COMMON.CHAIN'
+       include 'COMMON.DERIV'
+       include 'COMMON.GEO'
+       include 'COMMON.LOCAL'
+       include 'COMMON.INTERACT'
+       include 'COMMON.IOUNITS'
+       double precision vcm(3),vv(3),summas,amas
+       do j=1,3
+         vcm(j)=0.0d0
+         vv(j)=d_t(j,0)
+       enddo
+       summas=0.0d0
+       do i=nnt,nct
+         if (i.lt.nct) then
+           summas=summas+mp
+           do j=1,3
+             vcm(j)=vcm(j)+mp*(vv(j)+0.5d0*d_t(j,i))
+           enddo
+         endif
+         amas=msc(itype(i))
+         summas=summas+amas                     
+         if (itype(i).ne.10) then
+           do j=1,3
+             vcm(j)=vcm(j)+amas*(vv(j)+d_t(j,i+nres))
+           enddo
+         else
+           do j=1,3
+             vcm(j)=vcm(j)+amas*vv(j)
+           enddo
+         endif
+         do j=1,3
+           vv(j)=vv(j)+d_t(j,i)
+         enddo
+       enddo 
+c       write (iout,*) "vcm",(vcm(j),j=1,3)," summas",summas
+       do j=1,3
+         vcm(j)=vcm(j)/summas
+       enddo
+       return
+       end
diff --git a/source/unres/src_MD_DFA/muca_md.f b/source/unres/src_MD_DFA/muca_md.f
new file mode 100644 (file)
index 0000000..c10a6a7
--- /dev/null
@@ -0,0 +1,334 @@
+      subroutine muca_delta(remd_t_bath,remd_ene,i,iex,delta)
+      implicit real*8 (a-h,o-z)     
+      include 'DIMENSIONS'
+      include 'COMMON.MUCA'
+      include 'COMMON.MD'
+      double precision remd_t_bath(maxprocs)
+      double precision remd_ene(maxprocs)
+      double precision muca_ene
+      double precision betai,betaiex,delta
+
+      betai=1.0/(Rb*remd_t_bath(i))
+      betaiex=1.0/(Rb*remd_t_bath(iex))
+      
+      delta=betai*(muca_ene(remd_ene(iex),i,remd_t_bath)-
+     &                muca_ene(remd_ene(i),i,remd_t_bath))
+     &          -betaiex*(muca_ene(remd_ene(iex),iex,remd_t_bath)-
+     &                muca_ene(remd_ene(i),iex,remd_t_bath))
+
+      return
+      end
+      
+      double precision function muca_ene(energy,i,remd_t_bath)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MUCA'
+      include 'COMMON.MD'
+      double precision y,yp,energy
+      double precision remd_t_bath(maxprocs)
+      integer i
+      if (energy.lt.elowi(i)) then
+        call splint(emuca,nemuca,nemuca2,nmuca,elowi(i),y,yp)
+        muca_ene=remd_t_bath(i)*Rb*(yp*(energy-elowi(i))+y)
+      elseif (energy.gt.ehighi(i)) then
+        call splint(emuca,nemuca,nemuca2,nmuca,ehighi(i),y,yp)
+        muca_ene=remd_t_bath(i)*Rb*(yp*(energy-ehighi(i))+y)
+      else
+        call splint(emuca,nemuca,nemuca2,nmuca,energy,y,yp)
+        muca_ene=remd_t_bath(i)*Rb*y
+      endif
+      return
+      end
+      
+      subroutine read_muca
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MUCA'
+      include 'COMMON.CONTROL'
+      include 'COMMON.MD'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision yp1,ypn,yp,x,muca_factor,y,muca_ene
+      imtime=0
+      do i=1,4*maxres
+        hist(i)=0
+      enddo
+      if (modecalc.eq.14.and..not.remd_tlist) then
+                print *,"MUCAREMD works only with TLIST"
+                stop
+      endif
+      open(89,file='muca.input')      
+      read(89,*) 
+      read(89,*) 
+      if (modecalc.eq.14) then
+        read(89,*) (elowi(i),ehighi(i),i=1,nrep)
+       if (remd_mlist) then
+        k=0
+        do i=1,nrep
+         do j=1,remd_m(i)
+          i2rep(k)=i
+          k=k+1
+         enddo
+        enddo
+        elow=elowi(i2rep(me))
+        ehigh=ehighi(i2rep(me))
+        elowi(me+1)=elow
+        ehighi(me+1)=ehigh        
+       else 
+        elow=elowi(me+1)
+        ehigh=ehighi(me+1)
+       endif
+      else
+        read(89,*) elow,ehigh
+        elowi(1)=elow
+        ehighi(1)=ehigh
+      endif
+      i=0
+      do while(.true.)
+       i=i+1
+       read(89,*,end=100) emuca(i),nemuca(i)
+cd      nemuca(i)=nemuca(i)*remd_t(me+1)*Rb
+      enddo
+ 100  continue
+      nmuca=i-1
+      hbin=emuca(nmuca)-emuca(nmuca-1)
+      write (iout,*) 'hbin',hbin      
+      write (iout,*) me,'elow,ehigh',elow,ehigh
+      yp1=0
+      ypn=0
+      call spline(emuca,nemuca,nmuca,yp1,ypn,nemuca2)
+      factor_min=0.0d0
+      factor_min=muca_factor(ehigh)
+      call print_muca
+      return
+      end
+
+
+      subroutine print_muca
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MUCA'
+      include 'COMMON.CONTROL'
+      include 'COMMON.MD'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision yp1,ypn,yp,x,muca_factor,y,muca_ene
+      double precision dummy(maxprocs)
+
+      if (remd_mlist) then
+           k=0
+           do i=1,nrep
+            do j=1,remd_m(i)
+             i2rep(k)=i
+             k=k+1
+            enddo
+           enddo
+      endif
+
+      do i=1,nmuca
+c       print *,'nemuca ',emuca(i),nemuca(i)
+       do j=0,4
+        x=emuca(i)+hbin/5*j
+        if (modecalc.eq.14) then
+         if (remd_mlist) then
+          yp=muca_factor(x)*remd_t(i2rep(me))*Rb
+          dummy(me+1)=remd_t(i2rep(me))
+          y=muca_ene(x,me+1,dummy)
+         else
+          yp=muca_factor(x)*remd_t(me+1)*Rb
+          y=muca_ene(x,me+1,remd_t)
+         endif
+         write (iout,'(i4,i12,a12,2f15.5,a10,f15.5)') me,imtime,
+     &      'muca factor ',x,yp,' muca ene',y
+        else
+         yp=muca_factor(x)*t_bath*Rb
+         dummy(1)=t_bath
+         y=muca_ene(x,1,dummy)
+         write (iout,'(i4,i12,a12,2f15.5,a10,f15.5)') me,imtime,
+     &      'muca factor ',x,yp,' muca ene',y         
+        endif
+       enddo
+      enddo
+      if(mucadyn.gt.0) then
+       do i=1,nmuca
+         write(iout,'(a13,i8,2f12.5)') 'nemuca after ',
+     &             imtime,emuca(i),nemuca(i)
+       enddo
+      endif
+      return
+      end
+
+      subroutine muca_update(energy)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MUCA'
+      include 'COMMON.CONTROL'
+      include 'COMMON.MD'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision energy
+      double precision yp1,ypn
+      integer k
+      logical lnotend
+
+      k=int((energy-emuca(1))/hbin)+1
+      
+      IF(muca_smooth.eq.1.or.muca_smooth.eq.3) THEN
+       if(energy.ge.ehigh) 
+     &        write (iout,*) 'MUCA reject',energy,emuca(k)
+       if(energy.ge.ehigh.and.(energy-ehigh).lt.hbin) then
+         write (iout,*) 'MUCA ehigh',energy,emuca(k)
+         do i=k,nmuca
+           hist(i)=hist(i)+1
+         enddo
+       endif
+       if(k.gt.0.and.energy.lt.ehigh) hist(k)=hist(k)+1       
+      ELSE
+       if(k.gt.0.and.k.lt.4*maxres) hist(k)=hist(k)+1       
+      ENDIF
+      if(mod(imtime,mucadyn).eq.0) then
+
+         do i=1,nmuca
+          IF(muca_smooth.eq.2.or.muca_smooth.eq.3) THEN
+           nemuca(i)=nemuca(i)+dlog(hist(i)+1)
+          ELSE
+           if (hist(i).gt.0) hist(i)=dlog(hist(i))         
+           nemuca(i)=nemuca(i)+hist(i)
+          ENDIF
+          hist(i)=0
+          write(iout,'(a24,i8,2f12.5)')'nemuca before smoothing ',
+     &          imtime,emuca(i),nemuca(i)
+         enddo
+
+
+         lnotend=.true.
+         ismooth=0
+         ist=2
+         ien=nmuca-1
+        IF(muca_smooth.eq.1.or.muca_smooth.eq.3) THEN         
+c         lnotend=.false.         
+c         do i=1,nmuca-1
+c           do j=i+1,nmuca
+c            if(nemuca(j).lt.nemuca(i)) lnotend=.true.
+c           enddo
+c         enddo         
+         do while(lnotend)
+          ismooth=ismooth+1
+          write (iout,*) 'MUCA update smoothing',ist,ien
+          do i=ist,ien
+           nemuca(i)=(nemuca(i-1)+nemuca(i)+nemuca(i+1))/3
+          enddo
+          lnotend=.false.
+          ist=0
+          ien=0
+          do i=1,nmuca-1
+           do j=i+1,nmuca
+            if(nemuca(j).lt.nemuca(i)) then 
+              lnotend=.true.
+              if(ist.eq.0) ist=i-1
+              if(ien.lt.j+1) ien=j+1
+            endif
+           enddo
+          enddo
+         enddo
+        ENDIF 
+
+         write (iout,*) 'MUCA update ',imtime,' smooth= ',ismooth
+         yp1=0
+         ypn=0
+         call spline(emuca,nemuca,nmuca,yp1,ypn,nemuca2)
+         call print_muca
+         
+      endif
+      return
+      end
+      
+      double precision function muca_factor(energy)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MUCA'
+      double precision y,yp,energy
+      
+      if (energy.lt.elow) then
+        call splint(emuca,nemuca,nemuca2,nmuca,elow,y,yp)
+      elseif (energy.gt.ehigh) then
+        call splint(emuca,nemuca,nemuca2,nmuca,ehigh,y,yp)
+      else
+        call splint(emuca,nemuca,nemuca2,nmuca,energy,y,yp)
+      endif
+      
+      if(yp.ge.factor_min) then
+       muca_factor=yp
+      else
+       muca_factor=factor_min
+      endif
+cd      print *,'energy, muca_factor',energy,muca_factor
+      return
+      end
+      
+
+      SUBROUTINE spline(x,y,n,yp1,ypn,y2)
+      INTEGER n,NMAX
+      REAL*8 yp1,ypn,x(n),y(n),y2(n)
+      PARAMETER (NMAX=500)
+      INTEGER i,k
+      REAL*8 p,qn,sig,un,u(NMAX)
+      if (yp1.gt..99e30) then 
+      y2(1)=0. 
+      u(1)=0.
+      else 
+         y2(1)=-0.5
+         u(1)=(3./(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)
+      endif
+      do i=2,n-1 
+         sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))
+         p=sig*y2(i-1)+2.
+         y2(i)=(sig-1.)/p
+         u(i)=(6.*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))
+     *        /(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-1))/p
+      enddo 
+      if (ypn.gt..99e30) then 
+         qn=0.
+         un=0.
+      else 
+         qn=0.5
+         un=(3./(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1)))
+      endif
+      y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.)
+      do k=n-1,1,-1 
+         y2(k)=y2(k)*y2(k+1)+u(k) 
+      enddo 
+      return
+      END 
+
+
+      SUBROUTINE splint(xa,ya,y2a,n,x,y,yp)
+      INTEGER n
+      REAL*8 x,y,xa(n),y2a(n),ya(n),yp
+      INTEGER k,khi,klo
+      REAL*8 a,b,h
+      klo=1 
+      khi=n
+ 1    if (khi-klo.gt.1) then
+         k=(khi+klo)/2
+         if (xa(k).gt.x) then
+            khi=k
+         else
+            klo=k
+         endif
+         goto 1
+      endif 
+      h=xa(khi)-xa(klo)
+      if (h.eq.0.) pause 'bad xa input in splint' 
+      a=(xa(khi)-x)/h 
+      b=(x-xa(klo))/h
+      y=a*ya(klo)+b*ya(khi)+
+     *     ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.
+      yp=-ya(klo)/h+ya(khi)/h-3*(a**2)*y2a(klo)*h/6.
+     +     +(3*(b**2)-1)*y2a(khi)*h/6.
+      return
+      END
diff --git a/source/unres/src_MD_DFA/parmread.F b/source/unres/src_MD_DFA/parmread.F
new file mode 100644 (file)
index 0000000..4729ca5
--- /dev/null
@@ -0,0 +1,1032 @@
+      subroutine parmread
+C
+C Read the parameters of the probability distributions of the virtual-bond
+C valence angles and the side chains and energy parameters.
+C
+C Important! Energy-term weights ARE NOT read here; they are read from the
+C main input file instead, because NO defaults have yet been set for these
+C parameters.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+      integer IERROR
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.TORSION'
+      include 'COMMON.SCCOR'
+      include 'COMMON.SCROT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.NAMES'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.MD'
+      include 'COMMON.SETUP'
+      character*1 t1,t2,t3
+      character*1 onelett(4) /"G","A","P","D"/
+      logical lprint,LaTeX
+      dimension blower(3,3,maxlob)
+      dimension b(13)
+      character*3 lancuch,ucase
+C
+C For printing parameters after they are read set the following in the UNRES
+C C-shell script:
+C
+C setenv PRINT_PARM YES
+C
+C To print parameters in LaTeX format rather than as ASCII tables:
+C
+C setenv LATEX YES
+C
+      call getenv_loc("PRINT_PARM",lancuch)
+      lprint = (ucase(lancuch).eq."YES" .or. ucase(lancuch).eq."Y")
+      call getenv_loc("LATEX",lancuch)
+      LaTeX = (ucase(lancuch).eq."YES" .or. ucase(lancuch).eq."Y")
+C
+      dwa16=2.0d0**(1.0d0/6.0d0)
+      itypro=20
+C Assign virtual-bond length
+      vbl=3.8D0
+      vblinv=1.0D0/vbl
+      vblinv2=vblinv*vblinv
+c
+c Read the virtual-bond parameters, masses, and moments of inertia
+c and Stokes' radii of the peptide group and side chains
+c
+#ifdef CRYST_BOND
+      read (ibond,*) vbldp0,akp,mp,ip,pstok
+      do i=1,ntyp
+        nbondterm(i)=1
+        read (ibond,*) vbldsc0(1,i),aksc(1,i),msc(i),isc(i),restok(i)
+        dsc(i) = vbldsc0(1,i)
+        if (i.eq.10) then
+          dsc_inv(i)=0.0D0
+        else
+          dsc_inv(i)=1.0D0/dsc(i)
+        endif
+      enddo
+#else
+      read (ibond,*) junk,vbldp0,akp,rjunk,mp,ip,pstok
+      do i=1,ntyp
+        read (ibond,*) nbondterm(i),(vbldsc0(j,i),aksc(j,i),abond0(j,i),
+     &   j=1,nbondterm(i)),msc(i),isc(i),restok(i)
+        dsc(i) = vbldsc0(1,i)
+        if (i.eq.10) then
+          dsc_inv(i)=0.0D0
+        else
+          dsc_inv(i)=1.0D0/dsc(i)
+        endif
+      enddo
+#endif
+      if (lprint) then
+        write(iout,'(/a/)')"Dynamic constants of the interaction sites:"
+        write (iout,'(a10,a3,6a10)') 'Type','N','VBL','K','A0','mass',
+     &   'inertia','Pstok'
+        write(iout,'(a10,i3,6f10.5)') "p",1,vbldp0,akp,0.0d0,mp,ip,pstok
+        do i=1,ntyp
+          write (iout,'(a10,i3,6f10.5)') restyp(i),nbondterm(i),
+     &      vbldsc0(1,i),aksc(1,i),abond0(1,i),msc(i),isc(i),restok(i)
+          do j=2,nbondterm(i)
+            write (iout,'(13x,3f10.5)')
+     &        vbldsc0(j,i),aksc(j,i),abond0(j,i)
+          enddo
+        enddo
+      endif
+#ifdef CRYST_THETA
+C
+C Read the parameters of the probability distribution/energy expression 
+C of the virtual-bond valence angles theta
+C
+      do i=1,ntyp
+        read (ithep,*,err=111,end=111) a0thet(i),(athet(j,i),j=1,2),
+     &    (bthet(j,i),j=1,2)
+        read (ithep,*,err=111,end=111) (polthet(j,i),j=0,3)
+       read (ithep,*,err=111,end=111) (gthet(j,i),j=1,3)
+       read (ithep,*,err=111,end=111) theta0(i),sig0(i),sigc0(i)
+       sigc0(i)=sigc0(i)**2
+      enddo
+      close (ithep)
+      if (lprint) then
+      if (.not.LaTeX) then
+        write (iout,'(a)') 
+     &    'Parameters of the virtual-bond valence angles:'
+        write (iout,'(/a/9x,5a/79(1h-))') 'Fourier coefficients:',
+     & '    ATHETA0   ','         A1   ','        A2    ',
+     & '        B1    ','         B2   '        
+        do i=1,ntyp
+          write(iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,
+     &        a0thet(i),(athet(j,i),j=1,2),(bthet(j,i),j=1,2)
+        enddo
+        write (iout,'(/a/9x,5a/79(1h-))') 
+     & 'Parameters of the expression for sigma(theta_c):',
+     & '     ALPH0    ','      ALPH1   ','     ALPH2    ',
+     & '     ALPH3    ','    SIGMA0C   '        
+        do i=1,ntyp
+          write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,
+     &      (polthet(j,i),j=0,3),sigc0(i) 
+        enddo
+        write (iout,'(/a/9x,5a/79(1h-))') 
+     & 'Parameters of the second gaussian:',
+     & '    THETA0    ','     SIGMA0   ','        G1    ',
+     & '        G2    ','         G3   '        
+        do i=1,ntyp
+          write (iout,'(a3,i4,2x,5(1pe14.5))') restyp(i),i,theta0(i),
+     &       sig0(i),(gthet(j,i),j=1,3)
+        enddo
+       else
+       write (iout,'(a)') 
+     &    'Parameters of the virtual-bond valence angles:'
+        write (iout,'(/a/9x,5a/79(1h-))') 
+     & 'Coefficients of expansion',
+     & '     theta0   ','    a1*10^2   ','   a2*10^2    ',
+     & '   b1*10^1    ','    b2*10^1   '        
+        do i=1,ntyp
+          write(iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i),
+     &        a0thet(i),(100*athet(j,i),j=1,2),(10*bthet(j,i),j=1,2)
+        enddo
+       write (iout,'(/a/9x,5a/79(1h-))') 
+     & 'Parameters of the expression for sigma(theta_c):',
+     & ' alpha0       ','  alph1       ',' alph2        ',
+     & ' alhp3        ','   sigma0c    '        
+       do i=1,ntyp
+          write (iout,'(a3,1h&,2x,5(1pe12.3,1h&))') restyp(i),
+     &      (polthet(j,i),j=0,3),sigc0(i) 
+       enddo
+       write (iout,'(/a/9x,5a/79(1h-))') 
+     & 'Parameters of the second gaussian:',
+     & '    theta0    ','  sigma0*10^2 ','      G1*10^-1',
+     & '        G2    ','   G3*10^1    '        
+       do i=1,ntyp
+          write (iout,'(a3,1h&,2x,5(f8.3,1h&))') restyp(i),theta0(i),
+     &       100*sig0(i),gthet(1,i)*0.1D0,gthet(2,i),gthet(3,i)*10.0D0
+       enddo
+      endif
+      endif
+#else 
+C 
+C Read the parameters of Utheta determined from ab initio surfaces
+C Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
+C
+      read (ithep,*,err=111,end=111) nthetyp,ntheterm,ntheterm2,
+     &  ntheterm3,nsingle,ndouble
+      nntheterm=max0(ntheterm,ntheterm2,ntheterm3)
+      read (ithep,*,err=111,end=111) (ithetyp(i),i=1,ntyp1)
+      do i=1,maxthetyp
+        do j=1,maxthetyp
+          do k=1,maxthetyp
+            aa0thet(i,j,k)=0.0d0
+            do l=1,ntheterm
+              aathet(l,i,j,k)=0.0d0
+            enddo
+            do l=1,ntheterm2
+              do m=1,nsingle
+                bbthet(m,l,i,j,k)=0.0d0
+                ccthet(m,l,i,j,k)=0.0d0
+                ddthet(m,l,i,j,k)=0.0d0
+                eethet(m,l,i,j,k)=0.0d0
+              enddo
+            enddo
+            do l=1,ntheterm3
+              do m=1,ndouble
+                do mm=1,ndouble
+                 ffthet(mm,m,l,i,j,k)=0.0d0
+                 ggthet(mm,m,l,i,j,k)=0.0d0
+                enddo
+              enddo
+            enddo
+          enddo
+        enddo
+      enddo 
+      do i=1,nthetyp
+        do j=1,nthetyp
+          do k=1,nthetyp
+            read (ithep,'(3a)',end=111,err=111) res1,res2,res3
+            read (ithep,*,end=111,err=111) aa0thet(i,j,k)
+            read (ithep,*,end=111,err=111)(aathet(l,i,j,k),l=1,ntheterm)
+            read (ithep,*,end=111,err=111)
+     &       ((bbthet(lll,ll,i,j,k),lll=1,nsingle),
+     &        (ccthet(lll,ll,i,j,k),lll=1,nsingle),
+     &        (ddthet(lll,ll,i,j,k),lll=1,nsingle),
+     &        (eethet(lll,ll,i,j,k),lll=1,nsingle),ll=1,ntheterm2)
+            read (ithep,*,end=111,err=111)
+     &      (((ffthet(llll,lll,ll,i,j,k),ffthet(lll,llll,ll,i,j,k),
+     &         ggthet(llll,lll,ll,i,j,k),ggthet(lll,llll,ll,i,j,k),
+     &         llll=1,lll-1),lll=2,ndouble),ll=1,ntheterm3)
+          enddo
+        enddo
+      enddo
+C
+C For dummy ends assign glycine-type coefficients of theta-only terms; the
+C coefficients of theta-and-gamma-dependent terms are zero.
+C
+      do i=1,nthetyp
+        do j=1,nthetyp
+          do l=1,ntheterm
+            aathet(l,i,j,nthetyp+1)=aathet(l,i,j,1)
+            aathet(l,nthetyp+1,i,j)=aathet(l,1,i,j)
+          enddo
+          aa0thet(i,j,nthetyp+1)=aa0thet(i,j,1)
+          aa0thet(nthetyp+1,i,j)=aa0thet(1,i,j)
+        enddo
+        do l=1,ntheterm
+          aathet(l,nthetyp+1,i,nthetyp+1)=aathet(l,1,i,1)
+        enddo
+        aa0thet(nthetyp+1,i,nthetyp+1)=aa0thet(1,i,1)
+      enddo
+C
+C Control printout of the coefficients of virtual-bond-angle potentials
+C
+      if (lprint) then
+        write (iout,'(//a)') 'Parameter of virtual-bond-angle potential'
+        do i=1,nthetyp+1
+          do j=1,nthetyp+1
+            do k=1,nthetyp+1
+              write (iout,'(//4a)') 
+     &         'Type ',onelett(i),onelett(j),onelett(k) 
+              write (iout,'(//a,10x,a)') " l","a[l]"
+              write (iout,'(i2,1pe15.5)') 0,aa0thet(i,j,k)
+              write (iout,'(i2,1pe15.5)')
+     &           (l,aathet(l,i,j,k),l=1,ntheterm)
+            do l=1,ntheterm2
+              write (iout,'(//2h m,4(9x,a,3h[m,,i1,1h]))') 
+     &          "b",l,"c",l,"d",l,"e",l
+              do m=1,nsingle
+                write (iout,'(i2,4(1pe15.5))') m,
+     &          bbthet(m,l,i,j,k),ccthet(m,l,i,j,k),
+     &          ddthet(m,l,i,j,k),eethet(m,l,i,j,k)
+              enddo
+            enddo
+            do l=1,ntheterm3
+              write (iout,'(//3hm,n,4(6x,a,5h[m,n,,i1,1h]))')
+     &          "f+",l,"f-",l,"g+",l,"g-",l
+              do m=2,ndouble
+                do n=1,m-1
+                  write (iout,'(i1,1x,i1,4(1pe15.5))') n,m,
+     &              ffthet(n,m,l,i,j,k),ffthet(m,n,l,i,j,k),
+     &              ggthet(n,m,l,i,j,k),ggthet(m,n,l,i,j,k)
+                enddo
+              enddo
+            enddo
+          enddo
+        enddo
+      enddo
+      call flush(iout)
+      endif
+      write (2,*) "Start reading THETA_PDB"
+      do i=1,ntyp
+        read (ithep_pdb,*,err=111,end=111) a0thet(i),(athet(j,i),j=1,2),
+     &    (bthet(j,i),j=1,2)
+        read (ithep_pdb,*,err=111,end=111) (polthet(j,i),j=0,3)
+       read (ithep_pdb,*,err=111,end=111) (gthet(j,i),j=1,3)
+       read (ithep_pdb,*,err=111,end=111) theta0(i),sig0(i),sigc0(i)
+       sigc0(i)=sigc0(i)**2
+      enddo
+      write (2,*) "End reading THETA_PDB"
+      close (ithep_pdb)
+#endif
+      close(ithep)
+#ifdef CRYST_SC
+C
+C Read the parameters of the probability distribution/energy expression
+C of the side chains.
+C
+      do i=1,ntyp
+       read (irotam,'(3x,i3,f8.3)',end=112,err=112) nlob(i),dsc(i)
+        if (i.eq.10) then
+          dsc_inv(i)=0.0D0
+        else
+          dsc_inv(i)=1.0D0/dsc(i)
+        endif
+       if (i.ne.10) then
+        do j=1,nlob(i)
+          do k=1,3
+            do l=1,3
+              blower(l,k,j)=0.0D0
+            enddo
+          enddo
+        enddo  
+       bsc(1,i)=0.0D0
+        read(irotam,*,end=112,err=112)(censc(k,1,i),k=1,3),
+     &    ((blower(k,l,1),l=1,k),k=1,3)
+       do j=2,nlob(i)
+         read (irotam,*,end=112,err=112) bsc(j,i)
+         read (irotam,*,end=112,err=112) (censc(k,j,i),k=1,3),
+     &                                 ((blower(k,l,j),l=1,k),k=1,3)
+        enddo
+       do j=1,nlob(i)
+         do k=1,3
+           do l=1,k
+             akl=0.0D0
+             do m=1,3
+               akl=akl+blower(k,m,j)*blower(l,m,j)
+              enddo
+             gaussc(k,l,j,i)=akl
+             gaussc(l,k,j,i)=akl
+            enddo
+          enddo 
+       enddo
+       endif
+      enddo
+      close (irotam)
+      if (lprint) then
+       write (iout,'(/a)') 'Parameters of side-chain local geometry'
+       do i=1,ntyp
+         nlobi=nlob(i)
+          if (nlobi.gt.0) then
+            if (LaTeX) then
+              write (iout,'(/3a,i2,a,f8.3)') 'Residue type: ',restyp(i),
+     &         ' # of gaussian lobes:',nlobi,' dsc:',dsc(i)
+               write (iout,'(1h&,a,3(2h&&,f8.3,2h&&))')
+     &                             'log h',(bsc(j,i),j=1,nlobi)
+               write (iout,'(1h&,a,3(1h&,f8.3,1h&,f8.3,1h&,f8.3,1h&))')
+     &        'x',((censc(k,j,i),k=1,3),j=1,nlobi)
+             do k=1,3
+                write (iout,'(2h& ,5(2x,1h&,3(f7.3,1h&)))')
+     &                 ((gaussc(k,l,j,i),l=1,3),j=1,nlobi)
+              enddo
+            else
+              write (iout,'(/a,8x,i1,4(25x,i1))') 'Lobe:',(j,j=1,nlobi)
+              write (iout,'(a,f10.4,4(16x,f10.4))')
+     &                             'Center  ',(bsc(j,i),j=1,nlobi)
+              write (iout,'(5(2x,3f8.4))') ((censc(k,j,i),k=1,3),
+     &           j=1,nlobi)
+              write (iout,'(a)')
+            endif
+         endif
+        enddo
+      endif
+#else
+C 
+C Read scrot parameters for potentials determined from all-atom AM1 calculations
+C added by Urszula Kozlowska 07/11/2007
+C
+      do i=1,ntyp
+       read (irotam,*,end=112,err=112) 
+       if (i.eq.10) then 
+         read (irotam,*,end=112,err=112) 
+       else
+         do j=1,65
+           read(irotam,*,end=112,err=112) sc_parmin(j,i)
+         enddo  
+       endif
+      enddo
+C
+C Read the parameters of the probability distribution/energy expression
+C of the side chains.
+C
+      do i=1,ntyp
+       read (irotam_pdb,'(3x,i3,f8.3)',end=112,err=112) nlob(i),dsc(i)
+        if (i.eq.10) then
+          dsc_inv(i)=0.0D0
+        else
+          dsc_inv(i)=1.0D0/dsc(i)
+        endif
+       if (i.ne.10) then
+        do j=1,nlob(i)
+          do k=1,3
+            do l=1,3
+              blower(l,k,j)=0.0D0
+            enddo
+          enddo
+        enddo  
+       bsc(1,i)=0.0D0
+        read(irotam_pdb,*,end=112,err=112)(censc(k,1,i),k=1,3),
+     &    ((blower(k,l,1),l=1,k),k=1,3)
+       do j=2,nlob(i)
+         read (irotam_pdb,*,end=112,err=112) bsc(j,i)
+         read (irotam_pdb,*,end=112,err=112) (censc(k,j,i),k=1,3),
+     &                                 ((blower(k,l,j),l=1,k),k=1,3)
+        enddo
+       do j=1,nlob(i)
+         do k=1,3
+           do l=1,k
+             akl=0.0D0
+             do m=1,3
+               akl=akl+blower(k,m,j)*blower(l,m,j)
+              enddo
+             gaussc(k,l,j,i)=akl
+             gaussc(l,k,j,i)=akl
+            enddo
+          enddo 
+       enddo
+       endif
+      enddo
+      close (irotam_pdb)
+#endif
+      close(irotam)
+
+#ifdef CRYST_TOR
+C
+C Read torsional parameters in old format
+C
+      read (itorp,*,end=113,err=113) ntortyp,nterm_old
+      if (lprint)write (iout,*) 'ntortyp,nterm',ntortyp,nterm_old
+      read (itorp,*,end=113,err=113) (itortyp(i),i=1,ntyp)
+      do i=1,ntortyp
+       do j=1,ntortyp
+         read (itorp,'(a)')
+         do k=1,nterm_old
+           read (itorp,*,end=113,err=113) kk,v1(k,j,i),v2(k,j,i) 
+          enddo
+        enddo
+      enddo
+      close (itorp)
+      if (lprint) then
+       write (iout,'(/a/)') 'Torsional constants:'
+       do i=1,ntortyp
+         do j=1,ntortyp
+           write (iout,'(2i3,6f10.5)') i,j,(v1(k,i,j),k=1,nterm_old)
+           write (iout,'(6x,6f10.5)') (v2(k,i,j),k=1,nterm_old)
+          enddo
+        enddo
+      endif
+#else
+C
+C Read torsional parameters
+C
+      read (itorp,*,end=113,err=113) ntortyp
+      read (itorp,*,end=113,err=113) (itortyp(i),i=1,ntyp)
+c      write (iout,*) 'ntortyp',ntortyp
+      do i=1,ntortyp
+       do j=1,ntortyp
+         read (itorp,*,end=113,err=113) nterm(i,j),nlor(i,j)
+          v0ij=0.0d0
+          si=-1.0d0
+         do k=1,nterm(i,j)
+           read (itorp,*,end=113,err=113) kk,v1(k,i,j),v2(k,i,j) 
+            v0ij=v0ij+si*v1(k,i,j)
+            si=-si
+          enddo
+         do k=1,nlor(i,j)
+            read (itorp,*,end=113,err=113) kk,vlor1(k,i,j),
+     &        vlor2(k,i,j),vlor3(k,i,j) 
+            v0ij=v0ij+vlor1(k,i,j)/(1+vlor3(k,i,j)**2)
+          enddo
+          v0(i,j)=v0ij
+        enddo
+      enddo
+      close (itorp)
+      if (lprint) then
+       write (iout,'(/a/)') 'Torsional constants:'
+       do i=1,ntortyp
+         do j=1,ntortyp
+            write (iout,*) 'ityp',i,' jtyp',j
+            write (iout,*) 'Fourier constants'
+            do k=1,nterm(i,j)
+             write (iout,'(2(1pe15.5))') v1(k,i,j),v2(k,i,j)
+            enddo
+            write (iout,*) 'Lorenz constants'
+            do k=1,nlor(i,j)
+             write (iout,'(3(1pe15.5))') 
+     &         vlor1(k,i,j),vlor2(k,i,j),vlor3(k,i,j)
+            enddo
+          enddo
+        enddo
+      endif
+C
+C 6/23/01 Read parameters for double torsionals
+C
+      do i=1,ntortyp
+        do j=1,ntortyp
+          do k=1,ntortyp
+            read (itordp,'(3a1)',end=114,err=114) t1,t2,t3
+            if (t1.ne.onelett(i) .or. t2.ne.onelett(j) 
+     &        .or. t3.ne.onelett(k)) then
+              write (iout,*) "Error in double torsional parameter file",
+     &         i,j,k,t1,t2,t3
+#ifdef MPI
+              call MPI_Finalize(Ierror)
+#endif
+               stop "Error in double torsional parameter file"
+            endif
+            read (itordp,*,end=114,err=114) ntermd_1(i,j,k),
+     &         ntermd_2(i,j,k)
+            read (itordp,*,end=114,err=114) (v1c(1,l,i,j,k),l=1,
+     &         ntermd_1(i,j,k))
+            read (itordp,*,end=114,err=114) (v1s(1,l,i,j,k),l=1,
+     &         ntermd_1(i,j,k))
+            read (itordp,*,end=114,err=114) (v1c(2,l,i,j,k),l=1,
+     &         ntermd_1(i,j,k))
+            read (itordp,*,end=114,err=114) (v1s(2,l,i,j,k),l=1,
+     &         ntermd_1(i,j,k))
+            read (itordp,*,end=114,err=114) ((v2c(l,m,i,j,k),
+     &         v2c(m,l,i,j,k),v2s(l,m,i,j,k),v2s(m,l,i,j,k),
+     &         m=1,l-1),l=1,ntermd_2(i,j,k))
+          enddo
+        enddo
+      enddo
+      if (lprint) then
+      write (iout,*) 
+      write (iout,*) 'Constants for double torsionals'
+      do i=1,ntortyp
+        do j=1,ntortyp 
+          do k=1,ntortyp
+            write (iout,*) 'ityp',i,' jtyp',j,' ktyp',k,
+     &        ' nsingle',ntermd_1(i,j,k),' ndouble',ntermd_2(i,j,k)
+            write (iout,*)
+            write (iout,*) 'Single angles:'
+            do l=1,ntermd_1(i,j,k)
+              write (iout,'(i5,2f10.5,5x,2f10.5)') l,
+     &           v1c(1,l,i,j,k),v1s(1,l,i,j,k),
+     &           v1c(2,l,i,j,k),v1s(2,l,i,j,k)
+            enddo
+            write (iout,*)
+            write (iout,*) 'Pairs of angles:'
+            write (iout,'(3x,20i10)') (l,l=1,ntermd_2(i,j,k))
+            do l=1,ntermd_2(i,j,k)
+              write (iout,'(i5,20f10.5)') 
+     &         l,(v2c(l,m,i,j,k),m=1,ntermd_2(i,j,k))
+            enddo
+            write (iout,*)
+            write (iout,'(3x,20i10)') (l,l=1,ntermd_2(i,j,k))
+            do l=1,ntermd_2(i,j,k)
+              write (iout,'(i5,20f10.5)') 
+     &         l,(v2s(l,m,i,j,k),m=1,ntermd_2(i,j,k))
+            enddo
+            write (iout,*)
+          enddo
+        enddo
+      enddo
+      endif
+#endif
+C Read of Side-chain backbone correlation parameters
+C Modified 11 May 2012 by Adasko
+CCC
+C
+      read (isccor,*,end=113,err=113) nsccortyp
+      read (isccor,*,end=113,err=113) (isccortyp(i),i=1,ntyp)
+c      write (iout,*) 'ntortyp',ntortyp
+      maxinter=3
+cc maxinter is maximum interaction sites
+      do l=1,maxinter    
+      do i=1,nsccortyp
+       do j=1,nsccortyp
+         read (isccor,*,end=113,err=113) nterm_sccor(i,j),nlor_sccor(i,j)
+          v0ijsccor=0.0d0
+          si=-1.0d0
+  
+         do k=1,nterm_sccor(i,j)
+           read (isccor,*,end=113,err=113) kk,v1sccor(k,l,i,j)
+     &    ,v2sccor(k,l,i,j) 
+            v0ijsccor=v0ijsccor+si*v1sccor(k,l,i,j)
+            si=-si
+          enddo
+         do k=1,nlor_sccor(i,j)
+            read (isccor,*,end=113,err=113) kk,vlor1sccor(k,i,j),
+     &        vlor2sccor(k,i,j),vlor3sccor(k,i,j) 
+            v0ijsccor=v0ijsccor+vlor1sccor(k,i,j)/
+     &(1+vlor3sccor(k,i,j)**2)
+          enddo
+          v0sccor(i,j)=v0ijsccor
+        enddo
+      enddo
+      enddo
+      close (isccor)
+      
+      if (lprint) then
+       write (iout,'(/a/)') 'Torsional constants:'
+       do i=1,nsccortyp
+         do j=1,nsccortyp
+            write (iout,*) 'ityp',i,' jtyp',j
+            write (iout,*) 'Fourier constants'
+            do k=1,nterm_sccor(i,j)
+      write (iout,'(2(1pe15.5))') v1sccor(k,l,i,j),v2sccor(k,l,i,j)
+            enddo
+            write (iout,*) 'Lorenz constants'
+            do k=1,nlor_sccor(i,j)
+             write (iout,'(3(1pe15.5))') 
+     &         vlor1sccor(k,i,j),vlor2sccor(k,i,j),vlor3sccor(k,i,j)
+            enddo
+          enddo
+        enddo
+      endif
+C
+C
+C 9/18/99 (AL) Read coefficients of the Fourier expansion of the local
+C         interaction energy of the Gly, Ala, and Pro prototypes.
+C
+      if (lprint) then
+        write (iout,*)
+        write (iout,*) "Coefficients of the cumulants"
+      endif
+      read (ifourier,*) nloctyp
+      do i=1,nloctyp
+        read (ifourier,*,end=115,err=115)
+        read (ifourier,*,end=115,err=115) (b(ii),ii=1,13)
+        if (lprint) then
+        write (iout,*) 'Type',i
+        write (iout,'(a,i2,a,f10.5)') ('b(',ii,')=',b(ii),ii=1,13)
+        endif
+        B1(1,i)  = b(3)
+        B1(2,i)  = b(5)
+c        b1(1,i)=0.0d0
+c        b1(2,i)=0.0d0
+        B1tilde(1,i) = b(3)
+        B1tilde(2,i) =-b(5) 
+c        b1tilde(1,i)=0.0d0
+c        b1tilde(2,i)=0.0d0
+        B2(1,i)  = b(2)
+        B2(2,i)  = b(4)
+c        b2(1,i)=0.0d0
+c        b2(2,i)=0.0d0
+        CC(1,1,i)= b(7)
+        CC(2,2,i)=-b(7)
+        CC(2,1,i)= b(9)
+        CC(1,2,i)= b(9)
+c        CC(1,1,i)=0.0d0
+c        CC(2,2,i)=0.0d0
+c        CC(2,1,i)=0.0d0
+c        CC(1,2,i)=0.0d0
+        Ctilde(1,1,i)=b(7)
+        Ctilde(1,2,i)=b(9)
+        Ctilde(2,1,i)=-b(9)
+        Ctilde(2,2,i)=b(7)
+c        Ctilde(1,1,i)=0.0d0
+c        Ctilde(1,2,i)=0.0d0
+c        Ctilde(2,1,i)=0.0d0
+c        Ctilde(2,2,i)=0.0d0
+        DD(1,1,i)= b(6)
+        DD(2,2,i)=-b(6)
+        DD(2,1,i)= b(8)
+        DD(1,2,i)= b(8)
+c        DD(1,1,i)=0.0d0
+c        DD(2,2,i)=0.0d0
+c        DD(2,1,i)=0.0d0
+c        DD(1,2,i)=0.0d0
+        Dtilde(1,1,i)=b(6)
+        Dtilde(1,2,i)=b(8)
+        Dtilde(2,1,i)=-b(8)
+        Dtilde(2,2,i)=b(6)
+c        Dtilde(1,1,i)=0.0d0
+c        Dtilde(1,2,i)=0.0d0
+c        Dtilde(2,1,i)=0.0d0
+c        Dtilde(2,2,i)=0.0d0
+        EE(1,1,i)= b(10)+b(11)
+        EE(2,2,i)=-b(10)+b(11)
+        EE(2,1,i)= b(12)-b(13)
+        EE(1,2,i)= b(12)+b(13)
+c        ee(1,1,i)=1.0d0
+c        ee(2,2,i)=1.0d0
+c        ee(2,1,i)=0.0d0
+c        ee(1,2,i)=0.0d0
+c        ee(2,1,i)=ee(1,2,i)
+      enddo
+      if (lprint) then
+      do i=1,nloctyp
+        write (iout,*) 'Type',i
+        write (iout,*) 'B1'
+        write(iout,*) B1(1,i),B1(2,i)
+        write (iout,*) 'B2'
+        write(iout,*) B2(1,i),B2(2,i)
+        write (iout,*) 'CC'
+        do j=1,2
+          write (iout,'(2f10.5)') CC(j,1,i),CC(j,2,i)
+        enddo
+        write(iout,*) 'DD'
+        do j=1,2
+          write (iout,'(2f10.5)') DD(j,1,i),DD(j,2,i)
+        enddo
+        write(iout,*) 'EE'
+        do j=1,2
+          write (iout,'(2f10.5)') EE(j,1,i),EE(j,2,i)
+        enddo
+      enddo
+      endif
+C 
+C Read electrostatic-interaction parameters
+C
+      if (lprint) then
+        write (iout,*)
+       write (iout,'(/a)') 'Electrostatic interaction constants:'
+       write (iout,'(1x,a,1x,a,10x,a,11x,a,11x,a,11x,a)') 
+     &            'IT','JT','APP','BPP','AEL6','AEL3'
+      endif
+      read (ielep,*,end=116,err=116) ((epp(i,j),j=1,2),i=1,2)
+      read (ielep,*,end=116,err=116) ((rpp(i,j),j=1,2),i=1,2)
+      read (ielep,*,end=116,err=116) ((elpp6(i,j),j=1,2),i=1,2)
+      read (ielep,*,end=116,err=116) ((elpp3(i,j),j=1,2),i=1,2)
+      close (ielep)
+      do i=1,2
+        do j=1,2
+        rri=rpp(i,j)**6
+        app (i,j)=epp(i,j)*rri*rri 
+        bpp (i,j)=-2.0D0*epp(i,j)*rri
+        ael6(i,j)=elpp6(i,j)*4.2D0**6
+        ael3(i,j)=elpp3(i,j)*4.2D0**3
+        if (lprint) write(iout,'(2i3,4(1pe15.4))')i,j,app(i,j),bpp(i,j),
+     &                    ael6(i,j),ael3(i,j)
+        enddo
+      enddo
+C
+C Read side-chain interaction parameters.
+C
+      read (isidep,*,end=117,err=117) ipot,expon
+      if (ipot.lt.1 .or. ipot.gt.5) then
+        write (iout,'(2a)') 'Error while reading SC interaction',
+     &               'potential file - unknown potential type.'
+#ifdef MPI
+        call MPI_Finalize(Ierror)
+#endif
+        stop
+      endif
+      expon2=expon/2
+      if(me.eq.king)
+     & write(iout,'(/3a,2i3)') 'Potential is ',potname(ipot),
+     & ', exponents are ',expon,2*expon 
+      goto (10,20,30,30,40) ipot
+C----------------------- LJ potential ---------------------------------
+   10 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp),
+     &   (sigma0(i),i=1,ntyp)
+      if (lprint) then
+       write (iout,'(/a/)') 'Parameters of the LJ potential:'
+       write (iout,'(a/)') 'The epsilon array:'
+       call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
+       write (iout,'(/a)') 'One-body parameters:'
+       write (iout,'(a,4x,a)') 'residue','sigma'
+       write (iout,'(a3,6x,f10.5)') (restyp(i),sigma0(i),i=1,ntyp)
+      endif
+      goto 50
+C----------------------- LJK potential --------------------------------
+   20 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp),
+     &  (sigma0(i),i=1,ntyp),(rr0(i),i=1,ntyp)
+      if (lprint) then
+       write (iout,'(/a/)') 'Parameters of the LJK potential:'
+       write (iout,'(a/)') 'The epsilon array:'
+       call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
+       write (iout,'(/a)') 'One-body parameters:'
+       write (iout,'(a,4x,2a)') 'residue','   sigma  ','    r0    '
+        write (iout,'(a3,6x,2f10.5)') (restyp(i),sigma0(i),rr0(i),
+     &        i=1,ntyp)
+      endif
+      goto 50
+C---------------------- GB or BP potential -----------------------------
+   30 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp),
+     &  (sigma0(i),i=1,ntyp),(sigii(i),i=1,ntyp),(chip(i),i=1,ntyp),
+     &  (alp(i),i=1,ntyp)
+C For the GB potential convert sigma'**2 into chi'
+      if (ipot.eq.4) then
+       do i=1,ntyp
+         chip(i)=(chip(i)-1.0D0)/(chip(i)+1.0D0)
+        enddo
+      endif
+      if (lprint) then
+       write (iout,'(/a/)') 'Parameters of the BP potential:'
+       write (iout,'(a/)') 'The epsilon array:'
+       call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
+       write (iout,'(/a)') 'One-body parameters:'
+       write (iout,'(a,4x,4a)') 'residue','   sigma  ','s||/s_|_^2',
+     &       '    chip  ','    alph  '
+       write (iout,'(a3,6x,4f10.5)') (restyp(i),sigma0(i),sigii(i),
+     &                     chip(i),alp(i),i=1,ntyp)
+      endif
+      goto 50
+C--------------------- GBV potential -----------------------------------
+   40 read (isidep,*,end=116,err=116)((eps(i,j),j=i,ntyp),i=1,ntyp),
+     &  (sigma0(i),i=1,ntyp),(rr0(i),i=1,ntyp),(sigii(i),i=1,ntyp),
+     &  (chip(i),i=1,ntyp),(alp(i),i=1,ntyp)
+      if (lprint) then
+       write (iout,'(/a/)') 'Parameters of the GBV potential:'
+       write (iout,'(a/)') 'The epsilon array:'
+       call printmat(ntyp,ntyp,ntyp,iout,restyp,eps)
+       write (iout,'(/a)') 'One-body parameters:'
+       write (iout,'(a,4x,5a)') 'residue','   sigma  ','    r0    ',
+     &      's||/s_|_^2','    chip  ','    alph  '
+       write (iout,'(a3,6x,5f10.5)') (restyp(i),sigma0(i),rr0(i),
+     &           sigii(i),chip(i),alp(i),i=1,ntyp)
+      endif
+   50 continue
+      close (isidep)
+C-----------------------------------------------------------------------
+C Calculate the "working" parameters of SC interactions.
+      do i=2,ntyp
+        do j=1,i-1
+         eps(i,j)=eps(j,i)
+        enddo
+      enddo
+      do i=1,ntyp
+        do j=i,ntyp
+          sigma(i,j)=dsqrt(sigma0(i)**2+sigma0(j)**2)
+          sigma(j,i)=sigma(i,j)
+          rs0(i,j)=dwa16*sigma(i,j)
+          rs0(j,i)=rs0(i,j)
+        enddo
+      enddo
+      if (lprint) write (iout,'(/a/10x,7a/72(1h-))') 
+     & 'Working parameters of the SC interactions:',
+     & '     a    ','     b    ','   augm   ','  sigma ','   r0   ',
+     & '  chi1   ','   chi2   ' 
+      do i=1,ntyp
+       do j=i,ntyp
+         epsij=eps(i,j)
+         if (ipot.eq.1 .or. ipot.eq.3 .or. ipot.eq.4) then
+           rrij=sigma(i,j)
+          else
+           rrij=rr0(i)+rr0(j)
+          endif
+         r0(i,j)=rrij
+         r0(j,i)=rrij
+         rrij=rrij**expon
+         epsij=eps(i,j)
+         sigeps=dsign(1.0D0,epsij)
+         epsij=dabs(epsij)
+         aa(i,j)=epsij*rrij*rrij
+         bb(i,j)=-sigeps*epsij*rrij
+         aa(j,i)=aa(i,j)
+         bb(j,i)=bb(i,j)
+         if (ipot.gt.2) then
+           sigt1sq=sigma0(i)**2
+           sigt2sq=sigma0(j)**2
+           sigii1=sigii(i)
+           sigii2=sigii(j)
+            ratsig1=sigt2sq/sigt1sq
+           ratsig2=1.0D0/ratsig1
+           chi(i,j)=(sigii1-1.0D0)/(sigii1+ratsig1)
+           if (j.gt.i) chi(j,i)=(sigii2-1.0D0)/(sigii2+ratsig2)
+            rsum_max=dsqrt(sigii1*sigt1sq+sigii2*sigt2sq)
+          else
+           rsum_max=sigma(i,j)
+          endif
+c         if (ipot.eq.1 .or. ipot.eq.3 .or. ipot.eq.4) then
+            sigmaii(i,j)=rsum_max
+            sigmaii(j,i)=rsum_max 
+c         else
+c           sigmaii(i,j)=r0(i,j)
+c           sigmaii(j,i)=r0(i,j)
+c         endif
+cd        write (iout,*) i,j,r0(i,j),sigma(i,j),rsum_max
+          if ((ipot.eq.2 .or. ipot.eq.5) .and. r0(i,j).gt.rsum_max) then
+            r_augm=sigma(i,j)*(rrij-sigma(i,j))/rrij
+            augm(i,j)=epsij*r_augm**(2*expon)
+c           augm(i,j)=0.5D0**(2*expon)*aa(i,j)
+           augm(j,i)=augm(i,j)
+          else
+           augm(i,j)=0.0D0
+           augm(j,i)=0.0D0
+          endif
+         if (lprint) then
+            write (iout,'(2(a3,2x),3(1pe10.3),5(0pf8.3))') 
+     &      restyp(i),restyp(j),aa(i,j),bb(i,j),augm(i,j),
+     &      sigma(i,j),r0(i,j),chi(i,j),chi(j,i)
+         endif
+        enddo
+      enddo
+#ifdef OLDSCP
+C
+C Define the SC-p interaction constants (hard-coded; old style)
+C
+      do i=1,20
+C "Soft" SC-p repulsion (causes helices to be too flat, but facilitates
+C helix formation)
+c       aad(i,1)=0.3D0*4.0D0**12
+C Following line for constants currently implemented
+C "Hard" SC-p repulsion (gives correct turn spacing in helices)
+        aad(i,1)=1.5D0*4.0D0**12
+c       aad(i,1)=0.17D0*5.6D0**12
+        aad(i,2)=aad(i,1)
+C "Soft" SC-p repulsion
+        bad(i,1)=0.0D0
+C Following line for constants currently implemented
+c       aad(i,1)=0.3D0*4.0D0**6
+C "Hard" SC-p repulsion
+        bad(i,1)=3.0D0*4.0D0**6
+c       bad(i,1)=-2.0D0*0.17D0*5.6D0**6
+        bad(i,2)=bad(i,1)
+c       aad(i,1)=0.0D0
+c       aad(i,2)=0.0D0
+c       bad(i,1)=1228.8D0
+c       bad(i,2)=1228.8D0
+      enddo
+#else
+C
+C 8/9/01 Read the SC-p interaction constants from file
+C
+      do i=1,ntyp
+        read (iscpp,*,end=118,err=118) (eps_scp(i,j),rscp(i,j),j=1,2)
+      enddo
+      do i=1,ntyp
+        aad(i,1)=dabs(eps_scp(i,1))*rscp(i,1)**12
+        aad(i,2)=dabs(eps_scp(i,2))*rscp(i,2)**12
+        bad(i,1)=-2*eps_scp(i,1)*rscp(i,1)**6
+        bad(i,2)=-2*eps_scp(i,2)*rscp(i,2)**6
+      enddo
+
+      if (lprint) then
+        write (iout,*) "Parameters of SC-p interactions:"
+        do i=1,20
+          write (iout,'(4f8.3,4e12.4)') eps_scp(i,1),rscp(i,1),
+     &     eps_scp(i,2),rscp(i,2),aad(i,1),bad(i,1),aad(i,2),bad(i,2)
+        enddo
+      endif
+#endif
+C
+C Define the constants of the disulfide bridge
+C
+      ebr=-5.50D0
+c
+c Old arbitrary potential - commented out.
+c
+c      dbr= 4.20D0
+c      fbr= 3.30D0
+c
+c Constants of the disulfide-bond potential determined based on the RHF/6-31G**
+c energy surface of diethyl disulfide.
+c A. Liwo and U. Kozlowska, 11/24/03
+c
+      D0CM = 3.78d0
+      AKCM = 15.1d0
+      AKTH = 11.0d0
+      AKCT = 12.0d0
+      V1SS =-1.08d0
+      V2SS = 7.61d0
+      V3SS = 13.7d0
+c      akcm=0.0d0
+c      akth=0.0d0
+c      akct=0.0d0
+c      v1ss=0.0d0
+c      v2ss=0.0d0
+c      v3ss=0.0d0
+      
+      if(me.eq.king) then
+      write (iout,'(/a)') "Disulfide bridge parameters:"
+      write (iout,'(a,f10.2)') 'S-S bridge energy: ',ebr
+      write (iout,'(2(a,f10.2))') 'd0cm:',d0cm,' akcm:',akcm
+      write (iout,'(2(a,f10.2))') 'akth:',akth,' akct:',akct
+      write (iout,'(3(a,f10.2))') 'v1ss:',v1ss,' v2ss:',v2ss,
+     &  ' v3ss:',v3ss
+      endif
+      return
+  111 write (iout,*) "Error reading bending energy parameters."
+      goto 999
+  112 write (iout,*) "Error reading rotamer energy parameters."
+      goto 999
+  113 write (iout,*) "Error reading torsional energy parameters."
+      goto 999
+  114 write (iout,*) "Error reading double torsional energy parameters."
+      goto 999
+  115 write (iout,*) 
+     &  "Error reading cumulant (multibody energy) parameters."
+      goto 999
+  116 write (iout,*) "Error reading electrostatic energy parameters."
+      goto 999
+  117 write (iout,*) "Error reading side chain interaction parameters."
+      goto 999
+  118 write (iout,*) "Error reading SCp interaction parameters."
+      goto 999
+  119 write (iout,*) "Error reading SCCOR parameters"
+  999 continue
+#ifdef MPI
+      call MPI_Finalize(Ierror)
+#endif
+      stop
+      return
+      end
+
+
+      subroutine getenv_loc(var, val)
+      character(*) var, val
+
+#ifdef WINIFL
+      character(2000) line
+      external ilen
+
+      open (196,file='env',status='old',readonly,shared)
+      iread=0
+c      write(*,*)'looking for ',var
+10    read(196,*,err=11,end=11)line
+      iread=index(line,var)
+c      write(*,*)iread,' ',var,' ',line
+      if (iread.eq.0) go to 10 
+c      write(*,*)'---> ',line
+11    continue
+      if(iread.eq.0) then
+c       write(*,*)'CHUJ'
+       val=''
+      else
+       iread=iread+ilen(var)+1
+       read (line(iread:),*,err=12,end=12) val
+c       write(*,*)'OK: ',var,' = ',val
+      endif
+      close(196)
+      return
+12    val=''
+      close(196)
+#elif (defined CRAY)
+      integer lennam,lenval,ierror
+c
+c        getenv using a POSIX call, useful on the T3D
+c        Sept 1996, comment out error check on advice of H. Pritchard
+c
+      lennam = len(var)
+      if(lennam.le.0) stop '--error calling getenv--'
+      call pxfgetenv(var,lennam,val,lenval,ierror)
+c-HP- if(ierror.ne.0) stop '--error returned by pxfgetenv--'
+#else
+      call getenv(var,val)
+#endif
+
+      return
+      end
diff --git a/source/unres/src_MD_DFA/pinorm.f b/source/unres/src_MD_DFA/pinorm.f
new file mode 100644 (file)
index 0000000..91392bf
--- /dev/null
@@ -0,0 +1,17 @@
+      double precision function pinorm(x)
+      implicit real*8 (a-h,o-z)
+c                                                                      
+c this function takes an angle (in radians) and puts it in the range of
+c -pi to +pi.                                                         
+c                                                                    
+      integer n                                                        
+      include 'COMMON.GEO'
+      n = x / dwapi
+      pinorm = x - n * dwapi
+      if ( pinorm .gt. pi ) then                                      
+         pinorm = pinorm - dwapi
+      else if ( pinorm .lt. - pi ) then                               
+         pinorm = pinorm + dwapi
+      end if                                                          
+      return                                                          
+      end                                                             
diff --git a/source/unres/src_MD_DFA/printmat.f b/source/unres/src_MD_DFA/printmat.f
new file mode 100644 (file)
index 0000000..be2b38f
--- /dev/null
@@ -0,0 +1,16 @@
+      subroutine printmat(ldim,m,n,iout,key,a)
+      character*3 key(n)
+      double precision a(ldim,n)
+      do 1 i=1,n,8
+      nlim=min0(i+7,n)
+      write (iout,1000) (key(k),k=i,nlim)
+      write (iout,1020)
+ 1000 format (/5x,8(6x,a3))
+ 1020 format (/80(1h-)/)
+      do 2 j=1,n
+      write (iout,1010) key(j),(a(j,k),k=i,nlim)
+    2 continue
+    1 continue
+ 1010 format (a3,2x,8(f9.4))
+      return
+      end
diff --git a/source/unres/src_MD_DFA/prng.f b/source/unres/src_MD_DFA/prng.f
new file mode 100644 (file)
index 0000000..73f6766
--- /dev/null
@@ -0,0 +1,525 @@
+      real*8 function prng_next(me)
+      implicit none
+      integer me
+c
+c Calling sequence:
+c      <new random number> = prng_next ( <ordinal of generator desired> )
+c      <vector of random #s> = vprng ( <ordinal>, <vector>, <length> )
+c
+c This code is based on a sequential algorithm provided by Mal Kalos.
+c This version uses a single 64-bit word to store the initial seeds
+c and additive constants.
+c A 64-bit floating point number is returned.
+c
+c The array "iparam" is full-word aligned, being padded by zeros to
+c let each generator be on a subpage boundary.
+c That is, rows 1 and 2 in a given column of the array are for real, 
+c rows 3-16 are bogus.
+c
+c July 12, 1993: double the number of sequences.  We should have been
+c                using two packets per seed, rather than four
+c October 31, 1993: merge the two arrays of seeds and constants,
+c                and switch to 64-bit arithmetic.
+c June 1994: port to RS6K.  Internal state is kept as 2 64-bit integers
+c The ishft function is defined only on 32-bit integers, so we will
+c shift numbers by dividing by 2**11 and then adding on 2**53-1.
+c
+c November 1994: ishift now works on 64-bit numbers (though it gives a
+c warning).  Thus we go back to using it.  John Zollweg also added the
+c vprng() routine to return vectors of real*8 random numbers.
+c
+      real*8 recip53
+      parameter ( recip53 = 2.0D0**(-53) )
+      integer*8 two
+      parameter ( two = 2**11)
+      integer*8 m,ishift
+c      parameter ( m = 34522712143931 )          ! 11**13
+c      parameter ( ishift = 9007199254740991 )   ! 2**53-1
+
+      integer nmax 
+      integer*8 iparam
+      parameter(nmax=1021)
+      common/ksrprng/iparam(2,0:nmax)
+
+      integer*8 next
+
+crc  g77 doesn't support integer*8 constants
+      m = dint(34522712143931.0d0)
+      ishift = dint(9007199254740991.0d0)
+
+c RS6K porting note: ishift now takes 64-bit integers , with a warning
+      if ( 0.le.me .and. me.le.nmax ) then
+         next = iparam(1,me)*m + iparam(2,me)
+         iparam(1,me) = next
+         prng_next = recip53 * ishft( next, -11 )
+      else
+         prng_next=-1.0D0
+      endif
+
+      end
+c
+c   vprng(me, rn, num)       Get a vector of random numbers
+c
+      subroutine vprng(me,rn,num)
+      real*8 recip53, rn(1)
+      parameter ( recip53 = 2.0D0**(-53) )
+      integer*8 m,iparam
+c      parameter ( m = 34522712143931 )          ! 11**13
+      integer nmax, num, me
+      parameter(nmax=1021)
+      common/ksrprng/iparam(2,0:nmax)
+
+      integer*8 next
+
+crc  g77 doesn't support integer*8 constants
+      m = dint(34522712143931.0d0)
+
+      if ( 0.le.me .and. me.le.nmax ) then
+         do 1 i=1,num
+            next = iparam(1,me)*m + iparam(2,me)
+            iparam(1,me) = next
+            rn(i) = recip53 * ishft( next, -11 )
+    1    continue
+      else
+         rn(1)=-1.0D0
+      endif
+      return
+      end
+
+c
+c   prng_chkpnt          Get the current state of a generator
+c
+c Calling sequence:
+c   logical prng_chkpnt, status
+c   status = prng_chkpnt (me, iseed)    where
+c
+c     me is the particular generator whose state is being gotten
+c     seed is an 4-element integer array where the "l"-values will be saved
+c
+      logical function prng_chkpnt (me, iseed)
+      implicit none
+      integer me 
+      integer*8 iseed
+
+      integer nmax 
+      integer*8 iparam
+      parameter(nmax=1021)
+      common/ksrprng/iparam(2,0:nmax)
+
+      if (me .lt. 0 .or. me .gt. nmax) then
+         prng_chkpnt=.false.
+      else
+        prng_chkpnt=.true.
+        iseed=iparam(1,me)
+      endif
+      end
+c
+c   prng_restart          Restart generator from a saved state
+c
+c Calling sequence:
+c   logical prng_restart, status
+c   status = prng_restart (me, iseed)    where
+c
+c     me is the particular generator being restarted
+c     iseed is a 8-byte integer containing the "l"-values
+c
+      logical function prng_restart (me, iseed)
+      implicit none
+      integer me
+      integer*8 iseed
+
+      integer nmax 
+      integer*8 iparam
+      parameter(nmax=1021)
+      common/ksrprng/iparam(2,0:nmax)
+
+      if (me .lt. 0 .or. me .gt. nmax) then
+         prng_restart=.false.
+        return
+      else
+        prng_restart=.true.
+        iparam(1,me)=iseed
+      endif
+      end
+
+      block data prngblk
+      parameter(nmax=1021)
+      integer*8 iparam
+      common/ksrprng/iparam(2,0:nmax)
+      data (iparam(1,i),iparam(2,i),i=   0,  29) /
+     + 11848219, 11848219, 11848237, 11848237, 11848241, 11848241,
+     + 11848247, 11848247, 11848253, 11848253, 11848271, 11848271,
+     + 11848297, 11848297, 11848313, 11848313, 11848339, 11848339,
+     + 11848351, 11848351, 11848357, 11848357, 11848363, 11848363,
+     + 11848367, 11848367, 11848373, 11848373, 11848379, 11848379,
+     + 11848393, 11848393, 11848433, 11848433, 11848451, 11848451,
+     + 11848469, 11848469, 11848477, 11848477, 11848489, 11848489,
+     + 11848493, 11848493, 11848513, 11848513, 11848523, 11848523,
+     + 11848531, 11848531, 11848537, 11848537, 11848553, 11848553,
+     + 11848589, 11848589, 11848591, 11848591, 11848601, 11848601 /
+      data (iparam(1,i),iparam(2,i),i=  30,  59) /
+     + 11848619, 11848619, 11848637, 11848637, 11848663, 11848663,
+     + 11848673, 11848673, 11848679, 11848679, 11848691, 11848691,
+     + 11848699, 11848699, 11848709, 11848709, 11848717, 11848717,
+     + 11848721, 11848721, 11848729, 11848729, 11848741, 11848741,
+     + 11848751, 11848751, 11848757, 11848757, 11848787, 11848787,
+     + 11848801, 11848801, 11848829, 11848829, 11848853, 11848853,
+     + 11848861, 11848861, 11848867, 11848867, 11848873, 11848873,
+     + 11848891, 11848891, 11848909, 11848909, 11848919, 11848919,
+     + 11848931, 11848931, 11848937, 11848937, 11848961, 11848961,
+     + 11848981, 11848981, 11849021, 11849021, 11849039, 11849039 /
+      data (iparam(1,i),iparam(2,i),i=  60,  89) /
+     + 11849053, 11849053, 11849059, 11849059, 11849069, 11849069,
+     + 11849077, 11849077, 11849087, 11849087, 11849093, 11849093,
+     + 11849107, 11849107, 11849111, 11849111, 11849129, 11849129,
+     + 11849137, 11849137, 11849177, 11849177, 11849183, 11849183,
+     + 11849203, 11849203, 11849231, 11849231, 11849237, 11849237,
+     + 11849239, 11849239, 11849249, 11849249, 11849251, 11849251,
+     + 11849269, 11849269, 11849273, 11849273, 11849291, 11849291,
+     + 11849297, 11849297, 11849309, 11849309, 11849339, 11849339,
+     + 11849359, 11849359, 11849363, 11849363, 11849399, 11849399,
+     + 11849401, 11849401, 11849413, 11849413, 11849417, 11849417 /
+      data (iparam(1,i),iparam(2,i),i=  90, 119) /
+     + 11849437, 11849437, 11849443, 11849443, 11849473, 11849473,
+     + 11849491, 11849491, 11849503, 11849503, 11849507, 11849507,
+     + 11849557, 11849557, 11849567, 11849567, 11849569, 11849569,
+     + 11849573, 11849573, 11849587, 11849587, 11849599, 11849599,
+     + 11849633, 11849633, 11849641, 11849641, 11849653, 11849653,
+     + 11849659, 11849659, 11849671, 11849671, 11849683, 11849683,
+     + 11849689, 11849689, 11849693, 11849693, 11849699, 11849699,
+     + 11849701, 11849701, 11849707, 11849707, 11849713, 11849713,
+     + 11849723, 11849723, 11849741, 11849741, 11849743, 11849743,
+     + 11849759, 11849759, 11849767, 11849767, 11849771, 11849771 /
+      data (iparam(1,i),iparam(2,i),i= 120, 149) /
+     + 11849791, 11849791, 11849801, 11849801, 11849809, 11849809,
+     + 11849813, 11849813, 11849869, 11849869, 11849881, 11849881,
+     + 11849891, 11849891, 11849909, 11849909, 11849923, 11849923,
+     + 11849933, 11849933, 11849947, 11849947, 11849987, 11849987,
+     + 11850001, 11850001, 11850011, 11850011, 11850019, 11850019,
+     + 11850023, 11850023, 11850031, 11850031, 11850049, 11850049,
+     + 11850061, 11850061, 11850073, 11850073, 11850077, 11850077,
+     + 11850103, 11850103, 11850109, 11850109, 11850121, 11850121,
+     + 11850127, 11850127, 11850133, 11850133, 11850149, 11850149,
+     + 11850161, 11850161, 11850169, 11850169, 11850191, 11850191 /
+      data (iparam(1,i),iparam(2,i),i= 150, 179) /
+     + 11850233, 11850233, 11850247, 11850247, 11850259, 11850259,
+     + 11850269, 11850269, 11850283, 11850283, 11850301, 11850301,
+     + 11850341, 11850341, 11850347, 11850347, 11850367, 11850367,
+     + 11850373, 11850373, 11850379, 11850379, 11850389, 11850389,
+     + 11850407, 11850407, 11850427, 11850427, 11850437, 11850437,
+     + 11850469, 11850469, 11850481, 11850481, 11850511, 11850511,
+     + 11850529, 11850529, 11850541, 11850541, 11850557, 11850557,
+     + 11850607, 11850607, 11850611, 11850611, 11850667, 11850667,
+     + 11850677, 11850677, 11850679, 11850679, 11850701, 11850701,
+     + 11850731, 11850731, 11850739, 11850739, 11850749, 11850749 /
+      data (iparam(1,i),iparam(2,i),i= 180, 209) /
+     + 11850791, 11850791, 11850803, 11850803, 11850829, 11850829,
+     + 11850833, 11850833, 11850859, 11850859, 11850877, 11850877,
+     + 11850899, 11850899, 11850907, 11850907, 11850913, 11850913,
+     + 11850919, 11850919, 11850931, 11850931, 11850941, 11850941,
+     + 11850947, 11850947, 11850953, 11850953, 11850961, 11850961,
+     + 11850983, 11850983, 11850991, 11850991, 11850997, 11850997,
+     + 11851031, 11851031, 11851033, 11851033, 11851051, 11851051,
+     + 11851061, 11851061, 11851067, 11851067, 11851093, 11851093,
+     + 11851109, 11851109, 11851123, 11851123, 11851127, 11851127,
+     + 11851139, 11851139, 11851157, 11851157, 11851163, 11851163 /
+      data (iparam(1,i),iparam(2,i),i= 210, 239) /
+     + 11851181, 11851181, 11851201, 11851201, 11851219, 11851219,
+     + 11851291, 11851291, 11851303, 11851303, 11851309, 11851309,
+     + 11851313, 11851313, 11851319, 11851319, 11851349, 11851349,
+     + 11851351, 11851351, 11851361, 11851361, 11851373, 11851373,
+     + 11851403, 11851403, 11851409, 11851409, 11851423, 11851423,
+     + 11851447, 11851447, 11851451, 11851451, 11851481, 11851481,
+     + 11851493, 11851493, 11851519, 11851519, 11851523, 11851523,
+     + 11851529, 11851529, 11851547, 11851547, 11851549, 11851549,
+     + 11851559, 11851559, 11851577, 11851577, 11851589, 11851589,
+     + 11851591, 11851591, 11851597, 11851597, 11851603, 11851603 /
+      data (iparam(1,i),iparam(2,i),i= 240, 269) /
+     + 11851607, 11851607, 11851613, 11851613, 11851621, 11851621,
+     + 11851627, 11851627, 11851639, 11851639, 11851673, 11851673,
+     + 11851681, 11851681, 11851727, 11851727, 11851753, 11851753,
+     + 11851759, 11851759, 11851787, 11851787, 11851793, 11851793,
+     + 11851799, 11851799, 11851813, 11851813, 11851841, 11851841,
+     + 11851859, 11851859, 11851867, 11851867, 11851891, 11851891,
+     + 11851909, 11851909, 11851919, 11851919, 11851927, 11851927,
+     + 11851933, 11851933, 11851949, 11851949, 11851967, 11851967,
+     + 11851997, 11851997, 11852017, 11852017, 11852051, 11852051,
+     + 11852053, 11852053, 11852059, 11852059, 11852083, 11852083 /
+      data (iparam(1,i),iparam(2,i),i= 270, 299) /
+     + 11852089, 11852089, 11852129, 11852129, 11852147, 11852147,
+     + 11852149, 11852149, 11852161, 11852161, 11852171, 11852171,
+     + 11852177, 11852177, 11852209, 11852209, 11852221, 11852221,
+     + 11852237, 11852237, 11852251, 11852251, 11852263, 11852263,
+     + 11852273, 11852273, 11852279, 11852279, 11852287, 11852287,
+     + 11852293, 11852293, 11852297, 11852297, 11852303, 11852303,
+     + 11852311, 11852311, 11852327, 11852327, 11852339, 11852339,
+     + 11852341, 11852341, 11852359, 11852359, 11852369, 11852369,
+     + 11852437, 11852437, 11852453, 11852453, 11852459, 11852459,
+     + 11852473, 11852473, 11852513, 11852513, 11852531, 11852531 /
+      data (iparam(1,i),iparam(2,i),i= 300, 329) /
+     + 11852537, 11852537, 11852539, 11852539, 11852557, 11852557,
+     + 11852573, 11852573, 11852579, 11852579, 11852591, 11852591,
+     + 11852609, 11852609, 11852611, 11852611, 11852623, 11852623,
+     + 11852641, 11852641, 11852647, 11852647, 11852657, 11852657,
+     + 11852663, 11852663, 11852717, 11852717, 11852719, 11852719,
+     + 11852741, 11852741, 11852759, 11852759, 11852767, 11852767,
+     + 11852773, 11852773, 11852803, 11852803, 11852807, 11852807,
+     + 11852809, 11852809, 11852831, 11852831, 11852833, 11852833,
+     + 11852837, 11852837, 11852857, 11852857, 11852873, 11852873,
+     + 11852879, 11852879, 11852891, 11852891, 11852917, 11852917 /
+      data (iparam(1,i),iparam(2,i),i= 330, 359) /
+     + 11852921, 11852921, 11852957, 11852957, 11852959, 11852959,
+     + 11852969, 11852969, 11852983, 11852983, 11852989, 11852989,
+     + 11853001, 11853001, 11853013, 11853013, 11853019, 11853019,
+     + 11853031, 11853031, 11853089, 11853089, 11853133, 11853133,
+     + 11853157, 11853157, 11853161, 11853161, 11853181, 11853181,
+     + 11853203, 11853203, 11853217, 11853217, 11853221, 11853221,
+     + 11853227, 11853227, 11853241, 11853241, 11853307, 11853307,
+     + 11853319, 11853319, 11853323, 11853323, 11853329, 11853329,
+     + 11853367, 11853367, 11853383, 11853383, 11853419, 11853419,
+     + 11853421, 11853421, 11853427, 11853427, 11853449, 11853449 /
+      data (iparam(1,i),iparam(2,i),i= 360, 389) /
+     + 11853451, 11853451, 11853463, 11853463, 11853529, 11853529,
+     + 11853557, 11853557, 11853571, 11853571, 11853601, 11853601,
+     + 11853613, 11853613, 11853617, 11853617, 11853629, 11853629,
+     + 11853649, 11853649, 11853659, 11853659, 11853679, 11853679,
+     + 11853689, 11853689, 11853719, 11853719, 11853731, 11853731,
+     + 11853757, 11853757, 11853761, 11853761, 11853773, 11853773,
+     + 11853791, 11853791, 11853817, 11853817, 11853839, 11853839,
+     + 11853847, 11853847, 11853857, 11853857, 11853869, 11853869,
+     + 11853883, 11853883, 11853887, 11853887, 11853889, 11853889,
+     + 11853893, 11853893, 11853899, 11853899, 11853911, 11853911 /
+      data (iparam(1,i),iparam(2,i),i= 390, 419) /
+     + 11853931, 11853931, 11853943, 11853943, 11853979, 11853979,
+     + 11853991, 11853991, 11854001, 11854001, 11854009, 11854009,
+     + 11854019, 11854019, 11854057, 11854057, 11854061, 11854061,
+     + 11854147, 11854147, 11854159, 11854159, 11854163, 11854163,
+     + 11854169, 11854169, 11854211, 11854211, 11854247, 11854247,
+     + 11854261, 11854261, 11854267, 11854267, 11854279, 11854279,
+     + 11854303, 11854303, 11854327, 11854327, 11854331, 11854331,
+     + 11854333, 11854333, 11854363, 11854363, 11854379, 11854379,
+     + 11854399, 11854399, 11854411, 11854411, 11854429, 11854429,
+     + 11854433, 11854433, 11854439, 11854439, 11854441, 11854441 /
+      data (iparam(1,i),iparam(2,i),i= 420, 449) /
+     + 11854463, 11854463, 11854477, 11854477, 11854489, 11854489,
+     + 11854517, 11854517, 11854519, 11854519, 11854523, 11854523,
+     + 11854529, 11854529, 11854567, 11854567, 11854571, 11854571,
+     + 11854573, 11854573, 11854603, 11854603, 11854607, 11854607,
+     + 11854681, 11854681, 11854691, 11854691, 11854709, 11854709,
+     + 11854723, 11854723, 11854757, 11854757, 11854783, 11854783,
+     + 11854793, 11854793, 11854813, 11854813, 11854847, 11854847,
+     + 11854853, 11854853, 11854873, 11854873, 11854877, 11854877,
+     + 11854883, 11854883, 11854891, 11854891, 11854897, 11854897,
+     + 11854901, 11854901, 11854919, 11854919, 11854937, 11854937 /
+      data (iparam(1,i),iparam(2,i),i= 450, 479) /
+     + 11854961, 11854961, 11854963, 11854963, 11854979, 11854979,
+     + 11855003, 11855003, 11855017, 11855017, 11855023, 11855023,
+     + 11855029, 11855029, 11855033, 11855033, 11855111, 11855111,
+     + 11855141, 11855141, 11855147, 11855147, 11855149, 11855149,
+     + 11855159, 11855159, 11855177, 11855177, 11855203, 11855203,
+     + 11855213, 11855213, 11855219, 11855219, 11855231, 11855231,
+     + 11855267, 11855267, 11855269, 11855269, 11855303, 11855303,
+     + 11855309, 11855309, 11855321, 11855321, 11855329, 11855329,
+     + 11855339, 11855339, 11855351, 11855351, 11855353, 11855353,
+     + 11855357, 11855357, 11855359, 11855359, 11855381, 11855381 /
+      data (iparam(1,i),iparam(2,i),i= 480, 509) /
+     + 11855383, 11855383, 11855387, 11855387, 11855399, 11855399,
+     + 11855407, 11855407, 11855413, 11855413, 11855489, 11855489,
+     + 11855491, 11855491, 11855507, 11855507, 11855521, 11855521,
+     + 11855531, 11855531, 11855549, 11855549, 11855551, 11855551,
+     + 11855567, 11855567, 11855581, 11855581, 11855587, 11855587,
+     + 11855593, 11855593, 11855633, 11855633, 11855653, 11855653,
+     + 11855663, 11855663, 11855687, 11855687, 11855689, 11855689,
+     + 11855699, 11855699, 11855713, 11855713, 11855731, 11855731,
+     + 11855737, 11855737, 11855743, 11855743, 11855747, 11855747,
+     + 11855759, 11855759, 11855773, 11855773, 11855801, 11855801 /
+      data (iparam(1,i),iparam(2,i),i= 510, 539) /
+     + 11855807, 11855807, 11855813, 11855813, 11855827, 11855827,
+     + 11855839, 11855839, 11855869, 11855869, 11855881, 11855881,
+     + 11855903, 11855903, 11855911, 11855911, 11855933, 11855933,
+     + 11855959, 11855959, 11855989, 11855989, 11855993, 11855993,
+     + 11855999, 11855999, 11856001, 11856001, 11856023, 11856023,
+     + 11856049, 11856049, 11856071, 11856071, 11856101, 11856101,
+     + 11856107, 11856107, 11856113, 11856113, 11856139, 11856139,
+     + 11856151, 11856151, 11856161, 11856161, 11856179, 11856179,
+     + 11856193, 11856193, 11856199, 11856199, 11856223, 11856223,
+     + 11856239, 11856239, 11856263, 11856263, 11856269, 11856269 /
+      data (iparam(1,i),iparam(2,i),i= 540, 569) /
+     + 11856281, 11856281, 11856287, 11856287, 11856307, 11856307,
+     + 11856311, 11856311, 11856329, 11856329, 11856343, 11856343,
+     + 11856359, 11856359, 11856371, 11856371, 11856373, 11856373,
+     + 11856409, 11856409, 11856419, 11856419, 11856461, 11856461,
+     + 11856469, 11856469, 11856473, 11856473, 11856479, 11856479,
+     + 11856511, 11856511, 11856517, 11856517, 11856541, 11856541,
+     + 11856547, 11856547, 11856553, 11856553, 11856583, 11856583,
+     + 11856629, 11856629, 11856641, 11856641, 11856653, 11856653,
+     + 11856659, 11856659, 11856673, 11856673, 11856697, 11856697,
+     + 11856709, 11856709, 11856727, 11856727, 11856731, 11856731 /
+      data (iparam(1,i),iparam(2,i),i= 570, 599) /
+     + 11856763, 11856763, 11856809, 11856809, 11856811, 11856811,
+     + 11856821, 11856821, 11856841, 11856841, 11856857, 11856857,
+     + 11856877, 11856877, 11856883, 11856883, 11856899, 11856899,
+     + 11856919, 11856919, 11856947, 11856947, 11856953, 11856953,
+     + 11856979, 11856979, 11857003, 11857003, 11857033, 11857033,
+     + 11857037, 11857037, 11857039, 11857039, 11857049, 11857049,
+     + 11857061, 11857061, 11857067, 11857067, 11857073, 11857073,
+     + 11857081, 11857081, 11857091, 11857091, 11857093, 11857093,
+     + 11857099, 11857099, 11857123, 11857123, 11857127, 11857127,
+     + 11857147, 11857147, 11857151, 11857151, 11857193, 11857193 /
+      data (iparam(1,i),iparam(2,i),i= 600, 629) /
+     + 11857217, 11857217, 11857229, 11857229, 11857243, 11857243,
+     + 11857249, 11857249, 11857267, 11857267, 11857277, 11857277,
+     + 11857291, 11857291, 11857303, 11857303, 11857309, 11857309,
+     + 11857327, 11857327, 11857331, 11857331, 11857333, 11857333,
+     + 11857361, 11857361, 11857367, 11857367, 11857369, 11857369,
+     + 11857393, 11857393, 11857399, 11857399, 11857409, 11857409,
+     + 11857421, 11857421, 11857423, 11857423, 11857451, 11857451,
+     + 11857453, 11857453, 11857457, 11857457, 11857477, 11857477,
+     + 11857481, 11857481, 11857493, 11857493, 11857499, 11857499,
+     + 11857519, 11857519, 11857523, 11857523, 11857529, 11857529 /
+      data (iparam(1,i),iparam(2,i),i= 630, 659) /
+     + 11857543, 11857543, 11857561, 11857561, 11857589, 11857589,
+     + 11857591, 11857591, 11857613, 11857613, 11857621, 11857621,
+     + 11857661, 11857661, 11857667, 11857667, 11857693, 11857693,
+     + 11857697, 11857697, 11857709, 11857709, 11857711, 11857711,
+     + 11857751, 11857751, 11857753, 11857753, 11857759, 11857759,
+     + 11857763, 11857763, 11857777, 11857777, 11857787, 11857787,
+     + 11857793, 11857793, 11857801, 11857801, 11857817, 11857817,
+     + 11857819, 11857819, 11857831, 11857831, 11857837, 11857837,
+     + 11857873, 11857873, 11857877, 11857877, 11857883, 11857883,
+     + 11857889, 11857889, 11857907, 11857907, 11857913, 11857913 /
+      data (iparam(1,i),iparam(2,i),i= 660, 689) /
+     + 11857931, 11857931, 11857969, 11857969, 11857991, 11857991,
+     + 11857999, 11857999, 11858009, 11858009, 11858017, 11858017,
+     + 11858023, 11858023, 11858029, 11858029, 11858039, 11858039,
+     + 11858051, 11858051, 11858057, 11858057, 11858059, 11858059,
+     + 11858101, 11858101, 11858111, 11858111, 11858131, 11858131,
+     + 11858149, 11858149, 11858159, 11858159, 11858177, 11858177,
+     + 11858191, 11858191, 11858201, 11858201, 11858227, 11858227,
+     + 11858243, 11858243, 11858267, 11858267, 11858269, 11858269,
+     + 11858279, 11858279, 11858281, 11858281, 11858291, 11858291,
+     + 11858311, 11858311, 11858323, 11858323, 11858359, 11858359 /
+      data (iparam(1,i),iparam(2,i),i= 690, 719) /
+     + 11858377, 11858377, 11858381, 11858381, 11858387, 11858387,
+     + 11858423, 11858423, 11858443, 11858443, 11858447, 11858447,
+     + 11858479, 11858479, 11858533, 11858533, 11858543, 11858543,
+     + 11858551, 11858551, 11858557, 11858557, 11858569, 11858569,
+     + 11858573, 11858573, 11858579, 11858579, 11858597, 11858597,
+     + 11858599, 11858599, 11858629, 11858629, 11858657, 11858657,
+     + 11858659, 11858659, 11858683, 11858683, 11858701, 11858701,
+     + 11858719, 11858719, 11858723, 11858723, 11858729, 11858729,
+     + 11858747, 11858747, 11858779, 11858779, 11858783, 11858783,
+     + 11858801, 11858801, 11858807, 11858807, 11858813, 11858813 /
+      data (iparam(1,i),iparam(2,i),i= 720, 749) /
+     + 11858839, 11858839, 11858851, 11858851, 11858893, 11858893,
+     + 11858897, 11858897, 11858921, 11858921, 11858947, 11858947,
+     + 11858953, 11858953, 11858969, 11858969, 11858971, 11858971,
+     + 11858989, 11858989, 11859017, 11859017, 11859031, 11859031,
+     + 11859049, 11859049, 11859061, 11859061, 11859073, 11859073,
+     + 11859077, 11859077, 11859079, 11859079, 11859083, 11859083,
+     + 11859101, 11859101, 11859109, 11859109, 11859137, 11859137,
+     + 11859139, 11859139, 11859151, 11859151, 11859157, 11859157,
+     + 11859163, 11859163, 11859167, 11859167, 11859179, 11859179,
+     + 11859187, 11859187, 11859229, 11859229, 11859233, 11859233 /
+      data (iparam(1,i),iparam(2,i),i= 750, 779) /
+     + 11859241, 11859241, 11859247, 11859247, 11859269, 11859269,
+     + 11859293, 11859293, 11859307, 11859307, 11859311, 11859311,
+     + 11859349, 11859349, 11859359, 11859359, 11859371, 11859371,
+     + 11859377, 11859377, 11859383, 11859383, 11859427, 11859427,
+     + 11859433, 11859433, 11859451, 11859451, 11859457, 11859457,
+     + 11859461, 11859461, 11859473, 11859473, 11859481, 11859481,
+     + 11859487, 11859487, 11859493, 11859493, 11859503, 11859503,
+     + 11859509, 11859509, 11859539, 11859539, 11859541, 11859541,
+     + 11859563, 11859563, 11859569, 11859569, 11859571, 11859571,
+     + 11859583, 11859583, 11859599, 11859599, 11859611, 11859611 /
+      data (iparam(1,i),iparam(2,i),i= 780, 809) /
+     + 11859643, 11859643, 11859707, 11859707, 11859713, 11859713,
+     + 11859719, 11859719, 11859739, 11859739, 11859751, 11859751,
+     + 11859791, 11859791, 11859817, 11859817, 11859821, 11859821,
+     + 11859833, 11859833, 11859847, 11859847, 11859853, 11859853,
+     + 11859877, 11859877, 11859889, 11859889, 11859893, 11859893,
+     + 11859901, 11859901, 11859907, 11859907, 11859917, 11859917,
+     + 11859923, 11859923, 11859929, 11859929, 11859961, 11859961,
+     + 11859979, 11859979, 11859989, 11859989, 11859997, 11859997,
+     + 11860021, 11860021, 11860031, 11860031, 11860039, 11860039,
+     + 11860049, 11860049, 11860081, 11860081, 11860087, 11860087 /
+      data (iparam(1,i),iparam(2,i),i= 810, 839) /
+     + 11860097, 11860097, 11860103, 11860103, 11860109, 11860109,
+     + 11860117, 11860117, 11860133, 11860133, 11860151, 11860151,
+     + 11860171, 11860171, 11860207, 11860207, 11860223, 11860223,
+     + 11860231, 11860231, 11860243, 11860243, 11860267, 11860267,
+     + 11860301, 11860301, 11860307, 11860307, 11860327, 11860327,
+     + 11860379, 11860379, 11860397, 11860397, 11860411, 11860411,
+     + 11860469, 11860469, 11860477, 11860477, 11860483, 11860483,
+     + 11860487, 11860487, 11860489, 11860489, 11860493, 11860493,
+     + 11860517, 11860517, 11860547, 11860547, 11860567, 11860567,
+     + 11860573, 11860573, 11860613, 11860613, 11860619, 11860619 /
+      data (iparam(1,i),iparam(2,i),i= 840, 869) /
+     + 11860627, 11860627, 11860637, 11860637, 11860643, 11860643,
+     + 11860649, 11860649, 11860661, 11860661, 11860669, 11860669,
+     + 11860687, 11860687, 11860691, 11860691, 11860697, 11860697,
+     + 11860699, 11860699, 11860703, 11860703, 11860727, 11860727,
+     + 11860741, 11860741, 11860753, 11860753, 11860777, 11860777,
+     + 11860787, 11860787, 11860789, 11860789, 11860811, 11860811,
+     + 11860837, 11860837, 11860859, 11860859, 11860867, 11860867,
+     + 11860889, 11860889, 11860897, 11860897, 11860963, 11860963,
+     + 11860969, 11860969, 11860973, 11860973, 11860993, 11860993,
+     + 11861011, 11861011, 11861033, 11861033, 11861071, 11861071 /
+      data (iparam(1,i),iparam(2,i),i= 870, 899) /
+     + 11861081, 11861081, 11861089, 11861089, 11861093, 11861093,
+     + 11861099, 11861099, 11861107, 11861107, 11861131, 11861131,
+     + 11861141, 11861141, 11861159, 11861159, 11861167, 11861167,
+     + 11861191, 11861191, 11861197, 11861197, 11861207, 11861207,
+     + 11861219, 11861219, 11861221, 11861221, 11861231, 11861231,
+     + 11861237, 11861237, 11861273, 11861273, 11861293, 11861293,
+     + 11861299, 11861299, 11861303, 11861303, 11861327, 11861327,
+     + 11861351, 11861351, 11861357, 11861357, 11861363, 11861363,
+     + 11861371, 11861371, 11861401, 11861401, 11861407, 11861407,
+     + 11861411, 11861411, 11861413, 11861413, 11861429, 11861429 /
+      data (iparam(1,i),iparam(2,i),i= 900, 929) /
+     + 11861441, 11861441, 11861467, 11861467, 11861527, 11861527,
+     + 11861539, 11861539, 11861543, 11861543, 11861557, 11861557,
+     + 11861569, 11861569, 11861573, 11861573, 11861579, 11861579,
+     + 11861581, 11861581, 11861599, 11861599, 11861611, 11861611,
+     + 11861617, 11861617, 11861627, 11861627, 11861639, 11861639,
+     + 11861651, 11861651, 11861659, 11861659, 11861671, 11861671,
+     + 11861683, 11861683, 11861687, 11861687, 11861693, 11861693,
+     + 11861701, 11861701, 11861711, 11861711, 11861713, 11861713,
+     + 11861749, 11861749, 11861791, 11861791, 11861803, 11861803,
+     + 11861819, 11861819, 11861827, 11861827, 11861849, 11861849 /
+      data (iparam(1,i),iparam(2,i),i= 930, 959) /
+     + 11861873, 11861873, 11861879, 11861879, 11861887, 11861887,
+     + 11861911, 11861911, 11861917, 11861917, 11861921, 11861921,
+     + 11861923, 11861923, 11861953, 11861953, 11861959, 11861959,
+     + 11861987, 11861987, 11862007, 11862007, 11862013, 11862013,
+     + 11862029, 11862029, 11862031, 11862031, 11862049, 11862049,
+     + 11862077, 11862077, 11862083, 11862083, 11862157, 11862157,
+     + 11862167, 11862167, 11862199, 11862199, 11862203, 11862203,
+     + 11862217, 11862217, 11862223, 11862223, 11862229, 11862229,
+     + 11862233, 11862233, 11862239, 11862239, 11862241, 11862241,
+     + 11862259, 11862259, 11862269, 11862269, 11862271, 11862271 /
+      data (iparam(1,i),iparam(2,i),i= 960, 989) /
+     + 11862293, 11862293, 11862307, 11862307, 11862313, 11862313,
+     + 11862317, 11862317, 11862343, 11862343, 11862353, 11862353,
+     + 11862373, 11862373, 11862391, 11862391, 11862439, 11862439,
+     + 11862469, 11862469, 11862493, 11862493, 11862527, 11862527,
+     + 11862547, 11862547, 11862563, 11862563, 11862569, 11862569,
+     + 11862577, 11862577, 11862581, 11862581, 11862611, 11862611,
+     + 11862623, 11862623, 11862661, 11862661, 11862673, 11862673,
+     + 11862679, 11862679, 11862701, 11862701, 11862703, 11862703,
+     + 11862713, 11862713, 11862761, 11862761, 11862791, 11862791,
+     + 11862803, 11862803, 11862839, 11862839, 11862841, 11862841 /
+      data (iparam(1,i),iparam(2,i),i= 990,1019) /
+     + 11862857, 11862857, 11862869, 11862869, 11862881, 11862881,
+     + 11862911, 11862911, 11862919, 11862919, 11862959, 11862959,
+     + 11862979, 11862979, 11862989, 11862989, 11862997, 11862997,
+     + 11863021, 11863021, 11863031, 11863031, 11863037, 11863037,
+     + 11863039, 11863039, 11863057, 11863057, 11863067, 11863067,
+     + 11863073, 11863073, 11863099, 11863099, 11863109, 11863109,
+     + 11863121, 11863121, 11863123, 11863123, 11863133, 11863133,
+     + 11863151, 11863151, 11863153, 11863153, 11863171, 11863171,
+     + 11863183, 11863183, 11863207, 11863207, 11863213, 11863213,
+     + 11863237, 11863237, 11863249, 11863249, 11863253, 11863253 /
+      data (iparam(1,i),iparam(2,i),i=1020,1021) /
+     + 11863259, 11863259, 11863279, 11863279 /
+      end
diff --git a/source/unres/src_MD_DFA/prng_32.F b/source/unres/src_MD_DFA/prng_32.F
new file mode 100644 (file)
index 0000000..9448f31
--- /dev/null
@@ -0,0 +1,1077 @@
+#if defined(AIX) || defined(AMD64)
+      real*8 function prng_next(mel)
+      implicit none
+      integer me,mel
+c
+c Calling sequence:
+c      <new random number> = prng_next ( <ordinal of generator desired> )
+c      <vector of random #s> = vprng ( <ordinal>, <vector>, <length> )
+c
+c This code is based on a sequential algorithm provided by Mal Kalos.
+c This version uses a single 64-bit word to store the initial seeds
+c and additive constants.
+c A 64-bit floating point number is returned.
+c
+c The array "iparam" is full-word aligned, being padded by zeros to
+c let each generator be on a subpage boundary.
+c That is, rows 1 and 2 in a given column of the array are for real, 
+c rows 3-16 are bogus.
+c
+c July 12, 1993: double the number of sequences.  We should have been
+c                using two packets per seed, rather than four
+c October 31, 1993: merge the two arrays of seeds and constants,
+c                and switch to 64-bit arithmetic.
+c June 1994: port to RS6K.  Internal state is kept as 2 64-bit integers
+c The ishft function is defined only on 32-bit integers, so we will
+c shift numbers by dividing by 2**11 and then adding on 2**53-1.
+c
+c November 1994: ishift now works on 64-bit numbers (though it gives a
+c warning).  Thus we go back to using it.  John Zollweg also added the
+c vprng() routine to return vectors of real*8 random numbers.
+c
+      real*8 recip53
+      parameter ( recip53 = 2.0D0**(-53) )
+      integer*8 two
+      parameter ( two = 2**11)
+      integer*8 m,ishift
+c      parameter ( m = 34522712143931 )          ! 11**13
+c      parameter ( ishift = 9007199254740991 )   ! 2**53-1
+
+      integer nmax 
+      integer*8 iparam
+      parameter(nmax=1021)
+      common/ksrprng/iparam(2,0:nmax)
+
+      integer*8 next
+
+crc  g77 doesn't support integer*8 constants
+      m = dint(34522712143931.0d0)
+      ishift = dint(9007199254740991.0d0)
+      if(mel.gt.nmax) then 
+         me=mod(mel,nmax)
+      else
+         me=mel
+      endif
+c RS6K porting note: ishift now takes 64-bit integers , with a warning
+      if ( 0.le.me .and. me.le.nmax ) then
+         next = iparam(1,me)*m + iparam(2,me)
+         iparam(1,me) = next
+         prng_next = recip53 * ishft( next, -11 )
+      else
+         prng_next=-1.0D0
+      endif
+
+      end
+c
+c   vprng(me, rn, num)       Get a vector of random numbers
+c
+      subroutine vprng(me,rn,num)
+      real*8 recip53, rn(1)
+      parameter ( recip53 = 2.0D0**(-53) )
+      integer*8 m,iparam
+c      parameter ( m = 34522712143931 )          ! 11**13
+      integer nmax, num, me
+      parameter(nmax=1021)
+      common/ksrprng/iparam(2,0:nmax)
+
+      integer*8 next
+
+crc  g77 doesn't support integer*8 constants
+      m = dint(34522712143931.0d0)
+
+      if ( 0.le.me .and. me.le.nmax ) then
+         do 1 i=1,num
+            next = iparam(1,me)*m + iparam(2,me)
+            iparam(1,me) = next
+            rn(i) = recip53 * ishft( next, -11 )
+    1    continue
+      else
+         rn(1)=-1.0D0
+      endif
+      return
+      end
+
+c
+c   prng_chkpnt          Get the current state of a generator
+c
+c Calling sequence:
+c   logical prng_chkpnt, status
+c   status = prng_chkpnt (me, iseed)    where
+c
+c     me is the particular generator whose state is being gotten
+c     seed is an 4-element integer array where the "l"-values will be saved
+c
+      logical function prng_chkpnt (me, iseed)
+      implicit none
+      integer me 
+      integer*8 iseed
+
+      integer nmax 
+      integer*8 iparam
+      parameter(nmax=1021)
+      common/ksrprng/iparam(2,0:nmax)
+
+      if (me .lt. 0 .or. me .gt. nmax) then
+         prng_chkpnt=.false.
+      else
+        prng_chkpnt=.true.
+        iseed=iparam(1,me)
+      endif
+      end
+c
+c   prng_restart          Restart generator from a saved state
+c
+c Calling sequence:
+c   logical prng_restart, status
+c   status = prng_restart (me, iseed)    where
+c
+c     me is the particular generator being restarted
+c     iseed is a 8-byte integer containing the "l"-values
+c
+      logical function prng_restart (mel, iseed)
+      implicit none
+      integer me,mel
+      integer*8 iseed
+
+      integer nmax 
+      integer*8 iparam
+      parameter(nmax=1021)
+      common/ksrprng/iparam(2,0:nmax)
+      
+      if(mel.gt.nmax) then
+         me=mod(mel,nmax)
+      else
+         me=mel
+      endif
+      if (me .lt. 0 .or. me .gt. nmax) then
+         prng_restart=.false.
+        return
+      else
+        prng_restart=.true.
+        iparam(1,me)=iseed
+      endif
+      end
+
+      block data prngblk
+      parameter(nmax=1021)
+      integer*8 iparam
+      common/ksrprng/iparam(2,0:nmax)
+      data (iparam(1,i),iparam(2,i),i=   0,  29) /
+     + 11848219, 11848219, 11848237, 11848237, 11848241, 11848241,
+     + 11848247, 11848247, 11848253, 11848253, 11848271, 11848271,
+     + 11848297, 11848297, 11848313, 11848313, 11848339, 11848339,
+     + 11848351, 11848351, 11848357, 11848357, 11848363, 11848363,
+     + 11848367, 11848367, 11848373, 11848373, 11848379, 11848379,
+     + 11848393, 11848393, 11848433, 11848433, 11848451, 11848451,
+     + 11848469, 11848469, 11848477, 11848477, 11848489, 11848489,
+     + 11848493, 11848493, 11848513, 11848513, 11848523, 11848523,
+     + 11848531, 11848531, 11848537, 11848537, 11848553, 11848553,
+     + 11848589, 11848589, 11848591, 11848591, 11848601, 11848601 /
+      data (iparam(1,i),iparam(2,i),i=  30,  59) /
+     + 11848619, 11848619, 11848637, 11848637, 11848663, 11848663,
+     + 11848673, 11848673, 11848679, 11848679, 11848691, 11848691,
+     + 11848699, 11848699, 11848709, 11848709, 11848717, 11848717,
+     + 11848721, 11848721, 11848729, 11848729, 11848741, 11848741,
+     + 11848751, 11848751, 11848757, 11848757, 11848787, 11848787,
+     + 11848801, 11848801, 11848829, 11848829, 11848853, 11848853,
+     + 11848861, 11848861, 11848867, 11848867, 11848873, 11848873,
+     + 11848891, 11848891, 11848909, 11848909, 11848919, 11848919,
+     + 11848931, 11848931, 11848937, 11848937, 11848961, 11848961,
+     + 11848981, 11848981, 11849021, 11849021, 11849039, 11849039 /
+      data (iparam(1,i),iparam(2,i),i=  60,  89) /
+     + 11849053, 11849053, 11849059, 11849059, 11849069, 11849069,
+     + 11849077, 11849077, 11849087, 11849087, 11849093, 11849093,
+     + 11849107, 11849107, 11849111, 11849111, 11849129, 11849129,
+     + 11849137, 11849137, 11849177, 11849177, 11849183, 11849183,
+     + 11849203, 11849203, 11849231, 11849231, 11849237, 11849237,
+     + 11849239, 11849239, 11849249, 11849249, 11849251, 11849251,
+     + 11849269, 11849269, 11849273, 11849273, 11849291, 11849291,
+     + 11849297, 11849297, 11849309, 11849309, 11849339, 11849339,
+     + 11849359, 11849359, 11849363, 11849363, 11849399, 11849399,
+     + 11849401, 11849401, 11849413, 11849413, 11849417, 11849417 /
+      data (iparam(1,i),iparam(2,i),i=  90, 119) /
+     + 11849437, 11849437, 11849443, 11849443, 11849473, 11849473,
+     + 11849491, 11849491, 11849503, 11849503, 11849507, 11849507,
+     + 11849557, 11849557, 11849567, 11849567, 11849569, 11849569,
+     + 11849573, 11849573, 11849587, 11849587, 11849599, 11849599,
+     + 11849633, 11849633, 11849641, 11849641, 11849653, 11849653,
+     + 11849659, 11849659, 11849671, 11849671, 11849683, 11849683,
+     + 11849689, 11849689, 11849693, 11849693, 11849699, 11849699,
+     + 11849701, 11849701, 11849707, 11849707, 11849713, 11849713,
+     + 11849723, 11849723, 11849741, 11849741, 11849743, 11849743,
+     + 11849759, 11849759, 11849767, 11849767, 11849771, 11849771 /
+      data (iparam(1,i),iparam(2,i),i= 120, 149) /
+     + 11849791, 11849791, 11849801, 11849801, 11849809, 11849809,
+     + 11849813, 11849813, 11849869, 11849869, 11849881, 11849881,
+     + 11849891, 11849891, 11849909, 11849909, 11849923, 11849923,
+     + 11849933, 11849933, 11849947, 11849947, 11849987, 11849987,
+     + 11850001, 11850001, 11850011, 11850011, 11850019, 11850019,
+     + 11850023, 11850023, 11850031, 11850031, 11850049, 11850049,
+     + 11850061, 11850061, 11850073, 11850073, 11850077, 11850077,
+     + 11850103, 11850103, 11850109, 11850109, 11850121, 11850121,
+     + 11850127, 11850127, 11850133, 11850133, 11850149, 11850149,
+     + 11850161, 11850161, 11850169, 11850169, 11850191, 11850191 /
+      data (iparam(1,i),iparam(2,i),i= 150, 179) /
+     + 11850233, 11850233, 11850247, 11850247, 11850259, 11850259,
+     + 11850269, 11850269, 11850283, 11850283, 11850301, 11850301,
+     + 11850341, 11850341, 11850347, 11850347, 11850367, 11850367,
+     + 11850373, 11850373, 11850379, 11850379, 11850389, 11850389,
+     + 11850407, 11850407, 11850427, 11850427, 11850437, 11850437,
+     + 11850469, 11850469, 11850481, 11850481, 11850511, 11850511,
+     + 11850529, 11850529, 11850541, 11850541, 11850557, 11850557,
+     + 11850607, 11850607, 11850611, 11850611, 11850667, 11850667,
+     + 11850677, 11850677, 11850679, 11850679, 11850701, 11850701,
+     + 11850731, 11850731, 11850739, 11850739, 11850749, 11850749 /
+      data (iparam(1,i),iparam(2,i),i= 180, 209) /
+     + 11850791, 11850791, 11850803, 11850803, 11850829, 11850829,
+     + 11850833, 11850833, 11850859, 11850859, 11850877, 11850877,
+     + 11850899, 11850899, 11850907, 11850907, 11850913, 11850913,
+     + 11850919, 11850919, 11850931, 11850931, 11850941, 11850941,
+     + 11850947, 11850947, 11850953, 11850953, 11850961, 11850961,
+     + 11850983, 11850983, 11850991, 11850991, 11850997, 11850997,
+     + 11851031, 11851031, 11851033, 11851033, 11851051, 11851051,
+     + 11851061, 11851061, 11851067, 11851067, 11851093, 11851093,
+     + 11851109, 11851109, 11851123, 11851123, 11851127, 11851127,
+     + 11851139, 11851139, 11851157, 11851157, 11851163, 11851163 /
+      data (iparam(1,i),iparam(2,i),i= 210, 239) /
+     + 11851181, 11851181, 11851201, 11851201, 11851219, 11851219,
+     + 11851291, 11851291, 11851303, 11851303, 11851309, 11851309,
+     + 11851313, 11851313, 11851319, 11851319, 11851349, 11851349,
+     + 11851351, 11851351, 11851361, 11851361, 11851373, 11851373,
+     + 11851403, 11851403, 11851409, 11851409, 11851423, 11851423,
+     + 11851447, 11851447, 11851451, 11851451, 11851481, 11851481,
+     + 11851493, 11851493, 11851519, 11851519, 11851523, 11851523,
+     + 11851529, 11851529, 11851547, 11851547, 11851549, 11851549,
+     + 11851559, 11851559, 11851577, 11851577, 11851589, 11851589,
+     + 11851591, 11851591, 11851597, 11851597, 11851603, 11851603 /
+      data (iparam(1,i),iparam(2,i),i= 240, 269) /
+     + 11851607, 11851607, 11851613, 11851613, 11851621, 11851621,
+     + 11851627, 11851627, 11851639, 11851639, 11851673, 11851673,
+     + 11851681, 11851681, 11851727, 11851727, 11851753, 11851753,
+     + 11851759, 11851759, 11851787, 11851787, 11851793, 11851793,
+     + 11851799, 11851799, 11851813, 11851813, 11851841, 11851841,
+     + 11851859, 11851859, 11851867, 11851867, 11851891, 11851891,
+     + 11851909, 11851909, 11851919, 11851919, 11851927, 11851927,
+     + 11851933, 11851933, 11851949, 11851949, 11851967, 11851967,
+     + 11851997, 11851997, 11852017, 11852017, 11852051, 11852051,
+     + 11852053, 11852053, 11852059, 11852059, 11852083, 11852083 /
+      data (iparam(1,i),iparam(2,i),i= 270, 299) /
+     + 11852089, 11852089, 11852129, 11852129, 11852147, 11852147,
+     + 11852149, 11852149, 11852161, 11852161, 11852171, 11852171,
+     + 11852177, 11852177, 11852209, 11852209, 11852221, 11852221,
+     + 11852237, 11852237, 11852251, 11852251, 11852263, 11852263,
+     + 11852273, 11852273, 11852279, 11852279, 11852287, 11852287,
+     + 11852293, 11852293, 11852297, 11852297, 11852303, 11852303,
+     + 11852311, 11852311, 11852327, 11852327, 11852339, 11852339,
+     + 11852341, 11852341, 11852359, 11852359, 11852369, 11852369,
+     + 11852437, 11852437, 11852453, 11852453, 11852459, 11852459,
+     + 11852473, 11852473, 11852513, 11852513, 11852531, 11852531 /
+      data (iparam(1,i),iparam(2,i),i= 300, 329) /
+     + 11852537, 11852537, 11852539, 11852539, 11852557, 11852557,
+     + 11852573, 11852573, 11852579, 11852579, 11852591, 11852591,
+     + 11852609, 11852609, 11852611, 11852611, 11852623, 11852623,
+     + 11852641, 11852641, 11852647, 11852647, 11852657, 11852657,
+     + 11852663, 11852663, 11852717, 11852717, 11852719, 11852719,
+     + 11852741, 11852741, 11852759, 11852759, 11852767, 11852767,
+     + 11852773, 11852773, 11852803, 11852803, 11852807, 11852807,
+     + 11852809, 11852809, 11852831, 11852831, 11852833, 11852833,
+     + 11852837, 11852837, 11852857, 11852857, 11852873, 11852873,
+     + 11852879, 11852879, 11852891, 11852891, 11852917, 11852917 /
+      data (iparam(1,i),iparam(2,i),i= 330, 359) /
+     + 11852921, 11852921, 11852957, 11852957, 11852959, 11852959,
+     + 11852969, 11852969, 11852983, 11852983, 11852989, 11852989,
+     + 11853001, 11853001, 11853013, 11853013, 11853019, 11853019,
+     + 11853031, 11853031, 11853089, 11853089, 11853133, 11853133,
+     + 11853157, 11853157, 11853161, 11853161, 11853181, 11853181,
+     + 11853203, 11853203, 11853217, 11853217, 11853221, 11853221,
+     + 11853227, 11853227, 11853241, 11853241, 11853307, 11853307,
+     + 11853319, 11853319, 11853323, 11853323, 11853329, 11853329,
+     + 11853367, 11853367, 11853383, 11853383, 11853419, 11853419,
+     + 11853421, 11853421, 11853427, 11853427, 11853449, 11853449 /
+      data (iparam(1,i),iparam(2,i),i= 360, 389) /
+     + 11853451, 11853451, 11853463, 11853463, 11853529, 11853529,
+     + 11853557, 11853557, 11853571, 11853571, 11853601, 11853601,
+     + 11853613, 11853613, 11853617, 11853617, 11853629, 11853629,
+     + 11853649, 11853649, 11853659, 11853659, 11853679, 11853679,
+     + 11853689, 11853689, 11853719, 11853719, 11853731, 11853731,
+     + 11853757, 11853757, 11853761, 11853761, 11853773, 11853773,
+     + 11853791, 11853791, 11853817, 11853817, 11853839, 11853839,
+     + 11853847, 11853847, 11853857, 11853857, 11853869, 11853869,
+     + 11853883, 11853883, 11853887, 11853887, 11853889, 11853889,
+     + 11853893, 11853893, 11853899, 11853899, 11853911, 11853911 /
+      data (iparam(1,i),iparam(2,i),i= 390, 419) /
+     + 11853931, 11853931, 11853943, 11853943, 11853979, 11853979,
+     + 11853991, 11853991, 11854001, 11854001, 11854009, 11854009,
+     + 11854019, 11854019, 11854057, 11854057, 11854061, 11854061,
+     + 11854147, 11854147, 11854159, 11854159, 11854163, 11854163,
+     + 11854169, 11854169, 11854211, 11854211, 11854247, 11854247,
+     + 11854261, 11854261, 11854267, 11854267, 11854279, 11854279,
+     + 11854303, 11854303, 11854327, 11854327, 11854331, 11854331,
+     + 11854333, 11854333, 11854363, 11854363, 11854379, 11854379,
+     + 11854399, 11854399, 11854411, 11854411, 11854429, 11854429,
+     + 11854433, 11854433, 11854439, 11854439, 11854441, 11854441 /
+      data (iparam(1,i),iparam(2,i),i= 420, 449) /
+     + 11854463, 11854463, 11854477, 11854477, 11854489, 11854489,
+     + 11854517, 11854517, 11854519, 11854519, 11854523, 11854523,
+     + 11854529, 11854529, 11854567, 11854567, 11854571, 11854571,
+     + 11854573, 11854573, 11854603, 11854603, 11854607, 11854607,
+     + 11854681, 11854681, 11854691, 11854691, 11854709, 11854709,
+     + 11854723, 11854723, 11854757, 11854757, 11854783, 11854783,
+     + 11854793, 11854793, 11854813, 11854813, 11854847, 11854847,
+     + 11854853, 11854853, 11854873, 11854873, 11854877, 11854877,
+     + 11854883, 11854883, 11854891, 11854891, 11854897, 11854897,
+     + 11854901, 11854901, 11854919, 11854919, 11854937, 11854937 /
+      data (iparam(1,i),iparam(2,i),i= 450, 479) /
+     + 11854961, 11854961, 11854963, 11854963, 11854979, 11854979,
+     + 11855003, 11855003, 11855017, 11855017, 11855023, 11855023,
+     + 11855029, 11855029, 11855033, 11855033, 11855111, 11855111,
+     + 11855141, 11855141, 11855147, 11855147, 11855149, 11855149,
+     + 11855159, 11855159, 11855177, 11855177, 11855203, 11855203,
+     + 11855213, 11855213, 11855219, 11855219, 11855231, 11855231,
+     + 11855267, 11855267, 11855269, 11855269, 11855303, 11855303,
+     + 11855309, 11855309, 11855321, 11855321, 11855329, 11855329,
+     + 11855339, 11855339, 11855351, 11855351, 11855353, 11855353,
+     + 11855357, 11855357, 11855359, 11855359, 11855381, 11855381 /
+      data (iparam(1,i),iparam(2,i),i= 480, 509) /
+     + 11855383, 11855383, 11855387, 11855387, 11855399, 11855399,
+     + 11855407, 11855407, 11855413, 11855413, 11855489, 11855489,
+     + 11855491, 11855491, 11855507, 11855507, 11855521, 11855521,
+     + 11855531, 11855531, 11855549, 11855549, 11855551, 11855551,
+     + 11855567, 11855567, 11855581, 11855581, 11855587, 11855587,
+     + 11855593, 11855593, 11855633, 11855633, 11855653, 11855653,
+     + 11855663, 11855663, 11855687, 11855687, 11855689, 11855689,
+     + 11855699, 11855699, 11855713, 11855713, 11855731, 11855731,
+     + 11855737, 11855737, 11855743, 11855743, 11855747, 11855747,
+     + 11855759, 11855759, 11855773, 11855773, 11855801, 11855801 /
+      data (iparam(1,i),iparam(2,i),i= 510, 539) /
+     + 11855807, 11855807, 11855813, 11855813, 11855827, 11855827,
+     + 11855839, 11855839, 11855869, 11855869, 11855881, 11855881,
+     + 11855903, 11855903, 11855911, 11855911, 11855933, 11855933,
+     + 11855959, 11855959, 11855989, 11855989, 11855993, 11855993,
+     + 11855999, 11855999, 11856001, 11856001, 11856023, 11856023,
+     + 11856049, 11856049, 11856071, 11856071, 11856101, 11856101,
+     + 11856107, 11856107, 11856113, 11856113, 11856139, 11856139,
+     + 11856151, 11856151, 11856161, 11856161, 11856179, 11856179,
+     + 11856193, 11856193, 11856199, 11856199, 11856223, 11856223,
+     + 11856239, 11856239, 11856263, 11856263, 11856269, 11856269 /
+      data (iparam(1,i),iparam(2,i),i= 540, 569) /
+     + 11856281, 11856281, 11856287, 11856287, 11856307, 11856307,
+     + 11856311, 11856311, 11856329, 11856329, 11856343, 11856343,
+     + 11856359, 11856359, 11856371, 11856371, 11856373, 11856373,
+     + 11856409, 11856409, 11856419, 11856419, 11856461, 11856461,
+     + 11856469, 11856469, 11856473, 11856473, 11856479, 11856479,
+     + 11856511, 11856511, 11856517, 11856517, 11856541, 11856541,
+     + 11856547, 11856547, 11856553, 11856553, 11856583, 11856583,
+     + 11856629, 11856629, 11856641, 11856641, 11856653, 11856653,
+     + 11856659, 11856659, 11856673, 11856673, 11856697, 11856697,
+     + 11856709, 11856709, 11856727, 11856727, 11856731, 11856731 /
+      data (iparam(1,i),iparam(2,i),i= 570, 599) /
+     + 11856763, 11856763, 11856809, 11856809, 11856811, 11856811,
+     + 11856821, 11856821, 11856841, 11856841, 11856857, 11856857,
+     + 11856877, 11856877, 11856883, 11856883, 11856899, 11856899,
+     + 11856919, 11856919, 11856947, 11856947, 11856953, 11856953,
+     + 11856979, 11856979, 11857003, 11857003, 11857033, 11857033,
+     + 11857037, 11857037, 11857039, 11857039, 11857049, 11857049,
+     + 11857061, 11857061, 11857067, 11857067, 11857073, 11857073,
+     + 11857081, 11857081, 11857091, 11857091, 11857093, 11857093,
+     + 11857099, 11857099, 11857123, 11857123, 11857127, 11857127,
+     + 11857147, 11857147, 11857151, 11857151, 11857193, 11857193 /
+      data (iparam(1,i),iparam(2,i),i= 600, 629) /
+     + 11857217, 11857217, 11857229, 11857229, 11857243, 11857243,
+     + 11857249, 11857249, 11857267, 11857267, 11857277, 11857277,
+     + 11857291, 11857291, 11857303, 11857303, 11857309, 11857309,
+     + 11857327, 11857327, 11857331, 11857331, 11857333, 11857333,
+     + 11857361, 11857361, 11857367, 11857367, 11857369, 11857369,
+     + 11857393, 11857393, 11857399, 11857399, 11857409, 11857409,
+     + 11857421, 11857421, 11857423, 11857423, 11857451, 11857451,
+     + 11857453, 11857453, 11857457, 11857457, 11857477, 11857477,
+     + 11857481, 11857481, 11857493, 11857493, 11857499, 11857499,
+     + 11857519, 11857519, 11857523, 11857523, 11857529, 11857529 /
+      data (iparam(1,i),iparam(2,i),i= 630, 659) /
+     + 11857543, 11857543, 11857561, 11857561, 11857589, 11857589,
+     + 11857591, 11857591, 11857613, 11857613, 11857621, 11857621,
+     + 11857661, 11857661, 11857667, 11857667, 11857693, 11857693,
+     + 11857697, 11857697, 11857709, 11857709, 11857711, 11857711,
+     + 11857751, 11857751, 11857753, 11857753, 11857759, 11857759,
+     + 11857763, 11857763, 11857777, 11857777, 11857787, 11857787,
+     + 11857793, 11857793, 11857801, 11857801, 11857817, 11857817,
+     + 11857819, 11857819, 11857831, 11857831, 11857837, 11857837,
+     + 11857873, 11857873, 11857877, 11857877, 11857883, 11857883,
+     + 11857889, 11857889, 11857907, 11857907, 11857913, 11857913 /
+      data (iparam(1,i),iparam(2,i),i= 660, 689) /
+     + 11857931, 11857931, 11857969, 11857969, 11857991, 11857991,
+     + 11857999, 11857999, 11858009, 11858009, 11858017, 11858017,
+     + 11858023, 11858023, 11858029, 11858029, 11858039, 11858039,
+     + 11858051, 11858051, 11858057, 11858057, 11858059, 11858059,
+     + 11858101, 11858101, 11858111, 11858111, 11858131, 11858131,
+     + 11858149, 11858149, 11858159, 11858159, 11858177, 11858177,
+     + 11858191, 11858191, 11858201, 11858201, 11858227, 11858227,
+     + 11858243, 11858243, 11858267, 11858267, 11858269, 11858269,
+     + 11858279, 11858279, 11858281, 11858281, 11858291, 11858291,
+     + 11858311, 11858311, 11858323, 11858323, 11858359, 11858359 /
+      data (iparam(1,i),iparam(2,i),i= 690, 719) /
+     + 11858377, 11858377, 11858381, 11858381, 11858387, 11858387,
+     + 11858423, 11858423, 11858443, 11858443, 11858447, 11858447,
+     + 11858479, 11858479, 11858533, 11858533, 11858543, 11858543,
+     + 11858551, 11858551, 11858557, 11858557, 11858569, 11858569,
+     + 11858573, 11858573, 11858579, 11858579, 11858597, 11858597,
+     + 11858599, 11858599, 11858629, 11858629, 11858657, 11858657,
+     + 11858659, 11858659, 11858683, 11858683, 11858701, 11858701,
+     + 11858719, 11858719, 11858723, 11858723, 11858729, 11858729,
+     + 11858747, 11858747, 11858779, 11858779, 11858783, 11858783,
+     + 11858801, 11858801, 11858807, 11858807, 11858813, 11858813 /
+      data (iparam(1,i),iparam(2,i),i= 720, 749) /
+     + 11858839, 11858839, 11858851, 11858851, 11858893, 11858893,
+     + 11858897, 11858897, 11858921, 11858921, 11858947, 11858947,
+     + 11858953, 11858953, 11858969, 11858969, 11858971, 11858971,
+     + 11858989, 11858989, 11859017, 11859017, 11859031, 11859031,
+     + 11859049, 11859049, 11859061, 11859061, 11859073, 11859073,
+     + 11859077, 11859077, 11859079, 11859079, 11859083, 11859083,
+     + 11859101, 11859101, 11859109, 11859109, 11859137, 11859137,
+     + 11859139, 11859139, 11859151, 11859151, 11859157, 11859157,
+     + 11859163, 11859163, 11859167, 11859167, 11859179, 11859179,
+     + 11859187, 11859187, 11859229, 11859229, 11859233, 11859233 /
+      data (iparam(1,i),iparam(2,i),i= 750, 779) /
+     + 11859241, 11859241, 11859247, 11859247, 11859269, 11859269,
+     + 11859293, 11859293, 11859307, 11859307, 11859311, 11859311,
+     + 11859349, 11859349, 11859359, 11859359, 11859371, 11859371,
+     + 11859377, 11859377, 11859383, 11859383, 11859427, 11859427,
+     + 11859433, 11859433, 11859451, 11859451, 11859457, 11859457,
+     + 11859461, 11859461, 11859473, 11859473, 11859481, 11859481,
+     + 11859487, 11859487, 11859493, 11859493, 11859503, 11859503,
+     + 11859509, 11859509, 11859539, 11859539, 11859541, 11859541,
+     + 11859563, 11859563, 11859569, 11859569, 11859571, 11859571,
+     + 11859583, 11859583, 11859599, 11859599, 11859611, 11859611 /
+      data (iparam(1,i),iparam(2,i),i= 780, 809) /
+     + 11859643, 11859643, 11859707, 11859707, 11859713, 11859713,
+     + 11859719, 11859719, 11859739, 11859739, 11859751, 11859751,
+     + 11859791, 11859791, 11859817, 11859817, 11859821, 11859821,
+     + 11859833, 11859833, 11859847, 11859847, 11859853, 11859853,
+     + 11859877, 11859877, 11859889, 11859889, 11859893, 11859893,
+     + 11859901, 11859901, 11859907, 11859907, 11859917, 11859917,
+     + 11859923, 11859923, 11859929, 11859929, 11859961, 11859961,
+     + 11859979, 11859979, 11859989, 11859989, 11859997, 11859997,
+     + 11860021, 11860021, 11860031, 11860031, 11860039, 11860039,
+     + 11860049, 11860049, 11860081, 11860081, 11860087, 11860087 /
+      data (iparam(1,i),iparam(2,i),i= 810, 839) /
+     + 11860097, 11860097, 11860103, 11860103, 11860109, 11860109,
+     + 11860117, 11860117, 11860133, 11860133, 11860151, 11860151,
+     + 11860171, 11860171, 11860207, 11860207, 11860223, 11860223,
+     + 11860231, 11860231, 11860243, 11860243, 11860267, 11860267,
+     + 11860301, 11860301, 11860307, 11860307, 11860327, 11860327,
+     + 11860379, 11860379, 11860397, 11860397, 11860411, 11860411,
+     + 11860469, 11860469, 11860477, 11860477, 11860483, 11860483,
+     + 11860487, 11860487, 11860489, 11860489, 11860493, 11860493,
+     + 11860517, 11860517, 11860547, 11860547, 11860567, 11860567,
+     + 11860573, 11860573, 11860613, 11860613, 11860619, 11860619 /
+      data (iparam(1,i),iparam(2,i),i= 840, 869) /
+     + 11860627, 11860627, 11860637, 11860637, 11860643, 11860643,
+     + 11860649, 11860649, 11860661, 11860661, 11860669, 11860669,
+     + 11860687, 11860687, 11860691, 11860691, 11860697, 11860697,
+     + 11860699, 11860699, 11860703, 11860703, 11860727, 11860727,
+     + 11860741, 11860741, 11860753, 11860753, 11860777, 11860777,
+     + 11860787, 11860787, 11860789, 11860789, 11860811, 11860811,
+     + 11860837, 11860837, 11860859, 11860859, 11860867, 11860867,
+     + 11860889, 11860889, 11860897, 11860897, 11860963, 11860963,
+     + 11860969, 11860969, 11860973, 11860973, 11860993, 11860993,
+     + 11861011, 11861011, 11861033, 11861033, 11861071, 11861071 /
+      data (iparam(1,i),iparam(2,i),i= 870, 899) /
+     + 11861081, 11861081, 11861089, 11861089, 11861093, 11861093,
+     + 11861099, 11861099, 11861107, 11861107, 11861131, 11861131,
+     + 11861141, 11861141, 11861159, 11861159, 11861167, 11861167,
+     + 11861191, 11861191, 11861197, 11861197, 11861207, 11861207,
+     + 11861219, 11861219, 11861221, 11861221, 11861231, 11861231,
+     + 11861237, 11861237, 11861273, 11861273, 11861293, 11861293,
+     + 11861299, 11861299, 11861303, 11861303, 11861327, 11861327,
+     + 11861351, 11861351, 11861357, 11861357, 11861363, 11861363,
+     + 11861371, 11861371, 11861401, 11861401, 11861407, 11861407,
+     + 11861411, 11861411, 11861413, 11861413, 11861429, 11861429 /
+      data (iparam(1,i),iparam(2,i),i= 900, 929) /
+     + 11861441, 11861441, 11861467, 11861467, 11861527, 11861527,
+     + 11861539, 11861539, 11861543, 11861543, 11861557, 11861557,
+     + 11861569, 11861569, 11861573, 11861573, 11861579, 11861579,
+     + 11861581, 11861581, 11861599, 11861599, 11861611, 11861611,
+     + 11861617, 11861617, 11861627, 11861627, 11861639, 11861639,
+     + 11861651, 11861651, 11861659, 11861659, 11861671, 11861671,
+     + 11861683, 11861683, 11861687, 11861687, 11861693, 11861693,
+     + 11861701, 11861701, 11861711, 11861711, 11861713, 11861713,
+     + 11861749, 11861749, 11861791, 11861791, 11861803, 11861803,
+     + 11861819, 11861819, 11861827, 11861827, 11861849, 11861849 /
+      data (iparam(1,i),iparam(2,i),i= 930, 959) /
+     + 11861873, 11861873, 11861879, 11861879, 11861887, 11861887,
+     + 11861911, 11861911, 11861917, 11861917, 11861921, 11861921,
+     + 11861923, 11861923, 11861953, 11861953, 11861959, 11861959,
+     + 11861987, 11861987, 11862007, 11862007, 11862013, 11862013,
+     + 11862029, 11862029, 11862031, 11862031, 11862049, 11862049,
+     + 11862077, 11862077, 11862083, 11862083, 11862157, 11862157,
+     + 11862167, 11862167, 11862199, 11862199, 11862203, 11862203,
+     + 11862217, 11862217, 11862223, 11862223, 11862229, 11862229,
+     + 11862233, 11862233, 11862239, 11862239, 11862241, 11862241,
+     + 11862259, 11862259, 11862269, 11862269, 11862271, 11862271 /
+      data (iparam(1,i),iparam(2,i),i= 960, 989) /
+     + 11862293, 11862293, 11862307, 11862307, 11862313, 11862313,
+     + 11862317, 11862317, 11862343, 11862343, 11862353, 11862353,
+     + 11862373, 11862373, 11862391, 11862391, 11862439, 11862439,
+     + 11862469, 11862469, 11862493, 11862493, 11862527, 11862527,
+     + 11862547, 11862547, 11862563, 11862563, 11862569, 11862569,
+     + 11862577, 11862577, 11862581, 11862581, 11862611, 11862611,
+     + 11862623, 11862623, 11862661, 11862661, 11862673, 11862673,
+     + 11862679, 11862679, 11862701, 11862701, 11862703, 11862703,
+     + 11862713, 11862713, 11862761, 11862761, 11862791, 11862791,
+     + 11862803, 11862803, 11862839, 11862839, 11862841, 11862841 /
+      data (iparam(1,i),iparam(2,i),i= 990,1019) /
+     + 11862857, 11862857, 11862869, 11862869, 11862881, 11862881,
+     + 11862911, 11862911, 11862919, 11862919, 11862959, 11862959,
+     + 11862979, 11862979, 11862989, 11862989, 11862997, 11862997,
+     + 11863021, 11863021, 11863031, 11863031, 11863037, 11863037,
+     + 11863039, 11863039, 11863057, 11863057, 11863067, 11863067,
+     + 11863073, 11863073, 11863099, 11863099, 11863109, 11863109,
+     + 11863121, 11863121, 11863123, 11863123, 11863133, 11863133,
+     + 11863151, 11863151, 11863153, 11863153, 11863171, 11863171,
+     + 11863183, 11863183, 11863207, 11863207, 11863213, 11863213,
+     + 11863237, 11863237, 11863249, 11863249, 11863253, 11863253 /
+      data (iparam(1,i),iparam(2,i),i=1020,1021) /
+     + 11863259, 11863259, 11863279, 11863279 /
+      end
+#else
+      real function prng_next(me)
+crc      logical prng_restart, prng_chkpnt
+c
+c Calling sequence: 
+c      <new random number> = prng_next ( <ordinal of generator desired> )
+c
+c This code is based on a sequential algorithm provided by Mal Kalos.
+c This version uses 4 16-bit packets, and uses a block data common
+c area for the initial seeds and constants.  A 64-bit floating point
+c number is returned.
+c
+c The arrays "l" and "n" are full-word aligned, being padded by zeros
+c That is, rows 1-4 in a given column are for real, rows 5-16 are bogus
+c
+c July 12, 1993: double the number of sequences.  We should have been
+c                using two packets per seed, rather than four
+c
+      real tpm12
+      integer iseed(4)
+      parameter(tpm12 = 1.d0/65536.d0)
+      parameter(nmax=1021)
+c     external prngblk
+      common/ksrprng/l(16,0:nmax),n(16,0:nmax)
+c*ksr*subpage /ksrprng/
+      data m1,m2,m3,m4 / 0, 8037, 61950, 30779/
+      if (me .lt. 0 .or. me .gt. nmax) then
+         prng_next=-1.0
+        return
+      endif
+      l1=l(1,me)
+      l2=l(2,me)
+      l3=l(3,me)
+      l4=l(4,me)
+      i1=l1*m4+l2*m3+l3*m2+l4*m1 + n(1,me)
+      i2=l2*m4+l3*m3+l4*m2 + n(2,me)
+      i3=l3*m4+l4*m3 + n(3,me)
+      i4=l4*m4 + n(4,me)
+      l4=and(i4,65535)
+      i3=i3+ishft(i4,-16)
+      l3=and(i3,65535)
+      i2=i2+ishft(i3,-16)
+      l2=and(i2,65535)
+      l1=and(i1+ishft(i2,-16),65535)
+      prng_next=tpm12*(l1+tpm12*(l2+tpm12*(l3+tpm12*l4)))
+      l(1,me)=l1
+      l(2,me)=l2
+      l(3,me)=l3
+      l(4,me)=l4
+      return
+      end
+c
+c   prng_chkpnt          Get the current state of a generator
+c
+c Calling sequence:
+c   logical prng_chkpnt, status
+c   status = prng_chkpnt (me, iseed)    where
+c
+c     me is the particular generator whose state is being gotten
+c     seed is an 4-element integer array where the "l"-values will be saved
+c
+crc      entry prng_chkpnt (me, iseed)
+      logical function prng_chkpnt (me, iseed)
+      integer iseed(4)
+      parameter(nmax=1021)
+      common/ksrprng/l(16,0:nmax),n(16,0:nmax) 
+      if (me .lt. 0 .or. me .gt. nmax) then
+         prng_chkpnt=.false.
+      else
+        prng_chkpnt=.true.
+        iseed(1)=l(1,me)
+        iseed(2)=l(2,me)
+        iseed(3)=l(3,me)
+        iseed(4)=l(4,me)
+      endif
+      return
+      end
+c
+c   prng_restart          Restart generator from a saved state
+c
+c Calling sequence:
+c   logical prng_restart, status
+c   status = prng_restart (me, iseed)    where
+c
+c     me is the particular generator being restarted
+c     seed is an 4-element integer array containing the "l"-values
+c
+crc      entry prng_restart (me, iseed)
+      logical function prng_restart (me, iseed) 
+      integer iseed(4)
+      parameter(nmax=1021)
+      common/ksrprng/l(16,0:nmax),n(16,0:nmax) 
+      if (me .lt. 0 .or. me .gt. nmax) then
+         prng_restart=.false.
+        return
+      else
+        prng_restart=.true.
+        l(1,me)=iseed(1)
+        l(2,me)=iseed(2)
+        l(3,me)=iseed(3)
+        l(4,me)=iseed(4)
+      endif
+      return
+      end
+
+      block data prngblk
+c
+c Sequence of prime numbers represented as pairs of 16-bit integers
+c modulo 2**16, obtained from Mal Kalos August 28, 1992.  Only 98
+c continuation cards are allowed by ksr Fortran, so several DATA
+c statements are used to initialize 1022 generators.
+c
+c @cornell university, 1992
+c
+      parameter(nmax=1021,nmax1=2*nmax+2)
+      common/ksrprng/l(16,0:nmax),n(16,0:nmax)
+c*ksr*subpage /ksrprng/
+
+c High order quads in arrays "l" and "n" are initialized to zero : rows 1-2
+c Rows 5-16 remain uninitialized.  They are just pads, never used.
+      DATA ((l(i,j),i=1,2),j=0,nmax)/nmax1*0.0/
+      DATA ((n(i,j),i=1,2),j=0,nmax)/nmax1*0.0/
+
+c The rest of array "l" and "n" are initialized to a 20-bit seed
+      DATA ((l(i,j),i=3,4),j=0,489)/
+     .180, 51739,180, 51757,180, 51761,180, 51767,180,51773,
+     .180, 51791,180, 51817,180, 51833,180, 51859,180, 51871,
+     .180, 51877,180, 51883,180, 51887,180, 51893,180, 51899,
+     .180, 51913,180, 51953,180, 51971,180, 51989,180, 51997,
+     .180, 52009,180, 52013,180, 52033,180, 52043,180, 52051,
+     .180, 52057,180, 52073,180, 52109,180, 52111,180, 52121,
+     .180, 52139,180, 52157,180, 52183,180, 52193,180, 52199,
+     .180, 52211,180, 52219,180, 52229,180, 52237,180, 52241,
+     .180, 52249,180, 52261,180, 52271,180, 52277,180, 52307,
+     .180, 52321,180, 52349,180, 52373,180, 52381,180, 52387,
+     .180, 52393,180, 52411,180, 52429,180, 52439,180, 52451,
+     .180, 52457,180, 52481,180, 52501,180, 52541,180, 52559,
+     .180, 52573,180, 52579,180, 52589,180, 52597,180, 52607,
+     .180, 52613,180, 52627,180, 52631,180, 52649,180, 52657,
+     .180, 52697,180, 52703,180, 52723,180, 52751,180, 52757,
+     .180, 52759,180, 52769,180, 52771,180, 52789,180, 52793,
+     .180, 52811,180, 52817,180, 52829,180, 52859,180, 52879,
+     .180, 52883,180, 52919,180, 52921,180, 52933,180, 52937,
+     .180, 52957,180, 52963,180, 52993,180, 53011,180, 53023,
+     .180, 53027,180, 53077,180, 53087,180, 53089,180, 53093,
+     .180, 53107,180, 53119,180, 53153,180, 53161,180, 53173,
+     .180, 53179,180, 53191,180, 53203,180, 53209,180, 53213,
+     .180, 53219,180, 53221,180, 53227,180, 53233,180, 53243,
+     .180, 53261,180, 53263,180, 53279,180, 53287,180, 53291,
+     .180, 53311,180, 53321,180, 53329,180, 53333,180, 53389,
+     .180, 53401,180, 53411,180, 53429,180, 53443,180, 53453,
+     .180, 53467,180, 53507,180, 53521,180, 53531,180, 53539,
+     .180, 53543,180, 53551,180, 53569,180, 53581,180, 53593,
+     .180, 53597,180, 53623,180, 53629,180, 53641,180, 53647,
+     .180, 53653,180, 53669,180, 53681,180, 53689,180, 53711,
+     .180, 53753,180, 53767,180, 53779,180, 53789,180, 53803,
+     .180, 53821,180, 53861,180, 53867,180, 53887,180, 53893,
+     .180, 53899,180, 53909,180, 53927,180, 53947,180, 53957,
+     .180, 53989,180, 54001,180, 54031,180, 54049,180, 54061,
+     .180, 54077,180, 54127,180, 54131,180, 54187,180, 54197,
+     .180, 54199,180, 54221,180, 54251,180, 54259,180, 54269,
+     .180, 54311,180, 54323,180, 54349,180, 54353,180, 54379,
+     .180, 54397,180, 54419,180, 54427,180, 54433,180, 54439,
+     .180, 54451,180, 54461,180, 54467,180, 54473,180, 54481,
+     .180, 54503,180, 54511,180, 54517,180, 54551,180, 54553,
+     .180, 54571,180, 54581,180, 54587,180, 54613,180, 54629,
+     .180, 54643,180, 54647,180, 54659,180, 54677,180, 54683,
+     .180, 54701,180, 54721,180, 54739,180, 54811,180, 54823,
+     .180, 54829,180, 54833,180, 54839,180, 54869,180, 54871,
+     .180, 54881,180, 54893,180, 54923,180, 54929,180, 54943,
+     .180, 54967,180, 54971,180, 55001,180, 55013,180, 55039,
+     .180, 55043,180, 55049,180, 55067,180, 55069,180, 55079,
+     .180, 55097,180, 55109,180, 55111,180, 55117,180, 55123,
+     .180, 55127,180, 55133,180, 55141,180, 55147,180, 55159,
+     .180, 55193,180, 55201,180, 55247,180, 55273,180, 55279,
+     .180, 55307,180, 55313,180, 55319,180, 55333,180, 55361,
+     .180, 55379,180, 55387,180, 55411,180, 55429,180, 55439,
+     .180, 55447,180, 55453,180, 55469,180, 55487,180, 55517,
+     .180, 55537,180, 55571,180, 55573,180, 55579,180, 55603,
+     .180, 55609,180, 55649,180, 55667,180, 55669,180, 55681,
+     .180, 55691,180, 55697,180, 55729,180, 55741,180, 55757,
+     .180, 55771,180, 55783,180, 55793,180, 55799,180, 55807,
+     .180, 55813,180, 55817,180, 55823,180, 55831,180, 55847,
+     .180, 55859,180, 55861,180, 55879,180, 55889,180, 55957,
+     .180, 55973,180, 55979,180, 55993,180, 56033,180, 56051,
+     .180, 56057,180, 56059,180, 56077,180, 56093,180, 56099,
+     .180, 56111,180, 56129,180, 56131,180, 56143,180, 56161,
+     .180, 56167,180, 56177,180, 56183,180, 56237,180, 56239,
+     .180, 56261,180, 56279,180, 56287,180, 56293,180, 56323,
+     .180, 56327,180, 56329,180, 56351,180, 56353,180, 56357,
+     .180, 56377,180, 56393,180, 56399,180, 56411,180, 56437,
+     .180, 56441,180, 56477,180, 56479,180, 56489,180, 56503,
+     .180, 56509,180, 56521,180, 56533,180, 56539,180, 56551,
+     .180, 56609,180, 56653,180, 56677,180, 56681,180, 56701,
+     .180, 56723,180, 56737,180, 56741,180, 56747,180, 56761,
+     .180, 56827,180, 56839,180, 56843,180, 56849,180, 56887,
+     .180, 56903,180, 56939,180, 56941,180, 56947,180, 56969,
+     .180, 56971,180, 56983,180, 57049,180, 57077,180, 57091,
+     .180, 57121,180, 57133,180, 57137,180, 57149,180, 57169,
+     .180, 57179,180, 57199,180, 57209,180, 57239,180, 57251,
+     .180, 57277,180, 57281,180, 57293,180, 57311,180, 57337,
+     .180, 57359,180, 57367,180, 57377,180, 57389,180, 57403,
+     .180, 57407,180, 57409,180, 57413,180, 57419,180, 57431,
+     .180, 57451,180, 57463,180, 57499,180, 57511,180, 57521,
+     .180, 57529,180, 57539,180, 57577,180, 57581,180, 57667,
+     .180, 57679,180, 57683,180, 57689,180, 57731,180, 57767,
+     .180, 57781,180, 57787,180, 57799,180, 57823,180, 57847,
+     .180, 57851,180, 57853,180, 57883,180, 57899,180, 57919,
+     .180, 57931,180, 57949,180, 57953,180, 57959,180, 57961,
+     .180, 57983,180, 57997,180, 58009,180, 58037,180, 58039,
+     .180, 58043,180, 58049,180, 58087,180, 58091,180, 58093,
+     .180, 58123,180, 58127,180, 58201,180, 58211,180, 58229,
+     .180, 58243,180, 58277,180, 58303,180, 58313,180, 58333,
+     .180, 58367,180, 58373,180, 58393,180, 58397,180, 58403,
+     .180, 58411,180, 58417,180, 58421,180, 58439,180, 58457,
+     .180, 58481,180, 58483,180, 58499,180, 58523,180, 58537,
+     .180, 58543,180, 58549,180, 58553,180, 58631,180, 58661,
+     .180, 58667,180, 58669,180, 58679,180, 58697,180, 58723,
+     .180, 58733,180, 58739,180, 58751,180, 58787,180, 58789,
+     .180, 58823,180, 58829,180, 58841,180, 58849,180, 58859,
+     .180, 58871,180, 58873,180, 58877,180, 58879,180, 58901,
+     .180, 58903,180, 58907,180, 58919,180, 58927,180, 58933,
+     .180, 59009,180, 59011,180, 59027,180, 59041,180, 59051/
+      DATA ((l(i,j),i=3,4),j=490,979)/
+     .180, 59069,180, 59071,180, 59087,180, 59101,180, 59107,
+     .180, 59113,180, 59153,180, 59173,180, 59183,180, 59207,
+     .180, 59209,180, 59219,180, 59233,180, 59251,180, 59257,
+     .180, 59263,180, 59267,180, 59279,180, 59293,180, 59321,
+     .180, 59327,180, 59333,180, 59347,180, 59359,180, 59389,
+     .180, 59401,180, 59423,180, 59431,180, 59453,180, 59479,
+     .180, 59509,180, 59513,180, 59519,180, 59521,180, 59543,
+     .180, 59569,180, 59591,180, 59621,180, 59627,180, 59633,
+     .180, 59659,180, 59671,180, 59681,180, 59699,180, 59713,
+     .180, 59719,180, 59743,180, 59759,180, 59783,180, 59789,
+     .180, 59801,180, 59807,180, 59827,180, 59831,180, 59849,
+     .180, 59863,180, 59879,180, 59891,180, 59893,180, 59929,
+     .180, 59939,180, 59981,180, 59989,180, 59993,180, 59999,
+     .180, 60031,180, 60037,180, 60061,180, 60067,180, 60073,
+     .180, 60103,180, 60149,180, 60161,180, 60173,180, 60179,
+     .180, 60193,180, 60217,180, 60229,180, 60247,180, 60251,
+     .180, 60283,180, 60329,180, 60331,180, 60341,180, 60361,
+     .180, 60377,180, 60397,180, 60403,180, 60419,180, 60439,
+     .180, 60467,180, 60473,180, 60499,180, 60523,180, 60553,
+     .180, 60557,180, 60559,180, 60569,180, 60581,180, 60587,
+     .180, 60593,180, 60601,180, 60611,180, 60613,180, 60619,
+     .180, 60643,180, 60647,180, 60667,180, 60671,180, 60713,
+     .180, 60737,180, 60749,180, 60763,180, 60769,180, 60787,
+     .180, 60797,180, 60811,180, 60823,180, 60829,180, 60847,
+     .180, 60851,180, 60853,180, 60881,180, 60887,180, 60889,
+     .180, 60913,180, 60919,180, 60929,180, 60941,180, 60943,
+     .180, 60971,180, 60973,180, 60977,180, 60997,180, 61001,
+     .180, 61013,180, 61019,180, 61039,180, 61043,180, 61049,
+     .180, 61063,180, 61081,180, 61109,180, 61111,180, 61133,
+     .180, 61141,180, 61181,180, 61187,180, 61213,180, 61217,
+     .180, 61229,180, 61231,180, 61271,180, 61273,180, 61279,
+     .180, 61283,180, 61297,180, 61307,180, 61313,180, 61321,
+     .180, 61337,180, 61339,180, 61351,180, 61357,180, 61393,
+     .180, 61397,180, 61403,180, 61409,180, 61427,180, 61433,
+     .180, 61451,180, 61489,180, 61511,180, 61519,180, 61529,
+     .180, 61537,180, 61543,180, 61549,180, 61559,180, 61571,
+     .180, 61577,180, 61579,180, 61621,180, 61631,180, 61651,
+     .180, 61669,180, 61679,180, 61697,180, 61711,180, 61721,
+     .180, 61747,180, 61763,180, 61787,180, 61789,180, 61799,
+     .180, 61801,180, 61811,180, 61831,180, 61843,180, 61879,
+     .180, 61897,180, 61901,180, 61907,180, 61943,180, 61963,
+     .180, 61967,180, 61999,180, 62053,180, 62063,180, 62071,
+     .180, 62077,180, 62089,180, 62093,180, 62099,180, 62117,
+     .180, 62119,180, 62149,180, 62177,180, 62179,180, 62203,
+     .180, 62221,180, 62239,180, 62243,180, 62249,180, 62267,
+     .180, 62299,180, 62303,180, 62321,180, 62327,180, 62333,
+     .180, 62359,180, 62371,180, 62413,180, 62417,180, 62441,
+     .180, 62467,180, 62473,180, 62489,180, 62491,180, 62509,
+     .180, 62537,180, 62551,180, 62569,180, 62581,180, 62593,
+     .180, 62597,180, 62599,180, 62603,180, 62621,180, 62629,
+     .180, 62657,180, 62659,180, 62671,180, 62677,180, 62683,
+     .180, 62687,180, 62699,180, 62707,180, 62749,180, 62753,
+     .180, 62761,180, 62767,180, 62789,180, 62813,180, 62827,
+     .180, 62831,180, 62869,180, 62879,180, 62891,180, 62897,
+     .180, 62903,180, 62947,180, 62953,180, 62971,180, 62977,
+     .180, 62981,180, 62993,180, 63001,180, 63007,180, 63013,
+     .180, 63023,180, 63029,180, 63059,180, 63061,180, 63083,
+     .180, 63089,180, 63091,180, 63103,180, 63119,180, 63131,
+     .180, 63163,180, 63227,180, 63233,180, 63239,180, 63259,
+     .180, 63271,180, 63311,180, 63337,180, 63341,180, 63353,
+     .180, 63367,180, 63373,180, 63397,180, 63409,180, 63413,
+     .180, 63421,180, 63427,180, 63437,180, 63443,180, 63449,
+     .180, 63481,180, 63499,180, 63509,180, 63517,180, 63541,
+     .180, 63551,180, 63559,180, 63569,180, 63601,180, 63607,
+     .180, 63617,180, 63623,180, 63629,180, 63637,180, 63653,
+     .180, 63671,180, 63691,180, 63727,180, 63743,180, 63751,
+     .180, 63763,180, 63787,180, 63821,180, 63827,180, 63847,
+     .180, 63899,180, 63917,180, 63931,180, 63989,180, 63997,
+     .180, 64003,180, 64007,180, 64009,180, 64013,180, 64037,
+     .180, 64067,180, 64087,180, 64093,180, 64133,180, 64139,
+     .180, 64147,180, 64157,180, 64163,180, 64169,180, 64181,
+     .180, 64189,180, 64207,180, 64211,180, 64217,180, 64219,
+     .180, 64223,180, 64247,180, 64261,180, 64273,180, 64297,
+     .180, 64307,180, 64309,180, 64331,180, 64357,180, 64379,
+     .180, 64387,180, 64409,180, 64417,180, 64483,180, 64489,
+     .180, 64493,180, 64513,180, 64531,180, 64553,180, 64591,
+     .180, 64601,180, 64609,180, 64613,180, 64619,180, 64627,
+     .180, 64651,180, 64661,180, 64679,180, 64687,180, 64711,
+     .180, 64717,180, 64727,180, 64739,180, 64741,180, 64751,
+     .180, 64757,180, 64793,180, 64813,180, 64819,180, 64823,
+     .180, 64847,180, 64871,180, 64877,180, 64883,180, 64891,
+     .180, 64921,180, 64927,180, 64931,180, 64933,180, 64949,
+     .180, 64961,180, 64987,180, 65047,180, 65059,180, 65063,
+     .180, 65077,180, 65089,180, 65093,180, 65099,180, 65101,
+     .180, 65119,180, 65131,180, 65137,180, 65147,180, 65159,
+     .180, 65171,180, 65179,180, 65191,180, 65203,180, 65207,
+     .180, 65213,180, 65221,180, 65231,180, 65233,180, 65269,
+     .180, 65311,180, 65323,180, 65339,180, 65347,180, 65369,
+     .180, 65393,180, 65399,180, 65407,180, 65431,180, 65437,
+     .180, 65441,180, 65443,180, 65473,180, 65479,180, 65507,
+     .180, 65527,180, 65533,181, 13,181, 15,181, 33,
+     .181, 61,181, 67,181, 141,181, 151,181, 183,
+     .181, 187,181, 201,181, 207,181, 213,181, 217,
+     .181, 223,181, 225,181, 243,181, 253,181, 255,
+     .181, 277,181, 291,181, 297,181, 301,181, 327,
+     .181, 337,181, 357,181, 375,181, 423,181, 453,
+     .181, 477,181, 511,181, 531,181, 547,181, 553,
+     .181, 561,181, 565,181, 595,181, 607,181, 645/
+      DATA ((l(i,j),i=3,4),j=980,nmax)/
+     .181, 657,181, 663,181, 685,181, 687,181, 697,
+     .181, 745,181, 775,181, 787,181, 823,181, 825,
+     .181, 841,181, 853,181, 865,181, 895,181, 903,
+     .181, 943,181, 963,181, 973,181, 981,181, 1005,
+     .181,1015,181,1021,181,1023,181,1041,181,1051,
+     .181, 1057,181, 1083,181, 1093,181, 1105,181, 1107,
+     .181, 1117,181, 1135,181, 1137,181, 1155,181, 1167,
+     .181, 1191,181, 1197,181, 1221,181, 1233,181, 1237,
+     .181, 1243,181, 1263/
+      DATA ((n(i,j),i=3,4),j=0,489)/
+     .180, 51739,180, 51757,180, 51761,180, 51767,180, 51773,
+     .180, 51791,180, 51817,180, 51833,180, 51859,180, 51871,
+     .180, 51877,180, 51883,180, 51887,180, 51893,180, 51899,
+     .180, 51913,180, 51953,180, 51971,180, 51989,180, 51997,
+     .180, 52009,180, 52013,180, 52033,180, 52043,180, 52051,
+     .180, 52057,180, 52073,180, 52109,180, 52111,180, 52121,
+     .180, 52139,180, 52157,180, 52183,180, 52193,180, 52199,
+     .180, 52211,180, 52219,180, 52229,180, 52237,180, 52241,
+     .180, 52249,180, 52261,180, 52271,180, 52277,180, 52307,
+     .180, 52321,180, 52349,180, 52373,180, 52381,180, 52387,
+     .180, 52393,180, 52411,180, 52429,180, 52439,180, 52451,
+     .180, 52457,180, 52481,180, 52501,180, 52541,180, 52559,
+     .180, 52573,180, 52579,180, 52589,180, 52597,180, 52607,
+     .180, 52613,180, 52627,180, 52631,180, 52649,180, 52657,
+     .180, 52697,180, 52703,180, 52723,180, 52751,180, 52757,
+     .180, 52759,180, 52769,180, 52771,180, 52789,180, 52793,
+     .180, 52811,180, 52817,180, 52829,180, 52859,180, 52879,
+     .180, 52883,180, 52919,180, 52921,180, 52933,180, 52937,
+     .180, 52957,180, 52963,180, 52993,180, 53011,180, 53023,
+     .180, 53027,180, 53077,180, 53087,180, 53089,180, 53093,
+     .180, 53107,180, 53119,180, 53153,180, 53161,180, 53173,
+     .180, 53179,180, 53191,180, 53203,180, 53209,180, 53213,
+     .180, 53219,180, 53221,180, 53227,180, 53233,180, 53243,
+     .180, 53261,180, 53263,180, 53279,180, 53287,180, 53291,
+     .180, 53311,180, 53321,180, 53329,180, 53333,180, 53389,
+     .180, 53401,180, 53411,180, 53429,180, 53443,180, 53453,
+     .180, 53467,180, 53507,180, 53521,180, 53531,180, 53539,
+     .180, 53543,180, 53551,180, 53569,180, 53581,180, 53593,
+     .180, 53597,180, 53623,180, 53629,180, 53641,180, 53647,
+     .180, 53653,180, 53669,180, 53681,180, 53689,180, 53711,
+     .180, 53753,180, 53767,180, 53779,180, 53789,180, 53803,
+     .180, 53821,180, 53861,180, 53867,180, 53887,180, 53893,
+     .180, 53899,180, 53909,180, 53927,180, 53947,180, 53957,
+     .180, 53989,180, 54001,180, 54031,180, 54049,180, 54061,
+     .180, 54077,180, 54127,180, 54131,180, 54187,180, 54197,
+     .180, 54199,180, 54221,180, 54251,180, 54259,180, 54269,
+     .180, 54311,180, 54323,180, 54349,180, 54353,180, 54379,
+     .180, 54397,180, 54419,180, 54427,180, 54433,180, 54439,
+     .180, 54451,180, 54461,180, 54467,180, 54473,180, 54481,
+     .180, 54503,180, 54511,180, 54517,180, 54551,180, 54553,
+     .180, 54571,180, 54581,180, 54587,180, 54613,180, 54629,
+     .180, 54643,180, 54647,180, 54659,180, 54677,180, 54683,
+     .180, 54701,180, 54721,180, 54739,180, 54811,180, 54823,
+     .180, 54829,180, 54833,180, 54839,180, 54869,180, 54871,
+     .180, 54881,180, 54893,180, 54923,180, 54929,180, 54943,
+     .180, 54967,180, 54971,180, 55001,180, 55013,180, 55039,
+     .180, 55043,180, 55049,180, 55067,180, 55069,180, 55079,
+     .180, 55097,180, 55109,180, 55111,180, 55117,180, 55123,
+     .180, 55127,180, 55133,180, 55141,180, 55147,180, 55159,
+     .180, 55193,180, 55201,180, 55247,180, 55273,180, 55279,
+     .180, 55307,180, 55313,180, 55319,180, 55333,180, 55361,
+     .180, 55379,180, 55387,180, 55411,180, 55429,180, 55439,
+     .180, 55447,180, 55453,180, 55469,180, 55487,180, 55517,
+     .180, 55537,180, 55571,180, 55573,180, 55579,180, 55603,
+     .180, 55609,180, 55649,180, 55667,180, 55669,180, 55681,
+     .180, 55691,180, 55697,180, 55729,180, 55741,180, 55757,
+     .180, 55771,180, 55783,180, 55793,180, 55799,180, 55807,
+     .180, 55813,180, 55817,180, 55823,180, 55831,180, 55847,
+     .180, 55859,180, 55861,180, 55879,180, 55889,180, 55957,
+     .180, 55973,180, 55979,180, 55993,180, 56033,180, 56051,
+     .180, 56057,180, 56059,180, 56077,180, 56093,180, 56099,
+     .180, 56111,180, 56129,180, 56131,180, 56143,180, 56161,
+     .180, 56167,180, 56177,180, 56183,180, 56237,180, 56239,
+     .180, 56261,180, 56279,180, 56287,180, 56293,180, 56323,
+     .180, 56327,180, 56329,180, 56351,180, 56353,180, 56357,
+     .180, 56377,180, 56393,180, 56399,180, 56411,180, 56437,
+     .180, 56441,180, 56477,180, 56479,180, 56489,180, 56503,
+     .180, 56509,180, 56521,180, 56533,180, 56539,180, 56551,
+     .180, 56609,180, 56653,180, 56677,180, 56681,180, 56701,
+     .180, 56723,180, 56737,180, 56741,180, 56747,180, 56761,
+     .180, 56827,180, 56839,180, 56843,180, 56849,180, 56887,
+     .180, 56903,180, 56939,180, 56941,180, 56947,180, 56969,
+     .180, 56971,180, 56983,180, 57049,180, 57077,180, 57091,
+     .180, 57121,180, 57133,180, 57137,180, 57149,180, 57169,
+     .180, 57179,180, 57199,180, 57209,180, 57239,180, 57251,
+     .180, 57277,180, 57281,180, 57293,180, 57311,180, 57337,
+     .180, 57359,180, 57367,180, 57377,180, 57389,180, 57403,
+     .180, 57407,180, 57409,180, 57413,180, 57419,180, 57431,
+     .180, 57451,180, 57463,180, 57499,180, 57511,180, 57521,
+     .180, 57529,180, 57539,180, 57577,180, 57581,180, 57667,
+     .180, 57679,180, 57683,180, 57689,180, 57731,180, 57767,
+     .180, 57781,180, 57787,180, 57799,180, 57823,180, 57847,
+     .180, 57851,180, 57853,180, 57883,180, 57899,180, 57919,
+     .180, 57931,180, 57949,180, 57953,180, 57959,180, 57961,
+     .180, 57983,180, 57997,180, 58009,180, 58037,180, 58039,
+     .180, 58043,180, 58049,180, 58087,180, 58091,180, 58093,
+     .180, 58123,180, 58127,180, 58201,180, 58211,180, 58229,
+     .180, 58243,180, 58277,180, 58303,180, 58313,180, 58333,
+     .180, 58367,180, 58373,180, 58393,180, 58397,180, 58403,
+     .180, 58411,180, 58417,180, 58421,180, 58439,180, 58457,
+     .180, 58481,180, 58483,180, 58499,180, 58523,180, 58537,
+     .180, 58543,180, 58549,180, 58553,180, 58631,180, 58661,
+     .180, 58667,180, 58669,180, 58679,180, 58697,180, 58723,
+     .180, 58733,180, 58739,180, 58751,180, 58787,180, 58789,
+     .180, 58823,180, 58829,180, 58841,180, 58849,180, 58859,
+     .180, 58871,180, 58873,180, 58877,180, 58879,180, 58901,
+     .180, 58903,180, 58907,180, 58919,180, 58927,180, 58933,
+     .180, 59009,180, 59011,180, 59027,180, 59041,180, 59051/
+      DATA ((n(i,j),i=3,4),j=490,979)/
+     .180, 59069,180, 59071,180, 59087,180, 59101,180, 59107,
+     .180, 59113,180, 59153,180, 59173,180, 59183,180, 59207,
+     .180, 59209,180, 59219,180, 59233,180, 59251,180, 59257,
+     .180, 59263,180, 59267,180, 59279,180, 59293,180, 59321,
+     .180, 59327,180, 59333,180, 59347,180, 59359,180, 59389,
+     .180, 59401,180, 59423,180, 59431,180, 59453,180, 59479,
+     .180, 59509,180, 59513,180, 59519,180, 59521,180, 59543,
+     .180, 59569,180, 59591,180, 59621,180, 59627,180, 59633,
+     .180, 59659,180, 59671,180, 59681,180, 59699,180, 59713,
+     .180, 59719,180, 59743,180, 59759,180, 59783,180, 59789,
+     .180, 59801,180, 59807,180, 59827,180, 59831,180, 59849,
+     .180, 59863,180, 59879,180, 59891,180, 59893,180, 59929,
+     .180, 59939,180, 59981,180, 59989,180, 59993,180, 59999,
+     .180, 60031,180, 60037,180, 60061,180, 60067,180, 60073,
+     .180, 60103,180, 60149,180, 60161,180, 60173,180, 60179,
+     .180, 60193,180, 60217,180, 60229,180, 60247,180, 60251,
+     .180, 60283,180, 60329,180, 60331,180, 60341,180, 60361,
+     .180, 60377,180, 60397,180, 60403,180, 60419,180, 60439,
+     .180, 60467,180, 60473,180, 60499,180, 60523,180, 60553,
+     .180, 60557,180, 60559,180, 60569,180, 60581,180, 60587,
+     .180, 60593,180, 60601,180, 60611,180, 60613,180, 60619,
+     .180, 60643,180, 60647,180, 60667,180, 60671,180, 60713,
+     .180, 60737,180, 60749,180, 60763,180, 60769,180, 60787,
+     .180, 60797,180, 60811,180, 60823,180, 60829,180, 60847,
+     .180, 60851,180, 60853,180, 60881,180, 60887,180, 60889,
+     .180, 60913,180, 60919,180, 60929,180, 60941,180, 60943,
+     .180, 60971,180, 60973,180, 60977,180, 60997,180, 61001,
+     .180, 61013,180, 61019,180, 61039,180, 61043,180, 61049,
+     .180, 61063,180, 61081,180, 61109,180, 61111,180, 61133,
+     .180, 61141,180, 61181,180, 61187,180, 61213,180, 61217,
+     .180, 61229,180, 61231,180, 61271,180, 61273,180, 61279,
+     .180, 61283,180, 61297,180, 61307,180, 61313,180, 61321,
+     .180, 61337,180, 61339,180, 61351,180, 61357,180, 61393,
+     .180, 61397,180, 61403,180, 61409,180, 61427,180, 61433,
+     .180, 61451,180, 61489,180, 61511,180, 61519,180, 61529,
+     .180, 61537,180, 61543,180, 61549,180, 61559,180, 61571,
+     .180, 61577,180, 61579,180, 61621,180, 61631,180, 61651,
+     .180, 61669,180, 61679,180, 61697,180, 61711,180, 61721,
+     .180, 61747,180, 61763,180, 61787,180, 61789,180, 61799,
+     .180, 61801,180, 61811,180, 61831,180, 61843,180, 61879,
+     .180, 61897,180, 61901,180, 61907,180, 61943,180, 61963,
+     .180, 61967,180, 61999,180, 62053,180, 62063,180, 62071,
+     .180, 62077,180, 62089,180, 62093,180, 62099,180, 62117,
+     .180, 62119,180, 62149,180, 62177,180, 62179,180, 62203,
+     .180, 62221,180, 62239,180, 62243,180, 62249,180, 62267,
+     .180, 62299,180, 62303,180, 62321,180, 62327,180, 62333,
+     .180, 62359,180, 62371,180, 62413,180, 62417,180, 62441,
+     .180, 62467,180, 62473,180, 62489,180, 62491,180, 62509,
+     .180, 62537,180, 62551,180, 62569,180, 62581,180, 62593,
+     .180, 62597,180, 62599,180, 62603,180, 62621,180, 62629,
+     .180, 62657,180, 62659,180, 62671,180, 62677,180, 62683,
+     .180, 62687,180, 62699,180, 62707,180, 62749,180, 62753,
+     .180, 62761,180, 62767,180, 62789,180, 62813,180, 62827,
+     .180, 62831,180, 62869,180, 62879,180, 62891,180, 62897,
+     .180, 62903,180, 62947,180, 62953,180, 62971,180, 62977,
+     .180, 62981,180, 62993,180, 63001,180, 63007,180, 63013,
+     .180, 63023,180, 63029,180, 63059,180, 63061,180, 63083,
+     .180, 63089,180, 63091,180, 63103,180, 63119,180, 63131,
+     .180, 63163,180, 63227,180, 63233,180, 63239,180, 63259,
+     .180, 63271,180, 63311,180, 63337,180, 63341,180, 63353,
+     .180, 63367,180, 63373,180, 63397,180, 63409,180, 63413,
+     .180, 63421,180, 63427,180, 63437,180, 63443,180, 63449,
+     .180, 63481,180, 63499,180, 63509,180, 63517,180, 63541,
+     .180, 63551,180, 63559,180, 63569,180, 63601,180, 63607,
+     .180, 63617,180, 63623,180, 63629,180, 63637,180, 63653,
+     .180, 63671,180, 63691,180, 63727,180, 63743,180, 63751,
+     .180, 63763,180, 63787,180, 63821,180, 63827,180, 63847,
+     .180, 63899,180, 63917,180, 63931,180, 63989,180, 63997,
+     .180, 64003,180, 64007,180, 64009,180, 64013,180, 64037,
+     .180, 64067,180, 64087,180, 64093,180, 64133,180, 64139,
+     .180, 64147,180, 64157,180, 64163,180, 64169,180, 64181,
+     .180, 64189,180, 64207,180, 64211,180, 64217,180, 64219,
+     .180, 64223,180, 64247,180, 64261,180, 64273,180, 64297,
+     .180, 64307,180, 64309,180, 64331,180, 64357,180, 64379,
+     .180, 64387,180, 64409,180, 64417,180, 64483,180, 64489,
+     .180, 64493,180, 64513,180, 64531,180, 64553,180, 64591,
+     .180, 64601,180, 64609,180, 64613,180, 64619,180, 64627,
+     .180, 64651,180, 64661,180, 64679,180, 64687,180, 64711,
+     .180, 64717,180, 64727,180, 64739,180, 64741,180, 64751,
+     .180, 64757,180, 64793,180, 64813,180, 64819,180, 64823,
+     .180, 64847,180, 64871,180, 64877,180, 64883,180, 64891,
+     .180, 64921,180, 64927,180, 64931,180, 64933,180, 64949,
+     .180, 64961,180, 64987,180, 65047,180, 65059,180, 65063,
+     .180, 65077,180, 65089,180, 65093,180, 65099,180, 65101,
+     .180, 65119,180, 65131,180, 65137,180, 65147,180, 65159,
+     .180, 65171,180, 65179,180, 65191,180, 65203,180, 65207,
+     .180, 65213,180, 65221,180, 65231,180, 65233,180, 65269,
+     .180, 65311,180, 65323,180, 65339,180, 65347,180, 65369,
+     .180, 65393,180, 65399,180, 65407,180, 65431,180, 65437,
+     .180, 65441,180, 65443,180, 65473,180, 65479,180, 65507,
+     .180, 65527,180, 65533,181, 13,181, 15,181, 33,
+     .181, 61,181, 67,181, 141,181, 151,181, 183,
+     .181, 187,181, 201,181, 207,181, 213,181, 217,
+     .181, 223,181, 225,181, 243,181, 253,181, 255,
+     .181, 277,181, 291,181, 297,181, 301,181, 327,
+     .181, 337,181, 357,181, 375,181, 423,181, 453,
+     .181, 477,181, 511,181, 531,181, 547,181, 553,
+     .181, 561,181, 565,181, 595,181, 607,181, 645/
+      DATA ((n(i,j),i=3,4),j=980,nmax)/
+     .181, 657,181, 663,181, 685,181, 687,181, 697,
+     .181, 745,181, 775,181, 787,181, 823,181, 825,
+     .181, 841,181, 853,181, 865,181, 895,181, 903,
+     .181, 943,181, 963,181, 973,181, 981,181, 1005,
+     .181, 1015,181, 1021,181, 1023,181, 1041,181, 1051,
+     .181, 1057,181, 1083,181, 1093,181, 1105,181, 1107,
+     .181, 1117,181, 1135,181, 1137,181, 1155,181, 1167,
+     .181, 1191,181, 1197,181, 1221,181, 1233,181, 1237,
+     .181, 1243,181, 1263/
+      end
+#endif
diff --git a/source/unres/src_MD_DFA/proc_proc.c b/source/unres/src_MD_DFA/proc_proc.c
new file mode 100644 (file)
index 0000000..d77c5a4
--- /dev/null
@@ -0,0 +1,139 @@
+#include <stdlib.h>
+#include <math.h>
+
+#ifdef CRAY
+void PROC_PROC(long int *f, int *i)
+#else
+#ifdef LINUX
+#ifdef PGI
+void proc_proc_(long int *f, int *i)
+#else
+void proc_proc__(long int *f, int *i)
+#endif
+#endif
+#ifdef SGI
+void proc_proc_(long int *f, int *i)
+#endif
+#if defined(WIN) &&  !defined(WINIFL)
+void _stdcall PROC_PROC(long int *f, int *i)
+#endif
+#ifdef WINIFL
+void proc_proc(long int *f, int *i)
+#endif
+#if defined(AIX) || defined(WINPGI) 
+void proc_proc(long int *f, int *i)
+#endif
+#endif
+
+{
+static long int NaNQ;
+static long int NaNQm;
+
+if(*i==-1)
+ {
+ NaNQ=*f;
+ NaNQm=0xffffffff;
+ return;
+ }
+*i=0;
+if(*f==NaNQ)
+ *i=1;
+if(*f==NaNQm)
+ *i=1;
+}
+
+#ifdef CRAY
+void PROC_CONV(char *buf, int *i, int n)
+#endif
+#ifdef LINUX
+void proc_conv__(char *buf, int *i, int n)
+#endif
+#ifdef SGI
+void proc_conv_(char *buf, int *i, int n)
+#endif
+#if defined(AIX) || defined(WINPGI)
+void proc_conv(char *buf, int *i, int n)
+#endif
+#ifdef WIN
+void _stdcall PROC_CONV(char *buf, int *i, int n)
+#endif
+{
+int j;
+
+sscanf(buf,"%d",&j);
+*i=j;
+return;
+}
+
+#ifdef CRAY
+void PROC_CONV_R(char *buf, int *i, int n)
+#endif
+#ifdef LINUX
+void proc_conv_r__(char *buf, int *i, int n)
+#endif
+#ifdef SGI
+void proc_conv_r_(char *buf, int *i, int n)
+#endif
+#if defined(AIX) || defined(WINPGI)
+void proc_conv_r(char *buf, int *i, int n)
+#endif
+#ifdef WIN
+void _stdcall PROC_CONV_R(char *buf, int *i, int n)
+#endif
+
+{
+
+/* sprintf(buf,"%d",*i); */
+
+return;
+}
+
+
+#ifndef IMSL
+#ifdef CRAY
+void DSVRGP(int *n, double *tab1, double *tab2, int *itab)
+#endif
+#ifdef LINUX
+void dsvrgp__(int *n, double *tab1, double *tab2, int *itab)
+#endif
+#ifdef SGI
+void dsvrgp_(int *n, double *tab1, double *tab2, int *itab)
+#endif
+#if defined(AIX) || defined(WINPGI)
+void dsvrgp(int *n, double *tab1, double *tab2, int *itab)
+#endif
+#ifdef WIN
+void _stdcall DSVRGP(int *n, double *tab1, double *tab2, int *itab)
+#endif
+{
+double t;
+int i,j,k;
+
+if(tab1 != tab2)
+ {
+ for(i=0; i<*n; i++)
+  tab2[i]=tab1[i];
+ }
+k=0;
+while(k<*n-1)
+ {
+ j=k;
+ t=tab2[k];
+ for(i=k+1; i<*n; i++)
+  if(t>tab2[i])
+   {
+   j=i;
+   t=tab2[i];
+   }
+ if(j!=k)
+  {
+  tab2[j]=tab2[k];
+  tab2[k]=t;
+  i=itab[j];
+  itab[j]=itab[k];
+  itab[k]=i;
+  }
+ k++;
+ }
+}
+#endif
diff --git a/source/unres/src_MD_DFA/q_measure.F b/source/unres/src_MD_DFA/q_measure.F
new file mode 100644 (file)
index 0000000..417cf35
--- /dev/null
@@ -0,0 +1,487 @@
+      double precision function qwolynes(seg1,seg2,flag,seg3,seg4)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      integer i,j,jl,k,l,il,kl,nl,np,ip,kp,seg1,seg2,seg3,seg4,
+     & secseg
+      integer nsep /3/
+      double precision dist,qm
+      double precision qq,qqij,qqijCM,dij,d0ij,dijCM,d0ijCM
+      logical lprn /.false./
+      logical flag
+      double precision sigm,x
+      sigm(x)=0.25d0*x
+      qq = 0.0d0
+      nl=0 
+       if(flag) then
+        do il=seg1+nsep,seg2
+          do jl=seg1,il-nsep
+            nl=nl+1
+            d0ij=dsqrt((cref(1,jl)-cref(1,il))**2+
+     &                 (cref(2,jl)-cref(2,il))**2+
+     &                 (cref(3,jl)-cref(3,il))**2)
+            dij=dist(il,jl)
+            qqij = dexp(-0.5d0*((dij-d0ij)/(sigm(d0ij)))**2)
+            if (itype(il).ne.10 .or. itype(jl).ne.10) then
+              nl=nl+1
+              d0ijCM=dsqrt(
+     &               (cref(1,jl+nres)-cref(1,il+nres))**2+
+     &               (cref(2,jl+nres)-cref(2,il+nres))**2+
+     &               (cref(3,jl+nres)-cref(3,il+nres))**2)
+              dijCM=dist(il+nres,jl+nres)
+              qqijCM = dexp(-0.5d0*((dijCM-d0ijCM)/(sigm(d0ijCM)))**2)
+            endif
+            qq = qq+qqij+qqijCM
+          enddo
+        enddo  
+        qq = qq/nl
+      else
+      do il=seg1,seg2
+        if((seg3-il).lt.3) then
+             secseg=il+3
+        else
+             secseg=seg3
+        endif 
+          do jl=secseg,seg4
+            nl=nl+1
+            d0ij=dsqrt((cref(1,jl)-cref(1,il))**2+
+     &                 (cref(2,jl)-cref(2,il))**2+
+     &                 (cref(3,jl)-cref(3,il))**2)
+            dij=dist(il,jl)
+            qqij = dexp(-0.5d0*((dij-d0ij)/(sigm(d0ij)))**2)
+            if (itype(il).ne.10 .or. itype(jl).ne.10) then
+              nl=nl+1
+              d0ijCM=dsqrt(
+     &               (cref(1,jl+nres)-cref(1,il+nres))**2+
+     &               (cref(2,jl+nres)-cref(2,il+nres))**2+
+     &               (cref(3,jl+nres)-cref(3,il+nres))**2)
+              dijCM=dist(il+nres,jl+nres)
+              qqijCM = dexp(-0.5d0*((dijCM-d0ijCM)/(sigm(d0ijCM)))**2)
+            endif
+            qq = qq+qqij+qqijCM
+          enddo
+        enddo
+      qq = qq/nl
+      endif
+      qwolynes=1.0d0-qq
+      return 
+      end
+c-------------------------------------------------------------------
+      subroutine qwolynes_prim(seg1,seg2,flag,seg3,seg4)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      integer i,j,jl,k,l,il,nl,seg1,seg2,seg3,seg4,
+     & secseg
+      integer nsep /3/
+      double precision dist
+      double precision dij,d0ij,dijCM,d0ijCM
+      logical lprn /.false./
+      logical flag
+      double precision sigm,x,sim,dd0,fac,ddqij
+      sigm(x)=0.25d0*x
+      
+      do i=0,nres
+        do j=1,3
+          dqwol(j,i)=0.0d0
+          dxqwol(j,i)=0.0d0      
+        enddo
+      enddo
+      nl=0 
+       if(flag) then
+        do il=seg1+nsep,seg2
+          do jl=seg1,il-nsep
+            nl=nl+1
+            d0ij=dsqrt((cref(1,jl)-cref(1,il))**2+
+     &                 (cref(2,jl)-cref(2,il))**2+
+     &                 (cref(3,jl)-cref(3,il))**2)
+            dij=dist(il,jl)
+            sim = 1.0d0/sigm(d0ij)
+            sim = sim*sim
+            dd0 = dij-d0ij
+            fac = dd0*sim/dij*dexp(-0.5d0*dd0*dd0*sim)
+           do k=1,3
+              ddqij = (c(k,il)-c(k,jl))*fac
+              dqwol(k,il)=dqwol(k,il)+ddqij
+              dqwol(k,jl)=dqwol(k,jl)-ddqij
+            enddo
+                    
+            if (itype(il).ne.10 .or. itype(jl).ne.10) then
+              nl=nl+1
+              d0ijCM=dsqrt(
+     &               (cref(1,jl+nres)-cref(1,il+nres))**2+
+     &               (cref(2,jl+nres)-cref(2,il+nres))**2+
+     &               (cref(3,jl+nres)-cref(3,il+nres))**2)
+              dijCM=dist(il+nres,jl+nres)
+              sim = 1.0d0/sigm(d0ijCM)
+              sim = sim*sim
+              dd0=dijCM-d0ijCM
+              fac=dd0*sim/dijCM*dexp(-0.5d0*dd0*dd0*sim)
+              do k=1,3
+                ddqij = (c(k,il+nres)-c(k,jl+nres))*fac
+                dxqwol(k,il)=dxqwol(k,il)+ddqij
+                dxqwol(k,jl)=dxqwol(k,jl)-ddqij
+              enddo
+            endif          
+          enddo
+        enddo  
+       else
+        do il=seg1,seg2
+        if((seg3-il).lt.3) then
+             secseg=il+3
+        else
+             secseg=seg3
+        endif 
+          do jl=secseg,seg4
+            nl=nl+1
+            d0ij=dsqrt((cref(1,jl)-cref(1,il))**2+
+     &                 (cref(2,jl)-cref(2,il))**2+
+     &                 (cref(3,jl)-cref(3,il))**2)
+            dij=dist(il,jl)
+            sim = 1.0d0/sigm(d0ij)
+            sim = sim*sim
+            dd0 = dij-d0ij
+            fac = dd0*sim/dij*dexp(-0.5d0*dd0*dd0*sim)
+            do k=1,3
+              ddqij = (c(k,il)-c(k,jl))*fac
+              dqwol(k,il)=dqwol(k,il)+ddqij
+              dqwol(k,jl)=dqwol(k,jl)-ddqij
+            enddo
+            if (itype(il).ne.10 .or. itype(jl).ne.10) then
+              nl=nl+1
+              d0ijCM=dsqrt(
+     &               (cref(1,jl+nres)-cref(1,il+nres))**2+
+     &               (cref(2,jl+nres)-cref(2,il+nres))**2+
+     &               (cref(3,jl+nres)-cref(3,il+nres))**2)
+              dijCM=dist(il+nres,jl+nres)
+              sim = 1.0d0/sigm(d0ijCM)
+              sim=sim*sim
+              dd0 = dijCM-d0ijCM
+              fac = dd0*sim/dijCM*dexp(-0.5d0*dd0*dd0*sim)
+              do k=1,3
+               ddqij = (c(k,il+nres)-c(k,jl+nres))*fac             
+               dxqwol(k,il)=dxqwol(k,il)+ddqij
+               dxqwol(k,jl)=dxqwol(k,jl)-ddqij  
+              enddo
+            endif 
+          enddo
+        enddo               
+      endif
+       do i=0,nres
+         do j=1,3
+           dqwol(j,i)=dqwol(j,i)/nl
+           dxqwol(j,i)=dxqwol(j,i)/nl
+         enddo
+       enddo                                                                    
+      return 
+      end
+c-------------------------------------------------------------------
+      subroutine qwol_num(seg1,seg2,flag,seg3,seg4)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      integer seg1,seg2,seg3,seg4
+      logical flag
+      double precision qwolan(3,0:maxres),cdummy(3,0:maxres2),
+     & qwolxan(3,0:maxres),q1,q2
+      double precision delta /1.0d-10/
+      do i=0,nres
+        do j=1,3
+          q1=qwolynes(seg1,seg2,flag,seg3,seg4)
+          cdummy(j,i)=c(j,i)
+          c(j,i)=c(j,i)+delta
+          q2=qwolynes(seg1,seg2,flag,seg3,seg4)
+          qwolan(j,i)=(q2-q1)/delta
+          c(j,i)=cdummy(j,i)
+        enddo
+      enddo
+      do i=0,nres
+        do j=1,3
+          q1=qwolynes(seg1,seg2,flag,seg3,seg4)
+          cdummy(j,i+nres)=c(j,i+nres)
+          c(j,i+nres)=c(j,i+nres)+delta
+          q2=qwolynes(seg1,seg2,flag,seg3,seg4)
+          qwolxan(j,i)=(q2-q1)/delta
+          c(j,i+nres)=cdummy(j,i+nres)
+        enddo
+      enddo  
+c      write(iout,*) "Numerical Q carteisan gradients backbone: "
+c      do i=0,nct
+c        write(iout,'(i5,3e15.5)') i, (qwolan(j,i),j=1,3)
+c      enddo
+c      write(iout,*) "Numerical Q carteisan gradients side-chain: "
+c      do i=0,nct
+c        write(iout,'(i5,3e15.5)') i, (qwolxan(j,i),j=1,3)
+c      enddo 
+      return
+      end
+c------------------------------------------------------------------------  
+      subroutine EconstrQ
+c     MD with umbrella_sampling using Wolyne's distance measure as a constraint
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision uzap1,uzap2,hm1,hm2,hmnum
+      double precision ucdelan,dUcartan(3,0:MAXRES)
+     & ,dUxcartan(3,0:MAXRES),cdummy(3,0:MAXRES),
+     &  duconst(3,0:MAXRES),duxconst(3,0:MAXRES)
+      integer kstart,kend,lstart,lend,idummy
+      double precision delta /1.0d-7/
+      do i=0,nres
+         do j=1,3
+            duconst(j,i)=0.0d0
+            dudconst(j,i)=0.0d0            
+            duxconst(j,i)=0.0d0
+            dudxconst(j,i)=0.0d0            
+         enddo
+      enddo
+      Uconst=0.0d0
+      do i=1,nfrag
+         qfrag(i)=qwolynes(ifrag(1,i,iset),ifrag(2,i,iset),.true.
+     &    ,idummy,idummy)
+         Uconst=Uconst+wfrag(i,iset)*harmonic(qfrag(i),qinfrag(i,iset))
+c Calculating the derivatives of Constraint energy with respect to Q
+         Ucdfrag=wfrag(i,iset)*harmonicprim(qfrag(i),
+     &     qinfrag(i,iset))
+c         hm1=harmonic(qfrag(i,iset),qinfrag(i,iset))
+c               hm2=harmonic(qfrag(i,iset)+delta,qinfrag(i,iset))
+c         hmnum=(hm2-hm1)/delta                 
+c         write(iout,*) "harmonicprim frag",harmonicprim(qfrag(i,iset),
+c     &   qinfrag(i,iset))
+c         write(iout,*) "harmonicnum frag", hmnum               
+c Calculating the derivatives of Q with respect to cartesian coordinates
+         call qwolynes_prim(ifrag(1,i,iset),ifrag(2,i,iset),.true.
+     &   ,idummy,idummy)
+c         write(iout,*) "dqwol "
+c         do ii=1,nres
+c          write(iout,'(i5,3e15.5)') ii,(dqwol(j,ii),j=1,3)
+c         enddo
+c         write(iout,*) "dxqwol "
+c         do ii=1,nres
+c           write(iout,'(i5,3e15.5)') ii,(dxqwol(j,ii),j=1,3)
+c         enddo
+c Calculating numerical gradients of dU/dQi and dQi/dxi
+c        call qwol_num(ifrag(1,i,iset),ifrag(2,i,iset),.true.
+c     &  ,idummy,idummy)
+c  The gradients of Uconst in Cs
+         do ii=0,nres
+            do j=1,3
+               duconst(j,ii)=dUconst(j,ii)+ucdfrag*dqwol(j,ii)
+               dUxconst(j,ii)=dUxconst(j,ii)+ucdfrag*dxqwol(j,ii)
+            enddo
+         enddo
+      enddo    
+      do i=1,npair
+         kstart=ifrag(1,ipair(1,i,iset),iset)
+         kend=ifrag(2,ipair(1,i,iset),iset)
+         lstart=ifrag(1,ipair(2,i,iset),iset)
+         lend=ifrag(2,ipair(2,i,iset),iset)
+         qpair(i)=qwolynes(kstart,kend,.false.,lstart,lend)
+         Uconst=Uconst+wpair(i,iset)*harmonic(qpair(i),qinpair(i,iset))
+c  Calculating dU/dQ
+         Ucdpair=wpair(i,iset)*harmonicprim(qpair(i),qinpair(i,iset))
+c         hm1=harmonic(qpair(i),qinpair(i,iset))
+c               hm2=harmonic(qpair(i)+delta,qinpair(i,iset))
+c         hmnum=(hm2-hm1)/delta                 
+c         write(iout,*) "harmonicprim pair ",harmonicprim(qpair(i),
+c     &   qinpair(i,iset))
+c         write(iout,*) "harmonicnum pair ", hmnum      
+c Calculating dQ/dXi
+         call qwolynes_prim(kstart,kend,.false.
+     &   ,lstart,lend)
+c         write(iout,*) "dqwol "
+c         do ii=1,nres
+c          write(iout,'(i5,3e15.5)') ii,(dqwol(j,ii),j=1,3)
+c         enddo
+c         write(iout,*) "dxqwol "
+c         do ii=1,nres
+c          write(iout,'(i5,3e15.5)') ii,(dxqwol(j,ii),j=1,3)
+c        enddo
+c Calculating numerical gradients
+c        call qwol_num(kstart,kend,.false.
+c     &  ,lstart,lend)
+c The gradients of Uconst in Cs
+         do ii=0,nres
+            do j=1,3
+               duconst(j,ii)=dUconst(j,ii)+ucdpair*dqwol(j,ii)
+               dUxconst(j,ii)=dUxconst(j,ii)+ucdpair*dxqwol(j,ii)
+            enddo
+         enddo
+      enddo
+c      write(iout,*) "Uconst inside subroutine ", Uconst
+c Transforming the gradients from Cs to dCs for the backbone
+      do i=0,nres
+         do j=i+1,nres
+           do k=1,3
+             dudconst(k,i)=dudconst(k,i)+duconst(k,j)+duxconst(k,j)
+           enddo
+         enddo
+      enddo
+c  Transforming the gradients from Cs to dCs for the side chains      
+      do i=1,nres
+         do j=1,3
+           dudxconst(j,i)=duxconst(j,i)
+         enddo
+      enddo                     
+c      write(iout,*) "dU/ddc backbone "
+c       do ii=0,nres
+c        write(iout,'(i5,3e15.5)') ii, (dudconst(j,ii),j=1,3)
+c      enddo      
+c      write(iout,*) "dU/ddX side chain "
+c      do ii=1,nres
+c            write(iout,'(i5,3e15.5)') ii,(duxconst(j,ii),j=1,3)
+c      enddo
+c Calculating numerical gradients of dUconst/ddc and dUconst/ddx
+c      call dEconstrQ_num      
+      return
+      end
+c-----------------------------------------------------------------------
+      subroutine dEconstrQ_num
+c Calculating numerical dUconst/ddc and dUconst/ddx      
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision uzap1,uzap2
+      double precision dUcartan(3,0:MAXRES)
+     & ,dUxcartan(3,0:MAXRES),cdummy(3,0:MAXRES)
+      integer kstart,kend,lstart,lend,idummy
+      double precision delta /1.0d-7/
+c     For the backbone
+      do i=0,nres-1
+         do j=1,3
+            dUcartan(j,i)=0.0d0
+            cdummy(j,i)=dc(j,i)
+            dc(j,i)=dc(j,i)+delta
+            call chainbuild_cart
+           uzap2=0.0d0
+            do ii=1,nfrag
+             qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),.true.
+     &         ,idummy,idummy)
+               uzap2=uzap2+wfrag(ii,iset)*harmonic(qfrag(ii),
+     &          qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap2=uzap2+wpair(ii,iset)*harmonic(qpair(ii),
+     &           qinpair(ii,iset))
+            enddo
+            dc(j,i)=cdummy(j,i)
+            call chainbuild_cart
+            uzap1=0.0d0
+             do ii=1,nfrag
+             qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),.true.
+     &         ,idummy,idummy)
+               uzap1=uzap1+wfrag(ii,iset)*harmonic(qfrag(ii),
+     &          qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap1=uzap1+wpair(ii,iset)*harmonic(qpair(ii),
+     &          qinpair(ii,iset))
+            enddo
+            ducartan(j,i)=(uzap2-uzap1)/(delta)            
+         enddo
+      enddo
+c Calculating numerical gradients for dU/ddx
+      do i=0,nres-1
+         duxcartan(j,i)=0.0d0
+         do j=1,3
+            cdummy(j,i)=dc(j,i+nres)
+            dc(j,i+nres)=dc(j,i+nres)+delta
+            call chainbuild_cart
+           uzap2=0.0d0
+            do ii=1,nfrag
+             qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),.true.
+     &         ,idummy,idummy)
+               uzap2=uzap2+wfrag(ii,iset)*harmonic(qfrag(ii),
+     &          qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap2=uzap2+wpair(ii,iset)*harmonic(qpair(ii),
+     &          qinpair(ii,iset))
+            enddo
+            dc(j,i+nres)=cdummy(j,i)
+            call chainbuild_cart
+            uzap1=0.0d0
+             do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),
+     &          ifrag(2,ii,iset),.true.,idummy,idummy)
+               uzap1=uzap1+wfrag(ii,iset)*harmonic(qfrag(ii),
+     &          qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap1=uzap1+wpair(ii,iset)*harmonic(qpair(ii),
+     &          qinpair(ii,iset))
+            enddo
+            duxcartan(j,i)=(uzap2-uzap1)/(delta)           
+         enddo
+      enddo    
+      write(iout,*) "Numerical dUconst/ddc backbone "
+      do ii=0,nres
+        write(iout,'(i5,3e15.5)') ii,(dUcartan(j,ii),j=1,3)
+      enddo
+c      write(iout,*) "Numerical dUconst/ddx side-chain "
+c      do ii=1,nres
+c         write(iout,'(i5,3e15.5)') ii,(dUxcartan(j,ii),j=1,3)
+c      enddo 
+      return
+      end
+c--------------------------------------------------------------------------- 
diff --git a/source/unres/src_MD_DFA/q_measure1.F b/source/unres/src_MD_DFA/q_measure1.F
new file mode 100644 (file)
index 0000000..9c1546d
--- /dev/null
@@ -0,0 +1,470 @@
+      double precision function qwolynes(seg1,seg2,flag,seg3,seg4)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      integer i,j,jl,k,l,il,kl,nl,np,seg1,seg2,seg3,seg4,secseg
+      integer nsep /3/
+      double precision dist,qm
+      double precision qq,qqij,qqijCM,dij,d0ij,dijCM,d0ijCM
+      logical lprn /.false./
+      logical flag
+      qq = 0.0d0
+      nl=0 
+      do i=0,nres
+        do j=1,3
+          dqwol(j,i)=0.0d0
+          dxqwol(j,i)=0.0d0
+        enddo
+      enddo 
+      if (lprn) then
+      write (iout,*) "seg1",seg1," seg2",seg2," seg3",seg3," seg4",seg4,
+     & " flag",flag
+      call flush(iout)
+      endif
+      if (flag) then
+        do il=seg1+nsep,seg2
+          do jl=seg1,il-nsep
+            nl=nl+1
+            if (itype(il).ne.10) then
+              ilnres=il+nres
+            else
+              ilnres=il
+            endif
+            if (itype(jl).ne.10) then
+              jlnres=jl+nres
+            else
+              jlnres=jl
+            endif
+            qqijCM = qcontrib(il,jl,ilnres,jlnres)
+            qq = qq+qqijCM
+            if (lprn) then
+              write (iout,*) "qqijCM",qqijCM
+              call flush(iout)
+            endif
+          enddo
+        enddo
+        if (lprn) then
+          write (iout,*) "nl",nl," qq",qq
+          call flush(iout)
+        endif 
+      else
+        do il=seg1,seg2
+          if((seg3-il).lt.3) then
+             secseg=il+3
+          else
+             secseg=seg3
+          endif 
+          do jl=secseg,seg4
+            nl=nl+1
+            if (itype(il).ne.10) then
+              ilnres=il+nres
+            else
+              ilnres=il
+            endif
+            if (itype(jl).ne.10) then
+              jlnres=jl+nres
+            else
+              jlnres=jl
+            endif
+            qqijCM = qcontrib(il,jl,ilnres,jlnres)
+            qq = qq+qqijCM
+            if (lprn) then
+              write (iout,*) "qqijCM",qqijCM
+              call flush(iout)
+            endif
+          enddo
+        enddo
+      endif
+      qq = qq/nl
+      qwolynes=1.0d0-qq
+      do i=0,nres
+        do j=1,3
+          dqwol(j,i)=dqwol(j,i)/nl
+          dxqwol(j,i)=dxqwol(j,i)/nl
+        enddo
+      enddo
+      return 
+      end
+c-------------------------------------------------------------------
+      subroutine qwol_num(seg1,seg2,flag,seg3,seg4)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      integer seg1,seg2,seg3,seg4
+      logical flag
+      double precision qwolan(3,0:maxres),cdummy(3,0:maxres2),
+     & qwolxan(3,0:maxres),q1,q2
+      double precision delta /1.0d-7/
+      write (iout,*) "seg1",seg1," seg2",seg2," seg3",seg3," seg4",seg4
+      write(iout,*) "dQ/dc backbone "
+       do i=0,nres
+        write(iout,'(i5,3e15.5)') i, (dqwol(j,i),j=1,3)
+      enddo      
+      write(iout,*) "dQ/dX side chain "
+      do i=1,nres
+            write(iout,'(i5,3e15.5)') i,(dxqwol(j,i),j=1,3)
+      enddo
+      do i=1,nres
+        do j=1,3
+          cdummy(j,i)=c(j,i)
+          c(j,i)=c(j,i)-delta
+          q1=qwolynes(seg1,seg2,flag,seg3,seg4)
+          c(j,i)=cdummy(j,i)+delta
+          q2=qwolynes(seg1,seg2,flag,seg3,seg4)
+          qwolan(j,i)=0.5d0*(q2-q1)/delta
+          c(j,i)=cdummy(j,i)
+c          write (iout,*) "i",i," j",j," q1",q1," a2",q2
+        enddo
+      enddo
+      do i=1,nres
+        do j=1,3
+          cdummy(j,i+nres)=c(j,i+nres)
+          c(j,i+nres)=c(j,i+nres)-delta
+          q1=qwolynes(seg1,seg2,flag,seg3,seg4)
+          c(j,i+nres)=cdummy(j,i+nres)+delta
+          q2=qwolynes(seg1,seg2,flag,seg3,seg4)
+          qwolxan(j,i)=0.5d0*(q2-q1)/delta
+          c(j,i+nres)=cdummy(j,i+nres)
+        enddo
+      enddo  
+      write(iout,*) "Numerical Q cartesian gradients backbone: "
+      do i=0,nres
+        write(iout,'(i5,3e15.5)') i, (qwolan(j,i),j=1,3)
+      enddo
+      write(iout,*) "Numerical Q cartesian gradients side-chain: "
+      do i=0,nres
+        write(iout,'(i5,3e15.5)') i, (qwolxan(j,i),j=1,3)
+      enddo 
+      return
+      end
+c------------------------------------------------------------------------  
+      subroutine EconstrQ
+c     MD with umbrella_sampling using Wolyne's distance measure as a constraint
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision uzap1,uzap2,hm1,hm2,hmnum
+      double precision ucdelan,dUcartan(3,0:MAXRES)
+     & ,dUxcartan(3,0:MAXRES),cdummy(3,0:MAXRES),
+     &  duconst(3,0:MAXRES),duxconst(3,0:MAXRES)
+      integer kstart,kend,lstart,lend,idummy
+      double precision delta /1.0d-7/
+      do i=0,nres
+         do j=1,3
+            duconst(j,i)=0.0d0
+            dudconst(j,i)=0.0d0
+            duxconst(j,i)=0.0d0
+            dudxconst(j,i)=0.0d0
+         enddo
+      enddo
+      Uconst=0.0d0
+      do i=1,nfrag
+         qfrag(i)=qwolynes(ifrag(1,i,iset),ifrag(2,i,iset),.true.
+     &   ,idummy,idummy)
+         Uconst=Uconst+wfrag(i,iset)*harmonic(qfrag(i),qinfrag(i,iset))
+c Calculating the derivatives of Constraint energy with respect to Q
+         Ucdfrag=wfrag(i,iset)*harmonicprim(qfrag(i),qinfrag(i,iset))
+c Calculating the derivatives of Q with respect to cartesian coordinates
+         do ii=0,nres
+            do j=1,3
+               duconst(j,ii)=dUconst(j,ii)+ucdfrag*dqwol(j,ii)
+               dUxconst(j,ii)=dUxconst(j,ii)+ucdfrag*dxqwol(j,ii)
+            enddo
+         enddo
+c      write (iout,*) "Calling qwol_num"
+c      call qwol_num(ifrag(1,i),ifrag(2,i),.true.,idummy,idummy)
+      enddo
+      do i=1,npair
+         kstart=ifrag(1,ipair(1,i,iset),iset)
+         kend=ifrag(2,ipair(1,i,iset),iset)
+         lstart=ifrag(1,ipair(2,i,iset),iset)
+         lend=ifrag(2,ipair(2,i,iset),iset)
+         qpair(i)=qwolynes(kstart,kend,.false.,lstart,lend)
+         Uconst=Uconst+wpair(i,iset)*harmonic(qpair(i),qinpair(i,iset))
+c  Calculating dU/dQ
+         Ucdpair=wpair(i,iset)*harmonicprim(qpair(i),qinpair(i,iset))
+c Calculating dQ/dXi
+         do ii=0,nres
+            do j=1,3
+               duconst(j,ii)=dUconst(j,ii)+ucdpair*dqwol(j,ii)
+               dUxconst(j,ii)=dUxconst(j,ii)+ucdpair*dxqwol(j,ii)
+            enddo
+         enddo
+      enddo
+c      write(iout,*) "Uconst inside subroutine ", Uconst
+c Transforming the gradients from Cs to dCs for the backbone
+      do i=0,nres
+         do j=i+1,nres
+           do k=1,3
+             dudconst(k,i)=dudconst(k,i)+duconst(k,j)+duxconst(k,j)
+           enddo
+         enddo
+      enddo
+c  Transforming the gradients from Cs to dCs for the side chains      
+      do i=1,nres
+         do j=1,3
+           dudxconst(j,i)=duxconst(j,i)
+         enddo
+      enddo
+c      write(iout,*) "dU/dc backbone "
+c       do ii=0,nres
+c        write(iout,'(i5,3e15.5)') ii, (duconst(j,ii),j=1,3)
+c      enddo      
+c      write(iout,*) "dU/dX side chain "
+c      do ii=1,nres
+c            write(iout,'(i5,3e15.5)') ii,(duxconst(j,ii),j=1,3)
+c      enddo
+c      write(iout,*) "dU/ddc backbone "
+c       do ii=0,nres
+c        write(iout,'(i5,3e15.5)') ii, (dudconst(j,ii),j=1,3)
+c      enddo      
+c      write(iout,*) "dU/ddX side chain "
+c      do ii=1,nres
+c            write(iout,'(i5,3e15.5)') ii,(dudxconst(j,ii),j=1,3)
+c      enddo
+c Calculating numerical gradients of dUconst/ddc and dUconst/ddx
+c      call dEconstrQ_num      
+      return
+      end
+c-----------------------------------------------------------------------
+      subroutine dEconstrQ_num
+c Calculating numerical dUconst/ddc and dUconst/ddx      
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision uzap1,uzap2
+      double precision dUcartan(3,0:MAXRES)
+     & ,dUxcartan(3,0:MAXRES),cdummy(3,0:MAXRES)
+      integer kstart,kend,lstart,lend,idummy
+      double precision delta /1.0d-7/
+c     For the backbone
+      do i=0,nres-1
+         do j=1,3
+            dUcartan(j,i)=0.0d0
+            cdummy(j,i)=dc(j,i)
+            dc(j,i)=dc(j,i)+delta
+            call chainbuild_cart
+            uzap2=0.0d0
+            do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),
+     &         .true.,idummy,idummy)
+               uzap2=uzap2+wfrag(ii,iset)*harmonic(qfrag(ii),
+     &            qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap2=uzap2+wpair(ii,iset)*
+     &             harmonic(qpair(ii),qinpair(ii,iset))
+            enddo
+            dc(j,i)=cdummy(j,i)
+            call chainbuild_cart
+            uzap1=0.0d0
+             do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),
+     &         .true.,idummy,idummy)
+               uzap1=uzap1+wfrag(ii,iset)*
+     &                 harmonic(qfrag(ii),qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap1=uzap1+wpair(ii,iset)*
+     &            harmonic(qpair(ii),qinpair(ii,iset))
+            enddo
+            ducartan(j,i)=(uzap2-uzap1)/(delta)
+         enddo
+      enddo
+c Calculating numerical gradients for dU/ddx
+      do i=0,nres-1
+         do j=1,3
+           duxcartan(j,i)=0.0d0
+         enddo
+         do j=1,3
+            cdummy(j,i)=dc(j,i+nres)
+            dc(j,i+nres)=dc(j,i+nres)+delta
+            call chainbuild_cart
+            uzap2=0.0d0
+            do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),
+     &         .true.,idummy,idummy)
+               uzap2=uzap2+wfrag(ii,iset)*
+     &            harmonic(qfrag(ii),qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap2=uzap2+wpair(ii,iset)*
+     &             harmonic(qpair(ii),qinpair(ii,iset))
+            enddo
+            dc(j,i+nres)=cdummy(j,i)
+            call chainbuild_cart
+            uzap1=0.0d0
+             do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),
+     &         .true.,idummy,idummy)
+               uzap1=uzap1+wfrag(ii,iset)*
+     &            harmonic(qfrag(ii),qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap1=uzap1+wpair(ii,iset)*
+     &               harmonic(qpair(ii),qinpair(ii,iset))
+            enddo
+            duxcartan(j,i)=(uzap2-uzap1)/(delta)
+         enddo
+      enddo    
+      write(iout,*) "Numerical dUconst/ddc backbone "
+      do ii=0,nres
+        write(iout,'(i5,3e15.5)') ii,(dUcartan(j,ii),j=1,3)
+      enddo
+      write(iout,*) "Numerical dUconst/ddx side-chain "
+      do ii=1,nres
+         write(iout,'(i5,3e15.5)') ii,(dUxcartan(j,ii),j=1,3)
+      enddo 
+      return
+      end
+c--------------------------------------------------------------------------- 
+      double precision function qcontrib(il,jl,il1,jl1)
+      implicit none
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+      integer i,j,k,il,jl,il1,jl1,nd
+      double precision dist
+      external dist
+      double precision dij1,dij2,dij3,dij4,d0ij1,d0ij2,d0ij3,d0ij4,fac,
+     &  fac1,ddave,ssij,ddqij
+      logical lprn /.false./
+      d0ij1=dsqrt((cref(1,jl)-cref(1,il))**2+
+     &           (cref(2,jl)-cref(2,il))**2+
+     &           (cref(3,jl)-cref(3,il))**2)
+      dij1=dist(il,jl)
+      ddave=(dij1-d0ij1)**2
+      nd=1
+      if (jl1.ne.jl) then
+        d0ij2=dsqrt((cref(1,jl1)-cref(1,il))**2+
+     &           (cref(2,jl1)-cref(2,il))**2+
+     &           (cref(3,jl1)-cref(3,il))**2)
+        dij2=dist(il,jl1)
+        ddave=ddave+(dij2-d0ij2)**2
+        nd=nd+1
+      endif
+      if (il1.ne.il) then
+        d0ij3=dsqrt((cref(1,jl)-cref(1,il1))**2+
+     &           (cref(2,jl)-cref(2,il1))**2+
+     &           (cref(3,jl)-cref(3,il1))**2)
+        dij3=dist(il1,jl)
+        ddave=ddave+(dij3-d0ij3)**2
+        nd=nd+1
+      endif
+      if (il1.ne.il .and. jl1.ne.jl) then
+        d0ij4=dsqrt((cref(1,jl1)-cref(1,il1))**2+
+     &           (cref(2,jl1)-cref(2,il1))**2+
+     &           (cref(3,jl1)-cref(3,il1))**2)
+        dij4=dist(il1,jl1)
+        ddave=ddave+(dij4-d0ij4)**2
+        nd=nd+1
+      endif
+      ddave=ddave/nd
+      if (lprn) then
+        write (iout,*) "il",il," jl",jl,
+     &  " itype",itype(il),itype(jl)," nd",nd
+        write (iout,*)"d0ij",d0ij1,d0ij2,d0ij3,d0ij4,
+     &  " dij",dij1,dij2,dij3,dij4," ddave",ddave
+        call flush(iout)
+      endif
+c      ssij = (0.25d0*d0ij1)**2
+      if (il.ne.il1 .and. jl.ne.jl1) then
+        ssij = 16.0d0/(d0ij1*d0ij4)
+      else
+        ssij = 16.0d0/(d0ij1*d0ij1)
+      endif
+      qcontrib = dexp(-0.5d0*ddave*ssij)
+c Compute gradient
+      fac1 = qcontrib*ssij/nd
+      fac = fac1*(dij1-d0ij1)/dij1
+      do k=1,3
+        ddqij = (c(k,il)-c(k,jl))*fac
+        dqwol(k,il)=dqwol(k,il)+ddqij
+        dqwol(k,jl)=dqwol(k,jl)-ddqij
+      enddo
+      if (jl1.ne.jl) then
+        fac = fac1*(dij2-d0ij2)/dij2
+        do k=1,3
+          ddqij = (c(k,il)-c(k,jl1))*fac
+          dqwol(k,il)=dqwol(k,il)+ddqij
+          dxqwol(k,jl)=dxqwol(k,jl)-ddqij
+        enddo
+      endif
+      if (il1.ne.il) then
+        fac = fac1*(dij3-d0ij3)/dij3
+        do k=1,3
+          ddqij = (c(k,il1)-c(k,jl))*fac
+          dxqwol(k,il)=dxqwol(k,il)+ddqij
+          dqwol(k,jl)=dqwol(k,jl)-ddqij
+        enddo
+      endif
+      if (il1.ne.il .and. jl1.ne.jl) then
+        fac = fac1*(dij4-d0ij4)/dij4
+        do k=1,3
+          ddqij = (c(k,il1)-c(k,jl1))*fac
+          dxqwol(k,il)=dxqwol(k,il)+ddqij
+          dxqwol(k,jl)=dxqwol(k,jl)-ddqij
+        enddo
+      endif
+      return
+      end
diff --git a/source/unres/src_MD_DFA/q_measure3.F b/source/unres/src_MD_DFA/q_measure3.F
new file mode 100644 (file)
index 0000000..f0a030e
--- /dev/null
@@ -0,0 +1,529 @@
+      double precision function qwolynes(seg1,seg2,flag,seg3,seg4)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      integer i,j,jl,k,l,il,kl,nl,np,seg1,seg2,seg3,seg4,secseg
+      integer nsep /3/
+      double precision dist,qm
+      double precision qq,qqij,qqijCM,dij,d0ij,dijCM,d0ijCM
+      logical lprn /.false./
+      logical flag
+      qq = 0.0d0
+      nl=0 
+      do i=0,nres
+        do j=1,3
+          dqwol(j,i)=0.0d0
+          dxqwol(j,i)=0.0d0
+        enddo
+      enddo 
+      if (lprn) then
+      write (iout,*) "seg1",seg1," seg2",seg2," seg3",seg3," seg4",seg4,
+     & " flag",flag
+      call flush(iout)
+      endif
+      if (flag) then
+        do il=seg1+nsep,seg2
+          do jl=seg1,il-nsep
+            nl=nl+1
+            if (itype(il).ne.10) then
+              ilnres=il+nres
+            else
+              ilnres=il
+            endif
+            if (itype(jl).ne.10) then
+              jlnres=jl+nres
+            else
+              jlnres=jl
+            endif
+            qqijCM = qcontrib(il,jl,ilnres,jlnres)
+            qq = qq+qqijCM
+            if (lprn) then
+              write (iout,*) "qqijCM",qqijCM
+              call flush(iout)
+            endif
+          enddo
+        enddo
+        if (lprn) then
+          write (iout,*) "nl",nl," qq",qq
+          call flush(iout)
+        endif 
+      else
+        do il=seg1,seg2
+          if((seg3-il).lt.3) then
+             secseg=il+3
+          else
+             secseg=seg3
+          endif 
+          do jl=secseg,seg4
+            nl=nl+1
+            if (itype(il).ne.10) then
+              ilnres=il+nres
+            else
+              ilnres=il
+            endif
+            if (itype(jl).ne.10) then
+              jlnres=jl+nres
+            else
+              jlnres=jl
+            endif
+            qqijCM = qcontrib(il,jl,ilnres,jlnres)
+            qq = qq+qqijCM
+            if (lprn) then
+              write (iout,*) "qqijCM",qqijCM
+              call flush(iout)
+            endif
+          enddo
+        enddo
+      endif
+      qq = qq/nl
+      qwolynes=1.0d0-qq
+      do i=0,nres
+        do j=1,3
+          dqwol(j,i)=dqwol(j,i)/nl
+          dxqwol(j,i)=dxqwol(j,i)/nl
+        enddo
+      enddo
+      return 
+      end
+c-------------------------------------------------------------------
+      subroutine qwol_num(seg1,seg2,flag,seg3,seg4)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN' 
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+      integer seg1,seg2,seg3,seg4
+      logical flag
+      double precision qwolan(3,0:maxres),cdummy(3,0:maxres2),
+     & qwolxan(3,0:maxres),q1,q2
+      double precision delta /1.0d-7/
+      write (iout,*) "seg1",seg1," seg2",seg2," seg3",seg3," seg4",seg4
+      write(iout,*) "dQ/dc backbone "
+       do i=0,nres
+        write(iout,'(i5,3e15.5)') i, (dqwol(j,i),j=1,3)
+      enddo      
+      write(iout,*) "dQ/dX side chain "
+      do i=1,nres
+            write(iout,'(i5,3e15.5)') i,(dxqwol(j,i),j=1,3)
+      enddo
+      do i=1,nres
+        do j=1,3
+          cdummy(j,i)=c(j,i)
+          c(j,i)=c(j,i)-delta
+          q1=qwolynes(seg1,seg2,flag,seg3,seg4)
+          c(j,i)=cdummy(j,i)+delta
+          q2=qwolynes(seg1,seg2,flag,seg3,seg4)
+          qwolan(j,i)=0.5d0*(q2-q1)/delta
+          c(j,i)=cdummy(j,i)
+c          write (iout,*) "i",i," j",j," q1",q1," a2",q2
+        enddo
+      enddo
+      do i=1,nres
+        do j=1,3
+          cdummy(j,i+nres)=c(j,i+nres)
+          c(j,i+nres)=c(j,i+nres)-delta
+          q1=qwolynes(seg1,seg2,flag,seg3,seg4)
+          c(j,i+nres)=cdummy(j,i+nres)+delta
+          q2=qwolynes(seg1,seg2,flag,seg3,seg4)
+          qwolxan(j,i)=0.5d0*(q2-q1)/delta
+          c(j,i+nres)=cdummy(j,i+nres)
+        enddo
+      enddo  
+      write(iout,*) "Numerical Q cartesian gradients backbone: "
+      do i=0,nres
+        write(iout,'(i5,3e15.5)') i, (qwolan(j,i),j=1,3)
+      enddo
+      write(iout,*) "Numerical Q cartesian gradients side-chain: "
+      do i=0,nres
+        write(iout,'(i5,3e15.5)') i, (qwolxan(j,i),j=1,3)
+      enddo 
+      return
+      end
+c------------------------------------------------------------------------  
+      subroutine EconstrQ
+c     MD with umbrella_sampling using Wolyne's distance measure as a constraint
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision uzap1,uzap2,hm1,hm2,hmnum
+      double precision ucdelan,dUcartan(3,0:MAXRES)
+     & ,dUxcartan(3,0:MAXRES),cdummy(3,0:MAXRES),
+     &  duconst(3,0:MAXRES),duxconst(3,0:MAXRES)
+      integer kstart,kend,lstart,lend,idummy
+      double precision delta /1.0d-7/
+      do i=0,nres
+         do j=1,3
+            duconst(j,i)=0.0d0
+            dudconst(j,i)=0.0d0
+            duxconst(j,i)=0.0d0
+            dudxconst(j,i)=0.0d0
+         enddo
+      enddo
+      Uconst=0.0d0
+      do i=1,nfrag
+         qfrag(i)=qwolynes(ifrag(1,i,iset),ifrag(2,i,iset),.true.
+     &   ,idummy,idummy)
+         Uconst=Uconst+wfrag(i,iset)*harmonic(qfrag(i),qinfrag(i,iset))
+c Calculating the derivatives of Constraint energy with respect to Q
+         Ucdfrag=wfrag(i,iset)*harmonicprim(qfrag(i),qinfrag(i,iset))
+c Calculating the derivatives of Q with respect to cartesian coordinates
+         do ii=0,nres
+            do j=1,3
+               duconst(j,ii)=dUconst(j,ii)+ucdfrag*dqwol(j,ii)
+               dUxconst(j,ii)=dUxconst(j,ii)+ucdfrag*dxqwol(j,ii)
+            enddo
+         enddo
+c      write (iout,*) "Calling qwol_num"
+c      call qwol_num(ifrag(1,i,iset),ifrag(2,i,iset),.true.,idummy,idummy)
+      enddo
+c      stop
+      do i=1,npair
+         kstart=ifrag(1,ipair(1,i,iset),iset)
+         kend=ifrag(2,ipair(1,i,iset),iset)
+         lstart=ifrag(1,ipair(2,i,iset),iset)
+         lend=ifrag(2,ipair(2,i,iset),iset)
+         qpair(i)=qwolynes(kstart,kend,.false.,lstart,lend)
+         Uconst=Uconst+wpair(i,iset)*harmonic(qpair(i),qinpair(i,iset))
+c  Calculating dU/dQ
+         Ucdpair=wpair(i,iset)*harmonicprim(qpair(i),qinpair(i,iset))
+c Calculating dQ/dXi
+         do ii=0,nres
+            do j=1,3
+               duconst(j,ii)=dUconst(j,ii)+ucdpair*dqwol(j,ii)
+               dUxconst(j,ii)=dUxconst(j,ii)+ucdpair*dxqwol(j,ii)
+            enddo
+         enddo
+      enddo
+c      write(iout,*) "Uconst inside subroutine ", Uconst
+c Transforming the gradients from Cs to dCs for the backbone
+      do i=0,nres
+         do j=i+1,nres
+           do k=1,3
+             dudconst(k,i)=dudconst(k,i)+duconst(k,j)+duxconst(k,j)
+           enddo
+         enddo
+      enddo
+c  Transforming the gradients from Cs to dCs for the side chains      
+      do i=1,nres
+         do j=1,3
+           dudxconst(j,i)=duxconst(j,i)
+         enddo
+      enddo
+c      write(iout,*) "dU/dc backbone "
+c       do ii=0,nres
+c        write(iout,'(i5,3e15.5)') ii, (duconst(j,ii),j=1,3)
+c      enddo      
+c      write(iout,*) "dU/dX side chain "
+c      do ii=1,nres
+c            write(iout,'(i5,3e15.5)') ii,(duxconst(j,ii),j=1,3)
+c      enddo
+c      write(iout,*) "dU/ddc backbone "
+c       do ii=0,nres
+c        write(iout,'(i5,3e15.5)') ii, (dudconst(j,ii),j=1,3)
+c      enddo      
+c      write(iout,*) "dU/ddX side chain "
+c      do ii=1,nres
+c            write(iout,'(i5,3e15.5)') ii,(dudxconst(j,ii),j=1,3)
+c      enddo
+c Calculating numerical gradients of dUconst/ddc and dUconst/ddx
+c      call dEconstrQ_num      
+      return
+      end
+c-----------------------------------------------------------------------
+      subroutine dEconstrQ_num
+c Calculating numerical dUconst/ddc and dUconst/ddx      
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision uzap1,uzap2
+      double precision dUcartan(3,0:MAXRES)
+     & ,dUxcartan(3,0:MAXRES),cdummy(3,0:MAXRES)
+      integer kstart,kend,lstart,lend,idummy
+      double precision delta /1.0d-7/
+c     For the backbone
+      do i=0,nres-1
+         do j=1,3
+            dUcartan(j,i)=0.0d0
+            cdummy(j,i)=dc(j,i)
+            dc(j,i)=dc(j,i)+delta
+            call chainbuild_cart
+            uzap2=0.0d0
+            do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),
+     &           .true.,idummy,idummy)
+               uzap2=uzap2+wfrag(ii,iset)*
+     &                harmonic(qfrag(ii),qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap2=uzap2+wpair(ii,iset)*
+     &                harmonic(qpair(ii),qinpair(ii,iset))
+            enddo
+            dc(j,i)=cdummy(j,i)
+            call chainbuild_cart
+            uzap1=0.0d0
+             do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),
+     &           .true.,idummy,idummy)
+               uzap1=uzap1+wfrag(ii,iset)*
+     &                harmonic(qfrag(ii),qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap1=uzap1+wpair(ii,iset)*
+     &                harmonic(qpair(ii),qinpair(ii,iset))
+            enddo
+            ducartan(j,i)=(uzap2-uzap1)/(delta)
+         enddo
+      enddo
+c Calculating numerical gradients for dU/ddx
+      do i=0,nres-1
+         do j=1,3
+           duxcartan(j,i)=0.0d0
+         enddo
+         do j=1,3
+            cdummy(j,i)=dc(j,i+nres)
+            dc(j,i+nres)=dc(j,i+nres)+delta
+            call chainbuild_cart
+            uzap2=0.0d0
+            do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),
+     &           .true.,idummy,idummy)
+               uzap2=uzap2+wfrag(ii,iset)*
+     &                harmonic(qfrag(ii),qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap2=uzap2+wpair(ii,iset)*
+     &                harmonic(qpair(ii),qinpair(ii,iset))
+            enddo
+            dc(j,i+nres)=cdummy(j,i)
+            call chainbuild_cart
+            uzap1=0.0d0
+             do ii=1,nfrag
+               qfrag(ii)=qwolynes(ifrag(1,ii,iset),ifrag(2,ii,iset),
+     &           .true.,idummy,idummy)
+               uzap1=uzap1+wfrag(ii,iset)*
+     &                 harmonic(qfrag(ii),qinfrag(ii,iset))
+            enddo
+            do ii=1,npair
+               kstart=ifrag(1,ipair(1,ii,iset),iset)
+               kend=ifrag(2,ipair(1,ii,iset),iset)
+               lstart=ifrag(1,ipair(2,ii,iset),iset)
+               lend=ifrag(2,ipair(2,ii,iset),iset)
+               qpair(ii)=qwolynes(kstart,kend,.false.,lstart,lend)
+               uzap1=uzap1+wpair(ii,iset)*
+     &                harmonic(qpair(ii),qinpair(ii,iset))
+            enddo
+            duxcartan(j,i)=(uzap2-uzap1)/(delta)
+         enddo
+      enddo    
+      write(iout,*) "Numerical dUconst/ddc backbone "
+      do ii=0,nres
+        write(iout,'(i5,3e15.5)') ii,(dUcartan(j,ii),j=1,3)
+      enddo
+      write(iout,*) "Numerical dUconst/ddx side-chain "
+      do ii=1,nres
+         write(iout,'(i5,3e15.5)') ii,(dUxcartan(j,ii),j=1,3)
+      enddo 
+      return
+      end
+c--------------------------------------------------------------------------- 
+      double precision function qcontrib(il,jl,il1,jl1)
+      implicit none
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+      include 'COMMON.LOCAL'
+      integer i,j,k,il,jl,il1,jl1,nd,itl,jtl
+      double precision dist
+      external dist
+      double precision dij,dij1,d0ij,d0ij1,om1,om2,om12,om10,om20,om120
+     &  ,fac,fac1,ddave,ssij,ddqij,d0ii1,d0jj1,rij,eom1,eom2,eom12
+      double precision u(3),v(3),er(3),er0(3),dcosom1(3),dcosom2(3),
+     &  aux1,aux2
+      double precision scalar
+      external scalar
+      logical lprn /.false./
+      if (lprn) write (iout,*) "il",il," jl",jl," il1",il1," jl1",jl1
+      d0ij=dsqrt((cref(1,jl)-cref(1,il))**2+
+     &           (cref(2,jl)-cref(2,il))**2+
+     &           (cref(3,jl)-cref(3,il))**2)
+      dij=dist(il,jl)
+      dij1=dist(il1,jl1)
+      do i=1,3
+        er(i)=(c(i,jl1)-c(i,il1))/dij1
+      enddo
+      do i=1,3
+        er0(i)=cref(i,jl1)-cref(i,il1)
+      enddo
+      d0ij1=dsqrt(scalar(er0,er0))
+      do i=1,3
+        er0(i)=er0(i)/d0ij1
+      enddo
+      if (il.ne.il1 .or. jl.ne.jl1) then
+        ddave=0.5d0*((dij-d0ij)**2+(dij1-d0ij1)**2)
+        nd=2
+      else
+        ddave=(dij-d0ij)**2
+        nd=1
+      endif
+      if (il.ne.il1) then
+        do i=1,3
+          u(i)=cref(i,il1)-cref(i,il)
+        enddo
+        d0ii1=dsqrt(scalar(u,u))
+        do i=1,3
+          u(i)=u(i)/d0ii1
+        enddo
+        if (lprn) then
+        write (iout,*) "u",(u(i),i=1,3)
+        write (iout,*) "er0",(er0(i),i=1,3)
+        om10=scalar(er0,u)
+        om1=scalar(er,dc_norm(1,il1))
+        write (iout,*) "om10",om10," om1",om1
+        endif
+      else
+        om1=0.0d0
+        om10=0.0d0
+      endif
+      if (jl.ne.jl1) then
+        do i=1,3
+          v(i)=cref(i,jl1)-cref(i,jl)
+        enddo
+        d0jj1=dsqrt(scalar(v,v))
+        do i=1,3
+          v(i)=v(i)/d0jj1
+        enddo
+        if (lprn) then
+        write (iout,*) "v",(v(i),i=1,3)
+        write (iout,*) "er0",(er0(i),i=1,3)
+        om20=scalar(er,v)
+        om2=scalar(er,dc_norm(1,jl1))
+        write (iout,*) "om20",om20," om2",om2
+        endif
+      else
+        om2=0.0d0
+        om20=0.0d0
+      endif
+      if (il.ne.il1 .and. jl.ne.jl1) then
+        om120=scalar(u,v)
+        om12=scalar(dc_norm(1,il1),dc_norm(1,jl1))
+      else
+        om12=0.0d0
+        om120=0.0d0
+      endif
+      if (lprn) then
+        write (iout,*) "il",il," jl",jl,itype(il),itype(jl)
+        write (iout,*)"d0ij",d0ij," om10",om10," om20",om20,
+     &   " om120",om120,
+     &  " dij",dij," om1",om1," om2",om2," om12",om12
+        call flush(iout)
+      endif
+      ssij = 16.0d0/(d0ij*d0ij)
+      qcontrib = dexp(-0.5d0*(ddave*ssij+((om1-om10)**2
+     &                       +(om2-om20)**2+(om12-om120)**2)))
+      if (lprn) write (iout,*) "ssij",ssij," qcontrib",qcontrib
+c      qcontrib = dexp(-0.5d0*(ddave*ssij)+(om1-om10)**2+(om2-om20)**2)
+c      qcontrib = dexp(-0.5d0*(ddave*ssij))
+c Compute gradient - radial component
+      fac1 = qcontrib*ssij/nd
+      fac = fac1*(dij-d0ij)/dij
+      do k=1,3
+        ddqij = (c(k,il)-c(k,jl))*fac
+        dqwol(k,il)=dqwol(k,il)+ddqij
+        dqwol(k,jl)=dqwol(k,jl)-ddqij
+      enddo
+      if (il1.ne.il .or. jl1.ne.jl) then
+        fac = fac1*(dij1-d0ij1)/dij1
+        do k=1,3
+          ddqij = (c(k,il1)-c(k,jl1))*fac
+          if (il1.ne.il) then
+            dxqwol(k,il)=dxqwol(k,il)+ddqij
+          else
+            dqwol(k,il)=dqwol(k,il)+ddqij
+          endif
+          if (jl1.ne.jl) then
+            dxqwol(k,jl)=dxqwol(k,jl)-ddqij
+          else
+            dqwol(k,jl)=dqwol(k,jl)-ddqij
+          endif
+        enddo
+      endif
+c      return
+c Orientational contributions
+      rij=1.0d0/dij1
+      eom1=qcontrib*(om1-om10)
+      eom2=qcontrib*(om2-om20)
+      eom12=qcontrib*(om12-om120)
+      do k=1,3
+        dcosom1(k)=rij*(dc_norm(k,il1)-om1*er(k))
+        dcosom2(k)=rij*(dc_norm(k,jl1)-om2*er(k))
+      enddo
+      do k=1,3
+        ddqij=eom1*dcosom1(k)+eom2*dcosom2(k)
+        aux1=(eom12*(dc_norm(k,jl1)-om12*dc_norm(k,il1))
+     &            +eom1*(er(k)-om1*dc_norm(k,il1)))*vbld_inv(il1)
+        aux2=(eom12*(dc_norm(k,il1)-om12*dc_norm(k,jl1))
+     &            +eom2*(er(k)-om2*dc_norm(k,jl1)))*vbld_inv(jl1)
+        dqwol(k,il)=dqwol(k,il)-ddqij-aux1
+        dqwol(k,jl)=dqwol(k,jl)+ddqij-aux2
+        dxqwol(k,il)=dxqwol(k,il)-ddqij+aux1
+c     &            +(eom12*(dc_norm(k,jl1)-om12*dc_norm(k,il1))
+c     &            +eom1*(er(k)-om1*dc_norm(k,il1)))*vbld_inv(il1)
+        dxqwol(k,jl)=dxqwol(k,jl)+ddqij+aux2
+c     &            +(eom12*(dc_norm(k,il1)-om12*dc_norm(k,jl1))
+c     &            +eom2*(er(k)-om2*dc_norm(k,jl1)))*vbld_inv(jl1)
+      enddo
+      return
+      end
diff --git a/source/unres/src_MD_DFA/randgens.f b/source/unres/src_MD_DFA/randgens.f
new file mode 100644 (file)
index 0000000..0daeb35
--- /dev/null
@@ -0,0 +1,99 @@
+C $Date: 1994/10/04 16:19:52 $
+C $Revision: 2.1 $
+C
+C
+C  See help for RANDOMV on the PSFSHARE disk to understand these
+C  subroutines.  This is the VS Fortran version of this code.
+C
+C
+      SUBROUTINE VRND(VEC,N)
+      INTEGER A(250)
+      COMMON /VRANDD/ A, I, I147
+      INTEGER LOOP,I,I147,VEC(N)
+      DO 23000 LOOP=1,N
+      I=I+1
+      IF(.NOT.(I.GE.251))GOTO 23002
+      I=1
+23002 CONTINUE
+      I147=I147+1
+      IF(.NOT.(I147.GE.251))GOTO 23004
+      I147=1
+23004 CONTINUE
+      A(I)=IEOR(A(I147),A(I))
+      VEC(LOOP)=A(I)
+23000 CONTINUE
+      RETURN
+      END
+C
+C
+      DOUBLE PRECISION FUNCTION RNDV(IDUM)
+      DOUBLE PRECISION RM1,RM2,R(99)
+      INTEGER IA1,IC1,M1, IA2,IC2,M2, IA3,IC3,M3, IDUM
+      SAVE
+      DATA IA1,IC1,M1/1279,351762,1664557/
+      DATA IA2,IC2,M2/2011,221592,1048583/
+      DATA IA3,IC3,M3/15551,6150,29101/
+      IF(.NOT.(IDUM.LT.0))GOTO 23006
+      IX1 = MOD(-IDUM,M1)
+      IX1 = MOD(IA1*IX1+IC1,M1)
+      IX2 = MOD(IX1,M2)
+      IX1 = MOD(IA1*IX1+IC1,M1)
+      IX3 = MOD(IX1,M3)
+      RM1 = 1./DBLE(M1)
+      RM2 = 1./DBLE(M2)
+      DO 23008 J = 1,99
+      IX1 = MOD(IA1*IX1+IC1,M1)
+      IX2 = MOD(IA2*IX2+IC2,M2)
+      R(J) = (DBLE(IX1)+DBLE(IX2)*RM2)*RM1
+23008 CONTINUE
+23006 CONTINUE
+      IX1 = MOD(IA1*IX1+IC1,M1)
+      IX2 = MOD(IA2*IX2+IC2,M2)
+      IX3 = MOD(IA3*IX3+IC3,M3)
+      J = 1+(99*IX3)/M3
+      RNDV = R(J)
+      R(J) = (DBLE(IX1)+DBLE(IX2)*RM2)*RM1
+      IDUM = IX1
+      RETURN
+      END
+C
+C
+      SUBROUTINE VRNDST(SEED)
+      INTEGER A(250),LOOP,IDUM,SEED
+      DOUBLE PRECISION RNDV
+      COMMON /VRANDD/ A, I, I147
+      I=0
+      I147=103
+      IDUM=SEED
+      DO 23010 LOOP=1,250
+      A(LOOP)=INT(RNDV(IDUM)*2147483647)
+23010 CONTINUE
+      RETURN
+      END
+C
+C
+      SUBROUTINE VRNDIN(IODEV)
+      INTEGER IODEV, A(250)
+      COMMON/VRANDD/ A, I, I147
+      READ(IODEV) A, I, I147
+      RETURN
+      END
+C
+C
+      SUBROUTINE VRNDOU(IODEV)
+C       This corresponds to VRNDOUT in the APFTN64 version
+      INTEGER IODEV, A(250)
+      COMMON/VRANDD/ A, I, I147
+      WRITE(IODEV) A, I, I147
+      RETURN
+      END
+      FUNCTION RNUNF(N)
+      INTEGER IRAN1(2000)
+      DATA FCTOR /2147483647.0D0/
+C     We get only one random number, here!    DR  9/1/92
+      CALL VRND(IRAN1,1)
+      RNUNF= DBLE( IRAN1(1) ) / FCTOR
+C******************************
+C     write(6,*) 'rnunf  in rnunf = ',rnunf
+      RETURN
+      END
diff --git a/source/unres/src_MD_DFA/rattle.F b/source/unres/src_MD_DFA/rattle.F
new file mode 100644 (file)
index 0000000..a2e5034
--- /dev/null
@@ -0,0 +1,706 @@
+      subroutine rattle1
+c RATTLE algorithm for velocity Verlet - step 1, UNRES
+c AL 9/24/04
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision gginv(maxres2,maxres2),
+     & gdc(3,MAXRES2,MAXRES2),dC_uncor(3,MAXRES2),
+     & Cmat(MAXRES2,MAXRES2),x(MAXRES2),xcorr(3,MAXRES2)
+      common /przechowalnia/ GGinv,gdc,Cmat,nbond
+      integer max_rattle /5/
+      logical lprn /.false./, lprn1 /.false./,not_done
+      double precision tol_rattle /1.0d-5/
+      if (lprn) write (iout,*) "RATTLE1"
+      nbond=nct-nnt
+      do i=nnt,nct
+        if (itype(i).ne.10) nbond=nbond+1
+      enddo
+c Make a folded form of the Ginv-matrix
+      ind=0
+      ii=0
+      do i=nnt,nct-1
+        ii=ii+1
+        do j=1,3
+          ind=ind+1
+          ind1=0
+          jj=0
+          do k=nnt,nct-1
+            jj=jj+1
+            do l=1,3 
+              ind1=ind1+1
+              if (j.eq.1 .and. l.eq.1) GGinv(ii,jj)=Ginv(ind,ind1)
+            enddo
+          enddo
+          do k=nnt,nct
+            if (itype(k).ne.10) then
+              jj=jj+1
+              do l=1,3
+                ind1=ind1+1
+                if (j.eq.1 .and. l.eq.1) GGinv(ii,jj)=Ginv(ind,ind1)
+              enddo
+            endif 
+          enddo
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ii=ii+1
+          do j=1,3
+            ind=ind+1
+            ind1=0
+            jj=0
+            do k=nnt,nct-1
+              jj=jj+1
+              do l=1,3 
+                ind1=ind1+1
+                if (j.eq.1 .and. l.eq.1) GGinv(ii,jj)=Ginv(ind,ind1)
+              enddo
+            enddo
+            do k=nnt,nct
+              if (itype(k).ne.10) then
+                jj=jj+1
+                do l=1,3
+                  ind1=ind1+1
+                  if (j.eq.1 .and. l.eq.1) GGinv(ii,jj)=Ginv(ind,ind1)
+                enddo
+              endif 
+            enddo
+          enddo
+        endif
+      enddo
+      if (lprn1) then
+        write (iout,*) "Matrix GGinv"
+        call MATOUT(nbond,nbond,MAXRES2,MAXRES2,GGinv)
+      endif
+      not_done=.true.
+      iter=0
+      do while (not_done)
+      iter=iter+1
+      if (iter.gt.max_rattle) then
+        write (iout,*) "Error - too many iterations in RATTLE."
+        stop
+      endif
+c Calculate the matrix C = GG**(-1) dC_old o dC
+      ind1=0
+      do i=nnt,nct-1
+        ind1=ind1+1
+        do j=1,3
+          dC_uncor(j,ind1)=dC(j,i)
+        enddo
+      enddo 
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind1=ind1+1
+          do j=1,3
+            dC_uncor(j,ind1)=dC(j,i+nres)
+          enddo
+        endif
+      enddo 
+      do i=1,nbond
+        ind=0
+        do k=nnt,nct-1
+          ind=ind+1
+          do j=1,3
+            gdc(j,i,ind)=GGinv(i,ind)*dC_old(j,k)
+          enddo
+        enddo
+        do k=nnt,nct
+          if (itype(k).ne.10) then
+            ind=ind+1
+            do j=1,3
+              gdc(j,i,ind)=GGinv(i,ind)*dC_old(j,k+nres)
+            enddo
+          endif
+        enddo
+      enddo
+c Calculate deviations from standard virtual-bond lengths
+      ind=0
+      do i=nnt,nct-1
+        ind=ind+1
+        x(ind)=vbld(i+1)**2-vbl**2
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind=ind+1
+          x(ind)=vbld(i+nres)**2-vbldsc0(1,itype(i))**2
+        endif
+      enddo
+      if (lprn) then
+        write (iout,*) "Coordinates and violations"
+        do i=1,nbond
+          write(iout,'(i5,3f10.5,5x,e15.5)') 
+     &     i,(dC_uncor(j,i),j=1,3),x(i)
+        enddo
+        write (iout,*) "Velocities and violations"
+        ind=0
+        do i=nnt,nct-1
+          ind=ind+1
+          write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &     i,ind,(d_t_new(j,i),j=1,3),scalar(d_t_new(1,i),dC_old(1,i))
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            ind=ind+1
+            write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &       i+nres,ind,(d_t_new(j,i+nres),j=1,3),
+     &       scalar(d_t_new(1,i+nres),dC_old(1,i+nres))
+          endif
+        enddo
+c        write (iout,*) "gdc"
+c        do i=1,nbond
+c          write (iout,*) "i",i
+c          do j=1,nbond
+c            write (iout,'(i5,3f10.5)') j,(gdc(k,j,i),k=1,3)
+c          enddo
+c        enddo
+      endif
+      xmax=dabs(x(1))
+      do i=2,nbond
+        if (dabs(x(i)).gt.xmax) then
+          xmax=dabs(x(i))
+        endif
+      enddo
+      if (xmax.lt.tol_rattle) then
+        not_done=.false.
+        goto 100
+      endif
+c Calculate the matrix of the system of equations
+      do i=1,nbond
+        do j=1,nbond
+          Cmat(i,j)=0.0d0
+          do k=1,3
+            Cmat(i,j)=Cmat(i,j)+dC_uncor(k,i)*gdc(k,i,j)
+          enddo
+        enddo
+      enddo
+      if (lprn1) then
+        write (iout,*) "Matrix Cmat"
+        call MATOUT(nbond,nbond,MAXRES2,MAXRES2,Cmat)
+      endif
+      call gauss(Cmat,X,MAXRES2,nbond,1,*10) 
+c Add constraint term to positions
+      ind=0
+      do i=nnt,nct-1
+        ind=ind+1
+        do j=1,3
+          xx=0.0d0
+          do ii=1,nbond
+            xx = xx+x(ii)*gdc(j,ind,ii)
+          enddo
+          xx=0.5d0*xx
+          dC(j,i)=dC(j,i)-xx
+          d_t_new(j,i)=d_t_new(j,i)-xx/d_time
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind=ind+1
+          do j=1,3
+            xx=0.0d0
+            do ii=1,nbond
+              xx = xx+x(ii)*gdc(j,ind,ii)
+            enddo
+            xx=0.5d0*xx
+            dC(j,i+nres)=dC(j,i+nres)-xx
+            d_t_new(j,i+nres)=d_t_new(j,i+nres)-xx/d_time 
+          enddo
+        endif
+      enddo
+c Rebuild the chain using the new coordinates
+      call chainbuild_cart
+      if (lprn) then
+        write (iout,*) "New coordinates, Lagrange multipliers,",
+     &  " and differences between actual and standard bond lengths"
+        ind=0
+        do i=nnt,nct-1
+          ind=ind+1
+          xx=vbld(i+1)**2-vbl**2
+          write (iout,'(i5,3f10.5,5x,f10.5,e15.5)') 
+     &        i,(dC(j,i),j=1,3),x(ind),xx
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            ind=ind+1
+            xx=vbld(i+nres)**2-vbldsc0(1,itype(i))**2
+            write (iout,'(i5,3f10.5,5x,f10.5,e15.5)') 
+     &       i,(dC(j,i+nres),j=1,3),x(ind),xx
+          endif
+        enddo
+        write (iout,*) "Velocities and violations"
+        ind=0
+        do i=nnt,nct-1
+          ind=ind+1
+          write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &     i,ind,(d_t_new(j,i),j=1,3),scalar(d_t_new(1,i),dC_old(1,i))
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            ind=ind+1
+            write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &       i+nres,ind,(d_t_new(j,i+nres),j=1,3),
+     &       scalar(d_t_new(1,i+nres),dC_old(1,i+nres))
+          endif
+        enddo
+      endif
+      enddo
+  100 continue
+      return
+   10 write (iout,*) "Error - singularity in solving the system",
+     & " of equations for Lagrange multipliers."
+      stop
+      end
+c------------------------------------------------------------------------------
+      subroutine rattle2
+c RATTLE algorithm for velocity Verlet - step 2, UNRES
+c AL 9/24/04
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision gginv(maxres2,maxres2),
+     & gdc(3,MAXRES2,MAXRES2),dC_uncor(3,MAXRES2),
+     & Cmat(MAXRES2,MAXRES2),x(MAXRES2)
+      common /przechowalnia/ GGinv,gdc,Cmat,nbond
+      integer max_rattle /5/
+      logical lprn /.false./, lprn1 /.false./,not_done
+      double precision tol_rattle /1.0d-5/
+      if (lprn) write (iout,*) "RATTLE2"
+      if (lprn) write (iout,*) "Velocity correction"
+c Calculate the matrix G dC
+      do i=1,nbond
+        ind=0
+        do k=nnt,nct-1
+          ind=ind+1
+          do j=1,3
+            gdc(j,i,ind)=GGinv(i,ind)*dC(j,k)
+          enddo
+        enddo
+        do k=nnt,nct
+          if (itype(k).ne.10) then
+            ind=ind+1
+            do j=1,3
+              gdc(j,i,ind)=GGinv(i,ind)*dC(j,k+nres)
+            enddo
+          endif
+        enddo
+      enddo
+c      if (lprn) then
+c        write (iout,*) "gdc"
+c        do i=1,nbond
+c          write (iout,*) "i",i
+c          do j=1,nbond
+c            write (iout,'(i5,3f10.5)') j,(gdc(k,j,i),k=1,3)
+c          enddo
+c        enddo
+c      endif
+c Calculate the matrix of the system of equations
+      ind=0
+      do i=nnt,nct-1
+        ind=ind+1
+        do j=1,nbond
+          Cmat(ind,j)=0.0d0
+          do k=1,3
+            Cmat(ind,j)=Cmat(ind,j)+dC(k,i)*gdc(k,ind,j)
+          enddo
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind=ind+1
+          do j=1,nbond
+            Cmat(ind,j)=0.0d0
+            do k=1,3
+              Cmat(ind,j)=Cmat(ind,j)+dC(k,i+nres)*gdc(k,ind,j)
+            enddo
+          enddo
+        endif
+      enddo
+c Calculate the scalar product dC o d_t_new
+      ind=0
+      do i=nnt,nct-1
+        ind=ind+1
+        x(ind)=scalar(d_t(1,i),dC(1,i))
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind=ind+1
+          x(ind)=scalar(d_t(1,i+nres),dC(1,i+nres))
+        endif
+      enddo
+      if (lprn) then
+        write (iout,*) "Velocities and violations"
+        ind=0
+        do i=nnt,nct-1
+          ind=ind+1
+          write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &     i,ind,(d_t(j,i),j=1,3),x(ind)
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            ind=ind+1
+            write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &       i+nres,ind,(d_t(j,i+nres),j=1,3),x(ind)
+          endif
+        enddo
+      endif
+      xmax=dabs(x(1))
+      do i=2,nbond
+        if (dabs(x(i)).gt.xmax) then
+          xmax=dabs(x(i))
+        endif
+      enddo
+      if (xmax.lt.tol_rattle) then
+        not_done=.false.
+        goto 100
+      endif
+      if (lprn1) then
+        write (iout,*) "Matrix Cmat"
+        call MATOUT(nbond,nbond,MAXRES2,MAXRES2,Cmat)
+      endif
+      call gauss(Cmat,X,MAXRES2,nbond,1,*10) 
+c Add constraint term to velocities
+      ind=0
+      do i=nnt,nct-1
+        ind=ind+1
+        do j=1,3
+          xx=0.0d0
+          do ii=1,nbond
+            xx = xx+x(ii)*gdc(j,ind,ii)
+          enddo
+          d_t(j,i)=d_t(j,i)-xx
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind=ind+1
+          do j=1,3
+            xx=0.0d0
+            do ii=1,nbond
+              xx = xx+x(ii)*gdc(j,ind,ii)
+            enddo
+            d_t(j,i+nres)=d_t(j,i+nres)-xx
+          enddo
+        endif
+      enddo
+      if (lprn) then
+        write (iout,*) 
+     &    "New velocities, Lagrange multipliers violations"
+        ind=0
+        do i=nnt,nct-1
+          ind=ind+1
+          if (lprn) write (iout,'(2i5,3f10.5,5x,2e15.5)') 
+     &       i,ind,(d_t(j,i),j=1,3),x(ind),scalar(d_t(1,i),dC(1,i))
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            ind=ind+1
+            write (iout,'(2i5,3f10.5,5x,2e15.5)') 
+     &        i+nres,ind,(d_t(j,i+nres),j=1,3),x(ind),
+     &        scalar(d_t(1,i+nres),dC(1,i+nres))
+          endif
+        enddo
+      endif
+  100 continue
+      return
+   10 write (iout,*) "Error - singularity in solving the system",
+     & " of equations for Lagrange multipliers."
+      stop
+      end
+c------------------------------------------------------------------------------
+      subroutine rattle_brown
+c RATTLE/LINCS algorithm for Brownian dynamics, UNRES
+c AL 9/24/04
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      include 'COMMON.TIME1'
+      double precision gginv(maxres2,maxres2),
+     & gdc(3,MAXRES2,MAXRES2),dC_uncor(3,MAXRES2),
+     & Cmat(MAXRES2,MAXRES2),x(MAXRES2)
+      common /przechowalnia/ GGinv,gdc,Cmat,nbond
+      integer max_rattle /5/
+      logical lprn /.true./, lprn1 /.true./,not_done
+      double precision tol_rattle /1.0d-5/
+      if (lprn) write (iout,*) "RATTLE_BROWN"
+      nbond=nct-nnt
+      do i=nnt,nct
+        if (itype(i).ne.10) nbond=nbond+1
+      enddo
+c Make a folded form of the Ginv-matrix
+      ind=0
+      ii=0
+      do i=nnt,nct-1
+        ii=ii+1
+        do j=1,3
+          ind=ind+1
+          ind1=0
+          jj=0
+          do k=nnt,nct-1
+            jj=jj+1
+            do l=1,3 
+              ind1=ind1+1
+              if (j.eq.1 .and. l.eq.1) GGinv(ii,jj)=fricmat(ind,ind1)
+            enddo
+          enddo
+          do k=nnt,nct
+            if (itype(k).ne.10) then
+              jj=jj+1
+              do l=1,3
+                ind1=ind1+1
+                if (j.eq.1 .and. l.eq.1) GGinv(ii,jj)=fricmat(ind,ind1)
+              enddo
+            endif 
+          enddo
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ii=ii+1
+          do j=1,3
+            ind=ind+1
+            ind1=0
+            jj=0
+            do k=nnt,nct-1
+              jj=jj+1
+              do l=1,3 
+                ind1=ind1+1
+                if (j.eq.1 .and. l.eq.1) GGinv(ii,jj)=fricmat(ind,ind1)
+              enddo
+            enddo
+            do k=nnt,nct
+              if (itype(k).ne.10) then
+                jj=jj+1
+                do l=1,3
+                  ind1=ind1+1
+                  if (j.eq.1 .and. l.eq.1)GGinv(ii,jj)=fricmat(ind,ind1)
+                enddo
+              endif 
+            enddo
+          enddo
+        endif
+      enddo
+      if (lprn1) then
+        write (iout,*) "Matrix GGinv"
+        call MATOUT(nbond,nbond,MAXRES2,MAXRES2,GGinv)
+      endif
+      not_done=.true.
+      iter=0
+      do while (not_done)
+      iter=iter+1
+      if (iter.gt.max_rattle) then
+        write (iout,*) "Error - too many iterations in RATTLE."
+        stop
+      endif
+c Calculate the matrix C = GG**(-1) dC_old o dC
+      ind1=0
+      do i=nnt,nct-1
+        ind1=ind1+1
+        do j=1,3
+          dC_uncor(j,ind1)=dC(j,i)
+        enddo
+      enddo 
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind1=ind1+1
+          do j=1,3
+            dC_uncor(j,ind1)=dC(j,i+nres)
+          enddo
+        endif
+      enddo 
+      do i=1,nbond
+        ind=0
+        do k=nnt,nct-1
+          ind=ind+1
+          do j=1,3
+            gdc(j,i,ind)=GGinv(i,ind)*dC_old(j,k)
+          enddo
+        enddo
+        do k=nnt,nct
+          if (itype(k).ne.10) then
+            ind=ind+1
+            do j=1,3
+              gdc(j,i,ind)=GGinv(i,ind)*dC_old(j,k+nres)
+            enddo
+          endif
+        enddo
+      enddo
+c Calculate deviations from standard virtual-bond lengths
+      ind=0
+      do i=nnt,nct-1
+        ind=ind+1
+        x(ind)=vbld(i+1)**2-vbl**2
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind=ind+1
+          x(ind)=vbld(i+nres)**2-vbldsc0(1,itype(i))**2
+        endif
+      enddo
+      if (lprn) then
+        write (iout,*) "Coordinates and violations"
+        do i=1,nbond
+          write(iout,'(i5,3f10.5,5x,e15.5)') 
+     &     i,(dC_uncor(j,i),j=1,3),x(i)
+        enddo
+        write (iout,*) "Velocities and violations"
+        ind=0
+        do i=nnt,nct-1
+          ind=ind+1
+          write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &     i,ind,(d_t(j,i),j=1,3),scalar(d_t(1,i),dC_old(1,i))
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            ind=ind+1
+            write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &       i+nres,ind,(d_t(j,i+nres),j=1,3),
+     &       scalar(d_t(1,i+nres),dC_old(1,i+nres))
+          endif
+        enddo
+        write (iout,*) "gdc"
+        do i=1,nbond
+          write (iout,*) "i",i
+          do j=1,nbond
+            write (iout,'(i5,3f10.5)') j,(gdc(k,j,i),k=1,3)
+          enddo
+        enddo
+      endif
+      xmax=dabs(x(1))
+      do i=2,nbond
+        if (dabs(x(i)).gt.xmax) then
+          xmax=dabs(x(i))
+        endif
+      enddo
+      if (xmax.lt.tol_rattle) then
+        not_done=.false.
+        goto 100
+      endif
+c Calculate the matrix of the system of equations
+      do i=1,nbond
+        do j=1,nbond
+          Cmat(i,j)=0.0d0
+          do k=1,3
+            Cmat(i,j)=Cmat(i,j)+dC_uncor(k,i)*gdc(k,i,j)
+          enddo
+        enddo
+      enddo
+      if (lprn1) then
+        write (iout,*) "Matrix Cmat"
+        call MATOUT(nbond,nbond,MAXRES2,MAXRES2,Cmat)
+      endif
+      call gauss(Cmat,X,MAXRES2,nbond,1,*10) 
+c Add constraint term to positions
+      ind=0
+      do i=nnt,nct-1
+        ind=ind+1
+        do j=1,3
+          xx=0.0d0
+          do ii=1,nbond
+            xx = xx+x(ii)*gdc(j,ind,ii)
+          enddo
+          xx=-0.5d0*xx
+          d_t(j,i)=d_t(j,i)+xx/d_time
+          dC(j,i)=dC(j,i)+xx
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          ind=ind+1
+          do j=1,3
+            xx=0.0d0
+            do ii=1,nbond
+              xx = xx+x(ii)*gdc(j,ind,ii)
+            enddo
+            xx=-0.5d0*xx
+            d_t(j,i+nres)=d_t(j,i+nres)+xx/d_time 
+            dC(j,i+nres)=dC(j,i+nres)+xx
+          enddo
+        endif
+      enddo
+c Rebuild the chain using the new coordinates
+      call chainbuild_cart
+      if (lprn) then
+        write (iout,*) "New coordinates, Lagrange multipliers,",
+     &  " and differences between actual and standard bond lengths"
+        ind=0
+        do i=nnt,nct-1
+          ind=ind+1
+          xx=vbld(i+1)**2-vbl**2
+          write (iout,'(i5,3f10.5,5x,f10.5,e15.5)') 
+     &        i,(dC(j,i),j=1,3),x(ind),xx
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            ind=ind+1
+            xx=vbld(i+nres)**2-vbldsc0(1,itype(i))**2
+            write (iout,'(i5,3f10.5,5x,f10.5,e15.5)') 
+     &       i,(dC(j,i+nres),j=1,3),x(ind),xx
+          endif
+        enddo
+        write (iout,*) "Velocities and violations"
+        ind=0
+        do i=nnt,nct-1
+          ind=ind+1
+          write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &     i,ind,(d_t_new(j,i),j=1,3),scalar(d_t_new(1,i),dC_old(1,i))
+        enddo
+        do i=nnt,nct
+          if (itype(i).ne.10) then
+            ind=ind+1
+            write (iout,'(2i5,3f10.5,5x,e15.5)') 
+     &       i+nres,ind,(d_t_new(j,i+nres),j=1,3),
+     &       scalar(d_t_new(1,i+nres),dC_old(1,i+nres))
+          endif
+        enddo
+      endif
+      enddo
+  100 continue
+      return
+   10 write (iout,*) "Error - singularity in solving the system",
+     & " of equations for Lagrange multipliers."
+      stop
+      end
diff --git a/source/unres/src_MD_DFA/readpdb.F b/source/unres/src_MD_DFA/readpdb.F
new file mode 100644 (file)
index 0000000..563941b
--- /dev/null
@@ -0,0 +1,414 @@
+      subroutine readpdb
+C Read the PDB file and convert the peptide geometry into virtual-chain 
+C geometry.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.NAMES'
+      include 'COMMON.CONTROL'
+      include 'COMMON.DISTFIT'
+      include 'COMMON.SETUP'
+      character*3 seq,atom,res
+      character*80 card
+      dimension sccor(3,20)
+      integer rescode
+      ibeg=1
+      lsecondary=.false.
+      nhfrag=0
+      nbfrag=0
+      do i=1,10000
+        read (ipdbin,'(a80)',end=10) card
+        if (card(:5).eq.'HELIX') then
+         nhfrag=nhfrag+1
+         lsecondary=.true.
+         read(card(22:25),*) hfrag(1,nhfrag)
+         read(card(34:37),*) hfrag(2,nhfrag)
+        endif
+        if (card(:5).eq.'SHEET') then
+         nbfrag=nbfrag+1
+         lsecondary=.true.
+         read(card(24:26),*) bfrag(1,nbfrag)
+         read(card(35:37),*) bfrag(2,nbfrag)
+crc----------------------------------------
+crc  to be corrected !!!
+         bfrag(3,nbfrag)=bfrag(1,nbfrag)
+         bfrag(4,nbfrag)=bfrag(2,nbfrag)
+crc----------------------------------------
+        endif
+        if (card(:3).eq.'END' .or. card(:3).eq.'TER') goto 10
+C Fish out the ATOM cards.
+        if (index(card(1:4),'ATOM').gt.0) then  
+          read (card(14:16),'(a3)') atom
+          if (atom.eq.'CA' .or. atom.eq.'CH3') then
+C Calculate the CM of the preceding residue.
+            if (ibeg.eq.0) then
+              if (unres_pdb) then
+                do j=1,3
+                  dc(j,ires+nres)=sccor(j,iii)
+                enddo
+              else
+                call sccenter(ires,iii,sccor)
+              endif
+            endif
+C Start new residue.
+            read (card(24:26),*) ires
+            read (card(18:20),'(a3)') res
+            if (ibeg.eq.1) then
+              ishift=ires-1
+              if (res.ne.'GLY' .and. res.ne. 'ACE') then
+                ishift=ishift-1
+                itype(1)=21
+              endif
+              ibeg=0          
+            endif
+            ires=ires-ishift
+            if (res.eq.'ACE') then
+              ity=10
+            else
+              itype(ires)=rescode(ires,res,0)
+            endif
+            read(card(31:54),'(3f8.3)') (c(j,ires),j=1,3)
+c            if(me.eq.king.or..not.out1file)
+c     &       write (iout,'(2i3,2x,a,3f8.3)') 
+c     &       ires,itype(ires),res,(c(j,ires),j=1,3)
+            iii=1
+            do j=1,3
+              sccor(j,iii)=c(j,ires)
+            enddo
+          else if (atom.ne.'O  '.and.atom(1:1).ne.'H' .and. 
+     &             atom.ne.'N  ' .and. atom.ne.'C   ') then
+            iii=iii+1
+            read(card(31:54),'(3f8.3)') (sccor(j,iii),j=1,3)
+          endif
+        endif
+      enddo
+   10 if(me.eq.king.or..not.out1file) 
+     & write (iout,'(a,i5)') ' Nres: ',ires
+C Calculate the CM of the last side chain.
+      if (unres_pdb) then
+        do j=1,3
+          dc(j,ires+nres)=sccor(j,iii)
+        enddo
+      else 
+        call sccenter(ires,iii,sccor)
+      endif
+      nres=ires
+      nsup=nres
+      nstart_sup=1
+      if (itype(nres).ne.10) then
+        nres=nres+1
+        itype(nres)=21
+        if (unres_pdb) then
+          c(1,nres)=c(1,nres-1)+3.8d0
+          c(2,nres)=c(2,nres-1)
+          c(3,nres)=c(3,nres-1)
+        else
+        do j=1,3
+          dcj=c(j,nres-2)-c(j,nres-3)
+          c(j,nres)=c(j,nres-1)+dcj
+          c(j,2*nres)=c(j,nres)
+        enddo
+        endif
+      endif
+      do i=2,nres-1
+        do j=1,3
+          c(j,i+nres)=dc(j,i)
+        enddo
+      enddo
+      do j=1,3
+        c(j,nres+1)=c(j,1)
+        c(j,2*nres)=c(j,nres)
+      enddo
+      if (itype(1).eq.21) then
+        nsup=nsup-1
+        nstart_sup=2
+        if (unres_pdb) then
+          c(1,1)=c(1,2)-3.8d0
+          c(2,1)=c(2,2)
+          c(3,1)=c(3,2)
+        else
+        do j=1,3
+          dcj=c(j,4)-c(j,3)
+          c(j,1)=c(j,2)-dcj
+          c(j,nres+1)=c(j,1)
+        enddo
+        endif
+      endif
+C Calculate internal coordinates.
+      if(me.eq.king.or..not.out1file)then
+       write (iout,'(a)') 
+     &   "Backbone and SC coordinates as read from the PDB"
+       do ires=1,nres
+        write (iout,'(2i3,2x,a,3f8.3,5x,3f8.3)') 
+     &    ires,itype(ires),restyp(itype(ires)),(c(j,ires),j=1,3),
+     &    (c(j,nres+ires),j=1,3)
+       enddo
+      endif
+      call int_from_cart(.true.,.false.)
+      call sc_loc_geom(.false.)
+      do i=1,nres
+        thetaref(i)=theta(i)
+        phiref(i)=phi(i)
+      enddo
+      do i=1,nres-1
+        do j=1,3
+          dc(j,i)=c(j,i+1)-c(j,i)
+          dc_norm(j,i)=dc(j,i)*vbld_inv(i+1)
+        enddo
+      enddo
+      do i=2,nres-1
+        do j=1,3
+          dc(j,i+nres)=c(j,i+nres)-c(j,i)
+          dc_norm(j,i+nres)=dc(j,i+nres)*vbld_inv(i+nres)
+        enddo
+c        write (iout,*) i,(dc(j,i+nres),j=1,3),(dc_norm(j,i+nres),j=1,3),
+c     &   vbld_inv(i+nres)
+      enddo
+c      call chainbuild
+C Copy the coordinates to reference coordinates
+      do i=1,2*nres
+        do j=1,3
+          cref(j,i)=c(j,i)
+        enddo
+      enddo
+
+
+      do j=1,nbfrag     
+        do i=1,4                                                       
+         bfrag(i,j)=bfrag(i,j)-ishift
+        enddo
+      enddo
+
+      do j=1,nhfrag
+        do i=1,2
+         hfrag(i,j)=hfrag(i,j)-ishift
+        enddo
+      enddo
+
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine int_from_cart(lside,lprn)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include 'COMMON.LOCAL'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.NAMES'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SETUP'
+      character*3 seq,atom,res
+      character*80 card
+      dimension sccor(3,20)
+      integer rescode
+      logical lside,lprn
+      if(me.eq.king.or..not.out1file)then
+       if (lprn) then 
+        write (iout,'(/a)') 
+     &  'Internal coordinates calculated from crystal structure.'
+        if (lside) then 
+          write (iout,'(8a)') '  Res  ','       dvb','     Theta',
+     & '     Gamma','    Dsc_id','       Dsc','     Alpha',
+     & '     Beta '
+        else 
+          write (iout,'(4a)') '  Res  ','       dvb','     Theta',
+     & '     Gamma'
+        endif
+       endif
+      endif
+      do i=1,nres-1
+        iti=itype(i)
+        if (dist(i,i+1).lt.2.0D0 .or. dist(i,i+1).gt.5.0D0) then
+          write (iout,'(a,i4)') 'Bad Cartesians for residue',i
+ctest          stop
+        endif
+        vbld(i+1)=dist(i,i+1)
+        vbld_inv(i+1)=1.0d0/vbld(i+1)
+        if (i.gt.1) theta(i+1)=alpha(i-1,i,i+1)
+        if (i.gt.2) phi(i+1)=beta(i-2,i-1,i,i+1)
+      enddo
+c      if (unres_pdb) then
+c        if (itype(1).eq.21) then
+c          theta(3)=90.0d0*deg2rad
+c          phi(4)=180.0d0*deg2rad
+c          vbld(2)=3.8d0
+c          vbld_inv(2)=1.0d0/vbld(2)
+c        endif
+c        if (itype(nres).eq.21) then
+c          theta(nres)=90.0d0*deg2rad
+c          phi(nres)=180.0d0*deg2rad
+c          vbld(nres)=3.8d0
+c          vbld_inv(nres)=1.0d0/vbld(2)
+c        endif
+c      endif
+      if (lside) then
+        do i=2,nres-1
+          do j=1,3
+            c(j,maxres2)=0.5D0*(2*c(j,i)+(c(j,i-1)-c(j,i))*vbld_inv(i)
+     &     +(c(j,i+1)-c(j,i))*vbld_inv(i+1))
+          enddo
+          iti=itype(i)
+          di=dist(i,nres+i)
+          vbld(i+nres)=di
+          if (itype(i).ne.10) then
+            vbld_inv(i+nres)=1.0d0/di
+          else
+            vbld_inv(i+nres)=0.0d0
+          endif
+          if (iti.ne.10) then
+            alph(i)=alpha(nres+i,i,maxres2)
+            omeg(i)=beta(nres+i,i,maxres2,i+1)
+          endif
+          if(me.eq.king.or..not.out1file)then
+           if (lprn)
+     &     write (iout,'(a3,i4,7f10.3)') restyp(iti),i,vbld(i),
+     &     rad2deg*theta(i),rad2deg*phi(i),dsc(iti),vbld(nres+i),
+     &     rad2deg*alph(i),rad2deg*omeg(i)
+          endif
+        enddo
+      else if (lprn) then
+        do i=2,nres
+          iti=itype(i)
+          if(me.eq.king.or..not.out1file)
+     &     write (iout,'(a3,i4,7f10.3)') restyp(iti),i,dist(i,i-1),
+     &     rad2deg*theta(i),rad2deg*phi(i)
+        enddo
+      endif
+      return
+      end
+c-------------------------------------------------------------------------------
+      subroutine sc_loc_geom(lprn)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include 'COMMON.LOCAL'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.NAMES'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SETUP'
+      double precision x_prime(3),y_prime(3),z_prime(3)
+      logical lprn
+      do i=1,nres-1
+        do j=1,3
+          dc_norm(j,i)=vbld_inv(i+1)*(c(j,i+1)-c(j,i))
+        enddo
+      enddo
+      do i=2,nres-1
+        if (itype(i).ne.10) then
+          do j=1,3
+            dc_norm(j,i+nres)=vbld_inv(i+nres)*(c(j,i+nres)-c(j,i))
+          enddo
+        else
+          do j=1,3
+            dc_norm(j,i+nres)=0.0d0
+          enddo
+        endif
+      enddo
+      do i=2,nres-1
+        costtab(i+1) =dcos(theta(i+1))
+        sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
+        cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
+        sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
+        cosfac2=0.5d0/(1.0d0+costtab(i+1))
+        cosfac=dsqrt(cosfac2)
+        sinfac2=0.5d0/(1.0d0-costtab(i+1))
+        sinfac=dsqrt(sinfac2)
+        it=itype(i)
+        if (it.ne.10) then
+c
+C  Compute the axes of tghe local cartesian coordinates system; store in
+c   x_prime, y_prime and z_prime 
+c
+        do j=1,3
+          x_prime(j) = 0.00
+          y_prime(j) = 0.00
+          z_prime(j) = 0.00
+        enddo
+        do j = 1,3
+          x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
+          y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
+        enddo
+        call vecpr(x_prime,y_prime,z_prime)
+c
+C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
+C to local coordinate system. Store in xx, yy, zz.
+c
+        xx=0.0d0
+        yy=0.0d0
+        zz=0.0d0
+        do j = 1,3
+          xx = xx + x_prime(j)*dc_norm(j,i+nres)
+          yy = yy + y_prime(j)*dc_norm(j,i+nres)
+          zz = zz + z_prime(j)*dc_norm(j,i+nres)
+        enddo
+
+        xxref(i)=xx
+        yyref(i)=yy
+        zzref(i)=zz
+        else
+        xxref(i)=0.0d0
+        yyref(i)=0.0d0
+        zzref(i)=0.0d0
+        endif
+      enddo
+      if (lprn) then
+        do i=2,nres
+          iti=itype(i)
+          if(me.eq.king.or..not.out1file)
+     &     write (iout,'(a3,i4,3f10.5)') restyp(iti),i,xxref(i),
+     &      yyref(i),zzref(i)
+        enddo
+      endif
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine sccenter(ires,nscat,sccor)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      dimension sccor(3,20)
+      do j=1,3
+        sccmj=0.0D0
+        do i=1,nscat
+          sccmj=sccmj+sccor(j,i) 
+        enddo
+        dc(j,ires)=sccmj/nscat
+      enddo
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine bond_regular
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'   
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'      
+      include 'COMMON.CALC'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CHAIN'
+      do i=1,nres-1
+       vbld(i+1)=vbl
+       vbld_inv(i+1)=1.0d0/vbld(i+1)
+       vbld(i+1+nres)=dsc(itype(i+1))
+       vbld_inv(i+1+nres)=dsc_inv(itype(i+1))
+c       print *,vbld(i+1),vbld(i+1+nres)
+      enddo
+      return
+      end
+      
diff --git a/source/unres/src_MD_DFA/readrtns.F b/source/unres/src_MD_DFA/readrtns.F
new file mode 100644 (file)
index 0000000..47850c2
--- /dev/null
@@ -0,0 +1,2659 @@
+      subroutine readrtns
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.IOUNITS'
+      logical file_exist
+C Read force-field parameters except weights
+      call parmread
+C Read job setup parameters
+      call read_control
+C Read control parameters for energy minimzation if required
+      if (minim) call read_minim
+C Read MCM control parameters if required
+      if (modecalc.eq.3 .or. modecalc.eq.6) call mcmread
+C Read MD control parameters if reqjuired
+      if (modecalc.eq.12) call read_MDpar
+C Read MREMD control parameters if required
+      if (modecalc.eq.14) then 
+         call read_MDpar
+         call read_REMDpar
+      endif
+C Read MUCA control parameters if required
+      if (lmuca) call read_muca
+C Read CSA control parameters if required (from fort.40 if exists
+C otherwise from general input file)
+csa      if (modecalc.eq.8) then
+csa       inquire (file="fort.40",exist=file_exist)
+csa       if (.not.file_exist) call csaread
+csa      endif 
+cfmc      if (modecalc.eq.10) call mcmfread
+C Read molecule information, molecule geometry, energy-term weights, and
+C restraints if requested
+      call molread
+C Print restraint information
+#ifdef MPI
+      if (.not. out1file .or. me.eq.king) then
+#endif
+      if (nhpb.gt.nss) 
+     &write (iout,'(a,i5,a)') "The following",nhpb-nss,
+     & " distance constraints have been imposed"
+      do i=nss+1,nhpb
+        write (iout,'(3i6,i2,3f10.5)') i-nss,ihpb(i),jhpb(i),
+     &     ibecarb(i),dhpb(i),dhpb1(i),forcon(i)
+      enddo
+#ifdef MPI
+      endif
+#endif
+c      print *,"Processor",myrank," leaves READRTNS"
+      return
+      end
+C-------------------------------------------------------------------------------
+      subroutine read_control
+C
+C Read contorl data
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MP
+      include 'mpif.h'
+      logical OKRandom, prng_restart
+      real*8  r1
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      include 'COMMON.THREAD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CONTROL'
+      include 'COMMON.MCM'
+      include 'COMMON.MAP'
+      include 'COMMON.HEADER'
+csa      include 'COMMON.CSA'
+      include 'COMMON.CHAIN'
+      include 'COMMON.MUCA'
+      include 'COMMON.MD'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SETUP'
+      COMMON /MACHSW/ KDIAG,ICORFL,IXDR
+      character*8 diagmeth(0:3) /'Library','EVVRSP','Givens','Jacobi'/
+      character*80 ucase
+      character*320 controlcard
+
+      nglob_csa=0
+      eglob_csa=1d99
+      nmin_csa=0
+      read (INP,'(a)') titel
+      call card_concat(controlcard)
+c      out1file=index(controlcard,'OUT1FILE').gt.0 .or. fg_rank.gt.0
+c      print *,"Processor",me," fg_rank",fg_rank," out1file",out1file
+      call reada(controlcard,'SEED',seed,0.0D0)
+      call random_init(seed)
+C Set up the time limit (caution! The time must be input in minutes!)
+      read_cart=index(controlcard,'READ_CART').gt.0
+      call readi(controlcard,'CONSTR_DIST',constr_dist,0)
+      call reada(controlcard,'TIMLIM',timlim,960.0D0) ! default 16 hours
+      unres_pdb = index(controlcard,'UNRES_PDB') .gt. 0
+      call reada(controlcard,'SAFETY',safety,30.0D0) ! default 30 minutes
+      call reada(controlcard,'RMSDBC',rmsdbc,3.0D0)
+      call reada(controlcard,'RMSDBC1',rmsdbc1,0.5D0)
+      call reada(controlcard,'RMSDBC1MAX',rmsdbc1max,1.5D0)
+      call reada(controlcard,'RMSDBCM',rmsdbcm,3.0D0)
+      call reada(controlcard,'DRMS',drms,0.1D0)
+      if(me.eq.king .or. .not. out1file .and. fg_rank.eq.0) then
+       write (iout,'(a,f10.1)')'RMSDBC = ',rmsdbc 
+       write (iout,'(a,f10.1)')'RMSDBC1 = ',rmsdbc1 
+       write (iout,'(a,f10.1)')'RMSDBC1MAX = ',rmsdbc1max 
+       write (iout,'(a,f10.1)')'DRMS    = ',drms 
+       write (iout,'(a,f10.1)')'RMSDBCM = ',rmsdbcm 
+       write (iout,'(a,f10.1)') 'Time limit (min):',timlim
+      endif
+      call readi(controlcard,'NZ_START',nz_start,0)
+      call readi(controlcard,'NZ_END',nz_end,0)
+      call readi(controlcard,'IZ_SC',iz_sc,0)
+      timlim=60.0D0*timlim
+      safety = 60.0d0*safety
+      timem=timlim
+      modecalc=0
+      call reada(controlcard,"T_BATH",t_bath,300.0d0)
+      minim=(index(controlcard,'MINIMIZE').gt.0)
+      dccart=(index(controlcard,'CART').gt.0)
+      overlapsc=(index(controlcard,'OVERLAP').gt.0)
+      overlapsc=.not.overlapsc
+      searchsc=(index(controlcard,'NOSEARCHSC').gt.0)
+      searchsc=.not.searchsc
+      sideadd=(index(controlcard,'SIDEADD').gt.0)
+      energy_dec=(index(controlcard,'ENERGY_DEC').gt.0)
+      outpdb=(index(controlcard,'PDBOUT').gt.0)
+      outmol2=(index(controlcard,'MOL2OUT').gt.0)
+      pdbref=(index(controlcard,'PDBREF').gt.0)
+      refstr=pdbref .or. (index(controlcard,'REFSTR').gt.0)
+      indpdb=index(controlcard,'PDBSTART')
+      extconf=(index(controlcard,'EXTCONF').gt.0)
+      call readi(controlcard,'IPRINT',iprint,0)
+      call readi(controlcard,'MAXGEN',maxgen,10000)
+      call readi(controlcard,'MAXOVERLAP',maxoverlap,1000)
+      call readi(controlcard,"KDIAG",kdiag,0)
+      call readi(controlcard,"RESCALE_MODE",rescale_mode,2)
+      if(me.eq.king .or. .not. out1file .and. fg_rank.eq.0)
+     & write (iout,*) "RESCALE_MODE",rescale_mode
+      split_ene=index(controlcard,'SPLIT_ENE').gt.0
+      if (index(controlcard,'REGULAR').gt.0.0D0) then
+        call reada(controlcard,'WEIDIS',weidis,0.1D0)
+        modecalc=1
+        refstr=.true.
+      endif
+      if (index(controlcard,'CHECKGRAD').gt.0) then
+        modecalc=5
+        if (index(controlcard,'CART').gt.0) then
+          icheckgrad=1
+        elseif (index(controlcard,'CARINT').gt.0) then
+          icheckgrad=2
+        else
+          icheckgrad=3
+        endif
+      elseif (index(controlcard,'THREAD').gt.0) then
+        modecalc=2
+        call readi(controlcard,'THREAD',nthread,0)
+        if (nthread.gt.0) then
+          call reada(controlcard,'WEIDIS',weidis,0.1D0)
+        else
+          if (fg_rank.eq.0)
+     &    write (iout,'(a)')'A number has to follow the THREAD keyword.'
+          stop 'Error termination in Read_Control.'
+        endif
+      else if (index(controlcard,'MCMA').gt.0) then
+        modecalc=3
+      else if (index(controlcard,'MCEE').gt.0) then
+        modecalc=6
+      else if (index(controlcard,'MULTCONF').gt.0) then
+        modecalc=4
+      else if (index(controlcard,'MAP').gt.0) then
+        modecalc=7
+        call readi(controlcard,'MAP',nmap,0)
+      else if (index(controlcard,'CSA').gt.0) then
+           write(*,*) "CSA not supported in this version"
+           stop
+csa        modecalc=8
+crc      else if (index(controlcard,'ZSCORE').gt.0) then
+crc   
+crc  ZSCORE is rm from UNRES, modecalc=9 is available
+crc
+crc        modecalc=9
+cfcm      else if (index(controlcard,'MCMF').gt.0) then
+cfmc        modecalc=10
+      else if (index(controlcard,'SOFTREG').gt.0) then
+        modecalc=11
+      else if (index(controlcard,'CHECK_BOND').gt.0) then
+        modecalc=-1
+      else if (index(controlcard,'TEST').gt.0) then
+        modecalc=-2
+      else if (index(controlcard,'MD').gt.0) then
+        modecalc=12
+      else if (index(controlcard,'RE ').gt.0) then
+        modecalc=14
+      endif
+
+      lmuca=index(controlcard,'MUCA').gt.0
+      call readi(controlcard,'MUCADYN',mucadyn,0)      
+      call readi(controlcard,'MUCASMOOTH',muca_smooth,0)
+      if (lmuca .and. (me.eq.king .or. .not.out1file )) 
+     & then
+       write (iout,*) 'MUCADYN=',mucadyn
+       write (iout,*) 'MUCASMOOTH=',muca_smooth
+      endif
+
+      iscode=index(controlcard,'ONE_LETTER')
+      indphi=index(controlcard,'PHI')
+      indback=index(controlcard,'BACK')
+      iranconf=index(controlcard,'RAND_CONF')
+      i2ndstr=index(controlcard,'USE_SEC_PRED')
+      gradout=index(controlcard,'GRADOUT').gt.0
+      gnorm_check=index(controlcard,'GNORM_CHECK').gt.0
+      
+      if(me.eq.king.or..not.out1file)
+     & write (iout,'(2a)') diagmeth(kdiag),
+     &  ' routine used to diagonalize matrices.'
+      return
+      end
+c--------------------------------------------------------------------------
+      subroutine read_REMDpar
+C
+C Read REMD settings
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.REMD'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SETUP'
+      character*80 ucase
+      character*320 controlcard
+      character*3200 controlcard1
+      integer iremd_m_total
+
+      if(me.eq.king.or..not.out1file)
+     & write (iout,*) "REMD setup"
+
+      call card_concat(controlcard)
+      call readi(controlcard,"NREP",nrep,3)
+      call readi(controlcard,"NSTEX",nstex,1000)
+      call reada(controlcard,"RETMIN",retmin,10.0d0)
+      call reada(controlcard,"RETMAX",retmax,1000.0d0)
+      mremdsync=(index(controlcard,'SYNC').gt.0)
+      call readi(controlcard,"NSYN",i_sync_step,100)
+      restart1file=(index(controlcard,'REST1FILE').gt.0)
+      traj1file=(index(controlcard,'TRAJ1FILE').gt.0)
+      call readi(controlcard,"TRAJCACHE",max_cache_traj_use,1)
+      if(max_cache_traj_use.gt.max_cache_traj)
+     &           max_cache_traj_use=max_cache_traj
+      if(me.eq.king.or..not.out1file) then
+cd       if (traj1file) then
+crc caching is in testing - NTWX is not ignored
+cd        write (iout,*) "NTWX value is ignored"
+cd        write (iout,*) "  trajectory is stored to one file by master"
+cd        write (iout,*) "  before exchange at NSTEX intervals"
+cd       endif
+       write (iout,*) "NREP= ",nrep
+       write (iout,*) "NSTEX= ",nstex
+       write (iout,*) "SYNC= ",mremdsync 
+       write (iout,*) "NSYN= ",i_sync_step
+       write (iout,*) "TRAJCACHE= ",max_cache_traj_use
+      endif
+
+      t_exchange_only=(index(controlcard,'TONLY').gt.0)
+      call readi(controlcard,"HREMD",hremd,0)
+      if((me.eq.king.or..not.out1file).and.hremd.gt.0) then 
+        write (iout,*) "Hamiltonian REMD with ",hremd," sets of weights"
+      endif
+      if(usampl.and.hremd.gt.0) then
+            write (iout,'(//a)') 
+     &      "========== ERROR: USAMPL and HREMD cannot be used together"
+#ifdef MPI
+            call MPI_Abort(MPI_COMM_WORLD,IERROR,ERRCODE)            
+#endif
+            stop
+      endif
+
+
+      remd_tlist=.false.
+      if (index(controlcard,'TLIST').gt.0) then
+         remd_tlist=.true.
+         call card_concat(controlcard1)
+         read(controlcard1,*) (remd_t(i),i=1,nrep) 
+         if(me.eq.king.or..not.out1file)
+     &    write (iout,*)'tlist',(remd_t(i),i=1,nrep) 
+      endif
+      remd_mlist=.false.
+      if (index(controlcard,'MLIST').gt.0) then
+         remd_mlist=.true.
+         call card_concat(controlcard1)
+         read(controlcard1,*) (remd_m(i),i=1,nrep)  
+         if(me.eq.king.or..not.out1file) then
+          write (iout,*)'mlist',(remd_m(i),i=1,nrep)
+          iremd_m_total=0
+          do i=1,nrep
+           iremd_m_total=iremd_m_total+remd_m(i)
+          enddo
+          if(hremd.gt.1)then
+           write (iout,*) 'Total number of replicas ',
+     &       iremd_m_total*hremd
+          else
+           write (iout,*) 'Total number of replicas ',iremd_m_total
+          endif
+         endif
+      endif
+      if(me.eq.king.or..not.out1file) 
+     &   write (iout,'(/30(1h=),a,29(1h=)/)') " End of REMD run setup "
+      return
+      end
+c--------------------------------------------------------------------------
+      subroutine read_MDpar
+C
+C Read MD settings
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      character*80 ucase
+      character*320 controlcard
+
+      call card_concat(controlcard)
+      call readi(controlcard,"NSTEP",n_timestep,1000000)
+      call readi(controlcard,"NTWE",ntwe,100)
+      call readi(controlcard,"NTWX",ntwx,1000)
+      call reada(controlcard,"DT",d_time,1.0d-1)
+      call reada(controlcard,"DVMAX",dvmax,2.0d1)
+      call reada(controlcard,"DAMAX",damax,1.0d1)
+      call reada(controlcard,"EDRIFTMAX",edriftmax,1.0d+1)
+      call readi(controlcard,"LANG",lang,0)
+      RESPA = index(controlcard,"RESPA") .gt. 0
+      call readi(controlcard,"NTIME_SPLIT",ntime_split,1)
+      ntime_split0=ntime_split
+      call readi(controlcard,"MAXTIME_SPLIT",maxtime_split,64)
+      ntime_split0=ntime_split
+      call reada(controlcard,"R_CUT",r_cut,2.0d0)
+      call reada(controlcard,"LAMBDA",rlamb,0.3d0)
+      rest = index(controlcard,"REST").gt.0
+      tbf = index(controlcard,"TBF").gt.0
+      call readi(controlcard,"HMC",hmc,0)
+      tnp = index(controlcard,"NOSEPOINCARE99").gt.0
+      tnp1 = index(controlcard,"NOSEPOINCARE01").gt.0
+      tnh = index(controlcard,"NOSEHOOVER96").gt.0
+      if (RESPA.and.tnh)then
+        xiresp = index(controlcard,"XIRESP").gt.0
+      endif
+      call reada(controlcard,"Q_NP",Q_np,0.1d0)
+      usampl = index(controlcard,"USAMPL").gt.0
+
+      mdpdb = index(controlcard,"MDPDB").gt.0
+      call reada(controlcard,"T_BATH",t_bath,300.0d0)
+      call reada(controlcard,"TAU_BATH",tau_bath,1.0d-1) 
+      call reada(controlcard,"EQ_TIME",eq_time,1.0d+4)
+      call readi(controlcard,"RESET_MOMENT",count_reset_moment,1000)
+      if (count_reset_moment.eq.0) count_reset_moment=1000000000
+      call readi(controlcard,"RESET_VEL",count_reset_vel,1000)
+      reset_moment=lang.eq.0 .and. tbf .and. count_reset_moment.gt.0
+      reset_vel=lang.eq.0 .and. tbf .and. count_reset_vel.gt.0
+      if (count_reset_vel.eq.0) count_reset_vel=1000000000
+      large = index(controlcard,"LARGE").gt.0
+      print_compon = index(controlcard,"PRINT_COMPON").gt.0
+      rattle = index(controlcard,"RATTLE").gt.0
+c  if performing umbrella sampling, fragments constrained are read from the fragment file 
+      nset=0
+      if(usampl) then
+        call read_fragments
+      endif
+      
+      if(me.eq.king.or..not.out1file) then
+       write (iout,*)
+       write (iout,'(27(1h=),a26,27(1h=))') " Parameters of the MD run "
+       write (iout,*)
+       write (iout,'(a)') "The units are:"
+       write (iout,'(a)') "positions: angstrom, time: 48.9 fs"
+       write (iout,'(2a)') "velocity: angstrom/(48.9 fs),",
+     &  " acceleration: angstrom/(48.9 fs)**2"
+       write (iout,'(a)') "energy: kcal/mol, temperature: K"
+       write (iout,*)
+       write (iout,'(a60,i10)') "Number of time steps:",n_timestep
+       write (iout,'(a60,f10.5,a)') 
+     &  "Initial time step of numerical integration:",d_time,
+     &  " natural units"
+       write (iout,'(60x,f10.5,a)') d_time*48.9," fs"
+       if (RESPA) then
+        write (iout,'(2a,i4,a)') 
+     &    "A-MTS algorithm used; initial time step for fast-varying",
+     &    " short-range forces split into",ntime_split," steps."
+        write (iout,'(a,f5.2,a,f5.2)') "Short-range force cutoff",
+     &   r_cut," lambda",rlamb
+       endif
+       write (iout,'(2a,f10.5)') 
+     &  "Maximum acceleration threshold to reduce the time step",
+     &  "/increase split number:",damax
+       write (iout,'(2a,f10.5)') 
+     &  "Maximum predicted energy drift to reduce the timestep",
+     &  "/increase split number:",edriftmax
+       write (iout,'(a60,f10.5)') 
+     & "Maximum velocity threshold to reduce velocities:",dvmax
+       write (iout,'(a60,i10)') "Frequency of property output:",ntwe
+       write (iout,'(a60,i10)') "Frequency of coordinate output:",ntwx
+       if (rattle) write (iout,'(a60)') 
+     &  "Rattle algorithm used to constrain the virtual bonds"
+      endif
+      reset_fricmat=1000
+      if (lang.gt.0) then
+        call reada(controlcard,"ETAWAT",etawat,0.8904d0)
+        call reada(controlcard,"RWAT",rwat,1.4d0)
+        call reada(controlcard,"SCAL_FRIC",scal_fric,2.0d-2)
+        surfarea=index(controlcard,"SURFAREA").gt.0
+        call readi(controlcard,"RESET_FRICMAT",reset_fricmat,1000)
+        if(me.eq.king.or..not.out1file)then
+         write (iout,'(/a,$)') "Langevin dynamics calculation"
+         if (lang.eq.1) then
+          write (iout,'(a/)') 
+     &      " with direct integration of Langevin equations"  
+         else if (lang.eq.2) then
+          write (iout,'(a/)') " with TINKER stochasic MD integrator"
+         else if (lang.eq.3) then
+          write (iout,'(a/)') " with Ciccotti's stochasic MD integrator"
+         else if (lang.eq.4) then
+          write (iout,'(a/)') " in overdamped mode"
+         else
+          write (iout,'(//a,i5)') 
+     &      "=========== ERROR: Unknown Langevin dynamics mode:",lang
+          stop
+         endif
+         write (iout,'(a60,f10.5)') "Temperature:",t_bath
+         write (iout,'(a60,f10.5)') "Viscosity of the solvent:",etawat
+         write (iout,'(a60,f10.5)') "Radius of solvent molecule:",rwat
+         write (iout,'(a60,f10.5)') 
+     &   "Scaling factor of the friction forces:",scal_fric
+         if (surfarea) write (iout,'(2a,i10,a)') 
+     &     "Friction coefficients will be scaled by solvent-accessible",
+     &     " surface area every",reset_fricmat," steps."
+        endif
+c Calculate friction coefficients and bounds of stochastic forces
+        eta=6*pi*cPoise*etawat
+        if(me.eq.king.or..not.out1file)
+     &   write(iout,'(a60,f10.5)')"Eta of the solvent in natural units:"
+     &   ,eta
+        gamp=scal_fric*(pstok+rwat)*eta
+        stdfp=dsqrt(2*Rb*t_bath/d_time)
+        do i=1,ntyp
+          gamsc(i)=scal_fric*(restok(i)+rwat)*eta  
+          stdfsc(i)=dsqrt(2*Rb*t_bath/d_time)
+        enddo 
+        if(me.eq.king.or..not.out1file)then
+         write (iout,'(/2a/)') 
+     &   "Radii of site types and friction coefficients and std's of",
+     &   " stochastic forces of fully exposed sites"
+         write (iout,'(a5,f5.2,2f10.5)')'p',pstok,gamp,stdfp*dsqrt(gamp)
+         do i=1,ntyp
+          write (iout,'(a5,f5.2,2f10.5)') restyp(i),restok(i),
+     &     gamsc(i),stdfsc(i)*dsqrt(gamsc(i))
+         enddo
+        endif
+      else if (tbf) then
+        if(me.eq.king.or..not.out1file)then
+         write (iout,'(a)') "Berendsen bath calculation"
+         write (iout,'(a60,f10.5)') "Temperature:",t_bath
+         write (iout,'(a60,f10.5)') "Coupling constant (tau):",tau_bath
+         if (reset_moment) 
+     &   write (iout,'(a,i10,a)') "Momenta will be reset at zero every",
+     &   count_reset_moment," steps"
+         if (reset_vel) 
+     &    write (iout,'(a,i10,a)') 
+     &    "Velocities will be reset at random every",count_reset_vel,
+     &   " steps"
+        endif
+      else if (tnp .or. tnp1 .or. tnh) then
+        if (tnp .or. tnp1) then
+           write (iout,'(a)') "Nose-Poincare bath calculation"
+           if (tnp) write (iout,'(a)') 
+     & "J.Comput.Phys. 151 114 (1999) S.D.Bond B.J.Leimkuhler B.B.Laird"
+           if (tnp1) write (iout,'(a)') "JPSJ 70 75 (2001) S. Nose" 
+        else
+           write (iout,'(a)') "Nose-Hoover bath calculation"
+           write (iout,'(a)') "Mol.Phys. 87 1117 (1996) Martyna et al."
+              nresn=1
+              nyosh=1
+              nnos=1
+              do i=1,nnos
+               qmass(i)=Q_np
+               xlogs(i)=1.0
+               vlogs(i)=0.0
+              enddo
+              do i=1,nyosh
+               WDTI(i) = 1.0*d_time/nresn
+               WDTI2(i)=WDTI(i)/2
+               WDTI4(i)=WDTI(i)/4
+               WDTI8(i)=WDTI(i)/8
+              enddo
+              if (RESPA) then
+               if(xiresp) then
+                 write (iout,'(a)') "NVT-XI-RESPA algorithm"
+               else    
+                 write (iout,'(a)') "NVT-XO-RESPA algorithm"
+               endif
+               do i=1,nyosh
+                WDTIi(i) = 1.0*d_time/nresn/ntime_split
+                WDTIi2(i)=WDTIi(i)/2
+                WDTIi4(i)=WDTIi(i)/4
+                WDTIi8(i)=WDTIi(i)/8
+               enddo
+              endif
+        endif 
+
+        write (iout,'(a60,f10.5)') "Temperature:",t_bath
+        write (iout,'(a60,f10.5)') "Q =",Q_np
+        if (reset_moment) 
+     &  write (iout,'(a,i10,a)') "Momenta will be reset at zero every",
+     &   count_reset_moment," steps"
+        if (reset_vel) 
+     &    write (iout,'(a,i10,a)') 
+     &    "Velocities will be reset at random every",count_reset_vel,
+     &   " steps"
+
+      else if (hmc.gt.0) then
+         write (iout,'(a)') "Hybrid Monte Carlo calculation"
+         write (iout,'(a60,f10.5)') "Temperature:",t_bath
+         write (iout,'(a60,i10)') 
+     &         "Number of MD steps between Metropolis tests:",hmc
+
+      else
+        if(me.eq.king.or..not.out1file)
+     &   write (iout,'(a31)') "Microcanonical mode calculation"
+      endif
+      if(me.eq.king.or..not.out1file)then
+       if (rest) write (iout,'(/a/)') "===== Calculation restarted ===="
+       if (usampl) then
+          write(iout,*) "MD running with constraints."
+          write(iout,*) "Equilibration time ", eq_time, " mtus." 
+          write(iout,*) "Constraining ", nfrag," fragments."
+          write(iout,*) "Length of each fragment, weight and q0:"
+          do iset=1,nset
+           write (iout,*) "Set of restraints #",iset
+           do i=1,nfrag
+              write(iout,'(2i5,f8.1,f7.4)') ifrag(1,i,iset),
+     &           ifrag(2,i,iset),wfrag(i,iset),qinfrag(i,iset)
+           enddo
+           write(iout,*) "constraints between ", npair, "fragments."
+           write(iout,*) "constraint pairs, weights and q0:"
+           do i=1,npair
+            write(iout,'(2i5,f8.1,f7.4)') ipair(1,i,iset),
+     &             ipair(2,i,iset),wpair(i,iset),qinpair(i,iset)
+           enddo
+           write(iout,*) "angle constraints within ", nfrag_back, 
+     &      "backbone fragments."
+           write(iout,*) "fragment, weights:"
+           do i=1,nfrag_back
+            write(iout,'(2i5,3f8.1)') ifrag_back(1,i,iset),
+     &         ifrag_back(2,i,iset),wfrag_back(1,i,iset),
+     &         wfrag_back(2,i,iset),wfrag_back(3,i,iset)
+           enddo
+          enddo
+        iset=mod(kolor,nset)+1
+       endif
+      endif
+      if(me.eq.king.or..not.out1file)
+     & write (iout,'(/30(1h=),a,29(1h=)/)') " End of MD run setup "
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine molread
+C
+C Read molecular data.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      integer error_msg
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.LOCAL'
+      include 'COMMON.NAMES'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.DBASE'
+      include 'COMMON.THREAD'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.TORCNSTR'
+      include 'COMMON.TIME1'
+      include 'COMMON.BOUNDS'
+      include 'COMMON.MD'
+      include 'COMMON.REMD'
+      include 'COMMON.SETUP'
+      character*4 sequence(maxres)
+      integer rescode
+      double precision x(maxvar)
+      character*256 pdbfile
+      character*320 weightcard
+      character*80 weightcard_t,ucase
+      dimension itype_pdb(maxres)
+      common /pizda/ itype_pdb
+      logical seq_comp,fail
+      double precision energia(0:n_ene)
+      integer ilen
+      external ilen
+C
+C Body
+C
+C Read weights of the subsequent energy terms.
+      if(hremd.gt.0) then
+
+       k=0
+       do il=1,hremd
+        do i=1,nrep
+         do j=1,remd_m(i)
+          i2set(k)=il
+          k=k+1
+         enddo
+        enddo
+       enddo
+
+       if(me.eq.king.or..not.out1file) then
+        write (iout,*) 'Reading ',hremd,' sets of weights for HREMD'
+        write (iout,*) 'Current weights for processor ', 
+     &                 me,' set ',i2set(me)
+       endif
+
+       do i=1,hremd
+         call card_concat(weightcard)
+         call reada(weightcard,'WLONG',wlong,1.0D0)
+         call reada(weightcard,'WSC',wsc,wlong)
+         call reada(weightcard,'WSCP',wscp,wlong)
+         call reada(weightcard,'WELEC',welec,1.0D0)
+         call reada(weightcard,'WVDWPP',wvdwpp,welec)
+         call reada(weightcard,'WEL_LOC',wel_loc,1.0D0)
+         call reada(weightcard,'WCORR4',wcorr4,0.0D0)
+         call reada(weightcard,'WCORR5',wcorr5,0.0D0)
+         call reada(weightcard,'WCORR6',wcorr6,0.0D0)
+         call reada(weightcard,'WTURN3',wturn3,1.0D0)
+         call reada(weightcard,'WTURN4',wturn4,1.0D0)
+         call reada(weightcard,'WTURN6',wturn6,1.0D0)
+         call reada(weightcard,'WSCCOR',wsccor,1.0D0)
+         call reada(weightcard,'WSTRAIN',wstrain,1.0D0)
+         call reada(weightcard,'WBOND',wbond,1.0D0)
+         call reada(weightcard,'WTOR',wtor,1.0D0)
+         call reada(weightcard,'WTORD',wtor_d,1.0D0)
+         call reada(weightcard,'WANG',wang,1.0D0)
+         call reada(weightcard,'WSCLOC',wscloc,1.0D0)
+         call reada(weightcard,'SCAL14',scal14,0.4D0)
+         call reada(weightcard,'SCALSCP',scalscp,1.0d0)
+         call reada(weightcard,'CUTOFF',cutoff_corr,7.0d0)
+         call reada(weightcard,'DELT_CORR',delt_corr,0.5d0)
+         call reada(weightcard,'TEMP0',temp0,300.0d0)
+         if (index(weightcard,'SOFT').gt.0) ipot=6
+C 12/1/95 Added weight for the multi-body term WCORR
+         call reada(weightcard,'WCORRH',wcorr,1.0D0)
+         if (wcorr4.gt.0.0d0) wcorr=wcorr4
+
+         hweights(i,1)=wsc
+         hweights(i,2)=wscp
+         hweights(i,3)=welec
+         hweights(i,4)=wcorr
+         hweights(i,5)=wcorr5
+         hweights(i,6)=wcorr6
+         hweights(i,7)=wel_loc
+         hweights(i,8)=wturn3
+         hweights(i,9)=wturn4
+         hweights(i,10)=wturn6
+         hweights(i,11)=wang
+         hweights(i,12)=wscloc
+         hweights(i,13)=wtor
+         hweights(i,14)=wtor_d
+         hweights(i,15)=wstrain
+         hweights(i,16)=wvdwpp
+         hweights(i,17)=wbond
+         hweights(i,18)=scal14
+         hweights(i,21)=wsccor
+
+       enddo
+
+       do i=1,n_ene
+         weights(i)=hweights(i2set(me),i)
+       enddo
+       wsc    =weights(1) 
+       wscp   =weights(2) 
+       welec  =weights(3) 
+       wcorr  =weights(4) 
+       wcorr5 =weights(5) 
+       wcorr6 =weights(6) 
+       wel_loc=weights(7) 
+       wturn3 =weights(8) 
+       wturn4 =weights(9) 
+       wturn6 =weights(10)
+       wang   =weights(11)
+       wscloc =weights(12)
+       wtor   =weights(13)
+       wtor_d =weights(14)
+       wstrain=weights(15)
+       wvdwpp =weights(16)
+       wbond  =weights(17)
+       scal14 =weights(18)
+       wsccor =weights(21)
+
+
+      else
+       call card_concat(weightcard)
+       call reada(weightcard,'WLONG',wlong,1.0D0)
+       call reada(weightcard,'WSC',wsc,wlong)
+       call reada(weightcard,'WSCP',wscp,wlong)
+       call reada(weightcard,'WELEC',welec,1.0D0)
+       call reada(weightcard,'WVDWPP',wvdwpp,welec)
+       call reada(weightcard,'WEL_LOC',wel_loc,1.0D0)
+       call reada(weightcard,'WCORR4',wcorr4,0.0D0)
+       call reada(weightcard,'WCORR5',wcorr5,0.0D0)
+       call reada(weightcard,'WCORR6',wcorr6,0.0D0)
+       call reada(weightcard,'WTURN3',wturn3,1.0D0)
+       call reada(weightcard,'WTURN4',wturn4,1.0D0)
+       call reada(weightcard,'WTURN6',wturn6,1.0D0)
+       call reada(weightcard,'WSCCOR',wsccor,1.0D0)
+       call reada(weightcard,'WSTRAIN',wstrain,1.0D0)
+       call reada(weightcard,'WBOND',wbond,1.0D0)
+       call reada(weightcard,'WTOR',wtor,1.0D0)
+       call reada(weightcard,'WTORD',wtor_d,1.0D0)
+       call reada(weightcard,'WANG',wang,1.0D0)
+       call reada(weightcard,'WSCLOC',wscloc,1.0D0)
+       call reada(weightcard,'SCAL14',scal14,0.4D0)
+       call reada(weightcard,'SCALSCP',scalscp,1.0d0)
+       call reada(weightcard,'CUTOFF',cutoff_corr,7.0d0)
+       call reada(weightcard,'DELT_CORR',delt_corr,0.5d0)
+       call reada(weightcard,'TEMP0',temp0,300.0d0)
+       if (index(weightcard,'SOFT').gt.0) ipot=6
+C 12/1/95 Added weight for the multi-body term WCORR
+       call reada(weightcard,'WCORRH',wcorr,1.0D0)
+       if (wcorr4.gt.0.0d0) wcorr=wcorr4
+       weights(1)=wsc
+       weights(2)=wscp
+       weights(3)=welec
+       weights(4)=wcorr
+       weights(5)=wcorr5
+       weights(6)=wcorr6
+       weights(7)=wel_loc
+       weights(8)=wturn3
+       weights(9)=wturn4
+       weights(10)=wturn6
+       weights(11)=wang
+       weights(12)=wscloc
+       weights(13)=wtor
+       weights(14)=wtor_d
+       weights(15)=wstrain
+       weights(16)=wvdwpp
+       weights(17)=wbond
+       weights(18)=scal14
+       weights(21)=wsccor
+      endif
+
+      if(me.eq.king.or..not.out1file)
+     & write (iout,10) wsc,wscp,welec,wvdwpp,wbond,wang,wscloc,wtor,
+     &  wtor_d,wstrain,wel_loc,wcorr,wcorr5,wcorr6,wsccor,wturn3,
+     &  wturn4,wturn6
+   10 format (/'Energy-term weights (unscaled):'//
+     & 'WSCC=   ',f10.6,' (SC-SC)'/
+     & 'WSCP=   ',f10.6,' (SC-p)'/
+     & 'WELEC=  ',f10.6,' (p-p electr)'/
+     & 'WVDWPP= ',f10.6,' (p-p VDW)'/
+     & 'WBOND=  ',f10.6,' (stretching)'/
+     & 'WANG=   ',f10.6,' (bending)'/
+     & 'WSCLOC= ',f10.6,' (SC local)'/
+     & 'WTOR=   ',f10.6,' (torsional)'/
+     & 'WTORD=  ',f10.6,' (double torsional)'/
+     & 'WSTRAIN=',f10.6,' (SS bridges & dist. cnstr.)'/
+     & 'WEL_LOC=',f10.6,' (multi-body 3-rd order)'/
+     & 'WCORR4= ',f10.6,' (multi-body 4th order)'/
+     & 'WCORR5= ',f10.6,' (multi-body 5th order)'/
+     & 'WCORR6= ',f10.6,' (multi-body 6th order)'/
+     & 'WSCCOR= ',f10.6,' (back-scloc correlation)'/
+     & 'WTURN3= ',f10.6,' (turns, 3rd order)'/
+     & 'WTURN4= ',f10.6,' (turns, 4th order)'/
+     & 'WTURN6= ',f10.6,' (turns, 6th order)')
+      if(me.eq.king.or..not.out1file)then
+       if (wcorr4.gt.0.0d0) then
+        write (iout,'(/2a/)') 'Local-electrostatic type correlation ',
+     &   'between contact pairs of peptide groups'
+        write (iout,'(2(a,f5.3/))') 
+     &  'Cutoff on 4-6th order correlation terms: ',cutoff_corr,
+     &  'Range of quenching the correlation terms:',2*delt_corr 
+       else if (wcorr.gt.0.0d0) then
+        write (iout,'(/2a/)') 'Hydrogen-bonding correlation ',
+     &   'between contact pairs of peptide groups'
+       endif
+       write (iout,'(a,f8.3)') 
+     &  'Scaling factor of 1,4 SC-p interactions:',scal14
+       write (iout,'(a,f8.3)') 
+     &  'General scaling factor of SC-p interactions:',scalscp
+      endif
+      r0_corr=cutoff_corr-delt_corr
+      do i=1,20
+        aad(i,1)=scalscp*aad(i,1)
+        aad(i,2)=scalscp*aad(i,2)
+        bad(i,1)=scalscp*bad(i,1)
+        bad(i,2)=scalscp*bad(i,2)
+      enddo
+      call rescale_weights(t_bath)
+      if(me.eq.king.or..not.out1file)
+     & write (iout,22) wsc,wscp,welec,wvdwpp,wbond,wang,wscloc,wtor,
+     &  wtor_d,wstrain,wel_loc,wcorr,wcorr5,wcorr6,wsccor,wturn3,
+     &  wturn4,wturn6
+   22 format (/'Energy-term weights (scaled):'//
+     & 'WSCC=   ',f10.6,' (SC-SC)'/
+     & 'WSCP=   ',f10.6,' (SC-p)'/
+     & 'WELEC=  ',f10.6,' (p-p electr)'/
+     & 'WVDWPP= ',f10.6,' (p-p VDW)'/
+     & 'WBOND=  ',f10.6,' (stretching)'/
+     & 'WANG=   ',f10.6,' (bending)'/
+     & 'WSCLOC= ',f10.6,' (SC local)'/
+     & 'WTOR=   ',f10.6,' (torsional)'/
+     & 'WTORD=  ',f10.6,' (double torsional)'/
+     & 'WSTRAIN=',f10.6,' (SS bridges & dist. cnstr.)'/
+     & 'WEL_LOC=',f10.6,' (multi-body 3-rd order)'/
+     & 'WCORR4= ',f10.6,' (multi-body 4th order)'/
+     & 'WCORR5= ',f10.6,' (multi-body 5th order)'/
+     & 'WCORR6= ',f10.6,' (multi-body 6th order)'/
+     & 'WSCCOR= ',f10.6,' (back-scloc correlatkion)'/
+     & 'WTURN3= ',f10.6,' (turns, 3rd order)'/
+     & 'WTURN4= ',f10.6,' (turns, 4th order)'/
+     & 'WTURN6= ',f10.6,' (turns, 6th order)')
+      if(me.eq.king.or..not.out1file)
+     & write (iout,*) "Reference temperature for weights calculation:",
+     &  temp0
+      call reada(weightcard,"D0CM",d0cm,3.78d0)
+      call reada(weightcard,"AKCM",akcm,15.1d0)
+      call reada(weightcard,"AKTH",akth,11.0d0)
+      call reada(weightcard,"AKCT",akct,12.0d0)
+      call reada(weightcard,"V1SS",v1ss,-1.08d0)
+      call reada(weightcard,"V2SS",v2ss,7.61d0)
+      call reada(weightcard,"V3SS",v3ss,13.7d0)
+      call reada(weightcard,"EBR",ebr,-5.50D0)
+      if(me.eq.king.or..not.out1file) then
+       write (iout,*) "Parameters of the SS-bond potential:"
+       write (iout,*) "D0CM",d0cm," AKCM",akcm," AKTH",akth,
+     & " AKCT",akct
+       write (iout,*) "V1SS",v1ss," V2SS",v2ss," V3SS",v3ss
+       write (iout,*) "EBR",ebr
+       print *,'indpdb=',indpdb,' pdbref=',pdbref
+      endif
+      if (indpdb.gt.0 .or. pdbref) then
+        read(inp,'(a)') pdbfile
+        if(me.eq.king.or..not.out1file)
+     &   write (iout,'(2a)') 'PDB data will be read from file ',
+     &   pdbfile(:ilen(pdbfile))
+        open(ipdbin,file=pdbfile,status='old',err=33)
+        goto 34 
+  33    write (iout,'(a)') 'Error opening PDB file.'
+        stop
+  34    continue
+c        print *,'Begin reading pdb data'
+        call readpdb
+c        print *,'Finished reading pdb data'
+        if(me.eq.king.or..not.out1file)
+     &   write (iout,'(a,i3,a,i3)')'nsup=',nsup,
+     &   ' nstart_sup=',nstart_sup
+        do i=1,nres
+          itype_pdb(i)=itype(i)
+        enddo
+        close (ipdbin)
+        nnt=nstart_sup
+        nct=nstart_sup+nsup-1
+        call contact(.false.,ncont_ref,icont_ref,co)
+
+        if (sideadd) then 
+         if(me.eq.king.or..not.out1file)
+     &    write(iout,*)'Adding sidechains'
+         maxsi=1000
+         do i=2,nres-1
+          iti=itype(i)
+          if (iti.ne.10) then
+            nsi=0
+            fail=.true.
+            do while (fail.and.nsi.le.maxsi)
+              call gen_side(iti,theta(i+1),alph(i),omeg(i),fail)
+              nsi=nsi+1
+            enddo
+            if(fail) write(iout,*)'Adding sidechain failed for res ',
+     &              i,' after ',nsi,' trials'
+          endif
+         enddo
+        endif  
+      endif
+      if (indpdb.eq.0) then
+C Read sequence if not taken from the pdb file.
+        read (inp,*) nres
+c        print *,'nres=',nres
+        if (iscode.gt.0) then
+          read (inp,'(80a1)') (sequence(i)(1:1),i=1,nres)
+        else
+          read (inp,'(20(1x,a3))') (sequence(i),i=1,nres)
+        endif
+C Convert sequence to numeric code
+        do i=1,nres
+          itype(i)=rescode(i,sequence(i),iscode)
+        enddo
+C Assign initial virtual bond lengths
+        do i=2,nres
+          vbld(i)=vbl
+          vbld_inv(i)=vblinv
+        enddo
+        do i=2,nres-1
+          vbld(i+nres)=dsc(itype(i))
+          vbld_inv(i+nres)=dsc_inv(itype(i))
+c          write (iout,*) "i",i," itype",itype(i),
+c     &      " dsc",dsc(itype(i))," vbld",vbld(i),vbld(i+nres)
+        enddo
+      endif 
+c      print *,nres
+c      print '(20i4)',(itype(i),i=1,nres)
+      do i=1,nres
+#ifdef PROCOR
+        if (itype(i).eq.21 .or. itype(i+1).eq.21) then
+#else
+        if (itype(i).eq.21) then
+#endif
+          itel(i)=0
+#ifdef PROCOR
+        else if (itype(i+1).ne.20) then
+#else
+        else if (itype(i).ne.20) then
+#endif
+         itel(i)=1
+        else
+         itel(i)=2
+        endif  
+      enddo
+      if(me.eq.king.or..not.out1file)then
+       write (iout,*) "ITEL"
+       do i=1,nres-1
+         write (iout,*) i,itype(i),itel(i)
+       enddo
+       print *,'Call Read_Bridge.'
+      endif
+      call read_bridge
+C 8/13/98 Set limits to generating the dihedral angles
+      do i=1,nres
+        phibound(1,i)=-pi
+        phibound(2,i)=pi
+      enddo
+      read (inp,*) ndih_constr
+      if (ndih_constr.gt.0) then
+        read (inp,*) ftors
+        read (inp,*) (idih_constr(i),phi0(i),drange(i),i=1,ndih_constr)
+        if(me.eq.king.or..not.out1file)then
+         write (iout,*) 
+     &   'There are',ndih_constr,' constraints on phi angles.'
+         do i=1,ndih_constr
+          write (iout,'(i5,2f8.3)') idih_constr(i),phi0(i),drange(i)
+         enddo
+        endif
+        do i=1,ndih_constr
+          phi0(i)=deg2rad*phi0(i)
+          drange(i)=deg2rad*drange(i)
+        enddo
+        if(me.eq.king.or..not.out1file)
+     &   write (iout,*) 'FTORS',ftors
+        do i=1,ndih_constr
+          ii = idih_constr(i)
+          phibound(1,ii) = phi0(i)-drange(i)
+          phibound(2,ii) = phi0(i)+drange(i)
+        enddo 
+      endif
+      nnt=1
+#ifdef MPI
+      if (me.eq.king) then
+#endif
+       write (iout,'(a)') 'Boundaries in phi angle sampling:'
+       do i=1,nres
+         write (iout,'(a3,i5,2f10.1)') 
+     &   restyp(itype(i)),i,phibound(1,i)*rad2deg,phibound(2,i)*rad2deg
+       enddo
+#ifdef MP
+      endif
+#endif
+      nct=nres
+cd      print *,'NNT=',NNT,' NCT=',NCT
+      if (itype(1).eq.21) nnt=2
+      if (itype(nres).eq.21) nct=nct-1
+      if (pdbref) then
+        if(me.eq.king.or..not.out1file)
+     &   write (iout,'(a,i3)') 'nsup=',nsup
+        nstart_seq=nnt
+        if (nsup.le.(nct-nnt+1)) then
+          do i=0,nct-nnt+1-nsup
+            if (seq_comp(itype(nnt+i),itype_pdb(nstart_sup),nsup)) then
+              nstart_seq=nnt+i
+              goto 111
+            endif
+          enddo
+          write (iout,'(a)') 
+     &            'Error - sequences to be superposed do not match.'
+          stop
+        else
+          do i=0,nsup-(nct-nnt+1)
+            if (seq_comp(itype(nnt),itype_pdb(nstart_sup+i),nct-nnt+1)) 
+     &      then
+              nstart_sup=nstart_sup+i
+              nsup=nct-nnt+1
+              goto 111
+            endif
+          enddo 
+          write (iout,'(a)') 
+     &            'Error - sequences to be superposed do not match.'
+        endif
+  111   continue
+        if (nsup.eq.0) nsup=nct-nnt
+        if (nstart_sup.eq.0) nstart_sup=nnt
+        if (nstart_seq.eq.0) nstart_seq=nnt
+        if(me.eq.king.or..not.out1file)  
+     &   write (iout,*) 'nsup=',nsup,' nstart_sup=',nstart_sup,
+     &                 ' nstart_seq=',nstart_seq
+      endif
+c--- Zscore rms -------
+      if (nz_start.eq.0) nz_start=nnt
+      if (nz_end.eq.0 .and. nsup.gt.0) then
+        nz_end=nnt+nsup-1
+      else if (nz_end.eq.0) then
+        nz_end=nct
+      endif
+      if(me.eq.king.or..not.out1file)then
+       write (iout,*) 'NZ_START=',nz_start,' NZ_END=',nz_end
+       write (iout,*) 'IZ_SC=',iz_sc
+      endif
+c----------------------
+      call init_int_table
+      if (refstr) then
+        if (.not.pdbref) then
+          call read_angles(inp,*38)
+          goto 39
+   38     write (iout,'(a)') 'Error reading reference structure.'
+#ifdef MPI
+          call MPI_Finalize(MPI_COMM_WORLD,IERROR)
+          stop 'Error reading reference structure'
+#endif
+   39     call chainbuild
+          call setup_var
+czscore          call geom_to_var(nvar,coord_exp_zs(1,1))
+          nstart_sup=nnt
+          nstart_seq=nnt
+          nsup=nct-nnt+1
+          do i=1,2*nres
+            do j=1,3
+              cref(j,i)=c(j,i)
+            enddo
+          enddo
+          call contact(.true.,ncont_ref,icont_ref,co)
+        endif
+        if(me.eq.king.or..not.out1file)
+     &   write (iout,*) 'Contact order:',co
+        if (pdbref) then
+        if(me.eq.king.or..not.out1file)
+     &   write (2,*) 'Shifting contacts:',nstart_seq,nstart_sup
+        do i=1,ncont_ref
+          do j=1,2
+            icont_ref(j,i)=icont_ref(j,i)+nstart_seq-nstart_sup
+          enddo
+          if(me.eq.king.or..not.out1file)
+     &     write (2,*) i,' ',restyp(itype(icont_ref(1,i))),' ',
+     &     icont_ref(1,i),' ',
+     &     restyp(itype(icont_ref(2,i))),' ',icont_ref(2,i)
+        enddo
+        endif
+      endif
+c        write (iout,*) "constr_dist",constr_dist,nstart_sup,nsup
+      if (constr_dist.gt.0) then
+        call read_dist_constr
+        call hpb_partition
+      endif
+c      write (iout,*) "After read_dist_constr nhpb",nhpb
+c      call flush(iout)
+      if (indpdb.eq.0 .and. modecalc.ne.2 .and. modecalc.ne.4
+     &    .and. modecalc.ne.8 .and. modecalc.ne.9 .and. 
+     &    modecalc.ne.10) then
+C If input structure hasn't been supplied from the PDB file read or generate
+C initial geometry.
+        if (iranconf.eq.0 .and. .not. extconf) then
+          if(me.eq.king.or..not.out1file .and.fg_rank.eq.0)
+     &     write (iout,'(a)') 'Initial geometry will be read in.'
+          if (read_cart) then
+            read(inp,'(8f10.5)',end=36,err=36)
+     &       ((c(l,k),l=1,3),k=1,nres),
+     &       ((c(l,k+nres),l=1,3),k=nnt,nct)
+            call int_from_cart1(.false.)
+            do i=1,nres-1
+              do j=1,3
+                dc(j,i)=c(j,i+1)-c(j,i)
+                dc_norm(j,i)=dc_norm(j,i)*vbld_inv(i+1)
+              enddo
+            enddo
+            do i=nnt,nct
+              if (itype(i).ne.10) then
+                do j=1,3
+                  dc(j,i+nres)=c(j,i+nres)-c(j,i) 
+                  dc_norm(j,i+nres)=dc_norm(j,i+nres)*vbld_inv(i+nres)
+                enddo
+              endif
+            enddo
+            return
+          else
+            call read_angles(inp,*36)
+          endif
+          goto 37
+   36     write (iout,'(a)') 'Error reading angle file.'
+#ifdef MPI
+         call mpi_finalize( MPI_COMM_WORLD,IERR )
+#endif
+          stop 'Error reading angle file.'
+   37     continue 
+        else if (extconf) then
+         if(me.eq.king.or..not.out1file .and. fg_rank.eq.0)
+     &    write (iout,'(a)') 'Extended chain initial geometry.'
+         do i=3,nres
+          theta(i)=90d0*deg2rad
+         enddo
+         do i=4,nres
+          phi(i)=180d0*deg2rad
+         enddo
+         do i=2,nres-1
+          alph(i)=110d0*deg2rad
+         enddo
+         do i=2,nres-1
+          omeg(i)=-120d0*deg2rad
+         enddo
+        else
+          if(me.eq.king.or..not.out1file)
+     &     write (iout,'(a)') 'Random-generated initial geometry.'
+
+
+#ifdef MPI
+          if (me.eq.king  .or. fg_rank.eq.0 .and. (
+     &           modecalc.eq.12 .or. modecalc.eq.14) ) then  
+#endif
+            do itrial=1,100
+              itmp=1
+              call gen_rand_conf(itmp,*30)
+              goto 40
+   30         write (iout,*) 'Failed to generate random conformation',
+     &          ', itrial=',itrial
+              write (*,*) 'Processor:',me,
+     &          ' Failed to generate random conformation',
+     &          ' itrial=',itrial
+              call intout
+
+#ifdef AIX
+              call flush_(iout)
+#else
+              call flush(iout)
+#endif
+            enddo
+            write (iout,'(a,i3,a)') 'Processor:',me,
+     &        ' error in generating random conformation.'
+            write (*,'(a,i3,a)') 'Processor:',me,
+     &        ' error in generating random conformation.'
+            call flush(iout)
+#ifdef MPI
+            call MPI_Abort(mpi_comm_world,error_msg,ierrcode)            
+   40       continue
+          endif
+#else
+   40     continue
+#endif
+        endif
+      elseif (modecalc.eq.4) then
+        read (inp,'(a)') intinname
+        open (intin,file=intinname,status='old',err=333)
+        if (me.eq.king .or. .not.out1file.and.fg_rank.eq.0)
+     &  write (iout,'(a)') 'intinname',intinname
+        write (*,'(a)') 'Processor',myrank,' intinname',intinname
+        goto 334
+  333   write (iout,'(2a)') 'Error opening angle file ',intinname
+#ifdef MPI 
+        call MPI_Finalize(MPI_COMM_WORLD,IERR)
+#endif   
+        stop 'Error opening angle file.' 
+  334   continue
+
+      endif 
+C Generate distance constraints, if the PDB structure is to be regularized. 
+      if (nthread.gt.0) then
+        call read_threadbase
+      endif
+      call setup_var
+      if (me.eq.king .or. .not. out1file)
+     & call intout
+      if (ns.gt.0 .and. (me.eq.king .or. .not.out1file) ) then
+        write (iout,'(/a,i3,a)') 
+     &  'The chain contains',ns,' disulfide-bridging cysteines.'
+        write (iout,'(20i4)') (iss(i),i=1,ns)
+        write (iout,'(/a/)') 'Pre-formed links are:' 
+       do i=1,nss
+         i1=ihpb(i)-nres
+         i2=jhpb(i)-nres
+         it1=itype(i1)
+         it2=itype(i2)
+         if (me.eq.king.or..not.out1file)
+     &    write (iout,'(2a,i3,3a,i3,a,3f10.3)')
+     &    restyp(it1),'(',i1,') -- ',restyp(it2),'(',i2,')',dhpb(i),
+     &    ebr,forcon(i)
+       enddo
+       write (iout,'(a)')
+      endif
+      if (i2ndstr.gt.0) call secstrp2dihc
+c      call geom_to_var(nvar,x)
+c      call etotal(energia(0))
+c      call enerprint(energia(0))
+c      call briefout(0,etot)
+c      stop
+cd    write (iout,'(2(a,i3))') 'NNT',NNT,' NCT',NCT
+cd    write (iout,'(a)') 'Variable list:'
+cd    write (iout,'(i4,f10.5)') (i,rad2deg*x(i),i=1,nvar)
+#ifdef MPI
+      if (me.eq.king .or. (fg_rank.eq.0 .and. .not.out1file))
+     &  write (iout,'(//80(1h*)/20x,a,i4,a/80(1h*)//)') 
+     &  'Processor',myrank,': end reading molecular data.'
+#endif
+      return
+      end
+c--------------------------------------------------------------------------
+      logical function seq_comp(itypea,itypeb,length)
+      implicit none
+      integer length,itypea(length),itypeb(length)
+      integer i
+      do i=1,length
+        if (itypea(i).ne.itypeb(i)) then
+          seq_comp=.false.
+          return
+        endif
+      enddo
+      seq_comp=.true.
+      return
+      end
+c-----------------------------------------------------------------------------
+      subroutine read_bridge
+C Read information about disulfide bridges.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.LOCAL'
+      include 'COMMON.NAMES'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.DBASE'
+      include 'COMMON.THREAD'
+      include 'COMMON.TIME1'
+      include 'COMMON.SETUP'
+C Read bridging residues.
+      read (inp,*) ns,(iss(i),i=1,ns)
+      print *,'ns=',ns
+      if(me.eq.king.or..not.out1file)
+     &  write (iout,*) 'ns=',ns,' iss:',(iss(i),i=1,ns)
+C Check whether the specified bridging residues are cystines.
+      do i=1,ns
+       if (itype(iss(i)).ne.1) then
+         if (me.eq.king.or..not.out1file) write (iout,'(2a,i3,a)') 
+     &   'Do you REALLY think that the residue ',restyp(iss(i)),i,
+     &   ' can form a disulfide bridge?!!!'
+         write (*,'(2a,i3,a)') 
+     &   'Do you REALLY think that the residue ',restyp(iss(i)),i,
+     &   ' can form a disulfide bridge?!!!'
+#ifdef MPI
+        call MPI_Finalize(MPI_COMM_WORLD,ierror)
+         stop
+#endif
+        endif
+      enddo
+C Read preformed bridges.
+      if (ns.gt.0) then
+      read (inp,*) nss,(ihpb(i),jhpb(i),i=1,nss)
+      write (iout,*) 'nss=',nss,' ihpb,jhpb: ',(ihpb(i),jhpb(i),i=1,nss)
+      if (nss.gt.0) then
+        nhpb=nss
+C Check if the residues involved in bridges are in the specified list of
+C bridging residues.
+        do i=1,nss
+          do j=1,i-1
+           if (ihpb(i).eq.ihpb(j).or.ihpb(i).eq.jhpb(j)
+     &      .or.jhpb(i).eq.ihpb(j).or.jhpb(i).eq.jhpb(j)) then
+             write (iout,'(a,i3,a)') 'Disulfide pair',i,
+     &      ' contains residues present in other pairs.'
+             write (*,'(a,i3,a)') 'Disulfide pair',i,
+     &      ' contains residues present in other pairs.'
+#ifdef MPI
+             call MPI_Finalize(MPI_COMM_WORLD,ierror)
+              stop 
+#endif
+           endif
+          enddo
+         do j=1,ns
+           if (ihpb(i).eq.iss(j)) goto 10
+          enddo
+          write (iout,'(a,i3,a)') 'Pair',i,' contains unknown cystine.'
+   10     continue
+         do j=1,ns
+           if (jhpb(i).eq.iss(j)) goto 20
+          enddo
+          write (iout,'(a,i3,a)') 'Pair',i,' contains unknown cystine.'
+   20     continue
+          dhpb(i)=dbr
+          forcon(i)=fbr
+        enddo
+        do i=1,nss
+          ihpb(i)=ihpb(i)+nres
+          jhpb(i)=jhpb(i)+nres
+        enddo
+      endif
+      endif
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine read_x(kanal,*)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+c Read coordinates from input
+c
+      read(kanal,'(8f10.5)',end=10,err=10)
+     &  ((c(l,k),l=1,3),k=1,nres),
+     &  ((c(l,k+nres),l=1,3),k=nnt,nct)
+      do j=1,3
+        c(j,nres+1)=c(j,1)
+        c(j,2*nres)=c(j,nres)
+      enddo
+      call int_from_cart1(.false.)
+      do i=1,nres-1
+        do j=1,3
+          dc(j,i)=c(j,i+1)-c(j,i)
+          dc_norm(j,i)=dc(j,i)*vbld_inv(i+1)
+        enddo
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            dc(j,i+nres)=c(j,i+nres)-c(j,i)
+            dc_norm(j,i+nres)=dc(j,i+nres)*vbld_inv(i+nres)
+          enddo
+        endif
+      enddo
+
+      return
+   10 return1
+      end
+c----------------------------------------------------------------------------
+      subroutine read_threadbase
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.LOCAL'
+      include 'COMMON.NAMES'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.DBASE'
+      include 'COMMON.THREAD'
+      include 'COMMON.TIME1'
+C Read pattern database for threading.
+      read (icbase,*) nseq
+      do i=1,nseq
+        read (icbase,'(i5,2x,a8,2i4)') nres_base(1,i),str_nam(i),
+     &   nres_base(2,i),nres_base(3,i)
+        read (icbase,'(9f8.3)') ((cart_base(k,j,i),k=1,3),j=1,
+     &   nres_base(1,i))
+c       write (iout,'(i5,2x,a8,2i4)') nres_base(1,i),str_nam(i),
+c    &   nres_base(2,i),nres_base(3,i)
+c       write (iout,'(9f8.3)') ((cart_base(k,j,i),k=1,3),j=1,
+c    &   nres_base(1,i))
+      enddo
+      close (icbase)
+      if (weidis.eq.0.0D0) weidis=0.1D0
+      do i=nnt,nct
+        do j=i+2,nct
+          nhpb=nhpb+1
+          ihpb(nhpb)=i
+          jhpb(nhpb)=j
+          forcon(nhpb)=weidis
+        enddo
+      enddo 
+      read (inp,*) nexcl,(iexam(1,i),iexam(2,i),i=1,nexcl)
+      write (iout,'(a,i5)') 'nexcl: ',nexcl
+      write (iout,'(2i5)') (iexam(1,i),iexam(2,i),i=1,nexcl)
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine setup_var
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.LOCAL'
+      include 'COMMON.NAMES'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.DBASE'
+      include 'COMMON.THREAD'
+      include 'COMMON.TIME1'
+C Set up variable list.
+      ntheta=nres-2
+      nphi=nres-3
+      nvar=ntheta+nphi
+      nside=0
+      do i=2,nres-1
+        if (itype(i).ne.10) then
+         nside=nside+1
+          ialph(i,1)=nvar+nside
+         ialph(nside,2)=i
+        endif
+      enddo
+      if (indphi.gt.0) then
+        nvar=nphi
+      else if (indback.gt.0) then
+        nvar=nphi+ntheta
+      else
+        nvar=nvar+2*nside
+      endif
+cd    write (iout,'(3i4)') (i,ialph(i,1),ialph(i,2),i=2,nres-1)
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine gen_dist_constr
+C Generate CA distance constraints.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.LOCAL'
+      include 'COMMON.NAMES'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.DBASE'
+      include 'COMMON.THREAD'
+      include 'COMMON.TIME1'
+      dimension itype_pdb(maxres)
+      common /pizda/ itype_pdb
+      character*2 iden
+cd      print *,'gen_dist_constr: nnt=',nnt,' nct=',nct
+cd      write (2,*) 'gen_dist_constr: nnt=',nnt,' nct=',nct,
+cd     & ' nstart_sup',nstart_sup,' nstart_seq',nstart_seq,
+cd     & ' nsup',nsup
+      do i=nstart_sup,nstart_sup+nsup-1
+cd      write (2,*) 'i',i,' seq ',restyp(itype(i+nstart_seq-nstart_sup)),
+cd     &    ' seq_pdb', restyp(itype_pdb(i))
+        do j=i+2,nstart_sup+nsup-1
+          nhpb=nhpb+1
+          ihpb(nhpb)=i+nstart_seq-nstart_sup
+          jhpb(nhpb)=j+nstart_seq-nstart_sup
+          forcon(nhpb)=weidis
+          dhpb(nhpb)=dist(i,j)
+        enddo
+      enddo 
+cd      write (iout,'(a)') 'Distance constraints:' 
+cd      do i=nss+1,nhpb
+cd        ii=ihpb(i)
+cd        jj=jhpb(i)
+cd        iden='CA'
+cd        if (ii.gt.nres) then
+cd          iden='SC'
+cd          ii=ii-nres
+cd          jj=jj-nres
+cd        endif
+cd        write (iout,'(a,1x,a,i4,3x,a,1x,a,i4,2f10.3)') 
+cd     &  restyp(itype(ii)),iden,ii,restyp(itype(jj)),iden,jj,
+cd     &  dhpb(i),forcon(i)
+cd      enddo
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine map_read
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MAP'
+      include 'COMMON.IOUNITS'
+      character*3 angid(4) /'THE','PHI','ALP','OME'/
+      character*80 mapcard,ucase
+      do imap=1,nmap
+        read (inp,'(a)') mapcard
+        mapcard=ucase(mapcard)
+        if (index(mapcard,'PHI').gt.0) then
+          kang(imap)=1
+        else if (index(mapcard,'THE').gt.0) then
+          kang(imap)=2
+        else if (index(mapcard,'ALP').gt.0) then
+          kang(imap)=3
+        else if (index(mapcard,'OME').gt.0) then
+          kang(imap)=4
+        else
+          write(iout,'(a)')'Error - illegal variable spec in MAP card.'
+          stop 'Error - illegal variable spec in MAP card.'
+        endif
+        call readi (mapcard,'RES1',res1(imap),0)
+        call readi (mapcard,'RES2',res2(imap),0)
+        if (res1(imap).eq.0) then
+          res1(imap)=res2(imap)
+        else if (res2(imap).eq.0) then
+          res2(imap)=res1(imap)
+        endif
+        if(res1(imap)*res2(imap).eq.0 .or. res1(imap).gt.res2(imap))then
+          write (iout,'(a)') 
+     &    'Error - illegal definition of variable group in MAP.'
+          stop 'Error - illegal definition of variable group in MAP.'
+        endif
+        call reada(mapcard,'FROM',ang_from(imap),0.0D0)
+        call reada(mapcard,'TO',ang_to(imap),0.0D0)
+        call readi(mapcard,'NSTEP',nstep(imap),0)
+        if (ang_from(imap).eq.ang_to(imap) .or. nstep(imap).eq.0) then
+          write (iout,'(a)') 
+     &     'Illegal boundary and/or step size specification in MAP.'
+          stop 'Illegal boundary and/or step size specification in MAP.'
+        endif
+      enddo ! imap
+      return
+      end 
+c----------------------------------------------------------------------------
+csa      subroutine csaread
+csa      implicit real*8 (a-h,o-z)
+csa      include 'DIMENSIONS'
+csa      include 'COMMON.IOUNITS'
+csa      include 'COMMON.GEO'
+csa      include 'COMMON.CSA'
+csa      include 'COMMON.BANK'
+csa      include 'COMMON.CONTROL'
+csa      character*80 ucase
+csa      character*620 mcmcard
+csa      call card_concat(mcmcard)
+csa
+csa      call readi(mcmcard,'NCONF',nconf,50)
+csa      call readi(mcmcard,'NADD',nadd,0)
+csa      call readi(mcmcard,'JSTART',jstart,1)
+csa      call readi(mcmcard,'JEND',jend,1)
+csa      call readi(mcmcard,'NSTMAX',nstmax,500000)
+csa      call readi(mcmcard,'N0',n0,1)
+csa      call readi(mcmcard,'N1',n1,6)
+csa      call readi(mcmcard,'N2',n2,4)
+csa      call readi(mcmcard,'N3',n3,0)
+csa      call readi(mcmcard,'N4',n4,0)
+csa      call readi(mcmcard,'N5',n5,0)
+csa      call readi(mcmcard,'N6',n6,10)
+csa      call readi(mcmcard,'N7',n7,0)
+csa      call readi(mcmcard,'N8',n8,0)
+csa      call readi(mcmcard,'N9',n9,0)
+csa      call readi(mcmcard,'N14',n14,0)
+csa      call readi(mcmcard,'N15',n15,0)
+csa      call readi(mcmcard,'N16',n16,0)
+csa      call readi(mcmcard,'N17',n17,0)
+csa      call readi(mcmcard,'N18',n18,0)
+csa
+csa      vdisulf=(index(mcmcard,'DYNSS').gt.0)
+csa
+csa      call readi(mcmcard,'NDIFF',ndiff,2)
+csa      call reada(mcmcard,'DIFFCUT',diffcut,0.0d0)
+csa      call readi(mcmcard,'IS1',is1,1)
+csa      call readi(mcmcard,'IS2',is2,8)
+csa      call readi(mcmcard,'NRAN0',nran0,4)
+csa      call readi(mcmcard,'NRAN1',nran1,2)
+csa      call readi(mcmcard,'IRR',irr,1)
+csa      call readi(mcmcard,'NSEED',nseed,20)
+csa      call readi(mcmcard,'NTOTAL',ntotal,10000)
+csa      call reada(mcmcard,'CUT1',cut1,2.0d0)
+csa      call reada(mcmcard,'CUT2',cut2,5.0d0)
+csa      call reada(mcmcard,'ESTOP',estop,-3000.0d0)
+csa      call readi(mcmcard,'ICMAX',icmax,3)
+csa      call readi(mcmcard,'IRESTART',irestart,0)
+csac!bankt      call readi(mcmcard,'NBANKTM',ntbankm,0)
+csa      ntbankm=0
+csac!bankt
+csa      call reada(mcmcard,'DELE',dele,20.0d0)
+csa      call reada(mcmcard,'DIFCUT',difcut,720.0d0)
+csa      call readi(mcmcard,'IREF',iref,0)
+csa      call reada(mcmcard,'RMSCUT',rmscut,4.0d0)
+csa      call reada(mcmcard,'PNCCUT',pnccut,0.5d0)
+csa      call readi(mcmcard,'NCONF_IN',nconf_in,0)
+csa      call reada(mcmcard,'RDIH_BIAS',rdih_bias,0.5d0)
+csa      write (iout,*) "NCONF_IN",nconf_in
+csa      return
+csa      end
+c----------------------------------------------------------------------------
+cfmc      subroutine mcmfread
+cfmc      implicit real*8 (a-h,o-z)
+cfmc      include 'DIMENSIONS'
+cfmc      include 'COMMON.MCMF'
+cfmc      include 'COMMON.IOUNITS'
+cfmc      include 'COMMON.GEO'
+cfmc      character*80 ucase
+cfmc      character*620 mcmcard
+cfmc      call card_concat(mcmcard)
+cfmc
+cfmc      call readi(mcmcard,'MAXRANT',maxrant,1000)
+cfmc      write(iout,*)'MAXRANT=',maxrant
+cfmc      call readi(mcmcard,'MAXFAM',maxfam,maxfam_p)
+cfmc      write(iout,*)'MAXFAM=',maxfam
+cfmc      call readi(mcmcard,'NNET1',nnet1,5)
+cfmc      write(iout,*)'NNET1=',nnet1
+cfmc      call readi(mcmcard,'NNET2',nnet2,4)
+cfmc      write(iout,*)'NNET2=',nnet2
+cfmc      call readi(mcmcard,'NNET3',nnet3,4)
+cfmc      write(iout,*)'NNET3=',nnet3
+cfmc      call readi(mcmcard,'ILASTT',ilastt,0)
+cfmc      write(iout,*)'ILASTT=',ilastt
+cfmc      call readi(mcmcard,'MAXSTR',maxstr,maxstr_mcmf)
+cfmc      write(iout,*)'MAXSTR=',maxstr
+cfmc      maxstr_f=maxstr/maxfam
+cfmc      write(iout,*)'MAXSTR_F=',maxstr_f
+cfmc      call readi(mcmcard,'NMCMF',nmcmf,10)
+cfmc      write(iout,*)'NMCMF=',nmcmf
+cfmc      call readi(mcmcard,'IFOCUS',ifocus,nmcmf)
+cfmc      write(iout,*)'IFOCUS=',ifocus
+cfmc      call readi(mcmcard,'NLOCMCMF',nlocmcmf,1000)
+cfmc      write(iout,*)'NLOCMCMF=',nlocmcmf
+cfmc      call readi(mcmcard,'INTPRT',intprt,1000)
+cfmc      write(iout,*)'INTPRT=',intprt
+cfmc      call readi(mcmcard,'IPRT',iprt,100)
+cfmc      write(iout,*)'IPRT=',iprt
+cfmc      call readi(mcmcard,'IMAXTR',imaxtr,100)
+cfmc      write(iout,*)'IMAXTR=',imaxtr
+cfmc      call readi(mcmcard,'MAXEVEN',maxeven,1000)
+cfmc      write(iout,*)'MAXEVEN=',maxeven
+cfmc      call readi(mcmcard,'MAXEVEN1',maxeven1,3)
+cfmc      write(iout,*)'MAXEVEN1=',maxeven1
+cfmc      call readi(mcmcard,'INIMIN',inimin,200)
+cfmc      write(iout,*)'INIMIN=',inimin
+cfmc      call readi(mcmcard,'NSTEPMCMF',nstepmcmf,10)
+cfmc      write(iout,*)'NSTEPMCMF=',nstepmcmf
+cfmc      call readi(mcmcard,'NTHREAD',nthread,5)
+cfmc      write(iout,*)'NTHREAD=',nthread
+cfmc      call readi(mcmcard,'MAXSTEPMCMF',maxstepmcmf,2500)
+cfmc      write(iout,*)'MAXSTEPMCMF=',maxstepmcmf
+cfmc      call readi(mcmcard,'MAXPERT',maxpert,9)
+cfmc      write(iout,*)'MAXPERT=',maxpert
+cfmc      call readi(mcmcard,'IRMSD',irmsd,1)
+cfmc      write(iout,*)'IRMSD=',irmsd
+cfmc      call reada(mcmcard,'DENEMIN',denemin,0.01D0)
+cfmc      write(iout,*)'DENEMIN=',denemin
+cfmc      call reada(mcmcard,'RCUT1S',rcut1s,3.5D0)
+cfmc      write(iout,*)'RCUT1S=',rcut1s
+cfmc      call reada(mcmcard,'RCUT1E',rcut1e,2.0D0)
+cfmc      write(iout,*)'RCUT1E=',rcut1e
+cfmc      call reada(mcmcard,'RCUT2S',rcut2s,0.5D0)
+cfmc      write(iout,*)'RCUT2S=',rcut2s
+cfmc      call reada(mcmcard,'RCUT2E',rcut2e,0.1D0)
+cfmc      write(iout,*)'RCUT2E=',rcut2e
+cfmc      call reada(mcmcard,'DPERT1',d_pert1,180.0D0)
+cfmc      write(iout,*)'DPERT1=',d_pert1
+cfmc      call reada(mcmcard,'DPERT1A',d_pert1a,180.0D0)
+cfmc      write(iout,*)'DPERT1A=',d_pert1a
+cfmc      call reada(mcmcard,'DPERT2',d_pert2,90.0D0)
+cfmc      write(iout,*)'DPERT2=',d_pert2
+cfmc      call reada(mcmcard,'DPERT2A',d_pert2a,45.0D0)
+cfmc      write(iout,*)'DPERT2A=',d_pert2a
+cfmc      call reada(mcmcard,'DPERT2B',d_pert2b,90.0D0)
+cfmc      write(iout,*)'DPERT2B=',d_pert2b
+cfmc      call reada(mcmcard,'DPERT2C',d_pert2c,60.0D0)
+cfmc      write(iout,*)'DPERT2C=',d_pert2c
+cfmc      d_pert1=deg2rad*d_pert1
+cfmc      d_pert1a=deg2rad*d_pert1a
+cfmc      d_pert2=deg2rad*d_pert2
+cfmc      d_pert2a=deg2rad*d_pert2a
+cfmc      d_pert2b=deg2rad*d_pert2b
+cfmc      d_pert2c=deg2rad*d_pert2c
+cfmc      call reada(mcmcard,'KT_MCMF1',kt_mcmf1,1.0D0)
+cfmc      write(iout,*)'KT_MCMF1=',kt_mcmf1
+cfmc      call reada(mcmcard,'KT_MCMF2',kt_mcmf2,1.0D0)
+cfmc      write(iout,*)'KT_MCMF2=',kt_mcmf2
+cfmc      call reada(mcmcard,'DKT_MCMF1',dkt_mcmf1,10.0D0)
+cfmc      write(iout,*)'DKT_MCMF1=',dkt_mcmf1
+cfmc      call reada(mcmcard,'DKT_MCMF2',dkt_mcmf2,1.0D0)
+cfmc      write(iout,*)'DKT_MCMF2=',dkt_mcmf2
+cfmc      call reada(mcmcard,'RCUTINI',rcutini,3.5D0)
+cfmc      write(iout,*)'RCUTINI=',rcutini
+cfmc      call reada(mcmcard,'GRAT',grat,0.5D0)
+cfmc      write(iout,*)'GRAT=',grat
+cfmc      call reada(mcmcard,'BIAS_MCMF',bias_mcmf,0.0D0)
+cfmc      write(iout,*)'BIAS_MCMF=',bias_mcmf
+cfmc
+cfmc      return
+cfmc      end 
+c----------------------------------------------------------------------------
+      subroutine mcmread
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MCM'
+      include 'COMMON.MCE'
+      include 'COMMON.IOUNITS'
+      character*80 ucase
+      character*320 mcmcard
+      call card_concat(mcmcard)
+      call readi(mcmcard,'MAXACC',maxacc,100)
+      call readi(mcmcard,'MAX_MCM_IT',max_mcm_it,10000)
+      call readi(mcmcard,'MAXTRIAL',maxtrial,100)
+      call readi(mcmcard,'MAXTRIAL_ITER',maxtrial_iter,1000)
+      call readi(mcmcard,'MAXREPM',maxrepm,200)
+      call reada(mcmcard,'RANFRACT',RanFract,0.5D0)
+      call reada(mcmcard,'POOL_FRACT',pool_fraction,0.01D0)
+      call reada(mcmcard,'OVERLAP',overlap_cut,1.0D3)
+      call reada(mcmcard,'E_UP',e_up,5.0D0)
+      call reada(mcmcard,'DELTE',delte,0.1D0)
+      call readi(mcmcard,'NSWEEP',nsweep,5)
+      call readi(mcmcard,'NSTEPH',nsteph,0)
+      call readi(mcmcard,'NSTEPC',nstepc,0)
+      call reada(mcmcard,'TMIN',tmin,298.0D0)
+      call reada(mcmcard,'TMAX',tmax,298.0D0)
+      call readi(mcmcard,'NWINDOW',nwindow,0)
+      call readi(mcmcard,'PRINT_MC',print_mc,0)
+      print_stat=(index(mcmcard,'NO_PRINT_STAT').le.0)
+      print_int=(index(mcmcard,'NO_PRINT_INT').le.0)
+      ent_read=(index(mcmcard,'ENT_READ').gt.0)
+      call readi(mcmcard,'SAVE_FREQ',save_frequency,1000)
+      call readi(mcmcard,'MESSAGE_FREQ',message_frequency,1000)
+      call readi(mcmcard,'POOL_READ_FREQ',pool_read_freq,5000)
+      call readi(mcmcard,'POOL_SAVE_FREQ',pool_save_freq,1000)
+      call readi(mcmcard,'PRINT_FREQ',print_freq,1000)
+      if (nwindow.gt.0) then
+        read (inp,*) (winstart(i),winend(i),i=1,nwindow)
+        do i=1,nwindow
+          winlen(i)=winend(i)-winstart(i)+1
+        enddo
+      endif
+      if (tmax.lt.tmin) tmax=tmin
+      if (tmax.eq.tmin) then
+        nstepc=0
+        nsteph=0
+      endif
+      if (nstepc.gt.0 .and. nsteph.gt.0) then
+        tsteph=(tmax/tmin)**(1.0D0/(nsteph+0.0D0)) 
+        tstepc=(tmax/tmin)**(1.0D0/(nstepc+0.0D0)) 
+      endif
+C Probabilities of different move types
+      sumpro_type(0)=0.0D0
+      call reada(mcmcard,'MULTI_BOND',sumpro_type(1),1.0d0)
+      call reada(mcmcard,'ONE_ANGLE' ,sumpro_type(2),2.0d0)
+      sumpro_type(2)=sumpro_type(1)+sumpro_type(2)
+      call reada(mcmcard,'THETA'     ,sumpro_type(3),0.0d0)
+      sumpro_type(3)=sumpro_type(2)+sumpro_type(3)
+      call reada(mcmcard,'SIDE_CHAIN',sumpro_type(4),0.5d0)
+      sumpro_type(4)=sumpro_type(3)+sumpro_type(4)
+      do i=1,MaxMoveType
+        print *,'i',i,' sumprotype',sumpro_type(i)
+        sumpro_type(i)=sumpro_type(i)/sumpro_type(MaxMoveType)
+        print *,'i',i,' sumprotype',sumpro_type(i)
+      enddo
+      return
+      end 
+c----------------------------------------------------------------------------
+      subroutine read_minim
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.MINIM'
+      include 'COMMON.IOUNITS'
+      character*80 ucase
+      character*320 minimcard
+      call card_concat(minimcard)
+      call readi(minimcard,'MAXMIN',maxmin,2000)
+      call readi(minimcard,'MAXFUN',maxfun,5000)
+      call readi(minimcard,'MINMIN',minmin,maxmin)
+      call readi(minimcard,'MINFUN',minfun,maxmin)
+      call reada(minimcard,'TOLF',tolf,1.0D-2)
+      call reada(minimcard,'RTOLF',rtolf,1.0D-4)
+      print_min_stat=min0(index(minimcard,'PRINT_MIN_STAT'),1)
+      print_min_res=min0(index(minimcard,'PRINT_MIN_RES'),1)
+      print_min_ini=min0(index(minimcard,'PRINT_MIN_INI'),1)
+      write (iout,'(/80(1h*)/20x,a/80(1h*))') 
+     &         'Options in energy minimization:'
+      write (iout,'(4(a,i5),a,1pe14.5,a,1pe14.5)')
+     & 'MaxMin:',MaxMin,' MaxFun:',MaxFun,
+     & 'MinMin:',MinMin,' MinFun:',MinFun,
+     & ' TolF:',TolF,' RTolF:',RTolF
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine read_angles(kanal,*)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
+c Read angles from input 
+c
+       read (kanal,*,err=10,end=10) (theta(i),i=3,nres)
+       read (kanal,*,err=10,end=10) (phi(i),i=4,nres)
+       read (kanal,*,err=10,end=10) (alph(i),i=2,nres-1)
+       read (kanal,*,err=10,end=10) (omeg(i),i=2,nres-1)
+
+       do i=1,nres
+c 9/7/01 avoid 180 deg valence angle
+        if (theta(i).gt.179.99d0) theta(i)=179.99d0
+c
+        theta(i)=deg2rad*theta(i)
+        phi(i)=deg2rad*phi(i)
+        alph(i)=deg2rad*alph(i)
+        omeg(i)=deg2rad*omeg(i)
+       enddo
+      return
+   10 return1
+      end
+c----------------------------------------------------------------------------
+      subroutine reada(rekord,lancuch,wartosc,default)
+      implicit none
+      character*(*) rekord,lancuch
+      double precision wartosc,default
+      integer ilen,iread
+      external ilen
+      iread=index(rekord,lancuch)
+      if (iread.eq.0) then
+        wartosc=default 
+        return
+      endif   
+      iread=iread+ilen(lancuch)+1
+      read (rekord(iread:),*,err=10,end=10) wartosc
+      return
+  10  wartosc=default
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine readi(rekord,lancuch,wartosc,default)
+      implicit none
+      character*(*) rekord,lancuch
+      integer wartosc,default
+      integer ilen,iread
+      external ilen
+      iread=index(rekord,lancuch)
+      if (iread.eq.0) then
+        wartosc=default 
+        return
+      endif   
+      iread=iread+ilen(lancuch)+1
+      read (rekord(iread:),*,err=10,end=10) wartosc
+      return
+  10  wartosc=default
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine multreadi(rekord,lancuch,tablica,dim,default)
+      implicit none
+      integer dim,i
+      integer tablica(dim),default
+      character*(*) rekord,lancuch
+      character*80 aux
+      integer ilen,iread
+      external ilen
+      do i=1,dim
+        tablica(i)=default
+      enddo
+      iread=index(rekord,lancuch(:ilen(lancuch))//"=")
+      if (iread.eq.0) return
+      iread=iread+ilen(lancuch)+1
+      read (rekord(iread:),*,end=10,err=10) (tablica(i),i=1,dim)
+   10 return
+      end
+c----------------------------------------------------------------------------
+      subroutine multreada(rekord,lancuch,tablica,dim,default)
+      implicit none
+      integer dim,i
+      double precision tablica(dim),default
+      character*(*) rekord,lancuch
+      character*80 aux
+      integer ilen,iread
+      external ilen
+      do i=1,dim
+        tablica(i)=default
+      enddo
+      iread=index(rekord,lancuch(:ilen(lancuch))//"=")
+      if (iread.eq.0) return
+      iread=iread+ilen(lancuch)+1
+      read (rekord(iread:),*,end=10,err=10) (tablica(i),i=1,dim)
+   10 return
+      end
+c----------------------------------------------------------------------------
+      subroutine openunits
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'    
+#ifdef MPI
+      include 'mpif.h'
+      character*16 form,nodename
+      integer nodelen
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MD'
+      include 'COMMON.CONTROL'
+      integer lenpre,lenpot,ilen,lentmp
+      external ilen
+      character*3 out1file_text,ucase
+      character*3 ll
+      external ucase
+c      print *,"Processor",myrank,"fg_rank",fg_rank," entered openunits"
+      call getenv_loc("PREFIX",prefix)
+      pref_orig = prefix
+      call getenv_loc("POT",pot)
+      call getenv_loc("DIRTMP",tmpdir)
+      call getenv_loc("CURDIR",curdir)
+      call getenv_loc("OUT1FILE",out1file_text)
+c      print *,"Processor",myrank,"fg_rank",fg_rank," did GETENV"
+      out1file_text=ucase(out1file_text)
+      if (out1file_text(1:1).eq."Y") then
+        out1file=.true.
+      else 
+        out1file=fg_rank.gt.0
+      endif
+      lenpre=ilen(prefix)
+      lenpot=ilen(pot)
+      lentmp=ilen(tmpdir)
+      if (lentmp.gt.0) then
+          write (*,'(80(1h!))')
+          write (*,'(a,19x,a,19x,a)') "!","  A T T E N T I O N  ","!"
+          write (*,'(80(1h!))')
+          write (*,*)"All output files will be on node /tmp directory." 
+#ifdef MPI
+        call  MPI_GET_PROCESSOR_NAME( nodename, nodelen, IERROR )
+        if (me.eq.king) then
+          write (*,*) "The master node is ",nodename
+        else if (fg_rank.eq.0) then
+          write (*,*) "I am the CG slave node ",nodename
+        else 
+          write (*,*) "I am the FG slave node ",nodename
+        endif
+#endif
+        PREFIX = tmpdir(:lentmp)//'/'//prefix(:lenpre)
+        lenpre = lentmp+lenpre+1
+      endif
+      entname=prefix(:lenpre)//'_'//pot(:lenpot)//'.entr'
+C Get the names and open the input files
+#if defined(WINIFL) || defined(WINPGI)
+      open(1,file=pref_orig(:ilen(pref_orig))//
+     &  '.inp',status='old',readonly,shared)
+       open (9,file=prefix(:ilen(prefix))//'.intin',status='unknown')
+C      open (18,file=prefix(:ilen(prefix))//'.entin',status='unknown')
+C Get parameter filenames and open the parameter files.
+      call getenv_loc('BONDPAR',bondname)
+      open (ibond,file=bondname,status='old',readonly,shared)
+      call getenv_loc('THETPAR',thetname)
+      open (ithep,file=thetname,status='old',readonly,shared)
+#ifndef CRYST_THETA
+      call getenv_loc('THETPARPDB',thetname_pdb)
+      open (ithep_pdb,file=thetname_pdb,status='old',readonly,shared)
+#endif
+      call getenv_loc('ROTPAR',rotname)
+      open (irotam,file=rotname,status='old',readonly,shared)
+#ifndef CRYST_SC
+      call getenv_loc('ROTPARPDB',rotname_pdb)
+      open (irotam_pdb,file=rotname_pdb,status='old',readonly,shared)
+#endif
+      call getenv_loc('TORPAR',torname)
+      open (itorp,file=torname,status='old',readonly,shared)
+      call getenv_loc('TORDPAR',tordname)
+      open (itordp,file=tordname,status='old',readonly,shared)
+      call getenv_loc('FOURIER',fouriername)
+      open (ifourier,file=fouriername,status='old',readonly,shared)
+      call getenv_loc('ELEPAR',elename)
+      open (ielep,file=elename,status='old',readonly,shared)
+      call getenv_loc('SIDEPAR',sidename)
+      open (isidep,file=sidename,status='old',readonly,shared)
+#elif (defined CRAY) || (defined AIX)
+      open(1,file=pref_orig(:ilen(pref_orig))//'.inp',status='old',
+     &  action='read')
+c      print *,"Processor",myrank," opened file 1" 
+      open (9,file=prefix(:ilen(prefix))//'.intin',status='unknown')
+c      print *,"Processor",myrank," opened file 9" 
+C      open (18,file=prefix(:ilen(prefix))//'.entin',status='unknown')
+C Get parameter filenames and open the parameter files.
+      call getenv_loc('BONDPAR',bondname)
+      open (ibond,file=bondname,status='old',action='read')
+c      print *,"Processor",myrank," opened file IBOND" 
+      call getenv_loc('THETPAR',thetname)
+      open (ithep,file=thetname,status='old',action='read')
+c      print *,"Processor",myrank," opened file ITHEP" 
+#ifndef CRYST_THETA
+      call getenv_loc('THETPARPDB',thetname_pdb)
+      open (ithep_pdb,file=thetname_pdb,status='old',action='read')
+#endif
+      call getenv_loc('ROTPAR',rotname)
+      open (irotam,file=rotname,status='old',action='read')
+c      print *,"Processor",myrank," opened file IROTAM" 
+#ifndef CRYST_SC
+      call getenv_loc('ROTPARPDB',rotname_pdb)
+      open (irotam_pdb,file=rotname_pdb,status='old',action='read')
+#endif
+      call getenv_loc('TORPAR',torname)
+      open (itorp,file=torname,status='old',action='read')
+c      print *,"Processor",myrank," opened file ITORP" 
+      call getenv_loc('TORDPAR',tordname)
+      open (itordp,file=tordname,status='old',action='read')
+c      print *,"Processor",myrank," opened file ITORDP" 
+      call getenv_loc('SCCORPAR',sccorname)
+      open (isccor,file=sccorname,status='old',action='read')
+c      print *,"Processor",myrank," opened file ISCCOR" 
+      call getenv_loc('FOURIER',fouriername)
+      open (ifourier,file=fouriername,status='old',action='read')
+c      print *,"Processor",myrank," opened file IFOURIER" 
+      call getenv_loc('ELEPAR',elename)
+      open (ielep,file=elename,status='old',action='read')
+c      print *,"Processor",myrank," opened file IELEP" 
+      call getenv_loc('SIDEPAR',sidename)
+      open (isidep,file=sidename,status='old',action='read')
+c      print *,"Processor",myrank," opened file ISIDEP" 
+c      print *,"Processor",myrank," opened parameter files" 
+#elif (defined G77)
+      open(1,file=pref_orig(:ilen(pref_orig))//'.inp',status='old')
+      open (9,file=prefix(:ilen(prefix))//'.intin',status='unknown')
+C      open (18,file=prefix(:ilen(prefix))//'.entin',status='unknown')
+C Get parameter filenames and open the parameter files.
+      call getenv_loc('BONDPAR',bondname)
+      open (ibond,file=bondname,status='old')
+      call getenv_loc('THETPAR',thetname)
+      open (ithep,file=thetname,status='old')
+#ifndef CRYST_THETA
+      call getenv_loc('THETPARPDB',thetname_pdb)
+      open (ithep_pdb,file=thetname_pdb,status='old')
+#endif
+      call getenv_loc('ROTPAR',rotname)
+      open (irotam,file=rotname,status='old')
+#ifndef CRYST_SC
+      call getenv_loc('ROTPARPDB',rotname_pdb)
+      open (irotam_pdb,file=rotname_pdb,status='old')
+#endif
+      call getenv_loc('TORPAR',torname)
+      open (itorp,file=torname,status='old')
+      call getenv_loc('TORDPAR',tordname)
+      open (itordp,file=tordname,status='old')
+      call getenv_loc('SCCORPAR',sccorname)
+      open (isccor,file=sccorname,status='old')
+      call getenv_loc('FOURIER',fouriername)
+      open (ifourier,file=fouriername,status='old')
+      call getenv_loc('ELEPAR',elename)
+      open (ielep,file=elename,status='old')
+      call getenv_loc('SIDEPAR',sidename)
+      open (isidep,file=sidename,status='old')
+#else
+      open(1,file=pref_orig(:ilen(pref_orig))//'.inp',status='old',
+     &action='read')
+       open (9,file=prefix(:ilen(prefix))//'.intin',status='unknown')
+C      open (18,file=prefix(:ilen(prefix))//'.entin',status='unknown')
+C Get parameter filenames and open the parameter files.
+      call getenv_loc('BONDPAR',bondname)
+      open (ibond,file=bondname,status='old',action='read')
+      call getenv_loc('THETPAR',thetname)
+      open (ithep,file=thetname,status='old',action='read')
+#ifndef CRYST_THETA
+      call getenv_loc('THETPARPDB',thetname_pdb)
+      print *,"thetname_pdb ",thetname_pdb
+      open (ithep_pdb,file=thetname_pdb,status='old',action='read')
+      print *,ithep_pdb," opened"
+#endif
+      call getenv_loc('ROTPAR',rotname)
+      open (irotam,file=rotname,status='old',action='read')
+#ifndef CRYST_SC
+      call getenv_loc('ROTPARPDB',rotname_pdb)
+      open (irotam_pdb,file=rotname_pdb,status='old',action='read')
+#endif
+      call getenv_loc('TORPAR',torname)
+      open (itorp,file=torname,status='old',action='read')
+      call getenv_loc('TORDPAR',tordname)
+      open (itordp,file=tordname,status='old',action='read')
+      call getenv_loc('SCCORPAR',sccorname)
+      open (isccor,file=sccorname,status='old',action='read')
+      call getenv_loc('FOURIER',fouriername)
+      open (ifourier,file=fouriername,status='old',action='read')
+      call getenv_loc('ELEPAR',elename)
+      open (ielep,file=elename,status='old',action='read')
+      call getenv_loc('SIDEPAR',sidename)
+      open (isidep,file=sidename,status='old',action='read')
+#endif
+#ifndef OLDSCP
+C
+C 8/9/01 In the newest version SCp interaction constants are read from a file
+C Use -DOLDSCP to use hard-coded constants instead.
+C
+      call getenv_loc('SCPPAR',scpname)
+#if defined(WINIFL) || defined(WINPGI)
+      open (iscpp,file=scpname,status='old',readonly,shared)
+#elif (defined CRAY)  || (defined AIX)
+      open (iscpp,file=scpname,status='old',action='read')
+#elif (defined G77)
+      open (iscpp,file=scpname,status='old')
+#else
+      open (iscpp,file=scpname,status='old',action='read')
+#endif
+#endif
+      call getenv_loc('PATTERN',patname)
+#if defined(WINIFL) || defined(WINPGI)
+      open (icbase,file=patname,status='old',readonly,shared)
+#elif (defined CRAY)  || (defined AIX)
+      open (icbase,file=patname,status='old',action='read')
+#elif (defined G77)
+      open (icbase,file=patname,status='old')
+#else
+      open (icbase,file=patname,status='old',action='read')
+#endif
+#ifdef MPI
+C Open output file only for CG processes
+c      print *,"Processor",myrank," fg_rank",fg_rank
+      if (fg_rank.eq.0) then
+
+      if (nodes.eq.1) then
+        npos=3
+      else
+        npos = dlog10(dfloat(nodes-1))+1
+      endif
+      if (npos.lt.3) npos=3
+      write (liczba,'(i1)') npos
+      form = '(bz,i'//liczba(:ilen(liczba))//'.'//liczba(:ilen(liczba))
+     &  //')'
+      write (liczba,form) me
+      outname=prefix(:lenpre)//'.out_'//pot(:lenpot)//
+     &  liczba(:ilen(liczba))
+      intname=prefix(:lenpre)//'_'//pot(:lenpot)//liczba(:ilen(liczba))
+     &  //'.int'
+      pdbname=prefix(:lenpre)//'_'//pot(:lenpot)//liczba(:ilen(liczba))
+     &  //'.pdb'
+      mol2name=prefix(:lenpre)//'_'//pot(:lenpot)//
+     &  liczba(:ilen(liczba))//'.mol2'
+      statname=prefix(:lenpre)//'_'//pot(:lenpot)//
+     &  liczba(:ilen(liczba))//'.stat'
+      if (lentmp.gt.0)
+     &  call copy_to_tmp(pref_orig(:ilen(pref_orig))//'_'//pot(:lenpot)
+     &      //liczba(:ilen(liczba))//'.stat')
+      rest2name=prefix(:ilen(prefix))//"_"//liczba(:ilen(liczba))
+     &  //'.rst'
+      if(usampl) then
+          qname=prefix(:lenpre)//'_'//pot(:lenpot)//
+     & liczba(:ilen(liczba))//'.const'
+      endif 
+
+      endif
+#else
+      outname=prefix(:lenpre)//'.out_'//pot(:lenpot)
+      intname=prefix(:lenpre)//'_'//pot(:lenpot)//'.int'
+      pdbname=prefix(:lenpre)//'_'//pot(:lenpot)//'.pdb'
+      mol2name=prefix(:lenpre)//'_'//pot(:lenpot)//'.mol2'
+      statname=prefix(:lenpre)//'_'//pot(:lenpot)//'.stat'
+      if (lentmp.gt.0)
+     &  call copy_to_tmp(pref_orig(:ilen(pref_orig))//'_'//pot(:lenpot)
+     &    //'.stat')
+      rest2name=prefix(:ilen(prefix))//'.rst'
+      if(usampl) then 
+         qname=prefix(:lenpre)//'_'//pot(:lenpot)//'.const'
+      endif 
+#endif
+#if defined(AIX) || defined(PGI)
+      if (me.eq.king .or. .not. out1file) 
+     &   open(iout,file=outname,status='unknown')
+c#define DEBUG
+#ifdef DEBUG
+      if (fg_rank.gt.0) then
+        write (liczba,'(i3.3)') myrank/nfgtasks
+        write (ll,'(bz,i3.3)') fg_rank
+        open(iout,file="debug"//liczba(:ilen(liczba))//"."//ll,
+     &   status='unknown')
+      endif
+#endif
+c#undef DEBUG
+      if(me.eq.king) then
+       open(igeom,file=intname,status='unknown',position='append')
+       open(ipdb,file=pdbname,status='unknown')
+       open(imol2,file=mol2name,status='unknown')
+       open(istat,file=statname,status='unknown',position='append')
+      else
+c1out       open(iout,file=outname,status='unknown')
+      endif
+#else
+      if (me.eq.king .or. .not.out1file)
+     &    open(iout,file=outname,status='unknown')
+c#define DEBUG
+#ifdef DEBUG
+      if (fg_rank.gt.0) then
+        print "Processor",fg_rank," opening output file"
+        write (liczba,'(i3.3)') myrank/nfgtasks
+        write (ll,'(bz,i3.3)') fg_rank
+        open(iout,file="debug"//liczba(:ilen(liczba))//"."//ll,
+     &   status='unknown')
+      endif
+#endif
+c#undef DEBUG
+      if(me.eq.king) then
+       open(igeom,file=intname,status='unknown',access='append')
+       open(ipdb,file=pdbname,status='unknown')
+       open(imol2,file=mol2name,status='unknown')
+       open(istat,file=statname,status='unknown',access='append')
+      else
+c1out       open(iout,file=outname,status='unknown')
+      endif
+#endif
+csa      csa_rbank=prefix(:lenpre)//'.CSA.rbank'
+csa      csa_seed=prefix(:lenpre)//'.CSA.seed'
+csa      csa_history=prefix(:lenpre)//'.CSA.history'
+csa      csa_bank=prefix(:lenpre)//'.CSA.bank'
+csa      csa_bank1=prefix(:lenpre)//'.CSA.bank1'
+csa      csa_alpha=prefix(:lenpre)//'.CSA.alpha'
+csa      csa_alpha1=prefix(:lenpre)//'.CSA.alpha1'
+csac!bankt      csa_bankt=prefix(:lenpre)//'.CSA.bankt'
+csa      csa_int=prefix(:lenpre)//'.int'
+csa      csa_bank_reminimized=prefix(:lenpre)//'.CSA.bank_reminimized'
+csa      csa_native_int=prefix(:lenpre)//'.CSA.native.int'
+csa      csa_in=prefix(:lenpre)//'.CSA.in'
+c      print *,"Processor",myrank,"fg_rank",fg_rank," opened files"
+C Write file names
+      if (me.eq.king)then
+      write (iout,'(80(1h-))')
+      write (iout,'(30x,a)') "FILE ASSIGNMENT"
+      write (iout,'(80(1h-))')
+      write (iout,*) "Input file                      : ",
+     &  pref_orig(:ilen(pref_orig))//'.inp'
+      write (iout,*) "Output file                     : ",
+     &  outname(:ilen(outname))
+      write (iout,*)
+      write (iout,*) "Sidechain potential file        : ",
+     &  sidename(:ilen(sidename))
+#ifndef OLDSCP
+      write (iout,*) "SCp potential file              : ",
+     &  scpname(:ilen(scpname))
+#endif
+      write (iout,*) "Electrostatic potential file    : ",
+     &  elename(:ilen(elename))
+      write (iout,*) "Cumulant coefficient file       : ",
+     &  fouriername(:ilen(fouriername))
+      write (iout,*) "Torsional parameter file        : ",
+     &  torname(:ilen(torname))
+      write (iout,*) "Double torsional parameter file : ",
+     &  tordname(:ilen(tordname))
+      write (iout,*) "SCCOR parameter file : ",
+     &  sccorname(:ilen(sccorname))
+      write (iout,*) "Bond & inertia constant file    : ",
+     &  bondname(:ilen(bondname))
+      write (iout,*) "Bending parameter file          : ",
+     &  thetname(:ilen(thetname))
+      write (iout,*) "Rotamer parameter file          : ",
+     &  rotname(:ilen(rotname))
+      write (iout,*) "Threading database              : ",
+     &  patname(:ilen(patname))
+      if (lentmp.ne.0) 
+     &write (iout,*)" DIRTMP                          : ",
+     &  tmpdir(:lentmp)
+      write (iout,'(80(1h-))')
+      endif
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine card_concat(card)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      character*(*) card
+      character*80 karta,ucase
+      external ilen
+      read (inp,'(a)') karta
+      karta=ucase(karta)
+      card=' '
+      do while (karta(80:80).eq.'&')
+        card=card(:ilen(card)+1)//karta(:79)
+        read (inp,'(a)') karta
+        karta=ucase(karta)
+      enddo
+      card=card(:ilen(card)+1)//karta
+      return
+      end
+c----------------------------------------------------------------------------------
+      subroutine readrst
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MD'
+      open(irest2,file=rest2name,status='unknown')
+      read(irest2,*) totT,EK,potE,totE,t_bath
+      do i=1,2*nres
+         read(irest2,'(3e15.5)') (d_t(j,i),j=1,3)
+      enddo
+      do i=1,2*nres
+         read(irest2,'(3e15.5)') (dc(j,i),j=1,3)
+      enddo
+      if(usampl) then
+             read (irest2,*) iset
+      endif
+      close(irest2)
+      return
+      end
+c---------------------------------------------------------------------------------
+      subroutine read_fragments
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MD'
+      include 'COMMON.CONTROL'
+      read(inp,*) nset,nfrag,npair,nfrag_back
+      if(me.eq.king.or..not.out1file)
+     & write(iout,*) "nset",nset," nfrag",nfrag," npair",npair,
+     &  " nfrag_back",nfrag_back
+      do iset=1,nset
+         read(inp,*) mset(iset)
+       do i=1,nfrag
+         read(inp,*) wfrag(i,iset),ifrag(1,i,iset),ifrag(2,i,iset), 
+     &     qinfrag(i,iset)
+         if(me.eq.king.or..not.out1file)
+     &    write(iout,*) "R ",i,wfrag(i,iset),ifrag(1,i,iset),
+     &     ifrag(2,i,iset), qinfrag(i,iset)
+       enddo
+       do i=1,npair
+        read(inp,*) wpair(i,iset),ipair(1,i,iset),ipair(2,i,iset), 
+     &    qinpair(i,iset)
+        if(me.eq.king.or..not.out1file)
+     &   write(iout,*) "R ",i,wpair(i,iset),ipair(1,i,iset),
+     &    ipair(2,i,iset), qinpair(i,iset)
+       enddo 
+       do i=1,nfrag_back
+        read(inp,*) wfrag_back(1,i,iset),wfrag_back(2,i,iset),
+     &     wfrag_back(3,i,iset),
+     &     ifrag_back(1,i,iset),ifrag_back(2,i,iset)
+        if(me.eq.king.or..not.out1file)
+     &   write(iout,*) "A",i,wfrag_back(1,i,iset),wfrag_back(2,i,iset),
+     &   wfrag_back(3,i,iset),ifrag_back(1,i,iset),ifrag_back(2,i,iset)
+       enddo 
+      enddo
+      return
+      end
+c-------------------------------------------------------------------------------
+      subroutine read_dist_constr
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SBRIDGE'
+      integer ifrag_(2,100),ipair_(2,100)
+      double precision wfrag_(100),wpair_(100)
+      character*500 controlcard
+c      write (iout,*) "Calling read_dist_constr"
+c      write (iout,*) "nres",nres," nstart_sup",nstart_sup," nsup",nsup
+c      call flush(iout)
+      call card_concat(controlcard)
+      call readi(controlcard,"NFRAG",nfrag_,0)
+      call readi(controlcard,"NPAIR",npair_,0)
+      call readi(controlcard,"NDIST",ndist_,0)
+      call reada(controlcard,'DIST_CUT',dist_cut,5.0d0)
+      call multreadi(controlcard,"IFRAG",ifrag_(1,1),2*nfrag_,0)
+      call multreadi(controlcard,"IPAIR",ipair_(1,1),2*npair_,0)
+      call multreada(controlcard,"WFRAG",wfrag_(1),nfrag_,0.0d0)
+      call multreada(controlcard,"WPAIR",wpair_(1),npair_,0.0d0)
+c      write (iout,*) "NFRAG",nfrag_," NPAIR",npair_," NDIST",ndist_
+c      write (iout,*) "IFRAG"
+c      do i=1,nfrag_
+c        write (iout,*) i,ifrag_(1,i),ifrag_(2,i),wfrag_(i)
+c      enddo
+c      write (iout,*) "IPAIR"
+c      do i=1,npair_
+c        write (iout,*) i,ipair_(1,i),ipair_(2,i),wpair_(i)
+c      enddo
+      if (.not.refstr .and. nfrag.gt.0) then
+        write (iout,*) 
+     &  "ERROR: no reference structure to compute distance restraints"
+        write (iout,*)
+     &  "Restraints must be specified explicitly (NDIST=number)"
+        stop 
+      endif
+      if (nfrag.lt.2 .and. npair.gt.0) then 
+        write (iout,*) "ERROR: Less than 2 fragments specified",
+     &   " but distance restraints between pairs requested"
+        stop 
+      endif 
+      call flush(iout)
+      do i=1,nfrag_
+        if (ifrag_(1,i).lt.nstart_sup) ifrag_(1,i)=nstart_sup
+        if (ifrag_(2,i).gt.nstart_sup+nsup-1)
+     &    ifrag_(2,i)=nstart_sup+nsup-1
+c        write (iout,*) i,ifrag_(1,i),ifrag_(2,i),wfrag_(i)
+        call flush(iout)
+        if (wfrag_(i).gt.0.0d0) then
+        do j=ifrag_(1,i),ifrag_(2,i)-1
+          do k=j+1,ifrag_(2,i)
+            write (iout,*) "j",j," k",k
+            ddjk=dist(j,k)
+            if (constr_dist.eq.1) then
+            nhpb=nhpb+1
+            ihpb(nhpb)=j
+            jhpb(nhpb)=k
+              dhpb(nhpb)=ddjk
+            forcon(nhpb)=wfrag_(i) 
+            else if (constr_dist.eq.2) then
+              if (ddjk.le.dist_cut) then
+                nhpb=nhpb+1
+                ihpb(nhpb)=j
+                jhpb(nhpb)=k
+                dhpb(nhpb)=ddjk
+                forcon(nhpb)=wfrag_(i) 
+              endif
+            else
+              nhpb=nhpb+1
+              ihpb(nhpb)=j
+              jhpb(nhpb)=k
+              dhpb(nhpb)=ddjk
+              forcon(nhpb)=wfrag_(i)*dexp(-0.5d0*(ddjk/dist_cut)**2)
+            endif
+#ifdef MPI
+            if (.not.out1file .or. me.eq.king) 
+     &      write (iout,'(a,3i5,f8.2,1pe12.2)') "+dist.constr ",
+     &       nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb)
+#else
+            write (iout,'(a,3i5,f8.2,1pe12.2)') "+dist.constr ",
+     &       nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb)
+#endif
+          enddo
+        enddo
+        endif
+      enddo
+      do i=1,npair_
+        if (wpair_(i).gt.0.0d0) then
+        ii = ipair_(1,i)
+        jj = ipair_(2,i)
+        if (ii.gt.jj) then
+          itemp=ii
+          ii=jj
+          jj=itemp
+        endif
+        do j=ifrag_(1,ii),ifrag_(2,ii)
+          do k=ifrag_(1,jj),ifrag_(2,jj)
+            nhpb=nhpb+1
+            ihpb(nhpb)=j
+            jhpb(nhpb)=k
+            forcon(nhpb)=wpair_(i)
+            dhpb(nhpb)=dist(j,k)
+#ifdef MPI
+            if (.not.out1file .or. me.eq.king)
+     &      write (iout,'(a,3i5,f8.2,f10.1)') "+dist.constr ",
+     &       nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb)
+#else
+            write (iout,'(a,3i5,f8.2,f10.1)') "+dist.constr ",
+     &       nhpb,ihpb(nhpb),jhpb(nhpb),dhpb(nhpb),forcon(nhpb)
+#endif
+          enddo
+        enddo
+        endif
+      enddo 
+      do i=1,ndist_
+        read (inp,*) ihpb(nhpb+1),jhpb(nhpb+1),dhpb(i),dhpb1(i),
+     &     ibecarb(i),forcon(nhpb+1)
+        if (forcon(nhpb+1).gt.0.0d0) then
+          nhpb=nhpb+1
+          if (ibecarb(i).gt.0) then
+            ihpb(i)=ihpb(i)+nres
+            jhpb(i)=jhpb(i)+nres
+          endif
+          if (dhpb(nhpb).eq.0.0d0) 
+     &       dhpb(nhpb)=dist(ihpb(nhpb),jhpb(nhpb))
+        endif
+      enddo
+#ifdef MPI
+      if (.not.out1file .or. me.eq.king) then
+#endif
+      do i=1,nhpb
+          write (iout,'(a,3i5,2f8.2,i2,f10.1)') "+dist.constr ",
+     &     i,ihpb(i),jhpb(i),dhpb(i),dhpb1(i),ibecarb(i),forcon(i)
+      enddo
+      call flush(iout)
+#ifdef MPI
+      endif
+#endif
+      return
+      end
+c-------------------------------------------------------------------------------
+#ifdef WINIFL
+      subroutine flush(iu)
+      return
+      end
+#endif
+#ifdef AIX
+      subroutine flush(iu)
+      call flush_(iu)
+      return
+      end
+#endif
+c------------------------------------------------------------------------------
+      subroutine copy_to_tmp(source)
+      include "DIMENSIONS"
+      include "COMMON.IOUNITS"
+      character*(*) source
+      character* 256 tmpfile
+      integer ilen
+      external ilen
+      logical ex
+      tmpfile=curdir(:ilen(curdir))//"/"//source(:ilen(source))
+      inquire(file=tmpfile,exist=ex)
+      if (ex) then
+        write (*,*) "Copying ",tmpfile(:ilen(tmpfile)),
+     &   " to temporary directory..."
+        write (*,*) "/bin/cp "//tmpfile(:ilen(tmpfile))//" "//tmpdir
+        call system("/bin/cp "//tmpfile(:ilen(tmpfile))//" "//tmpdir)
+      endif
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine move_from_tmp(source)
+      include "DIMENSIONS"
+      include "COMMON.IOUNITS"
+      character*(*) source
+      integer ilen
+      external ilen
+      write (*,*) "Moving ",source(:ilen(source)),
+     & " from temporary directory to working directory"
+      write (*,*) "/bin/mv "//source(:ilen(source))//" "//curdir
+      call system("/bin/mv "//source(:ilen(source))//" "//curdir)
+      return
+      end
+c------------------------------------------------------------------------------
+      subroutine random_init(seed)
+C
+C Initialize random number generator
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef AMD64
+      integer*8 iseedi8
+#endif
+#ifdef MPI
+      include 'mpif.h'
+      logical OKRandom, prng_restart
+      real*8  r1
+      integer iseed_array(4)
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      include 'COMMON.THREAD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CONTROL'
+      include 'COMMON.MCM'
+      include 'COMMON.MAP'
+      include 'COMMON.HEADER'
+csa      include 'COMMON.CSA'
+      include 'COMMON.CHAIN'
+      include 'COMMON.MUCA'
+      include 'COMMON.MD'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SETUP'
+      iseed=-dint(dabs(seed))
+      if (iseed.eq.0) then
+        write (iout,'(/80(1h*)/20x,a/80(1h*))') 
+     &    'Random seed undefined. The program will stop.'
+        write (*,'(/80(1h*)/20x,a/80(1h*))') 
+     &    'Random seed undefined. The program will stop.'
+#ifdef MPI
+        call mpi_finalize(mpi_comm_world,ierr)
+#endif
+        stop 'Bad random seed.'
+      endif
+#ifdef MPI
+      if (fg_rank.eq.0) then
+      seed=seed*(me+1)+1
+#ifdef AMD64
+      iseedi8=dint(seed)
+      if(me.eq.king .or. .not. out1file)
+     &  write (iout,*) 'MPI: node= ', me, ' iseed= ',iseedi8
+      write (*,*) 'MPI: node= ', me, ' iseed= ',iseedi8
+      OKRandom = prng_restart(me,iseedi8)
+#else
+      do i=1,4
+       tmp=65536.0d0**(4-i)
+       iseed_array(i) = dint(seed/tmp)
+       seed=seed-iseed_array(i)*tmp
+      enddo
+      if(me.eq.king .or. .not. out1file)
+     & write (iout,*) 'MPI: node= ', me, ' iseed(4)= ',
+     &                 (iseed_array(i),i=1,4)
+      write (*,*) 'MPI: node= ',me, ' iseed(4)= ',
+     &                 (iseed_array(i),i=1,4)
+      OKRandom = prng_restart(me,iseed_array)
+#endif
+      if (OKRandom) then
+        r1=ran_number(0.0D0,1.0D0)
+        if(me.eq.king .or. .not. out1file)
+     &   write (iout,*) 'ran_num',r1
+        if (r1.lt.0.0d0) OKRandom=.false.
+      endif
+      if (.not.OKRandom) then
+        write (iout,*) 'PRNG IS NOT WORKING!!!'
+        print *,'PRNG IS NOT WORKING!!!'
+        if (me.eq.0) then 
+         call flush(iout)
+         call mpi_abort(mpi_comm_world,error_msg,ierr)
+         stop
+        else
+         write (iout,*) 'too many processors for parallel prng'
+         write (*,*) 'too many processors for parallel prng'
+         call flush(iout)
+         stop
+        endif
+      endif
+      endif
+#else
+      call vrndst(iseed)
+      write (iout,*) 'ran_num',ran_number(0.0d0,1.0d0)
+#endif
+      return
+      end
diff --git a/source/unres/src_MD_DFA/refsys.f b/source/unres/src_MD_DFA/refsys.f
new file mode 100644 (file)
index 0000000..ec620df
--- /dev/null
@@ -0,0 +1,67 @@
+      subroutine refsys(fail)
+c This subroutine calculates unit vectors of a local reference system
+c defined by atoms (i2), (i3), and (i4). The x axis is the axis from
+c atom (i3) to atom (i2), and the xy plane is the plane defined by atoms
+c (i2), (i3), and (i4). z axis is directed according to the sign of the
+c vector product (i3)-(i2) and (i3)-(i4). Sets fail to .true. if atoms
+c (i2) and (i3) or (i3) and (i4) coincide or atoms (i2), (i3), and (i4)
+c form a linear fragment. Returns vectors e1, e2, and e3.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      logical fail
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.REFSYS'
+      double precision coinc/1.0D-4/,align /1.0D-7/
+      fail=.false.
+      s1=0.0
+      s2=0.0
+      do 1 i=1,3
+      zi=c(i,i2)-c(i,i3)
+      ui=c(i,i4)-c(i,i3)
+      s1=s1+zi*zi
+      s2=s2+ui*ui
+      z(i)=zi
+    1 u(i)=ui
+      s1=sqrt(s1)
+      s2=sqrt(s2)
+      if (s1.gt.coinc) goto 2
+      write (iout,1000) i2,i3,i1
+      fail=.true.
+c     do 3 i=1,3
+c   3 c(i,i1)=0.0D0
+      return
+    2 if (s2.gt.coinc) goto 4
+      write(iout,1000) i3,i4,i1
+      fail=.true.
+      do 5 i=1,3
+    5 c(i,i1)=0.0D0
+      return
+    4 s1=1.0/s1
+      s2=1.0/s2
+      v1=z(2)*u(3)-z(3)*u(2)
+      v2=z(3)*u(1)-z(1)*u(3)
+      v3=z(1)*u(2)-z(2)*u(1)
+      anorm=dsqrt(v1*v1+v2*v2+v3*v3)
+      if (anorm.gt.align) goto 6
+      write (iout,1010) i2,i3,i4,i1
+      fail=.true.
+c     do 7 i=1,3
+c   7 c(i,i1)=0.0D0
+      return
+    6 anorm=1.0D0/anorm
+      e3(1)=v1*anorm
+      e3(2)=v2*anorm
+      e3(3)=v3*anorm
+      e1(1)=z(1)*s1
+      e1(2)=z(2)*s1
+      e1(3)=z(3)*s1
+      e2(1)=e1(3)*e3(2)-e1(2)*e3(3)
+      e2(2)=e1(1)*e3(3)-e1(3)*e3(1)
+      e2(3)=e1(2)*e3(1)-e1(1)*e3(2)
+ 1000 format (/1x,' * * * Error - atoms',i4,' and',i4,' coincide.',
+     1 'coordinates of atom',i4,' are set to zero.')
+ 1010 format (/1x,' * * * Error - atoms',2(i4,2h, ),i4,' form a linear',
+     1 ' fragment. coordinates of atom',i4,' are set to zero.')
+      return
+      end
diff --git a/source/unres/src_MD_DFA/regularize.F b/source/unres/src_MD_DFA/regularize.F
new file mode 100644 (file)
index 0000000..c506b8a
--- /dev/null
@@ -0,0 +1,76 @@
+      subroutine regularize(ncart,etot,rms,cref0,iretcode)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.HEADER'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MINIM'
+      double precision przes(3),obrot(3,3),fhpb0(maxdim),varia(maxvar)
+      double precision cref0(3,ncart)
+      double precision energia(0:n_ene)
+      logical non_conv
+      link_end0=link_end
+      do i=1,nhpb
+        fhpb0(i)=forcon(i)
+      enddo
+      maxit_reg=2
+      print *,'Enter REGULARIZE: nnt=',nnt,' nct=',nct,' nsup=',nsup,
+     & ' nstart_seq=',nstart_seq,' nstart_sup',nstart_sup
+      write (iout,'(/a/)') 'Initial energies:'
+      call geom_to_var(nvar,varia)
+      call chainbuild
+      call etotal(energia(0))
+      etot=energia(0)
+      call enerprint(energia(0))
+      call fitsq(rms,c(1,nstart_seq),cref0(1,nstart_sup-1),
+     &  nsup,przes,obrot,non_conv)
+      write (iout,'(a,f10.5)') 
+     & 'Enter REGULARIZE: Initial RMS deviation:',dsqrt(dabs(rms))
+      write (*,'(a,f10.5)') 
+     & 'Enter REGULARIZE: Initial RMS deviation:',dsqrt(dabs(rms))
+      maxit0=maxit
+      maxfun0=maxfun
+      rtolf0=rtolf
+      maxit=100
+      maxfun=200
+      rtolf=1.0D-2
+      do it=1,maxit_reg
+        print *,'Regularization: pass:',it
+C Minimize with distance constraints, gradually relieving the weight.
+        call minimize(etot,varia,iretcode,nfun)
+        print *,'Etot=',Etot
+        if (iretcode.eq.11) return
+        call fitsq(rms,c(1,nstart_seq),cref0(1,nstart_sup-1),
+     &   nsup,przes,obrot,non_conv)
+        rms=dsqrt(rms)
+        write (iout,'(a,i2,a,f10.5,a,1pe14.5,a,i3/)') 
+     &   'Finish pass',it,', RMS deviation:',rms,', energy',etot,
+     &   ' SUMSL convergence',iretcode
+        do i=nss+1,nhpb
+          forcon(i)=0.1D0*forcon(i)
+        enddo
+      enddo
+C Turn off the distance constraints and re-minimize energy.
+      print *,'Final minimization ... '
+      maxit=maxit0
+      maxfun=maxfun0
+      rtolf=rtolf0
+      link_end=min0(link_end,nss)
+      call minimize(etot,varia,iretcode,nfun)
+      print *,'Etot=',Etot
+      call fitsq(rms,c(1,nstart_seq),cref0(1,nstart_sup-1),nsup,
+     &  przes,obrot,non_conv)
+      rms=dsqrt(rms)
+      write (iout,'(a,f10.5,a,1pe14.5,a,i3/)') 
+     & 'Final RMS deviation:',rms,' energy',etot,' SUMSL convergence',
+     & iretcode
+      link_end=link_end0
+      do i=nss+1,nhpb
+        forcon(i)=fhpb0(i)
+      enddo
+      call var_to_geom(nvar,varia)
+      call chainbuild
+      return
+      end 
diff --git a/source/unres/src_MD_DFA/rescode.f b/source/unres/src_MD_DFA/rescode.f
new file mode 100644 (file)
index 0000000..2973ef9
--- /dev/null
@@ -0,0 +1,32 @@
+      integer function rescode(iseq,nam,itype)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      character*3 nam,ucase
+
+      if (itype.eq.0) then
+
+      do i=1,ntyp1
+        if (ucase(nam).eq.restyp(i)) then
+          rescode=i
+          return
+        endif
+      enddo
+
+      else
+
+      do i=1,ntyp1
+        if (nam(1:1).eq.onelet(i)) then
+          rescode=i
+          return  
+        endif  
+      enddo
+
+      endif
+
+      write (iout,10) iseq,nam
+      stop
+   10 format ('**** Error - residue',i4,' has an unresolved name ',a3)
+      end
+
diff --git a/source/unres/src_MD_DFA/rmdd.f b/source/unres/src_MD_DFA/rmdd.f
new file mode 100644 (file)
index 0000000..799ab47
--- /dev/null
@@ -0,0 +1,159 @@
+c     algorithm 611, collected algorithms from acm.
+c     algorithm appeared in acm-trans. math. software, vol.9, no. 4,
+c     dec., 1983, p. 503-524.
+      integer function imdcon(k)
+c
+      integer k
+c
+c  ***  return integer machine-dependent constants  ***
+c
+c     ***  k = 1 means return standard output unit number.   ***
+c     ***  k = 2 means return alternate output unit number.  ***
+c     ***  k = 3 means return  input unit number.            ***
+c          (note -- k = 2, 3 are used only by test programs.)
+c
+c  +++  port version follows...
+c     external i1mach
+c     integer i1mach
+c     integer mdperm(3)
+c     data mdperm(1)/2/, mdperm(2)/4/, mdperm(3)/1/
+c     imdcon = i1mach(mdperm(k))
+c  +++  end of port version  +++
+c
+c  +++  non-port version follows...
+      integer mdcon(3)
+      data mdcon(1)/6/, mdcon(2)/8/, mdcon(3)/5/
+      imdcon = mdcon(k)
+c  +++  end of non-port version  +++
+c
+ 999  return
+c  ***  last card of imdcon follows  ***
+      end
+      double precision function rmdcon(k)
+c
+c  ***  return machine dependent constants used by nl2sol  ***
+c
+c +++  comments below contain data statements for various machines.  +++
+c +++  to convert to another machine, place a c in column 1 of the   +++
+c +++  data statement line(s) that correspond to the current machine +++
+c +++  and remove the c from column 1 of the data statement line(s)  +++
+c +++  that correspond to the new machine.                           +++
+c
+      integer k
+c
+c  ***  the constant returned depends on k...
+c
+c  ***        k = 1... smallest pos. eta such that -eta exists.
+c  ***        k = 2... square root of eta.
+c  ***        k = 3... unit roundoff = smallest pos. no. machep such
+c  ***                 that 1 + machep .gt. 1 .and. 1 - machep .lt. 1.
+c  ***        k = 4... square root of machep.
+c  ***        k = 5... square root of big (see k = 6).
+c  ***        k = 6... largest machine no. big such that -big exists.
+c
+      double precision big, eta, machep
+      integer bigi(4), etai(4), machei(4)
+c/+
+      double precision dsqrt
+c/
+      equivalence (big,bigi(1)), (eta,etai(1)), (machep,machei(1))
+c
+c  +++  ibm 360, ibm 370, or xerox  +++
+c
+c     data big/z7fffffffffffffff/, eta/z0010000000000000/,
+c    1     machep/z3410000000000000/
+c
+c  +++  data general  +++
+c
+c     data big/0.7237005577d+76/, eta/0.5397605347d-78/,
+c    1     machep/2.22044605d-16/
+c
+c  +++  dec 11  +++
+c
+c     data big/1.7d+38/, eta/2.938735878d-39/, machep/2.775557562d-17/
+c
+c  +++  hp3000  +++
+c
+c     data big/1.157920892d+77/, eta/8.636168556d-78/,
+c    1     machep/5.551115124d-17/
+c
+c  +++  honeywell  +++
+c
+c     data big/1.69d+38/, eta/5.9d-39/, machep/2.1680435d-19/
+c
+c  +++  dec10  +++
+c
+c     data big/"377777100000000000000000/,
+c    1     eta/"002400400000000000000000/,
+c    2     machep/"104400000000000000000000/
+c
+c  +++  burroughs  +++
+c
+c     data big/o0777777777777777,o7777777777777777/,
+c    1     eta/o1771000000000000,o7770000000000000/,
+c    2     machep/o1451000000000000,o0000000000000000/
+c
+c  +++  control data  +++
+c
+c     data big/37767777777777777777b,37167777777777777777b/,
+c    1     eta/00014000000000000000b,00000000000000000000b/,
+c    2     machep/15614000000000000000b,15010000000000000000b/
+c
+c  +++  prime  +++
+c
+c     data big/1.0d+9786/, eta/1.0d-9860/, machep/1.4210855d-14/
+c
+c  +++  univac  +++
+c
+c     data big/8.988d+307/, eta/1.2d-308/, machep/1.734723476d-18/
+c
+c  +++  vax  +++
+c
+      data big/1.7d+38/, eta/2.939d-39/, machep/1.3877788d-17/
+c
+c  +++  cray 1  +++
+c
+c     data bigi(1)/577767777777777777777b/,
+c    1     bigi(2)/000007777777777777776b/,
+c    2     etai(1)/200004000000000000000b/,
+c    3     etai(2)/000000000000000000000b/,
+c    4     machei(1)/377224000000000000000b/,
+c    5     machei(2)/000000000000000000000b/
+c
+c  +++  port library -- requires more than just a data statement... +++
+c
+c     external d1mach
+c     double precision d1mach, zero
+c     data big/0.d+0/, eta/0.d+0/, machep/0.d+0/, zero/0.d+0/
+c     if (big .gt. zero) go to 1
+c        big = d1mach(2)
+c        eta = d1mach(1)
+c        machep = d1mach(4)
+c1    continue
+c
+c  +++ end of port +++
+c
+c-------------------------------  body  --------------------------------
+c
+      go to (10, 20, 30, 40, 50, 60), k
+c
+ 10   rmdcon = eta
+      go to 999
+c
+ 20   rmdcon = dsqrt(256.d+0*eta)/16.d+0
+      go to 999
+c
+ 30   rmdcon = machep
+      go to 999
+c
+ 40   rmdcon = dsqrt(machep)
+      go to 999
+c
+ 50   rmdcon = dsqrt(big/256.d+0)*16.d+0
+      go to 999
+c
+ 60   rmdcon = big
+c
+ 999  return
+c  ***  last card of rmdcon follows  ***
+      end
diff --git a/source/unres/src_MD_DFA/rmsd.F b/source/unres/src_MD_DFA/rmsd.F
new file mode 100644 (file)
index 0000000..52e7b37
--- /dev/null
@@ -0,0 +1,140 @@
+      subroutine rms_nac_nnc(rms,frac,frac_nn,co,lprn)
+        implicit real*8 (a-h,o-z)
+        include 'DIMENSIONS'
+        include 'COMMON.CHAIN'
+        include 'COMMON.CONTACTS'
+        include 'COMMON.IOUNITS'
+        double precision przes(3),obr(3,3)
+        logical non_conv,lprn
+c        call fitsq(rms,c(1,nstart_seq),cref(1,nstart_sup),nsup,przes,
+c     &             obr,non_conv)
+c        rms=dsqrt(rms)
+        call rmsd(rms)
+        call contact(.false.,ncont,icont,co)
+        frac=contact_fract(ncont,ncont_ref,icont,icont_ref)
+        frac_nn=contact_fract_nn(ncont,ncont_ref,icont,icont_ref)
+        if (lprn) write (iout,'(a,f8.3/a,f8.3/a,f8.3/a,f8.3)')
+     &    'RMS deviation from the reference structure:',rms,
+     &    ' % of native contacts:',frac*100,
+     &    ' % of nonnative contacts:',frac_nn*100,
+     &    ' contact order:',co
+
+      return
+      end      
+c---------------------------------------------------------------------------
+      subroutine rmsd(drms)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'  
+      include 'COMMON.INTERACT'
+      logical non_conv
+      double precision przes(3),obrot(3,3)
+      double precision ccopy(3,maxres2+2),crefcopy(3,maxres2+2)
+
+      iatom=0
+c      print *,"nz_start",nz_start," nz_end",nz_end
+      do i=nz_start,nz_end
+        iatom=iatom+1
+        iti=itype(i)
+        do k=1,3
+         ccopy(k,iatom)=c(k,i+nstart_seq-nstart_sup)
+         crefcopy(k,iatom)=cref(k,i)
+        enddo
+        if (iz_sc.eq.1.and.iti.ne.10) then
+          iatom=iatom+1
+          do k=1,3
+           ccopy(k,iatom)=c(k,nres+i+nstart_seq-nstart_sup)
+           crefcopy(k,iatom)=cref(k,nres+i)
+          enddo
+        endif
+      enddo
+
+c ----- diagnostics
+c          write (iout,*) 'Ccopy and CREFcopy'
+c          print '(i5,3f10.5,5x,3f10.5)',(k,(ccopy(j,k),j=1,3),
+c     &           (crefcopy(j,k),j=1,3),k=1,iatom)
+c          write (iout,'(i5,3f10.5,5x,3f10.5)') (k,(ccopy(j,k),j=1,3),
+c     &           (crefcopy(j,k),j=1,3),k=1,iatom)
+c ----- end diagnostics
+
+      call fitsq(roznica,ccopy(1,1),crefcopy(1,1),iatom,
+     &                                      przes,obrot,non_conv) 
+      if (non_conv) then
+          print *,'Problems in FITSQ!!! rmsd'
+          write (iout,*) 'Problems in FITSQ!!! rmsd'
+          print *,'Ccopy and CREFcopy'
+          write (iout,*) 'Ccopy and CREFcopy'
+          print '(i5,3f10.5,5x,3f10.5)',(k,(ccopy(j,k),j=1,3),
+     &           (crefcopy(j,k),j=1,3),k=1,iatom)
+          write (iout,'(i5,3f10.5,5x,3f10.5)') (k,(ccopy(j,k),j=1,3),
+     &           (crefcopy(j,k),j=1,3),k=1,iatom)
+#ifdef MPI
+c          call mpi_abort(mpi_comm_world,ierror,ierrcode)
+           roznica=100.0
+#else          
+          stop
+#endif
+       endif
+       drms=dsqrt(dabs(roznica))
+c ---- diagnostics
+c       write (iout,*) "rms",drms
+c ---- end diagnostics
+       return
+       end
+
+c--------------------------------------------
+      subroutine rmsd_csa(drms)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'  
+      include 'COMMON.INTERACT'
+      logical non_conv
+      double precision przes(3),obrot(3,3)
+      double precision ccopy(3,maxres2+2),crefcopy(3,maxres2+2)
+
+      iatom=0
+      do i=nz_start,nz_end
+        iatom=iatom+1
+        iti=itype(i)
+        do k=1,3
+         ccopy(k,iatom)=c(k,i)
+         crefcopy(k,iatom)=crefjlee(k,i)
+        enddo
+        if (iz_sc.eq.1.and.iti.ne.10) then
+          iatom=iatom+1
+          do k=1,3
+           ccopy(k,iatom)=c(k,nres+i)
+           crefcopy(k,iatom)=crefjlee(k,nres+i)
+          enddo
+        endif
+      enddo
+
+      call fitsq(roznica,ccopy(1,1),crefcopy(1,1),iatom,
+     &                                      przes,obrot,non_conv) 
+      if (non_conv) then
+          print *,'Problems in FITSQ!!! rmsd_csa'
+          write (iout,*) 'Problems in FITSQ!!! rmsd_csa'
+          print *,'Ccopy and CREFcopy'
+          write (iout,*) 'Ccopy and CREFcopy'
+          print '(i5,3f10.5,5x,3f10.5)',(k,(ccopy(j,k),j=1,3),
+     &           (crefcopy(j,k),j=1,3),k=1,iatom)
+          write (iout,'(i5,3f10.5,5x,3f10.5)') (k,(ccopy(j,k),j=1,3),
+     &           (crefcopy(j,k),j=1,3),k=1,iatom)
+#ifdef MPI
+          call mpi_abort(mpi_comm_world,ierror,ierrcode)
+#else          
+          stop
+#endif
+       endif
+       drms=dsqrt(dabs(roznica))
+       return
+       end
+
diff --git a/source/unres/src_MD_DFA/sc_move.F b/source/unres/src_MD_DFA/sc_move.F
new file mode 100644 (file)
index 0000000..b6837fd
--- /dev/null
@@ -0,0 +1,823 @@
+      subroutine sc_move(n_start,n_end,n_maxtry,e_drop,
+     +     n_fun,etot)
+c     Perform a quick search over side-chain arrangments (over
+c     residues n_start to n_end) for a given (frozen) CA trace
+c     Only side-chains are minimized (at most n_maxtry times each),
+c     not CA positions
+c     Stops if energy drops by e_drop, otherwise tries all residues
+c     in the given range
+c     If there is an energy drop, full minimization may be useful
+c     n_start, n_end CAN be modified by this routine, but only if
+c     out of bounds (n_start <= 1, n_end >= nres, n_start < n_end)
+c     NOTE: this move should never increase the energy
+crc      implicit none
+
+c     Includes
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.HEADER'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+
+c     External functions
+      integer iran_num
+      external iran_num
+
+c     Input arguments
+      integer n_start,n_end,n_maxtry
+      double precision e_drop
+
+c     Output arguments
+      integer n_fun
+      double precision etot
+
+c     Local variables
+      double precision energy(0:n_ene)
+      double precision cur_alph(2:nres-1),cur_omeg(2:nres-1)
+      double precision orig_e,cur_e
+      integer n,n_steps,n_first,n_cur,n_tot,i
+      double precision orig_w(n_ene)
+      double precision wtime
+
+
+c     Set non side-chain weights to zero (minimization is faster)
+c     NOTE: e(2) does not actually depend on the side-chain, only CA
+      orig_w(2)=wscp
+      orig_w(3)=welec
+      orig_w(4)=wcorr
+      orig_w(5)=wcorr5
+      orig_w(6)=wcorr6
+      orig_w(7)=wel_loc
+      orig_w(8)=wturn3
+      orig_w(9)=wturn4
+      orig_w(10)=wturn6
+      orig_w(11)=wang
+      orig_w(13)=wtor
+      orig_w(14)=wtor_d
+      orig_w(15)=wvdwpp
+
+      wscp=0.D0
+      welec=0.D0
+      wcorr=0.D0
+      wcorr5=0.D0
+      wcorr6=0.D0
+      wel_loc=0.D0
+      wturn3=0.D0
+      wturn4=0.D0
+      wturn6=0.D0
+      wang=0.D0
+      wtor=0.D0
+      wtor_d=0.D0
+      wvdwpp=0.D0
+
+c     Make sure n_start, n_end are within proper range
+      if (n_start.lt.2) n_start=2
+      if (n_end.gt.nres-1) n_end=nres-1
+crc      if (n_start.lt.n_end) then
+      if (n_start.gt.n_end) then
+        n_start=2
+        n_end=nres-1
+      endif
+
+c     Save the initial values of energy and coordinates
+cd      call chainbuild
+cd      call etotal(energy)
+cd      write (iout,*) 'start sc ene',energy(0)
+cd      call enerprint(energy(0))
+crc      etot=energy(0)
+       n_fun=0
+crc      orig_e=etot
+crc      cur_e=orig_e
+crc      do i=2,nres-1
+crc        cur_alph(i)=alph(i)
+crc        cur_omeg(i)=omeg(i)
+crc      enddo
+
+ct      wtime=MPI_WTIME()
+c     Try (one by one) all specified residues, starting from a
+c     random position in sequence
+c     Stop early if the energy has decreased by at least e_drop
+      n_tot=n_end-n_start+1
+      n_first=iran_num(0,n_tot-1)
+      n_steps=0
+      n=0
+crc      do while (n.lt.n_tot .and. orig_e-etot.lt.e_drop)
+      do while (n.lt.n_tot)
+        n_cur=n_start+mod(n_first+n,n_tot)
+        call single_sc_move(n_cur,n_maxtry,e_drop,
+     +       n_steps,n_fun,etot)
+c     If a lower energy was found, update the current structure...
+crc        if (etot.lt.cur_e) then
+crc          cur_e=etot
+crc          do i=2,nres-1
+crc            cur_alph(i)=alph(i)
+crc            cur_omeg(i)=omeg(i)
+crc          enddo
+crc        else
+c     ...else revert to the previous one
+crc          etot=cur_e
+crc          do i=2,nres-1
+crc            alph(i)=cur_alph(i)
+crc            omeg(i)=cur_omeg(i)
+crc          enddo
+crc        endif
+        n=n+1
+cd
+cd      call chainbuild
+cd      call etotal(energy)
+cd      print *,'running',n,energy(0)
+      enddo
+
+cd      call chainbuild
+cd      call etotal(energy)
+cd      write (iout,*) 'end   sc ene',energy(0)
+
+c     Put the original weights back to calculate the full energy
+      wscp=orig_w(2)
+      welec=orig_w(3)
+      wcorr=orig_w(4)
+      wcorr5=orig_w(5)
+      wcorr6=orig_w(6)
+      wel_loc=orig_w(7)
+      wturn3=orig_w(8)
+      wturn4=orig_w(9)
+      wturn6=orig_w(10)
+      wang=orig_w(11)
+      wtor=orig_w(13)
+      wtor_d=orig_w(14)
+      wvdwpp=orig_w(15)
+
+crc      n_fun=n_fun+1
+ct      write (iout,*) 'sc_local time= ',MPI_WTIME()-wtime
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine single_sc_move(res_pick,n_maxtry,e_drop,
+     +     n_steps,n_fun,e_sc)
+c     Perturb one side-chain (res_pick) and minimize the
+c     neighbouring region, keeping all CA's and non-neighbouring
+c     side-chains fixed
+c     Try until e_drop energy improvement is achieved, or n_maxtry
+c     attempts have been made
+c     At the start, e_sc should contain the side-chain-only energy(0)
+c     nsteps and nfun for this move are ADDED to n_steps and n_fun
+crc      implicit none
+
+c     Includes
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.CHAIN'
+      include 'COMMON.MINIM'
+      include 'COMMON.FFIELD'
+      include 'COMMON.IOUNITS'
+
+c     External functions
+      double precision dist
+      external dist
+
+c     Input arguments
+      integer res_pick,n_maxtry
+      double precision e_drop
+
+c     Input/Output arguments
+      integer n_steps,n_fun
+      double precision e_sc
+
+c     Local variables
+      logical fail
+      integer i,j
+      integer nres_moved
+      integer iretcode,loc_nfun,orig_maxfun,n_try
+      double precision sc_dist,sc_dist_cutoff
+      double precision energy(0:n_ene),orig_e,cur_e
+      double precision evdw,escloc
+      double precision cur_alph(2:nres-1),cur_omeg(2:nres-1)
+      double precision var(maxvar)
+
+      double precision orig_theta(1:nres),orig_phi(1:nres),
+     +     orig_alph(1:nres),orig_omeg(1:nres)
+
+
+c     Define what is meant by "neighbouring side-chain"
+      sc_dist_cutoff=5.0D0
+
+c     Don't do glycine or ends
+      i=itype(res_pick)
+      if (i.eq.10 .or. i.eq.21) return
+
+c     Freeze everything (later will relax only selected side-chains)
+      mask_r=.true.
+      do i=1,nres
+        mask_phi(i)=0
+        mask_theta(i)=0
+        mask_side(i)=0
+      enddo
+
+c     Find the neighbours of the side-chain to move
+c     and save initial variables
+crc      orig_e=e_sc
+crc      cur_e=orig_e
+      nres_moved=0
+      do i=2,nres-1
+c     Don't do glycine (itype(j)==10)
+        if (itype(i).ne.10) then
+          sc_dist=dist(nres+i,nres+res_pick)
+        else
+          sc_dist=sc_dist_cutoff
+        endif
+        if (sc_dist.lt.sc_dist_cutoff) then
+          nres_moved=nres_moved+1
+          mask_side(i)=1
+          cur_alph(i)=alph(i)
+          cur_omeg(i)=omeg(i)
+        endif
+      enddo
+
+      call chainbuild
+      call egb1(evdw)
+      call esc(escloc)
+      e_sc=wsc*evdw+wscloc*escloc
+cd      call etotal(energy)
+cd      print *,'new       ',(energy(k),k=0,n_ene)
+      orig_e=e_sc
+      cur_e=orig_e
+
+      n_try=0
+      do while (n_try.lt.n_maxtry .and. orig_e-cur_e.lt.e_drop)
+c     Move the selected residue (don't worry if it fails)
+        call gen_side(itype(res_pick),theta(res_pick+1),
+     +       alph(res_pick),omeg(res_pick),fail)
+
+c     Minimize the side-chains starting from the new arrangement
+        call geom_to_var(nvar,var)
+        orig_maxfun=maxfun
+        maxfun=7
+
+crc        do i=1,nres
+crc          orig_theta(i)=theta(i)
+crc          orig_phi(i)=phi(i)
+crc          orig_alph(i)=alph(i)
+crc          orig_omeg(i)=omeg(i)
+crc        enddo
+
+        call minimize_sc1(e_sc,var,iretcode,loc_nfun)
+        
+cv        write(*,'(2i3,2f12.5,2i3)') 
+cv     &       res_pick,nres_moved,orig_e,e_sc-cur_e,
+cv     &       iretcode,loc_nfun
+
+c$$$        if (iretcode.eq.8) then
+c$$$          write(iout,*)'Coordinates just after code 8'
+c$$$          call chainbuild
+c$$$          call all_varout
+c$$$          call flush(iout)
+c$$$          do i=1,nres
+c$$$            theta(i)=orig_theta(i)
+c$$$            phi(i)=orig_phi(i)
+c$$$            alph(i)=orig_alph(i)
+c$$$            omeg(i)=orig_omeg(i)
+c$$$          enddo
+c$$$          write(iout,*)'Coordinates just before code 8'
+c$$$          call chainbuild
+c$$$          call all_varout
+c$$$          call flush(iout)
+c$$$        endif
+
+        n_fun=n_fun+loc_nfun
+        maxfun=orig_maxfun
+        call var_to_geom(nvar,var)
+
+c     If a lower energy was found, update the current structure...
+        if (e_sc.lt.cur_e) then
+cv              call chainbuild
+cv              call etotal(energy)
+cd              call egb1(evdw)
+cd              call esc(escloc)
+cd              e_sc1=wsc*evdw+wscloc*escloc
+cd              print *,'     new',e_sc1,energy(0)
+cv              print *,'new       ',energy(0)
+cd              call enerprint(energy(0))
+          cur_e=e_sc
+          do i=2,nres-1
+            if (mask_side(i).eq.1) then
+              cur_alph(i)=alph(i)
+              cur_omeg(i)=omeg(i)
+            endif
+          enddo
+        else
+c     ...else revert to the previous one
+          e_sc=cur_e
+          do i=2,nres-1
+            if (mask_side(i).eq.1) then
+              alph(i)=cur_alph(i)
+              omeg(i)=cur_omeg(i)
+            endif
+          enddo
+        endif
+        n_try=n_try+1
+
+      enddo
+      n_steps=n_steps+n_try
+
+c     Reset the minimization mask_r to false
+      mask_r=.false.
+
+      return
+      end
+
+c-------------------------------------------------------------
+
+      subroutine sc_minimize(etot,iretcode,nfun)
+c     Minimizes side-chains only, leaving backbone frozen
+crc      implicit none
+
+c     Includes
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.FFIELD'
+
+c     Output arguments
+      double precision etot
+      integer iretcode,nfun
+
+c     Local variables
+      integer i
+      double precision orig_w(n_ene),energy(0:n_ene)
+      double precision var(maxvar)
+
+
+c     Set non side-chain weights to zero (minimization is faster)
+c     NOTE: e(2) does not actually depend on the side-chain, only CA
+      orig_w(2)=wscp
+      orig_w(3)=welec
+      orig_w(4)=wcorr
+      orig_w(5)=wcorr5
+      orig_w(6)=wcorr6
+      orig_w(7)=wel_loc
+      orig_w(8)=wturn3
+      orig_w(9)=wturn4
+      orig_w(10)=wturn6
+      orig_w(11)=wang
+      orig_w(13)=wtor
+      orig_w(14)=wtor_d
+
+      wscp=0.D0
+      welec=0.D0
+      wcorr=0.D0
+      wcorr5=0.D0
+      wcorr6=0.D0
+      wel_loc=0.D0
+      wturn3=0.D0
+      wturn4=0.D0
+      wturn6=0.D0
+      wang=0.D0
+      wtor=0.D0
+      wtor_d=0.D0
+
+c     Prepare to freeze backbone
+      do i=1,nres
+        mask_phi(i)=0
+        mask_theta(i)=0
+        mask_side(i)=1
+      enddo
+
+c     Minimize the side-chains
+      mask_r=.true.
+      call geom_to_var(nvar,var)
+      call minimize(etot,var,iretcode,nfun)
+      call var_to_geom(nvar,var)
+      mask_r=.false.
+
+c     Put the original weights back and calculate the full energy
+      wscp=orig_w(2)
+      welec=orig_w(3)
+      wcorr=orig_w(4)
+      wcorr5=orig_w(5)
+      wcorr6=orig_w(6)
+      wel_loc=orig_w(7)
+      wturn3=orig_w(8)
+      wturn4=orig_w(9)
+      wturn6=orig_w(10)
+      wang=orig_w(11)
+      wtor=orig_w(13)
+      wtor_d=orig_w(14)
+
+      call chainbuild
+      call etotal(energy)
+      etot=energy(0)
+
+      return
+      end
+
+c-------------------------------------------------------------
+      subroutine minimize_sc1(etot,x,iretcode,nfun)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      parameter (liv=60,lv=(77+maxvar*(maxvar+17)/2)) 
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.MINIM'
+      common /srutu/ icall
+      dimension iv(liv)                                               
+      double precision minval,x(maxvar),d(maxvar),v(1:lv),xx(maxvar)
+      double precision energia(0:n_ene)
+      external func,gradient,fdum
+      external func_restr1,grad_restr1
+      logical not_done,change,reduce 
+      common /przechowalnia/ v
+
+      call deflt(2,iv,liv,lv,v)                                         
+* 12 means fresh start, dont call deflt                                 
+      iv(1)=12                                                          
+* max num of fun calls                                                  
+      if (maxfun.eq.0) maxfun=500
+      iv(17)=maxfun
+* max num of iterations                                                 
+      if (maxmin.eq.0) maxmin=1000
+      iv(18)=maxmin
+* controls output                                                       
+      iv(19)=2                                                          
+* selects output unit                                                   
+c     iv(21)=iout                                                       
+      iv(21)=0
+* 1 means to print out result                                           
+      iv(22)=0                                                          
+* 1 means to print out summary stats                                    
+      iv(23)=0                                                          
+* 1 means to print initial x and d                                      
+      iv(24)=0                                                          
+* min val for v(radfac) default is 0.1                                  
+      v(24)=0.1D0                                                       
+* max val for v(radfac) default is 4.0                                  
+      v(25)=2.0D0                                                       
+c     v(25)=4.0D0                                                       
+* check false conv if (act fnctn decrease) .lt. v(26)*(exp decrease)    
+* the sumsl default is 0.1                                              
+      v(26)=0.1D0
+* false conv if (act fnctn decrease) .lt. v(34)                         
+* the sumsl default is 100*machep                                       
+      v(34)=v(34)/100.0D0                                               
+* absolute convergence                                                  
+      if (tolf.eq.0.0D0) tolf=1.0D-4
+      v(31)=tolf
+* relative convergence                                                  
+      if (rtolf.eq.0.0D0) rtolf=1.0D-4
+      v(32)=rtolf
+* controls initial step size                                            
+       v(35)=1.0D-1                                                    
+* large vals of d correspond to small components of step                
+      do i=1,nphi
+        d(i)=1.0D-1
+      enddo
+      do i=nphi+1,nvar
+        d(i)=1.0D-1
+      enddo
+      IF (mask_r) THEN
+       call x2xx(x,xx,nvar_restr)
+       call sumsl(nvar_restr,d,xx,func_restr1,grad_restr1,
+     &                    iv,liv,lv,v,idum,rdum,fdum)      
+       call xx2x(x,xx)
+      ELSE
+       call sumsl(nvar,d,x,func,gradient,iv,liv,lv,v,idum,rdum,fdum)      
+      ENDIF
+      etot=v(10)                                                      
+      iretcode=iv(1)
+      nfun=iv(6)
+
+      return  
+      end  
+************************************************************************
+      subroutine func_restr1(n,x,nf,f,uiparm,urparm,ufparm)  
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.GEO'
+      include 'COMMON.FFIELD'
+      include 'COMMON.INTERACT'
+      include 'COMMON.TIME1'
+      common /chuju/ jjj
+      double precision energia(0:n_ene),evdw,escloc
+      integer jjj
+      double precision ufparm,e1,e2
+      external ufparm                                                   
+      integer uiparm(1)                                                 
+      real*8 urparm(1)                                                    
+      dimension x(maxvar)
+      nfl=nf
+      icg=mod(nf,2)+1
+
+#ifdef OSF
+c     Intercept NaNs in the coordinates, before calling etotal
+      x_sum=0.D0
+      do i=1,n
+        x_sum=x_sum+x(i)
+      enddo
+      FOUND_NAN=.false.
+      if (x_sum.ne.x_sum) then
+        write(iout,*)"   *** func_restr1 : Found NaN in coordinates"
+        f=1.0D+73
+        FOUND_NAN=.true.
+        return
+      endif
+#endif
+
+      call var_to_geom_restr(n,x)
+      call zerograd
+      call chainbuild
+cd    write (iout,*) 'ETOTAL called from FUNC'
+      call egb1(evdw)
+      call esc(escloc)
+      f=wsc*evdw+wscloc*escloc
+cd      call etotal(energia(0))
+cd      f=wsc*energia(1)+wscloc*energia(12)
+cd      print *,f,evdw,escloc,energia(0)
+C
+C Sum up the components of the Cartesian gradient.
+C
+      do i=1,nct
+        do j=1,3
+          gradx(j,i,icg)=wsc*gvdwx(j,i)
+        enddo
+      enddo
+
+      return                                                            
+      end                                                               
+c-------------------------------------------------------
+      subroutine grad_restr1(n,x,nf,g,uiparm,urparm,ufparm)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.IOUNITS'
+      external ufparm
+      integer uiparm(1)
+      double precision urparm(1)
+      dimension x(maxvar),g(maxvar)
+
+      icg=mod(nf,2)+1
+      if (nf-nfl+1) 20,30,40
+   20 call func_restr1(n,x,nf,f,uiparm,urparm,ufparm)
+c     write (iout,*) 'grad 20'
+      if (nf.eq.0) return
+      goto 40
+   30 call var_to_geom_restr(n,x)
+      call chainbuild 
+C
+C Evaluate the derivatives of virtual bond lengths and SC vectors in variables.
+C
+   40 call cartder
+C
+C Convert the Cartesian gradient into internal-coordinate gradient.
+C
+
+      ig=0
+      ind=nres-2                                                                    
+      do i=2,nres-2                
+       IF (mask_phi(i+2).eq.1) THEN                                             
+        gphii=0.0D0                                                             
+        do j=i+1,nres-1                                                         
+          ind=ind+1                                 
+          do k=1,3                                                              
+            gphii=gphii+dcdv(k+3,ind)*gradc(k,j,icg)                            
+            gphii=gphii+dxdv(k+3,ind)*gradx(k,j,icg)                           
+          enddo                                                                 
+        enddo                                                                   
+        ig=ig+1
+        g(ig)=gphii
+       ELSE
+        ind=ind+nres-1-i
+       ENDIF
+      enddo                                        
+
+
+      ind=0
+      do i=1,nres-2
+       IF (mask_theta(i+2).eq.1) THEN
+        ig=ig+1
+       gthetai=0.0D0
+       do j=i+1,nres-1
+          ind=ind+1
+         do k=1,3
+            gthetai=gthetai+dcdv(k,ind)*gradc(k,j,icg)
+            gthetai=gthetai+dxdv(k,ind)*gradx(k,j,icg)
+          enddo
+        enddo
+        g(ig)=gthetai
+       ELSE
+        ind=ind+nres-1-i
+       ENDIF
+      enddo
+
+      do i=2,nres-1
+       if (itype(i).ne.10) then
+         IF (mask_side(i).eq.1) THEN
+          ig=ig+1
+          galphai=0.0D0
+         do k=1,3
+           galphai=galphai+dxds(k,i)*gradx(k,i,icg)
+          enddo
+          g(ig)=galphai
+         ENDIF
+        endif
+      enddo
+
+      
+      do i=2,nres-1
+        if (itype(i).ne.10) then
+         IF (mask_side(i).eq.1) THEN
+          ig=ig+1
+         gomegai=0.0D0
+         do k=1,3
+           gomegai=gomegai+dxds(k+3,i)*gradx(k,i,icg)
+          enddo
+         g(ig)=gomegai
+         ENDIF
+        endif
+      enddo
+
+C
+C Add the components corresponding to local energy terms.
+C
+
+      ig=0
+      igall=0
+      do i=4,nres
+        igall=igall+1
+        if (mask_phi(i).eq.1) then
+          ig=ig+1
+          g(ig)=g(ig)+gloc(igall,icg)
+        endif
+      enddo
+
+      do i=3,nres
+        igall=igall+1
+        if (mask_theta(i).eq.1) then
+          ig=ig+1
+          g(ig)=g(ig)+gloc(igall,icg)
+        endif
+      enddo
+     
+      do ij=1,2
+      do i=2,nres-1
+        if (itype(i).ne.10) then
+          igall=igall+1
+          if (mask_side(i).eq.1) then
+            ig=ig+1
+            g(ig)=g(ig)+gloc(igall,icg)
+          endif
+        endif
+      enddo
+      enddo
+
+cd      do i=1,ig
+cd        write (iout,'(a2,i5,a3,f25.8)') 'i=',i,' g=',g(i)
+cd      enddo
+      return
+      end
+C-----------------------------------------------------------------------------
+      subroutine egb1(evdw)
+C
+C This subroutine calculates the interaction energy of nonbonded side chains
+C assuming the Gay-Berne potential of interaction.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      logical lprn
+      evdw=0.0D0
+c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+      evdw=0.0D0
+      lprn=.false.
+c     if (icall.eq.0) lprn=.true.
+      ind=0
+      do i=iatsc_s,iatsc_e
+
+
+        itypi=itype(i)
+        itypi1=itype(i+1)
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+        dsci_inv=dsc_inv(itypi)
+C
+C Calculate SC interaction energy.
+C
+        do iint=1,nint_gr(i)
+          do j=istart(i,iint),iend(i,iint)
+          IF (mask_side(j).eq.1.or.mask_side(i).eq.1) THEN
+            ind=ind+1
+            itypj=itype(j)
+            dscj_inv=dsc_inv(itypj)
+            sig0ij=sigma(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)
+            alf2=alp(itypj)
+            alf12=0.5D0*(alf1+alf2)
+C For diagnostics only!!!
+c           chi1=0.0D0
+c           chi2=0.0D0
+c           chi12=0.0D0
+c           chip1=0.0D0
+c           chip2=0.0D0
+c           chip12=0.0D0
+c           alf1=0.0D0
+c           alf2=0.0D0
+c           alf12=0.0D0
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+C Calculate angle-dependent terms of energy and contributions to their
+C derivatives.
+            call sc_angular
+            sigsq=1.0D0/sigsq
+            sig=sig0ij*dsqrt(sigsq)
+            rij_shift=1.0D0/rij-sig+sig0ij
+C I hate to put IF's in the loops, but here don't have another choice!!!!
+            if (rij_shift.le.0.0D0) then
+              evdw=1.0D20
+cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+cd     &        restyp(itypi),i,restyp(itypj),j,
+cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
+              return
+            endif
+            sigder=-sig*sigsq
+c---------------------------------------------------------------
+            rij_shift=1.0D0/rij_shift 
+            fac=rij_shift**expon
+            e1=fac*fac*aa(itypi,itypj)
+            e2=fac*bb(itypi,itypj)
+            evdwij=eps1*eps2rt*eps3rt*(e1+e2)
+            eps2der=evdwij*eps3rt
+            eps3der=evdwij*eps2rt
+            evdwij=evdwij*eps2rt*eps3rt
+            evdw=evdw+evdwij
+            if (lprn) then
+            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
+            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+cd            write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+cd     &        restyp(itypi),i,restyp(itypj),j,
+cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
+cd     &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
+cd     &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
+cd     &        evdwij
+            endif
+
+            if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
+     &                        'evdw',i,j,evdwij
+
+C Calculate gradient components.
+            e1=e1*eps1*eps2rt**2*eps3rt**2
+            fac=-expon*(e1+evdwij)*rij_shift
+            sigder=fac*sigder
+            fac=rij*fac
+C Calculate the radial part of the gradient
+            gg(1)=xj*fac
+            gg(2)=yj*fac
+            gg(3)=zj*fac
+C Calculate angular part of the gradient.
+            call sc_grad
+          ENDIF
+          enddo      ! j
+        enddo        ! iint
+      enddo          ! i
+      end
+C-----------------------------------------------------------------------------
diff --git a/source/unres/src_MD_DFA/sizes.i b/source/unres/src_MD_DFA/sizes.i
new file mode 100644 (file)
index 0000000..45c44ff
--- /dev/null
@@ -0,0 +1,83 @@
+c
+c
+c     ###################################################
+c     ##  COPYRIGHT (C)  1992  by  Jay William Ponder  ##
+c     ##              All Rights Reserved              ##
+c     ###################################################
+c
+c     #############################################################
+c     ##                                                         ##
+c     ##  sizes.i  --  parameter values to set array dimensions  ##
+c     ##                                                         ##
+c     #############################################################
+c
+c
+c     "sizes.i" sets values for critical array dimensions used
+c     throughout the software; these parameters will fix the size
+c     of the largest systems that can be handled; values too large
+c     for the computer's memory and/or swap space to accomodate
+c     will result in poor performance or outright failure
+c
+c     parameter:      maximum allowed number of:
+c
+c     maxatm          atoms in the molecular system
+c     maxval          atoms directly bonded to an atom
+c     maxgrp          user-defined groups of atoms
+c     maxtyp          force field atom type definitions
+c     maxclass        force field atom class definitions
+c     maxkey          lines in the keyword file
+c     maxrot          bonds for torsional rotation
+c     maxvar          optimization variables (vector storage)
+c     maxopt          optimization variables (matrix storage)
+c     maxhess         off-diagonal Hessian elements
+c     maxlight        sites for method of lights neighbors
+c     maxvib          vibrational frequencies
+c     maxgeo          distance geometry points
+c     maxcell         unit cells in replicated crystal
+c     maxring         3-, 4-, or 5-membered rings
+c     maxfix          geometric restraints
+c     maxbio          biopolymer atom definitions
+c     maxres          residues in the macromolecule
+c     maxamino        amino acid residue types
+c     maxnuc          nucleic acid residue types
+c     maxbnd          covalent bonds in molecular system
+c     maxang          bond angles in molecular system
+c     maxtors         torsional angles in molecular system
+c     maxpi           atoms in conjugated pisystem
+c     maxpib          covalent bonds involving pisystem
+c     maxpit          torsional angles involving pisystem
+c
+c
+      integer maxatm,maxval,maxgrp
+      integer maxtyp,maxclass,maxkey
+      integer maxrot,maxopt
+      integer maxhess,maxlight,maxvib
+      integer maxgeo,maxcell,maxring
+      integer maxfix,maxbio
+      integer maxamino,maxnuc,maxbnd
+      integer maxang,maxtors,maxpi
+      integer maxpib,maxpit
+      parameter (maxatm=maxres2)
+      parameter (maxval=8)
+      parameter (maxgrp=1000)
+      parameter (maxtyp=3000)
+      parameter (maxclass=500)
+      parameter (maxkey=10000)
+      parameter (maxrot=1000)
+      parameter (maxopt=1000)
+      parameter (maxhess=1000000)
+      parameter (maxlight=8*maxatm)
+      parameter (maxvib=1000)
+      parameter (maxgeo=1000)
+      parameter (maxcell=10000)
+      parameter (maxring=10000)
+      parameter (maxfix=10000)
+      parameter (maxbio=10000)
+      parameter (maxamino=31)
+      parameter (maxnuc=12)
+      parameter (maxbnd=2*maxatm)
+      parameter (maxang=3*maxatm)
+      parameter (maxtors=4*maxatm)
+      parameter (maxpi=100)
+      parameter (maxpib=2*maxpi)
+      parameter (maxpit=4*maxpi)
diff --git a/source/unres/src_MD_DFA/sort.f b/source/unres/src_MD_DFA/sort.f
new file mode 100644 (file)
index 0000000..46b43d9
--- /dev/null
@@ -0,0 +1,589 @@
+c
+c
+c     ###################################################
+c     ##  COPYRIGHT (C)  1990  by  Jay William Ponder  ##
+c     ##              All Rights Reserved              ##
+c     ###################################################
+c
+c     #########################################################
+c     ##                                                     ##
+c     ##  subroutine sort  --  heapsort of an integer array  ##
+c     ##                                                     ##
+c     #########################################################
+c
+c
+c     "sort" takes an input list of integers and sorts it
+c     into ascending order using the Heapsort algorithm
+c
+c
+      subroutine sort (n,list)
+      implicit none
+      integer i,j,k,n
+      integer index,lists
+      integer list(*)
+c
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+         else
+            lists = list(index)
+            list(index) = list(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               if (list(j) .lt. list(j+1))  j = j + 1
+            end if
+            if (lists .lt. list(j)) then
+               list(i) = list(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+      end do
+      return
+      end
+c
+c
+c     ##############################################################
+c     ##                                                          ##
+c     ##  subroutine sort2  --  heapsort of real array with keys  ##
+c     ##                                                          ##
+c     ##############################################################
+c
+c
+c     "sort2" takes an input list of reals and sorts it
+c     into ascending order using the Heapsort algorithm;
+c     it also returns a key into the original ordering
+c
+c
+      subroutine sort2 (n,list,key)
+      implicit none
+      integer i,j,k,n
+      integer index,keys
+      integer key(*)
+      real*8 lists
+      real*8 list(*)
+c
+c
+c     initialize index into the original ordering
+c
+      do i = 1, n
+         key(i) = i
+      end do
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+            keys = key(k)
+         else
+            lists = list(index)
+            keys = key(index)
+            list(index) = list(1)
+            key(index) = key(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+               key(1) = keys
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               if (list(j) .lt. list(j+1))  j = j + 1
+            end if
+            if (lists .lt. list(j)) then
+               list(i) = list(j)
+               key(i) = key(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+         key(i) = keys
+      end do
+      return
+      end
+c
+c
+c     #################################################################
+c     ##                                                             ##
+c     ##  subroutine sort3  --  heapsort of integer array with keys  ##
+c     ##                                                             ##
+c     #################################################################
+c
+c
+c     "sort3" takes an input list of integers and sorts it
+c     into ascending order using the Heapsort algorithm;
+c     it also returns a key into the original ordering
+c
+c
+      subroutine sort3 (n,list,key)
+      implicit none
+      integer i,j,k,n
+      integer index
+      integer lists
+      integer keys
+      integer list(*)
+      integer key(*)
+c
+c
+c     initialize index into the original ordering
+c
+      do i = 1, n
+         key(i) = i
+      end do
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+            keys = key(k)
+         else
+            lists = list(index)
+            keys = key(index)
+            list(index) = list(1)
+            key(index) = key(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+               key(1) = keys
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               if (list(j) .lt. list(j+1))  j = j + 1
+            end if
+            if (lists .lt. list(j)) then
+               list(i) = list(j)
+               key(i) = key(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+         key(i) = keys
+      end do
+      return
+      end
+c
+c
+c     #################################################################
+c     ##                                                             ##
+c     ##  subroutine sort4  --  heapsort of integer absolute values  ##
+c     ##                                                             ##
+c     #################################################################
+c
+c
+c     "sort4" takes an input list of integers and sorts it into
+c     ascending absolute value using the Heapsort algorithm
+c
+c
+      subroutine sort4 (n,list)
+      implicit none
+      integer i,j,k,n
+      integer index
+      integer lists
+      integer list(*)
+c
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+         else
+            lists = list(index)
+            list(index) = list(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               if (abs(list(j)) .lt. abs(list(j+1)))  j = j + 1
+            end if
+            if (abs(lists) .lt. abs(list(j))) then
+               list(i) = list(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+      end do
+      return
+      end
+c
+c
+c     ################################################################
+c     ##                                                            ##
+c     ##  subroutine sort5  --  heapsort of integer array modulo m  ##
+c     ##                                                            ##
+c     ################################################################
+c
+c
+c     "sort5" takes an input list of integers and sorts it
+c     into ascending order based on each value modulo "m"
+c
+c
+      subroutine sort5 (n,list,m)
+      implicit none
+      integer i,j,k,m,n
+      integer index,smod
+      integer jmod,j1mod
+      integer lists
+      integer list(*)
+c
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+         else
+            lists = list(index)
+            list(index) = list(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               jmod = mod(list(j),m)
+               j1mod = mod(list(j+1),m)
+               if (jmod .lt. j1mod) then
+                  j = j + 1
+               else if (jmod.eq.j1mod .and. list(j).lt.list(j+1)) then
+                  j = j + 1
+               end if
+            end if
+            smod = mod(lists,m)
+            jmod = mod(list(j),m)
+            if (smod .lt. jmod) then
+               list(i) = list(j)
+               i = j
+               j = j + j
+            else if (smod.eq.jmod .and. lists.lt.list(j)) then
+               list(i) = list(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+      end do
+      return
+      end
+c
+c
+c     #############################################################
+c     ##                                                         ##
+c     ##  subroutine sort6  --  heapsort of a text string array  ##
+c     ##                                                         ##
+c     #############################################################
+c
+c
+c     "sort6" takes an input list of character strings and sorts
+c     it into alphabetical order using the Heapsort algorithm
+c
+c
+      subroutine sort6 (n,list)
+      implicit none
+      integer i,j,k,n
+      integer index
+      character*256 lists
+      character*(*) list(*)
+c
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+         else
+            lists = list(index)
+            list(index) = list(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               if (list(j) .lt. list(j+1))  j = j + 1
+            end if
+            if (lists .lt. list(j)) then
+               list(i) = list(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+      end do
+      return
+      end
+c
+c
+c     ################################################################
+c     ##                                                            ##
+c     ##  subroutine sort7  --  heapsort of text strings with keys  ##
+c     ##                                                            ##
+c     ################################################################
+c
+c
+c     "sort7" takes an input list of character strings and sorts it
+c     into alphabetical order using the Heapsort algorithm; it also
+c     returns a key into the original ordering
+c
+c
+      subroutine sort7 (n,list,key)
+      implicit none
+      integer i,j,k,n
+      integer index
+      integer keys
+      integer key(*)
+      character*256 lists
+      character*(*) list(*)
+c
+c
+c     initialize index into the original ordering
+c
+      do i = 1, n
+         key(i) = i
+      end do
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+            keys = key(k)
+         else
+            lists = list(index)
+            keys = key(index)
+            list(index) = list(1)
+            key(index) = key(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+               key(1) = keys
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               if (list(j) .lt. list(j+1))  j = j + 1
+            end if
+            if (lists .lt. list(j)) then
+               list(i) = list(j)
+               key(i) = key(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+         key(i) = keys
+      end do
+      return
+      end
+c
+c
+c     #########################################################
+c     ##                                                     ##
+c     ##  subroutine sort8  --  heapsort to unique integers  ##
+c     ##                                                     ##
+c     #########################################################
+c
+c
+c     "sort8" takes an input list of integers and sorts it into
+c     ascending order using the Heapsort algorithm, duplicate
+c     values are removed from the final sorted list
+c
+c
+      subroutine sort8 (n,list)
+      implicit none
+      integer i,j,k,n
+      integer index
+      integer lists
+      integer list(*)
+c
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+         else
+            lists = list(index)
+            list(index) = list(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+c
+c     remove duplicate values from final list
+c
+               j = 1
+               do i = 2, n
+                  if (list(i-1) .ne. list(i)) then
+                     j = j + 1
+                     list(j) = list(i)
+                  end if
+               end do
+               if (j .lt. n)  n = j
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               if (list(j) .lt. list(j+1))  j = j + 1
+            end if
+            if (lists .lt. list(j)) then
+               list(i) = list(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+      end do
+      return
+      end
+c
+c
+c     #############################################################
+c     ##                                                         ##
+c     ##  subroutine sort9  --  heapsort to unique text strings  ##
+c     ##                                                         ##
+c     #############################################################
+c
+c
+c     "sort9" takes an input list of character strings and sorts
+c     it into alphabetical order using the Heapsort algorithm,
+c     duplicate values are removed from the final sorted list
+c
+c
+      subroutine sort9 (n,list)
+      implicit none
+      integer i,j,k,n
+      integer index
+      character*256 lists
+      character*(*) list(*)
+c
+c
+c     perform the heapsort of the input list
+c
+      k = n/2 + 1
+      index = n
+      dowhile (n .gt. 1)
+         if (k .gt. 1) then
+            k = k - 1
+            lists = list(k)
+         else
+            lists = list(index)
+            list(index) = list(1)
+            index = index - 1
+            if (index .le. 1) then
+               list(1) = lists
+c
+c     remove duplicate values from final list
+c
+               j = 1
+               do i = 2, n
+                  if (list(i-1) .ne. list(i)) then
+                     j = j + 1
+                     list(j) = list(i)
+                  end if
+               end do
+               if (j .lt. n)  n = j
+               return
+            end if
+         end if
+         i = k
+         j = k + k
+         dowhile (j .le. index)
+            if (j .lt. index) then
+               if (list(j) .lt. list(j+1))  j = j + 1
+            end if
+            if (lists .lt. list(j)) then
+               list(i) = list(j)
+               i = j
+               j = j + j
+            else
+               j = index + 1
+            end if
+         end do
+         list(i) = lists
+      end do
+      return
+      end
diff --git a/source/unres/src_MD_DFA/stochfric.F b/source/unres/src_MD_DFA/stochfric.F
new file mode 100644 (file)
index 0000000..85c171f
--- /dev/null
@@ -0,0 +1,626 @@
+      subroutine friction_force
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.IOUNITS'
+      double precision gamvec(MAXRES6)
+      common /syfek/ gamvec
+      double precision vv(3),vvtot(3,maxres),v_work(MAXRES6),
+     & ginvfric(maxres2,maxres2)
+      common /przechowalnia/ ginvfric
+      
+      logical lprn /.false./, checkmode /.false./
+
+      do i=0,MAXRES2
+        do j=1,3
+          friction(j,i)=0.0d0
+        enddo
+      enddo
+  
+      do j=1,3
+        d_t_work(j)=d_t(j,0)
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3
+          d_t_work(ind+j)=d_t(j,i)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            d_t_work(ind+j)=d_t(j,i+nres)
+          enddo
+          ind=ind+3
+        endif
+      enddo
+
+      call fricmat_mult(d_t_work,fric_work)
+      
+      if (.not.checkmode) return
+
+      if (lprn) then
+        write (iout,*) "d_t_work and fric_work"
+        do i=1,3*dimen
+          write (iout,'(i3,2e15.5)') i,d_t_work(i),fric_work(i)
+        enddo
+      endif
+      do j=1,3
+        friction(j,0)=fric_work(j)
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3
+          friction(j,i)=fric_work(ind+j)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            friction(j,i+nres)=fric_work(ind+j)
+          enddo
+          ind=ind+3
+        endif
+      enddo
+      if (lprn) then
+        write(iout,*) "Friction backbone"
+        do i=0,nct-1
+          write(iout,'(i5,3e15.5,5x,3e15.5)') 
+     &     i,(friction(j,i),j=1,3),(d_t(j,i),j=1,3)
+        enddo
+        write(iout,*) "Friction side chain"
+        do i=nnt,nct
+          write(iout,'(i5,3e15.5,5x,3e15.5)') 
+     &     i,(friction(j,i+nres),j=1,3),(d_t(j,i+nres),j=1,3)
+        enddo   
+      endif
+      if (lprn) then
+        do j=1,3
+          vv(j)=d_t(j,0)
+        enddo
+        do i=nnt,nct
+          do j=1,3
+            vvtot(j,i)=vv(j)+0.5d0*d_t(j,i)
+            vvtot(j,i+nres)=vv(j)+d_t(j,i+nres)
+            vv(j)=vv(j)+d_t(j,i)
+          enddo
+        enddo
+        write (iout,*) "vvtot backbone and sidechain"
+        do i=nnt,nct
+          write (iout,'(i5,3e15.5,5x,3e15.5)') i,(vvtot(j,i),j=1,3),
+     &     (vvtot(j,i+nres),j=1,3)
+        enddo
+        ind=0
+        do i=nnt,nct-1
+          do j=1,3
+            v_work(ind+j)=vvtot(j,i)
+          enddo
+          ind=ind+3
+        enddo
+        do i=nnt,nct
+          do j=1,3
+            v_work(ind+j)=vvtot(j,i+nres)
+          enddo
+          ind=ind+3
+        enddo
+        write (iout,*) "v_work gamvec and site-based friction forces"
+        do i=1,dimen1
+          write (iout,'(i5,3e15.5)') i,v_work(i),gamvec(i),
+     &      gamvec(i)*v_work(i) 
+        enddo
+c        do i=1,dimen
+c          fric_work1(i)=0.0d0
+c          do j=1,dimen1
+c            fric_work1(i)=fric_work1(i)-A(j,i)*gamvec(j)*v_work(j)
+c          enddo
+c        enddo  
+c        write (iout,*) "fric_work and fric_work1"
+c        do i=1,dimen
+c          write (iout,'(i5,2e15.5)') i,fric_work(i),fric_work1(i)
+c        enddo 
+        do i=1,dimen
+          do j=1,dimen
+            ginvfric(i,j)=0.0d0
+            do k=1,dimen
+              ginvfric(i,j)=ginvfric(i,j)+ginv(i,k)*fricmat(k,j)
+            enddo
+          enddo
+        enddo
+        write (iout,*) "ginvfric"
+        do i=1,dimen
+          write (iout,'(i5,100f8.3)') i,(ginvfric(i,j),j=1,dimen)
+        enddo
+        write (iout,*) "symmetry check"
+        do i=1,dimen
+          do j=1,i-1
+            write (iout,*) i,j,ginvfric(i,j)-ginvfric(j,i)
+          enddo   
+        enddo
+      endif 
+      return
+      end
+c-----------------------------------------------------
+      subroutine stochastic_force(stochforcvec)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+      include 'COMMON.TIME1'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.IOUNITS'
+      
+      double precision x,sig,lowb,highb,
+     & ff(3),force(3,0:MAXRES2),zeta2,lowb2,
+     & highb2,sig2,forcvec(MAXRES6),stochforcvec(MAXRES6)
+      logical lprn /.false./
+      do i=0,MAXRES2
+        do j=1,3
+          stochforc(j,i)=0.0d0
+        enddo
+      enddo
+      x=0.0d0  
+
+#ifdef MPI
+      time00=MPI_Wtime()
+#else
+      time00=tcpu()
+#endif
+c Compute the stochastic forces acting on bodies. Store in force.
+      do i=nnt,nct-1
+        sig=stdforcp(i)
+        lowb=-5*sig
+        highb=5*sig
+        do j=1,3
+          force(j,i)=anorm_distr(x,sig,lowb,highb)
+        enddo
+      enddo
+      do i=nnt,nct
+        sig2=stdforcsc(i)
+        lowb2=-5*sig2
+        highb2=5*sig2
+        do j=1,3
+          force(j,i+nres)=anorm_distr(x,sig2,lowb2,highb2)
+        enddo
+      enddo
+#ifdef MPI
+      time_fsample=time_fsample+MPI_Wtime()-time00
+#else
+      time_fsample=time_fsample+tcpu()-time00
+#endif
+c Compute the stochastic forces acting on virtual-bond vectors.
+      do j=1,3
+        ff(j)=0.0d0
+      enddo
+      do i=nct-1,nnt,-1
+        do j=1,3
+          stochforc(j,i)=ff(j)+0.5d0*force(j,i)
+        enddo
+        do j=1,3
+          ff(j)=ff(j)+force(j,i)
+        enddo
+        if (itype(i+1).ne.21) then
+          do j=1,3
+            stochforc(j,i)=stochforc(j,i)+force(j,i+nres+1)
+            ff(j)=ff(j)+force(j,i+nres+1)
+          enddo
+        endif
+      enddo 
+      do j=1,3
+        stochforc(j,0)=ff(j)+force(j,nnt+nres)
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            stochforc(j,i+nres)=force(j,i+nres)
+          enddo
+        endif
+      enddo 
+
+      do j=1,3
+        stochforcvec(j)=stochforc(j,0)
+      enddo
+      ind=3
+      do i=nnt,nct-1
+        do j=1,3 
+          stochforcvec(ind+j)=stochforc(j,i)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+          do j=1,3
+            stochforcvec(ind+j)=stochforc(j,i+nres)
+          enddo
+          ind=ind+3
+        endif
+      enddo
+      if (lprn) then
+        write (iout,*) "stochforcvec"
+        do i=1,3*dimen
+          write(iout,'(i5,e15.5)') i,stochforcvec(i)
+        enddo
+        write(iout,*) "Stochastic forces backbone"
+        do i=0,nct-1
+          write(iout,'(i5,3e15.5)') i,(stochforc(j,i),j=1,3)
+        enddo
+        write(iout,*) "Stochastic forces side chain"
+        do i=nnt,nct
+          write(iout,'(i5,3e15.5)') 
+     &      i,(stochforc(j,i+nres),j=1,3)
+        enddo   
+      endif
+
+      if (lprn) then
+
+      ind=0
+      do i=nnt,nct-1
+        write (iout,*) i,ind
+        do j=1,3
+          forcvec(ind+j)=force(j,i)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        write (iout,*) i,ind
+        do j=1,3
+          forcvec(j+ind)=force(j,i+nres)
+        enddo
+        ind=ind+3
+      enddo 
+
+      write (iout,*) "forcvec"
+      ind=0
+      do i=nnt,nct-1
+        do j=1,3
+          write (iout,'(2i3,2f10.5)') i,j,force(j,i),
+     &      forcvec(ind+j)
+        enddo
+        ind=ind+3
+      enddo
+      do i=nnt,nct
+        do j=1,3
+          write (iout,'(2i3,2f10.5)') i,j,force(j,i+nres),
+     &     forcvec(ind+j)
+        enddo
+        ind=ind+3
+      enddo
+
+      endif
+
+      return
+      end
+c------------------------------------------------------------------
+      subroutine setup_fricmat
+      implicit real*8 (a-h,o-z)
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.MD'
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+c      integer licznik /0/
+c      save licznik
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.IOUNITS'
+      integer IERROR
+      integer i,j,ind,ind1,m
+      logical lprn /.false./
+      double precision dtdi,gamvec(MAXRES2),
+     &  ginvfric(maxres2,maxres2),Ghalf(mmaxres2),fcopy(maxres2,maxres2)
+      common /syfek/ gamvec
+      double precision work(8*maxres2)
+      integer iwork(maxres2)
+      common /przechowalnia/ ginvfric,Ghalf,fcopy
+#ifdef MPI
+      if (fg_rank.ne.king) goto 10
+#endif
+c  Zeroing out fricmat
+      do i=1,dimen
+        do j=1,dimen
+          fricmat(i,j)=0.0d0
+        enddo   
+      enddo
+c  Load the friction coefficients corresponding to peptide groups
+      ind1=0
+      do i=nnt,nct-1
+        ind1=ind1+1
+        gamvec(ind1)=gamp
+      enddo
+c  Load the friction coefficients corresponding to side chains
+      m=nct-nnt
+      ind=0
+      do i=nnt,nct
+        ind=ind+1
+        ii = ind+m
+        iti=itype(i)
+        gamvec(ii)=gamsc(iti)
+      enddo
+      if (surfarea) call sdarea(gamvec)
+c      if (lprn) then
+c        write (iout,*) "Matrix A and vector gamma"
+c        do i=1,dimen1
+c          write (iout,'(i2,$)') i
+c          do j=1,dimen
+c            write (iout,'(f4.1,$)') A(i,j)
+c          enddo
+c          write (iout,'(f8.3)') gamvec(i)
+c        enddo
+c      endif
+      if (lprn) then
+        write (iout,*) "Vector gamvec"
+        do i=1,dimen1
+          write (iout,'(i5,f10.5)') i, gamvec(i)
+        enddo
+      endif
+        
+c The friction matrix       
+      do k=1,dimen
+       do i=1,dimen
+         dtdi=0.0d0
+         do j=1,dimen1
+           dtdi=dtdi+A(j,k)*A(j,i)*gamvec(j)
+         enddo
+         fricmat(k,i)=dtdi
+       enddo
+      enddo 
+
+      if (lprn) then
+        write (iout,'(//a)') "Matrix fricmat"
+        call matout2(dimen,dimen,maxres2,maxres2,fricmat)
+      endif 
+      if (lang.eq.2 .or. lang.eq.3) then
+c Mass-scale the friction matrix if non-direct integration will be performed
+      do i=1,dimen
+        do j=1,dimen
+          Ginvfric(i,j)=0.0d0
+          do k=1,dimen
+            do l=1,dimen
+              Ginvfric(i,j)=Ginvfric(i,j)+
+     &          Gsqrm(i,k)*Gsqrm(l,j)*fricmat(k,l)
+            enddo
+          enddo
+        enddo
+      enddo
+c Diagonalize the friction matrix
+      ind=0
+      do i=1,dimen
+        do j=1,i
+          ind=ind+1
+          Ghalf(ind)=Ginvfric(i,j)
+        enddo
+      enddo
+      call gldiag(maxres2,dimen,dimen,Ghalf,work,fricgam,fricvec,
+     &  ierr,iwork)
+      if (lprn) then
+        write (iout,'(//2a)') "Eigenvectors and eigenvalues of the",
+     &    " mass-scaled friction matrix"
+        call eigout(dimen,dimen,maxres2,maxres2,fricvec,fricgam)
+      endif
+c Precompute matrices for tinker stochastic integrator
+#ifndef LANG0
+      do i=1,dimen
+        do j=1,dimen
+          mt1(i,j)=0.0d0
+          mt2(i,j)=0.0d0
+          do k=1,dimen
+            mt1(i,j)=mt1(i,j)+fricvec(k,i)*gsqrm(k,j)
+            mt2(i,j)=mt2(i,j)+fricvec(k,i)*gsqrp(k,j)             
+          enddo
+          mt3(j,i)=mt1(i,j)
+        enddo
+      enddo
+#endif
+      else if (lang.eq.4) then
+c Diagonalize the friction matrix
+      ind=0
+      do i=1,dimen
+        do j=1,i
+          ind=ind+1
+          Ghalf(ind)=fricmat(i,j)
+        enddo
+      enddo
+      call gldiag(maxres2,dimen,dimen,Ghalf,work,fricgam,fricvec,
+     &  ierr,iwork)
+      if (lprn) then
+        write (iout,'(//2a)') "Eigenvectors and eigenvalues of the",
+     &    " friction matrix"
+        call eigout(dimen,dimen,maxres2,maxres2,fricvec,fricgam)
+      endif
+c Determine the number of zero eigenvalues of the friction matrix
+      nzero=max0(dimen-dimen1,0)
+c      do while (fricgam(nzero+1).le.1.0d-5 .and. nzero.lt.dimen)
+c        nzero=nzero+1
+c      enddo
+      write (iout,*) "Number of zero eigenvalues:",nzero
+      do i=1,dimen
+        do j=1,dimen
+          fricmat(i,j)=0.0d0
+          do k=nzero+1,dimen
+            fricmat(i,j)=fricmat(i,j)
+     &        +fricvec(i,k)*fricvec(j,k)/fricgam(k) 
+          enddo
+        enddo
+      enddo
+      if (lprn) then
+        write (iout,'(//a)') "Generalized inverse of fricmat"
+        call matout(dimen,dimen,maxres6,maxres6,fricmat)
+      endif 
+      endif
+#ifdef MPI
+  10  continue
+      if (nfgtasks.gt.1) then
+        if (fg_rank.eq.0) then
+c The matching BROADCAST for fg processors is called in ERGASTULUM
+#ifdef MPI
+          time00=MPI_Wtime()
+#else
+          time00=tcpu()
+#endif
+          call MPI_Bcast(10,1,MPI_INTEGER,king,FG_COMM,IERROR)
+#ifdef MPI
+          time_Bcast=time_Bcast+MPI_Wtime()-time00
+#else
+          time_Bcast=time_Bcast+tcpu()-time00
+#endif
+c          print *,"Processor",myrank,
+c     &       " BROADCAST iorder in SETUP_FRICMAT"
+        endif
+c      licznik=licznik+1
+c        write (iout,*) "setup_fricmat licznik",licznik
+#ifdef MPI
+        time00=MPI_Wtime()
+#else
+        time00=tcpu()
+#endif
+c Scatter the friction matrix
+        call MPI_Scatterv(fricmat(1,1),nginv_counts(0),
+     &    nginv_start(0),MPI_DOUBLE_PRECISION,fcopy(1,1),
+     &    myginv_ng_count,MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
+#ifdef TIMING
+#ifdef MPI
+        time_scatter=time_scatter+MPI_Wtime()-time00
+        time_scatter_fmat=time_scatter_fmat+MPI_Wtime()-time00
+#else
+        time_scatter=time_scatter+tcpu()-time00
+        time_scatter_fmat=time_scatter_fmat+tcpu()-time00
+#endif
+#endif
+        do i=1,dimen
+          do j=1,2*my_ng_count
+            fricmat(j,i)=fcopy(i,j)
+          enddo
+        enddo
+c        write (iout,*) "My chunk of fricmat"
+c        call MATOUT2(my_ng_count,dimen,maxres2,maxres2,fcopy)
+      endif
+#endif
+      return
+      end
+c-------------------------------------------------------------------------------
+      subroutine sdarea(gamvec)
+c
+c Scale the friction coefficients according to solvent accessible surface areas
+c Code adapted from TINKER
+c AL 9/3/04
+c
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.VAR'
+      include 'COMMON.MD'
+#ifndef LANG0
+      include 'COMMON.LANGEVIN'
+#else
+      include 'COMMON.LANGEVIN.lang0'
+#endif
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.NAMES'
+      double precision radius(maxres2),gamvec(maxres6)
+      parameter (twosix=1.122462048309372981d0)
+      logical lprn /.false./
+c
+c     determine new friction coefficients every few SD steps
+c
+c     set the atomic radii to estimates of sigma values
+c
+c      print *,"Entered sdarea"
+      probe = 0.0d0
+      
+      do i=1,2*nres
+        radius(i)=0.0d0
+      enddo
+c  Load peptide group radii
+      do i=nnt,nct-1
+        radius(i)=pstok
+      enddo
+c  Load side chain radii
+      do i=nnt,nct
+        iti=itype(i)
+        radius(i+nres)=restok(iti)
+      enddo
+c      do i=1,2*nres
+c        write (iout,*) "i",i," radius",radius(i) 
+c      enddo
+      do i = 1, 2*nres
+         radius(i) = radius(i) / twosix
+         if (radius(i) .ne. 0.0d0)  radius(i) = radius(i) + probe
+      end do
+c
+c     scale atomic friction coefficients by accessible area
+c
+      if (lprn) write (iout,*) 
+     &  "Original gammas, surface areas, scaling factors, new gammas, ",
+     &  "std's of stochastic forces"
+      ind=0
+      do i=nnt,nct-1
+        if (radius(i).gt.0.0d0) then
+          call surfatom (i,area,radius)
+          ratio = dmax1(area/(4.0d0*pi*radius(i)**2),1.0d-1)
+          if (lprn) write (iout,'(i5,3f10.5,$)') 
+     &      i,gamvec(ind+1),area,ratio
+          do j=1,3
+            ind=ind+1
+            gamvec(ind) = ratio * gamvec(ind)
+          enddo
+          stdforcp(i)=stdfp*dsqrt(gamvec(ind))
+          if (lprn) write (iout,'(2f10.5)') gamvec(ind),stdforcp(i)
+        endif
+      enddo
+      do i=nnt,nct
+        if (radius(i+nres).gt.0.0d0) then
+          call surfatom (i+nres,area,radius)
+          ratio = dmax1(area/(4.0d0*pi*radius(i+nres)**2),1.0d-1)
+          if (lprn) write (iout,'(i5,3f10.5,$)') 
+     &      i,gamvec(ind+1),area,ratio
+          do j=1,3
+            ind=ind+1 
+            gamvec(ind) = ratio * gamvec(ind)
+          enddo
+          stdforcsc(i)=stdfsc(itype(i))*dsqrt(gamvec(ind))
+          if (lprn) write (iout,'(2f10.5)') gamvec(ind),stdforcsc(i)
+        endif
+      enddo
+
+      return
+      end
diff --git a/source/unres/src_MD_DFA/sumsld.f b/source/unres/src_MD_DFA/sumsld.f
new file mode 100644 (file)
index 0000000..1ce7b78
--- /dev/null
@@ -0,0 +1,1446 @@
+      subroutine sumsl(n, d, x, calcf, calcg, iv, liv, lv, v,
+     1                  uiparm, urparm, ufparm)
+c
+c  ***  minimize general unconstrained objective function using   ***
+c  ***  analytic gradient and hessian approx. from secant update  ***
+c
+      integer n, liv, lv
+      integer iv(liv), uiparm(1)
+      double precision d(n), x(n), v(lv), urparm(1)
+c     dimension v(71 + n*(n+15)/2), uiparm(*), urparm(*)
+      external calcf, calcg, ufparm
+c
+c  ***  purpose  ***
+c
+c        this routine interacts with subroutine  sumit  in an attempt
+c     to find an n-vector  x*  that minimizes the (unconstrained)
+c     objective function computed by  calcf.  (often the  x*  found is
+c     a local minimizer rather than a global one.)
+c
+c--------------------------  parameter usage  --------------------------
+c
+c n........ (input) the number of variables on which  f  depends, i.e.,
+c                  the number of components in  x.
+c d........ (input/output) a scale vector such that  d(i)*x(i),
+c                  i = 1,2,...,n,  are all in comparable units.
+c                  d can strongly affect the behavior of sumsl.
+c                  finding the best choice of d is generally a trial-
+c                  and-error process.  choosing d so that d(i)*x(i)
+c                  has about the same value for all i often works well.
+c                  the defaults provided by subroutine deflt (see i
+c                  below) require the caller to supply d.
+c x........ (input/output) before (initially) calling sumsl, the call-
+c                  er should set  x  to an initial guess at  x*.  when
+c                  sumsl returns,  x  contains the best point so far
+c                  found, i.e., the one that gives the least value so
+c                  far seen for  f(x).
+c calcf.... (input) a subroutine that, given x, computes f(x).  calcf
+c                  must be declared external in the calling program.
+c                  it is invoked by
+c                       call calcf(n, x, nf, f, uiparm, urparm, ufparm)
+c                  when calcf is called, nf is the invocation
+c                  count for calcf.  nf is included for possible use
+c                  with calcg.  if x is out of bounds (e.g., if it
+c                  would cause overflow in computing f(x)), then calcf
+c                  should set nf to 0.  this will cause a shorter step
+c                  to be attempted.  (if x is in bounds, then calcf
+c                  should not change nf.)  the other parameters are as
+c                  described above and below.  calcf should not change
+c                  n, p, or x.
+c calcg.... (input) a subroutine that, given x, computes g(x), the gra-
+c                  dient of f at x.  calcg must be declared external in
+c                  the calling program.  it is invoked by
+c                       call calcg(n, x, nf, g, uiparm, urparm, ufaprm)
+c                  when calcg is called, nf is the invocation
+c                  count for calcf at the time f(x) was evaluated.  the
+c                  x passed to calcg is usually the one passed to calcf
+c                  on either its most recent invocation or the one
+c                  prior to it.  if calcf saves intermediate results
+c                  for use by calcg, then it is possible to tell from
+c                  nf whether they are valid for the current x (or
+c                  which copy is valid if two copies are kept).  if g
+c                  cannot be computed at x, then calcg should set nf to
+c                  0.  in this case, sumsl will return with iv(1) = 65.
+c                  (if g can be computed at x, then calcg should not
+c                  changed nf.)  the other parameters to calcg are as
+c                  described above and below.  calcg should not change
+c                  n or x.
+c iv....... (input/output) an integer value array of length liv (see
+c                  below) that helps control the sumsl algorithm and
+c                  that is used to store various intermediate quanti-
+c                  ties.  of particular interest are the initialization/
+c                  return code iv(1) and the entries in iv that control
+c                  printing and limit the number of iterations and func-
+c                  tion evaluations.  see the section on iv input
+c                  values below.
+c liv...... (input) length of iv array.  must be at least 60.  if li
+c                  is too small, then sumsl returns with iv(1) = 15.
+c                  when sumsl returns, the smallest allowed value of
+c                  liv is stored in iv(lastiv) -- see the section on
+c                  iv output values below.  (this is intended for use
+c                  with extensions of sumsl that handle constraints.)
+c lv....... (input) length of v array.  must be at least 71+n*(n+15)/2.
+c                  (at least 77+n*(n+17)/2 for smsno, at least
+c                  78+n*(n+12) for humsl).  if lv is too small, then
+c                  sumsl returns with iv(1) = 16.  when sumsl returns,
+c                  the smallest allowed value of lv is stored in
+c                  iv(lastv) -- see the section on iv output values
+c                  below.
+c v........ (input/output) a floating-point value array of length l
+c                  (see below) that helps control the sumsl algorithm
+c                  and that is used to store various intermediate
+c                  quantities.  of particular interest are the entries
+c                  in v that limit the length of the first step
+c                  attempted (lmax0) and specify convergence tolerances
+c                  (afctol, lmaxs, rfctol, sctol, xctol, xftol).
+c uiparm... (input) user integer parameter array passed without change
+c                  to calcf and calcg.
+c urparm... (input) user floating-point parameter array passed without
+c                  change to calcf and calcg.
+c ufparm... (input) user external subroutine or function passed without
+c                  change to calcf and calcg.
+c
+c  ***  iv input values (from subroutine deflt)  ***
+c
+c iv(1)...  on input, iv(1) should have a value between 0 and 14......
+c             0 and 12 mean this is a fresh start.  0 means that
+c                  deflt(2, iv, liv, lv, v)
+c             is to be called to provide all default values to iv and
+c             v.  12 (the value that deflt assigns to iv(1)) means the
+c             caller has already called deflt and has possibly changed
+c             some iv and/or v entries to non-default values.
+c             13 means deflt has been called and that sumsl (and
+c             sumit) should only do their storage allocation.  that is,
+c             they should set the output components of iv that tell
+c             where various subarrays arrays of v begin, such as iv(g)
+c             (and, for humsl and humit only, iv(dtol)), and return.
+c             14 means that a storage has been allocated (by a call
+c             with iv(1) = 13) and that the algorithm should be
+c             started.  when called with iv(1) = 13, sumsl returns
+c             iv(1) = 14 unless liv or lv is too small (or n is not
+c             positive).  default = 12.
+c iv(inith).... iv(25) tells whether the hessian approximation h should
+c             be initialized.  1 (the default) means sumit should
+c             initialize h to the diagonal matrix whose i-th diagonal
+c             element is d(i)**2.  0 means the caller has supplied a
+c             cholesky factor  l  of the initial hessian approximation
+c             h = l*(l**t)  in v, starting at v(iv(lmat)) = v(iv(42))
+c             (and stored compactly by rows).  note that iv(lmat) may
+c             be initialized by calling sumsl with iv(1) = 13 (see
+c             the iv(1) discussion above).  default = 1.
+c iv(mxfcal)... iv(17) gives the maximum number of function evaluations
+c             (calls on calcf) allowed.  if this number does not suf-
+c             fice, then sumsl returns with iv(1) = 9.  default = 200.
+c iv(mxiter)... iv(18) gives the maximum number of iterations allowed.
+c             it also indirectly limits the number of gradient evalua-
+c             tions (calls on calcg) to iv(mxiter) + 1.  if iv(mxiter)
+c             iterations do not suffice, then sumsl returns with
+c             iv(1) = 10.  default = 150.
+c iv(outlev)... iv(19) controls the number and length of iteration sum-
+c             mary lines printed (by itsum).  iv(outlev) = 0 means do
+c             not print any summary lines.  otherwise, print a summary
+c             line after each abs(iv(outlev)) iterations.  if iv(outlev)
+c             is positive, then summary lines of length 78 (plus carri-
+c             age control) are printed, including the following...  the
+c             iteration and function evaluation counts, f = the current
+c             function value, relative difference in function values
+c             achieved by the latest step (i.e., reldf = (f0-v(f))/f01,
+c             where f01 is the maximum of abs(v(f)) and abs(v(f0)) and
+c             v(f0) is the function value from the previous itera-
+c             tion), the relative function reduction predicted for the
+c             step just taken (i.e., preldf = v(preduc) / f01, where
+c             v(preduc) is described below), the scaled relative change
+c             in x (see v(reldx) below), the step parameter for the
+c             step just taken (stppar = 0 means a full newton step,
+c             between 0 and 1 means a relaxed newton step, between 1
+c             and 2 means a double dogleg step, greater than 2 means
+c             a scaled down cauchy step -- see subroutine dbldog), the
+c             2-norm of the scale vector d times the step just taken
+c             (see v(dstnrm) below), and npreldf, i.e.,
+c             v(nreduc)/f01, where v(nreduc) is described below -- if
+c             npreldf is positive, then it is the relative function
+c             reduction predicted for a newton step (one with
+c             stppar = 0).  if npreldf is negative, then it is the
+c             negative of the relative function reduction predicted
+c             for a step computed with step bound v(lmaxs) for use in
+c             testing for singular convergence.
+c                  if iv(outlev) is negative, then lines of length 50
+c             are printed, including only the first 6 items listed
+c             above (through reldx).
+c             default = 1.
+c iv(parprt)... iv(20) = 1 means print any nondefault v values on a
+c             fresh start or any changed v values on a restart.
+c             iv(parprt) = 0 means skip this printing.  default = 1.
+c iv(prunit)... iv(21) is the output unit number on which all printing
+c             is done.  iv(prunit) = 0 means suppress all printing.
+c             default = standard output unit (unit 6 on most systems).
+c iv(solprt)... iv(22) = 1 means print out the value of x returned (as
+c             well as the gradient and the scale vector d).
+c             iv(solprt) = 0 means skip this printing.  default = 1.
+c iv(statpr)... iv(23) = 1 means print summary statistics upon return-
+c             ing.  these consist of the function value, the scaled
+c             relative change in x caused by the most recent step (see
+c             v(reldx) below), the number of function and gradient
+c             evaluations (calls on calcf and calcg), and the relative
+c             function reductions predicted for the last step taken and
+c             for a newton step (or perhaps a step bounded by v(lmaxs)
+c             -- see the descriptions of preldf and npreldf under
+c             iv(outlev) above).
+c             iv(statpr) = 0 means skip this printing.
+c             iv(statpr) = -1 means skip this printing as well as that
+c             of the one-line termination reason message.  default = 1.
+c iv(x0prt).... iv(24) = 1 means print the initial x and scale vector d
+c             (on a fresh start only).  iv(x0prt) = 0 means skip this
+c             printing.  default = 1.
+c
+c  ***  (selected) iv output values  ***
+c
+c iv(1)........ on output, iv(1) is a return code....
+c             3 = x-convergence.  the scaled relative difference (see
+c                  v(reldx)) between the current parameter vector x and
+c                  a locally optimal parameter vector is very likely at
+c                  most v(xctol).
+c             4 = relative function convergence.  the relative differ-
+c                  ence between the current function value and its lo-
+c                  cally optimal value is very likely at most v(rfctol).
+c             5 = both x- and relative function convergence (i.e., the
+c                  conditions for iv(1) = 3 and iv(1) = 4 both hold).
+c             6 = absolute function convergence.  the current function
+c                  value is at most v(afctol) in absolute value.
+c             7 = singular convergence.  the hessian near the current
+c                  iterate appears to be singular or nearly so, and a
+c                  step of length at most v(lmaxs) is unlikely to yield
+c                  a relative function decrease of more than v(sctol).
+c             8 = false convergence.  the iterates appear to be converg-
+c                  ing to a noncritical point.  this may mean that the
+c                  convergence tolerances (v(afctol), v(rfctol),
+c                  v(xctol)) are too small for the accuracy to which
+c                  the function and gradient are being computed, that
+c                  there is an error in computing the gradient, or that
+c                  the function or gradient is discontinuous near x.
+c             9 = function evaluation limit reached without other con-
+c                  vergence (see iv(mxfcal)).
+c            10 = iteration limit reached without other convergence
+c                  (see iv(mxiter)).
+c            11 = stopx returned .true. (external interrupt).  see the
+c                  usage notes below.
+c            14 = storage has been allocated (after a call with
+c                  iv(1) = 13).
+c            17 = restart attempted with n changed.
+c            18 = d has a negative component and iv(dtype) .le. 0.
+c            19...43 = v(iv(1)) is out of range.
+c            63 = f(x) cannot be computed at the initial x.
+c            64 = bad parameters passed to assess (which should not
+c                  occur).
+c            65 = the gradient could not be computed at x (see calcg
+c                  above).
+c            67 = bad first parameter to deflt.
+c            80 = iv(1) was out of range.
+c            81 = n is not positive.
+c iv(g)........ iv(28) is the starting subscript in v of the current
+c             gradient vector (the one corresponding to x).
+c iv(lastiv)... iv(44) is the least acceptable value of liv.  (it is
+c             only set if liv is at least 44.)
+c iv(lastv).... iv(45) is the least acceptable value of lv.  (it is
+c             only set if liv is large enough, at least iv(lastiv).)
+c iv(nfcall)... iv(6) is the number of calls so far made on calcf (i.e.,
+c             function evaluations).
+c iv(ngcall)... iv(30) is the number of gradient evaluations (calls on
+c             calcg).
+c iv(niter).... iv(31) is the number of iterations performed.
+c
+c  ***  (selected) v input values (from subroutine deflt)  ***
+c
+c v(bias)..... v(43) is the bias parameter used in subroutine dbldog --
+c             see that subroutine for details.  default = 0.8.
+c v(afctol)... v(31) is the absolute function convergence tolerance.
+c             if sumsl finds a point where the function value is less
+c             than v(afctol) in absolute value, and if sumsl does not
+c             return with iv(1) = 3, 4, or 5, then it returns with
+c             iv(1) = 6.  this test can be turned off by setting
+c             v(afctol) to zero.  default = max(10**-20, machep**2),
+c             where machep is the unit roundoff.
+c v(dinit).... v(38), if nonnegative, is the value to which the scale
+c             vector d is initialized.  default = -1.
+c v(lmax0).... v(35) gives the maximum 2-norm allowed for d times the
+c             very first step that sumsl attempts.  this parameter can
+c             markedly affect the performance of sumsl.
+c v(lmaxs).... v(36) is used in testing for singular convergence -- if
+c             the function reduction predicted for a step of length
+c             bounded by v(lmaxs) is at most v(sctol) * abs(f0), where
+c             f0  is the function value at the start of the current
+c             iteration, and if sumsl does not return with iv(1) = 3,
+c             4, 5, or 6, then it returns with iv(1) = 7.  default = 1.
+c v(rfctol)... v(32) is the relative function convergence tolerance.
+c             if the current model predicts a maximum possible function
+c             reduction (see v(nreduc)) of at most v(rfctol)*abs(f0)
+c             at the start of the current iteration, where  f0  is the
+c             then current function value, and if the last step attempt-
+c             ed achieved no more than twice the predicted function
+c             decrease, then sumsl returns with iv(1) = 4 (or 5).
+c             default = max(10**-10, machep**(2/3)), where machep is
+c             the unit roundoff.
+c v(sctol).... v(37) is the singular convergence tolerance -- see the
+c             description of v(lmaxs) above.
+c v(tuner1)... v(26) helps decide when to check for false convergence.
+c             this is done if the actual function decrease from the
+c             current step is no more than v(tuner1) times its predict-
+c             ed value.  default = 0.1.
+c v(xctol).... v(33) is the x-convergence tolerance.  if a newton step
+c             (see v(nreduc)) is tried that has v(reldx) .le. v(xctol)
+c             and if this step yields at most twice the predicted func-
+c             tion decrease, then sumsl returns with iv(1) = 3 (or 5).
+c             (see the description of v(reldx) below.)
+c             default = machep**0.5, where machep is the unit roundoff.
+c v(xftol).... v(34) is the false convergence tolerance.  if a step is
+c             tried that gives no more than v(tuner1) times the predict-
+c             ed function decrease and that has v(reldx) .le. v(xftol),
+c             and if sumsl does not return with iv(1) = 3, 4, 5, 6, or
+c             7, then it returns with iv(1) = 8.  (see the description
+c             of v(reldx) below.)  default = 100*machep, where
+c             machep is the unit roundoff.
+c v(*)........ deflt supplies to v a number of tuning constants, with
+c             which it should ordinarily be unnecessary to tinker.  see
+c             section 17 of version 2.2 of the nl2sol usage summary
+c             (i.e., the appendix to ref. 1) for details on v(i),
+c             i = decfac, incfac, phmnfc, phmxfc, rdfcmn, rdfcmx,
+c             tuner2, tuner3, tuner4, tuner5.
+c
+c  ***  (selected) v output values  ***
+c
+c v(dgnorm)... v(1) is the 2-norm of (diag(d)**-1)*g, where g is the
+c             most recently computed gradient.
+c v(dstnrm)... v(2) is the 2-norm of diag(d)*step, where step is the
+c             current step.
+c v(f)........ v(10) is the current function value.
+c v(f0)....... v(13) is the function value at the start of the current
+c             iteration.
+c v(nreduc)... v(6), if positive, is the maximum function reduction
+c             possible according to the current model, i.e., the func-
+c             tion reduction predicted for a newton step (i.e.,
+c             step = -h**-1 * g,  where  g  is the current gradient and
+c             h is the current hessian approximation).
+c                  if v(nreduc) is negative, then it is the negative of
+c             the function reduction predicted for a step computed with
+c             a step bound of v(lmaxs) for use in testing for singular
+c             convergence.
+c v(preduc)... v(7) is the function reduction predicted (by the current
+c             quadratic model) for the current step.  this (divided by
+c             v(f0)) is used in testing for relative function
+c             convergence.
+c v(reldx).... v(17) is the scaled relative change in x caused by the
+c             current step, computed as
+c                  max(abs(d(i)*(x(i)-x0(i)), 1 .le. i .le. p) /
+c                     max(d(i)*(abs(x(i))+abs(x0(i))), 1 .le. i .le. p),
+c             where x = x0 + step.
+c
+c-------------------------------  notes  -------------------------------
+c
+c  ***  algorithm notes  ***
+c
+c        this routine uses a hessian approximation computed from the
+c     bfgs update (see ref 3).  only a cholesky factor of the hessian
+c     approximation is stored, and this is updated using ideas from
+c     ref. 4.  steps are computed by the double dogleg scheme described
+c     in ref. 2.  the steps are assessed as in ref. 1.
+c
+c  ***  usage notes  ***
+c
+c        after a return with iv(1) .le. 11, it is possible to restart,
+c     i.e., to change some of the iv and v input values described above
+c     and continue the algorithm from the point where it was interrupt-
+c     ed.  iv(1) should not be changed, nor should any entries of i
+c     and v other than the input values (those supplied by deflt).
+c        those who do not wish to write a calcg which computes the
+c     gradient analytically should call smsno rather than sumsl.
+c     smsno uses finite differences to compute an approximate gradient.
+c        those who would prefer to provide f and g (the function and
+c     gradient) by reverse communication rather than by writing subrou-
+c     tines calcf and calcg may call on sumit directly.  see the com-
+c     ments at the beginning of sumit.
+c        those who use sumsl interactively may wish to supply their
+c     own stopx function, which should return .true. if the break key
+c     has been pressed since stopx was last invoked.  this makes it
+c     possible to externally interrupt sumsl (which will return with
+c     iv(1) = 11 if stopx returns .true.).
+c        storage for g is allocated at the end of v.  thus the caller
+c     may make v longer than specified above and may allow calcg to use
+c     elements of g beyond the first n as scratch storage.
+c
+c  ***  portability notes  ***
+c
+c        the sumsl distribution tape contains both single- and double-
+c     precision versions of the sumsl source code, so it should be un-
+c     necessary to change precisions.
+c        only the functions imdcon and rmdcon contain machine-dependent
+c     constants.  to change from one machine to another, it should
+c     suffice to change the (few) relevant lines in these functions.
+c        intrinsic functions are explicitly declared.  on certain com-
+c     puters (e.g. univac), it may be necessary to comment out these
+c     declarations.  so that this may be done automatically by a simple
+c     program, such declarations are preceded by a comment having c/+
+c     in columns 1-3 and blanks in columns 4-72 and are followed by
+c     a comment having c/ in columns 1 and 2 and blanks in columns 3-72.
+c        the sumsl source code is expressed in 1966 ansi standard
+c     fortran.  it may be converted to fortran 77 by commenting out all
+c     lines that fall between a line having c/6 in columns 1-3 and a
+c     line having c/7 in columns 1-3 and by removing (i.e., replacing
+c     by a blank) the c in column 1 of the lines that follow the c/7
+c     line and precede a line having c/ in columns 1-2 and blanks in
+c     columns 3-72.  these changes convert some data statements into
+c     parameter statements, convert some variables from real to
+c     character*4, and make the data statements that initialize these
+c     variables use character strings delimited by primes instead
+c     of hollerith constants.  (such variables and data statements
+c     appear only in modules itsum and parck.  parameter statements
+c     appear nearly everywhere.)  these changes also add save state-
+c     ments for variables given machine-dependent constants by rmdcon.
+c
+c  ***  references  ***
+c
+c 1.  dennis, j.e., gay, d.m., and welsch, r.e. (1981), algorithm 573 --
+c             an adaptive nonlinear least-squares algorithm, acm trans.
+c             math. software 7, pp. 369-383.
+c
+c 2.  dennis, j.e., and mei, h.h.w. (1979), two new unconstrained opti-
+c             mization algorithms which use function and gradient
+c             values, j. optim. theory applic. 28, pp. 453-482.
+c
+c 3.  dennis, j.e., and more, j.j. (1977), quasi-newton methods, motiva-
+c             tion and theory, siam rev. 19, pp. 46-89.
+c
+c 4.  goldfarb, d. (1976), factorized variable metric methods for uncon-
+c             strained optimization, math. comput. 30, pp. 796-811.
+c
+c  ***  general  ***
+c
+c     coded by david m. gay (winter 1980).  revised summer 1982.
+c     this subroutine was written in connection with research
+c     supported in part by the national science foundation under
+c     grants mcs-7600324, dcr75-10143, 76-14311dss, mcs76-11989,
+c     and mcs-7906671.
+c.
+c
+c----------------------------  declarations  ---------------------------
+c
+      external deflt, sumit
+c
+c deflt... supplies default iv and v input components.
+c sumit... reverse-communication routine that carries out sumsl algo-
+c             rithm.
+c
+      integer g1, iv1, nf
+      double precision f
+c
+c  ***  subscripts for iv   ***
+c
+      integer nextv, nfcall, nfgcal, g, toobig, vneed
+c
+c/6
+c     data nextv/47/, nfcall/6/, nfgcal/7/, g/28/, toobig/2/, vneed/4/
+c/7
+      parameter (nextv=47, nfcall=6, nfgcal=7, g=28, toobig=2, vneed=4)
+c/
+c
+c+++++++++++++++++++++++++++++++  body  ++++++++++++++++++++++++++++++++
+c
+      if (iv(1) .eq. 0) call deflt(2, iv, liv, lv, v)
+      iv1 = iv(1)
+      if (iv1 .eq. 12 .or. iv1 .eq. 13) iv(vneed) = iv(vneed) + n
+      if (iv1 .eq. 14) go to 10
+      if (iv1 .gt. 2 .and. iv1 .lt. 12) go to 10
+      g1 = 1
+      if (iv1 .eq. 12) iv(1) = 13
+      go to 20
+c
+ 10   g1 = iv(g)
+c
+ 20   call sumit(d, f, v(g1), iv, liv, lv, n, v, x)
+      if (iv(1) - 2) 30, 40, 50
+c
+ 30   nf = iv(nfcall)
+      call calcf(n, x, nf, f, uiparm, urparm, ufparm)
+      if (nf .le. 0) iv(toobig) = 1
+      go to 20
+c
+ 40   call calcg(n, x, iv(nfgcal), v(g1), uiparm, urparm, ufparm)
+      go to 20
+c
+ 50   if (iv(1) .ne. 14) go to 999
+c
+c  ***  storage allocation
+c
+      iv(g) = iv(nextv)
+      iv(nextv) = iv(g) + n
+      if (iv1 .ne. 13) go to 10
+c
+ 999  return
+c  ***  last card of sumsl follows  ***
+      end
+      subroutine sumit(d, fx, g, iv, liv, lv, n, v, x)
+c
+c  ***  carry out sumsl (unconstrained minimization) iterations, using
+c  ***  double-dogleg/bfgs steps.
+c
+c  ***  parameter declarations  ***
+c
+      integer liv, lv, n
+      integer iv(liv)
+      double precision d(n), fx, g(n), v(lv), x(n)
+c
+c--------------------------  parameter usage  --------------------------
+c
+c d.... scale vector.
+c fx... function value.
+c g.... gradient vector.
+c iv... integer value array.
+c liv.. length of iv (at least 60).
+c lv... length of v (at least 71 + n*(n+13)/2).
+c n.... number of variables (components in x and g).
+c v.... floating-point value array.
+c x.... vector of parameters to be optimized.
+c
+c  ***  discussion  ***
+c
+c        parameters iv, n, v, and x are the same as the corresponding
+c     ones to sumsl (which see), except that v can be shorter (since
+c     the part of v that sumsl uses for storing g is not needed).
+c     moreover, compared with sumsl, iv(1) may have the two additional
+c     output values 1 and 2, which are explained below, as is the use
+c     of iv(toobig) and iv(nfgcal).  the value iv(g), which is an
+c     output value from sumsl (and smsno), is not referenced by
+c     sumit or the subroutines it calls.
+c        fx and g need not have been initialized when sumit is called
+c     with iv(1) = 12, 13, or 14.
+c
+c iv(1) = 1 means the caller should set fx to f(x), the function value
+c             at x, and call sumit again, having changed none of the
+c             other parameters.  an exception occurs if f(x) cannot be
+c             (e.g. if overflow would occur), which may happen because
+c             of an oversized step.  in this case the caller should set
+c             iv(toobig) = iv(2) to 1, which will cause sumit to ig-
+c             nore fx and try a smaller step.  the parameter nf that
+c             sumsl passes to calcf (for possible use by calcg) is a
+c             copy of iv(nfcall) = iv(6).
+c iv(1) = 2 means the caller should set g to g(x), the gradient vector
+c             of f at x, and call sumit again, having changed none of
+c             the other parameters except possibly the scale vector d
+c             when iv(dtype) = 0.  the parameter nf that sumsl passes
+c             to calcg is iv(nfgcal) = iv(7).  if g(x) cannot be
+c             evaluated, then the caller may set iv(nfgcal) to 0, in
+c             which case sumit will return with iv(1) = 65.
+c.
+c  ***  general  ***
+c
+c     coded by david m. gay (december 1979).  revised sept. 1982.
+c     this subroutine was written in connection with research supported
+c     in part by the national science foundation under grants
+c     mcs-7600324 and mcs-7906671.
+c
+c        (see sumsl for references.)
+c
+c+++++++++++++++++++++++++++  declarations  ++++++++++++++++++++++++++++
+c
+c  ***  local variables  ***
+c
+      integer dg1, dummy, g01, i, k, l, lstgst, nwtst1, step1,
+     1        temp1, w, x01, z
+      double precision t
+c
+c     ***  constants  ***
+c
+      double precision half, negone, one, onep2, zero
+c
+c  ***  no intrinsic functions  ***
+c
+c  ***  external functions and subroutines  ***
+c
+      external assst, dbdog, deflt, dotprd, itsum, litvmu, livmul,
+     1         ltvmul, lupdat, lvmul, parck, reldst, stopx, vaxpy,
+     2         vcopy, vscopy, vvmulp, v2norm, wzbfgs
+      logical stopx
+      double precision dotprd, reldst, v2norm
+c
+c assst.... assesses candidate step.
+c dbdog.... computes double-dogleg (candidate) step.
+c deflt.... supplies default iv and v input components.
+c dotprd... returns inner product of two vectors.
+c itsum.... prints iteration summary and info on initial and final x.
+c litvmu... multiplies inverse transpose of lower triangle times vector.
+c livmul... multiplies inverse of lower triangle times vector.
+c ltvmul... multiplies transpose of lower triangle times vector.
+c lupdt.... updates cholesky factor of hessian approximation.
+c lvmul.... multiplies lower triangle times vector.
+c parck.... checks validity of input iv and v values.
+c reldst... computes v(reldx) = relative step size.
+c stopx.... returns .true. if the break key has been pressed.
+c vaxpy.... computes scalar times one vector plus another.
+c vcopy.... copies one vector to another.
+c vscopy... sets all elements of a vector to a scalar.
+c vvmulp... multiplies vector by vector raised to power (componentwise).
+c v2norm... returns the 2-norm of a vector.
+c wzbfgs... computes w and z for lupdat corresponding to bfgs update.
+c
+c  ***  subscripts for iv and v  ***
+c
+      integer afctol
+      integer cnvcod, dg, dgnorm, dinit, dstnrm, dst0, f, f0, fdif,
+     1        gthg, gtstep, g0, incfac, inith, irc, kagqt, lmat, lmax0,
+     2        lmaxs, mode, model, mxfcal, mxiter, nextv, nfcall, nfgcal,
+     3        ngcall, niter, nreduc, nwtstp, preduc, radfac, radinc,
+     4        radius, rad0, reldx, restor, step, stglim, stlstg, toobig,
+     5        tuner4, tuner5, vneed, xirc, x0
+c
+c  ***  iv subscript values  ***
+c
+c/6
+c     data cnvcod/55/, dg/37/, g0/48/, inith/25/, irc/29/, kagqt/33/,
+c    1     mode/35/, model/5/, mxfcal/17/, mxiter/18/, nfcall/6/,
+c    2     nfgcal/7/, ngcall/30/, niter/31/, nwtstp/34/, radinc/8/,
+c    3     restor/9/, step/40/, stglim/11/, stlstg/41/, toobig/2/,
+c    4     vneed/4/, xirc/13/, x0/43/
+c/7
+      parameter (cnvcod=55, dg=37, g0=48, inith=25, irc=29, kagqt=33,
+     1           mode=35, model=5, mxfcal=17, mxiter=18, nfcall=6,
+     2           nfgcal=7, ngcall=30, niter=31, nwtstp=34, radinc=8,
+     3           restor=9, step=40, stglim=11, stlstg=41, toobig=2,
+     4           vneed=4, xirc=13, x0=43)
+c/
+c
+c  ***  v subscript values  ***
+c
+c/6
+c     data afctol/31/
+c     data dgnorm/1/, dinit/38/, dstnrm/2/, dst0/3/, f/10/, f0/13/,
+c    1     fdif/11/, gthg/44/, gtstep/4/, incfac/23/, lmat/42/,
+c    2     lmax0/35/, lmaxs/36/, nextv/47/, nreduc/6/, preduc/7/,
+c    3     radfac/16/, radius/8/, rad0/9/, reldx/17/, tuner4/29/,
+c    4     tuner5/30/
+c/7
+      parameter (afctol=31)
+      parameter (dgnorm=1, dinit=38, dstnrm=2, dst0=3, f=10, f0=13,
+     1           fdif=11, gthg=44, gtstep=4, incfac=23, lmat=42,
+     2           lmax0=35, lmaxs=36, nextv=47, nreduc=6, preduc=7,
+     3           radfac=16, radius=8, rad0=9, reldx=17, tuner4=29,
+     4           tuner5=30)
+c/
+c
+c/6
+c     data half/0.5d+0/, negone/-1.d+0/, one/1.d+0/, onep2/1.2d+0/,
+c    1     zero/0.d+0/
+c/7
+      parameter (half=0.5d+0, negone=-1.d+0, one=1.d+0, onep2=1.2d+0,
+     1           zero=0.d+0)
+c/
+c
+c+++++++++++++++++++++++++++++++  body  ++++++++++++++++++++++++++++++++
+c
+C Following SAVE statement inserted.
+      save l
+      i = iv(1)
+      if (i .eq. 1) go to 50
+      if (i .eq. 2) go to 60
+c
+c  ***  check validity of iv and v input values  ***
+c
+      if (iv(1) .eq. 0) call deflt(2, iv, liv, lv, v)
+      if (iv(1) .eq. 12 .or. iv(1) .eq. 13)
+     1     iv(vneed) = iv(vneed) + n*(n+13)/2
+      call parck(2, d, iv, liv, lv, n, v)
+      i = iv(1) - 2
+      if (i .gt. 12) go to 999
+      go to (180, 180, 180, 180, 180, 180, 120, 90, 120, 10, 10, 20), i
+c
+c  ***  storage allocation  ***
+c
+10    l = iv(lmat)
+      iv(x0) = l + n*(n+1)/2
+      iv(step) = iv(x0) + n
+      iv(stlstg) = iv(step) + n
+      iv(g0) = iv(stlstg) + n
+      iv(nwtstp) = iv(g0) + n
+      iv(dg) = iv(nwtstp) + n
+      iv(nextv) = iv(dg) + n
+      if (iv(1) .ne. 13) go to 20
+         iv(1) = 14
+         go to 999
+c
+c  ***  initialization  ***
+c
+ 20   iv(niter) = 0
+      iv(nfcall) = 1
+      iv(ngcall) = 1
+      iv(nfgcal) = 1
+      iv(mode) = -1
+      iv(model) = 1
+      iv(stglim) = 1
+      iv(toobig) = 0
+      iv(cnvcod) = 0
+      iv(radinc) = 0
+      v(rad0) = zero
+      if (v(dinit) .ge. zero) call vscopy(n, d, v(dinit))
+      if (iv(inith) .ne. 1) go to 40
+c
+c     ***  set the initial hessian approximation to diag(d)**-2  ***
+c
+         l = iv(lmat)
+         call vscopy(n*(n+1)/2, v(l), zero)
+         k = l - 1
+         do 30 i = 1, n
+              k = k + i
+              t = d(i)
+              if (t .le. zero) t = one
+              v(k) = t
+ 30           continue
+c
+c  ***  compute initial function value  ***
+c
+ 40   iv(1) = 1
+      go to 999
+c
+ 50   v(f) = fx
+      if (iv(mode) .ge. 0) go to 180
+      iv(1) = 2
+      if (iv(toobig) .eq. 0) go to 999
+         iv(1) = 63
+         go to 300
+c
+c  ***  make sure gradient could be computed  ***
+c
+ 60   if (iv(nfgcal) .ne. 0) go to 70
+         iv(1) = 65
+         go to 300
+c
+ 70   dg1 = iv(dg)
+      call vvmulp(n, v(dg1), g, d, -1)
+      v(dgnorm) = v2norm(n, v(dg1))
+c
+c  ***  test norm of gradient  ***
+c
+      if (v(dgnorm) .gt. v(afctol)) go to 75
+      iv(irc) = 10
+      iv(cnvcod) = iv(irc) - 4
+c
+ 75   if (iv(cnvcod) .ne. 0) go to 290
+      if (iv(mode) .eq. 0) go to 250
+c
+c  ***  allow first step to have scaled 2-norm at most v(lmax0)  ***
+c
+      v(radius) = v(lmax0)
+c
+      iv(mode) = 0
+c
+c
+c-----------------------------  main loop  -----------------------------
+c
+c
+c  ***  print iteration summary, check iteration limit  ***
+c
+ 80   call itsum(d, g, iv, liv, lv, n, v, x)
+ 90   k = iv(niter)
+      if (k .lt. iv(mxiter)) go to 100
+         iv(1) = 10
+         go to 300
+c
+c  ***  update radius  ***
+c
+ 100  iv(niter) = k + 1
+      if(k.gt.0)v(radius) = v(radfac) * v(dstnrm)
+c
+c  ***  initialize for start of next iteration  ***
+c
+      g01 = iv(g0)
+      x01 = iv(x0)
+      v(f0) = v(f)
+      iv(irc) = 4
+      iv(kagqt) = -1
+c
+c     ***  copy x to x0, g to g0  ***
+c
+      call vcopy(n, v(x01), x)
+      call vcopy(n, v(g01), g)
+c
+c  ***  check stopx and function evaluation limit  ***
+c
+C AL 4/30/95
+      dummy=iv(nfcall)
+ 110  if (.not. stopx(dummy)) go to 130
+         iv(1) = 11
+         go to 140
+c
+c     ***  come here when restarting after func. eval. limit or stopx.
+c
+ 120  if (v(f) .ge. v(f0)) go to 130
+         v(radfac) = one
+         k = iv(niter)
+         go to 100
+c
+ 130  if (iv(nfcall) .lt. iv(mxfcal)) go to 150
+         iv(1) = 9
+ 140     if (v(f) .ge. v(f0)) go to 300
+c
+c        ***  in case of stopx or function evaluation limit with
+c        ***  improved v(f), evaluate the gradient at x.
+c
+              iv(cnvcod) = iv(1)
+              go to 240
+c
+c. . . . . . . . . . . . .  compute candidate step  . . . . . . . . . .
+c
+ 150  step1 = iv(step)
+      dg1 = iv(dg)
+      nwtst1 = iv(nwtstp)
+      if (iv(kagqt) .ge. 0) go to 160
+         l = iv(lmat)
+         call livmul(n, v(nwtst1), v(l), g)
+         v(nreduc) = half * dotprd(n, v(nwtst1), v(nwtst1))
+         call litvmu(n, v(nwtst1), v(l), v(nwtst1))
+         call vvmulp(n, v(step1), v(nwtst1), d, 1)
+         v(dst0) = v2norm(n, v(step1))
+         call vvmulp(n, v(dg1), v(dg1), d, -1)
+         call ltvmul(n, v(step1), v(l), v(dg1))
+         v(gthg) = v2norm(n, v(step1))
+         iv(kagqt) = 0
+ 160  call dbdog(v(dg1), lv, n, v(nwtst1), v(step1), v)
+      if (iv(irc) .eq. 6) go to 180
+c
+c  ***  check whether evaluating f(x0 + step) looks worthwhile  ***
+c
+      if (v(dstnrm) .le. zero) go to 180
+      if (iv(irc) .ne. 5) go to 170
+      if (v(radfac) .le. one) go to 170
+      if (v(preduc) .le. onep2 * v(fdif)) go to 180
+c
+c  ***  compute f(x0 + step)  ***
+c
+ 170  x01 = iv(x0)
+      step1 = iv(step)
+      call vaxpy(n, x, one, v(step1), v(x01))
+      iv(nfcall) = iv(nfcall) + 1
+      iv(1) = 1
+      iv(toobig) = 0
+      go to 999
+c
+c. . . . . . . . . . . . .  assess candidate step  . . . . . . . . . . .
+c
+ 180  x01 = iv(x0)
+      v(reldx) = reldst(n, d, x, v(x01))
+      call assst(iv, liv, lv, v)
+      step1 = iv(step)
+      lstgst = iv(stlstg)
+      if (iv(restor) .eq. 1) call vcopy(n, x, v(x01))
+      if (iv(restor) .eq. 2) call vcopy(n, v(lstgst), v(step1))
+      if (iv(restor) .ne. 3) go to 190
+         call vcopy(n, v(step1), v(lstgst))
+         call vaxpy(n, x, one, v(step1), v(x01))
+         v(reldx) = reldst(n, d, x, v(x01))
+c
+ 190  k = iv(irc)
+      go to (200,230,230,230,200,210,220,220,220,220,220,220,280,250), k
+c
+c     ***  recompute step with changed radius  ***
+c
+ 200     v(radius) = v(radfac) * v(dstnrm)
+         go to 110
+c
+c  ***  compute step of length v(lmaxs) for singular convergence test.
+c
+ 210  v(radius) = v(lmaxs)
+      go to 150
+c
+c  ***  convergence or false convergence  ***
+c
+ 220  iv(cnvcod) = k - 4
+      if (v(f) .ge. v(f0)) go to 290
+         if (iv(xirc) .eq. 14) go to 290
+              iv(xirc) = 14
+c
+c. . . . . . . . . . . .  process acceptable step  . . . . . . . . . . .
+c
+ 230  if (iv(irc) .ne. 3) go to 240
+         step1 = iv(step)
+         temp1 = iv(stlstg)
+c
+c     ***  set  temp1 = hessian * step  for use in gradient tests  ***
+c
+         l = iv(lmat)
+         call ltvmul(n, v(temp1), v(l), v(step1))
+         call lvmul(n, v(temp1), v(l), v(temp1))
+c
+c  ***  compute gradient  ***
+c
+ 240  iv(ngcall) = iv(ngcall) + 1
+      iv(1) = 2
+      go to 999
+c
+c  ***  initializations -- g0 = g - g0, etc.  ***
+c
+ 250  g01 = iv(g0)
+      call vaxpy(n, v(g01), negone, v(g01), g)
+      step1 = iv(step)
+      temp1 = iv(stlstg)
+      if (iv(irc) .ne. 3) go to 270
+c
+c  ***  set v(radfac) by gradient tests  ***
+c
+c     ***  set  temp1 = diag(d)**-1 * (hessian*step + (g(x0)-g(x)))  ***
+c
+         call vaxpy(n, v(temp1), negone, v(g01), v(temp1))
+         call vvmulp(n, v(temp1), v(temp1), d, -1)
+c
+c        ***  do gradient tests  ***
+c
+         if (v2norm(n, v(temp1)) .le. v(dgnorm) * v(tuner4))
+     1                  go to 260
+              if (dotprd(n, g, v(step1))
+     1                  .ge. v(gtstep) * v(tuner5))  go to 270
+ 260               v(radfac) = v(incfac)
+c
+c  ***  update h, loop  ***
+c
+ 270  w = iv(nwtstp)
+      z = iv(x0)
+      l = iv(lmat)
+      call wzbfgs(v(l), n, v(step1), v(w), v(g01), v(z))
+c
+c     ** use the n-vectors starting at v(step1) and v(g01) for scratch..
+      call lupdat(v(temp1), v(step1), v(l), v(g01), v(l), n, v(w), v(z))
+      iv(1) = 2
+      go to 80
+c
+c. . . . . . . . . . . . . .  misc. details  . . . . . . . . . . . . . .
+c
+c  ***  bad parameters to assess  ***
+c
+ 280  iv(1) = 64
+      go to 300
+c
+c  ***  print summary of final iteration and other requested items  ***
+c
+ 290  iv(1) = iv(cnvcod)
+      iv(cnvcod) = 0
+ 300  call itsum(d, g, iv, liv, lv, n, v, x)
+c
+ 999  return
+c
+c  ***  last line of sumit follows  ***
+      end
+      subroutine dbdog(dig, lv, n, nwtstp, step, v)
+c
+c  ***  compute double dogleg step  ***
+c
+c  ***  parameter declarations  ***
+c
+      integer lv, n
+      double precision dig(n), nwtstp(n), step(n), v(lv)
+c
+c  ***  purpose  ***
+c
+c        this subroutine computes a candidate step (for use in an uncon-
+c     strained minimization code) by the double dogleg algorithm of
+c     dennis and mei (ref. 1), which is a variation on powell*s dogleg
+c     scheme (ref. 2, p. 95).
+c
+c--------------------------  parameter usage  --------------------------
+c
+c    dig (input) diag(d)**-2 * g -- see algorithm notes.
+c      g (input) the current gradient vector.
+c     lv (input) length of v.
+c      n (input) number of components in  dig, g, nwtstp,  and  step.
+c nwtstp (input) negative newton step -- see algorithm notes.
+c   step (output) the computed step.
+c      v (i/o) values array, the following components of which are
+c             used here...
+c v(bias)   (input) bias for relaxed newton step, which is v(bias) of
+c             the way from the full newton to the fully relaxed newton
+c             step.  recommended value = 0.8 .
+c v(dgnorm) (input) 2-norm of diag(d)**-1 * g -- see algorithm notes.
+c v(dstnrm) (output) 2-norm of diag(d) * step, which is v(radius)
+c             unless v(stppar) = 0 -- see algorithm notes.
+c v(dst0) (input) 2-norm of diag(d) * nwtstp -- see algorithm notes.
+c v(grdfac) (output) the coefficient of  dig  in the step returned --
+c             step(i) = v(grdfac)*dig(i) + v(nwtfac)*nwtstp(i).
+c v(gthg)   (input) square-root of (dig**t) * (hessian) * dig -- see
+c             algorithm notes.
+c v(gtstep) (output) inner product between g and step.
+c v(nreduc) (output) function reduction predicted for the full newton
+c             step.
+c v(nwtfac) (output) the coefficient of  nwtstp  in the step returned --
+c             see v(grdfac) above.
+c v(preduc) (output) function reduction predicted for the step returned.
+c v(radius) (input) the trust region radius.  d times the step returned
+c             has 2-norm v(radius) unless v(stppar) = 0.
+c v(stppar) (output) code telling how step was computed... 0 means a
+c             full newton step.  between 0 and 1 means v(stppar) of the
+c             way from the newton to the relaxed newton step.  between
+c             1 and 2 means a true double dogleg step, v(stppar) - 1 of
+c             the way from the relaxed newton to the cauchy step.
+c             greater than 2 means 1 / (v(stppar) - 1) times the cauchy
+c             step.
+c
+c-------------------------------  notes  -------------------------------
+c
+c  ***  algorithm notes  ***
+c
+c        let  g  and  h  be the current gradient and hessian approxima-
+c     tion respectively and let d be the current scale vector.  this
+c     routine assumes dig = diag(d)**-2 * g  and  nwtstp = h**-1 * g.
+c     the step computed is the same one would get by replacing g and h
+c     by  diag(d)**-1 * g  and  diag(d)**-1 * h * diag(d)**-1,
+c     computing step, and translating step back to the original
+c     variables, i.e., premultiplying it by diag(d)**-1.
+c
+c  ***  references  ***
+c
+c 1.  dennis, j.e., and mei, h.h.w. (1979), two new unconstrained opti-
+c             mization algorithms which use function and gradient
+c             values, j. optim. theory applic. 28, pp. 453-482.
+c 2. powell, m.j.d. (1970), a hybrid method for non-linear equations,
+c             in numerical methods for non-linear equations, edited by
+c             p. rabinowitz, gordon and breach, london.
+c
+c  ***  general  ***
+c
+c     coded by david m. gay.
+c     this subroutine was written in connection with research supported
+c     by the national science foundation under grants mcs-7600324 and
+c     mcs-7906671.
+c
+c------------------------  external quantities  ------------------------
+c
+c  ***  functions and subroutines called  ***
+c
+      external dotprd, v2norm
+      double precision dotprd, v2norm
+c
+c dotprd... returns inner product of two vectors.
+c v2norm... returns 2-norm of a vector.
+c
+c  ***  intrinsic functions  ***
+c/+
+      double precision dsqrt
+c/
+c--------------------------  local variables  --------------------------
+c
+      integer i
+      double precision cfact, cnorm, ctrnwt, ghinvg, femnsq, gnorm,
+     1                 nwtnrm, relax, rlambd, t, t1, t2
+      double precision half, one, two, zero
+c
+c  ***  v subscripts  ***
+c
+      integer bias, dgnorm, dstnrm, dst0, grdfac, gthg, gtstep,
+     1        nreduc, nwtfac, preduc, radius, stppar
+c
+c  ***  data initializations  ***
+c
+c/6
+c     data half/0.5d+0/, one/1.d+0/, two/2.d+0/, zero/0.d+0/
+c/7
+      parameter (half=0.5d+0, one=1.d+0, two=2.d+0, zero=0.d+0)
+c/
+c
+c/6
+c     data bias/43/, dgnorm/1/, dstnrm/2/, dst0/3/, grdfac/45/,
+c    1     gthg/44/, gtstep/4/, nreduc/6/, nwtfac/46/, preduc/7/,
+c    2     radius/8/, stppar/5/
+c/7
+      parameter (bias=43, dgnorm=1, dstnrm=2, dst0=3, grdfac=45,
+     1           gthg=44, gtstep=4, nreduc=6, nwtfac=46, preduc=7,
+     2           radius=8, stppar=5)
+c/
+c
+c+++++++++++++++++++++++++++++++  body  ++++++++++++++++++++++++++++++++
+c
+      nwtnrm = v(dst0)
+      rlambd = one
+      if (nwtnrm .gt. zero) rlambd = v(radius) / nwtnrm
+      gnorm = v(dgnorm)
+      ghinvg = two * v(nreduc)
+      v(grdfac) = zero
+      v(nwtfac) = zero
+      if (rlambd .lt. one) go to 30
+c
+c        ***  the newton step is inside the trust region  ***
+c
+         v(stppar) = zero
+         v(dstnrm) = nwtnrm
+         v(gtstep) = -ghinvg
+         v(preduc) = v(nreduc)
+         v(nwtfac) = -one
+         do 20 i = 1, n
+ 20           step(i) = -nwtstp(i)
+         go to 999
+c
+ 30   v(dstnrm) = v(radius)
+      cfact = (gnorm / v(gthg))**2
+c     ***  cauchy step = -cfact * g.
+      cnorm = gnorm * cfact
+      relax = one - v(bias) * (one - gnorm*cnorm/ghinvg)
+      if (rlambd .lt. relax) go to 50
+c
+c        ***  step is between relaxed newton and full newton steps  ***
+c
+         v(stppar)  =  one  -  (rlambd - relax) / (one - relax)
+         t = -rlambd
+         v(gtstep) = t * ghinvg
+         v(preduc) = rlambd * (one - half*rlambd) * ghinvg
+         v(nwtfac) = t
+         do 40 i = 1, n
+ 40           step(i) = t * nwtstp(i)
+         go to 999
+c
+ 50   if (cnorm .lt. v(radius)) go to 70
+c
+c        ***  the cauchy step lies outside the trust region --
+c        ***  step = scaled cauchy step  ***
+c
+         t = -v(radius) / gnorm
+         v(grdfac) = t
+         v(stppar) = one  +  cnorm / v(radius)
+         v(gtstep) = -v(radius) * gnorm
+      v(preduc) = v(radius)*(gnorm - half*v(radius)*(v(gthg)/gnorm)**2)
+         do 60 i = 1, n
+ 60           step(i) = t * dig(i)
+         go to 999
+c
+c     ***  compute dogleg step between cauchy and relaxed newton  ***
+c     ***  femur = relaxed newton step minus cauchy step  ***
+c
+ 70   ctrnwt = cfact * relax * ghinvg / gnorm
+c     *** ctrnwt = inner prod. of cauchy and relaxed newton steps,
+c     *** scaled by gnorm**-1.
+      t1 = ctrnwt - gnorm*cfact**2
+c     ***  t1 = inner prod. of femur and cauchy step, scaled by
+c     ***  gnorm**-1.
+      t2 = v(radius)*(v(radius)/gnorm) - gnorm*cfact**2
+      t = relax * nwtnrm
+      femnsq = (t/gnorm)*t - ctrnwt - t1
+c     ***  femnsq = square of 2-norm of femur, scaled by gnorm**-1.
+      t = t2 / (t1 + dsqrt(t1**2 + femnsq*t2))
+c     ***  dogleg step  =  cauchy step  +  t * femur.
+      t1 = (t - one) * cfact
+      v(grdfac) = t1
+      t2 = -t * relax
+      v(nwtfac) = t2
+      v(stppar) = two - t
+      v(gtstep) = t1*gnorm**2 + t2*ghinvg
+      v(preduc) = -t1*gnorm * ((t2 + one)*gnorm)
+     1                 - t2 * (one + half*t2)*ghinvg
+     2                  - half * (v(gthg)*t1)**2
+      do 80 i = 1, n
+ 80      step(i) = t1*dig(i) + t2*nwtstp(i)
+c
+ 999  return
+c  ***  last line of dbdog follows  ***
+      end
+      subroutine ltvmul(n, x, l, y)
+c
+c  ***  compute  x = (l**t)*y, where  l  is an  n x n  lower
+c  ***  triangular matrix stored compactly by rows.  x and y may
+c  ***  occupy the same storage.  ***
+c
+      integer n
+cal   double precision x(n), l(1), y(n)
+      double precision x(n), l(n*(n+1)/2), y(n)
+c     dimension l(n*(n+1)/2)
+      integer i, ij, i0, j
+      double precision yi, zero
+c/6
+c     data zero/0.d+0/
+c/7
+      parameter (zero=0.d+0)
+c/
+c
+      i0 = 0
+      do 20 i = 1, n
+         yi = y(i)
+         x(i) = zero
+         do 10 j = 1, i
+              ij = i0 + j
+              x(j) = x(j) + yi*l(ij)
+ 10           continue
+         i0 = i0 + i
+ 20      continue
+ 999  return
+c  ***  last card of ltvmul follows  ***
+      end
+      subroutine lupdat(beta, gamma, l, lambda, lplus, n, w, z)
+c
+c  ***  compute lplus = secant update of l  ***
+c
+c  ***  parameter declarations  ***
+c
+      integer n
+cal   double precision beta(n), gamma(n), l(1), lambda(n), lplus(1),
+      double precision beta(n), gamma(n), l(n*(n+1)/2), lambda(n), 
+     1   lplus(n*(n+1)/2),w(n), z(n)
+c     dimension l(n*(n+1)/2), lplus(n*(n+1)/2)
+c
+c--------------------------  parameter usage  --------------------------
+c
+c   beta = scratch vector.
+c  gamma = scratch vector.
+c      l (input) lower triangular matrix, stored rowwise.
+c lambda = scratch vector.
+c  lplus (output) lower triangular matrix, stored rowwise, which may
+c             occupy the same storage as  l.
+c      n (input) length of vector parameters and order of matrices.
+c      w (input, destroyed on output) right singular vector of rank 1
+c             correction to  l.
+c      z (input, destroyed on output) left singular vector of rank 1
+c             correction to  l.
+c
+c-------------------------------  notes  -------------------------------
+c
+c  ***  application and usage restrictions  ***
+c
+c        this routine updates the cholesky factor  l  of a symmetric
+c     positive definite matrix to which a secant update is being
+c     applied -- it computes a cholesky factor  lplus  of
+c     l * (i + z*w**t) * (i + w*z**t) * l**t.  it is assumed that  w
+c     and  z  have been chosen so that the updated matrix is strictly
+c     positive definite.
+c
+c  ***  algorithm notes  ***
+c
+c        this code uses recurrence 3 of ref. 1 (with d(j) = 1 for all j)
+c     to compute  lplus  of the form  l * (i + z*w**t) * q,  where  q
+c     is an orthogonal matrix that makes the result lower triangular.
+c        lplus may have some negative diagonal elements.
+c
+c  ***  references  ***
+c
+c 1.  goldfarb, d. (1976), factorized variable metric methods for uncon-
+c             strained optimization, math. comput. 30, pp. 796-811.
+c
+c  ***  general  ***
+c
+c     coded by david m. gay (fall 1979).
+c     this subroutine was written in connection with research supported
+c     by the national science foundation under grants mcs-7600324 and
+c     mcs-7906671.
+c
+c------------------------  external quantities  ------------------------
+c
+c  ***  intrinsic functions  ***
+c/+
+      double precision dsqrt
+c/
+c--------------------------  local variables  --------------------------
+c
+      integer i, ij, j, jj, jp1, k, nm1, np1
+      double precision a, b, bj, eta, gj, lj, lij, ljj, nu, s, theta,
+     1                 wj, zj
+      double precision one, zero
+c
+c  ***  data initializations  ***
+c
+c/6
+c     data one/1.d+0/, zero/0.d+0/
+c/7
+      parameter (one=1.d+0, zero=0.d+0)
+c/
+c
+c+++++++++++++++++++++++++++++++  body  ++++++++++++++++++++++++++++++++
+c
+      nu = one
+      eta = zero
+      if (n .le. 1) go to 30
+      nm1 = n - 1
+c
+c  ***  temporarily store s(j) = sum over k = j+1 to n of w(k)**2 in
+c  ***  lambda(j).
+c
+      s = zero
+      do 10 i = 1, nm1
+         j = n - i
+         s = s + w(j+1)**2
+         lambda(j) = s
+ 10      continue
+c
+c  ***  compute lambda, gamma, and beta by goldfarb*s recurrence 3.
+c
+      do 20 j = 1, nm1
+         wj = w(j)
+         a = nu*z(j) - eta*wj
+         theta = one + a*wj
+         s = a*lambda(j)
+         lj = dsqrt(theta**2 + a*s)
+         if (theta .gt. zero) lj = -lj
+         lambda(j) = lj
+         b = theta*wj + s
+         gamma(j) = b * nu / lj
+         beta(j) = (a - b*eta) / lj
+         nu = -nu / lj
+         eta = -(eta + (a**2)/(theta - lj)) / lj
+ 20      continue
+ 30   lambda(n) = one + (nu*z(n) - eta*w(n))*w(n)
+c
+c  ***  update l, gradually overwriting  w  and  z  with  l*w  and  l*z.
+c
+      np1 = n + 1
+      jj = n * (n + 1) / 2
+      do 60 k = 1, n
+         j = np1 - k
+         lj = lambda(j)
+         ljj = l(jj)
+         lplus(jj) = lj * ljj
+         wj = w(j)
+         w(j) = ljj * wj
+         zj = z(j)
+         z(j) = ljj * zj
+         if (k .eq. 1) go to 50
+         bj = beta(j)
+         gj = gamma(j)
+         ij = jj + j
+         jp1 = j + 1
+         do 40 i = jp1, n
+              lij = l(ij)
+              lplus(ij) = lj*lij + bj*w(i) + gj*z(i)
+              w(i) = w(i) + lij*wj
+              z(i) = z(i) + lij*zj
+              ij = ij + i
+ 40           continue
+ 50      jj = jj - j
+ 60      continue
+c
+ 999  return
+c  ***  last card of lupdat follows  ***
+      end
+      subroutine lvmul(n, x, l, y)
+c
+c  ***  compute  x = l*y, where  l  is an  n x n  lower triangular
+c  ***  matrix stored compactly by rows.  x and y may occupy the same
+c  ***  storage.  ***
+c
+      integer n
+cal   double precision x(n), l(1), y(n)
+      double precision x(n), l(n*(n+1)/2), y(n)
+c     dimension l(n*(n+1)/2)
+      integer i, ii, ij, i0, j, np1
+      double precision t, zero
+c/6
+c     data zero/0.d+0/
+c/7
+      parameter (zero=0.d+0)
+c/
+c
+      np1 = n + 1
+      i0 = n*(n+1)/2
+      do 20 ii = 1, n
+         i = np1 - ii
+         i0 = i0 - i
+         t = zero
+         do 10 j = 1, i
+              ij = i0 + j
+              t = t + l(ij)*y(j)
+ 10           continue
+         x(i) = t
+ 20      continue
+ 999  return
+c  ***  last card of lvmul follows  ***
+      end
+      subroutine vvmulp(n, x, y, z, k)
+c
+c ***  set x(i) = y(i) * z(i)**k, 1 .le. i .le. n (for k = 1 or -1)  ***
+c
+      integer n, k
+      double precision x(n), y(n), z(n)
+      integer i
+c
+      if (k .ge. 0) go to 20
+      do 10 i = 1, n
+ 10      x(i) = y(i) / z(i)
+      go to 999
+c
+ 20   do 30 i = 1, n
+ 30      x(i) = y(i) * z(i)
+ 999  return
+c  ***  last card of vvmulp follows  ***
+      end
+      subroutine wzbfgs (l, n, s, w, y, z)
+c
+c  ***  compute  y  and  z  for  lupdat  corresponding to bfgs update.
+c
+      integer n
+cal   double precision l(1), s(n), w(n), y(n), z(n)
+      double precision l(n*(n+1)/2), s(n), w(n), y(n), z(n)
+c     dimension l(n*(n+1)/2)
+c
+c--------------------------  parameter usage  --------------------------
+c
+c l (i/o) cholesky factor of hessian, a lower triang. matrix stored
+c             compactly by rows.
+c n (input) order of  l  and length of  s,  w,  y,  z.
+c s (input) the step just taken.
+c w (output) right singular vector of rank 1 correction to l.
+c y (input) change in gradients corresponding to s.
+c z (output) left singular vector of rank 1 correction to l.
+c
+c-------------------------------  notes  -------------------------------
+c
+c  ***  algorithm notes  ***
+c
+c        when  s  is computed in certain ways, e.g. by  gqtstp  or
+c     dbldog,  it is possible to save n**2/2 operations since  (l**t)*s
+c     or  l*(l**t)*s is then known.
+c        if the bfgs update to l*(l**t) would reduce its determinant to
+c     less than eps times its old value, then this routine in effect
+c     replaces  y  by  theta*y + (1 - theta)*l*(l**t)*s,  where  theta
+c     (between 0 and 1) is chosen to make the reduction factor = eps.
+c
+c  ***  general  ***
+c
+c     coded by david m. gay (fall 1979).
+c     this subroutine was written in connection with research supported
+c     by the national science foundation under grants mcs-7600324 and
+c     mcs-7906671.
+c
+c------------------------  external quantities  ------------------------
+c
+c  ***  functions and subroutines called  ***
+c
+      external dotprd, livmul, ltvmul
+      double precision dotprd
+c dotprd returns inner product of two vectors.
+c livmul multiplies l**-1 times a vector.
+c ltvmul multiplies l**t times a vector.
+c
+c  ***  intrinsic functions  ***
+c/+
+      double precision dsqrt
+c/
+c--------------------------  local variables  --------------------------
+c
+      integer i
+      double precision cs, cy, eps, epsrt, one, shs, ys, theta
+c
+c  ***  data initializations  ***
+c
+c/6
+c     data eps/0.1d+0/, one/1.d+0/
+c/7
+      parameter (eps=0.1d+0, one=1.d+0)
+c/
+c
+c+++++++++++++++++++++++++++++++  body  ++++++++++++++++++++++++++++++++
+c
+      call ltvmul(n, w, l, s)
+      shs = dotprd(n, w, w)
+      ys = dotprd(n, y, s)
+      if (ys .ge. eps*shs) go to 10
+         theta = (one - eps) * shs / (shs - ys)
+         epsrt = dsqrt(eps)
+         cy = theta / (shs * epsrt)
+         cs = (one + (theta-one)/epsrt) / shs
+         go to 20
+ 10   cy = one / (dsqrt(ys) * dsqrt(shs))
+      cs = one / shs
+ 20   call livmul(n, z, l, y)
+      do 30 i = 1, n
+ 30      z(i) = cy * z(i)  -  cs * w(i)
+c
+ 999  return
+c  ***  last card of wzbfgs follows  ***
+      end
diff --git a/source/unres/src_MD_DFA/surfatom.f b/source/unres/src_MD_DFA/surfatom.f
new file mode 100644 (file)
index 0000000..9974842
--- /dev/null
@@ -0,0 +1,494 @@
+c
+c
+c     ###################################################
+c     ##  COPYRIGHT (C)  1996  by  Jay William Ponder  ##
+c     ##              All Rights Reserved              ##
+c     ###################################################
+c
+c     ################################################################
+c     ##                                                            ##
+c     ##  subroutine surfatom  --  exposed surface area of an atom  ##
+c     ##                                                            ##
+c     ################################################################
+c
+c
+c     "surfatom" performs an analytical computation of the surface
+c     area of a specified atom; a simplified version of "surface"
+c
+c     literature references:
+c
+c     T. J. Richmond, "Solvent Accessible Surface Area and
+c     Excluded Volume in Proteins", Journal of Molecular Biology,
+c     178, 63-89 (1984)
+c
+c     L. Wesson and D. Eisenberg, "Atomic Solvation Parameters
+c     Applied to Molecular Dynamics of Proteins in Solution",
+c     Protein Science, 1, 227-235 (1992)
+c
+c     variables and parameters:
+c
+c     ir       number of atom for which area is desired
+c     area     accessible surface area of the atom
+c     radius   radii of each of the individual atoms
+c
+c
+      subroutine surfatom (ir,area,radius) 
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'sizes.i'
+      include 'COMMON.GEO'
+      include 'COMMON.IOUNITS'
+      integer nres,nsup,nstart_sup
+      double precision c,dc,dc_old,d_c_work,xloc,xrot,dc_norm
+      common /chain/ c(3,maxres2+2),dc(3,0:maxres2),dc_old(3,0:maxres2),
+     & xloc(3,maxres),xrot(3,maxres),dc_norm(3,0:maxres2),
+     & dc_work(MAXRES6),nres,nres0
+      integer maxarc
+      parameter (maxarc=300)
+      integer i,j,k,m
+      integer ii,ib,jb
+      integer io,ir
+      integer mi,ni,narc
+      integer key(maxarc)
+      integer intag(maxarc)
+      integer intag1(maxarc)
+      real*8 area,arcsum
+      real*8 arclen,exang
+      real*8 delta,delta2
+      real*8 eps,rmove
+      real*8 xr,yr,zr
+      real*8 rr,rrsq
+      real*8 rplus,rminus
+      real*8 axx,axy,axz
+      real*8 ayx,ayy
+      real*8 azx,azy,azz
+      real*8 uxj,uyj,uzj
+      real*8 tx,ty,tz
+      real*8 txb,tyb,td
+      real*8 tr2,tr,txr,tyr
+      real*8 tk1,tk2
+      real*8 thec,the,t,tb
+      real*8 txk,tyk,tzk
+      real*8 t1,ti,tf,tt
+      real*8 txj,tyj,tzj
+      real*8 ccsq,cc,xysq
+      real*8 bsqk,bk,cosine
+      real*8 dsqj,gi,pix2
+      real*8 therk,dk,gk
+      real*8 risqk,rik
+      real*8 radius(maxatm)
+      real*8 ri(maxarc),risq(maxarc)
+      real*8 ux(maxarc),uy(maxarc),uz(maxarc)
+      real*8 xc(maxarc),yc(maxarc),zc(maxarc)
+      real*8 xc1(maxarc),yc1(maxarc),zc1(maxarc)
+      real*8 dsq(maxarc),bsq(maxarc)
+      real*8 dsq1(maxarc),bsq1(maxarc)
+      real*8 arci(maxarc),arcf(maxarc)
+      real*8 ex(maxarc),lt(maxarc),gr(maxarc)
+      real*8 b(maxarc),b1(maxarc),bg(maxarc)
+      real*8 kent(maxarc),kout(maxarc)
+      real*8 ther(maxarc)
+      logical moved,top
+      logical omit(maxarc)
+c
+c
+c     zero out the surface area for the sphere of interest
+c
+      area = 0.0d0
+c      write (2,*) "ir",ir," radius",radius(ir)
+      if (radius(ir) .eq. 0.0d0)  return
+c
+c     set the overlap significance and connectivity shift
+c
+      pix2 = 2.0d0 * pi
+      delta = 1.0d-8
+      delta2 = delta * delta
+      eps = 1.0d-8
+      moved = .false.
+      rmove = 1.0d-8
+c
+c     store coordinates and radius of the sphere of interest
+c
+      xr = c(1,ir)
+      yr = c(2,ir)
+      zr = c(3,ir)
+      rr = radius(ir)
+      rrsq = rr * rr
+c
+c     initialize values of some counters and summations
+c
+   10 continue
+      io = 0
+      jb = 0
+      ib = 0
+      arclen = 0.0d0
+      exang = 0.0d0
+c
+c     test each sphere to see if it overlaps the sphere of interest
+c
+      do i = 1, 2*nres
+         if (i.eq.ir .or. radius(i).eq.0.0d0)  goto 30
+         rplus = rr + radius(i)
+         tx = c(1,i) - xr
+         if (abs(tx) .ge. rplus)  goto 30
+         ty = c(2,i) - yr
+         if (abs(ty) .ge. rplus)  goto 30
+         tz = c(3,i) - zr
+         if (abs(tz) .ge. rplus)  goto 30
+c
+c     check for sphere overlap by testing distance against radii
+c
+         xysq = tx*tx + ty*ty
+         if (xysq .lt. delta2) then
+            tx = delta
+            ty = 0.0d0
+            xysq = delta2
+         end if
+         ccsq = xysq + tz*tz
+         cc = sqrt(ccsq)
+         if (rplus-cc .le. delta)  goto 30
+         rminus = rr - radius(i)
+c
+c     check to see if sphere of interest is completely buried
+c
+         if (cc-abs(rminus) .le. delta) then
+            if (rminus .le. 0.0d0)  goto 170
+            goto 30
+         end if
+c
+c     check for too many overlaps with sphere of interest
+c
+         if (io .ge. maxarc) then
+            write (iout,20)
+   20       format (/,' SURFATOM  --  Increase the Value of MAXARC')
+            stop
+         end if
+c
+c     get overlap between current sphere and sphere of interest
+c
+         io = io + 1
+         xc1(io) = tx
+         yc1(io) = ty
+         zc1(io) = tz
+         dsq1(io) = xysq
+         bsq1(io) = ccsq
+         b1(io) = cc
+         gr(io) = (ccsq+rplus*rminus) / (2.0d0*rr*b1(io))
+         intag1(io) = i
+         omit(io) = .false.
+   30    continue
+      end do
+c
+c     case where no other spheres overlap the sphere of interest
+c
+      if (io .eq. 0) then
+         area = 4.0d0 * pi * rrsq
+         return
+      end if
+c
+c     case where only one sphere overlaps the sphere of interest
+c
+      if (io .eq. 1) then
+         area = pix2 * (1.0d0 + gr(1))
+         area = mod(area,4.0d0*pi) * rrsq
+         return
+      end if
+c
+c     case where many spheres intersect the sphere of interest;
+c     sort the intersecting spheres by their degree of overlap
+c
+      call sort2 (io,gr,key)
+      do i = 1, io
+         k = key(i)
+         intag(i) = intag1(k)
+         xc(i) = xc1(k)
+         yc(i) = yc1(k)
+         zc(i) = zc1(k)
+         dsq(i) = dsq1(k)
+         b(i) = b1(k)
+         bsq(i) = bsq1(k)
+      end do
+c
+c     get radius of each overlap circle on surface of the sphere
+c
+      do i = 1, io
+         gi = gr(i) * rr
+         bg(i) = b(i) * gi
+         risq(i) = rrsq - gi*gi
+         ri(i) = sqrt(risq(i))
+         ther(i) = 0.5d0*pi - asin(min(1.0d0,max(-1.0d0,gr(i))))
+      end do
+c
+c     find boundary of inaccessible area on sphere of interest
+c
+      do k = 1, io-1
+         if (.not. omit(k)) then
+            txk = xc(k)
+            tyk = yc(k)
+            tzk = zc(k)
+            bk = b(k)
+            therk = ther(k)
+c
+c     check to see if J circle is intersecting K circle;
+c     get distance between circle centers and sum of radii
+c
+            do j = k+1, io
+               if (omit(j))  goto 60
+               cc = (txk*xc(j)+tyk*yc(j)+tzk*zc(j))/(bk*b(j))
+               cc = acos(min(1.0d0,max(-1.0d0,cc)))
+               td = therk + ther(j)
+c
+c     check to see if circles enclose separate regions
+c
+               if (cc .ge. td)  goto 60
+c
+c     check for circle J completely inside circle K
+c
+               if (cc+ther(j) .lt. therk)  goto 40
+c
+c     check for circles that are essentially parallel
+c
+               if (cc .gt. delta)  goto 50
+   40          continue
+               omit(j) = .true.
+               goto 60
+c
+c     check to see if sphere of interest is completely buried
+c
+   50          continue
+               if (pix2-cc .le. td)  goto 170
+   60          continue
+            end do
+         end if
+      end do
+c
+c     find T value of circle intersections
+c
+      do k = 1, io
+         if (omit(k))  goto 110
+         omit(k) = .true.
+         narc = 0
+         top = .false.
+         txk = xc(k)
+         tyk = yc(k)
+         tzk = zc(k)
+         dk = sqrt(dsq(k))
+         bsqk = bsq(k)
+         bk = b(k)
+         gk = gr(k) * rr
+         risqk = risq(k)
+         rik = ri(k)
+         therk = ther(k)
+c
+c     rotation matrix elements
+c
+         t1 = tzk / (bk*dk)
+         axx = txk * t1
+         axy = tyk * t1
+         axz = dk / bk
+         ayx = tyk / dk
+         ayy = txk / dk
+         azx = txk / bk
+         azy = tyk / bk
+         azz = tzk / bk
+         do j = 1, io
+            if (.not. omit(j)) then
+               txj = xc(j)
+               tyj = yc(j)
+               tzj = zc(j)
+c
+c     rotate spheres so K vector colinear with z-axis
+c
+               uxj = txj*axx + tyj*axy - tzj*axz
+               uyj = tyj*ayy - txj*ayx
+               uzj = txj*azx + tyj*azy + tzj*azz
+               cosine = min(1.0d0,max(-1.0d0,uzj/b(j)))
+               if (acos(cosine) .lt. therk+ther(j)) then
+                  dsqj = uxj*uxj + uyj*uyj
+                  tb = uzj*gk - bg(j)
+                  txb = uxj * tb
+                  tyb = uyj * tb
+                  td = rik * dsqj
+                  tr2 = risqk*dsqj - tb*tb
+                  tr2 = max(eps,tr2)
+                  tr = sqrt(tr2)
+                  txr = uxj * tr
+                  tyr = uyj * tr
+c
+c     get T values of intersection for K circle
+c
+                  tb = (txb+tyr) / td
+                  tb = min(1.0d0,max(-1.0d0,tb))
+                  tk1 = acos(tb)
+                  if (tyb-txr .lt. 0.0d0)  tk1 = pix2 - tk1
+                  tb = (txb-tyr) / td
+                  tb = min(1.0d0,max(-1.0d0,tb))
+                  tk2 = acos(tb)
+                  if (tyb+txr .lt. 0.0d0)  tk2 = pix2 - tk2
+                  thec = (rrsq*uzj-gk*bg(j)) / (rik*ri(j)*b(j))
+                  if (abs(thec) .lt. 1.0d0) then
+                     the = -acos(thec)
+                  else if (thec .ge. 1.0d0) then
+                     the = 0.0d0
+                  else if (thec .le. -1.0d0) then
+                     the = -pi
+                  end if
+c
+c     see if "tk1" is entry or exit point; check t=0 point;
+c     "ti" is exit point, "tf" is entry point
+c
+                  cosine = min(1.0d0,max(-1.0d0,
+     &                            (uzj*gk-uxj*rik)/(b(j)*rr)))
+                  if ((acos(cosine)-ther(j))*(tk2-tk1) .le. 0.0d0) then
+                     ti = tk2
+                     tf = tk1
+                  else
+                     ti = tk2
+                     tf = tk1
+                  end if
+                  narc = narc + 1
+                  if (narc .ge. maxarc) then
+                     write (iout,70)
+   70                format (/,' SURFATOM  --  Increase the Value',
+     &                          ' of MAXARC')
+                     stop
+                  end if
+                  if (tf .le. ti) then
+                     arcf(narc) = tf
+                     arci(narc) = 0.0d0
+                     tf = pix2
+                     lt(narc) = j
+                     ex(narc) = the
+                     top = .true.
+                     narc = narc + 1
+                  end if
+                  arcf(narc) = tf
+                  arci(narc) = ti
+                  lt(narc) = j
+                  ex(narc) = the
+                  ux(j) = uxj
+                  uy(j) = uyj
+                  uz(j) = uzj
+               end if
+            end if
+         end do
+         omit(k) = .false.
+c
+c     special case; K circle without intersections
+c
+         if (narc .le. 0)  goto 90
+c
+c     general case; sum up arclength and set connectivity code
+c
+         call sort2 (narc,arci,key)
+         arcsum = arci(1)
+         mi = key(1)
+         t = arcf(mi)
+         ni = mi
+         if (narc .gt. 1) then
+            do j = 2, narc
+               m = key(j)
+               if (t .lt. arci(j)) then
+                  arcsum = arcsum + arci(j) - t
+                  exang = exang + ex(ni)
+                  jb = jb + 1
+                  if (jb .ge. maxarc) then
+                     write (iout,80)
+   80                format (/,' SURFATOM  --  Increase the Value',
+     &                          ' of MAXARC')
+                     stop
+                  end if
+                  i = lt(ni)
+                  kent(jb) = maxarc*i + k
+                  i = lt(m)
+                  kout(jb) = maxarc*k + i
+               end if
+               tt = arcf(m)
+               if (tt .ge. t) then
+                  t = tt
+                  ni = m
+               end if
+            end do
+         end if
+         arcsum = arcsum + pix2 - t
+         if (.not. top) then
+            exang = exang + ex(ni)
+            jb = jb + 1
+            i = lt(ni)
+            kent(jb) = maxarc*i + k
+            i = lt(mi)
+            kout(jb) = maxarc*k + i
+         end if
+         goto 100
+   90    continue
+         arcsum = pix2
+         ib = ib + 1
+  100    continue
+         arclen = arclen + gr(k)*arcsum
+  110    continue
+      end do
+      if (arclen .eq. 0.0d0)  goto 170
+      if (jb .eq. 0)  goto 150
+c
+c     find number of independent boundaries and check connectivity
+c
+      j = 0
+      do k = 1, jb
+         if (kout(k) .ne. 0) then
+            i = k
+  120       continue
+            m = kout(i)
+            kout(i) = 0
+            j = j + 1
+            do ii = 1, jb
+               if (m .eq. kent(ii)) then
+                  if (ii .eq. k) then
+                     ib = ib + 1
+                     if (j .eq. jb)  goto 150
+                     goto 130
+                  end if
+                  i = ii
+                  goto 120
+               end if
+            end do
+  130       continue
+         end if
+      end do
+      ib = ib + 1
+c
+c     attempt to fix connectivity error by moving atom slightly
+c
+      if (moved) then
+         write (iout,140)  ir
+  140    format (/,' SURFATOM  --  Connectivity Error at Atom',i6)
+      else
+         moved = .true.
+         xr = xr + rmove
+         yr = yr + rmove
+         zr = zr + rmove
+         goto 10
+      end if
+c
+c     compute the exposed surface area for the sphere of interest
+c
+  150 continue
+      area = ib*pix2 + exang + arclen
+      area = mod(area,4.0d0*pi) * rrsq
+c
+c     attempt to fix negative area by moving atom slightly
+c
+      if (area .lt. 0.0d0) then
+         if (moved) then
+            write (iout,160)  ir
+  160       format (/,' SURFATOM  --  Negative Area at Atom',i6)
+         else
+            moved = .true.
+            xr = xr + rmove
+            yr = yr + rmove
+            zr = zr + rmove
+            goto 10
+         end if
+      end if
+  170 continue
+      return
+      end
diff --git a/source/unres/src_MD_DFA/test.F b/source/unres/src_MD_DFA/test.F
new file mode 100644 (file)
index 0000000..0140ee5
--- /dev/null
@@ -0,0 +1,863 @@
+      subroutine test
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.DISTFIT'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.CONTROL'
+      include 'COMMON.FFIELD'
+      include 'COMMON.MINIM'
+      include 'COMMON.CHAIN'
+      double precision time0,time1
+      double precision energy(0:n_ene),ee
+      double precision var(maxvar),var1(maxvar)
+      integer j1,j2
+      logical debug,accepted
+      debug=.true.
+      
+
+      call geom_to_var(nvar,var1)
+      call chainbuild
+      call etotal(energy(0))
+      etot=energy(0)
+      call rmsd(rms)
+      write(iout,*) 'etot=',0,etot,rms
+      call secondary2(.false.)
+
+      call write_pdb(0,'first structure',etot)
+
+      j1=13
+      j2=21
+      da=180.0*deg2rad
+
+
+
+       temp=3000.0d0
+       betbol=1.0D0/(1.9858D-3*temp)
+       jr=iran_num(j1,j2)
+       d=ran_number(-pi,pi)
+c       phi(jr)=pinorm(phi(jr)+d)
+       call chainbuild
+       call etotal(energy(0))
+       etot0=energy(0)
+       call rmsd(rms)
+       write(iout,*) 'etot=',1,etot0,rms
+       call write_pdb(1,'perturb structure',etot0)
+
+      do i=2,500,2
+       jr=iran_num(j1,j2)
+       d=ran_number(-da,da)
+       phiold=phi(jr)
+       phi(jr)=pinorm(phi(jr)+d)
+       call chainbuild
+       call etotal(energy(0))
+       etot=energy(0)
+
+       if (etot.lt.etot0) then 
+          accepted=.true.
+       else
+          accepted=.false.
+          xxr=ran_number(0.0D0,1.0D0)
+          xxh=betbol*(etot-etot0)
+          if (xxh.lt.50.0D0) then
+            xxh=dexp(-xxh)
+            if (xxh.gt.xxr) accepted=.true. 
+          endif
+       endif
+       accepted=.true.
+c       print *,etot0,etot,accepted
+       if (accepted) then 
+          etot0=etot
+          call rmsd(rms)
+          write(iout,*) 'etot=',i,etot,rms
+          call write_pdb(i,'MC structure',etot)
+c minimize
+c        call geom_to_var(nvar,var1)
+        call sc_move(2,nres-1,1,10d0,nft_sc,etot)
+        call geom_to_var(nvar,var)
+        call minimize(etot,var,iretcode,nfun)
+        write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun
+        call var_to_geom(nvar,var)
+        call chainbuild
+        call rmsd(rms)
+        write(iout,*) 'etot mcm=',i,etot,rms
+        call write_pdb(i+1,'MCM structure',etot)
+        call var_to_geom(nvar,var1)
+c --------
+       else
+          phi(jr)=phiold
+       endif
+      enddo
+
+c minimize
+c       call sc_move(2,nres-1,1,10d0,nft_sc,etot)
+c       call geom_to_var(nvar,var)
+c
+c       call chainbuild        
+c       call write_pdb(998 ,'sc min',etot)
+c
+c       call minimize(etot,var,iretcode,nfun)
+c       write(iout,*)'------------------------------------------------'
+c       write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun
+c      
+c       call var_to_geom(nvar,var)
+c       call chainbuild        
+c       call write_pdb(999,'full min',etot)
+
+
+      return
+      end
+
+
+
+
+      subroutine test_local
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      double precision time0,time1
+      double precision energy(0:n_ene),ee
+      double precision varia(maxvar)
+c
+      call chainbuild
+c      call geom_to_var(nvar,varia)
+      call write_pdb(1,'first structure',0d0)
+
+      call etotal(energy(0))
+      etot=energy(0)
+      write(iout,*) nnt,nct,etot
+
+      write(iout,*) 'calling sc_move'
+      call sc_move(nnt,nct,5,10d0,nft_sc,etot)
+      write(iout,*) nft_sc,etot
+      call write_pdb(2,'second structure',etot)
+
+      write(iout,*) 'calling local_move'
+      call local_move_init(.false.)
+      call local_move(24,29,20d0,50d0)     
+      call chainbuild
+      call write_pdb(3,'third structure',etot)
+
+      write(iout,*) 'calling sc_move'
+      call sc_move(24,29,5,10d0,nft_sc,etot)
+      write(iout,*) nft_sc,etot
+      call write_pdb(2,'last structure',etot)
+
+
+      return
+      end
+
+      subroutine test_sc
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      double precision time0,time1
+      double precision energy(0:n_ene),ee
+      double precision varia(maxvar)
+c
+      call chainbuild
+c      call geom_to_var(nvar,varia)
+      call write_pdb(1,'first structure',0d0)
+
+      call etotal(energy(0))
+      etot=energy(0)
+      write(iout,*) nnt,nct,etot
+
+      write(iout,*) 'calling sc_move'
+
+      call sc_move(nnt,nct,5,10d0,nft_sc,etot)
+      write(iout,*) nft_sc,etot
+      call write_pdb(2,'second structure',etot)
+
+      write(iout,*) 'calling sc_move 2nd time'
+
+      call sc_move(nnt,nct,5,1d0,nft_sc,etot)
+      write(iout,*) nft_sc,etot
+      call write_pdb(3,'last structure',etot)
+      return
+      end
+c--------------------------------------------------------
+      subroutine bgrow(bstrand,nbstrand,in,ind,new)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      integer bstrand(maxres/3,6)
+
+      ishift=iabs(bstrand(in,ind+4)-new)
+
+      print *,'bgrow',bstrand(in,ind+4),new,ishift
+
+      bstrand(in,ind)=new
+
+      if(ind.eq.1)then
+        bstrand(nbstrand,5)=bstrand(nbstrand,1)
+        do i=1,nbstrand-1
+          IF (bstrand(nbstrand,3).eq.bstrand(i,3)) THEN
+          if (bstrand(i,5).lt.bstrand(i,6)) then 
+            bstrand(i,5)=bstrand(i,5)-ishift
+          else
+            bstrand(i,5)=bstrand(i,5)+ishift
+          endif
+          ENDIF
+        enddo
+      else
+        bstrand(nbstrand,6)=bstrand(nbstrand,2)
+        do i=1,nbstrand-1
+          IF (bstrand(nbstrand,3).eq.bstrand(i,3)) THEN
+          if (bstrand(i,6).lt.bstrand(i,5)) then 
+            bstrand(i,6)=bstrand(i,6)-ishift
+          else
+            bstrand(i,6)=bstrand(i,6)+ishift
+          endif
+          ENDIF
+        enddo
+      endif
+
+
+      return
+      end
+
+
+c-------------------------------------------------
+
+      subroutine secondary(lprint)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.DISTFIT'
+
+      integer ncont,icont(2,maxres*maxres/2),isec(maxres,3)
+      logical lprint,not_done
+      real dcont(maxres*maxres/2),d
+      real rcomp /7.0/ 
+      real rbeta /5.2/
+      real ralfa /5.2/
+      real r310 /6.6/
+      double precision xpi(3),xpj(3)
+
+
+
+      call chainbuild
+cd      call write_pdb(99,'sec structure',0d0)
+      ncont=0
+      nbfrag=0
+      nhfrag=0
+      do i=1,nres
+        isec(i,1)=0
+        isec(i,2)=0
+        isec(i,3)=0
+      enddo
+
+      do i=2,nres-3
+        do k=1,3        
+          xpi(k)=0.5d0*(c(k,i-1)+c(k,i))
+        enddo
+        do j=i+2,nres
+          do k=1,3
+             xpj(k)=0.5d0*(c(k,j-1)+c(k,j))
+          enddo
+cd       d = (c(1,i)-c(1,j))*(c(1,i)-c(1,j)) +
+cd     &         (c(2,i)-c(2,j))*(c(2,i)-c(2,j)) +
+cd     &         (c(3,i)-c(3,j))*(c(3,i)-c(3,j)) 
+cd          print *,'CA',i,j,d
+          d =  (xpi(1)-xpj(1))*(xpi(1)-xpj(1)) +
+     &         (xpi(2)-xpj(2))*(xpi(2)-xpj(2)) +
+     &         (xpi(3)-xpj(3))*(xpi(3)-xpj(3)) 
+         if ( d.lt.rcomp*rcomp) then
+            ncont=ncont+1
+            icont(1,ncont)=i
+            icont(2,ncont)=j
+            dcont(ncont)=sqrt(d)
+          endif
+        enddo
+      enddo
+      if (lprint) then
+        write (iout,*)
+        write (iout,'(a)') '#PP contact map distances:'
+        do i=1,ncont
+          write (iout,'(3i4,f10.5)') 
+     &     i,icont(1,i),icont(2,i),dcont(i) 
+        enddo
+      endif
+
+c finding parallel beta
+cd      write (iout,*) '------- looking for parallel beta -----------'
+      nbeta=0
+      nstrand=0
+      do i=1,ncont
+        i1=icont(1,i)
+        j1=icont(2,i)
+        if(dcont(i).le.rbeta .and. j1-i1.gt.4 .and.
+     &      isec(i1,1).le.1.and.isec(j1,1).le.1.and.
+     &    (isec(i1,2).ne.isec(j1,2).or.isec(i1,2)*isec(j1,2).eq.0).and. 
+     &    (isec(i1,3).ne.isec(j1,3).or.isec(i1,3)*isec(j1,3).eq.0).and. 
+     &    (isec(i1,2).ne.isec(j1,3).or.isec(i1,2)*isec(j1,3).eq.0).and. 
+     &    (isec(i1,3).ne.isec(j1,2).or.isec(i1,3)*isec(j1,2).eq.0)
+     &     ) then
+          ii1=i1
+          jj1=j1
+cd         write (iout,*) i1,j1,dcont(i)
+          not_done=.true.
+          do while (not_done)
+           i1=i1+1
+           j1=j1+1
+            do j=1,ncont
+              if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j)
+     &              .and. dcont(j).le.rbeta .and.
+     &      isec(i1,1).le.1.and.isec(j1,1).le.1.and.
+     &    (isec(i1,2).ne.isec(j1,2).or.isec(i1,2)*isec(j1,2).eq.0).and. 
+     &    (isec(i1,3).ne.isec(j1,3).or.isec(i1,3)*isec(j1,3).eq.0).and. 
+     &    (isec(i1,2).ne.isec(j1,3).or.isec(i1,2)*isec(j1,3).eq.0).and. 
+     &    (isec(i1,3).ne.isec(j1,2).or.isec(i1,3)*isec(j1,2).eq.0)
+     &                            ) goto 5
+            enddo
+            not_done=.false.
+  5         continue
+cd            write (iout,*) i1,j1,dcont(j),not_done
+          enddo
+          j1=j1-1
+          i1=i1-1
+          if (i1-ii1.gt.1) then
+            ii1=max0(ii1-1,1)
+            jj1=max0(jj1-1,1)
+            nbeta=nbeta+1
+            if(lprint)write(iout,*)'parallel beta',nbeta,ii1,i1,jj1,j1
+
+            nbfrag=nbfrag+1
+            bfrag(1,nbfrag)=ii1
+            bfrag(2,nbfrag)=i1
+            bfrag(3,nbfrag)=jj1
+            bfrag(4,nbfrag)=j1 
+
+            do ij=ii1,i1
+             isec(ij,1)=isec(ij,1)+1
+             isec(ij,1+isec(ij,1))=nbeta
+            enddo
+            do ij=jj1,j1
+             isec(ij,1)=isec(ij,1)+1
+             isec(ij,1+isec(ij,1))=nbeta
+            enddo
+
+           if(lprint) then 
+            nstrand=nstrand+1
+            if (nbeta.le.9) then
+              write(12,'(a18,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",ii1-1,"..",i1-1,"'"
+            else
+              write(12,'(a18,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",ii1-1,"..",i1-1,"'"
+            endif
+            nstrand=nstrand+1
+            if (nbeta.le.9) then
+              write(12,'(a18,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",jj1-1,"..",j1-1,"'"
+            else
+              write(12,'(a18,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",jj1-1,"..",j1-1,"'"
+            endif
+              write(12,'(a8,4i4)')
+     &          "SetNeigh",ii1-1,i1-1,jj1-1,j1-1
+           endif
+          endif
+        endif
+      enddo
+
+c finding antiparallel beta
+cd      write (iout,*) '--------- looking for antiparallel beta ---------'
+
+      do i=1,ncont
+        i1=icont(1,i)
+        j1=icont(2,i)
+        if (dcont(i).le.rbeta.and.
+     &      isec(i1,1).le.1.and.isec(j1,1).le.1.and.
+     &    (isec(i1,2).ne.isec(j1,2).or.isec(i1,2)*isec(j1,2).eq.0).and. 
+     &    (isec(i1,3).ne.isec(j1,3).or.isec(i1,3)*isec(j1,3).eq.0).and. 
+     &    (isec(i1,2).ne.isec(j1,3).or.isec(i1,2)*isec(j1,3).eq.0).and. 
+     &    (isec(i1,3).ne.isec(j1,2).or.isec(i1,3)*isec(j1,2).eq.0)
+     &     ) then
+          ii1=i1
+          jj1=j1
+cd          write (iout,*) i1,j1,dcont(i)
+
+          not_done=.true.
+          do while (not_done)
+           i1=i1+1
+           j1=j1-1
+            do j=1,ncont
+              if (i1.eq.icont(1,j).and.j1.eq.icont(2,j) .and.
+     &      isec(i1,1).le.1.and.isec(j1,1).le.1.and.
+     &    (isec(i1,2).ne.isec(j1,2).or.isec(i1,2)*isec(j1,2).eq.0).and. 
+     &    (isec(i1,3).ne.isec(j1,3).or.isec(i1,3)*isec(j1,3).eq.0).and. 
+     &    (isec(i1,2).ne.isec(j1,3).or.isec(i1,2)*isec(j1,3).eq.0).and. 
+     &    (isec(i1,3).ne.isec(j1,2).or.isec(i1,3)*isec(j1,2).eq.0)
+     &           .and. dcont(j).le.rbeta ) goto 6
+            enddo
+            not_done=.false.
+  6         continue
+cd            write (iout,*) i1,j1,dcont(j),not_done
+          enddo
+          i1=i1-1
+          j1=j1+1
+          if (i1-ii1.gt.1) then
+            if(lprint)write (iout,*)'antiparallel beta',
+     &                   nbeta,ii1-1,i1,jj1,j1-1
+
+            nbfrag=nbfrag+1
+            bfrag(1,nbfrag)=max0(ii1-1,1)
+            bfrag(2,nbfrag)=i1
+            bfrag(3,nbfrag)=jj1
+            bfrag(4,nbfrag)=max0(j1-1,1) 
+
+            nbeta=nbeta+1
+            iii1=max0(ii1-1,1)
+            do ij=iii1,i1
+             isec(ij,1)=isec(ij,1)+1
+             isec(ij,1+isec(ij,1))=nbeta
+            enddo
+            jjj1=max0(j1-1,1)  
+            do ij=jjj1,jj1
+             isec(ij,1)=isec(ij,1)+1
+             isec(ij,1+isec(ij,1))=nbeta
+            enddo
+
+
+           if (lprint) then
+            nstrand=nstrand+1
+            if (nstrand.le.9) then
+              write(12,'(a18,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",ii1-2,"..",i1-1,"'"
+            else
+              write(12,'(a18,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",ii1-2,"..",i1-1,"'"
+            endif
+            nstrand=nstrand+1
+            if (nstrand.le.9) then
+              write(12,'(a18,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",j1-2,"..",jj1-1,"'"
+            else
+              write(12,'(a18,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'strand",nstrand,
+     &          "' 'num = ",j1-2,"..",jj1-1,"'"
+            endif
+              write(12,'(a8,4i4)')
+     &          "SetNeigh",ii1-2,i1-1,jj1-1,j1-2
+           endif
+          endif
+        endif
+      enddo
+
+      if (nstrand.gt.0.and.lprint) then
+        write(12,'(a27,$)') "DefPropRes 'sheet' 'strand1"
+        do i=2,nstrand
+         if (i.le.9) then
+          write(12,'(a9,i1,$)') " | strand",i
+         else
+          write(12,'(a9,i2,$)') " | strand",i
+         endif
+        enddo
+        write(12,'(a1)') "'"
+      endif
+
+       
+c finding alpha or 310 helix
+
+      nhelix=0
+      do i=1,ncont
+        i1=icont(1,i)
+        j1=icont(2,i)
+        if (j1.eq.i1+3.and.dcont(i).le.r310
+     &     .or.j1.eq.i1+4.and.dcont(i).le.ralfa ) then
+cd          if (j1.eq.i1+3) write (iout,*) "found 1-4 ",i1,j1,dcont(i)
+cd          if (j1.eq.i1+4) write (iout,*) "found 1-5 ",i1,j1,dcont(i)
+          ii1=i1
+          jj1=j1
+          if (isec(ii1,1).eq.0) then 
+            not_done=.true.
+          else
+            not_done=.false.
+          endif
+          do while (not_done)
+            i1=i1+1
+            j1=j1+1
+            do j=1,ncont
+              if (i1.eq.icont(1,j) .and. j1.eq.icont(2,j)) goto 10
+            enddo
+            not_done=.false.
+  10        continue
+cd            write (iout,*) i1,j1,not_done
+          enddo
+          j1=j1-1
+          if (j1-ii1.gt.4) then
+            nhelix=nhelix+1
+cd            write (iout,*)'helix',nhelix,ii1,j1
+
+            nhfrag=nhfrag+1
+            hfrag(1,nhfrag)=ii1
+            hfrag(2,nhfrag)=max0(j1-1,1)
+
+            do ij=ii1,j1
+             isec(ij,1)=-1
+            enddo
+           if (lprint) then
+            write (iout,'(a6,i3,2i4)') "Helix",nhelix,ii1-1,j1-2
+            if (nhelix.le.9) then
+              write(12,'(a17,i1,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'helix",nhelix,
+     &          "' 'num = ",ii1-1,"..",j1-2,"'"
+            else
+              write(12,'(a17,i2,a9,i3,a2,i3,a1)') 
+     &          "DefPropRes 'helix",nhelix,
+     &          "' 'num = ",ii1-1,"..",j1-2,"'"
+            endif
+           endif
+          endif
+        endif
+      enddo
+       
+      if (nhelix.gt.0.and.lprint) then
+        write(12,'(a26,$)') "DefPropRes 'helix' 'helix1"
+        do i=2,nhelix
+         if (nhelix.le.9) then
+          write(12,'(a8,i1,$)') " | helix",i
+         else
+          write(12,'(a8,i2,$)') " | helix",i
+         endif
+        enddo
+        write(12,'(a1)') "'"
+      endif
+
+      if (lprint) then
+       write(12,'(a37)') "DefPropRes 'coil' '! (helix | sheet)'"
+       write(12,'(a20)') "XMacStand ribbon.mac"
+      endif
+
+
+      return
+      end
+c----------------------------------------------------------------------------
+
+      subroutine write_pdb(npdb,titelloc,ee)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      character*50 titelloc1                                                     
+      character*(*) titelloc
+      character*3 zahl   
+      character*5 liczba5
+      double precision ee
+      integer npdb,ilen
+      external ilen
+
+      titelloc1=titelloc
+      lenpre=ilen(prefix)
+      if (npdb.lt.1000) then
+       call numstr(npdb,zahl)
+       open(ipdb,file=prefix(:lenpre)//'@@'//zahl//'.pdb')
+      else
+        if (npdb.lt.10000) then                              
+         write(liczba5,'(i1,i4)') 0,npdb
+        else   
+         write(liczba5,'(i5)') npdb
+        endif
+        open(ipdb,file=prefix(:lenpre)//'@@'//liczba5//'.pdb')
+      endif
+      call pdbout(ee,titelloc1,ipdb)
+      close(ipdb)
+      return
+      end
+
+c--------------------------------------------------------
+      subroutine softreg
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.GEO'
+      include 'COMMON.CHAIN'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.VAR'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.FFIELD'
+      include 'COMMON.MINIM'
+      include 'COMMON.INTERACT'
+c
+      include 'COMMON.DISTFIT'       
+      integer iff(maxres)
+      double precision time0,time1
+      double precision energy(0:n_ene),ee
+      double precision var(maxvar)
+      integer ieval
+c
+      logical debug,ltest,fail
+      character*50 linia
+c
+      linia='test'
+      debug=.true.
+      in_pdb=0
+
+
+
+c------------------------
+c
+c  freeze sec.elements 
+c
+       do i=1,nres
+         mask_phi(i)=1
+         mask_theta(i)=1
+         mask_side(i)=1
+         iff(i)=0
+       enddo
+
+       do j=1,nbfrag
+        do i=bfrag(1,j),bfrag(2,j)
+         mask_phi(i)=0
+         mask_theta(i)=0
+         iff(i)=1
+        enddo
+        if (bfrag(3,j).le.bfrag(4,j)) then 
+         do i=bfrag(3,j),bfrag(4,j)
+          mask_phi(i)=0
+          mask_theta(i)=0
+          iff(i)=1
+         enddo
+        else
+         do i=bfrag(4,j),bfrag(3,j)
+          mask_phi(i)=0
+          mask_theta(i)=0
+          iff(i)=1
+         enddo
+        endif
+       enddo
+       do j=1,nhfrag
+        do i=hfrag(1,j),hfrag(2,j)
+         mask_phi(i)=0
+         mask_theta(i)=0
+         iff(i)=1
+        enddo
+       enddo
+       mask_r=.true.
+
+
+
+       nhpb0=nhpb
+c
+c store dist. constrains
+c
+       do i=1,nres-3                                                             
+         do j=i+3,nres                                                           
+           if ( iff(i).eq.1.and.iff(j).eq.1 ) then
+            nhpb=nhpb+1                                                           
+            ihpb(nhpb)=i                                                          
+            jhpb(nhpb)=j                                                          
+            forcon(nhpb)=0.1                                                     
+            dhpb(nhpb)=DIST(i,j)
+           endif
+         enddo                                                                   
+       enddo                                    
+       call hpb_partition
+
+       if (debug) then
+        call chainbuild
+        call write_pdb(100+in_pdb,'input reg. structure',0d0)
+       endif
+       
+
+       ipot0=ipot
+       maxmin0=maxmin
+       maxfun0=maxfun
+       wstrain0=wstrain
+       wang0=wang
+c
+c      run soft pot. optimization 
+c
+       ipot=6
+       wang=3.0
+       maxmin=2000
+       maxfun=4000
+       call geom_to_var(nvar,var)
+#ifdef MPI
+       time0=MPI_WTIME()
+#else
+       time0=tcpu()
+#endif
+       call minimize(etot,var,iretcode,nfun)                               
+
+       write(iout,*)'SUMSL return code is',iretcode,' eval SOFT',nfun   
+#ifdef MPI
+       time1=MPI_WTIME()
+#else
+       time1=tcpu()
+#endif
+       write (iout,'(a,f6.2,f8.2,a)')'  Time for soft min.',time1-time0,
+     &         nfun/(time1-time0),' SOFT eval/s'
+       if (debug) then
+         call var_to_geom(nvar,var)
+         call chainbuild
+         call write_pdb(300+in_pdb,'soft structure',etot)
+       endif
+c
+c      run full UNRES optimization with constrains and frozen 2D
+c      the same variables as soft pot. optimizatio
+c
+       ipot=ipot0
+       wang=wang0
+       maxmin=maxmin0
+       maxfun=maxfun0
+#ifdef MPI
+       time0=MPI_WTIME()
+#else
+       time0=tcpu()
+#endif
+       call minimize(etot,var,iretcode,nfun)
+       write(iout,*)'SUMSL MASK DIST return code is',iretcode,
+     &                          ' eval ',nfun
+       ieval=nfun
+#ifdef MPI
+       time1=MPI_WTIME()
+#else
+       time1=tcpu()
+#endif
+       write (iout,'(a,f6.2,f8.2,a)') 
+     &        '  Time for mask dist min.',time1-time0,
+     &         nfun/(time1-time0),'  eval/s'
+       if (debug) then
+         call var_to_geom(nvar,var)
+         call chainbuild
+         call write_pdb(400+in_pdb,'mask & dist',etot)
+       endif
+c
+c      switch off constrains and 
+c      run full UNRES optimization with frozen 2D 
+c
+
+c
+c      reset constrains
+c
+       nhpb_c=nhpb
+       nhpb=nhpb0                                                                  
+       link_start=1                                                            
+       link_end=nhpb     
+       wstrain=wstrain0
+
+#ifdef MPI
+       time0=MPI_WTIME()
+#else
+       time0=tcpu()
+#endif
+       call minimize(etot,var,iretcode,nfun)
+       write(iout,*)'SUMSL MASK return code is',iretcode,' eval ',nfun
+       ieval=ieval+nfun
+#ifdef MPI
+       time1=MPI_WTIME()
+#else
+       time1=tcpu()
+#endif
+       write (iout,'(a,f6.2,f8.2,a)')'  Time for mask min.',time1-time0,
+     &         nfun/(time1-time0),'  eval/s'
+
+
+       if (debug) then
+        call var_to_geom(nvar,var)
+        call chainbuild
+        call write_pdb(500+in_pdb,'mask 2d frozen',etot)
+       endif
+
+       mask_r=.false.
+
+
+c
+c      run full UNRES optimization with constrains and NO frozen 2D
+c
+
+       nhpb=nhpb_c                                                                  
+       link_start=1                                                            
+       link_end=nhpb     
+       maxfun=maxfun0/5
+
+       do ico=1,5
+
+       wstrain=wstrain0/ico
+#ifdef MPI
+       time0=MPI_WTIME()
+#else
+       time0=tcpu()
+#endif
+       call minimize(etot,var,iretcode,nfun)
+       write(iout,'(a10,f6.3,a14,i3,a6,i5)')
+     &   ' SUMSL DIST',wstrain,' return code is',iretcode,
+     &                          ' eval ',nfun
+       ieval=nfun
+#ifdef MPI
+       time1=MPI_WTIME()
+#else
+       time1=tcpu()
+#endif
+       write (iout,'(a,f6.2,f8.2,a)') 
+     &        '  Time for dist min.',time1-time0,
+     &         nfun/(time1-time0),'  eval/s'
+       if (debug) then
+         call var_to_geom(nvar,var)
+         call chainbuild
+         call write_pdb(600+in_pdb+ico,'dist cons',etot)
+       endif
+
+       enddo
+c
+       nhpb=nhpb0                                                                  
+       link_start=1                                                            
+       link_end=nhpb     
+       wstrain=wstrain0
+       maxfun=maxfun0
+
+
+c
+      if (minim) then
+#ifdef MPI
+       time0=MPI_WTIME()
+#else
+       time0=tcpu()
+#endif
+       call minimize(etot,var,iretcode,nfun)
+       write(iout,*)'------------------------------------------------'
+       write(iout,*)'SUMSL return code is',iretcode,' eval ',nfun,
+     &  '+ DIST eval',ieval
+#ifdef MPI      
+       time1=MPI_WTIME()
+#else
+       time1=tcpu()
+#endif
+       write (iout,'(a,f6.2,f8.2,a)')'  Time for full min.',time1-time0,
+     &         nfun/(time1-time0),' eval/s'
+
+
+       call var_to_geom(nvar,var)
+       call chainbuild        
+       call write_pdb(999,'full min',etot)
+      endif
+       
+      return
+      end
+
+
diff --git a/source/unres/src_MD_DFA/thread.F b/source/unres/src_MD_DFA/thread.F
new file mode 100644 (file)
index 0000000..9f169a0
--- /dev/null
@@ -0,0 +1,549 @@
+      subroutine thread_seq
+C Thread the sequence through a database of known structures
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DBASE'
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.THREAD'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.HEADER'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.MCM'
+      include 'COMMON.NAMES'
+#ifdef MPI
+      include 'COMMON.INFO'
+      integer ThreadId,ThreadType,Kwita
+#endif
+      double precision varia(maxvar)
+      double precision przes(3),obr(3,3)
+      double precision time_for_thread
+      logical found_pattern,non_conv
+      character*32 head_pdb
+      double precision energia(0:n_ene)
+      n_ene_comp=nprint_ene
+C   
+C Body
+C
+#ifdef MPI
+      if (me.eq.king) then
+        do i=1,nctasks
+          nsave_part(i)=0
+        enddo
+      endif
+      nacc_tot=0
+#endif
+      Kwita=0
+      close(igeom)
+      close(ipdb)
+      close(istat)
+      do i=1,maxthread
+        do j=1,14
+          ener0(j,i)=0.0D0
+          ener(j,i)=0.0D0
+        enddo
+      enddo
+      nres0=nct-nnt+1
+      ave_time_for_thread=0.0D0
+      max_time_for_thread=0.0D0
+cd    print *,'nthread=',nthread,' nseq=',nseq,' nres0=',nres0
+      nthread=nexcl+nthread
+      do ithread=1,nthread
+        found_pattern=.false.
+        itrial=0
+        do while (.not.found_pattern)
+          itrial=itrial+1
+          if (itrial.gt.1000) then
+            write (iout,'(/a/)') 'Too many attempts to find pattern.'
+            nthread=ithread-1
+#ifdef MPI
+            call recv_stop_sig(Kwita)
+            call send_stop_sig(-3)
+#endif
+            goto 777
+          endif
+C Find long enough chain in the database
+          ii=iran_num(1,nseq)
+          nres_t=nres_base(1,ii)
+C Select the starting position to thread.
+          print *,'nseq',nseq,' ii=',ii,' nres_t=',
+     &      nres_t,' nres0=',nres0
+          if (nres_t.ge.nres0) then
+            ist=iran_num(0,nres_t-nres0)
+#ifdef MPI
+            if (Kwita.eq.0) call recv_stop_sig(Kwita)
+            if (Kwita.lt.0) then 
+              write (iout,*) 'Stop signal received. Terminating.'
+              write (*,*) 'Stop signal received. Terminating.'
+              nthread=ithread-1
+              write (*,*) 'ithread=',ithread,' nthread=',nthread
+              goto 777
+            endif
+            call pattern_receive
+#endif
+            do i=1,nexcl
+              if (iexam(1,i).eq.ii .and. iexam(2,i).eq.ist) goto 10
+            enddo
+            found_pattern=.true.
+          endif
+C If this point is reached, the pattern has not yet been examined.
+   10     continue
+c         print *,'found_pattern:',found_pattern
+        enddo 
+        nexcl=nexcl+1
+        iexam(1,nexcl)=ii
+        iexam(2,nexcl)=ist
+#ifdef MPI
+        if (Kwita.eq.0) call recv_stop_sig(Kwita)
+        if (Kwita.lt.0) then
+          write (iout,*) 'Stop signal received. Terminating.'
+          nthread=ithread-1
+          write (*,*) 'ithread=',ithread,' nthread=',nthread
+          goto 777
+        endif
+        call pattern_send
+#endif
+        ipatt(1,ithread)=ii
+        ipatt(2,ithread)=ist
+#ifdef MPI
+        write (iout,'(/80(1h*)/a,i4,a,i5,2a,i3,a,i3,a,i3/)') 
+     &   'Processor:',me,' Attempt:',ithread,
+     &   ' pattern: ',str_nam(ii),nres_base(2,ii),':',nres_base(3,ii),
+     &   ' start at res.',ist+1
+        write (*,'(a,i4,a,i5,2a,i3,a,i3,a,i3)') 'Processor:',me,
+     &   ' Attempt:',ithread,
+     &   ' pattern: ',str_nam(ii),nres_base(2,ii),':',nres_base(3,ii),
+     &   ' start at res.',ist+1
+#else
+        write (iout,'(/80(1h*)/a,i5,2a,i3,a,i3,a,i3/)') 
+     &   'Attempt:',ithread,
+     &   ' pattern: ',str_nam(ii),nres_base(2,ii),':',nres_base(3,ii),
+     &   ' start at res.',ist+1
+        write (*,'(a,i5,2a,i3,a,i3,a,i3)') 
+     &   'Attempt:',ithread,
+     &   ' pattern: ',str_nam(ii),nres_base(2,ii),':',nres_base(3,ii),
+     &   ' start at res.',ist+1
+#endif
+        ipattern=ii
+C Copy coordinates from the database.
+        ist=ist-(nnt-1)
+        do i=nnt,nct
+          do j=1,3
+            c(j,i)=cart_base(j,i+ist,ii)
+c           cref(j,i)=c(j,i)
+          enddo
+cd        write (iout,'(a,i4,3f10.5)') restyp(itype(i)),i,(c(j,i),j=1,3)
+        enddo
+cd      call fitsq(rms,c(1,nnt),cref(1,nnt),nct-nnt+1,przes,obr,
+cd             non_conv) 
+cd      write (iout,'(a,f10.5)') 
+cd   &  'Initial RMS deviation from reference structure:',rms
+        if (itype(nres).eq.21) then
+          do j=1,3
+            dcj=c(j,nres-2)-c(j,nres-3)
+            c(j,nres)=c(j,nres-1)+dcj
+            c(j,2*nres)=c(j,nres)
+          enddo
+        endif
+        if (itype(1).eq.21) then
+          do j=1,3
+            dcj=c(j,4)-c(j,3)
+            c(j,1)=c(j,2)-dcj
+            c(j,nres+1)=c(j,1)
+          enddo
+        endif
+        call int_from_cart(.false.,.false.)
+cd      print *,'Exit INT_FROM_CART.'
+cd      print *,'nhpb=',nhpb
+        do i=nss+1,nhpb
+          ii=ihpb(i)
+          jj=jhpb(i)
+          dhpb(i)=dist(ii,jj)
+c         write (iout,'(2i5,2f10.5)') ihpb(i),jhpb(i),dhpb(i),forcon(i)
+        enddo
+c       stop 'End generate'
+C Generate SC conformations.
+        call sc_conf
+c       call intout
+#ifdef MPI
+cd      print *,'Processor:',me,': exit GEN_SIDE.'
+#else
+cd      print *,'Exit GEN_SIDE.'
+#endif
+C Calculate initial energy.
+        call chainbuild
+        call etotal(energia(0))
+        etot=energia(0)
+        do i=1,n_ene_comp
+          ener0(i,ithread)=energia(i)
+        enddo
+        ener0(n_ene_comp+1,ithread)=energia(0)
+        if (refstr) then
+          call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+          ener0(n_ene_comp+3,ithread)=contact_fract(ncont,ncont_ref,
+     &        icont,icont_ref)
+          ener0(n_ene_comp+2,ithread)=rms
+          ener0(n_ene_comp+4,ithread)=frac
+          ener0(n_ene_comp+5,ithread)=frac_nn
+        endif
+        ener0(n_ene_comp+3,ithread)=0.0d0
+C Minimize energy.
+#ifdef MPI
+       print*,'Processor:',me,' ithread=',ithread,' Start REGULARIZE.'
+#else
+        print*,'ithread=',ithread,' Start REGULARIZE.'
+#endif
+        curr_tim=tcpu()
+        call regularize(nct-nnt+1,etot,rms,
+     &                  cart_base(1,ist+nnt,ipattern),iretcode)  
+        curr_tim1=tcpu()
+        time_for_thread=curr_tim1-curr_tim 
+        ave_time_for_thread=
+     &  ((ithread-1)*ave_time_for_thread+time_for_thread)/ithread
+        if (time_for_thread.gt.max_time_for_thread)
+     &   max_time_for_thread=time_for_thread
+#ifdef MPI
+        print *,'Processor',me,': Exit REGULARIZE.'
+        if (WhatsUp.eq.2) then
+          write (iout,*) 
+     &  'Sufficient number of confs. collected. Terminating.'
+          nthread=ithread-1
+          goto 777
+        else if (WhatsUp.eq.-1) then
+          nthread=ithread-1
+          write (iout,*) 'Time up in REGULARIZE. Call SEND_STOP_SIG.'
+          if (Kwita.eq.0) call recv_stop_sig(Kwita)
+          call send_stop_sig(-2)
+          goto 777
+        else if (WhatsUp.eq.-2) then
+          nthread=ithread-1
+          write (iout,*) 'Timeup signal received. Terminating.'
+          goto 777
+        else if (WhatsUp.eq.-3) then
+          nthread=ithread-1
+          write (iout,*) 'Error stop signal received. Terminating.'
+          goto 777
+        endif
+#else
+        print *,'Exit REGULARIZE.'
+        if (iretcode.eq.11) then
+          write (iout,'(/a/)') 
+     &'******* Allocated time exceeded in SUMSL. The program will stop.'
+          nthread=ithread-1
+          goto 777
+        endif
+#endif
+        head_pdb=titel(:24)//':'//str_nam(ipattern)
+        if (outpdb) call pdbout(etot,head_pdb,ipdb)
+        if (outmol2) call mol2out(etot,head_pdb)
+c       call intout
+        call briefout(ithread,etot)
+        link_end0=link_end
+        link_end=min0(link_end,nss)
+        write (iout,*) 'link_end=',link_end,' link_end0=',link_end0,
+     &                 ' nss=',nss
+        call etotal(energia(0))
+c       call enerprint(energia(0))
+        link_end=link_end0
+cd      call chainbuild
+cd      call fitsq(rms,c(1,nnt),cref(1,nnt),nct-nnt+1,przes,obr,non_conv) 
+cd      write (iout,'(a,f10.5)') 
+cd   &  'RMS deviation from reference structure:',dsqrt(rms)
+        do i=1,n_ene_comp
+          ener(i,ithread)=energia(i)
+        enddo
+        ener(n_ene_comp+1,ithread)=energia(0)
+        ener(n_ene_comp+3,ithread)=rms
+        if (refstr) then
+          call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+          ener(n_ene_comp+2,ithread)=rms
+          ener(n_ene_comp+4,ithread)=frac
+          ener(n_ene_comp+5,ithread)=frac_nn
+        endif
+        call write_stat_thread(ithread,ipattern,ist)
+c        write (istat,'(i4,2x,a8,i4,11(1pe14.5),2(0pf8.3),f8.5)') 
+c     &  ithread,str_nam(ipattern),ist+1,(ener(k,ithread),k=1,11),
+c     &  (ener(k,ithread),k=12,14)
+#ifdef MPI
+        if (me.eq.king) then
+          nacc_tot=nacc_tot+1
+          call pattern_receive
+          call receive_MCM_info
+          if (nacc_tot.ge.nthread) then
+            write (iout,*) 
+     &     'Sufficient number of conformations collected nacc_tot=',
+     &     nacc_tot,'. Stopping other processors and terminating.'
+            write (*,*) 
+     &     'Sufficient number of conformations collected nacc_tot=',
+     &     nacc_tot,'. Stopping other processors and terminating.'
+           call recv_stop_sig(Kwita)
+           if (Kwita.eq.0) call send_stop_sig(-1) 
+           nthread=ithread
+           goto 777
+          endif
+        else
+          call send_MCM_info(2)
+        endif
+#endif
+        if (timlim-curr_tim1-safety .lt. max_time_for_thread) then
+          write (iout,'(/2a)') 
+     & '********** There would be not enough time for another thread. ',
+     & 'The program will stop.'
+          write (*,'(/2a)') 
+     & '********** There would be not enough time for another thread. ',
+     & 'The program will stop.'
+          write (iout,'(a,1pe14.4/)') 
+     &    'Elapsed time for last threading step: ',time_for_thread
+          nthread=ithread
+#ifdef MPI
+          call recv_stop_sig(Kwita)
+          call send_stop_sig(-2)
+#endif
+          goto 777
+        else
+          curr_tim=curr_tim1 
+          write (iout,'(a,1pe14.4)') 
+     &    'Elapsed time for this threading step: ',time_for_thread
+        endif
+#ifdef MPI
+        if (Kwita.eq.0) call recv_stop_sig(Kwita)
+        if (Kwita.lt.0) then
+          write (iout,*) 'Stop signal received. Terminating.'
+          write (*,*) 'Stop signal received. Terminating.'
+          nthread=ithread
+          write (*,*) 'nthread=',nthread,' ithread=',ithread
+          goto 777
+        endif
+#endif
+      enddo 
+#ifdef MPI
+      call send_stop_sig(-1)
+#endif
+  777 continue
+#ifdef MPI
+C Any messages left for me?
+      call pattern_receive
+      if (Kwita.eq.0) call recv_stop_sig(Kwita)
+#endif
+      call write_thread_summary
+#ifdef MPI
+      if (king.eq.king) then
+        Kwita=1
+        do while (Kwita.ne.0 .or. nacc_tot.ne.0)
+          Kwita=0
+          nacc_tot=0
+          call recv_stop_sig(Kwita)
+          call receive_MCM_info
+        enddo
+        do iproc=1,nprocs-1
+          call receive_thread_results(iproc)
+        enddo
+        call write_thread_summary
+      else
+        call send_thread_results
+      endif
+#endif
+      return
+      end
+c--------------------------------------------------------------------------
+      subroutine write_thread_summary
+C Thread the sequence through a database of known structures
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.CONTROL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DBASE'
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.THREAD'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.HEADER'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+#ifdef MPI
+      include 'COMMON.INFO'
+#endif
+      dimension ip(maxthread)
+      double precision energia(0:n_ene)
+      write (iout,'(30x,a/)') 
+     & '  *********** Summary threading statistics ************'
+      write (iout,'(a)') 'Initial energies:'
+      write (iout,'(a4,2x,a12,14a14,3a8)') 
+     & 'No','seq',(ename(print_order(i)),i=1,nprint_ene),'ETOT',
+     & 'RMSnat','NatCONT','NNCONT','RMS'
+C Energy sort patterns
+      do i=1,nthread
+        ip(i)=i
+      enddo
+      do i=1,nthread-1
+        enet=ener(n_ene-1,ip(i))
+        jj=i
+        do j=i+1,nthread
+          if (ener(n_ene-1,ip(j)).lt.enet) then
+            jj=j
+            enet=ener(n_ene-1,ip(j))
+          endif
+        enddo
+        if (jj.ne.i) then
+          ipj=ip(jj)
+          ip(jj)=ip(i)
+          ip(i)=ipj
+        endif
+      enddo
+      do ik=1,nthread
+        i=ip(ik)
+        ii=ipatt(1,i)
+        ist=nres_base(2,ii)+ipatt(2,i)
+        do kk=1,n_ene_comp
+          energia(i)=ener0(kk,i)
+        enddo
+        etot=ener0(n_ene_comp+1,i)
+        rmsnat=ener0(n_ene_comp+2,i)
+        rms=ener0(n_ene_comp+3,i)
+        frac=ener0(n_ene_comp+4,i)
+        frac_nn=ener0(n_ene_comp+5,i)
+
+        if (refstr) then 
+        write (iout,'(i4,2x,a8,i4,14(1pe14.5),0pf8.3,f8.5,f8.5,f8.3)') 
+     &  i,str_nam(ii),ist+1,
+     &  (energia(print_order(kk)),kk=1,nprint_ene),
+     &  etot,rmsnat,frac,frac_nn,rms
+        else
+        write (iout,'(i4,2x,a8,i4,14(1pe14.5),0pf8.3)') 
+     &  i,str_nam(ii),ist+1,
+     &  (energia(print_order(kk)),kk=1,nprint_ene),etot
+        endif
+      enddo
+      write (iout,'(//a)') 'Final energies:'
+      write (iout,'(a4,2x,a12,17a14,3a8)') 
+     & 'No','seq',(ename(print_order(kk)),kk=1,nprint_ene),'ETOT',
+     & 'RMSnat','NatCONT','NNCONT','RMS'
+      do ik=1,nthread
+        i=ip(ik)
+        ii=ipatt(1,i)
+        ist=nres_base(2,ii)+ipatt(2,i)
+        do kk=1,n_ene_comp
+          energia(kk)=ener(kk,ik)
+        enddo
+        etot=ener(n_ene_comp+1,i)
+        rmsnat=ener(n_ene_comp+2,i)
+        rms=ener(n_ene_comp+3,i)
+        frac=ener(n_ene_comp+4,i)
+        frac_nn=ener(n_ene_comp+5,i)
+        write (iout,'(i4,2x,a8,i4,14(1pe14.5),0pf8.3,f8.5,f8.5,f8.3)') 
+     &  i,str_nam(ii),ist+1,
+     &  (energia(print_order(kk)),kk=1,nprint_ene),
+     &  etot,rmsnat,frac,frac_nn,rms
+      enddo
+      write (iout,'(/a/)') 'IEXAM array:'
+      write (iout,'(i5)') nexcl
+      do i=1,nexcl
+        write (iout,'(2i5)') iexam(1,i),iexam(2,i)
+      enddo
+      write (iout,'(/a,1pe14.4/a,1pe14.4/)') 
+     & 'Max. time for threading step ',max_time_for_thread,
+     & 'Average time for threading step: ',ave_time_for_thread
+      return
+      end
+c----------------------------------------------------------------------------
+      subroutine sc_conf
+C Sample (hopefully) optimal SC orientations given backcone conformation.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DBASE'
+      include 'COMMON.INTERACT'
+      include 'COMMON.VAR'
+      include 'COMMON.THREAD'
+      include 'COMMON.FFIELD'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.HEADER'
+      include 'COMMON.GEO'
+      include 'COMMON.IOUNITS'
+      double precision varia(maxvar)
+      common /srutu/ icall
+      double precision energia(0:n_ene)
+      logical glycine,fail
+      maxsample=10
+      link_end0=link_end
+      link_end=min0(link_end,nss)
+      do i=nnt,nct
+        if (itype(i).ne.10) then
+cd        print *,'i=',i,' itype=',itype(i),' theta=',theta(i+1)  
+          call gen_side(itype(i),theta(i+1),alph(i),omeg(i),fail)
+        endif
+      enddo
+      call chainbuild
+      call etotal(energia(0))
+      do isample=1,maxsample
+C Choose a non-glycine side chain.
+        glycine=.true.
+        do while(glycine) 
+          ind_sc=iran_num(nnt,nct)
+          glycine=(itype(ind_sc).eq.10)
+        enddo
+        alph0=alph(ind_sc)
+        omeg0=omeg(ind_sc)
+        call gen_side(itype(ind_sc),theta(ind_sc+1),alph(ind_sc),
+     &       omeg(ind_sc),fail)
+        call chainbuild
+        call etotal(energia(0))
+cd      write (iout,'(a,i5,a,i4,2(a,f8.3),2(a,1pe14.5))') 
+cd   &   'Step:',isample,' SC',ind_sc,' alpha',alph(ind_sc)*rad2deg,
+cd   &   ' omega',omeg(ind_sc)*rad2deg,' old energy',e0,' new energy',e1
+        e1=0.0d0
+        if (e0.le.e1) then
+          alph(ind_sc)=alph0
+          omeg(ind_sc)=omeg0 
+        else
+          e0=e1
+        endif
+      enddo
+      link_end=link_end0
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine write_stat_thread(ithread,ipattern,ist)
+      implicit real*8 (a-h,o-z)
+      include "DIMENSIONS"
+      include "COMMON.CONTROL"
+      include "COMMON.IOUNITS"
+      include "COMMON.THREAD"
+      include "COMMON.FFIELD"
+      include "COMMON.DBASE"
+      include "COMMON.NAMES"
+      double precision energia(0:n_ene)
+
+#if defined(AIX) || defined(PGI)
+      open(istat,file=statname,position='append')
+#else
+      open(istat,file=statname,access='append')
+#endif
+      do i=1,n_ene_comp
+        energia(i)=ener(i,ithread)
+      enddo
+      etot=ener(n_ene_comp+1,ithread)
+      rmsnat=ener(n_ene_comp+2,ithread)
+      rms=ener(n_ene_comp+3,ithread)
+      frac=ener(n_ene_comp+4,ithread)
+      frac_nn=ener(n_ene_comp+5,ithread)
+      write (istat,'(i4,2x,a8,i4,14(1pe14.5),0pf8.3,f8.5,f8.5,f8.3)') 
+     &  ithread,str_nam(ipattern),ist+1,
+     &  (energia(print_order(i)),i=1,nprint_ene),
+     &  etot,rmsnat,frac,frac_nn,rms
+      close (istat)
+      return
+      end
diff --git a/source/unres/src_MD_DFA/timing.F b/source/unres/src_MD_DFA/timing.F
new file mode 100644 (file)
index 0000000..fb65430
--- /dev/null
@@ -0,0 +1,344 @@
+C $Date: 1994/10/05 16:41:52 $
+C $Revision: 2.2 $
+C
+C
+C
+      subroutine set_timers
+c
+      implicit none
+      double precision tcpu
+      include 'COMMON.TIME1'
+#ifdef MP
+      include 'mpif.h'
+#endif
+C Diminish the assigned time limit a little so that there is some time to
+C end a batch job
+c     timlim=batime-150.0
+C Calculate the initial time, if it is not zero (e.g. for the SUN).
+      stime=tcpu()
+#ifdef MPI
+      walltime=MPI_WTIME()
+      time_reduce=0.0d0
+      time_allreduce=0.0d0
+      time_bcast=0.0d0
+      time_gather=0.0d0
+      time_sendrecv=0.0d0
+      time_scatter=0.0d0
+      time_scatter_fmat=0.0d0
+      time_scatter_ginv=0.0d0
+      time_scatter_fmatmult=0.0d0
+      time_scatter_ginvmult=0.0d0
+      time_barrier_e=0.0d0
+      time_barrier_g=0.0d0
+      time_enecalc=0.0d0
+      time_sumene=0.0d0
+      time_lagrangian=0.0d0
+      time_sumgradient=0.0d0
+      time_intcartderiv=0.0d0
+      time_inttocart=0.0d0
+      time_ginvmult=0.0d0
+      time_fricmatmult=0.0d0
+      time_cartgrad=0.0d0
+      time_bcastc=0.0d0
+      time_bcast7=0.0d0
+      time_bcastw=0.0d0
+      time_intfcart=0.0d0
+      time_vec=0.0d0
+      time_mat=0.0d0
+      time_fric=0.0d0
+      time_stoch=0.0d0
+      time_fricmatmult=0.0d0
+      time_fsample=0.0d0
+#endif
+cd    print *,' in SET_TIMERS stime=',stime
+      return 
+      end
+C------------------------------------------------------------------------------
+      logical function stopx(nf)
+C This function returns .true. if one of the following reasons to exit SUMSL
+C occurs. The "reason" code is stored in WHATSUP passed thru a COMMON block:
+C
+C... WHATSUP = 0 - go on, no reason to stop. Stopx will return .false.
+C...           1 - Time up in current node;
+C...           2 - STOP signal was received from another node because the
+C...               node's task was accomplished (parallel only);
+C...          -1 - STOP signal was received from another node because of error;
+C...          -2 - STOP signal was received from another node, because 
+C...               the node's time was up.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      integer nf
+      logical ovrtim
+#ifdef MP
+      include 'mpif.h'
+      include 'COMMON.INFO'
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      integer Kwita
+
+cd    print *,'Processor',MyID,' NF=',nf
+#ifndef MPI
+      if (ovrtim()) then
+C Finish if time is up.
+         stopx = .true.
+         WhatsUp=1
+#ifdef MPL
+      else if (mod(nf,100).eq.0) then
+C Other processors might have finished. Check this every 100th function 
+C evaluation.
+C Master checks if any other processor has sent accepted conformation(s) to it. 
+         if (MyID.ne.MasterID) call receive_mcm_info
+         if (MyID.eq.MasterID) call receive_conf
+cd       print *,'Processor ',MyID,' is checking STOP: nf=',nf
+         call recv_stop_sig(Kwita)
+         if (Kwita.eq.-1) then
+           write (iout,'(a,i4,a,i5)') 'Processor',
+     &     MyID,' has received STOP signal in STOPX; NF=',nf
+           write (*,'(a,i4,a,i5)') 'Processor',
+     &     MyID,' has received STOP signal in STOPX; NF=',nf
+           stopx=.true.
+           WhatsUp=2
+         elseif (Kwita.eq.-2) then
+           write (iout,*)
+     &    'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
+           write (*,*)
+     &    'Processor',MyID,' received TIMEUP-STOP signal in SUMSL.'
+           WhatsUp=-2
+           stopx=.true.  
+         else if (Kwita.eq.-3) then
+           write (iout,*)
+     &    'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
+           write (*,*)
+     &    'Processor',MyID,' received ERROR-STOP signal in SUMSL.'
+           WhatsUp=-1
+           stopx=.true.
+         else
+           stopx=.false.
+           WhatsUp=0
+         endif
+#endif
+      else
+         stopx = .false.
+         WhatsUp=0
+      endif
+#else
+      stopx=.false.
+#endif
+
+#ifdef OSF
+c Check for FOUND_NAN flag
+      if (FOUND_NAN) then
+        write(iout,*)"   ***   stopx : Found a NaN"
+        stopx=.true.
+      endif
+#endif
+
+      return
+      end
+C--------------------------------------------------------------------------
+      logical function ovrtim() 
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      real*8 tcpu
+#ifdef MPI
+      include "mpif.h"
+      curtim = MPI_Wtime()-walltime
+#else
+      curtim= tcpu()
+#endif
+C  curtim is the current time in seconds.
+c      write (iout,*) "curtim",curtim," timlim",timlim," safety",safety
+      if (curtim .ge. timlim - safety) then
+       if (me.eq.king .or. .not. out1file)
+     &   write (iout,'(a,f10.2,a,f10.2,a,f10.2,a)') 
+     &  "***************** Elapsed time (",curtim,
+     &  " s) is within the safety limit (",safety,
+     &  " s) of the allocated time (",timlim," s). Terminating."
+        ovrtim=.true.
+      else
+        ovrtim=.false.
+      endif
+      return                                               
+      end
+**************************************************************************      
+      double precision function tcpu()
+      include 'COMMON.TIME1'
+#ifdef ES9000 
+****************************
+C Next definition for EAGLE (ibm-es9000)
+      real*8 micseconds
+      integer rcode
+      tcpu=cputime(micseconds,rcode)
+      tcpu=(micseconds/1.0E6) - stime
+****************************
+#endif
+#ifdef SUN
+****************************
+C Next definitions for sun
+      REAL*8  ECPU,ETIME,ETCPU
+      dimension tarray(2)
+      tcpu=etime(tarray)
+      tcpu=tarray(1)
+****************************
+#endif
+#ifdef KSR
+****************************
+C Next definitions for ksr
+C this function uses the ksr timer ALL_SECONDS from the PMON library to
+C return the elapsed time in seconds
+      tcpu= all_seconds() - stime
+****************************
+#endif
+#ifdef SGI
+****************************
+C Next definitions for sgi
+      real timar(2), etime
+      seconds = etime(timar)
+Cd    print *,'seconds=',seconds,' stime=',stime
+C      usrsec = timar(1)
+C      syssec = timar(2)
+      tcpu=seconds - stime
+****************************
+#endif
+
+#ifdef LINUX
+****************************
+C Next definitions for sgi
+      real timar(2), etime
+      seconds = etime(timar)
+Cd    print *,'seconds=',seconds,' stime=',stime
+C      usrsec = timar(1)
+C      syssec = timar(2)
+      tcpu=seconds - stime
+****************************
+#endif
+
+
+#ifdef CRAY
+****************************
+C Next definitions for Cray
+C     call date(curdat)
+C     curdat=curdat(1:9)
+C     call clock(curtim)
+C     curtim=curtim(1:8)
+      cpusec = second()
+      tcpu=cpusec - stime
+****************************
+#endif
+#ifdef AIX
+****************************
+C Next definitions for RS6000
+       integer*4 i1,mclock
+       i1 = mclock()
+       tcpu = (i1+0.0D0)/100.0D0
+#endif
+#ifdef WINPGI
+****************************
+c next definitions for windows NT Digital fortran
+       real time_real
+       call cpu_time(time_real)
+       tcpu = time_real
+#endif
+#ifdef WINIFL
+****************************
+c next definitions for windows NT Digital fortran
+       real time_real
+       call cpu_time(time_real)
+       tcpu = time_real
+#endif
+
+      return     
+      end  
+C---------------------------------------------------------------------------
+      subroutine dajczas(rntime,hrtime,mintime,sectime)
+      include 'COMMON.IOUNITS'
+      real*8 rntime,hrtime,mintime,sectime 
+      hrtime=rntime/3600.0D0 
+      hrtime=aint(hrtime)
+      mintime=aint((rntime-3600.0D0*hrtime)/60.0D0)
+      sectime=aint((rntime-3600.0D0*hrtime-60.0D0*mintime)+0.5D0)
+      if (sectime.eq.60.0D0) then
+        sectime=0.0D0
+        mintime=mintime+1.0D0
+      endif
+      ihr=hrtime
+      imn=mintime
+      isc=sectime
+      write (iout,328) ihr,imn,isc
+  328 FORMAT(//'***** Computation time: ',I4  ,' hours ',I2  ,
+     1         ' minutes ', I2  ,' seconds *****')       
+      return
+      end
+C---------------------------------------------------------------------------
+      subroutine print_detailed_timing
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.IOUNITS'
+      include 'COMMON.TIME1'
+      include 'COMMON.SETUP'
+#ifdef MPI
+      time1=MPI_WTIME()
+         write (iout,'(80(1h=)/a/(80(1h=)))') 
+     &    "Details of FG communication time"
+         write (*,'(7(a40,1pe15.5/),40(1h-)/a40,1pe15.5/80(1h=))') 
+     &    "BROADCAST:",time_bcast,"REDUCE:",time_reduce,
+     &    "GATHER:",time_gather,
+     &    "SCATTER:",time_scatter,"SENDRECV:",time_sendrecv,
+     &    "BARRIER ene",time_barrier_e,
+     &    "BARRIER grad",time_barrier_g,
+     &    "TOTAL:",
+     &    time_bcast+time_reduce+time_gather+time_scatter+time_sendrecv
+         write (*,*) fg_rank,myrank,
+     &     ': Total wall clock time',time1-walltime,' sec'
+         write (*,*) "Processor",fg_rank,myrank,
+     &     ": BROADCAST time",time_bcast," REDUCE time",
+     &      time_reduce," GATHER time",time_gather," SCATTER time",
+     &      time_scatter,
+     &     " SCATTER fmatmult",time_scatter_fmatmult,
+     &     " SCATTER ginvmult",time_scatter_ginvmult,
+     &     " SCATTER fmat",time_scatter_fmat,
+     &     " SCATTER ginv",time_scatter_ginv,
+     &      " SENDRECV",time_sendrecv,
+     &      " BARRIER ene",time_barrier_e,
+     &      " BARRIER GRAD",time_barrier_g,
+     &      " BCAST7",time_bcast7," BCASTC",time_bcastc,
+     &      " BCASTW",time_bcastw," ALLREDUCE",time_allreduce,
+     &      " TOTAL",
+     &      time_bcast+time_reduce+time_gather+time_scatter+
+     &      time_sendrecv+time_barrier+time_bcastc
+#else
+      time1=tcpu()
+#endif
+         write (*,*) "Processor",fg_rank,myrank," enecalc",time_enecalc
+         write (*,*) "Processor",fg_rank,myrank," sumene",time_sumene
+         write (*,*) "Processor",fg_rank,myrank," intfromcart",
+     &     time_intfcart
+         write (*,*) "Processor",fg_rank,myrank," vecandderiv",
+     &     time_vec
+         write (*,*) "Processor",fg_rank,myrank," setmatrices",
+     &     time_mat
+         write (*,*) "Processor",fg_rank,myrank," ginvmult",
+     &     time_ginvmult
+         write (*,*) "Processor",fg_rank,myrank," fricmatmult",
+     &     time_fricmatmult
+         write (*,*) "Processor",fg_rank,myrank," inttocart",
+     &     time_inttocart
+         write (*,*) "Processor",fg_rank,myrank," sumgradient",
+     &     time_sumgradient
+         write (*,*) "Processor",fg_rank,myrank," intcartderiv",
+     &     time_intcartderiv
+         if (fg_rank.eq.0) then
+           write (*,*) "Processor",fg_rank,myrank," lagrangian",
+     &       time_lagrangian
+           write (*,*) "Processor",fg_rank,myrank," cartgrad",
+     &       time_cartgrad
+         endif
+      return
+      end
diff --git a/source/unres/src_MD_DFA/unres.F b/source/unres/src_MD_DFA/unres.F
new file mode 100644 (file)
index 0000000..053eec6
--- /dev/null
@@ -0,0 +1,794 @@
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+C                                                                              C
+C                                U N R E S                                     C
+C                                                                              C
+C Program to carry out conformational search of proteins in an united-residue  C
+C approximation.                                                               C
+C                                                                              C
+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+
+
+#ifdef MPI
+      include 'mpif.h'
+      include 'COMMON.SETUP'
+#endif
+      include 'COMMON.TIME1'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.REMD'
+      include 'COMMON.MD'
+      include 'COMMON.SBRIDGE'
+      double precision hrtime,mintime,sectime
+      character*64 text_mode_calc(-2:14) /'test',
+     & 'SC rotamer distribution',
+     & 'Energy evaluation or minimization',
+     & 'Regularization of PDB structure',
+     & 'Threading of a sequence on PDB structures',
+     & 'Monte Carlo (with minimization) ',
+     & 'Energy minimization of multiple conformations',
+     & 'Checking energy gradient',
+     & 'Entropic sampling Monte Carlo (with minimization)',
+     & 'Energy map',
+     & 'CSA calculations',
+     & 'Not used 9',
+     & 'Not used 10',
+     & 'Soft regularization of PDB structure',
+     & 'Mesoscopic molecular dynamics (MD) ',
+     & 'Not used 13',
+     & 'Replica exchange molecular dynamics (REMD)'/
+      external ilen
+
+c      call memmon_print_usage()
+
+      call init_task
+      if (me.eq.king)
+     & write(iout,*)'### LAST MODIFIED  03/28/12 23:29 by czarek'  
+      if (me.eq.king) call cinfo
+C Read force field parameters and job setup data
+      call readrtns
+      call flush(iout)
+C
+      if (me.eq.king .or. .not. out1file) then
+       write (iout,'(2a/)') 
+     & text_mode_calc(modecalc)(:ilen(text_mode_calc(modecalc))),
+     & ' calculation.' 
+       if (minim) write (iout,'(a)') 
+     &  'Conformations will be energy-minimized.'
+       write (iout,'(80(1h*)/)') 
+      endif
+      call flush(iout)
+C
+      if (modecalc.eq.-2) then
+        call test
+        stop
+      else if (modecalc.eq.-1) then
+        write(iout,*) "call check_sc_map next"
+        call check_bond
+        stop
+      endif
+#ifdef MPI
+      if (fg_rank.gt.0) then
+C Fine-grain slaves just do energy and gradient components.
+        call ergastulum ! slave workhouse in Latin
+      else
+#endif
+      if (modecalc.eq.0) then
+        call exec_eeval_or_minim
+      else if (modecalc.eq.1) then
+        call exec_regularize
+      else if (modecalc.eq.2) then
+        call exec_thread
+      else if (modecalc.eq.3 .or. modecalc .eq.6) then
+        call exec_MC
+      else if (modecalc.eq.4) then
+        call exec_mult_eeval_or_minim
+      else if (modecalc.eq.5) then
+        call exec_checkgrad
+      else if (ModeCalc.eq.7) then
+        call exec_map
+      else if (ModeCalc.eq.8) then
+        call exec_CSA
+      else if (modecalc.eq.11) then
+        call exec_softreg
+      else if (modecalc.eq.12) then
+        call exec_MD
+      else if (modecalc.eq.14) then
+        call exec_MREMD
+      else
+        write (iout,'(a)') 'This calculation type is not supported',
+     &   ModeCalc
+      endif
+#ifdef MPI
+      endif
+C Finish task.
+      if (fg_rank.eq.0) call finish_task
+c      call memmon_print_usage()
+#ifdef TIMING
+       call print_detailed_timing
+#endif
+      call MPI_Finalize(ierr)
+      stop 'Bye Bye...'
+#else
+      call dajczas(tcpu(),hrtime,mintime,sectime)
+      stop '********** Program terminated normally.'
+#endif
+      end
+c--------------------------------------------------------------------------
+      subroutine exec_MD
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.IOUNITS'
+      if (me.eq.king .or. .not. out1file)
+     &   write (iout,*) "Calling chainbuild"
+      call chainbuild
+      call MD
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_MREMD
+      include 'DIMENSIONS'
+#ifdef MPI
+      include "mpif.h"
+      include 'COMMON.SETUP'
+      include 'COMMON.CONTROL'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.REMD'
+      if (me.eq.king .or. .not. out1file)
+     &   write (iout,*) "Calling chainbuild"
+      call chainbuild
+      if (me.eq.king .or. .not. out1file)
+     &   write (iout,*) "Calling REMD"
+      if (remd_mlist) then 
+        call MREMD
+      else
+        do i=1,nrep
+          remd_m(i)=1
+        enddo
+        call MREMD
+      endif
+#else
+      write (iout,*) "MREMD works on parallel machines only"
+#endif
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_eeval_or_minim
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.REMD'
+      include 'COMMON.MD'
+      include 'COMMON.SBRIDGE'
+      common /srutu/ icall
+      double precision energy(0:n_ene)
+      double precision energy_long(0:n_ene),energy_short(0:n_ene)
+      double precision varia(maxvar)
+      if (indpdb.eq.0) call chainbuild
+#ifdef MPI
+      time00=MPI_Wtime()
+#else
+      time00=tcpu()
+#endif
+      call chainbuild_cart
+      if (split_ene) then
+       print *,"Processor",myrank," after chainbuild"
+       icall=1
+       call etotal_long(energy_long(0))
+       write (iout,*) "Printing long range energy"
+       call enerprint(energy_long(0))
+       call etotal_short(energy_short(0))
+       write (iout,*) "Printing short range energy"
+       call enerprint(energy_short(0))
+       do i=0,n_ene
+         energy(i)=energy_long(i)+energy_short(i)
+         write (iout,*) i,energy_long(i),energy_short(i),energy(i)
+       enddo
+       write (iout,*) "Printing long+short range energy"
+       call enerprint(energy(0))
+      endif
+      call etotal(energy(0))
+#ifdef MPI
+      time_ene=MPI_Wtime()-time00
+#else
+      time_ene=tcpu()-time00
+#endif
+      write (iout,*) "Time for energy evaluation",time_ene
+      print *,"after etotal"
+      etota = energy(0)
+      etot =etota
+      call enerprint(energy(0))
+      call hairpin(.true.,nharp,iharp)
+      call secondary2(.true.)
+      if (minim) then
+crc overlap test
+        if (overlapsc) then 
+          print *, 'Calling OVERLAP_SC'
+          call overlap_sc(fail)
+        endif 
+
+        if (searchsc) then 
+          call sc_move(2,nres-1,10,1d10,nft_sc,etot)
+          print *,'SC_move',nft_sc,etot
+          write(iout,*) 'SC_move',nft_sc,etot
+        endif 
+
+        if (dccart) then
+          print *, 'Calling MINIM_DC'
+#ifdef MPI
+          time1=MPI_WTIME()
+#else
+          time1=tcpu()
+#endif
+          call minim_dc(etot,iretcode,nfun)
+        else
+          if (indpdb.ne.0) then 
+            call bond_regular
+            call chainbuild
+          endif
+          call geom_to_var(nvar,varia)
+          print *,'Calling MINIMIZE.'
+#ifdef MPI
+          time1=MPI_WTIME()
+#else
+          time1=tcpu()
+#endif
+          call minimize(etot,varia,iretcode,nfun)
+        endif
+        print *,'SUMSL return code is',iretcode,' eval ',nfun
+#ifdef MPI
+        evals=nfun/(MPI_WTIME()-time1)
+#else
+        evals=nfun/(tcpu()-time1)
+#endif
+        print *,'# eval/s',evals
+        print *,'refstr=',refstr
+        call hairpin(.true.,nharp,iharp)
+        call secondary2(.true.)
+        call etotal(energy(0))
+        etot = energy(0)
+        call enerprint(energy(0))
+
+        call intout
+        call briefout(0,etot)
+        if (refstr) call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+          write (iout,'(a,i3)') 'SUMSL return code:',iretcode
+          write (iout,'(a,i20)') '# of energy evaluations:',nfun+1
+          write (iout,'(a,f16.3)')'# of energy evaluations/sec:',evals
+      else
+        print *,'refstr=',refstr
+        if (refstr) call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+        call briefout(0,etot)
+      endif
+      if (outpdb) call pdbout(etot,titel(:32),ipdb)
+      if (outmol2) call mol2out(etot,titel(:32))
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_regularize
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.REMD'
+      include 'COMMON.MD'
+      include 'COMMON.SBRIDGE'
+      double precision energy(0:n_ene)
+
+      call gen_dist_constr
+      call sc_conf
+      call intout
+      call regularize(nct-nnt+1,etot,rms,cref(1,nnt),iretcode)
+      call etotal(energy(0))
+      energy(0)=energy(0)-energy(14)
+      etot=energy(0)
+      call enerprint(energy(0))
+      call intout
+      call briefout(0,etot)
+      if (outpdb) call pdbout(etot,titel(:32),ipdb)
+      if (outmol2) call mol2out(etot,titel(:32))
+      if (refstr) call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+      write (iout,'(a,i3)') 'SUMSL return code:',iretcode
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_thread
+      include 'DIMENSIONS'
+#ifdef MP
+      include "mpif.h"
+#endif
+      include "COMMON.SETUP"
+      call thread_seq
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_MC
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      character*10 nodeinfo
+      double precision varia(maxvar)
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include "COMMON.SETUP"
+      include 'COMMON.CONTROL'
+      call mcm_setup
+      if (minim) then
+#ifdef MPI
+        if (modecalc.eq.3) then
+          call do_mcm(ipar)
+        else
+          call entmcm
+        endif
+#else
+        if (modecalc.eq.3) then
+          call do_mcm(ipar)
+        else
+          call entmcm
+        endif
+#endif
+      else
+        call monte_carlo
+      endif
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_mult_eeval_or_minim
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+      dimension muster(mpi_status_size)
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.REMD'
+      include 'COMMON.MD'
+      include 'COMMON.SBRIDGE'
+      double precision varia(maxvar)
+      dimension ind(6)
+      double precision energy(0:max_ene)
+      logical eof
+      eof=.false.
+#ifdef MPI
+      if(me.ne.king) then
+        call minim_mcmf
+        return
+      endif
+
+      close (intin)
+      open(intin,file=intinname,status='old')
+      write (istat,'(a5,20a12)')"#    ",
+     &  (wname(print_order(i)),i=1,nprint_ene)
+      if (refstr) then
+        write (istat,'(a5,20a12)')"#    ",
+     &   (ename(print_order(i)),i=1,nprint_ene),
+     &   "ETOT total","RMSD","nat.contact","nnt.contact"        
+      else
+        write (istat,'(a5,20a12)')"#    ",
+     &    (ename(print_order(i)),i=1,nprint_ene),"ETOT total"
+      endif
+
+      if (.not.minim) then
+        do while (.not. eof)
+          if (read_cart) then
+            read (intin,'(e15.10,e15.5)',end=1100,err=1100) time,ene
+            call read_x(intin,*11)
+#ifdef MPI
+c Broadcast the order to compute internal coordinates to the slaves.
+            if (nfgtasks.gt.1)
+     &        call MPI_Bcast(6,1,MPI_INTEGER,king,FG_COMM,IERROR)
+#endif
+            call int_from_cart1(.false.)
+          else
+            read (intin,'(i5)',end=1100,err=1100) iconf
+            call read_angles(intin,*11)
+            call geom_to_var(nvar,varia)
+            call chainbuild
+          endif
+          write (iout,'(a,i7)') 'Conformation #',iconf
+          call etotal(energy(0))
+          call briefout(iconf,energy(0))
+          call enerprint(energy(0))
+          etot=energy(0)
+          if (refstr) then 
+            call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+            write (istat,'(i5,20(f12.3))') iconf,
+     &      (energy(print_order(i)),i=1,nprint_ene),etot,
+     &       rms,frac,frac_nn,co
+cjlee end
+          else
+            write (istat,'(i5,16(f12.3))') iconf,
+     &     (energy(print_order(i)),i=1,nprint_ene),etot
+          endif
+        enddo
+1100    continue
+        goto 1101
+      endif
+
+      mm=0
+      imm=0
+      nft=0
+      ene0=0.0d0
+      n=0
+      iconf=0
+c      do n=1,nzsc
+      do while (.not. eof)
+        mm=mm+1
+        if (mm.lt.nodes) then
+          if (read_cart) then
+            read (intin,'(e15.10,e15.5)',end=11,err=11) time,ene
+            call read_x(intin,*11)
+#ifdef MPI
+c Broadcast the order to compute internal coordinates to the slaves.
+            if (nfgtasks.gt.1) 
+     &        call MPI_Bcast(6,1,MPI_INTEGER,king,FG_COMM,IERROR)
+#endif
+            call int_from_cart1(.false.)
+          else
+            read (intin,'(i5)',end=11,err=11) iconf
+            call read_angles(intin,*11)
+            call geom_to_var(nvar,varia)
+            call chainbuild
+          endif
+          write (iout,'(a,i7)') 'Conformation #',iconf
+          n=n+1
+         imm=imm+1
+         ind(1)=1
+         ind(2)=n
+         ind(3)=0
+         ind(4)=0
+         ind(5)=0
+         ind(6)=0
+         ene0=0.0d0
+         call mpi_send(ind,6,mpi_integer,mm,idint,CG_COMM,
+     *                  ierr)
+         call mpi_send(varia,nvar,mpi_double_precision,mm,
+     *                  idreal,CG_COMM,ierr)
+         call mpi_send(ene0,1,mpi_double_precision,mm,
+     *                  idreal,CG_COMM,ierr)
+c         print *,'task ',n,' sent to worker ',mm,nvar
+        else
+         call mpi_recv(ind,6,mpi_integer,mpi_any_source,idint,
+     *                 CG_COMM,muster,ierr)
+         man=muster(mpi_source)
+c         print *,'receiving result from worker ',man,' (',iii1,iii,')'
+         call mpi_recv(varia,nvar,mpi_double_precision, 
+     *               man,idreal,CG_COMM,muster,ierr)
+         call mpi_recv(ene,1,
+     *               mpi_double_precision,man,idreal,
+     *               CG_COMM,muster,ierr)
+         call mpi_recv(ene0,1,
+     *               mpi_double_precision,man,idreal,
+     *               CG_COMM,muster,ierr)
+c         print *,'result received from worker ',man,' sending now'
+
+          call var_to_geom(nvar,varia)
+          call chainbuild
+          call etotal(energy(0))
+          iconf=ind(2)
+          write (iout,*)
+          write (iout,*)
+          write (iout,'(a,2i7)') 'Conformation #',iconf,ind(5)
+
+          etot=energy(0)
+          call enerprint(energy(0))
+          call briefout(it,etot)
+c          if (minim) call briefout(it,etot)
+          if (refstr) then 
+            call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+            write (istat,'(i5,19(f12.3))') iconf,
+     &     (energy(print_order(i)),i=1,nprint_ene),etot,
+     &     rms,frac,frac_nn,co
+          else
+            write (istat,'(i5,15(f12.3))') iconf,
+     &     (energy(print_order(i)),i=1,nprint_ene),etot
+          endif
+
+          imm=imm-1
+          if (read_cart) then
+            read (intin,'(e15.10,e15.5)',end=1101,err=1101) time,ene
+            call read_x(intin,*11)
+#ifdef MPI
+c Broadcast the order to compute internal coordinates to the slaves.
+            if (nfgtasks.gt.1)
+     &        call MPI_Bcast(6,1,MPI_INTEGER,king,FG_COMM,IERROR)
+#endif
+            call int_from_cart1(.false.)
+          else
+            read (intin,'(i5)',end=1101,err=1101) iconf
+            call read_angles(intin,*11)
+            call geom_to_var(nvar,varia)
+            call chainbuild
+          endif
+          n=n+1
+          imm=imm+1
+          ind(1)=1
+          ind(2)=n
+          ind(3)=0
+          ind(4)=0
+          ind(5)=0
+          ind(6)=0
+          call mpi_send(ind,6,mpi_integer,man,idint,CG_COMM,
+     *                  ierr)
+          call mpi_send(varia,nvar,mpi_double_precision,man, 
+     *                  idreal,CG_COMM,ierr)
+          call mpi_send(ene0,1,mpi_double_precision,man,
+     *                  idreal,CG_COMM,ierr)
+          nf_mcmf=nf_mcmf+ind(4)
+          nmin=nmin+1
+        endif
+      enddo
+11    continue
+      do j=1,imm
+        call mpi_recv(ind,6,mpi_integer,mpi_any_source,idint,
+     *               CG_COMM,muster,ierr)
+        man=muster(mpi_source)
+        call mpi_recv(varia,nvar,mpi_double_precision, 
+     *               man,idreal,CG_COMM,muster,ierr)
+        call mpi_recv(ene,1,
+     *               mpi_double_precision,man,idreal,
+     *               CG_COMM,muster,ierr)
+        call mpi_recv(ene0,1,
+     *               mpi_double_precision,man,idreal,
+     *               CG_COMM,muster,ierr)
+
+        call var_to_geom(nvar,varia)
+        call chainbuild
+        call etotal(energy(0))
+        iconf=ind(2)
+        write (iout,*)
+        write (iout,*)
+        write (iout,'(a,2i7)') 'Conformation #',iconf,ind(5)
+
+        etot=energy(0)
+        call enerprint(energy(0))
+        call briefout(it,etot)
+        if (refstr) then 
+          call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+          write (istat,'(i5,19(f12.3))') iconf,
+     &   (energy(print_order(i)),i=1,nprint_ene),etot,
+     &   rms,frac,frac_nn,co
+        else
+          write (istat,'(i5,15(f12.3))') iconf,
+     &    (energy(print_order(i)),i=1,nprint_ene),etot
+        endif
+        nmin=nmin+1
+      enddo
+1101  continue
+      do i=1, nodes-1
+         ind(1)=0
+         ind(2)=0
+         ind(3)=0
+         ind(4)=0
+         ind(5)=0
+         ind(6)=0
+         call mpi_send(ind,6,mpi_integer,i,idint,CG_COMM,
+     *                  ierr)
+      enddo
+#else
+      close (intin)
+      open(intin,file=intinname,status='old')
+      write (istat,'(a5,20a12)')"#    ",
+     &   (wname(print_order(i)),i=1,nprint_ene)
+      write (istat,'("#    ",20(1pe12.4))')
+     &   (weights(print_order(i)),i=1,nprint_ene)
+      if (refstr) then
+        write (istat,'(a5,20a12)')"#    ",
+     &   (ename(print_order(i)),i=1,nprint_ene),
+     &   "ETOT total","RMSD","nat.contact","nnt.contact"
+      else
+        write (istat,'(a5,14a12)')"#    ",
+     &   (ename(print_order(i)),i=1,nprint_ene),"ETOT total"
+      endif
+      do while (.not. eof)
+          if (read_cart) then
+            read (intin,'(e15.10,e15.5)',end=1100,err=1100) time,ene
+            call read_x(intin,*11)
+#ifdef MPI
+c Broadcast the order to compute internal coordinates to the slaves.
+            if (nfgtasks.gt.1)
+     &        call MPI_Bcast(6,1,MPI_INTEGER,king,FG_COMM,IERROR)
+#endif
+            call int_from_cart1(.false.)
+          else
+            read (intin,'(i5)',end=1100,err=1100) iconf
+            call read_angles(intin,*11)
+            call geom_to_var(nvar,varia)
+            call chainbuild
+          endif
+        write (iout,'(a,i7)') 'Conformation #',iconf
+        if (minim) call minimize(etot,varia,iretcode,nfun)
+        call etotal(energy(0))
+
+        etot=energy(0)
+        call enerprint(energy(0))
+        if (minim) call briefout(it,etot) 
+        if (refstr) then 
+          call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+          write (istat,'(i5,18(f12.3))') iconf,
+     &   (energy(print_order(i)),i=1,nprint_ene),
+     &   etot,rms,frac,frac_nn,co
+cjlee end
+        else
+          write (istat,'(i5,14(f12.3))') iconf,
+     &   (energy(print_order(i)),i=1,nprint_ene),etot
+        endif
+      enddo
+   11 continue
+ 1100 continue
+#endif
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_checkgrad
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      include 'COMMON.SETUP'
+      include 'COMMON.TIME1'
+      include 'COMMON.INTERACT'
+      include 'COMMON.NAMES'
+      include 'COMMON.GEO'
+      include 'COMMON.HEADER'
+      include 'COMMON.CONTROL'
+      include 'COMMON.CONTACTS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.VAR'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.REMD'
+      include 'COMMON.MD'
+      include 'COMMON.SBRIDGE'
+      common /srutu/ icall
+      double precision energy(0:max_ene)
+c      do i=2,nres
+c        vbld(i)=vbld(i)+ran_number(-0.1d0,0.1d0)
+c        if (itype(i).ne.10) 
+c     &      vbld(i+nres)=vbld(i+nres)+ran_number(-0.001d0,0.001d0)
+c      enddo
+      if (indpdb.eq.0) call chainbuild
+c      do i=0,nres
+c        do j=1,3
+c          dc(j,i)=dc(j,i)+ran_number(-0.2d0,0.2d0)
+c        enddo
+c      enddo
+c      do i=1,nres-1
+c        if (itype(i).ne.10) then
+c          do j=1,3
+c            dc(j,i+nres)=dc(j,i+nres)+ran_number(-0.2d0,0.2d0)
+c          enddo
+c        endif
+c      enddo
+c      do j=1,3
+c        dc(j,0)=ran_number(-0.2d0,0.2d0)
+c      enddo
+      usampl=.true.
+      totT=1.d0
+      eq_time=0.0d0
+      call read_fragments
+      read(inp,*) t_bath
+      call rescale_weights(t_bath)
+      call chainbuild_cart
+      call cartprint
+      call intout
+      icall=1
+      call etotal(energy(0))
+      etot = energy(0)
+      call enerprint(energy(0))
+      write (iout,*) "Uconst",Uconst," Uconst_back",uconst_back
+      print *,'icheckgrad=',icheckgrad
+      goto (10,20,30) icheckgrad
+  10  call check_ecartint
+      return
+  20  call check_cartgrad
+      return
+  30  call check_eint
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_map
+C Energy maps
+      call map_read
+      call map
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_CSA
+#ifdef MPI
+      include "mpif.h"
+#endif
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+C Conformational Space Annealling programmed by Jooyoung Lee.
+C This method works only with parallel machines!
+#ifdef MPI
+csa      call together
+      write (iout,*) "CSA is not supported in this version"
+#else
+csa      write (iout,*) "CSA works on parallel machines only"
+      write (iout,*) "CSA is not supported in this version"
+#endif
+      return
+      end
+c---------------------------------------------------------------------------
+      subroutine exec_softreg
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
+      double precision energy(0:max_ene)
+      logical debug /.false./
+      call chainbuild
+      call etotal(energy(0))
+      call enerprint(energy(0))
+      if (.not.lsecondary) then
+        write(iout,*) 'Calling secondary structure recognition'
+        call secondary2(debug)
+      else
+        write(iout,*) 'Using secondary structure supplied in pdb'
+      endif
+
+      call softreg
+
+      call etotal(energy(0))
+      etot=energy(0)
+      call enerprint(energy(0))
+      call intout
+      call briefout(0,etot)
+      call secondary2(.true.)
+      if (refstr) call rms_nac_nnc(rms,frac,frac_nn,co,.true.)
+      return
+      end