added nanostructures energy to wham, no differs
[unres.git] / source / wham / src-M / energy_p_new.F
index 0d46502..81df835 100644 (file)
@@ -22,6 +22,8 @@ cMS$ATTRIBUTES C ::  proc_proc
       include 'COMMON.INTERACT'
       include 'COMMON.SBRIDGE'
       include 'COMMON.CHAIN'
+      include 'COMMON.SHIELD'
+      include 'COMMON.CONTROL'
       double precision fact(6)
 cd      write(iout, '(a,i2)')'Calling etotal ipot=',ipot
 cd    print *,'nnt=',nnt,' nct=',nct
@@ -48,7 +50,13 @@ C      write(iout,*) 'po elektostatyce'
 C
 C Calculate electrostatic (H-bonding) energy of the main chain.
 C
-  106  call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
+  106 continue
+      if (shield_mode.eq.1) then
+       call set_shield_fac
+      else if  (shield_mode.eq.2) then
+       call set_shield_fac2
+      endif
+      call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
 C            write(iout,*) 'po eelec'
 
 C Calculate excluded-volume interaction energy between peptide groups
@@ -96,6 +104,18 @@ C
         call Eliptransfer(eliptran)
       endif
 
+      if (TUBElog.eq.1) then
+      print *,"just before call"
+        call calctube(Etube)
+       print *,"just after call",etube
+       elseif (TUBElog.eq.2) then
+        call calctube2(Etube)
+       elseif (TUBElog.eq.3) then
+        call calcnano(Etube)
+       else
+       Etube=0.0d0
+       endif
+
 C 
 C 12/1/95 Multi-body terms
 C
@@ -107,12 +127,29 @@ c         print *,"calling multibody_eello"
          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
 c         write (*,*) 'n_corr=',n_corr,' n_corr1=',n_corr1
 c         print *,ecorr,ecorr5,ecorr6,eturn6
+      else
+         ecorr=0.0d0
+         ecorr5=0.0d0
+         ecorr6=0.0d0
+         eturn6=0.0d0
       endif
       if (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) then
          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
       endif
 c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
 #ifdef SPLITELE
+      if (shield_mode.gt.0) then
+      etot=fact(1)*wsc*(evdw+fact(6)*evdw_t)+fact(1)*wscp*evdw2
+     & +welec*fact(1)*ees
+     & +fact(1)*wvdwpp*evdw1
+     & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
+     & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
+     & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
+     & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
+     & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
+     & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr
+     & +wliptran*eliptran+wtube*Etube
+      else
       etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2+welec*fact(1)*ees
      & +wvdwpp*evdw1
      & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
@@ -121,8 +158,20 @@ c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
      & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
      & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
      & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr
-     & +wliptran*eliptran
+     & +wliptran*eliptran+wtube*Etube
+      endif
 #else
+      if (shield_mode.gt.0) then
+      etot=fact(1)wsc*(evdw+fact(6)*evdw_t)+fact(1)*wscp*evdw2
+     & +welec*fact(1)*(ees+evdw1)
+     & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
+     & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
+     & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
+     & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
+     & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
+     & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr
+     & +wliptran*eliptran+wtube*Etube
+      else
       etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2
      & +welec*fact(1)*(ees+evdw1)
      & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
@@ -131,7 +180,8 @@ c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
      & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
      & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
      & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr
-     & +wliptran*eliptran
+     & +wliptran*eliptran+wtube*Etube
+      endif
 #endif
       energia(0)=etot
       energia(1)=evdw
@@ -167,6 +217,7 @@ c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
       energia(21)=evdw_t
       energia(24)=ethetacnstr
       energia(22)=eliptran
+      energia(25)=Etube
 c detecting NaNQ
 #ifdef ISNAN
 #ifdef AIX
@@ -186,6 +237,11 @@ c detecting NaNQ
 #ifdef MPL
 c     endif
 #endif
+#define DEBUG
+#ifdef DEBUG
+      call enerprint(energia,fact)
+#endif
+#undef DEBUG
       if (calc_grad) then
 C
 C Sum up the components of the Cartesian gradient.
@@ -193,6 +249,7 @@ C
 #ifdef SPLITELE
       do i=1,nct
         do j=1,3
+      if (shield_mode.eq.0) then
           gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
      &                welec*fact(1)*gelc(j,i)+wvdwpp*gvdwpp(j,i)+
      &                wbond*gradb(j,i)+
@@ -206,15 +263,77 @@ C
      &                wturn6*fact(5)*gcorr6_turn(j,i)+
      &                wsccor*fact(2)*gsccorc(j,i)
      &               +wliptran*gliptranc(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wcorr*gshieldc_loc_ec(j,i)
+     &                 +wturn3*gshieldc_t3(j,i)
+     &                 +wturn3*gshieldc_loc_t3(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wturn4*gshieldc_loc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+     &                 +wel_loc*gshieldc_loc_ll(j,i)
+     &                +wtube*gg_tube(j,i)
+
+
           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
      &                  wbond*gradbx(j,i)+
      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
      &                  wsccor*fact(2)*gsccorx(j,i)
      &                 +wliptran*gliptranx(j,i)
+     &                 +welec*gshieldx(j,i)
+     &                 +wcorr*gshieldx_ec(j,i)
+     &                 +wturn3*gshieldx_t3(j,i)
+     &                 +wturn4*gshieldx_t4(j,i)
+     &                 +wel_loc*gshieldx_ll(j,i)
+
+        else
+          gradc(j,i,icg)=fact(1)*wsc*gvdwc(j,i)
+     &                +fact(1)*wscp*gvdwc_scp(j,i)+
+     &               welec*fact(1)*gelc(j,i)+fact(1)*wvdwpp*gvdwpp(j,i)+
+     &                wbond*gradb(j,i)+
+     &                wstrain*ghpbc(j,i)+
+     &                wcorr*fact(3)*gradcorr(j,i)+
+     &                wel_loc*fact(2)*gel_loc(j,i)+
+     &                wturn3*fact(2)*gcorr3_turn(j,i)+
+     &                wturn4*fact(3)*gcorr4_turn(j,i)+
+     &                wcorr5*fact(4)*gradcorr5(j,i)+
+     &                wcorr6*fact(5)*gradcorr6(j,i)+
+     &                wturn6*fact(5)*gcorr6_turn(j,i)+
+     &                wsccor*fact(2)*gsccorc(j,i)
+     &               +wliptran*gliptranc(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wcorr*gshieldc_loc_ec(j,i)
+     &                 +wturn3*gshieldc_t3(j,i)
+     &                 +wturn3*gshieldc_loc_t3(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wturn4*gshieldc_loc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+     &                 +wel_loc*gshieldc_loc_ll(j,i)
+     &                +wtube*gg_tube(j,i)
+
+
+          gradx(j,i,icg)=fact(1)*wsc*gvdwx(j,i)
+     &                 +fact(1)*wscp*gradx_scp(j,i)+
+     &                  wbond*gradbx(j,i)+
+     &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
+     &                  wsccor*fact(2)*gsccorx(j,i)
+     &                 +wliptran*gliptranx(j,i)
+     &                 +welec*gshieldx(j,i)
+     &                 +wcorr*gshieldx_ec(j,i)
+     &                 +wturn3*gshieldx_t3(j,i)
+     &                 +wturn4*gshieldx_t4(j,i)
+     &                 +wel_loc*gshieldx_ll(j,i)
+
+
+        endif
         enddo
 #else
       do i=1,nct
         do j=1,3
+                if (shield_mode.eq.0) then
           gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
      &                welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+
      &                wbond*gradb(j,i)+
@@ -227,11 +346,70 @@ C
      &                wturn6*fact(5)*gcorr6_turn(j,i)+
      &                wsccor*fact(2)*gsccorc(j,i)
      &               +wliptran*gliptranc(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wcorr*gshieldc_loc_ec(j,i)
+     &                 +wturn3*gshieldc_t3(j,i)
+     &                 +wturn3*gshieldc_loc_t3(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wturn4*gshieldc_loc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+     &                 +wel_loc*gshieldc_loc_ll(j,i)
+
           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
      &                  wbond*gradbx(j,i)+
      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
      &                  wsccor*fact(1)*gsccorx(j,i)
      &                 +wliptran*gliptranx(j,i)
+     &                 +welec*gshieldx(j,i)
+     &                 +wcorr*gshieldx_ec(j,i)
+     &                 +wturn3*gshieldx_t3(j,i)
+     &                 +wturn4*gshieldx_t4(j,i)
+     &                 +wel_loc*gshieldx_ll(j,i)
+     &                 +wtube*gg_tube_sc(j,i)
+
+
+              else
+          gradc(j,i,icg)=fact(1)*wsc*gvdwc(j,i)+
+     &                   fact(1)*wscp*gvdwc_scp(j,i)+
+     &                welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+
+     &                wbond*gradb(j,i)+
+     &                wcorr*fact(3)*gradcorr(j,i)+
+     &                wel_loc*fact(2)*gel_loc(j,i)+
+     &                wturn3*fact(2)*gcorr3_turn(j,i)+
+     &                wturn4*fact(3)*gcorr4_turn(j,i)+
+     &                wcorr5*fact(4)*gradcorr5(j,i)+
+     &                wcorr6*fact(5)*gradcorr6(j,i)+
+     &                wturn6*fact(5)*gcorr6_turn(j,i)+
+     &                wsccor*fact(2)*gsccorc(j,i)
+     &               +wliptran*gliptranc(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wcorr*gshieldc_loc_ec(j,i)
+     &                 +wturn3*gshieldc_t3(j,i)
+     &                 +wturn3*gshieldc_loc_t3(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wturn4*gshieldc_loc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+     &                 +wel_loc*gshieldc_loc_ll(j,i)
+
+          gradx(j,i,icg)=fact(1)*wsc*gvdwx(j,i)+
+     &                  fact(1)*wscp*gradx_scp(j,i)+
+     &                  wbond*gradbx(j,i)+
+     &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
+     &                  wsccor*fact(1)*gsccorx(j,i)
+     &                 +wliptran*gliptranx(j,i)
+     &                 +welec*gshieldx(j,i)
+     &                 +wcorr*gshieldx_ec(j,i)
+     &                 +wturn3*gshieldx_t3(j,i)
+     &                 +wturn4*gshieldx_t4(j,i)
+     &                 +wel_loc*gshieldx_ll(j,i)
+     &                 +wtube*gg_tube_sc(j,i)
+
+
+         endif
         enddo
 #endif
       enddo
@@ -289,6 +467,7 @@ C------------------------------------------------------------------------
       estr=energia(18)
       ethetacnstr=energia(24)
       eliptran=energia(22)
+      Etube=energia(25)
 #ifdef SPLITELE
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1,
      &  wvdwpp,
@@ -298,7 +477,7 @@ C------------------------------------------------------------------------
      &  eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2),
      &  eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5),
      &  esccor,wsccor*fact(1),edihcnstr,ethetacnstr,ebr*nss,
-     & eliptran,wliptran,etot
+     & eliptran,wliptran,etube,wtube ,etot
    10 format (/'Virtual-chain energies:'//
      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
@@ -323,6 +502,7 @@ C------------------------------------------------------------------------
      & 'ETHETC= ',1pE16.6,' (valence angle constraints)'/
      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/ 
      & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/
+     & 'ETUBE=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/
      & 'ETOT=  ',1pE16.6,' (total)')
 #else
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),estr,wbond,
@@ -331,7 +511,7 @@ C------------------------------------------------------------------------
      &  ecorr6,wcorr6*fact(5),eel_loc,wel_loc*fact(2),
      &  eello_turn3,wturn3*fact(2),eello_turn4,wturn4*fact(3),
      &  eello_turn6,wturn6*fact(5),esccor*fact(1),wsccor,
-     &  edihcnstr,ethetacnstr,ebr*nss,eliptran,wliptran,etot
+     &  edihcnstr,ethetacnstr,ebr*nss,eliptran,wliptran,etube,wtube,etot
    10 format (/'Virtual-chain energies:'//
      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
@@ -811,7 +991,7 @@ C
       include 'COMMON.SBRIDGE'
       logical lprn
       common /srutu/icall
-      integer icant
+      integer icant,xshift,yshift,zshift
       external icant
       do i=1,210
         do j=1,2
@@ -950,6 +1130,13 @@ C lipbufthick is thickenes of lipid buffore
      &  +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
       bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
      &  +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+C       if (aa.ne.aa_aq(itypi,itypj)) then
+       
+C      write(iout,*) "tu,", i,j,aa_aq(itypi,itypj)-aa,
+C     & bb_aq(itypi,itypj)-bb,
+C     & sslipi,sslipj
+C         endif
+
 C        write(iout,*),aa,aa_lip(itypi,itypj),aa_aq(itypi,itypj)
 C checking the distance
       dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
@@ -1032,6 +1219,7 @@ c     &         aux*e2/eps(itypi,itypj)
 c            if (lprn) then
             sigm=dabs(aa/bb)**(1.0D0/6.0D0)
             epsi=bb**2/aa
+C#define DEBUG
 #ifdef DEBUG
             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
      &        restyp(itypi),i,restyp(itypj),j,
@@ -1041,6 +1229,7 @@ c            if (lprn) then
      &        evdwij
              write (iout,*) "partial sum", evdw, evdw_t
 #endif
+C#undef DEBUG
 c            endif
             if (calc_grad) then
 C Calculate gradient components.
@@ -1943,6 +2132,7 @@ C
       include 'COMMON.TORSION'
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
+      include 'COMMON.SHIELD'
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
@@ -2013,15 +2203,15 @@ C      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
         gcorr_loc(i)=0.0d0
       enddo
       do i=iatel_s,iatel_e
-          if (i.eq.1) then 
+C          if (i.eq.1) then 
            if (itype(i).eq.ntyp1.or. itype(i+1).eq.ntyp1
-     &  .or. itype(i+2).eq.ntyp1) cycle
-          else
-        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
-     &  .or. itype(i+2).eq.ntyp1
-     &  .or. itype(i-1).eq.ntyp1
+C     &  .or. itype(i+2).eq.ntyp1) cycle
+C          else
+C        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C     &  .or. itype(i+2).eq.ntyp1
+C     &  .or. itype(i-1).eq.ntyp1
      &) cycle
-         endif
+C         endif
         if (itel(i).eq.0) goto 1215
         dxi=dc(1,i)
         dyi=dc(2,i)
@@ -2038,19 +2228,44 @@ C      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
           if (ymedi.lt.0) ymedi=ymedi+boxysize
           zmedi=mod(zmedi,boxzsize)
           if (zmedi.lt.0) zmedi=zmedi+boxzsize
+          zmedi2=mod(zmedi,boxzsize)
+          if (zmedi2.lt.0) zmedi2=zmedi2+boxzsize
+       if ((zmedi2.gt.bordlipbot)
+     &.and.(zmedi2.lt.bordliptop)) then
+C the energy transfer exist
+        if (zmedi2.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zmedi2-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zmedi2.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zmedi2)/lipbufthick)
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipi=1.0d0
+         ssgradlipi=0.0d0
+        endif
+       else
+         sslipi=0.0d0
+         ssgradlipi=0.0d0
+       endif
+
         num_conti=0
 C        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         do j=ielstart(i),ielend(i)
-          if (j.eq.1) then
-           if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1
-     & .or.itype(j+2).eq.ntyp1
-     &) cycle  
-          else     
+          if (j.lt.1) cycle
+C           if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1
+C     & .or.itype(j+2).eq.ntyp1
+C     &) cycle  
+C          else     
           if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1
-     & .or.itype(j+2).eq.ntyp1
-     & .or.itype(j-1).eq.ntyp1
+C     & .or.itype(j+2).eq.ntyp1
+C     & .or.itype(j-1).eq.ntyp1
      &) cycle
-         endif
+C         endif
 C
 C) cycle
           if (itel(j).eq.0) goto 1216
@@ -2083,6 +2298,28 @@ C End diagnostics
           if (yj.lt.0) yj=yj+boxysize
           zj=mod(zj,boxzsize)
           if (zj.lt.0) zj=zj+boxzsize
+       if ((zj.gt.bordlipbot)
+     &.and.(zj.lt.bordliptop)) then
+C the energy transfer exist
+        if (zj.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zj-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zj.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick)
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipj=1.0d0
+         ssgradlipj=0.0
+        endif
+       else
+         sslipj=0.0d0
+         ssgradlipj=0.0
+       endif
       dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
       xj_safe=xj
       yj_safe=yj
@@ -2139,7 +2376,25 @@ c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
 c          write (iout,*) "i",i,iteli," j",j,itelj," eesij",eesij
 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
+          if (shield_mode.gt.0) then
+C#define DEBUG
+#ifdef DEBUG
+          write(iout,*) "ees_compon",i,j,el1,el2,
+     &    fac_shield(i),fac_shield(j)
+#endif
+C#undef DEBUG
+C          fac_shield(i)=0.4
+C          fac_shield(j)=0.6
+          el1=el1*fac_shield(i)**2*fac_shield(j)**2
+          el2=el2*fac_shield(i)**2*fac_shield(j)**2
+          eesij=(el1+el2)
+          ees=ees+eesij
+          else
+          fac_shield(i)=1.0
+          fac_shield(j)=1.0
+          eesij=(el1+el2)
           ees=ees+eesij
+          endif
           evdw1=evdw1+evdwij*sss
 c             write (iout,'(a6,2i5,0pf7.3,2i5,2e11.3)') 
 c     &'evdw1',i,j,evdwij
@@ -2167,6 +2422,60 @@ C
           ggg(1)=facel*xj
           ggg(2)=facel*yj
           ggg(3)=facel*zj
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eesij/fac_shield(i)
+     &      *2.0
+           gshieldx(k,iresshield)=gshieldx(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield
+C           gshieldc_loc(k,iresshield)=gshieldc_loc(k,iresshield)
+C     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C             if (iresshield.gt.i) then
+C               do ishi=i+1,iresshield-1
+C                gshieldc(k,ishi)=gshieldc(k,ishi)+rlocshield
+C     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C
+C              enddo
+C             else
+C               do ishi=iresshield,i
+C                gshieldc(k,ishi)=gshieldc(k,ishi)-rlocshield
+C     & -grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C
+C               enddo
+C              endif
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eesij/fac_shield(j)
+     &     *2.0
+           gshieldx(k,iresshield)=gshieldx(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)*2.0
+           gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc(k,i)=gshieldc(k,i)+
+     &              grad_shield(k,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,j)=gshieldc(k,j)+
+     &              grad_shield(k,j)*eesij/fac_shield(j)*2.0
+            gshieldc(k,i-1)=gshieldc(k,i-1)+
+     &              grad_shield(k,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,j-1)=gshieldc(k,j-1)+
+     &              grad_shield(k,j)*eesij/fac_shield(j)*2.0
+
+           enddo
+           endif
+
           do k=1,3
             ghalf=0.5D0*ggg(k)
             gelc(k,i)=gelc(k,i)+ghalf
@@ -2250,15 +2559,19 @@ cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
 cd   &          (dcosg(k),k=1,3)
           do k=1,3
             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
+     &      *fac_shield(i)**2*fac_shield(j)**2
           enddo
           do k=1,3
             ghalf=0.5D0*ggg(k)
             gelc(k,i)=gelc(k,i)+ghalf
      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &           *fac_shield(i)**2*fac_shield(j)**2
+
             gelc(k,j)=gelc(k,j)+ghalf
      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &           *fac_shield(i)**2*fac_shield(j)**2
           enddo
           do k=i+1,j-1
             do l=1,3
@@ -2504,21 +2817,81 @@ C Check the loc-el terms by numerical integration
 C Contribution to the local-electrostatic energy coming from the i-j pair
           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
      &     +a33*muij(4)
+          if (shield_mode.eq.0) then
+           fac_shield(i)=1.0
+           fac_shield(j)=1.0
+C          else
+C           fac_shield(i)=0.4
+C           fac_shield(j)=0.6
+          endif
+          eel_loc_ij=eel_loc_ij
+     &    *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
 c          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
 C          write (iout,'(a6,2i5,0pf7.3)')
 C     &            'eelloc',i,j,eel_loc_ij
 C          write(iout,*) 'muije=',i,j,muij(1),muij(2),muij(3),muij(4)
 c          write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
+C          eel_loc=eel_loc+eel_loc_ij
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eel_loc_ij
+     &                                          /fac_shield(i)
+C     &      *2.0
+           gshieldx_ll(k,iresshield)=gshieldx_ll(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,iresshield-1)=gshieldc_ll(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eel_loc_ij
+     &                                       /fac_shield(j)
+C     &     *2.0
+           gshieldx_ll(k,iresshield)=gshieldx_ll(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eel_loc_ij/fac_shield(j)
+           gshieldc_ll(k,iresshield-1)=gshieldc_ll(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+          do k=1,3
+            gshieldc_ll(k,i)=gshieldc_ll(k,i)+
+     &              grad_shield(k,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,j)=gshieldc_ll(k,j)+
+     &              grad_shield(k,j)*eel_loc_ij/fac_shield(j)
+            gshieldc_ll(k,i-1)=gshieldc_ll(k,i-1)+
+     &              grad_shield(k,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,j-1)=gshieldc_ll(k,j-1)+
+     &              grad_shield(k,j)*eel_loc_ij/fac_shield(j)
+           enddo
+           endif
           eel_loc=eel_loc+eel_loc_ij
+
 C Partial derivatives in virtual-bond dihedral angles gamma
           if (calc_grad) then
           if (i.gt.1)
      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
-     &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
-     &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
+     &            (a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
+     &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j))
+     &    *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
-     &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
-     &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
+     &            (a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
+     &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j))
+     &    *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
 cd          call checkint3(i,j,mu1,mu2,a22,a23,a32,a33,acipa,eel_loc_ij)
 cd          write(iout,*) 'agg  ',agg
 cd          write(iout,*) 'aggi ',aggi
@@ -2528,8 +2901,11 @@ cd          write(iout,*) 'aggj1',aggj1
 
 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
           do l=1,3
-            ggg(l)=agg(l,1)*muij(1)+
-     &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
+            ggg(l)=(agg(l,1)*muij(1)+
+     &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           enddo
           do k=i+2,j2
             do l=1,3
@@ -2538,14 +2914,26 @@ C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
           enddo
 C Remaining derivatives of eello
           do l=1,3
-            gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
-     &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
-            gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
-     &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
-            gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
-     &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
-            gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
-     &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
+            gel_loc(l,i)=gel_loc(l,i)+(aggi(l,1)*muij(1)+
+     &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
+            gel_loc(l,i+1)=gel_loc(l,i+1)+(aggi1(l,1)*muij(1)+
+     &         aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
+            gel_loc(l,j)=gel_loc(l,j)+(aggj(l,1)*muij(1)+
+     &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
+            gel_loc(l,j1)=gel_loc(l,j1)+(aggj1(l,1)*muij(1)+
+     &         aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           enddo
           endif
           ENDIF
@@ -2652,8 +3040,20 @@ c               fac3=dsqrt(-ael6i)/r0ij**3
                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
                 ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
 c               ees0mij=0.0D0
+                if (shield_mode.eq.0) then
+                fac_shield(i)=1.0d0
+                fac_shield(j)=1.0d0
+                else
+                ees0plist(num_conti,i)=j
+C                fac_shield(i)=0.4d0
+C                fac_shield(j)=0.6d0
+                endif
                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
+     &          *fac_shield(i)*fac_shield(j)
+
                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
+     &          *fac_shield(i)*fac_shield(j)
+
 C Diagnostics. Comment out or remove after debugging!
 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
@@ -2718,17 +3118,29 @@ C Derivatives due to the contact function
                   gacontp_hb1(k,num_conti,i)=ghalfp
      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontp_hb2(k,num_conti,i)=ghalfp
      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontp_hb3(k,num_conti,i)=gggp(k)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb1(k,num_conti,i)=ghalfm
      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb2(k,num_conti,i)=ghalfm
      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb3(k,num_conti,i)=gggm(k)
+     &          *fac_shield(i)*fac_shield(j)
+
                 enddo
                 endif
 C Diagnostics. Comment out or remove after debugging!
@@ -2774,6 +3186,8 @@ C Third- and fourth-order contributions from turns
       include 'COMMON.TORSION'
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
+      include 'COMMON.SHIELD'
+      include 'COMMON.CONTROL'
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
@@ -2781,7 +3195,50 @@ C Third- and fourth-order contributions from turns
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1,j2
+          zj=(c(3,j)+c(3,j+1))/2.0d0
+C          xj=mod(xj,boxxsize)
+C          if (xj.lt.0) xj=xj+boxxsize
+C          yj=mod(yj,boxysize)
+C          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+C          if ((zj.lt.0).or.(xj.lt.0).or.(yj.lt.0)) write (*,*) "CHUJ"
+       if ((zj.gt.bordlipbot)
+     &.and.(zj.lt.bordliptop)) then
+C the energy transfer exist
+        if (zj.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zj-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zj.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick)
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipj=1.0d0
+         ssgradlipj=0.0
+        endif
+       else
+         sslipj=0.0d0
+         ssgradlipj=0.0
+       endif
+
       if (j.eq.i+2) then
+      if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+C     & .or.((i+5).gt.nres)
+C     & .or.((i-1).le.0)
+C end of changes suggested by Ana
+     &    .or. itype(i+2).eq.ntyp1
+     &    .or. itype(i+3).eq.ntyp1
+C     &    .or. itype(i+5).eq.ntyp1
+C     &    .or. itype(i).eq.ntyp1
+C     &    .or. itype(i-1).eq.ntyp1
+     &    ) goto 179
+
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C               Third-order contributions
@@ -2796,22 +3253,86 @@ cd        call checkint_turn3(i,a_temp,eello_turn3_num)
         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
         call transpose2(auxmat(1,1),auxmat1(1,1))
         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+        if (shield_mode.eq.0) then
+        fac_shield(i)=1.0
+        fac_shield(j)=1.0
+C        else
+C        fac_shield(i)=0.4
+C        fac_shield(j)=0.6
+        endif
+
         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
+        eello_t3=0.5d0*(pizda(1,1)+pizda(2,2))
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
 cd     &    ' eello_turn3_num',4*eello_turn3_num
         if (calc_grad) then
+C Derivatives in shield mode
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eello_t3/fac_shield(i)
+C     &      *2.0
+           gshieldx_t3(k,iresshield)=gshieldx_t3(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,iresshield-1)=gshieldc_t3(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eello_t3/fac_shield(j)
+C     &     *2.0
+           gshieldx_t3(k,iresshield)=gshieldx_t3(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eello_t3/fac_shield(j)
+           gshieldc_t3(k,iresshield-1)=gshieldc_t3(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc_t3(k,i)=gshieldc_t3(k,i)+
+     &              grad_shield(k,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,j)=gshieldc_t3(k,j)+
+     &              grad_shield(k,j)*eello_t3/fac_shield(j)
+            gshieldc_t3(k,i-1)=gshieldc_t3(k,i-1)+
+     &              grad_shield(k,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,j-1)=gshieldc_t3(k,j-1)+
+     &              grad_shield(k,j)*eello_t3/fac_shield(j)
+           enddo
+           endif
+
 C Derivatives in gamma(i)
         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
         call transpose2(auxmat2(1,1),pizda(1,1))
         call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
 C Derivatives in gamma(i+1)
         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
         call transpose2(auxmat2(1,1),pizda(1,1))
         call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
      &    +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
 C Cartesian derivatives
         do l=1,3
           a_temp(1,1)=aggi(l,1)
@@ -2821,6 +3342,9 @@ C Cartesian derivatives
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,i)=gcorr3_turn(l,i)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           a_temp(1,1)=aggi1(l,1)
           a_temp(1,2)=aggi1(l,2)
           a_temp(2,1)=aggi1(l,3)
@@ -2828,6 +3352,9 @@ C Cartesian derivatives
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           a_temp(1,1)=aggj(l,1)
           a_temp(1,2)=aggj(l,2)
           a_temp(2,1)=aggj(l,3)
@@ -2835,6 +3362,9 @@ C Cartesian derivatives
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,j)=gcorr3_turn(l,j)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           a_temp(1,1)=aggj1(l,1)
           a_temp(1,2)=aggj1(l,2)
           a_temp(2,1)=aggj1(l,3)
@@ -2842,19 +3372,24 @@ C Cartesian derivatives
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
         enddo
         endif
+  179 continue
       else if (j.eq.i+3 .and. itype(i+2).ne.ntyp1) then
       if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
 C changes suggested by Ana to avoid out of bounds
-     & .or.((i+5).gt.nres)
-     & .or.((i-1).le.0)
+C     & .or.((i+5).gt.nres)
+C     & .or.((i-1).le.0)
 C end of changes suggested by Ana
      &    .or. itype(i+3).eq.ntyp1
      &    .or. itype(i+4).eq.ntyp1
-     &    .or. itype(i+5).eq.ntyp1
+C     &    .or. itype(i+5).eq.ntyp1
      &    .or. itype(i).eq.ntyp1
-     &    .or. itype(i-1).eq.ntyp1) goto 178
+C     &    .or. itype(i-1).eq.ntyp1
+     &    ) goto 178
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C               Fourth-order contributions
@@ -2882,11 +3417,64 @@ cd        call checkint_turn4(i,a_temp,eello_turn4_num)
         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
+        if (shield_mode.eq.0) then
+        fac_shield(i)=1.0
+        fac_shield(j)=1.0
+C        else
+C        fac_shield(i)=0.4
+C        fac_shield(j)=0.6
+        endif
+
         eello_turn4=eello_turn4-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+        eello_t4=-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
 cd     &    ' eello_turn4_num',8*eello_turn4_num
 C Derivatives in gamma(i)
         if (calc_grad) then
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eello_t4/fac_shield(i)
+C     &      *2.0
+           gshieldx_t4(k,iresshield)=gshieldx_t4(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,iresshield-1)=gshieldc_t4(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eello_t4/fac_shield(j)
+C     &     *2.0
+           gshieldx_t4(k,iresshield)=gshieldx_t4(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eello_t4/fac_shield(j)
+           gshieldc_t4(k,iresshield-1)=gshieldc_t4(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc_t4(k,i)=gshieldc_t4(k,i)+
+     &              grad_shield(k,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,j)=gshieldc_t4(k,j)+
+     &              grad_shield(k,j)*eello_t4/fac_shield(j)
+            gshieldc_t4(k,i-1)=gshieldc_t4(k,i-1)+
+     &              grad_shield(k,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,j-1)=gshieldc_t4(k,j-1)+
+     &              grad_shield(k,j)*eello_t4/fac_shield(j)
+           enddo
+           endif
         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
@@ -2894,6 +3482,9 @@ C Derivatives in gamma(i)
         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
 C Derivatives in gamma(i+1)
         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
@@ -2902,6 +3493,9 @@ C Derivatives in gamma(i+1)
         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
 C Derivatives in gamma(i+2)
         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
@@ -2913,7 +3507,11 @@ C Derivatives in gamma(i+2)
         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
 C Cartesian derivatives
+
 C Derivatives of this turn contributions in DC(i+2)
         if (j.lt.nres-1) then
           do l=1,3
@@ -2932,6 +3530,9 @@ C Derivatives of this turn contributions in DC(i+2)
             s3=0.5d0*(pizda(1,1)+pizda(2,2))
             ggg(l)=-(s1+s2+s3)
             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           enddo
         endif
 C Remaining derivatives of this turn contribution
@@ -2950,6 +3551,9 @@ C Remaining derivatives of this turn contribution
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           a_temp(1,1)=aggi1(l,1)
           a_temp(1,2)=aggi1(l,2)
           a_temp(2,1)=aggi1(l,3)
@@ -2964,6 +3568,9 @@ C Remaining derivatives of this turn contribution
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           a_temp(1,1)=aggj(l,1)
           a_temp(1,2)=aggj(l,2)
           a_temp(2,1)=aggj(l,3)
@@ -2978,6 +3585,9 @@ C Remaining derivatives of this turn contribution
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
           a_temp(1,1)=aggj1(l,1)
           a_temp(1,2)=aggj1(l,2)
           a_temp(2,1)=aggj1(l,3)
@@ -2992,7 +3602,18 @@ C Remaining derivatives of this turn contribution
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+     &*((sslipi+sslipj)/2.0d0*lipscale+1.0d0)
+
         enddo
+         gshieldc_t4(3,i)=gshieldc_t4(3,i)+
+     &     ssgradlipi*eello_t4/4.0d0*lipscale
+         gshieldc_t4(3,j)=gshieldc_t4(3,j)+
+     &     ssgradlipj*eello_t4/4.0d0*lipscale
+         gshieldc_t4(3,i-1)=gshieldc_t4(3,i-1)+
+     &     ssgradlipi*eello_t4/4.0d0*lipscale
+         gshieldc_t4(3,j-1)=gshieldc_t4(3,j-1)+
+     &     ssgradlipj*eello_t4/4.0d0*lipscale
         endif
  178  continue
       endif          
@@ -3470,6 +4091,7 @@ C     &       gnmr1(vbld(i),-1.0d0,distchainmax)
 C        else
          if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then
         diff = vbld(i)-vbldpDUM
+C         write(iout,*) i,diff
          else
           diff = vbld(i)-vbldp0
 c          write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
@@ -5471,6 +6093,7 @@ C This subroutine calculates multi-body contributions to hydrogen-bonding
 C Set lprn=.true. for debugging
       lprn=.false.
       eturn6=0.0d0
+      ecorr6=0.0d0
 #ifdef MPL
       n_corr=0
       n_corr1=0
@@ -5660,7 +6283,11 @@ cd     &          dabs(eello6(i,j,i+1,j1,jj,kk))
 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,j,i+1,j1
                   eturn6=eturn6+eello_turn6(i,jj,kk)
 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
+                 else if ((wturn6.eq.0.0d0).and.(wcorr6.eq.0.0d0)) then
+                   eturn6=0.0d0
+                   ecorr6=0.0d0
                 endif
+              
               ENDIF
 1111          continue
             else if (j1.eq.j) then
@@ -5681,6 +6308,7 @@ c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
           enddo ! kk
         enddo ! jj
       enddo ! i
+      write (iout,*) "eturn6",eturn6,ecorr6
       return
       end
 c------------------------------------------------------------------------------
@@ -5691,6 +6319,8 @@ c------------------------------------------------------------------------------
       include 'COMMON.DERIV'
       include 'COMMON.INTERACT'
       include 'COMMON.CONTACTS'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SHIELD'
       double precision gx(3),gx1(3)
       logical lprn
       lprn=.false.
@@ -5714,7 +6344,7 @@ c     write (iout,*)'Contacts have occurred for peptide groups',
 c    &  i,j,' fcont:',eij,' eij',' eesij',ees0pij,ees0mij,' and ',k,l
 c    & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' ees=',ees
 C Calculate the multi-body contribution to energy.
-      ecorr=ecorr+ekont*ees
+C      ecorr=ecorr+ekont*ees
       if (calc_grad) then
 C Calculate multi-body contributions to the gradient.
       do ll=1,3
@@ -5748,7 +6378,85 @@ C Calculate multi-body contributions to the gradient.
      &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
      &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
         enddo
-      enddo 
+      enddo
+      if (shield_mode.gt.0) then
+       j=ees0plist(jj,i)
+       l=ees0plist(kk,k)
+C        print *,i,j,fac_shield(i),fac_shield(j),
+C     &fac_shield(k),fac_shield(l)
+        if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &      (fac_shield(k).gt.0).and.(fac_shield(l).gt.0)) then
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,i)*ehbcorr/fac_shield(i)
+C     &      *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &+rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,j)*ehbcorr/fac_shield(j)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,j)*ehbcorr/fac_shield(j)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(k)
+           iresshield=shield_list(ilist,k)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,k)*ehbcorr/fac_shield(k)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,k)*ehbcorr/fac_shield(k)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(l)
+           iresshield=shield_list(ilist,l)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,l)*ehbcorr/fac_shield(l)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,l)*ehbcorr/fac_shield(l)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+C          print *,gshieldx(m,iresshield)
+          do m=1,3
+            gshieldc_ec(m,i)=gshieldc_ec(m,i)+
+     &              grad_shield(m,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,j)=gshieldc_ec(m,j)+
+     &              grad_shield(m,j)*ehbcorr/fac_shield(j)
+            gshieldc_ec(m,i-1)=gshieldc_ec(m,i-1)+
+     &              grad_shield(m,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,j-1)=gshieldc_ec(m,j-1)+
+     &              grad_shield(m,j)*ehbcorr/fac_shield(j)
+
+            gshieldc_ec(m,k)=gshieldc_ec(m,k)+
+     &              grad_shield(m,k)*ehbcorr/fac_shield(k)
+            gshieldc_ec(m,l)=gshieldc_ec(m,l)+
+     &              grad_shield(m,l)*ehbcorr/fac_shield(l)
+            gshieldc_ec(m,k-1)=gshieldc_ec(m,k-1)+
+     &              grad_shield(m,k)*ehbcorr/fac_shield(k)
+            gshieldc_ec(m,l-1)=gshieldc_ec(m,l-1)+
+     &              grad_shield(m,l)*ehbcorr/fac_shield(l)
+
+           enddo
+      endif 
+      endif
       endif
       ehbcorr=ekont*ees
       return
@@ -8166,4 +8874,1026 @@ C      endif
       end
 
 C-----------------------------------------------------------------------
+       subroutine set_shield_fac
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SHIELD'
+      include 'COMMON.INTERACT'
+C this is the squar root 77 devided by 81 the epislion in lipid (in protein)
+      double precision div77_81/0.974996043d0/,
+     &div4_81/0.2222222222d0/,sh_frac_dist_grad(3)
+
+C the vector between center of side_chain and peptide group
+       double precision pep_side(3),long,side_calf(3),
+     &pept_group(3),costhet_grad(3),cosphi_grad_long(3),
+     &cosphi_grad_loc(3),pep_side_norm(3),side_calf_norm(3)
+C the line belowe needs to be changed for FGPROC>1
+      do i=1,nres-1
+      if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle
+      ishield_list(i)=0
+Cif there two consequtive dummy atoms there is no peptide group between them
+C the line below has to be changed for FGPROC>1
+      VolumeTotal=0.0
+      do k=1,nres
+       if ((itype(k).eq.ntyp1).or.(itype(k).eq.10)) cycle
+       dist_pep_side=0.0
+       dist_side_calf=0.0
+       do j=1,3
+C first lets set vector conecting the ithe side-chain with kth side-chain
+      pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0
+C      pep_side(j)=2.0d0
+C and vector conecting the side-chain with its proper calfa
+      side_calf(j)=c(j,k+nres)-c(j,k)
+C      side_calf(j)=2.0d0
+      pept_group(j)=c(j,i)-c(j,i+1)
+C lets have their lenght
+      dist_pep_side=pep_side(j)**2+dist_pep_side
+      dist_side_calf=dist_side_calf+side_calf(j)**2
+      dist_pept_group=dist_pept_group+pept_group(j)**2
+      enddo
+       dist_pep_side=dsqrt(dist_pep_side)
+       dist_pept_group=dsqrt(dist_pept_group)
+       dist_side_calf=dsqrt(dist_side_calf)
+      do j=1,3
+        pep_side_norm(j)=pep_side(j)/dist_pep_side
+        side_calf_norm(j)=dist_side_calf
+      enddo
+C now sscale fraction
+       sh_frac_dist=-(dist_pep_side-rpp(1,1)-buff_shield)/buff_shield
+C       print *,buff_shield,"buff"
+C now sscale
+        if (sh_frac_dist.le.0.0) cycle
+C If we reach here it means that this side chain reaches the shielding sphere
+C Lets add him to the list for gradient       
+        ishield_list(i)=ishield_list(i)+1
+C ishield_list is a list of non 0 side-chain that contribute to factor gradient
+C this list is essential otherwise problem would be O3
+        shield_list(ishield_list(i),i)=k
+C Lets have the sscale value
+        if (sh_frac_dist.gt.1.0) then
+         scale_fac_dist=1.0d0
+         do j=1,3
+         sh_frac_dist_grad(j)=0.0d0
+         enddo
+        else
+         scale_fac_dist=-sh_frac_dist*sh_frac_dist
+     &                   *(2.0*sh_frac_dist-3.0d0)
+         fac_help_scale=6.0*(sh_frac_dist-sh_frac_dist**2)
+     &                  /dist_pep_side/buff_shield*0.5
+C remember for the final gradient multiply sh_frac_dist_grad(j) 
+C for side_chain by factor -2 ! 
+         do j=1,3
+         sh_frac_dist_grad(j)=fac_help_scale*pep_side(j)
+C         print *,"jestem",scale_fac_dist,fac_help_scale,
+C     &                    sh_frac_dist_grad(j)
+         enddo
+        endif
+C        if ((i.eq.3).and.(k.eq.2)) then
+C        print *,i,sh_frac_dist,dist_pep,fac_help_scale,scale_fac_dist
+C     & ,"TU"
+C        endif
+
+C this is what is now we have the distance scaling now volume...
+      short=short_r_sidechain(itype(k))
+      long=long_r_sidechain(itype(k))
+      costhet=1.0d0/dsqrt(1.0+short**2/dist_pep_side**2)
+C now costhet_grad
+C       costhet=0.0d0
+       costhet_fac=costhet**3*short**2*(-0.5)/dist_pep_side**4
+C       costhet_fac=0.0d0
+       do j=1,3
+         costhet_grad(j)=costhet_fac*pep_side(j)
+       enddo
+C remember for the final gradient multiply costhet_grad(j) 
+C for side_chain by factor -2 !
+C fac alfa is angle between CB_k,CA_k, CA_i,CA_i+1
+C pep_side0pept_group is vector multiplication  
+      pep_side0pept_group=0.0
+      do j=1,3
+      pep_side0pept_group=pep_side0pept_group+pep_side(j)*side_calf(j)
+      enddo
+      cosalfa=(pep_side0pept_group/
+     & (dist_pep_side*dist_side_calf))
+      fac_alfa_sin=1.0-cosalfa**2
+      fac_alfa_sin=dsqrt(fac_alfa_sin)
+      rkprim=fac_alfa_sin*(long-short)+short
+C now costhet_grad
+       cosphi=1.0d0/dsqrt(1.0+rkprim**2/dist_pep_side**2)
+       cosphi_fac=cosphi**3*rkprim**2*(-0.5)/dist_pep_side**4
+
+       do j=1,3
+         cosphi_grad_long(j)=cosphi_fac*pep_side(j)
+     &+cosphi**3*0.5/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa/
+     &((dist_pep_side*dist_side_calf))*
+     &((side_calf(j))-cosalfa*
+     &((pep_side(j)/dist_pep_side)*dist_side_calf))
+
+        cosphi_grad_loc(j)=cosphi**3*0.5/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa
+     &/((dist_pep_side*dist_side_calf))*
+     &(pep_side(j)-
+     &cosalfa*side_calf(j)/dist_side_calf*dist_pep_side)
+       enddo
+
+      VofOverlap=VSolvSphere/2.0d0*(1.0-costhet)*(1.0-cosphi)
+     &                    /VSolvSphere_div
+     &                    *wshield
+C now the gradient...
+C grad_shield is gradient of Calfa for peptide groups
+C      write(iout,*) "shield_compon",i,k,VSolvSphere,scale_fac_dist,
+C     &               costhet,cosphi
+C       write(iout,*) "cosphi_compon",i,k,pep_side0pept_group,
+C     & dist_pep_side,dist_side_calf,c(1,k+nres),c(1,k),itype(k)
+      do j=1,3
+      grad_shield(j,i)=grad_shield(j,i)
+C gradient po skalowaniu
+     &                +(sh_frac_dist_grad(j)
+C  gradient po costhet
+     &-scale_fac_dist*costhet_grad(j)/(1.0-costhet)
+     &-scale_fac_dist*(cosphi_grad_long(j))
+     &/(1.0-cosphi) )*div77_81
+     &*VofOverlap
+C grad_shield_side is Cbeta sidechain gradient
+      grad_shield_side(j,ishield_list(i),i)=
+     &        (sh_frac_dist_grad(j)*-2.0d0
+     &       +scale_fac_dist*costhet_grad(j)*2.0d0/(1.0-costhet)
+     &       +scale_fac_dist*(cosphi_grad_long(j))
+     &        *2.0d0/(1.0-cosphi))
+     &        *div77_81*VofOverlap
+
+       grad_shield_loc(j,ishield_list(i),i)=
+     &   scale_fac_dist*cosphi_grad_loc(j)
+     &        *2.0d0/(1.0-cosphi)
+     &        *div77_81*VofOverlap
+      enddo
+      VolumeTotal=VolumeTotal+VofOverlap*scale_fac_dist
+      enddo
+      fac_shield(i)=VolumeTotal*div77_81+div4_81
+C      write(2,*) "TOTAL VOLUME",i,VolumeTotal,fac_shield(i)
+      enddo
+      return
+      end
+C--------------------------------------------------------------------------
+C first for shielding is setting of function of side-chains
+       subroutine set_shield_fac2
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SHIELD'
+      include 'COMMON.INTERACT'
+C this is the squar root 77 devided by 81 the epislion in lipid (in protein)
+      double precision div77_81/0.974996043d0/,
+     &div4_81/0.2222222222d0/,sh_frac_dist_grad(3)
+
+C the vector between center of side_chain and peptide group
+       double precision pep_side(3),long,side_calf(3),
+     &pept_group(3),costhet_grad(3),cosphi_grad_long(3),
+     &cosphi_grad_loc(3),pep_side_norm(3),side_calf_norm(3)
+C the line belowe needs to be changed for FGPROC>1
+      do i=1,nres-1
+      if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle
+      ishield_list(i)=0
+Cif there two consequtive dummy atoms there is no peptide group between them
+C the line below has to be changed for FGPROC>1
+      VolumeTotal=0.0
+      do k=1,nres
+       if ((itype(k).eq.ntyp1).or.(itype(k).eq.10)) cycle
+       dist_pep_side=0.0
+       dist_side_calf=0.0
+       do j=1,3
+C first lets set vector conecting the ithe side-chain with kth side-chain
+      pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0
+C      pep_side(j)=2.0d0
+C and vector conecting the side-chain with its proper calfa
+      side_calf(j)=c(j,k+nres)-c(j,k)
+C      side_calf(j)=2.0d0
+      pept_group(j)=c(j,i)-c(j,i+1)
+C lets have their lenght
+      dist_pep_side=pep_side(j)**2+dist_pep_side
+      dist_side_calf=dist_side_calf+side_calf(j)**2
+      dist_pept_group=dist_pept_group+pept_group(j)**2
+      enddo
+       dist_pep_side=dsqrt(dist_pep_side)
+       dist_pept_group=dsqrt(dist_pept_group)
+       dist_side_calf=dsqrt(dist_side_calf)
+      do j=1,3
+        pep_side_norm(j)=pep_side(j)/dist_pep_side
+        side_calf_norm(j)=dist_side_calf
+      enddo
+C now sscale fraction
+       sh_frac_dist=-(dist_pep_side-rpp(1,1)-buff_shield)/buff_shield
+C       print *,buff_shield,"buff"
+C now sscale
+        if (sh_frac_dist.le.0.0) cycle
+C If we reach here it means that this side chain reaches the shielding sphere
+C Lets add him to the list for gradient       
+        ishield_list(i)=ishield_list(i)+1
+C ishield_list is a list of non 0 side-chain that contribute to factor gradient
+C this list is essential otherwise problem would be O3
+        shield_list(ishield_list(i),i)=k
+C Lets have the sscale value
+        if (sh_frac_dist.gt.1.0) then
+         scale_fac_dist=1.0d0
+         do j=1,3
+         sh_frac_dist_grad(j)=0.0d0
+         enddo
+        else
+         scale_fac_dist=-sh_frac_dist*sh_frac_dist
+     &                   *(2.0d0*sh_frac_dist-3.0d0)
+         fac_help_scale=6.0d0*(sh_frac_dist-sh_frac_dist**2)
+     &                  /dist_pep_side/buff_shield*0.5d0
+C remember for the final gradient multiply sh_frac_dist_grad(j) 
+C for side_chain by factor -2 ! 
+         do j=1,3
+         sh_frac_dist_grad(j)=fac_help_scale*pep_side(j)
+C         sh_frac_dist_grad(j)=0.0d0
+C         scale_fac_dist=1.0d0
+C         print *,"jestem",scale_fac_dist,fac_help_scale,
+C     &                    sh_frac_dist_grad(j)
+         enddo
+        endif
+C this is what is now we have the distance scaling now volume...
+      short=short_r_sidechain(itype(k))
+      long=long_r_sidechain(itype(k))
+      costhet=1.0d0/dsqrt(1.0d0+short**2/dist_pep_side**2)
+      sinthet=short/dist_pep_side*costhet
+C now costhet_grad
+C       costhet=0.6d0
+C       sinthet=0.8
+       costhet_fac=costhet**3*short**2*(-0.5d0)/dist_pep_side**4
+C       sinthet_fac=costhet**2*0.5d0*(short**3/dist_pep_side**4*costhet
+C     &             -short/dist_pep_side**2/costhet)
+C       costhet_fac=0.0d0
+       do j=1,3
+         costhet_grad(j)=costhet_fac*pep_side(j)
+       enddo
+C remember for the final gradient multiply costhet_grad(j) 
+C for side_chain by factor -2 !
+C fac alfa is angle between CB_k,CA_k, CA_i,CA_i+1
+C pep_side0pept_group is vector multiplication  
+      pep_side0pept_group=0.0d0
+      do j=1,3
+      pep_side0pept_group=pep_side0pept_group+pep_side(j)*side_calf(j)
+      enddo
+      cosalfa=(pep_side0pept_group/
+     & (dist_pep_side*dist_side_calf))
+      fac_alfa_sin=1.0d0-cosalfa**2
+      fac_alfa_sin=dsqrt(fac_alfa_sin)
+      rkprim=fac_alfa_sin*(long-short)+short
+C      rkprim=short
+
+C now costhet_grad
+       cosphi=1.0d0/dsqrt(1.0d0+rkprim**2/dist_pep_side**2)
+C       cosphi=0.6
+       cosphi_fac=cosphi**3*rkprim**2*(-0.5d0)/dist_pep_side**4
+       sinphi=rkprim/dist_pep_side/dsqrt(1.0d0+rkprim**2/
+     &      dist_pep_side**2)
+C       sinphi=0.8
+       do j=1,3
+         cosphi_grad_long(j)=cosphi_fac*pep_side(j)
+     &+cosphi**3*0.5d0/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa/
+     &((dist_pep_side*dist_side_calf))*
+     &((side_calf(j))-cosalfa*
+     &((pep_side(j)/dist_pep_side)*dist_side_calf))
+C       cosphi_grad_long(j)=0.0d0
+        cosphi_grad_loc(j)=cosphi**3*0.5d0/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa
+     &/((dist_pep_side*dist_side_calf))*
+     &(pep_side(j)-
+     &cosalfa*side_calf(j)/dist_side_calf*dist_pep_side)
+C       cosphi_grad_loc(j)=0.0d0
+       enddo
+C      print *,sinphi,sinthet
+      VofOverlap=VSolvSphere/2.0d0*(1.0d0-dsqrt(1.0d0-sinphi*sinthet))
+     &                    /VSolvSphere_div
+C     &                    *wshield
+C now the gradient...
+      do j=1,3
+      grad_shield(j,i)=grad_shield(j,i)
+C gradient po skalowaniu
+     &                +(sh_frac_dist_grad(j)*VofOverlap
+C  gradient po costhet
+     &       +scale_fac_dist*VSolvSphere/VSolvSphere_div/4.0d0*
+     &(1.0d0/(-dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinphi/sinthet*costhet*costhet_grad(j)
+     &      +sinthet/sinphi*cosphi*cosphi_grad_long(j)))
+     & )*wshield
+C grad_shield_side is Cbeta sidechain gradient
+      grad_shield_side(j,ishield_list(i),i)=
+     &        (sh_frac_dist_grad(j)*-2.0d0
+     &        *VofOverlap
+     &       -scale_fac_dist*VSolvSphere/VSolvSphere_div/2.0d0*
+     &(1.0d0/(-dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinphi/sinthet*costhet*costhet_grad(j)
+     &      +sinthet/sinphi*cosphi*cosphi_grad_long(j)))
+     &       )*wshield
+
+       grad_shield_loc(j,ishield_list(i),i)=
+     &       scale_fac_dist*VSolvSphere/VSolvSphere_div/2.0d0*
+     &(1.0d0/(dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinthet/sinphi*cosphi*cosphi_grad_loc(j)
+     &        ))
+     &        *wshield
+      enddo
+      VolumeTotal=VolumeTotal+VofOverlap*scale_fac_dist
+      enddo
+      fac_shield(i)=VolumeTotal*wshield+(1.0d0-wshield)
+C      write(2,*) "TOTAL VOLUME",i,VolumeTotal,fac_shield(i)
+C      write(2,*) "TU",rpp(1,1),short,long,buff_shield
+      enddo
+      return
+      end
+
+C-----------------------------------------------------------------------
+C-----------------------------------------------------------
+C This subroutine is to mimic the histone like structure but as well can be
+C utilizet to nanostructures (infinit) small modification has to be used to 
+C make it finite (z gradient at the ends has to be changes as well as the x,y
+C gradient has to be modified at the ends 
+C The energy function is Kihara potential 
+C E=4esp*((sigma/(r-r0))^12 - (sigma/(r-r0))^6)
+C 4eps is depth of well sigma is r_minimum r is distance from center of tube 
+C and r0 is the excluded size of nanotube (can be set to 0 if we want just a 
+C simple Kihara potential
+      subroutine calctube(Etube)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      double precision tub_r,vectube(3),enetube(maxres*2)
+      Etube=0.0d0
+      do i=itube_start,itube_end
+        enetube(i)=0.0d0
+        enetube(i+nres)=0.0d0
+      enddo
+C first we calculate the distance from tube center
+C first sugare-phosphate group for NARES this would be peptide group 
+C for UNRES
+       do i=itube_start,itube_end
+C lets ommit dummy atoms for now
+       if ((itype(i).eq.ntyp1).or.(itype(i+1).eq.ntyp1)) cycle
+C now calculate distance from center of tube and direction vectors
+      xmin=boxxsize
+      ymin=boxysize
+        do j=-1,1
+         vectube(1)=mod((c(1,i)+c(1,i+1))/2.0d0,boxxsize)
+         vectube(1)=vectube(1)+boxxsize*j
+         vectube(2)=mod((c(2,i)+c(2,i+1))/2.0d0,boxysize)
+         vectube(2)=vectube(2)+boxysize*j
+       
+         xminact=abs(vectube(1)-tubecenter(1))
+         yminact=abs(vectube(2)-tubecenter(2))
+           if (xmin.gt.xminact) then
+            xmin=xminact
+            xtemp=vectube(1)
+           endif
+           if (ymin.gt.yminact) then
+             ymin=yminact
+             ytemp=vectube(2)
+            endif
+         enddo
+      vectube(1)=xtemp
+      vectube(2)=ytemp
+      vectube(1)=vectube(1)-tubecenter(1)
+      vectube(2)=vectube(2)-tubecenter(2)
+
+C      print *,"x",(c(1,i)+c(1,i+1))/2.0d0,tubecenter(1)
+C      print *,"y",(c(2,i)+c(2,i+1))/2.0d0,tubecenter(2)
+
+C as the tube is infinity we do not calculate the Z-vector use of Z
+C as chosen axis
+      vectube(3)=0.0d0
+C now calculte the distance
+       tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2)
+C now normalize vector
+      vectube(1)=vectube(1)/tub_r
+      vectube(2)=vectube(2)/tub_r
+C calculte rdiffrence between r and r0
+      rdiff=tub_r-tubeR0
+C and its 6 power
+      rdiff6=rdiff**6.0d0
+C for vectorization reasons we will sumup at the end to avoid depenence of previous
+       enetube(i)=pep_aa_tube/rdiff6**2.0d0+pep_bb_tube/rdiff6
+C       write(iout,*) "TU13",i,rdiff6,enetube(i)
+C       print *,rdiff,rdiff6,pep_aa_tube
+C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6
+C now we calculate gradient
+       fac=(-12.0d0*pep_aa_tube/rdiff6-
+     &       6.0d0*pep_bb_tube)/rdiff6/rdiff
+C       write(iout,'(a5,i4,f12.1,3f12.5)') "TU13",i,rdiff6,enetube(i),
+C     &rdiff,fac
+
+C now direction of gg_tube vector
+        do j=1,3
+        gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac/2.0d0
+        gg_tube(j,i)=gg_tube(j,i)+vectube(j)*fac/2.0d0
+        enddo
+        enddo
+C basically thats all code now we split for side-chains (REMEMBER to sum up at the END)
+C        print *,gg_tube(1,0),"TU"
+
+
+       do i=itube_start,itube_end
+C Lets not jump over memory as we use many times iti
+         iti=itype(i)
+C lets ommit dummy atoms for now
+         if ((iti.eq.ntyp1)
+C in UNRES uncomment the line below as GLY has no side-chain...
+C      .or.(iti.eq.10)
+     &   ) cycle
+      xmin=boxxsize
+      ymin=boxysize
+        do j=-1,1
+         vectube(1)=mod((c(1,i+nres)),boxxsize)
+         vectube(1)=vectube(1)+boxxsize*j
+         vectube(2)=mod((c(2,i+nres)),boxysize)
+         vectube(2)=vectube(2)+boxysize*j
+
+         xminact=abs(vectube(1)-tubecenter(1))
+         yminact=abs(vectube(2)-tubecenter(2))
+           if (xmin.gt.xminact) then
+            xmin=xminact
+            xtemp=vectube(1)
+           endif
+           if (ymin.gt.yminact) then
+             ymin=yminact
+             ytemp=vectube(2)
+            endif
+         enddo
+      vectube(1)=xtemp
+      vectube(2)=ytemp
+C          write(iout,*), "tututu", vectube(1),tubecenter(1),vectube(2),
+C     &     tubecenter(2)
+      vectube(1)=vectube(1)-tubecenter(1)
+      vectube(2)=vectube(2)-tubecenter(2)
+
+C as the tube is infinity we do not calculate the Z-vector use of Z
+C as chosen axis
+      vectube(3)=0.0d0
+C now calculte the distance
+       tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2)
+C now normalize vector
+      vectube(1)=vectube(1)/tub_r
+      vectube(2)=vectube(2)/tub_r
+
+C calculte rdiffrence between r and r0
+      rdiff=tub_r-tubeR0
+C and its 6 power
+      rdiff6=rdiff**6.0d0
+C for vectorization reasons we will sumup at the end to avoid depenence of previous
+       sc_aa_tube=sc_aa_tube_par(iti)
+       sc_bb_tube=sc_bb_tube_par(iti)
+       enetube(i+nres)=sc_aa_tube/rdiff6**2.0d0+sc_bb_tube/rdiff6
+C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6
+C now we calculate gradient
+       fac=-12.0d0*sc_aa_tube/rdiff6**2.0d0/rdiff-
+     &       6.0d0*sc_bb_tube/rdiff6/rdiff
+C now direction of gg_tube vector
+         do j=1,3
+          gg_tube_SC(j,i)=gg_tube_SC(j,i)+vectube(j)*fac
+          gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac
+         enddo
+        enddo
+        do i=itube_start,itube_end
+          Etube=Etube+enetube(i)+enetube(i+nres)
+        enddo
+C        print *,"ETUBE", etube
+        return
+        end
+C TO DO 1) add to total energy
+C       2) add to gradient summation
+C       3) add reading parameters (AND of course oppening of PARAM file)
+C       4) add reading the center of tube
+C       5) add COMMONs
+C       6) add to zerograd
+
+C-----------------------------------------------------------------------
+C-----------------------------------------------------------
+C This subroutine is to mimic the histone like structure but as well can be
+C utilizet to nanostructures (infinit) small modification has to be used to 
+C make it finite (z gradient at the ends has to be changes as well as the x,y
+C gradient has to be modified at the ends 
+C The energy function is Kihara potential 
+C E=4esp*((sigma/(r-r0))^12 - (sigma/(r-r0))^6)
+C 4eps is depth of well sigma is r_minimum r is distance from center of tube 
+C and r0 is the excluded size of nanotube (can be set to 0 if we want just a 
+C simple Kihara potential
+      subroutine calctube2(Etube)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      double precision tub_r,vectube(3),enetube(maxres*2)
+      Etube=0.0d0
+      do i=itube_start,itube_end
+        enetube(i)=0.0d0
+        enetube(i+nres)=0.0d0
+      enddo
+C first we calculate the distance from tube center
+C first sugare-phosphate group for NARES this would be peptide group 
+C for UNRES
+       do i=itube_start,itube_end
+C lets ommit dummy atoms for now
+       
+       if ((itype(i).eq.ntyp1).or.(itype(i+1).eq.ntyp1)) cycle
+C now calculate distance from center of tube and direction vectors
+C      vectube(1)=mod((c(1,i)+c(1,i+1))/2.0d0,boxxsize)
+C          if (vectube(1).lt.0) vectube(1)=vectube(1)+boxxsize
+C      vectube(2)=mod((c(2,i)+c(2,i+1))/2.0d0,boxysize)
+C          if (vectube(2).lt.0) vectube(2)=vectube(2)+boxysize
+      xmin=boxxsize
+      ymin=boxysize
+        do j=-1,1
+         vectube(1)=mod((c(1,i)+c(1,i+1))/2.0d0,boxxsize)
+         vectube(1)=vectube(1)+boxxsize*j
+         vectube(2)=mod((c(2,i)+c(2,i+1))/2.0d0,boxysize)
+         vectube(2)=vectube(2)+boxysize*j
+
+         xminact=abs(vectube(1)-tubecenter(1))
+         yminact=abs(vectube(2)-tubecenter(2))
+           if (xmin.gt.xminact) then
+            xmin=xminact
+            xtemp=vectube(1)
+           endif
+           if (ymin.gt.yminact) then
+             ymin=yminact
+             ytemp=vectube(2)
+            endif
+         enddo
+      vectube(1)=xtemp
+      vectube(2)=ytemp
+      vectube(1)=vectube(1)-tubecenter(1)
+      vectube(2)=vectube(2)-tubecenter(2)
+
+C      print *,"x",(c(1,i)+c(1,i+1))/2.0d0,tubecenter(1)
+C      print *,"y",(c(2,i)+c(2,i+1))/2.0d0,tubecenter(2)
+
+C as the tube is infinity we do not calculate the Z-vector use of Z
+C as chosen axis
+      vectube(3)=0.0d0
+C now calculte the distance
+       tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2)
+C now normalize vector
+      vectube(1)=vectube(1)/tub_r
+      vectube(2)=vectube(2)/tub_r
+C calculte rdiffrence between r and r0
+      rdiff=tub_r-tubeR0
+C and its 6 power
+      rdiff6=rdiff**6.0d0
+C THIS FRAGMENT MAKES TUBE FINITE
+        positi=mod((c(3,i)+c(3,i+1))/2.0d0,boxzsize)
+        if (positi.le.0) positi=positi+boxzsize
+C       print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop
+c for each residue check if it is in lipid or lipid water border area
+C       respos=mod(c(3,i+nres),boxzsize)
+       print *,positi,bordtubebot,buftubebot,bordtubetop
+       if ((positi.gt.bordtubebot)
+     & .and.(positi.lt.bordtubetop)) then
+C the energy transfer exist
+        if (positi.lt.buftubebot) then
+         fracinbuf=1.0d0-
+     &     ((positi-bordtubebot)/tubebufthick)
+C lipbufthick is thickenes of lipid buffore
+         sstube=sscalelip(fracinbuf)
+         ssgradtube=-sscagradlip(fracinbuf)/tubebufthick
+         print *,ssgradtube, sstube,tubetranene(itype(i))
+         enetube(i)=enetube(i)+sstube*tubetranenepep
+C         gg_tube_SC(3,i)=gg_tube_SC(3,i)
+C     &+ssgradtube*tubetranene(itype(i))
+C         gg_tube(3,i-1)= gg_tube(3,i-1)
+C     &+ssgradtube*tubetranene(itype(i))
+C         print *,"doing sccale for lower part"
+        elseif (positi.gt.buftubetop) then
+         fracinbuf=1.0d0-
+     &((bordtubetop-positi)/tubebufthick)
+         sstube=sscalelip(fracinbuf)
+         ssgradtube=sscagradlip(fracinbuf)/tubebufthick
+         enetube(i)=enetube(i)+sstube*tubetranenepep
+C         gg_tube_SC(3,i)=gg_tube_SC(3,i)
+C     &+ssgradtube*tubetranene(itype(i))
+C         gg_tube(3,i-1)= gg_tube(3,i-1)
+C     &+ssgradtube*tubetranene(itype(i))
+C          print *, "doing sscalefor top part",sslip,fracinbuf
+        else
+         sstube=1.0d0
+         ssgradtube=0.0d0
+         enetube(i)=enetube(i)+sstube*tubetranenepep
+C         print *,"I am in true lipid"
+        endif
+        else
+C          sstube=0.0d0
+C          ssgradtube=0.0d0
+        cycle
+        endif ! if in lipid or buffor
+
+C for vectorization reasons we will sumup at the end to avoid depenence of previous
+       enetube(i)=enetube(i)+sstube*
+     &(pep_aa_tube/rdiff6**2.0d0+pep_bb_tube/rdiff6)
+C       write(iout,*) "TU13",i,rdiff6,enetube(i)
+C       print *,rdiff,rdiff6,pep_aa_tube
+C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6
+C now we calculate gradient
+       fac=(-12.0d0*pep_aa_tube/rdiff6-
+     &       6.0d0*pep_bb_tube)/rdiff6/rdiff*sstube
+C       write(iout,'(a5,i4,f12.1,3f12.5)') "TU13",i,rdiff6,enetube(i),
+C     &rdiff,fac
+
+C now direction of gg_tube vector
+        do j=1,3
+        gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac/2.0d0
+        gg_tube(j,i)=gg_tube(j,i)+vectube(j)*fac/2.0d0
+        enddo
+         gg_tube(3,i)=gg_tube(3,i)
+     &+ssgradtube*enetube(i)/sstube/2.0d0
+         gg_tube(3,i-1)= gg_tube(3,i-1)
+     &+ssgradtube*enetube(i)/sstube/2.0d0
+
+        enddo
+C basically thats all code now we split for side-chains (REMEMBER to sum up at the END)
+C        print *,gg_tube(1,0),"TU"
+        do i=itube_start,itube_end
+C Lets not jump over memory as we use many times iti
+         iti=itype(i)
+C lets ommit dummy atoms for now
+         if ((iti.eq.ntyp1)
+C in UNRES uncomment the line below as GLY has no side-chain...
+     &      .or.(iti.eq.10)
+     &   ) cycle
+          vectube(1)=c(1,i+nres)
+          vectube(1)=mod(vectube(1),boxxsize)
+          if (vectube(1).lt.0) vectube(1)=vectube(1)+boxxsize
+          vectube(2)=c(2,i+nres)
+          vectube(2)=mod(vectube(2),boxysize)
+          if (vectube(2).lt.0) vectube(2)=vectube(2)+boxysize
+
+      vectube(1)=vectube(1)-tubecenter(1)
+      vectube(2)=vectube(2)-tubecenter(2)
+C THIS FRAGMENT MAKES TUBE FINITE
+        positi=(mod(c(3,i+nres),boxzsize))
+        if (positi.le.0) positi=positi+boxzsize
+C       print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop
+c for each residue check if it is in lipid or lipid water border area
+C       respos=mod(c(3,i+nres),boxzsize)
+       print *,positi,bordtubebot,buftubebot,bordtubetop
+       if ((positi.gt.bordtubebot)
+     & .and.(positi.lt.bordtubetop)) then
+C the energy transfer exist
+        if (positi.lt.buftubebot) then
+         fracinbuf=1.0d0-
+     &     ((positi-bordtubebot)/tubebufthick)
+C lipbufthick is thickenes of lipid buffore
+         sstube=sscalelip(fracinbuf)
+         ssgradtube=-sscagradlip(fracinbuf)/tubebufthick
+         print *,ssgradtube, sstube,tubetranene(itype(i))
+         enetube(i+nres)=enetube(i+nres)+sstube*tubetranene(itype(i))
+C         gg_tube_SC(3,i)=gg_tube_SC(3,i)
+C     &+ssgradtube*tubetranene(itype(i))
+C         gg_tube(3,i-1)= gg_tube(3,i-1)
+C     &+ssgradtube*tubetranene(itype(i))
+C         print *,"doing sccale for lower part"
+        elseif (positi.gt.buftubetop) then
+         fracinbuf=1.0d0-
+     &((bordtubetop-positi)/tubebufthick)
+         sstube=sscalelip(fracinbuf)
+         ssgradtube=sscagradlip(fracinbuf)/tubebufthick
+         enetube(i+nres)=enetube(i+nres)+sstube*tubetranene(itype(i))
+C         gg_tube_SC(3,i)=gg_tube_SC(3,i)
+C     &+ssgradtube*tubetranene(itype(i))
+C         gg_tube(3,i-1)= gg_tube(3,i-1)
+C     &+ssgradtube*tubetranene(itype(i))
+C          print *, "doing sscalefor top part",sslip,fracinbuf
+        else
+         sstube=1.0d0
+         ssgradtube=0.0d0
+         enetube(i+nres)=enetube(i+nres)+sstube*tubetranene(itype(i))
+C         print *,"I am in true lipid"
+        endif
+        else
+C          sstube=0.0d0
+C          ssgradtube=0.0d0
+        cycle
+        endif ! if in lipid or buffor
+CEND OF FINITE FRAGMENT
+C as the tube is infinity we do not calculate the Z-vector use of Z
+C as chosen axis
+      vectube(3)=0.0d0
+C now calculte the distance
+       tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2)
+C now normalize vector
+      vectube(1)=vectube(1)/tub_r
+      vectube(2)=vectube(2)/tub_r
+C calculte rdiffrence between r and r0
+      rdiff=tub_r-tubeR0
+C and its 6 power
+      rdiff6=rdiff**6.0d0
+C for vectorization reasons we will sumup at the end to avoid depenence of previous
+       sc_aa_tube=sc_aa_tube_par(iti)
+       sc_bb_tube=sc_bb_tube_par(iti)
+       enetube(i+nres)=(sc_aa_tube/rdiff6**2.0d0+sc_bb_tube/rdiff6)
+     &                 *sstube+enetube(i+nres)
+C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6
+C now we calculate gradient
+       fac=(-12.0d0*sc_aa_tube/rdiff6**2.0d0/rdiff-
+     &       6.0d0*sc_bb_tube/rdiff6/rdiff)*sstube
+C now direction of gg_tube vector
+         do j=1,3
+          gg_tube_SC(j,i)=gg_tube_SC(j,i)+vectube(j)*fac
+          gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac
+         enddo
+         gg_tube_SC(3,i)=gg_tube_SC(3,i)
+     &+ssgradtube*enetube(i+nres)/sstube
+         gg_tube(3,i-1)= gg_tube(3,i-1)
+     &+ssgradtube*enetube(i+nres)/sstube
+
+        enddo
+        do i=itube_start,itube_end
+          Etube=Etube+enetube(i)+enetube(i+nres)
+        enddo
+C        print *,"ETUBE", etube
+        return
+        end
+C TO DO 1) add to total energy
+C       2) add to gradient summation
+C       3) add reading parameters (AND of course oppening of PARAM file)
+C       4) add reading the center of tube
+C       5) add COMMONs
+C       6) add to zerograd
+
+
+C#-------------------------------------------------------------------------------
+C This subroutine is to mimic the histone like structure but as well can be
+C utilizet to nanostructures (infinit) small modification has to be used to 
+C make it finite (z gradient at the ends has to be changes as well as the x,y
+C gradient has to be modified at the ends 
+C The energy function is Kihara potential 
+C E=4esp*((sigma/(r-r0))^12 - (sigma/(r-r0))^6)
+C 4eps is depth of well sigma is r_minimum r is distance from center of tube 
+C and r0 is the excluded size of nanotube (can be set to 0 if we want just a 
+C simple Kihara potential
+      subroutine calcnano(Etube)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      double precision tub_r,vectube(3),enetube(maxres*2),
+     & enecavtube(maxres*2)
+      Etube=0.0d0
+      do i=itube_start,itube_end
+        enetube(i)=0.0d0
+        enetube(i+nres)=0.0d0
+      enddo
+C first we calculate the distance from tube center
+C first sugare-phosphate group for NARES this would be peptide group 
+C for UNRES
+       do i=itube_start,itube_end
+C lets ommit dummy atoms for now
+       if ((itype(i).eq.ntyp1).or.(itype(i+1).eq.ntyp1)) cycle
+C now calculate distance from center of tube and direction vectors
+      xmin=boxxsize
+      ymin=boxysize
+      zmin=boxzsize
+
+        do j=-1,1
+         vectube(1)=mod((c(1,i)+c(1,i+1))/2.0d0,boxxsize)
+         vectube(1)=vectube(1)+boxxsize*j
+         vectube(2)=mod((c(2,i)+c(2,i+1))/2.0d0,boxysize)
+         vectube(2)=vectube(2)+boxysize*j
+         vectube(3)=mod((c(3,i)+c(3,i+1))/2.0d0,boxzsize)
+         vectube(3)=vectube(3)+boxzsize*j
+
+
+         xminact=abs(vectube(1)-tubecenter(1))
+         yminact=abs(vectube(2)-tubecenter(2))
+         zminact=abs(vectube(3)-tubecenter(3))
+
+           if (xmin.gt.xminact) then
+            xmin=xminact
+            xtemp=vectube(1)
+           endif
+           if (ymin.gt.yminact) then
+             ymin=yminact
+             ytemp=vectube(2)
+            endif
+           if (zmin.gt.zminact) then
+             zmin=zminact
+             ztemp=vectube(3)
+            endif
+         enddo
+      vectube(1)=xtemp
+      vectube(2)=ytemp
+      vectube(3)=ztemp
+
+      vectube(1)=vectube(1)-tubecenter(1)
+      vectube(2)=vectube(2)-tubecenter(2)
+      vectube(3)=vectube(3)-tubecenter(3)
+
+C      print *,"x",(c(1,i)+c(1,i+1))/2.0d0,tubecenter(1)
+C      print *,"y",(c(2,i)+c(2,i+1))/2.0d0,tubecenter(2)
+C as the tube is infinity we do not calculate the Z-vector use of Z
+C as chosen axis
+C      vectube(3)=0.0d0
+C now calculte the distance
+       tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2)
+C now normalize vector
+      vectube(1)=vectube(1)/tub_r
+      vectube(2)=vectube(2)/tub_r
+      vectube(3)=vectube(3)/tub_r
+C calculte rdiffrence between r and r0
+      rdiff=tub_r-tubeR0
+C and its 6 power
+      rdiff6=rdiff**6.0d0
+C for vectorization reasons we will sumup at the end to avoid depenence of previous
+       enetube(i)=pep_aa_tube/rdiff6**2.0d0+pep_bb_tube/rdiff6
+C       write(iout,*) "TU13",i,rdiff6,enetube(i)
+C       print *,rdiff,rdiff6,pep_aa_tube
+C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6
+C now we calculate gradient
+       fac=(-12.0d0*pep_aa_tube/rdiff6-
+     &       6.0d0*pep_bb_tube)/rdiff6/rdiff
+C       write(iout,'(a5,i4,f12.1,3f12.5)') "TU13",i,rdiff6,enetube(i),
+C     &rdiff,fac
+         if (acavtubpep.eq.0.0d0) then
+C go to 667
+         enecavtube(i)=0.0
+         faccav=0.0
+         else
+         denominator=(1.0+dcavtubpep*rdiff6*rdiff6)
+         enecavtube(i)=
+     &   (bcavtubpep*rdiff+acavtubpep*sqrt(rdiff)+ccavtubpep)
+     &   /denominator
+         enecavtube(i)=0.0
+         faccav=((bcavtubpep*1.0d0+acavtubpep/2.0d0/sqrt(rdiff))
+     &   *denominator-(bcavtubpep*rdiff+acavtubpep*sqrt(rdiff)
+     &   +ccavtubpep)*rdiff6**2.0d0/rdiff*dcavtubpep*12.0d0)
+     &   /denominator**2.0d0
+C         faccav=0.0
+C         fac=fac+faccav
+C 667     continue
+         endif
+C         print *,"TUT",i,iti,rdiff,rdiff6,acavtubpep,denominator,
+C     &   enecavtube(i),faccav
+C         print *,"licz=",
+C     & (bcavtub(iti)*rdiff+acavtub(iti)*sqrt(rdiff)+ccavtub(iti))
+CX         print *,"finene=",enetube(i+nres)+enecavtube(i)
+         
+C now direction of gg_tube vector
+        do j=1,3
+        gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac/2.0d0
+        gg_tube(j,i)=gg_tube(j,i)+vectube(j)*fac/2.0d0
+        enddo
+        enddo
+
+       do i=itube_start,itube_end
+        enecavtube(i)=0.0 
+C Lets not jump over memory as we use many times iti
+         iti=itype(i)
+C lets ommit dummy atoms for now
+         if ((iti.eq.ntyp1)
+C in UNRES uncomment the line below as GLY has no side-chain...
+C      .or.(iti.eq.10)
+     &   ) cycle
+      xmin=boxxsize
+      ymin=boxysize
+      zmin=boxzsize
+        do j=-1,1
+         vectube(1)=mod((c(1,i+nres)),boxxsize)
+         vectube(1)=vectube(1)+boxxsize*j
+         vectube(2)=mod((c(2,i+nres)),boxysize)
+         vectube(2)=vectube(2)+boxysize*j
+         vectube(3)=mod((c(3,i+nres)),boxzsize)
+         vectube(3)=vectube(3)+boxzsize*j
+
+
+         xminact=abs(vectube(1)-tubecenter(1))
+         yminact=abs(vectube(2)-tubecenter(2))
+         zminact=abs(vectube(3)-tubecenter(3))
+
+           if (xmin.gt.xminact) then
+            xmin=xminact
+            xtemp=vectube(1)
+           endif
+           if (ymin.gt.yminact) then
+             ymin=yminact
+             ytemp=vectube(2)
+            endif
+           if (zmin.gt.zminact) then
+             zmin=zminact
+             ztemp=vectube(3)
+            endif
+         enddo
+      vectube(1)=xtemp
+      vectube(2)=ytemp
+      vectube(3)=ztemp
+
+C          write(iout,*), "tututu", vectube(1),tubecenter(1),vectube(2),
+C     &     tubecenter(2)
+      vectube(1)=vectube(1)-tubecenter(1)
+      vectube(2)=vectube(2)-tubecenter(2)
+      vectube(3)=vectube(3)-tubecenter(3)
+C now calculte the distance
+       tub_r=dsqrt(vectube(1)**2+vectube(2)**2+vectube(3)**2)
+C now normalize vector
+      vectube(1)=vectube(1)/tub_r
+      vectube(2)=vectube(2)/tub_r
+      vectube(3)=vectube(3)/tub_r
+
+C calculte rdiffrence between r and r0
+      rdiff=tub_r-tubeR0
+C and its 6 power
+      rdiff6=rdiff**6.0d0
+C for vectorization reasons we will sumup at the end to avoid depenence of previous
+       sc_aa_tube=sc_aa_tube_par(iti)
+       sc_bb_tube=sc_bb_tube_par(iti)
+       enetube(i+nres)=sc_aa_tube/rdiff6**2.0d0+sc_bb_tube/rdiff6
+C       enetube(i+nres)=0.0d0
+C pep_aa_tube and pep_bb_tube are precomputed values A=4eps*sigma^12 B=4eps*sigma^6
+C now we calculate gradient
+       fac=-12.0d0*sc_aa_tube/rdiff6**2.0d0/rdiff-
+     &       6.0d0*sc_bb_tube/rdiff6/rdiff
+C       fac=0.0
+C now direction of gg_tube vector
+C Now cavity term E=a(x+bsqrt(x)+c)/(1+dx^12)
+         if (acavtub(iti).eq.0.0d0) then
+C go to 667
+         enecavtube(i+nres)=0.0
+         faccav=0.0
+         else
+         denominator=(1.0+dcavtub(iti)*rdiff6*rdiff6)
+         enecavtube(i+nres)=
+     &   (bcavtub(iti)*rdiff+acavtub(iti)*sqrt(rdiff)+ccavtub(iti))
+     &   /denominator
+C         enecavtube(i)=0.0
+         faccav=((bcavtub(iti)*1.0d0+acavtub(iti)/2.0d0/sqrt(rdiff))
+     &   *denominator-(bcavtub(iti)*rdiff+acavtub(iti)*sqrt(rdiff)
+     &   +ccavtub(iti))*rdiff6**2.0d0/rdiff*dcavtub(iti)*12.0d0)
+     &   /denominator**2.0d0
+C         faccav=0.0
+         fac=fac+faccav
+C 667     continue
+         endif
+C         print *,"TUT",i,iti,rdiff,rdiff6,acavtub(iti),denominator,
+C     &   enecavtube(i),faccav
+C         print *,"licz=",
+C     & (bcavtub(iti)*rdiff+acavtub(iti)*sqrt(rdiff)+ccavtub(iti))
+C         print *,"finene=",enetube(i+nres)+enecavtube(i)
+         do j=1,3
+          gg_tube_SC(j,i)=gg_tube_SC(j,i)+vectube(j)*fac
+          gg_tube(j,i-1)=gg_tube(j,i-1)+vectube(j)*fac
+         enddo
+        enddo
+C Now cavity term E=a(x+bsqrt(x)+c)/(1+dx^12)
+C        do i=itube_start,itube_end
+C        enecav(i)=0.0        
+C        iti=itype(i)
+C        if (acavtub(iti).eq.0.0) cycle
+        
+
+
+        do i=itube_start,itube_end
+          Etube=Etube+enetube(i)+enetube(i+nres)+enecavtube(i)
+     & +enecavtube(i+nres)
+        enddo
+C        print *,"ETUBE", etube
+        return
+        end
+C TO DO 1) add to total energy
+C       2) add to gradient summation
+C       3) add reading parameters (AND of course oppening of PARAM file)
+C       4) add reading the center of tube
+C       5) add COMMONs
+C       6) add to zerograd