Merge branch 'devel' into feature-ga
[unres.git] / source / unres / src_MD / src / old_F / eelec.F
diff --git a/source/unres/src_MD/src/old_F/eelec.F b/source/unres/src_MD/src/old_F/eelec.F
deleted file mode 100644 (file)
index 492d5db..0000000
+++ /dev/null
@@ -1,278 +0,0 @@
-      subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
-C
-C This subroutine calculates the average interaction energy and its gradient
-C in the virtual-bond vectors between non-adjacent peptide groups, based on 
-C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
-C The potential depends both on the distance of peptide-group centers and on 
-C the orientation of the CA-CA virtual bonds.
-C 
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.CONTROL'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.CONTACTS'
-      include 'COMMON.TORSION'
-      include 'COMMON.VECTORS'
-      include 'COMMON.FFIELD'
-      dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
-     &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
-      double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
-      common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1,j2
-c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
-#ifdef MOMENT
-      double precision scal_el /1.0d0/
-#else
-      double precision scal_el /0.5d0/
-#endif
-C 12/13/98 
-C 13-go grudnia roku pamietnego... 
-      double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
-     &                   0.0d0,1.0d0,0.0d0,
-     &                   0.0d0,0.0d0,1.0d0/
-cd      write(iout,*) 'In EELEC'
-cd      do i=1,nloctyp
-cd        write(iout,*) 'Type',i
-cd        write(iout,*) 'B1',B1(:,i)
-cd        write(iout,*) 'B2',B2(:,i)
-cd        write(iout,*) 'CC',CC(:,:,i)
-cd        write(iout,*) 'DD',DD(:,:,i)
-cd        write(iout,*) 'EE',EE(:,:,i)
-cd      enddo
-cd      call check_vecgrad
-cd      stop
-      if (icheckgrad.eq.1) then
-        do i=1,nres-1
-          fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
-          do k=1,3
-            dc_norm(k,i)=dc(k,i)*fac
-          enddo
-c          write (iout,*) 'i',i,' fac',fac
-        enddo
-      endif
-      if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
-     &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
-     &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
-c        call vec_and_deriv
-        call set_matrices
-      endif
-cd      do i=1,nres-1
-cd        write (iout,*) 'i=',i
-cd        do k=1,3
-cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
-cd        enddo
-cd        do k=1,3
-cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
-cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
-cd        enddo
-cd      enddo
-      num_conti_hb=0
-      ees=0.0D0
-      evdw1=0.0D0
-      eel_loc=0.0d0 
-      eello_turn3=0.0d0
-      eello_turn4=0.0d0
-      ind=0
-      do i=1,nres
-        num_cont_hb(i)=0
-      enddo
-cd      print '(a)','Enter EELEC'
-cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
-      do i=1,nres
-        gel_loc_loc(i)=0.0d0
-        gcorr_loc(i)=0.0d0
-      enddo
-      do i=iatel_s,iatel_e
-        dxi=dc(1,i)
-        dyi=dc(2,i)
-        dzi=dc(3,i)
-        dx_normi=dc_norm(1,i)
-        dy_normi=dc_norm(2,i)
-        dz_normi=dc_norm(3,i)
-        xmedi=c(1,i)+0.5d0*dxi
-        ymedi=c(2,i)+0.5d0*dyi
-        zmedi=c(3,i)+0.5d0*dzi
-        num_conti=0
-c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
-        do j=ielstart(i),ielend(i)
-          ind=ind+1
-          iteli=itel(i)
-          itelj=itel(j)
-          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
-          aaa=app(iteli,itelj)
-          bbb=bpp(iteli,itelj)
-          ael6i=ael6(iteli,itelj)
-          ael3i=ael3(iteli,itelj) 
-C Diagnostics only!!!
-c         aaa=0.0D0
-c         bbb=0.0D0
-c         ael6i=0.0D0
-c         ael3i=0.0D0
-C End diagnostics
-          dxj=dc(1,j)
-          dyj=dc(2,j)
-          dzj=dc(3,j)
-          dx_normj=dc_norm(1,j)
-          dy_normj=dc_norm(2,j)
-          dz_normj=dc_norm(3,j)
-          xj=c(1,j)+0.5D0*dxj-xmedi
-          yj=c(2,j)+0.5D0*dyj-ymedi
-          zj=c(3,j)+0.5D0*dzj-zmedi
-          rij=xj*xj+yj*yj+zj*zj
-          rrmij=1.0D0/rij
-          rij=dsqrt(rij)
-          rmij=1.0D0/rij
-          r3ij=rrmij*rmij
-          r6ij=r3ij*r3ij  
-          cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
-          cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
-          cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
-          fac=cosa-3.0D0*cosb*cosg
-          ev1=aaa*r6ij*r6ij
-c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
-          if (j.eq.i+2) ev1=scal_el*ev1
-          ev2=bbb*r6ij
-          fac3=ael6i*r6ij
-          fac4=ael3i*r3ij
-          evdwij=ev1+ev2
-          el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
-          el2=fac4*fac       
-          eesij=el1+el2
-C 12/26/95 - for the evaluation of multi-body H-bonding interactions
-          ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
-          ees=ees+eesij
-          evdw1=evdw1+evdwij
-cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
-cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
-cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
-cd     &      xmedi,ymedi,zmedi,xj,yj,zj
-
-          if (energy_dec) then 
-              write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
-              write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
-          endif
-
-C
-C Calculate contributions to the Cartesian gradient.
-C
-#ifdef SPLITELE
-          facvdw=-6*rrmij*(ev1+evdwij)
-          facel=-3*rrmij*(el1+eesij)
-          fac1=fac
-          erij(1)=xj*rmij
-          erij(2)=yj*rmij
-          erij(3)=zj*rmij
-*
-* Radial derivatives. First process both termini of the fragment (i,j)
-*
-          ggg(1)=facel*xj
-          ggg(2)=facel*yj
-          ggg(3)=facel*zj
-          do k=1,3
-            ghalf=0.5D0*ggg(k)
-            gelc(k,i)=gelc(k,i)+ghalf
-            gelc(k,j)=gelc(k,j)+ghalf
-          enddo
-*
-* Loop over residues i+1 thru j-1.
-*
-caug8          do k=i+1,j-1
-caug8            do l=1,3
-caug8              gelc(l,k)=gelc(l,k)+ggg(l)
-caug8            enddo
-caug8          enddo
-          ggg(1)=facvdw*xj
-          ggg(2)=facvdw*yj
-          ggg(3)=facvdw*zj
-          do k=1,3
-            ghalf=0.5D0*ggg(k)
-            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
-            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
-          enddo
-*
-* Loop over residues i+1 thru j-1.
-*
-caug8          do k=i+1,j-1
-caug8            do l=1,3
-caug8              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
-caug8            enddo
-caug8          enddo
-#else
-          facvdw=ev1+evdwij 
-          facel=el1+eesij  
-          fac1=fac
-          fac=-3*rrmij*(facvdw+facvdw+facel)
-          erij(1)=xj*rmij
-          erij(2)=yj*rmij
-          erij(3)=zj*rmij
-*
-* Radial derivatives. First process both termini of the fragment (i,j)
-* 
-          ggg(1)=fac*xj
-          ggg(2)=fac*yj
-          ggg(3)=fac*zj
-          do k=1,3
-            ghalf=0.5D0*ggg(k)
-            gelc(k,i)=gelc(k,i)+ghalf
-            gelc(k,j)=gelc(k,j)+ghalf
-          enddo
-*
-* Loop over residues i+1 thru j-1.
-*
-caug8          do k=i+1,j-1
-caug8            do l=1,3
-caug8              gelc(l,k)=gelc(l,k)+ggg(l)
-caug8            enddo
-caug8          enddo
-#endif
-*
-* Angular part
-*          
-          ecosa=2.0D0*fac3*fac1+fac4
-          fac4=-3.0D0*fac4
-          fac3=-6.0D0*fac3
-          ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
-          ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
-          do k=1,3
-            dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
-            dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
-          enddo
-cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
-cd   &          (dcosg(k),k=1,3)
-          do k=1,3
-            ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
-          enddo
-          do k=1,3
-            ghalf=0.5D0*ggg(k)
-            gelc(k,i)=gelc(k,i)+ghalf
-     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
-     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
-            gelc(k,j)=gelc(k,j)+ghalf
-     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
-     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
-          enddo
-caug8          do k=i+1,j-1
-caug8            do l=1,3
-caug8              gelc(l,k)=gelc(l,k)+ggg(l)
-caug8            enddo
-caug8          enddo
-
-        enddo ! j
-        num_cont_hb(i)=num_conti
-      enddo   ! i
-c      write (iout,*) "Number of loop steps in EELEC:",ind
-cd      do i=1,nres
-cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
-cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
-cd      enddo
-c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
-ccc      eel_loc=eel_loc+eello_turn3
-      return
-      end
-