Merge branch 'devel' into feature-ga
[unres.git] / source / unres / src_MD / src / moments.f
diff --git a/source/unres/src_MD/src/moments.f b/source/unres/src_MD/src/moments.f
deleted file mode 100644 (file)
index 5adbf21..0000000
+++ /dev/null
@@ -1,328 +0,0 @@
-      subroutine inertia_tensor
-c Calculating the intertia tensor for the entire protein in order to
-c remove the perpendicular components of velocity matrix which cause
-c the molecule to rotate.       
-       implicit real*8 (a-h,o-z)
-       include 'DIMENSIONS'
-       include 'COMMON.CONTROL'
-       include 'COMMON.VAR'
-       include 'COMMON.MD'
-       include 'COMMON.CHAIN'
-       include 'COMMON.DERIV'
-       include 'COMMON.GEO'
-       include 'COMMON.LOCAL'
-       include 'COMMON.INTERACT'
-       include 'COMMON.IOUNITS'
-       include 'COMMON.NAMES'
-      
-      double precision Im(3,3),Imcp(3,3),cm(3),pr(3),M_SC,
-     & eigvec(3,3),Id(3,3),eigval(3),L(3),vp(3),vrot(3),
-     & vpp(3,0:MAXRES),vs_p(3),pr1(3,3),
-     & pr2(3,3),pp(3),incr(3),v(3),mag,mag2 
-      common /gucio/ cm
-      integer iti,inres 
-        do i=1,3
-          do j=1,3
-             Im(i,j)=0.0d0
-             pr1(i,j)=0.0d0
-             pr2(i,j)=0.0d0                 
-          enddo
-          L(i)=0.0d0
-           cm(i)=0.0d0
-           vrot(i)=0.0d0                  
-        enddo
-c   calculating the center of the mass of the protein                                  
-        do i=nnt,nct-1
-          do j=1,3
-            cm(j)=cm(j)+c(j,i)+0.5d0*dc(j,i)
-          enddo
-        enddo
-        do j=1,3
-         cm(j)=mp*cm(j)
-        enddo
-        M_SC=0.0d0                             
-        do i=nnt,nct
-           iti=itype(i)                 
-          M_SC=M_SC+msc(iti)
-           inres=i+nres
-           do j=1,3
-            cm(j)=cm(j)+msc(iti)*c(j,inres)        
-           enddo
-        enddo
-        do j=1,3
-          cm(j)=cm(j)/(M_SC+(nct-nnt)*mp)
-        enddo
-       
-        do i=nnt,nct-1
-          do j=1,3
-            pr(j)=c(j,i)+0.5d0*dc(j,i)-cm(j)
-          enddo
-          Im(1,1)=Im(1,1)+mp*(pr(2)*pr(2)+pr(3)*pr(3))
-          Im(1,2)=Im(1,2)-mp*pr(1)*pr(2)
-          Im(1,3)=Im(1,3)-mp*pr(1)*pr(3)
-          Im(2,3)=Im(2,3)-mp*pr(2)*pr(3)       
-          Im(2,2)=Im(2,2)+mp*(pr(3)*pr(3)+pr(1)*pr(1))
-          Im(3,3)=Im(3,3)+mp*(pr(1)*pr(1)+pr(2)*pr(2))
-        enddo                  
-        
-       do i=nnt,nct    
-           iti=itype(i)
-           inres=i+nres
-           do j=1,3
-             pr(j)=c(j,inres)-cm(j)        
-           enddo
-          Im(1,1)=Im(1,1)+msc(iti)*(pr(2)*pr(2)+pr(3)*pr(3))
-          Im(1,2)=Im(1,2)-msc(iti)*pr(1)*pr(2)
-          Im(1,3)=Im(1,3)-msc(iti)*pr(1)*pr(3)
-          Im(2,3)=Im(2,3)-msc(iti)*pr(2)*pr(3) 
-          Im(2,2)=Im(2,2)+msc(iti)*(pr(3)*pr(3)+pr(1)*pr(1))
-          Im(3,3)=Im(3,3)+msc(iti)*(pr(1)*pr(1)+pr(2)*pr(2))              
-        enddo
-          
-        do i=nnt,nct-1
-          Im(1,1)=Im(1,1)+Ip*(1-dc_norm(1,i)*dc_norm(1,i))*      
-     &    vbld(i+1)*vbld(i+1)*0.25d0
-         Im(1,2)=Im(1,2)+Ip*(-dc_norm(1,i)*dc_norm(2,i))*
-     &    vbld(i+1)*vbld(i+1)*0.25d0             
-          Im(1,3)=Im(1,3)+Ip*(-dc_norm(1,i)*dc_norm(3,i))*
-     &    vbld(i+1)*vbld(i+1)*0.25d0     
-          Im(2,3)=Im(2,3)+Ip*(-dc_norm(2,i)*dc_norm(3,i))*
-     &    vbld(i+1)*vbld(i+1)*0.25d0           
-          Im(2,2)=Im(2,2)+Ip*(1-dc_norm(2,i)*dc_norm(2,i))*
-     &    vbld(i+1)*vbld(i+1)*0.25d0     
-          Im(3,3)=Im(3,3)+Ip*(1-dc_norm(3,i)*dc_norm(3,i))*
-     &    vbld(i+1)*vbld(i+1)*0.25d0
-        enddo
-        
-                               
-        do i=nnt,nct
-         if (itype(i).ne.10) then
-           iti=itype(i)                 
-           inres=i+nres
-          Im(1,1)=Im(1,1)+Isc(iti)*(1-dc_norm(1,inres)*
-     &   dc_norm(1,inres))*vbld(inres)*vbld(inres)
-          Im(1,2)=Im(1,2)-Isc(iti)*(dc_norm(1,inres)*
-     &   dc_norm(2,inres))*vbld(inres)*vbld(inres)
-          Im(1,3)=Im(1,3)-Isc(iti)*(dc_norm(1,inres)*
-     &   dc_norm(3,inres))*vbld(inres)*vbld(inres)
-          Im(2,3)=Im(2,3)-Isc(iti)*(dc_norm(2,inres)*
-     &   dc_norm(3,inres))*vbld(inres)*vbld(inres)     
-          Im(2,2)=Im(2,2)+Isc(iti)*(1-dc_norm(2,inres)*
-     &   dc_norm(2,inres))*vbld(inres)*vbld(inres)
-          Im(3,3)=Im(3,3)+Isc(iti)*(1-dc_norm(3,inres)*
-     &           dc_norm(3,inres))*vbld(inres)*vbld(inres)
-         endif
-        enddo
-       
-        call angmom(cm,L)
-c        write(iout,*) "The angular momentum before adjustment:"
-c        write(iout,*) (L(j),j=1,3)                                                                                                                                                                                                                    
-        
-       Im(2,1)=Im(1,2)
-        Im(3,1)=Im(1,3)
-        Im(3,2)=Im(2,3)
-      
-c  Copying the Im matrix for the djacob subroutine
-        do i=1,3
-         do j=1,3
-           Imcp(i,j)=Im(i,j)
-            Id(i,j)=0.0d0          
-         enddo
-        enddo
-                                                             
-c   Finding the eigenvectors and eignvalues of the inertia tensor
-       call djacob(3,3,10000,1.0d-10,Imcp,eigvec,eigval)
-c       write (iout,*) "Eigenvalues & Eigenvectors"
-c       write (iout,'(5x,3f10.5)') (eigval(i),i=1,3)
-c       write (iout,*)
-c       do i=1,3
-c         write (iout,'(i5,3f10.5)') i,(eigvec(i,j),j=1,3)
-c       enddo
-c   Constructing the diagonalized matrix
-       do i=1,3
-         if (dabs(eigval(i)).gt.1.0d-15) then
-           Id(i,i)=1.0d0/eigval(i)
-         else
-           Id(i,i)=0.0d0
-         endif
-       enddo
-        do i=1,3
-          do j=1,3
-              Imcp(i,j)=eigvec(j,i)
-           enddo
-        enddo   
-        do i=1,3
-           do j=1,3
-              do k=1,3  
-                 pr1(i,j)=pr1(i,j)+Id(i,k)*Imcp(k,j)
-              enddo
-          enddo
-        enddo
-        do i=1,3
-           do j=1,3
-              do k=1,3  
-                 pr2(i,j)=pr2(i,j)+eigvec(i,k)*pr1(k,j)
-              enddo
-          enddo
-        enddo
-c  Calculating the total rotational velocity of the molecule
-       do i=1,3    
-         do j=1,3
-           vrot(i)=vrot(i)+pr2(i,j)*L(j)
-         enddo
-       enddo   
-c   Resetting the velocities
-       do i=nnt,nct-1
-         call vecpr(vrot(1),dc(1,i),vp)  
-        do j=1,3
-           d_t(j,i)=d_t(j,i)-vp(j)
-          enddo
-        enddo
-        do i=nnt,nct 
-        if(itype(i).ne.10) then
-           inres=i+nres
-           call vecpr(vrot(1),dc(1,inres),vp)                   
-          do j=1,3
-             d_t(j,inres)=d_t(j,inres)-vp(j)
-           enddo
-       endif
-       enddo
-       call angmom(cm,L)
-c       write(iout,*) "The angular momentum after adjustment:"
-c       write(iout,*) (L(j),j=1,3)                                                                                                                                                                                                                     
-       return
-       end 
-c----------------------------------------------------------------------------
-       subroutine angmom(cm,L)
-       implicit real*8 (a-h,o-z)
-       include 'DIMENSIONS'
-       include 'COMMON.CONTROL'
-       include 'COMMON.VAR'
-       include 'COMMON.MD'
-       include 'COMMON.CHAIN'
-       include 'COMMON.DERIV'
-       include 'COMMON.GEO'
-       include 'COMMON.LOCAL'
-       include 'COMMON.INTERACT'
-       include 'COMMON.IOUNITS'
-       include 'COMMON.NAMES'
-      
-      double precision L(3),cm(3),pr(3),vp(3),vrot(3),incr(3),v(3),
-     &  pp(3)
-      integer iti,inres 
-c  Calculate the angular momentum
-       do j=1,3
-          L(j)=0.0d0
-       enddo
-       do j=1,3
-          incr(j)=d_t(j,0)
-       enddo                  
-       do i=nnt,nct-1
-          do j=1,3
-            pr(j)=c(j,i)+0.5d0*dc(j,i)-cm(j)
-          enddo
-          do j=1,3
-            v(j)=incr(j)+0.5d0*d_t(j,i)
-          enddo
-         do j=1,3
-            incr(j)=incr(j)+d_t(j,i)
-          enddo                
-          call vecpr(pr(1),v(1),vp)
-          do j=1,3
-            L(j)=L(j)+mp*vp(j)
-          enddo
-          do j=1,3
-             pr(j)=0.5d0*dc(j,i)
-             pp(j)=0.5d0*d_t(j,i)                
-          enddo
-         call vecpr(pr(1),pp(1),vp)
-         do j=1,3               
-             L(j)=L(j)+Ip*vp(j)         
-          enddo
-        enddo
-        do j=1,3
-          incr(j)=d_t(j,0)
-        enddo  
-        do i=nnt,nct
-         iti=itype(i)   
-         inres=i+nres
-         do j=1,3
-           pr(j)=c(j,inres)-cm(j)          
-         enddo
-         if (itype(i).ne.10) then
-           do j=1,3
-             v(j)=incr(j)+d_t(j,inres)
-           enddo
-         else
-           do j=1,3
-             v(j)=incr(j)
-           enddo
-         endif
-         call vecpr(pr(1),v(1),vp)
-c         write (iout,*) "i",i," iti",iti," pr",(pr(j),j=1,3),
-c     &     " v",(v(j),j=1,3)," vp",(vp(j),j=1,3)
-         do j=1,3
-            L(j)=L(j)+msc(iti)*vp(j)
-         enddo
-c         write (iout,*) "L",(l(j),j=1,3)
-         if (itype(i).ne.10) then
-          do j=1,3
-            v(j)=incr(j)+d_t(j,inres)
-           enddo
-           call vecpr(dc(1,inres),d_t(1,inres),vp)
-           do j=1,3                               
-             L(j)=L(j)+Isc(iti)*vp(j)   
-          enddo                           
-         endif
-        do j=1,3
-             incr(j)=incr(j)+d_t(j,i)
-         enddo
-       enddo
-      return
-      end
-c------------------------------------------------------------------------------
-       subroutine vcm_vel(vcm)
-       implicit real*8 (a-h,o-z)
-       include 'DIMENSIONS'
-       include 'COMMON.VAR'
-       include 'COMMON.MD'
-       include 'COMMON.CHAIN'
-       include 'COMMON.DERIV'
-       include 'COMMON.GEO'
-       include 'COMMON.LOCAL'
-       include 'COMMON.INTERACT'
-       include 'COMMON.IOUNITS'
-       double precision vcm(3),vv(3),summas,amas
-       do j=1,3
-         vcm(j)=0.0d0
-         vv(j)=d_t(j,0)
-       enddo
-       summas=0.0d0
-       do i=nnt,nct
-         if (i.lt.nct) then
-           summas=summas+mp
-           do j=1,3
-             vcm(j)=vcm(j)+mp*(vv(j)+0.5d0*d_t(j,i))
-           enddo
-         endif
-         amas=msc(itype(i))
-         summas=summas+amas                     
-         if (itype(i).ne.10) then
-           do j=1,3
-             vcm(j)=vcm(j)+amas*(vv(j)+d_t(j,i+nres))
-           enddo
-         else
-           do j=1,3
-             vcm(j)=vcm(j)+amas*vv(j)
-           enddo
-         endif
-         do j=1,3
-           vv(j)=vv(j)+d_t(j,i)
-         enddo
-       enddo 
-c       write (iout,*) "vcm",(vcm(j),j=1,3)," summas",summas
-       do j=1,3
-         vcm(j)=vcm(j)/summas
-       enddo
-       return
-       end