Merge branch 'devel' into feature-ga
[unres.git] / source / unres / src_MD / old_F / energy_p_new-sep.F.org
diff --git a/source/unres/src_MD/old_F/energy_p_new-sep.F.org b/source/unres/src_MD/old_F/energy_p_new-sep.F.org
deleted file mode 100644 (file)
index 51c8c8b..0000000
+++ /dev/null
@@ -1,2433 +0,0 @@
-C-----------------------------------------------------------------------
-      double precision function sscale(r)
-      double precision r,gamm
-      include "COMMON.SPLITELE"
-      if(r.lt.r_cut-rlamb) then
-        sscale=1.0d0
-      else if(r.le.r_cut.and.r.ge.r_cut-rlamb) then
-        gamm=(r-(r_cut-rlamb))/rlamb
-        sscale=1.0d0+gamm*gamm*(2*gamm-3.0d0)
-      else
-        sscale=0d0
-      endif
-      return
-      end
-C-----------------------------------------------------------------------
-      subroutine elj_long(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the LJ potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      parameter (accur=1.0d-10)
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.TORSION'
-      include 'COMMON.SBRIDGE'
-      include 'COMMON.NAMES'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CONTACTS'
-      dimension gg(3)
-c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
-cd   &                  'iend=',iend(i,iint)
-          do j=istart(i,iint),iend(i,iint)
-            itypj=itype(j)
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            rij=xj*xj+yj*yj+zj*zj
-            sss=sscale(dsqrt(rij)/sigma(itypi,itypj))
-            if (sss.lt.1.0d0) then
-              rrij=1.0D0/rij
-              fac=rrij**expon2
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=e1+e2
-              evdw=evdw+(1.0d0-sss)*evdwij
-C 
-C Calculate the components of the gradient in DC and X
-C
-              fac=-rrij*(e1+evdwij)*(1.0d0-sss)
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-              do k=1,3
-                gvdwx(k,i)=gvdwx(k,i)-gg(k)
-                gvdwx(k,j)=gvdwx(k,j)+gg(k)
-              enddo
-              do k=i,j-1
-                do l=1,3
-                  gvdwc(l,k)=gvdwc(l,k)+gg(l)
-                enddo
-              enddo
-            endif
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-      do i=1,nct
-        do j=1,3
-          gvdwc(j,i)=expon*gvdwc(j,i)
-          gvdwx(j,i)=expon*gvdwx(j,i)
-        enddo
-      enddo
-C******************************************************************************
-C
-C                              N O T E !!!
-C
-C To save time, the factor of EXPON has been extracted from ALL components
-C of GVDWC and GRADX. Remember to multiply them by this factor before further 
-C use!
-C
-C******************************************************************************
-      return
-      end
-C-----------------------------------------------------------------------
-      subroutine elj_short(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the LJ potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      parameter (accur=1.0d-10)
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.TORSION'
-      include 'COMMON.SBRIDGE'
-      include 'COMMON.NAMES'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CONTACTS'
-      dimension gg(3)
-c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
-cd   &                  'iend=',iend(i,iint)
-          do j=istart(i,iint),iend(i,iint)
-            itypj=itype(j)
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            rij=xj*xj+yj*yj+zj*zj
-            sss=sscale(dsqrt(rij)/sigma(itypi,itypj))
-            if (sss.gt.0.0d0) then
-              rrij=1.0D0/rij
-              fac=rrij**expon2
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=e1+e2
-              evdw=evdw+sss*evdwij
-C 
-C Calculate the components of the gradient in DC and X
-C
-              fac=-rrij*(e1+evdwij)*sss
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-              do k=1,3
-                gvdwx(k,i)=gvdwx(k,i)-gg(k)
-                gvdwx(k,j)=gvdwx(k,j)+gg(k)
-              enddo
-              do k=i,j-1
-                do l=1,3
-                  gvdwc(l,k)=gvdwc(l,k)+gg(l)
-                enddo
-              enddo
-            endif
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-      do i=1,nct
-        do j=1,3
-          gvdwc(j,i)=expon*gvdwc(j,i)
-          gvdwx(j,i)=expon*gvdwx(j,i)
-        enddo
-      enddo
-C******************************************************************************
-C
-C                              N O T E !!!
-C
-C To save time, the factor of EXPON has been extracted from ALL components
-C of GVDWC and GRADX. Remember to multiply them by this factor before further 
-C use!
-C
-C******************************************************************************
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine eljk_long(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the LJK potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.NAMES'
-      dimension gg(3)
-      logical scheck
-c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-          do j=istart(i,iint),iend(i,iint)
-            itypj=itype(j)
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-            fac_augm=rrij**expon
-            e_augm=augm(itypi,itypj)*fac_augm
-            r_inv_ij=dsqrt(rrij)
-            rij=1.0D0/r_inv_ij 
-            sss=sscale(rij/sigma(itypi,itypj))
-
-            if (sss.lt.1.0d0) then
-
-              r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
-              fac=r_shift_inv**expon
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=e_augm+e1+e2
-cd            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-cd            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-cd            write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
-cd   &          restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
-cd   &          bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
-cd   &          sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
-cd   &          (c(k,i),k=1,3),(c(k,j),k=1,3)
-              evdw=evdw+evdwij*(1.0d0-sss)
-C 
-C Calculate the components of the gradient in DC and X
-C
-              fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
-              fac=fac*(1.0d0-sss)
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-              do k=1,3
-                gvdwx(k,i)=gvdwx(k,i)-gg(k)
-                gvdwx(k,j)=gvdwx(k,j)+gg(k)
-              enddo
-              do k=i,j-1
-                do l=1,3
-                  gvdwc(l,k)=gvdwc(l,k)+gg(l)
-                enddo
-              enddo
-
-            endif 
-
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-      do i=1,nct
-        do j=1,3
-          gvdwc(j,i)=expon*gvdwc(j,i)
-          gvdwx(j,i)=expon*gvdwx(j,i)
-        enddo
-      enddo
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine eljk_short(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the LJK potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.NAMES'
-      dimension gg(3)
-      logical scheck
-c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-          do j=istart(i,iint),iend(i,iint)
-            itypj=itype(j)
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-            fac_augm=rrij**expon
-            e_augm=augm(itypi,itypj)*fac_augm
-            r_inv_ij=dsqrt(rrij)
-            rij=1.0D0/r_inv_ij 
-            sss=sscale(rij/sigma(itypi,itypj))
-
-            if (sss.gt.0.0d0) then
-
-              r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
-              fac=r_shift_inv**expon
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=e_augm+e1+e2
-cd            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-cd            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-cd            write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
-cd   &          restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
-cd   &          bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
-cd   &          sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
-cd   &          (c(k,i),k=1,3),(c(k,j),k=1,3)
-              evdw=evdw+evdwij*sss
-C 
-C Calculate the components of the gradient in DC and X
-C
-              fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
-              fac=fac*sss
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-              do k=1,3
-                gvdwx(k,i)=gvdwx(k,i)-gg(k)
-                gvdwx(k,j)=gvdwx(k,j)+gg(k)
-              enddo
-              do k=i,j-1
-                do l=1,3
-                  gvdwc(l,k)=gvdwc(l,k)+gg(l)
-                enddo
-              enddo
-
-            endif 
-
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-      do i=1,nct
-        do j=1,3
-          gvdwc(j,i)=expon*gvdwc(j,i)
-          gvdwx(j,i)=expon*gvdwx(j,i)
-        enddo
-      enddo
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine ebp_long(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the Berne-Pechukas potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.NAMES'
-      include 'COMMON.INTERACT'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CALC'
-      common /srutu/ icall
-c     double precision rrsave(maxdim)
-      logical lprn
-      evdw=0.0D0
-c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-c     if (icall.eq.0) then
-c       lprn=.true.
-c     else
-        lprn=.false.
-c     endif
-      ind=0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-        dxi=dc_norm(1,nres+i)
-        dyi=dc_norm(2,nres+i)
-        dzi=dc_norm(3,nres+i)
-c        dsci_inv=dsc_inv(itypi)
-        dsci_inv=vbld_inv(i+nres)
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-          do j=istart(i,iint),iend(i,iint)
-            ind=ind+1
-            itypj=itype(j)
-c            dscj_inv=dsc_inv(itypj)
-            dscj_inv=vbld_inv(j+nres)
-            chi1=chi(itypi,itypj)
-            chi2=chi(itypj,itypi)
-            chi12=chi1*chi2
-            chip1=chip(itypi)
-            chip2=chip(itypj)
-            chip12=chip1*chip2
-            alf1=alp(itypi)
-            alf2=alp(itypj)
-            alf12=0.5D0*(alf1+alf2)
-C For diagnostics only!!!
-c           chi1=0.0D0
-c           chi2=0.0D0
-c           chi12=0.0D0
-c           chip1=0.0D0
-c           chip2=0.0D0
-c           chip12=0.0D0
-c           alf1=0.0D0
-c           alf2=0.0D0
-c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            dxj=dc_norm(1,nres+j)
-            dyj=dc_norm(2,nres+j)
-            dzj=dc_norm(3,nres+j)
-            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-cd          if (icall.eq.0) then
-cd            rrsave(ind)=rrij
-cd          else
-cd            rrij=rrsave(ind)
-cd          endif
-            rij=dsqrt(rrij)
-            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
-
-            if (sss.lt.1.0d0) then
-
-C Calculate the angle-dependent terms of energy & contributions to derivatives.
-              call sc_angular
-C Calculate whole angle-dependent part of epsilon and contributions
-C to its derivatives
-              fac=(rrij*sigsq)**expon2
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
-              eps2der=evdwij*eps3rt
-              eps3der=evdwij*eps2rt
-              evdwij=evdwij*eps2rt*eps3rt
-              evdw=evdw+evdwij*(1.0d0-sss)
-              if (lprn) then
-              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
-cd     &        restyp(itypi),i,restyp(itypj),j,
-cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
-cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
-cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
-cd     &        evdwij
-              endif
-C Calculate gradient components.
-              e1=e1*eps1*eps2rt**2*eps3rt**2
-              fac=-expon*(e1+evdwij)
-              sigder=fac/sigsq
-              fac=rrij*fac
-C Calculate radial part of the gradient
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-C Calculate the angular part of the gradient and sum add the contributions
-C to the appropriate components of the Cartesian gradient.
-              call sc_grad_scale(1.0d0-sss)
-
-            endif
-
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-c     stop
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine ebp_short(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the Berne-Pechukas potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.NAMES'
-      include 'COMMON.INTERACT'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CALC'
-      common /srutu/ icall
-c     double precision rrsave(maxdim)
-      logical lprn
-      evdw=0.0D0
-c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-c     if (icall.eq.0) then
-c       lprn=.true.
-c     else
-        lprn=.false.
-c     endif
-      ind=0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-        dxi=dc_norm(1,nres+i)
-        dyi=dc_norm(2,nres+i)
-        dzi=dc_norm(3,nres+i)
-c        dsci_inv=dsc_inv(itypi)
-        dsci_inv=vbld_inv(i+nres)
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-          do j=istart(i,iint),iend(i,iint)
-            ind=ind+1
-            itypj=itype(j)
-c            dscj_inv=dsc_inv(itypj)
-            dscj_inv=vbld_inv(j+nres)
-            chi1=chi(itypi,itypj)
-            chi2=chi(itypj,itypi)
-            chi12=chi1*chi2
-            chip1=chip(itypi)
-            chip2=chip(itypj)
-            chip12=chip1*chip2
-            alf1=alp(itypi)
-            alf2=alp(itypj)
-            alf12=0.5D0*(alf1+alf2)
-C For diagnostics only!!!
-c           chi1=0.0D0
-c           chi2=0.0D0
-c           chi12=0.0D0
-c           chip1=0.0D0
-c           chip2=0.0D0
-c           chip12=0.0D0
-c           alf1=0.0D0
-c           alf2=0.0D0
-c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            dxj=dc_norm(1,nres+j)
-            dyj=dc_norm(2,nres+j)
-            dzj=dc_norm(3,nres+j)
-            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-cd          if (icall.eq.0) then
-cd            rrsave(ind)=rrij
-cd          else
-cd            rrij=rrsave(ind)
-cd          endif
-            rij=dsqrt(rrij)
-            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
-
-            if (sss.gt.0.0d0) then
-
-C Calculate the angle-dependent terms of energy & contributions to derivatives.
-              call sc_angular
-C Calculate whole angle-dependent part of epsilon and contributions
-C to its derivatives
-              fac=(rrij*sigsq)**expon2
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
-              eps2der=evdwij*eps3rt
-              eps3der=evdwij*eps2rt
-              evdwij=evdwij*eps2rt*eps3rt
-              evdw=evdw+evdwij*sss
-              if (lprn) then
-              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
-cd     &        restyp(itypi),i,restyp(itypj),j,
-cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
-cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
-cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
-cd     &        evdwij
-              endif
-C Calculate gradient components.
-              e1=e1*eps1*eps2rt**2*eps3rt**2
-              fac=-expon*(e1+evdwij)
-              sigder=fac/sigsq
-              fac=rrij*fac
-C Calculate radial part of the gradient
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-C Calculate the angular part of the gradient and sum add the contributions
-C to the appropriate components of the Cartesian gradient.
-              call sc_grad_scale(sss)
-
-            endif
-
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-c     stop
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine egb_long(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the Gay-Berne potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.NAMES'
-      include 'COMMON.INTERACT'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CALC'
-      include 'COMMON.CONTROL'
-      logical lprn
-      evdw=0.0D0
-ccccc      energy_dec=.false.
-c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-      lprn=.false.
-c     if (icall.eq.0) lprn=.false.
-      ind=0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-        dxi=dc_norm(1,nres+i)
-        dyi=dc_norm(2,nres+i)
-        dzi=dc_norm(3,nres+i)
-c        dsci_inv=dsc_inv(itypi)
-        dsci_inv=vbld_inv(i+nres)
-c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
-c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-          do j=istart(i,iint),iend(i,iint)
-            ind=ind+1
-            itypj=itype(j)
-c            dscj_inv=dsc_inv(itypj)
-            dscj_inv=vbld_inv(j+nres)
-c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
-c     &       1.0d0/vbld(j+nres)
-c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
-            sig0ij=sigma(itypi,itypj)
-            chi1=chi(itypi,itypj)
-            chi2=chi(itypj,itypi)
-            chi12=chi1*chi2
-            chip1=chip(itypi)
-            chip2=chip(itypj)
-            chip12=chip1*chip2
-            alf1=alp(itypi)
-            alf2=alp(itypj)
-            alf12=0.5D0*(alf1+alf2)
-C For diagnostics only!!!
-c           chi1=0.0D0
-c           chi2=0.0D0
-c           chi12=0.0D0
-c           chip1=0.0D0
-c           chip2=0.0D0
-c           chip12=0.0D0
-c           alf1=0.0D0
-c           alf2=0.0D0
-c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            dxj=dc_norm(1,nres+j)
-            dyj=dc_norm(2,nres+j)
-            dzj=dc_norm(3,nres+j)
-c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
-c            write (iout,*) "j",j," dc_norm",
-c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
-            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-            rij=dsqrt(rrij)
-            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
-            write(iout,*) "long",i,itypi,j,itypj," rij",1.0d0/rij,
-     &          " sigmaii",sigmaii(itypi,itypj)," sss",sss
-
-            if (sss.lt.1.0d0) then
-
-C Calculate angle-dependent terms of energy and contributions to their
-C derivatives.
-              call sc_angular
-              sigsq=1.0D0/sigsq
-              sig=sig0ij*dsqrt(sigsq)
-              rij_shift=1.0D0/rij-sig+sig0ij
-c for diagnostics; uncomment
-c              rij_shift=1.2*sig0ij
-C I hate to put IF's in the loops, but here don't have another choice!!!!
-              if (rij_shift.le.0.0D0) then
-                evdw=1.0D20
-cd                write (iout,'(2(a3,i3,2x),17(0pf7.3))')
-cd     &          restyp(itypi),i,restyp(itypj),j,
-cd     &          rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
-                return
-              endif
-              sigder=-sig*sigsq
-c---------------------------------------------------------------
-              rij_shift=1.0D0/rij_shift 
-              fac=rij_shift**expon
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
-              eps2der=evdwij*eps3rt
-              eps3der=evdwij*eps2rt
-c              write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
-c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
-              evdwij=evdwij*eps2rt*eps3rt
-              evdw=evdw+evdwij*(1.0d0-sss)
-              write (iout,*) "evdwij",evdwij," evdw",evdw
-              if (lprn) then
-              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
-     &          restyp(itypi),i,restyp(itypj),j,
-     &          epsi,sigm,chi1,chi2,chip1,chip2,
-     &          eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
-     &          om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
-     &          evdwij
-              endif
-
-              if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
-     &                        'evdw',i,j,evdwij
-
-C Calculate gradient components.
-              e1=e1*eps1*eps2rt**2*eps3rt**2
-              fac=-expon*(e1+evdwij)*rij_shift
-              sigder=fac*sigder
-              fac=rij*fac
-c              fac=0.0d0
-C Calculate the radial part of the gradient
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-C Calculate angular part of the gradient.
-              call sc_grad_scale(1.0d0-sss)
-
-            endif
-
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-cccc      energy_dec=.false.
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine egb_short(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the Gay-Berne potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.NAMES'
-      include 'COMMON.INTERACT'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CALC'
-      include 'COMMON.CONTROL'
-      logical lprn
-      evdw=0.0D0
-ccccc      energy_dec=.false.
-c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-      lprn=.false.
-c     if (icall.eq.0) lprn=.false.
-      ind=0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-        dxi=dc_norm(1,nres+i)
-        dyi=dc_norm(2,nres+i)
-        dzi=dc_norm(3,nres+i)
-c        dsci_inv=dsc_inv(itypi)
-        dsci_inv=vbld_inv(i+nres)
-c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
-c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-          do j=istart(i,iint),iend(i,iint)
-            ind=ind+1
-            itypj=itype(j)
-c            dscj_inv=dsc_inv(itypj)
-            dscj_inv=vbld_inv(j+nres)
-c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
-c     &       1.0d0/vbld(j+nres)
-c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
-            sig0ij=sigma(itypi,itypj)
-            chi1=chi(itypi,itypj)
-            chi2=chi(itypj,itypi)
-            chi12=chi1*chi2
-            chip1=chip(itypi)
-            chip2=chip(itypj)
-            chip12=chip1*chip2
-            alf1=alp(itypi)
-            alf2=alp(itypj)
-            alf12=0.5D0*(alf1+alf2)
-C For diagnostics only!!!
-c           chi1=0.0D0
-c           chi2=0.0D0
-c           chi12=0.0D0
-c           chip1=0.0D0
-c           chip2=0.0D0
-c           chip12=0.0D0
-c           alf1=0.0D0
-c           alf2=0.0D0
-c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            dxj=dc_norm(1,nres+j)
-            dyj=dc_norm(2,nres+j)
-            dzj=dc_norm(3,nres+j)
-c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
-c            write (iout,*) "j",j," dc_norm",
-c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
-            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-            rij=dsqrt(rrij)
-            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
-            write(iout,*) "short",i,itypi,j,itypj," rij",1.0d0/rij,
-     &          " sigmaii",sigmaii(itypi,itypj)," sss",sss
-            if (sss.gt.0.0d0) then
-
-C Calculate angle-dependent terms of energy and contributions to their
-C derivatives.
-              call sc_angular
-              sigsq=1.0D0/sigsq
-              sig=sig0ij*dsqrt(sigsq)
-              rij_shift=1.0D0/rij-sig+sig0ij
-c for diagnostics; uncomment
-c              rij_shift=1.2*sig0ij
-C I hate to put IF's in the loops, but here don't have another choice!!!!
-              if (rij_shift.le.0.0D0) then
-                evdw=1.0D20
-cd                write (iout,'(2(a3,i3,2x),17(0pf7.3))')
-cd     &          restyp(itypi),i,restyp(itypj),j,
-cd     &          rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
-                return
-              endif
-              sigder=-sig*sigsq
-c---------------------------------------------------------------
-              rij_shift=1.0D0/rij_shift 
-              fac=rij_shift**expon
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
-              eps2der=evdwij*eps3rt
-              eps3der=evdwij*eps2rt
-c              write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
-c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
-              evdwij=evdwij*eps2rt*eps3rt
-              evdw=evdw+evdwij*sss
-              write (iout,*) "evdwij",evdwij," evdw",evdw
-              if (lprn) then
-              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
-     &          restyp(itypi),i,restyp(itypj),j,
-     &          epsi,sigm,chi1,chi2,chip1,chip2,
-     &          eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
-     &          om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
-     &          evdwij
-              endif
-
-              if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
-     &                        'evdw',i,j,evdwij
-
-C Calculate gradient components.
-              e1=e1*eps1*eps2rt**2*eps3rt**2
-              fac=-expon*(e1+evdwij)*rij_shift
-              sigder=fac*sigder
-              fac=rij*fac
-c              fac=0.0d0
-C Calculate the radial part of the gradient
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-C Calculate angular part of the gradient.
-              call sc_grad_scale(sss)
-
-            endif
-
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-cccc      energy_dec=.false.
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine egbv_long(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the Gay-Berne-Vorobjev potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.NAMES'
-      include 'COMMON.INTERACT'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CALC'
-      common /srutu/ icall
-      logical lprn
-      evdw=0.0D0
-c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-      lprn=.false.
-c     if (icall.eq.0) lprn=.true.
-      ind=0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-        dxi=dc_norm(1,nres+i)
-        dyi=dc_norm(2,nres+i)
-        dzi=dc_norm(3,nres+i)
-c        dsci_inv=dsc_inv(itypi)
-        dsci_inv=vbld_inv(i+nres)
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-          do j=istart(i,iint),iend(i,iint)
-            ind=ind+1
-            itypj=itype(j)
-c            dscj_inv=dsc_inv(itypj)
-            dscj_inv=vbld_inv(j+nres)
-            sig0ij=sigma(itypi,itypj)
-            r0ij=r0(itypi,itypj)
-            chi1=chi(itypi,itypj)
-            chi2=chi(itypj,itypi)
-            chi12=chi1*chi2
-            chip1=chip(itypi)
-            chip2=chip(itypj)
-            chip12=chip1*chip2
-            alf1=alp(itypi)
-            alf2=alp(itypj)
-            alf12=0.5D0*(alf1+alf2)
-C For diagnostics only!!!
-c           chi1=0.0D0
-c           chi2=0.0D0
-c           chi12=0.0D0
-c           chip1=0.0D0
-c           chip2=0.0D0
-c           chip12=0.0D0
-c           alf1=0.0D0
-c           alf2=0.0D0
-c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            dxj=dc_norm(1,nres+j)
-            dyj=dc_norm(2,nres+j)
-            dzj=dc_norm(3,nres+j)
-            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-            rij=dsqrt(rrij)
-
-            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
-
-            if (sss.lt.1.0d0) then
-
-C Calculate angle-dependent terms of energy and contributions to their
-C derivatives.
-              call sc_angular
-              sigsq=1.0D0/sigsq
-              sig=sig0ij*dsqrt(sigsq)
-              rij_shift=1.0D0/rij-sig+r0ij
-C I hate to put IF's in the loops, but here don't have another choice!!!!
-              if (rij_shift.le.0.0D0) then
-                evdw=1.0D20
-                return
-              endif
-              sigder=-sig*sigsq
-c---------------------------------------------------------------
-              rij_shift=1.0D0/rij_shift 
-              fac=rij_shift**expon
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
-              eps2der=evdwij*eps3rt
-              eps3der=evdwij*eps2rt
-              fac_augm=rrij**expon
-              e_augm=augm(itypi,itypj)*fac_augm
-              evdwij=evdwij*eps2rt*eps3rt
-              evdw=evdw+(evdwij+e_augm)*(1.0d0-sss)
-              if (lprn) then
-              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
-     &          restyp(itypi),i,restyp(itypj),j,
-     &          epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
-     &          chi1,chi2,chip1,chip2,
-     &          eps1,eps2rt**2,eps3rt**2,
-     &          om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
-     &          evdwij+e_augm
-              endif
-C Calculate gradient components.
-              e1=e1*eps1*eps2rt**2*eps3rt**2
-              fac=-expon*(e1+evdwij)*rij_shift
-              sigder=fac*sigder
-              fac=rij*fac-2*expon*rrij*e_augm
-C Calculate the radial part of the gradient
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-C Calculate angular part of the gradient.
-              call sc_grad_scale(1.0d0-sss)
-
-            endif
-
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-      end
-C-----------------------------------------------------------------------------
-      subroutine egbv_short(evdw)
-C
-C This subroutine calculates the interaction energy of nonbonded side chains
-C assuming the Gay-Berne-Vorobjev potential of interaction.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.NAMES'
-      include 'COMMON.INTERACT'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CALC'
-      common /srutu/ icall
-      logical lprn
-      evdw=0.0D0
-c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
-      evdw=0.0D0
-      lprn=.false.
-c     if (icall.eq.0) lprn=.true.
-      ind=0
-      do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        itypi1=itype(i+1)
-        xi=c(1,nres+i)
-        yi=c(2,nres+i)
-        zi=c(3,nres+i)
-        dxi=dc_norm(1,nres+i)
-        dyi=dc_norm(2,nres+i)
-        dzi=dc_norm(3,nres+i)
-c        dsci_inv=dsc_inv(itypi)
-        dsci_inv=vbld_inv(i+nres)
-C
-C Calculate SC interaction energy.
-C
-        do iint=1,nint_gr(i)
-          do j=istart(i,iint),iend(i,iint)
-            ind=ind+1
-            itypj=itype(j)
-c            dscj_inv=dsc_inv(itypj)
-            dscj_inv=vbld_inv(j+nres)
-            sig0ij=sigma(itypi,itypj)
-            r0ij=r0(itypi,itypj)
-            chi1=chi(itypi,itypj)
-            chi2=chi(itypj,itypi)
-            chi12=chi1*chi2
-            chip1=chip(itypi)
-            chip2=chip(itypj)
-            chip12=chip1*chip2
-            alf1=alp(itypi)
-            alf2=alp(itypj)
-            alf12=0.5D0*(alf1+alf2)
-C For diagnostics only!!!
-c           chi1=0.0D0
-c           chi2=0.0D0
-c           chi12=0.0D0
-c           chip1=0.0D0
-c           chip2=0.0D0
-c           chip12=0.0D0
-c           alf1=0.0D0
-c           alf2=0.0D0
-c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
-            dxj=dc_norm(1,nres+j)
-            dyj=dc_norm(2,nres+j)
-            dzj=dc_norm(3,nres+j)
-            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-            rij=dsqrt(rrij)
-
-            sss=sscale(1.0d0/(rij*sigmaii(itypi,itypj)))
-
-            if (sss.gt.0.0d0) then
-
-C Calculate angle-dependent terms of energy and contributions to their
-C derivatives.
-              call sc_angular
-              sigsq=1.0D0/sigsq
-              sig=sig0ij*dsqrt(sigsq)
-              rij_shift=1.0D0/rij-sig+r0ij
-C I hate to put IF's in the loops, but here don't have another choice!!!!
-              if (rij_shift.le.0.0D0) then
-                evdw=1.0D20
-                return
-              endif
-              sigder=-sig*sigsq
-c---------------------------------------------------------------
-              rij_shift=1.0D0/rij_shift 
-              fac=rij_shift**expon
-              e1=fac*fac*aa(itypi,itypj)
-              e2=fac*bb(itypi,itypj)
-              evdwij=eps1*eps2rt*eps3rt*(e1+e2)
-              eps2der=evdwij*eps3rt
-              eps3der=evdwij*eps2rt
-              fac_augm=rrij**expon
-              e_augm=augm(itypi,itypj)*fac_augm
-              evdwij=evdwij*eps2rt*eps3rt
-              evdw=evdw+(evdwij+e_augm)*sss
-              if (lprn) then
-              sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-              epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
-     &          restyp(itypi),i,restyp(itypj),j,
-     &          epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
-     &          chi1,chi2,chip1,chip2,
-     &          eps1,eps2rt**2,eps3rt**2,
-     &          om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
-     &          evdwij+e_augm
-              endif
-C Calculate gradient components.
-              e1=e1*eps1*eps2rt**2*eps3rt**2
-              fac=-expon*(e1+evdwij)*rij_shift
-              sigder=fac*sigder
-              fac=rij*fac-2*expon*rrij*e_augm
-C Calculate the radial part of the gradient
-              gg(1)=xj*fac
-              gg(2)=yj*fac
-              gg(3)=zj*fac
-C Calculate angular part of the gradient.
-              call sc_grad_scale(sss)
-
-            endif
-
-          enddo      ! j
-        enddo        ! iint
-      enddo          ! i
-      end
-C----------------------------------------------------------------------------
-      subroutine sc_grad_scale(scalfac)
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.CALC'
-      include 'COMMON.IOUNITS'
-      double precision dcosom1(3),dcosom2(3)
-      double precision scalfac
-      eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
-      eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
-      eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
-     &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
-c diagnostics only
-c      eom1=0.0d0
-c      eom2=0.0d0
-c      eom12=evdwij*eps1_om12
-c end diagnostics
-c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
-c     &  " sigder",sigder
-c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
-c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
-      do k=1,3
-        dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
-        dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
-      enddo
-      do k=1,3
-        gg(k)=(gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k))*scalfac
-      enddo 
-c      write (iout,*) "gg",(gg(k),k=1,3)
-      do k=1,3
-        gvdwx(k,i)=gvdwx(k,i)-gg(k)
-     &        +((eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
-     &        +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv)*scalfac
-        gvdwx(k,j)=gvdwx(k,j)+gg(k)
-     &        +((eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
-     &        +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv)*scalfac
-c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
-c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
-c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
-c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
-      enddo
-C 
-C Calculate the components of the gradient in DC and X
-C
-      do k=i,j-1
-        do l=1,3
-          gvdwc(l,k)=gvdwc(l,k)+gg(l)
-        enddo
-      enddo
-      return
-      end
-C--------------------------------------------------------------------------
-      subroutine eelec_scale(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
-C
-C This subroutine calculates the average interaction energy and its gradient
-C in the virtual-bond vectors between non-adjacent peptide groups, based on 
-C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
-C The potential depends both on the distance of peptide-group centers and on 
-C the orientation of the CA-CA virtual bonds.
-C 
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.CONTROL'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.CONTACTS'
-      include 'COMMON.TORSION'
-      include 'COMMON.VECTORS'
-      include 'COMMON.FFIELD'
-      dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
-     &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
-      double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
-      common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1,j2
-c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
-#ifdef MOMENT
-      double precision scal_el /1.0d0/
-#else
-      double precision scal_el /0.5d0/
-#endif
-C 12/13/98 
-C 13-go grudnia roku pamietnego... 
-      double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
-     &                   0.0d0,1.0d0,0.0d0,
-     &                   0.0d0,0.0d0,1.0d0/
-cd      write(iout,*) 'In EELEC'
-cd      do i=1,nloctyp
-cd        write(iout,*) 'Type',i
-cd        write(iout,*) 'B1',B1(:,i)
-cd        write(iout,*) 'B2',B2(:,i)
-cd        write(iout,*) 'CC',CC(:,:,i)
-cd        write(iout,*) 'DD',DD(:,:,i)
-cd        write(iout,*) 'EE',EE(:,:,i)
-cd      enddo
-cd      call check_vecgrad
-cd      stop
-      if (icheckgrad.eq.1) then
-        do i=1,nres-1
-          fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
-          do k=1,3
-            dc_norm(k,i)=dc(k,i)*fac
-          enddo
-c          write (iout,*) 'i',i,' fac',fac
-        enddo
-      endif
-      if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
-     &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
-     &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
-c        call vec_and_deriv
-        call set_matrices
-      endif
-cd      do i=1,nres-1
-cd        write (iout,*) 'i=',i
-cd        do k=1,3
-cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
-cd        enddo
-cd        do k=1,3
-cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
-cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
-cd        enddo
-cd      enddo
-      num_conti_hb=0
-      ees=0.0D0
-      evdw1=0.0D0
-      eel_loc=0.0d0 
-      eello_turn3=0.0d0
-      eello_turn4=0.0d0
-      ind=0
-      do i=1,nres
-        num_cont_hb(i)=0
-      enddo
-cd      print '(a)','Enter EELEC'
-cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
-      do i=1,nres
-        gel_loc_loc(i)=0.0d0
-        gcorr_loc(i)=0.0d0
-      enddo
-      do i=iatel_s,iatel_e
-        dxi=dc(1,i)
-        dyi=dc(2,i)
-        dzi=dc(3,i)
-        dx_normi=dc_norm(1,i)
-        dy_normi=dc_norm(2,i)
-        dz_normi=dc_norm(3,i)
-        xmedi=c(1,i)+0.5d0*dxi
-        ymedi=c(2,i)+0.5d0*dyi
-        zmedi=c(3,i)+0.5d0*dzi
-        num_conti=0
-c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
-        do j=ielstart(i),ielend(i)
-          ind=ind+1
-          iteli=itel(i)
-          itelj=itel(j)
-          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
-          aaa=app(iteli,itelj)
-          bbb=bpp(iteli,itelj)
-          ael6i=ael6(iteli,itelj)
-          ael3i=ael3(iteli,itelj) 
-C Diagnostics only!!!
-c         aaa=0.0D0
-c         bbb=0.0D0
-c         ael6i=0.0D0
-c         ael3i=0.0D0
-C End diagnostics
-          dxj=dc(1,j)
-          dyj=dc(2,j)
-          dzj=dc(3,j)
-          dx_normj=dc_norm(1,j)
-          dy_normj=dc_norm(2,j)
-          dz_normj=dc_norm(3,j)
-          xj=c(1,j)+0.5D0*dxj-xmedi
-          yj=c(2,j)+0.5D0*dyj-ymedi
-          zj=c(3,j)+0.5D0*dzj-zmedi
-          rij=xj*xj+yj*yj+zj*zj
-          rrmij=1.0D0/rij
-          rij=dsqrt(rij)
-          rmij=1.0D0/rij
-c For extracting the short-range part of Evdwpp
-          sss=sscale(rij/rpp(iteli,itelj))
-c
-          r3ij=rrmij*rmij
-          r6ij=r3ij*r3ij  
-          cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
-          cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
-          cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
-          fac=cosa-3.0D0*cosb*cosg
-          ev1=aaa*r6ij*r6ij
-c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
-          if (j.eq.i+2) ev1=scal_el*ev1
-          ev2=bbb*r6ij
-          fac3=ael6i*r6ij
-          fac4=ael3i*r3ij
-          evdwij=ev1+ev2
-          el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
-          el2=fac4*fac       
-          eesij=el1+el2
-C 12/26/95 - for the evaluation of multi-body H-bonding interactions
-          ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
-          ees=ees+eesij
-          evdw1=evdw1+evdwij*(1.0d0-sss)
-cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
-cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
-cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
-cd     &      xmedi,ymedi,zmedi,xj,yj,zj
-
-          if (energy_dec) then 
-              write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
-              write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
-          endif
-
-C
-C Calculate contributions to the Cartesian gradient.
-C
-#ifdef SPLITELE
-          facvdw=-6*rrmij*(ev1+evdwij)*(1.0d0-sss)
-          facel=-3*rrmij*(el1+eesij)
-          fac1=fac
-          erij(1)=xj*rmij
-          erij(2)=yj*rmij
-          erij(3)=zj*rmij
-*
-* Radial derivatives. First process both termini of the fragment (i,j)
-*
-          ggg(1)=facel*xj
-          ggg(2)=facel*yj
-          ggg(3)=facel*zj
-          do k=1,3
-            ghalf=0.5D0*ggg(k)
-            gelc(k,i)=gelc(k,i)+ghalf
-            gelc(k,j)=gelc(k,j)+ghalf
-          enddo
-*
-* Loop over residues i+1 thru j-1.
-*
-          do k=i+1,j-1
-            do l=1,3
-              gelc(l,k)=gelc(l,k)+ggg(l)
-            enddo
-          enddo
-          ggg(1)=facvdw*xj
-          ggg(2)=facvdw*yj
-          ggg(3)=facvdw*zj
-          do k=1,3
-            ghalf=0.5D0*ggg(k)
-            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
-            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
-          enddo
-*
-* Loop over residues i+1 thru j-1.
-*
-          do k=i+1,j-1
-            do l=1,3
-              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
-            enddo
-          enddo
-#else
-          facvdw=(ev1+evdwij)*(1.0d0-sss) 
-          facel=el1+eesij  
-          fac1=fac
-          fac=-3*rrmij*(facvdw+facvdw+facel)
-          erij(1)=xj*rmij
-          erij(2)=yj*rmij
-          erij(3)=zj*rmij
-*
-* Radial derivatives. First process both termini of the fragment (i,j)
-* 
-          ggg(1)=fac*xj
-          ggg(2)=fac*yj
-          ggg(3)=fac*zj
-          do k=1,3
-            ghalf=0.5D0*ggg(k)
-            gelc(k,i)=gelc(k,i)+ghalf
-            gelc(k,j)=gelc(k,j)+ghalf
-          enddo
-*
-* Loop over residues i+1 thru j-1.
-*
-          do k=i+1,j-1
-            do l=1,3
-              gelc(l,k)=gelc(l,k)+ggg(l)
-            enddo
-          enddo
-#endif
-*
-* Angular part
-*          
-          ecosa=2.0D0*fac3*fac1+fac4
-          fac4=-3.0D0*fac4
-          fac3=-6.0D0*fac3
-          ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
-          ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
-          do k=1,3
-            dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
-            dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
-          enddo
-cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
-cd   &          (dcosg(k),k=1,3)
-          do k=1,3
-            ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
-          enddo
-          do k=1,3
-            ghalf=0.5D0*ggg(k)
-            gelc(k,i)=gelc(k,i)+ghalf
-     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
-     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
-            gelc(k,j)=gelc(k,j)+ghalf
-     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
-     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
-          enddo
-          do k=i+1,j-1
-            do l=1,3
-              gelc(l,k)=gelc(l,k)+ggg(l)
-            enddo
-          enddo
-
-          IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
-     &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
-     &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
-C
-C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
-C   energy of a peptide unit is assumed in the form of a second-order 
-C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
-C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
-C   are computed for EVERY pair of non-contiguous peptide groups.
-C
-          if (j.lt.nres-1) then
-            j1=j+1
-            j2=j-1
-          else
-            j1=j-1
-            j2=j-2
-          endif
-          kkk=0
-          do k=1,2
-            do l=1,2
-              kkk=kkk+1
-              muij(kkk)=mu(k,i)*mu(l,j)
-            enddo
-          enddo  
-cd         write (iout,*) 'EELEC: i',i,' j',j
-cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
-cd          write(iout,*) 'muij',muij
-          ury=scalar(uy(1,i),erij)
-          urz=scalar(uz(1,i),erij)
-          vry=scalar(uy(1,j),erij)
-          vrz=scalar(uz(1,j),erij)
-          a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
-          a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
-          a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
-          a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
-C For diagnostics only
-cd          a22=1.0d0
-cd          a23=1.0d0
-cd          a32=1.0d0
-cd          a33=1.0d0
-          fac=dsqrt(-ael6i)*r3ij
-cd          write (2,*) 'fac=',fac
-C For diagnostics only
-cd          fac=1.0d0
-          a22=a22*fac
-          a23=a23*fac
-          a32=a32*fac
-          a33=a33*fac
-cd          write (iout,'(4i5,4f10.5)')
-cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
-cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
-cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
-cd     &      uy(:,j),uz(:,j)
-cd          write (iout,'(4f10.5)') 
-cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
-cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
-cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
-cd           write (iout,'(9f10.5/)') 
-cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
-C Derivatives of the elements of A in virtual-bond vectors
-          call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
-cd          do k=1,3
-cd            do l=1,3
-cd              erder(k,l)=0.0d0
-cd            enddo
-cd          enddo
-          do k=1,3
-            uryg(k,1)=scalar(erder(1,k),uy(1,i))
-            uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
-            uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
-            urzg(k,1)=scalar(erder(1,k),uz(1,i))
-            urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
-            urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
-            vryg(k,1)=scalar(erder(1,k),uy(1,j))
-            vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
-            vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
-            vrzg(k,1)=scalar(erder(1,k),uz(1,j))
-            vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
-            vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
-          enddo
-cd          do k=1,3
-cd            do l=1,3
-cd              uryg(k,l)=0.0d0
-cd              urzg(k,l)=0.0d0
-cd              vryg(k,l)=0.0d0
-cd              vrzg(k,l)=0.0d0
-cd            enddo
-cd          enddo
-C Compute radial contributions to the gradient
-          facr=-3.0d0*rrmij
-          a22der=a22*facr
-          a23der=a23*facr
-          a32der=a32*facr
-          a33der=a33*facr
-cd          a22der=0.0d0
-cd          a23der=0.0d0
-cd          a32der=0.0d0
-cd          a33der=0.0d0
-          agg(1,1)=a22der*xj
-          agg(2,1)=a22der*yj
-          agg(3,1)=a22der*zj
-          agg(1,2)=a23der*xj
-          agg(2,2)=a23der*yj
-          agg(3,2)=a23der*zj
-          agg(1,3)=a32der*xj
-          agg(2,3)=a32der*yj
-          agg(3,3)=a32der*zj
-          agg(1,4)=a33der*xj
-          agg(2,4)=a33der*yj
-          agg(3,4)=a33der*zj
-C Add the contributions coming from er
-          fac3=-3.0d0*fac
-          do k=1,3
-            agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
-            agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
-            agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
-            agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
-          enddo
-          do k=1,3
-C Derivatives in DC(i) 
-            ghalf1=0.5d0*agg(k,1)
-            ghalf2=0.5d0*agg(k,2)
-            ghalf3=0.5d0*agg(k,3)
-            ghalf4=0.5d0*agg(k,4)
-            aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
-     &      -3.0d0*uryg(k,2)*vry)+ghalf1
-            aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
-     &      -3.0d0*uryg(k,2)*vrz)+ghalf2
-            aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
-     &      -3.0d0*urzg(k,2)*vry)+ghalf3
-            aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
-     &      -3.0d0*urzg(k,2)*vrz)+ghalf4
-C Derivatives in DC(i+1)
-            aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
-     &      -3.0d0*uryg(k,3)*vry)+agg(k,1)
-            aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
-     &      -3.0d0*uryg(k,3)*vrz)+agg(k,2)
-            aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
-     &      -3.0d0*urzg(k,3)*vry)+agg(k,3)
-            aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
-     &      -3.0d0*urzg(k,3)*vrz)+agg(k,4)
-C Derivatives in DC(j)
-            aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
-     &      -3.0d0*vryg(k,2)*ury)+ghalf1
-            aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
-     &      -3.0d0*vrzg(k,2)*ury)+ghalf2
-            aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
-     &      -3.0d0*vryg(k,2)*urz)+ghalf3
-            aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
-     &      -3.0d0*vrzg(k,2)*urz)+ghalf4
-C Derivatives in DC(j+1) or DC(nres-1)
-            aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
-     &      -3.0d0*vryg(k,3)*ury)
-            aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
-     &      -3.0d0*vrzg(k,3)*ury)
-            aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
-     &      -3.0d0*vryg(k,3)*urz)
-            aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
-     &      -3.0d0*vrzg(k,3)*urz)
-cd            aggi(k,1)=ghalf1
-cd            aggi(k,2)=ghalf2
-cd            aggi(k,3)=ghalf3
-cd            aggi(k,4)=ghalf4
-C Derivatives in DC(i+1)
-cd            aggi1(k,1)=agg(k,1)
-cd            aggi1(k,2)=agg(k,2)
-cd            aggi1(k,3)=agg(k,3)
-cd            aggi1(k,4)=agg(k,4)
-C Derivatives in DC(j)
-cd            aggj(k,1)=ghalf1
-cd            aggj(k,2)=ghalf2
-cd            aggj(k,3)=ghalf3
-cd            aggj(k,4)=ghalf4
-C Derivatives in DC(j+1)
-cd            aggj1(k,1)=0.0d0
-cd            aggj1(k,2)=0.0d0
-cd            aggj1(k,3)=0.0d0
-cd            aggj1(k,4)=0.0d0
-            if (j.eq.nres-1 .and. i.lt.j-2) then
-              do l=1,4
-                aggj1(k,l)=aggj1(k,l)+agg(k,l)
-cd                aggj1(k,l)=agg(k,l)
-              enddo
-            endif
-          enddo
-c          goto 11111
-C Check the loc-el terms by numerical integration
-          acipa(1,1)=a22
-          acipa(1,2)=a23
-          acipa(2,1)=a32
-          acipa(2,2)=a33
-          a22=-a22
-          a23=-a23
-          do l=1,2
-            do k=1,3
-              agg(k,l)=-agg(k,l)
-              aggi(k,l)=-aggi(k,l)
-              aggi1(k,l)=-aggi1(k,l)
-              aggj(k,l)=-aggj(k,l)
-              aggj1(k,l)=-aggj1(k,l)
-            enddo
-          enddo
-          if (j.lt.nres-1) then
-            a22=-a22
-            a32=-a32
-            do l=1,3,2
-              do k=1,3
-                agg(k,l)=-agg(k,l)
-                aggi(k,l)=-aggi(k,l)
-                aggi1(k,l)=-aggi1(k,l)
-                aggj(k,l)=-aggj(k,l)
-                aggj1(k,l)=-aggj1(k,l)
-              enddo
-            enddo
-          else
-            a22=-a22
-            a23=-a23
-            a32=-a32
-            a33=-a33
-            do l=1,4
-              do k=1,3
-                agg(k,l)=-agg(k,l)
-                aggi(k,l)=-aggi(k,l)
-                aggi1(k,l)=-aggi1(k,l)
-                aggj(k,l)=-aggj(k,l)
-                aggj1(k,l)=-aggj1(k,l)
-              enddo
-            enddo 
-          endif    
-          ENDIF ! WCORR
-11111     continue
-          IF (wel_loc.gt.0.0d0) THEN
-C Contribution to the local-electrostatic energy coming from the i-j pair
-          eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
-     &     +a33*muij(4)
-cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
-
-          if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
-     &            'eelloc',i,j,eel_loc_ij
-
-          eel_loc=eel_loc+eel_loc_ij
-C Partial derivatives in virtual-bond dihedral angles gamma
-          if (i.gt.1)
-     &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
-     &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
-     &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
-          gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
-     &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
-     &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
-cd          call checkint3(i,j,mu1,mu2,a22,a23,a32,a33,acipa,eel_loc_ij)
-cd          write(iout,*) 'agg  ',agg
-cd          write(iout,*) 'aggi ',aggi
-cd          write(iout,*) 'aggi1',aggi1
-cd          write(iout,*) 'aggj ',aggj
-cd          write(iout,*) 'aggj1',aggj1
-
-C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
-          do l=1,3
-            ggg(l)=agg(l,1)*muij(1)+
-     &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
-          enddo
-          do k=i+2,j2
-            do l=1,3
-              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
-            enddo
-          enddo
-C Remaining derivatives of eello
-          do l=1,3
-            gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
-     &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
-            gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
-     &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
-            gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
-     &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
-            gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
-     &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
-          enddo
-          ENDIF
-          if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
-C Contributions from turns
-            a_temp(1,1)=a22
-            a_temp(1,2)=a23
-            a_temp(2,1)=a32
-            a_temp(2,2)=a33
-            call eturn34(i,j,eello_turn3,eello_turn4)
-          endif
-C Change 12/26/95 to calculate four-body contributions to H-bonding energy
-          if (j.gt.i+1 .and. num_conti.le.maxconts) then
-C
-C Calculate the contact function. The ith column of the array JCONT will 
-C contain the numbers of atoms that make contacts with the atom I (of numbers
-C greater than I). The arrays FACONT and GACONT will contain the values of
-C the contact function and its derivative.
-c           r0ij=1.02D0*rpp(iteli,itelj)
-c           r0ij=1.11D0*rpp(iteli,itelj)
-            r0ij=2.20D0*rpp(iteli,itelj)
-c           r0ij=1.55D0*rpp(iteli,itelj)
-            call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
-            if (fcont.gt.0.0D0) then
-              num_conti=num_conti+1
-              if (num_conti.gt.maxconts) then
-                write (iout,*) 'WARNING - max. # of contacts exceeded;',
-     &                         ' will skip next contacts for this conf.'
-              else
-                jcont_hb(num_conti,i)=j
-                IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
-     &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
-C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
-C  terms.
-                d_cont(num_conti,i)=rij
-cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
-C     --- Electrostatic-interaction matrix --- 
-                a_chuj(1,1,num_conti,i)=a22
-                a_chuj(1,2,num_conti,i)=a23
-                a_chuj(2,1,num_conti,i)=a32
-                a_chuj(2,2,num_conti,i)=a33
-C     --- Gradient of rij
-                do kkk=1,3
-                  grij_hb_cont(kkk,num_conti,i)=erij(kkk)
-                enddo
-c             if (i.eq.1) then
-c                a_chuj(1,1,num_conti,i)=-0.61d0
-c                a_chuj(1,2,num_conti,i)= 0.4d0
-c                a_chuj(2,1,num_conti,i)= 0.65d0
-c                a_chuj(2,2,num_conti,i)= 0.50d0
-c             else if (i.eq.2) then
-c                a_chuj(1,1,num_conti,i)= 0.0d0
-c                a_chuj(1,2,num_conti,i)= 0.0d0
-c                a_chuj(2,1,num_conti,i)= 0.0d0
-c                a_chuj(2,2,num_conti,i)= 0.0d0
-c             endif
-C     --- and its gradients
-cd                write (iout,*) 'i',i,' j',j
-cd                do kkk=1,3
-cd                write (iout,*) 'iii 1 kkk',kkk
-cd                write (iout,*) agg(kkk,:)
-cd                enddo
-cd                do kkk=1,3
-cd                write (iout,*) 'iii 2 kkk',kkk
-cd                write (iout,*) aggi(kkk,:)
-cd                enddo
-cd                do kkk=1,3
-cd                write (iout,*) 'iii 3 kkk',kkk
-cd                write (iout,*) aggi1(kkk,:)
-cd                enddo
-cd                do kkk=1,3
-cd                write (iout,*) 'iii 4 kkk',kkk
-cd                write (iout,*) aggj(kkk,:)
-cd                enddo
-cd                do kkk=1,3
-cd                write (iout,*) 'iii 5 kkk',kkk
-cd                write (iout,*) aggj1(kkk,:)
-cd                enddo
-                kkll=0
-                do k=1,2
-                  do l=1,2
-                    kkll=kkll+1
-                    do m=1,3
-                      a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
-                      a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
-                      a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
-                      a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
-                      a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
-c                      do mm=1,5
-c                      a_chuj_der(k,l,m,mm,num_conti,i)=0.0d0
-c                      enddo
-                    enddo
-                  enddo
-                enddo
-                ENDIF
-                IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
-C Calculate contact energies
-                cosa4=4.0D0*cosa
-                wij=cosa-3.0D0*cosb*cosg
-                cosbg1=cosb+cosg
-                cosbg2=cosb-cosg
-c               fac3=dsqrt(-ael6i)/r0ij**3     
-                fac3=dsqrt(-ael6i)*r3ij
-c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
-                ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
-                if (ees0tmp.gt.0) then
-                  ees0pij=dsqrt(ees0tmp)
-                else
-                  ees0pij=0
-                endif
-c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
-                ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
-                if (ees0tmp.gt.0) then
-                  ees0mij=dsqrt(ees0tmp)
-                else
-                  ees0mij=0
-                endif
-c               ees0mij=0.0D0
-                ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
-                ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
-C Diagnostics. Comment out or remove after debugging!
-c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
-c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
-c               ees0m(num_conti,i)=0.0D0
-C End diagnostics.
-c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
-c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
-C Angular derivatives of the contact function
-                ees0pij1=fac3/ees0pij 
-                ees0mij1=fac3/ees0mij
-                fac3p=-3.0D0*fac3*rrmij
-                ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
-                ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
-c               ees0mij1=0.0D0
-                ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
-                ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
-                ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
-                ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
-                ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
-                ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
-                ecosap=ecosa1+ecosa2
-                ecosbp=ecosb1+ecosb2
-                ecosgp=ecosg1+ecosg2
-                ecosam=ecosa1-ecosa2
-                ecosbm=ecosb1-ecosb2
-                ecosgm=ecosg1-ecosg2
-C Diagnostics
-c               ecosap=ecosa1
-c               ecosbp=ecosb1
-c               ecosgp=ecosg1
-c               ecosam=0.0D0
-c               ecosbm=0.0D0
-c               ecosgm=0.0D0
-C End diagnostics
-                facont_hb(num_conti,i)=fcont
-                fprimcont=fprimcont/rij
-cd              facont_hb(num_conti,i)=1.0D0
-C Following line is for diagnostics.
-cd              fprimcont=0.0D0
-                do k=1,3
-                  dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
-                  dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
-                enddo
-                do k=1,3
-                  gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
-                  gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
-                enddo
-                gggp(1)=gggp(1)+ees0pijp*xj
-                gggp(2)=gggp(2)+ees0pijp*yj
-                gggp(3)=gggp(3)+ees0pijp*zj
-                gggm(1)=gggm(1)+ees0mijp*xj
-                gggm(2)=gggm(2)+ees0mijp*yj
-                gggm(3)=gggm(3)+ees0mijp*zj
-C Derivatives due to the contact function
-                gacont_hbr(1,num_conti,i)=fprimcont*xj
-                gacont_hbr(2,num_conti,i)=fprimcont*yj
-                gacont_hbr(3,num_conti,i)=fprimcont*zj
-                do k=1,3
-                  ghalfp=0.5D0*gggp(k)
-                  ghalfm=0.5D0*gggm(k)
-                  gacontp_hb1(k,num_conti,i)=ghalfp
-     &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
-     &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
-                  gacontp_hb2(k,num_conti,i)=ghalfp
-     &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
-     &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
-                  gacontp_hb3(k,num_conti,i)=gggp(k)
-                  gacontm_hb1(k,num_conti,i)=ghalfm
-     &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
-     &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
-                  gacontm_hb2(k,num_conti,i)=ghalfm
-     &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
-     &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
-                  gacontm_hb3(k,num_conti,i)=gggm(k)
-                enddo
-C Diagnostics. Comment out or remove after debugging!
-cdiag           do k=1,3
-cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
-cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
-cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
-cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
-cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
-cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
-cdiag           enddo
-              ENDIF ! wcorr
-              endif  ! num_conti.le.maxconts
-            endif  ! fcont.gt.0
-          endif    ! j.gt.i+1
-        enddo ! j
-        num_cont_hb(i)=num_conti
-      enddo   ! i
-cd      do i=1,nres
-cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
-cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
-cd      enddo
-c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
-ccc      eel_loc=eel_loc+eello_turn3
-      return
-      end
-C-----------------------------------------------------------------------
-      subroutine evdwpp_long(evdw1)
-C
-C Compute Evdwpp
-C 
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.CONTROL'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.CONTACTS'
-      include 'COMMON.TORSION'
-      include 'COMMON.VECTORS'
-      include 'COMMON.FFIELD'
-      dimension ggg(3)
-c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
-#ifdef MOMENT
-      double precision scal_el /1.0d0/
-#else
-      double precision scal_el /0.5d0/
-#endif
-      evdw1=0.0D0
-      do i=iatel_s,iatel_e
-        dxi=dc(1,i)
-        dyi=dc(2,i)
-        dzi=dc(3,i)
-        dx_normi=dc_norm(1,i)
-        dy_normi=dc_norm(2,i)
-        dz_normi=dc_norm(3,i)
-        xmedi=c(1,i)+0.5d0*dxi
-        ymedi=c(2,i)+0.5d0*dyi
-        zmedi=c(3,i)+0.5d0*dzi
-        num_conti=0
-c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
-        do j=ielstart(i),ielend(i)
-          ind=ind+1
-          iteli=itel(i)
-          itelj=itel(j)
-          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
-          aaa=app(iteli,itelj)
-          bbb=bpp(iteli,itelj)
-          dxj=dc(1,j)
-          dyj=dc(2,j)
-          dzj=dc(3,j)
-          dx_normj=dc_norm(1,j)
-          dy_normj=dc_norm(2,j)
-          dz_normj=dc_norm(3,j)
-          xj=c(1,j)+0.5D0*dxj-xmedi
-          yj=c(2,j)+0.5D0*dyj-ymedi
-          zj=c(3,j)+0.5D0*dzj-zmedi
-          rij=xj*xj+yj*yj+zj*zj
-          rrmij=1.0D0/rij
-          rij=dsqrt(rij)
-          sss=sscale(rij/rpp(iteli,itelj))
-          if (sss.lt.1.0d0) then
-            rmij=1.0D0/rij
-            r3ij=rrmij*rmij
-            r6ij=r3ij*r3ij  
-            ev1=aaa*r6ij*r6ij
-c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
-            if (j.eq.i+2) ev1=scal_el*ev1
-            ev2=bbb*r6ij
-            evdwij=ev1+ev2
-            if (energy_dec) then 
-              write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
-              write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
-            endif
-            evdw1=evdw1+evdwij*(1.0d0-sss)
-C
-C Calculate contributions to the Cartesian gradient.
-C
-            facvdw=-6*rrmij*(ev1+evdwij)*(1.0d0-sss)
-            ggg(1)=facvdw*xj
-            ggg(2)=facvdw*yj
-            ggg(3)=facvdw*zj
-
-            do k=1,3
-              ghalf=0.5D0*ggg(k)
-              gvdwpp(k,i)=gvdwpp(k,i)+ghalf
-              gvdwpp(k,j)=gvdwpp(k,j)+ghalf
-            enddo
-*
-* Loop over residues i+1 thru j-1.
-*
-            do k=i+1,j-1
-              do l=1,3
-                gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
-              enddo
-            enddo
-          endif
-        enddo ! j
-      enddo   ! i
-      return
-      end
-C-----------------------------------------------------------------------
-      subroutine evdwpp_short(evdw1)
-C
-C Compute Evdwpp
-C 
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.CONTROL'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.CONTACTS'
-      include 'COMMON.TORSION'
-      include 'COMMON.VECTORS'
-      include 'COMMON.FFIELD'
-      dimension ggg(3)
-c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
-#ifdef MOMENT
-      double precision scal_el /1.0d0/
-#else
-      double precision scal_el /0.5d0/
-#endif
-      evdw1=0.0D0
-      do i=iatel_s,iatel_e
-        dxi=dc(1,i)
-        dyi=dc(2,i)
-        dzi=dc(3,i)
-        dx_normi=dc_norm(1,i)
-        dy_normi=dc_norm(2,i)
-        dz_normi=dc_norm(3,i)
-        xmedi=c(1,i)+0.5d0*dxi
-        ymedi=c(2,i)+0.5d0*dyi
-        zmedi=c(3,i)+0.5d0*dzi
-        num_conti=0
-c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
-        do j=ielstart(i),ielend(i)
-          ind=ind+1
-          iteli=itel(i)
-          itelj=itel(j)
-          if (j.eq.i+2 .and. itelj.eq.2) iteli=2
-          aaa=app(iteli,itelj)
-          bbb=bpp(iteli,itelj)
-          dxj=dc(1,j)
-          dyj=dc(2,j)
-          dzj=dc(3,j)
-          dx_normj=dc_norm(1,j)
-          dy_normj=dc_norm(2,j)
-          dz_normj=dc_norm(3,j)
-          xj=c(1,j)+0.5D0*dxj-xmedi
-          yj=c(2,j)+0.5D0*dyj-ymedi
-          zj=c(3,j)+0.5D0*dzj-zmedi
-          rij=xj*xj+yj*yj+zj*zj
-          rrmij=1.0D0/rij
-          rij=dsqrt(rij)
-          sss=sscale(rij/rpp(iteli,itelj))
-          if (sss.gt.0.0d0) then
-            rmij=1.0D0/rij
-            r3ij=rrmij*rmij
-            r6ij=r3ij*r3ij  
-            ev1=aaa*r6ij*r6ij
-c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
-            if (j.eq.i+2) ev1=scal_el*ev1
-            ev2=bbb*r6ij
-            evdwij=ev1+ev2
-            if (energy_dec) then 
-              write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
-              write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
-            endif
-            evdw1=evdw1+evdwij*sss
-C
-C Calculate contributions to the Cartesian gradient.
-C
-            facvdw=-6*rrmij*(ev1+evdwij)*sss
-            ggg(1)=facvdw*xj
-            ggg(2)=facvdw*yj
-            ggg(3)=facvdw*zj
-
-            do k=1,3
-              ghalf=0.5D0*ggg(k)
-              gvdwpp(k,i)=gvdwpp(k,i)+ghalf
-              gvdwpp(k,j)=gvdwpp(k,j)+ghalf
-            enddo
-*
-* Loop over residues i+1 thru j-1.
-*
-            do k=i+1,j-1
-              do l=1,3
-                gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
-              enddo
-            enddo
-          endif
-        enddo ! j
-      enddo   ! i
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine escp_long(evdw2,evdw2_14)
-C
-C This subroutine calculates the excluded-volume interaction energy between
-C peptide-group centers and side chains and its gradient in virtual-bond and
-C side-chain vectors.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.FFIELD'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CONTROL'
-      dimension ggg(3)
-      evdw2=0.0D0
-      evdw2_14=0.0d0
-cd    print '(a)','Enter ESCP'
-cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
-      do i=iatscp_s,iatscp_e
-        iteli=itel(i)
-        xi=0.5D0*(c(1,i)+c(1,i+1))
-        yi=0.5D0*(c(2,i)+c(2,i+1))
-        zi=0.5D0*(c(3,i)+c(3,i+1))
-
-        do iint=1,nscp_gr(i)
-
-        do j=iscpstart(i,iint),iscpend(i,iint)
-          itypj=itype(j)
-C Uncomment following three lines for SC-p interactions
-c         xj=c(1,nres+j)-xi
-c         yj=c(2,nres+j)-yi
-c         zj=c(3,nres+j)-zi
-C Uncomment following three lines for Ca-p interactions
-          xj=c(1,j)-xi
-          yj=c(2,j)-yi
-          zj=c(3,j)-zi
-          rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-
-          sss=sscale(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli)))
-
-          if (sss.lt.1.0d0) then
-
-            fac=rrij**expon2
-            e1=fac*fac*aad(itypj,iteli)
-            e2=fac*bad(itypj,iteli)
-            if (iabs(j-i) .le. 2) then
-              e1=scal14*e1
-              e2=scal14*e2
-              evdw2_14=evdw2_14+(e1+e2)*(1.0d0-sss)
-            endif
-            evdwij=e1+e2
-            evdw2=evdw2+evdwij*(1.0d0-sss)
-            if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
-     &          'evdw2',i,j,evdwij
-C
-C Calculate contributions to the gradient in the virtual-bond and SC vectors.
-C
-            fac=-(evdwij+e1)*rrij*(1.0d0-sss)
-            ggg(1)=xj*fac
-            ggg(2)=yj*fac
-            ggg(3)=zj*fac
-            if (j.lt.i) then
-cd            write (iout,*) 'j<i'
-C Uncomment following three lines for SC-p interactions
-c             do k=1,3
-c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
-c             enddo
-            else
-cd            write (iout,*) 'j>i'
-              do k=1,3
-                ggg(k)=-ggg(k)
-C Uncomment following line for SC-p interactions
-c               gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
-              enddo
-            endif
-            do k=1,3
-              gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
-            enddo
-            kstart=min0(i+1,j)
-            kend=max0(i-1,j-1)
-cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
-cd        write (iout,*) ggg(1),ggg(2),ggg(3)
-            do k=kstart,kend
-              do l=1,3
-                gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
-              enddo
-            enddo
-
-          endif
-
-        enddo
-
-        enddo ! iint
-      enddo ! i
-      do i=1,nct
-        do j=1,3
-          gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
-          gradx_scp(j,i)=expon*gradx_scp(j,i)
-        enddo
-      enddo
-C******************************************************************************
-C
-C                              N O T E !!!
-C
-C To save time the factor EXPON has been extracted from ALL components
-C of GVDWC and GRADX. Remember to multiply them by this factor before further 
-C use!
-C
-C******************************************************************************
-      return
-      end
-C-----------------------------------------------------------------------------
-      subroutine escp_short(evdw2,evdw2_14)
-C
-C This subroutine calculates the excluded-volume interaction energy between
-C peptide-group centers and side chains and its gradient in virtual-bond and
-C side-chain vectors.
-C
-      implicit real*8 (a-h,o-z)
-      include 'DIMENSIONS'
-      include 'COMMON.GEO'
-      include 'COMMON.VAR'
-      include 'COMMON.LOCAL'
-      include 'COMMON.CHAIN'
-      include 'COMMON.DERIV'
-      include 'COMMON.INTERACT'
-      include 'COMMON.FFIELD'
-      include 'COMMON.IOUNITS'
-      include 'COMMON.CONTROL'
-      dimension ggg(3)
-      evdw2=0.0D0
-      evdw2_14=0.0d0
-cd    print '(a)','Enter ESCP'
-cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
-      do i=iatscp_s,iatscp_e
-        iteli=itel(i)
-        xi=0.5D0*(c(1,i)+c(1,i+1))
-        yi=0.5D0*(c(2,i)+c(2,i+1))
-        zi=0.5D0*(c(3,i)+c(3,i+1))
-
-        do iint=1,nscp_gr(i)
-
-        do j=iscpstart(i,iint),iscpend(i,iint)
-          itypj=itype(j)
-C Uncomment following three lines for SC-p interactions
-c         xj=c(1,nres+j)-xi
-c         yj=c(2,nres+j)-yi
-c         zj=c(3,nres+j)-zi
-C Uncomment following three lines for Ca-p interactions
-          xj=c(1,j)-xi
-          yj=c(2,j)-yi
-          zj=c(3,j)-zi
-          rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
-
-          sss=sscale(1.0d0/(dsqrt(rrij)*rscp(itypj,iteli)))
-
-          if (sss.gt.0.0d0) then
-
-            fac=rrij**expon2
-            e1=fac*fac*aad(itypj,iteli)
-            e2=fac*bad(itypj,iteli)
-            if (iabs(j-i) .le. 2) then
-              e1=scal14*e1
-              e2=scal14*e2
-              evdw2_14=evdw2_14+(e1+e2)*sss
-            endif
-            evdwij=e1+e2
-            evdw2=evdw2+evdwij*sss
-            if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
-     &          'evdw2',i,j,evdwij
-C
-C Calculate contributions to the gradient in the virtual-bond and SC vectors.
-C
-            fac=-(evdwij+e1)*rrij*sss
-            ggg(1)=xj*fac
-            ggg(2)=yj*fac
-            ggg(3)=zj*fac
-            if (j.lt.i) then
-cd            write (iout,*) 'j<i'
-C Uncomment following three lines for SC-p interactions
-c             do k=1,3
-c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
-c             enddo
-            else
-cd            write (iout,*) 'j>i'
-              do k=1,3
-                ggg(k)=-ggg(k)
-C Uncomment following line for SC-p interactions
-c               gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
-              enddo
-            endif
-            do k=1,3
-              gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
-            enddo
-            kstart=min0(i+1,j)
-            kend=max0(i-1,j-1)
-cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
-cd        write (iout,*) ggg(1),ggg(2),ggg(3)
-            do k=kstart,kend
-              do l=1,3
-                gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
-              enddo
-            enddo
-
-          endif
-
-        enddo
-
-        enddo ! iint
-      enddo ! i
-      do i=1,nct
-        do j=1,3
-          gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
-          gradx_scp(j,i)=expon*gradx_scp(j,i)
-        enddo
-      enddo
-C******************************************************************************
-C
-C                              N O T E !!!
-C
-C To save time the factor EXPON has been extracted from ALL components
-C of GVDWC and GRADX. Remember to multiply them by this factor before further 
-C use!
-C
-C******************************************************************************
-      return
-      end