New valence-torsionals completed
[unres.git] / source / unres / src_MD-M / energy_p_new_barrier.F
index 8dde67d..8a2d035 100644 (file)
@@ -24,6 +24,7 @@ cMS$ATTRIBUTES C ::  proc_proc
       include 'COMMON.MD'
       include 'COMMON.CONTROL'
       include 'COMMON.TIME1'
+      include 'COMMON.SPLITELE'
 #ifdef MPI      
 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
 c     & " nfgtasks",nfgtasks
@@ -98,6 +99,7 @@ c      endif
 C 
 C Compute the side-chain and electrostatic interaction energy
 C
+C      print *,ipot
       goto (101,102,103,104,105,106) ipot
 C Lennard-Jones potential.
   101 call elj(evdw)
@@ -111,6 +113,7 @@ C Berne-Pechukas potential (dilated LJ, angular dependence).
       goto 107
 C Gay-Berne potential (shifted LJ, angular dependence).
   104 call egb(evdw)
+C      print *,"bylem w egb"
       goto 107
 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
   105 call egbv(evdw)
@@ -121,6 +124,11 @@ C
 C Calculate electrostatic (H-bonding) energy of the main chain.
 C
   107 continue
+cmc
+cmc Sep-06: egb takes care of dynamic ss bonds too
+cmc
+c      if (dyn_ss) call dyn_set_nss
+
 c      print *,"Processor",myrank," computed USCSC"
 #ifdef TIMING
       time01=MPI_Wtime() 
@@ -129,6 +137,16 @@ c      print *,"Processor",myrank," computed USCSC"
 #ifdef TIMING
       time_vec=time_vec+MPI_Wtime()-time01
 #endif
+C Introduction of shielding effect first for each peptide group
+C the shielding factor is set this factor is describing how each
+C peptide group is shielded by side-chains
+C the matrix - shield_fac(i) the i index describe the ith between i and i+1
+C      write (iout,*) "shield_mode",shield_mode
+      if (shield_mode.eq.1) then
+       call set_shield_fac
+      else if  (shield_mode.eq.2) then
+       call set_shield_fac2
+      endif
 c      print *,"Processor",myrank," left VEC_AND_DERIV"
       if (ipot.lt.6) then
 #ifdef SPLITELE
@@ -151,9 +169,9 @@ c      print *,"Processor",myrank," left VEC_AND_DERIV"
             eello_turn4=0.0d0
          endif
       else
-c        write (iout,*) "Soft-spheer ELEC potential"
-        call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
-     &   eello_turn4)
+        write (iout,*) "Soft-spheer ELEC potential"
+c        call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
+c     &   eello_turn4)
       endif
 c      print *,"Processor",myrank," computed UELEC"
 C
@@ -185,22 +203,39 @@ C
 C Calculate the virtual-bond-angle energy.
 C
       if (wang.gt.0d0) then
-        call ebend(ebe)
+       if ((tor_mode.eq.0).or.(tor_mode.eq.2)) then
+        call ebend(ebe,ethetacnstr)
+        endif
+C ebend kcc is Kubo cumulant clustered rigorous attemp to derive the
+C energy function
+       if ((tor_mode.eq.1).or.(tor_mode.eq.2)) then
+         call ebend_kcc(ebe,ethetacnstr)
+        endif
       else
         ebe=0
+        ethetacnstr=0
       endif
 c      print *,"Processor",myrank," computed UB"
 C
 C Calculate the SC local energy.
 C
+C      print *,"TU DOCHODZE?"
       call esc(escloc)
 c      print *,"Processor",myrank," computed USC"
 C
 C Calculate the virtual-bond torsional energy.
 C
 cd    print *,'nterm=',nterm
+C      print *,"tor",tor_mode
       if (wtor.gt.0) then
+       if ((tor_mode.eq.0).or.(tor_mode.eq.2)) then
        call etor(etors,edihcnstr)
+       endif
+C etor kcc is Kubo cumulant clustered rigorous attemp to derive the
+C energy function
+       if ((tor_mode.eq.1).or.(tor_mode.eq.2)) then
+       call etor_kcc(etors,edihcnstr)
+       endif
       else
        etors=0
        edihcnstr=0
@@ -209,7 +244,7 @@ c      print *,"Processor",myrank," computed Utor"
 C
 C 6/23/01 Calculate double-torsional energy
 C
-      if (wtor_d.gt.0) then
+      if ((wtor_d.gt.0).and.((tor_mode.eq.0).or.(tor_mode.eq.2))) then
        call etor_d(etors_d)
       else
        etors_d=0
@@ -223,6 +258,7 @@ C
       else
         esccor=0.0d0
       endif
+C      print *,"PRZED MULIt"
 c      print *,"Processor",myrank," computed Usccorr"
 C 
 C 12/1/95 Multi-body terms
@@ -255,6 +291,19 @@ C  after the equilibration time
          Uconst=0.0d0
          Uconst_back=0.0d0
       endif
+C 01/27/2015 added by adasko
+C the energy component below is energy transfer into lipid environment 
+C based on partition function
+C      print *,"przed lipidami"
+      if (wliptran.gt.0) then
+        call Eliptransfer(eliptran)
+      endif
+C      print *,"za lipidami"
+      if (AFMlog.gt.0) then
+        call AFMforce(Eafmforce)
+      else if (selfguide.gt.0) then
+        call AFMvel(Eafmforce)
+      endif
 #ifdef TIMING
       time_enecalc=time_enecalc+MPI_Wtime()-time00
 #endif
@@ -296,10 +345,14 @@ C
       energia(17)=estr
       energia(20)=Uconst+Uconst_back
       energia(21)=esccor
+      energia(22)=eliptran
+      energia(23)=Eafmforce
+      energia(24)=ethetacnstr
 c    Here are the energies showed per procesor if the are more processors 
 c    per molecule then we sum it up in sum_energy subroutine 
 c      print *," Processor",myrank," calls SUM_ENERGY"
       call sum_energy(energia,.true.)
+      if (dyn_ss) call dyn_set_nss
 c      print *," Processor",myrank," left SUM_ENERGY"
 #ifdef TIMING
       time_sumene=time_sumene+MPI_Wtime()-time00
@@ -386,20 +439,26 @@ cMS$ATTRIBUTES C ::  proc_proc
       estr=energia(17)
       Uconst=energia(20)
       esccor=energia(21)
+      eliptran=energia(22)
+      Eafmforce=energia(23)
+      ethetacnstr=energia(24)
 #ifdef SPLITELE
       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
      & +wang*ebe+wtor*etors+wscloc*escloc
      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
-     & +wbond*estr+Uconst+wsccor*esccor
+     & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran+Eafmforce
+     & +ethetacnstr
 #else
       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
      & +wang*ebe+wtor*etors+wscloc*escloc
      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
-     & +wbond*estr+Uconst+wsccor*esccor
+     & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran
+     & +Eafmforce
+     & +ethetacnstr
 #endif
       energia(0)=etot
 c detecting NaNQ
@@ -435,9 +494,10 @@ cMS$ATTRIBUTES C ::  proc_proc
 #endif
 #ifdef MPI
       include 'mpif.h'
-      double precision gradbufc(3,maxres),gradbufx(3,maxres),
-     &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
 #endif
+      double precision gradbufc(3,-1:maxres),gradbufx(3,-1:maxres),
+     & glocbuf(4*maxres),gradbufc_sum(3,-1:maxres)
+     & ,gloc_scbuf(3,-1:maxres)
       include 'COMMON.SETUP'
       include 'COMMON.IOUNITS'
       include 'COMMON.FFIELD'
@@ -490,7 +550,7 @@ c      enddo
       call flush(iout)
 #endif
 #ifdef SPLITELE
-      do i=1,nct
+      do i=0,nct
         do j=1,3
           gradbufc(j,i)=wsc*gvdwc(j,i)+
      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
@@ -501,10 +561,19 @@ c      enddo
      &                wcorr6*gradcorr6_long(j,i)+
      &                wturn6*gcorr6_turn_long(j,i)+
      &                wstrain*ghpbc(j,i)
+     &                +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wturn3*gshieldc_t3(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+
+
         enddo
       enddo 
 #else
-      do i=1,nct
+      do i=0,nct
         do j=1,3
           gradbufc(j,i)=wsc*gvdwc(j,i)+
      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
@@ -516,6 +585,14 @@ c      enddo
      &                wcorr6*gradcorr6_long(j,i)+
      &                wturn6*gcorr6_turn_long(j,i)+
      &                wstrain*ghpbc(j,i)
+     &                +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+
+
         enddo
       enddo 
 #endif
@@ -529,7 +606,7 @@ c      enddo
       enddo
       call flush(iout)
 #endif
-      do i=1,nres
+      do i=0,nres
         do j=1,3
           gradbufc_sum(j,i)=gradbufc(j,i)
         enddo
@@ -572,7 +649,7 @@ c      enddo
       do j=1,3
         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
       enddo
-      do i=nres-2,nnt,-1
+      do i=nres-2,-1,-1
         do j=1,3
           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
         enddo
@@ -593,7 +670,7 @@ c      enddo
       enddo
       call flush(iout)
 #endif
-      do i=1,nres
+      do i=-1,nres
         do j=1,3
           gradbufc_sum(j,i)=gradbufc(j,i)
           gradbufc(j,i)=0.0d0
@@ -602,7 +679,7 @@ c      enddo
       do j=1,3
         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
       enddo
-      do i=nres-2,nnt,-1
+      do i=nres-2,-1,-1
         do j=1,3
           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
         enddo
@@ -630,9 +707,16 @@ c      enddo
       do k=1,3
         gradbufc(k,nres)=0.0d0
       enddo
-      do i=1,nct
+      do i=-1,nct
         do j=1,3
 #ifdef SPLITELE
+C          print *,gradbufc(1,13)
+C          print *,welec*gelc(1,13)
+C          print *,wel_loc*gel_loc(1,13)
+C          print *,0.5d0*(wscp*gvdwc_scpp(1,13))
+C          print *,welec*gelc_long(1,13)+wvdwpp*gvdwpp(1,13)
+C          print *,wel_loc*gel_loc_long(1,13)
+C          print *,gradafm(1,13),"AFM"
           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
      &                wel_loc*gel_loc(j,i)+
      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
@@ -651,11 +735,29 @@ c      enddo
      &                wturn6*gcorr6_turn(j,i)+
      &                wsccor*gsccorc(j,i)
      &               +wscloc*gscloc(j,i)
+     &               +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wcorr*gshieldc_loc_ec(j,i)
+     &                 +wturn3*gshieldc_t3(j,i)
+     &                 +wturn3*gshieldc_loc_t3(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wturn4*gshieldc_loc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+     &                 +wel_loc*gshieldc_loc_ll(j,i)
+
+
+
+
+
+
 #else
           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
      &                wel_loc*gel_loc(j,i)+
      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
-     &                welec*gelc_long(j,i)
+     &                welec*gelc_long(j,i)+
      &                wel_loc*gel_loc_long(j,i)+
      &                wcorr*gcorr_long(j,i)+
      &                wcorr5*gradcorr5_long(j,i)+
@@ -670,12 +772,38 @@ c      enddo
      &                wturn6*gcorr6_turn(j,i)+
      &                wsccor*gsccorc(j,i)
      &               +wscloc*gscloc(j,i)
+     &               +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wcorr*gshieldc_loc_ec(j,i)
+     &                 +wturn3*gshieldc_t3(j,i)
+     &                 +wturn3*gshieldc_loc_t3(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wturn4*gshieldc_loc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+     &                 +wel_loc*gshieldc_loc_ll(j,i)
+
+
+
+
+
 #endif
           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
      &                  wbond*gradbx(j,i)+
      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
      &                  wsccor*gsccorx(j,i)
      &                 +wscloc*gsclocx(j,i)
+     &                 +wliptran*gliptranx(j,i)
+     &                 +welec*gshieldx(j,i)
+     &                 +wcorr*gshieldx_ec(j,i)
+     &                 +wturn3*gshieldx_t3(j,i)
+     &                 +wturn4*gshieldx_t4(j,i)
+     &                 +wel_loc*gshieldx_ll(j,i)
+
+
+
         enddo
       enddo 
 #ifdef DEBUG
@@ -878,6 +1006,7 @@ c-------------------------------------------------------------------------------
       include 'COMMON.IOUNITS'
       include 'COMMON.FFIELD'
       include 'COMMON.SBRIDGE'
+      include 'COMMON.CONTROL'
       double precision kfac /2.4d0/
       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
 c      facT=temp0/t_bath
@@ -913,6 +1042,11 @@ c      facT=2*temp0/(t_bath+temp0)
 #endif
        stop 555
       endif
+      if (shield_mode.gt.0) then
+       wscp=weights(2)*fact
+       wsc=weights(1)*fact
+       wvdwpp=weights(16)*fact
+      endif
       welec=weights(3)*fact
       wcorr=weights(4)*fact3
       wcorr5=weights(5)*fact4
@@ -964,15 +1098,18 @@ C------------------------------------------------------------------------
       estr=energia(17)
       Uconst=energia(20)
       esccor=energia(21)
+      eliptran=energia(22)
+      Eafmforce=energia(23) 
+      ethetacnstr=energia(24)
 #ifdef SPLITELE
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
      &  estr,wbond,ebe,wang,
      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
      &  ecorr,wcorr,
      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
-     &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
-     &  edihcnstr,ebr*nss,
-     &  Uconst,etot
+     &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
+     &  ethetacnstr,ebr*nss,Uconst,eliptran,wliptran,Eafmforc,
+     &  etot
    10 format (/'Virtual-chain energies:'//
      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
@@ -994,9 +1131,13 @@ C------------------------------------------------------------------------
      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
+     & 'ETHETC= ',1pE16.6,' (valence angle constraints)'/
      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
+     & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/
+     & 'EAFM=  ',1pE16.6,' (atomic-force microscopy)'/
      & 'ETOT=  ',1pE16.6,' (total)')
+
 #else
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
      &  estr,wbond,ebe,wang,
@@ -1004,7 +1145,8 @@ C------------------------------------------------------------------------
      &  ecorr,wcorr,
      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
-     &  ebr*nss,Uconst,etot
+     &  ethetacnstr,ebr*nss,Uconst,eliptran,wliptran,Eafmforc,
+     &  etot
    10 format (/'Virtual-chain energies:'//
      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
@@ -1025,8 +1167,11 @@ C------------------------------------------------------------------------
      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
+     & 'ETHETC= ',1pE16.6,' (valence angle constraints)'/
      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
+     & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/
+     & 'EAFM=  ',1pE16.6,' (atomic-force microscopy)'/
      & 'ETOT=  ',1pE16.6,' (total)')
 #endif
       return
@@ -1081,13 +1226,14 @@ C Change 12/1/95 to calculate four-body interactions
 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
             eps0ij=eps(itypi,itypj)
             fac=rrij**expon2
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+C have you changed here?
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=e1+e2
 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
-cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
+cd   &        restyp(itypi),i,restyp(itypj),j,a(itypi,itypj),
 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
             evdw=evdw+evdwij
@@ -1231,8 +1377,9 @@ C
             rij=1.0D0/r_inv_ij 
             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
             fac=r_shift_inv**expon
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+C have you changed here?
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=e_augm+e1+e2
 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
@@ -1358,17 +1505,18 @@ C Calculate the angle-dependent terms of energy & contributions to derivatives.
             call sc_angular
 C Calculate whole angle-dependent part of epsilon and contributions
 C to its derivatives
+C have you changed here?
             fac=(rrij*sigsq)**expon2
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
             evdwij=evdwij*eps2rt*eps3rt
             evdw=evdw+evdwij
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
 cd     &        restyp(itypi),i,restyp(itypj),j,
 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
       include 'COMMON.IOUNITS'
       include 'COMMON.CALC'
       include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
       logical lprn
+      integer xshift,yshift,zshift
+
       evdw=0.0D0
 ccccc      energy_dec=.false.
-c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+C      print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
       evdw=0.0D0
       lprn=.false.
 c     if (icall.eq.0) lprn=.false.
       ind=0
+C the loop over all 27 posible neigbours (for xshift=0,yshift=0,zshift=0
+C we have the original box)
+C      do xshift=-1,1
+C      do yshift=-1,1
+C      do zshift=-1,1
       do i=iatsc_s,iatsc_e
         itypi=iabs(itype(i))
         if (itypi.eq.ntyp1) cycle
@@ -1427,6 +1584,70 @@ c     if (icall.eq.0) lprn=.false.
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
+C Return atom into box, boxxsize is size of box in x dimension
+c  134   continue
+c        if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize
+c        if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize
+C Condition for being inside the proper box
+c        if ((xi.gt.((xshift+0.5d0)*boxxsize)).or.
+c     &       (xi.lt.((xshift-0.5d0)*boxxsize))) then
+c        go to 134
+c        endif
+c  135   continue
+c        if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize
+c        if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize
+C Condition for being inside the proper box
+c        if ((yi.gt.((yshift+0.5d0)*boxysize)).or.
+c     &       (yi.lt.((yshift-0.5d0)*boxysize))) then
+c        go to 135
+c        endif
+c  136   continue
+c        if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize
+c        if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize
+C Condition for being inside the proper box
+c        if ((zi.gt.((zshift+0.5d0)*boxzsize)).or.
+c     &       (zi.lt.((zshift-0.5d0)*boxzsize))) then
+c        go to 136
+c        endif
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+C define scaling factor for lipids
+
+C        if (positi.le.0) positi=positi+boxzsize
+C        print *,i
+C first for peptide groups
+c for each residue check if it is in lipid or lipid water border area
+       if ((zi.gt.bordlipbot)
+     &.and.(zi.lt.bordliptop)) then
+C the energy transfer exist
+        if (zi.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zi.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick)
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipi=1.0d0
+         ssgradlipi=0.0
+        endif
+       else
+         sslipi=0.0d0
+         ssgradlipi=0.0
+       endif
+
+C          xi=xi+xshift*boxxsize
+C          yi=yi+yshift*boxysize
+C          zi=zi+zshift*boxzsize
+
         dxi=dc_norm(1,nres+i)
         dyi=dc_norm(2,nres+i)
         dzi=dc_norm(3,nres+i)
@@ -1439,6 +1660,38 @@ C Calculate SC interaction energy.
 C
         do iint=1,nint_gr(i)
           do j=istart(i,iint),iend(i,iint)
+            IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
+
+c              write(iout,*) "PRZED ZWYKLE", evdwij
+              call dyn_ssbond_ene(i,j,evdwij)
+c              write(iout,*) "PO ZWYKLE", evdwij
+
+              evdw=evdw+evdwij
+              if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
+     &                        'evdw',i,j,evdwij,' ss'
+C triple bond artifac removal
+             do k=j+1,iend(i,iint) 
+C search over all next residues
+              if (dyn_ss_mask(k)) then
+C check if they are cysteins
+C              write(iout,*) 'k=',k
+
+c              write(iout,*) "PRZED TRI", evdwij
+               evdwij_przed_tri=evdwij
+              call triple_ssbond_ene(i,j,k,evdwij)
+c               if(evdwij_przed_tri.ne.evdwij) then
+c                 write (iout,*) "TRI:", evdwij, evdwij_przed_tri
+c               endif
+
+c              write(iout,*) "PO TRI", evdwij
+C call the energy function that removes the artifical triple disulfide
+C bond the soubroutine is located in ssMD.F
+              evdw=evdw+evdwij             
+              if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)')
+     &                        'evdw',i,j,evdwij,'tss'
+              endif!dyn_ss_mask(k)
+             enddo! k
+            ELSE
             ind=ind+1
             itypj=iabs(itype(j))
             if (itypj.eq.ntyp1) cycle
@@ -1467,17 +1720,118 @@ c           chip12=0.0D0
 c           alf1=0.0D0
 c           alf2=0.0D0
 c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
+            xj=c(1,nres+j)
+            yj=c(2,nres+j)
+            zj=c(3,nres+j)
+C Return atom J into box the original box
+c  137   continue
+c        if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize
+c        if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize
+C Condition for being inside the proper box
+c        if ((xj.gt.((0.5d0)*boxxsize)).or.
+c     &       (xj.lt.((-0.5d0)*boxxsize))) then
+c        go to 137
+c        endif
+c  138   continue
+c        if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize
+c        if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize
+C Condition for being inside the proper box
+c        if ((yj.gt.((0.5d0)*boxysize)).or.
+c     &       (yj.lt.((-0.5d0)*boxysize))) then
+c        go to 138
+c        endif
+c  139   continue
+c        if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize
+c        if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize
+C Condition for being inside the proper box
+c        if ((zj.gt.((0.5d0)*boxzsize)).or.
+c     &       (zj.lt.((-0.5d0)*boxzsize))) then
+c        go to 139
+c        endif
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+       if ((zj.gt.bordlipbot)
+     &.and.(zj.lt.bordliptop)) then
+C the energy transfer exist
+        if (zj.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zj-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zj.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick)
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipj=1.0d0
+         ssgradlipj=0.0
+        endif
+       else
+         sslipj=0.0d0
+         ssgradlipj=0.0
+       endif
+      aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+      bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+C      if (aa.ne.aa_aq(itypi,itypj)) write(63,'(2e10.5)')
+C     &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj))
+C      if (ssgradlipj.gt.0.0d0) print *,"??WTF??"
+C      print *,sslipi,sslipj,bordlipbot,zi,zj
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
             dxj=dc_norm(1,nres+j)
             dyj=dc_norm(2,nres+j)
             dzj=dc_norm(3,nres+j)
+C            xj=xj-xi
+C            yj=yj-yi
+C            zj=zj-zi
 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
 c            write (iout,*) "j",j," dc_norm",
 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
             rij=dsqrt(rrij)
+            sss=sscale((1.0d0/rij)/sigma(itypi,itypj))
+            sssgrad=sscagrad((1.0d0/rij)/sigma(itypi,itypj))
+             
+c            write (iout,'(a7,4f8.3)') 
+c    &      "ssscale",sss,((1.0d0/rij)/sigma(itypi,itypj)),r_cut,rlamb
+            if (sss.gt.0.0d0) then
 C Calculate angle-dependent terms of energy and contributions to their
 C derivatives.
             call sc_angular
@@ -1498,18 +1852,24 @@ cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq)
 c---------------------------------------------------------------
             rij_shift=1.0D0/rij_shift 
             fac=rij_shift**expon
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+C here to start with
+C            if (c(i,3).gt.
+            faclip=fac
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
+C       write(63,'(2i3,2e10.3,2f10.5)') i,j,aa,bb, evdwij,
+C     &((sslipi+sslipj)/2.0d0+
+C     &(2.0d0-sslipi-sslipj)/2.0d0)
 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
             evdwij=evdwij*eps2rt*eps3rt
-            evdw=evdw+evdwij
+            evdw=evdw+evdwij*sss
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
      &        restyp(itypi),i,restyp(itypj),j,
      &        epsi,sigm,chi1,chi2,chip1,chip2,
@@ -1526,16 +1886,32 @@ C Calculate gradient components.
             fac=-expon*(e1+evdwij)*rij_shift
             sigder=fac*sigder
             fac=rij*fac
+c            print '(2i4,6f8.4)',i,j,sss,sssgrad*
+c     &      evdwij,fac,sigma(itypi,itypj),expon
+            fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij
 c            fac=0.0d0
 C Calculate the radial part of the gradient
+            gg_lipi(3)=eps1*(eps2rt*eps2rt)
+     &*(eps3rt*eps3rt)*sss/2.0d0*(faclip*faclip*
+     & (aa_lip(itypi,itypj)-aa_aq(itypi,itypj))
+     &+faclip*(bb_lip(itypi,itypj)-bb_aq(itypi,itypj)))
+            gg_lipj(3)=ssgradlipj*gg_lipi(3)
+            gg_lipi(3)=gg_lipi(3)*ssgradlipi
+C            gg_lipi(3)=0.0d0
+C            gg_lipj(3)=0.0d0
             gg(1)=xj*fac
             gg(2)=yj*fac
             gg(3)=zj*fac
 C Calculate angular part of the gradient.
             call sc_grad
+            endif
+            ENDIF    ! dyn_ss            
           enddo      ! j
         enddo        ! iint
       enddo          ! i
+C      enddo          ! zshift
+C      enddo          ! yshift
+C      enddo          ! xshift
 c      write (iout,*) "Number of loop steps in EGB:",ind
 cccc      energy_dec=.false.
       return
@@ -1572,6 +1948,41 @@ c     if (icall.eq.0) lprn=.true.
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+C define scaling factor for lipids
+
+C        if (positi.le.0) positi=positi+boxzsize
+C        print *,i
+C first for peptide groups
+c for each residue check if it is in lipid or lipid water border area
+       if ((zi.gt.bordlipbot)
+     &.and.(zi.lt.bordliptop)) then
+C the energy transfer exist
+        if (zi.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zi.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick)
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipi=1.0d0
+         ssgradlipi=0.0
+        endif
+       else
+         sslipi=0.0d0
+         ssgradlipi=0.0
+       endif
+
         dxi=dc_norm(1,nres+i)
         dyi=dc_norm(2,nres+i)
         dzi=dc_norm(3,nres+i)
@@ -1608,9 +2019,74 @@ c           chip12=0.0D0
 c           alf1=0.0D0
 c           alf2=0.0D0
 c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
+C            xj=c(1,nres+j)-xi
+C            yj=c(2,nres+j)-yi
+C            zj=c(3,nres+j)-zi
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+       if ((zj.gt.bordlipbot)
+     &.and.(zj.lt.bordliptop)) then
+C the energy transfer exist
+        if (zj.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zj-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zj.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick)
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipj=1.0d0
+         ssgradlipj=0.0
+        endif
+       else
+         sslipj=0.0d0
+         ssgradlipj=0.0
+       endif
+      aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+      bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+C      if (aa.ne.aa_aq(itypi,itypj)) write(63,'2e10.5') 
+C     &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj))
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
             dxj=dc_norm(1,nres+j)
             dyj=dc_norm(2,nres+j)
             dzj=dc_norm(3,nres+j)
@@ -1631,8 +2107,8 @@ C I hate to put IF's in the loops, but here don't have another choice!!!!
 c---------------------------------------------------------------
             rij_shift=1.0D0/rij_shift 
             fac=rij_shift**expon
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
@@ -1641,8 +2117,8 @@ c---------------------------------------------------------------
             evdwij=evdwij*eps2rt*eps3rt
             evdw=evdw+evdwij+e_augm
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
      &        restyp(itypi),i,restyp(itypj),j,
      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
@@ -1656,6 +2132,7 @@ C Calculate gradient components.
             fac=-expon*(e1+evdwij)*rij_shift
             sigder=fac*sigder
             fac=rij*fac-2*expon*rrij*e_augm
+            fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij
 C Calculate the radial part of the gradient
             gg(1)=xj*fac
             gg(2)=yj*fac
@@ -1743,6 +2220,7 @@ C----------------------------------------------------------------------------
       include 'COMMON.CALC'
       include 'COMMON.IOUNITS'
       double precision dcosom1(3),dcosom2(3)
+cc      print *,'sss=',sss
       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
@@ -1761,16 +2239,16 @@ c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
       enddo
       do k=1,3
-        gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
+        gg(k)=(gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k))*sss
       enddo 
 c      write (iout,*) "gg",(gg(k),k=1,3)
       do k=1,3
-        gvdwx(k,i)=gvdwx(k,i)-gg(k)
+        gvdwx(k,i)=gvdwx(k,i)-gg(k)+gg_lipi(k)
      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
-     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
-        gvdwx(k,j)=gvdwx(k,j)+gg(k)
+     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv*sss
+        gvdwx(k,j)=gvdwx(k,j)+gg(k)+gg_lipj(k)
      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
-     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv*sss
 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
@@ -1785,8 +2263,8 @@ cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
 cgrad        enddo
 cgrad      enddo
       do l=1,3
-        gvdwc(l,i)=gvdwc(l,i)-gg(l)
-        gvdwc(l,j)=gvdwc(l,j)+gg(l)
+        gvdwc(l,i)=gvdwc(l,i)-gg(l)+gg_lipi(l)
+        gvdwc(l,j)=gvdwc(l,j)+gg(l)+gg_lipj(l)
       enddo
       return
       end
@@ -1888,7 +2366,7 @@ C
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
       dimension ggg(3)
-cd      write(iout,*) 'In EELEC_soft_sphere'
+C      write(iout,*) 'In EELEC_soft_sphere'
       ees=0.0D0
       evdw1=0.0D0
       eel_loc=0.0d0 
@@ -1903,6 +2381,12 @@ cd      write(iout,*) 'In EELEC_soft_sphere'
         xmedi=c(1,i)+0.5d0*dxi
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
+          xmedi=mod(xmedi,boxxsize)
+          if (xmedi.lt.0) xmedi=xmedi+boxxsize
+          ymedi=mod(ymedi,boxysize)
+          if (ymedi.lt.0) ymedi=ymedi+boxysize
+          zmedi=mod(zmedi,boxzsize)
+          if (zmedi.lt.0) zmedi=zmedi+boxzsize
         num_conti=0
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         do j=ielstart(i),ielend(i)
@@ -1916,10 +2400,49 @@ c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
           dxj=dc(1,j)
           dyj=dc(2,j)
           dzj=dc(3,j)
-          xj=c(1,j)+0.5D0*dxj-xmedi
-          yj=c(2,j)+0.5D0*dyj-ymedi
-          zj=c(3,j)+0.5D0*dzj-zmedi
+          xj=c(1,j)+0.5D0*dxj
+          yj=c(2,j)+0.5D0*dyj
+          zj=c(3,j)+0.5D0*dzj
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+      dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      isubchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            isubchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (isubchap.eq.1) then
+          xj=xj_temp-xmedi
+          yj=yj_temp-ymedi
+          zj=zj_temp-zmedi
+       else
+          xj=xj_safe-xmedi
+          yj=yj_safe-ymedi
+          zj=zj_safe-zmedi
+       endif
           rij=xj*xj+yj*yj+zj*zj
+            sss=sscale(sqrt(rij))
+            sssgrad=sscagrad(sqrt(rij))
           if (rij.lt.r0ijsq) then
             evdw1ij=0.25d0*(rij-r0ijsq)**2
             fac=rij-r0ijsq
@@ -1927,13 +2450,13 @@ c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
             evdw1ij=0.0d0
             fac=0.0d0
           endif
-          evdw1=evdw1+evdw1ij
+          evdw1=evdw1+evdw1ij*sss
 C
 C Calculate contributions to the Cartesian gradient.
 C
-          ggg(1)=fac*xj
-          ggg(2)=fac*yj
-          ggg(3)=fac*zj
+          ggg(1)=fac*xj*sssgrad
+          ggg(2)=fac*yj*sssgrad
+          ggg(3)=fac*zj*sssgrad
           do k=1,3
             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
@@ -2252,6 +2775,98 @@ C
 C Compute the virtual-bond-torsional-angle dependent quantities needed
 C to calculate the el-loc multibody terms of various order.
 C
+c      write(iout,*) 'nphi=',nphi,nres
+#ifdef PARMAT
+      do i=ivec_start+2,ivec_end+2
+#else
+      do i=3,nres+1
+#endif
+#ifdef NEWCORR
+        if (i.gt. nnt+2 .and. i.lt.nct+2) then
+          iti = itype2loc(itype(i-2))
+        else
+          iti=nloctyp
+        endif
+c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
+        if (i.gt. nnt+1 .and. i.lt.nct+1) then
+          iti1 = itype2loc(itype(i-1))
+        else
+          iti1=nloctyp
+        endif
+c        write(iout,*),i
+        b1(1,i-2)=bnew1(1,1,iti)*dsin(theta(i-1)/2.0d0)
+     &           +bnew1(2,1,iti)*dsin(theta(i-1))
+     &           +bnew1(3,1,iti)*dcos(theta(i-1)/2.0d0)
+        gtb1(1,i-2)=bnew1(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0
+     &             +bnew1(2,1,iti)*dcos(theta(i-1))
+     &             -bnew1(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0
+c     &           +bnew1(3,1,iti)*sin(alpha(i))*cos(beta(i))
+c     &*(cos(theta(i)/2.0)
+        b2(1,i-2)=bnew2(1,1,iti)*dsin(theta(i-1)/2.0d0)
+     &           +bnew2(2,1,iti)*dsin(theta(i-1))
+     &           +bnew2(3,1,iti)*dcos(theta(i-1)/2.0d0)
+c     &           +bnew2(3,1,iti)*sin(alpha(i))*cos(beta(i))
+c     &*(cos(theta(i)/2.0)
+        gtb2(1,i-2)=bnew2(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0
+     &             +bnew2(2,1,iti)*dcos(theta(i-1))
+     &             -bnew2(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0
+c        if (ggb1(1,i).eq.0.0d0) then
+c        write(iout,*) 'i=',i,ggb1(1,i),
+c     &bnew1(1,1,iti)*cos(theta(i)/2.0)/2.0,
+c     &bnew1(2,1,iti)*cos(theta(i)),
+c     &bnew1(3,1,iti)*sin(theta(i)/2.0)/2.0
+c        endif
+        b1(2,i-2)=bnew1(1,2,iti)
+        gtb1(2,i-2)=0.0
+        b2(2,i-2)=bnew2(1,2,iti)
+        gtb2(2,i-2)=0.0
+        EE(1,1,i-2)=eenew(1,iti)*dcos(theta(i-1))
+        EE(1,2,i-2)=eeold(1,2,iti)
+        EE(2,1,i-2)=eeold(2,1,iti)
+        EE(2,2,i-2)=eeold(2,2,iti)
+        gtEE(1,1,i-2)=-eenew(1,iti)*dsin(theta(i-1))
+        gtEE(1,2,i-2)=0.0d0
+        gtEE(2,2,i-2)=0.0d0
+        gtEE(2,1,i-2)=0.0d0
+c        EE(2,2,iti)=0.0d0
+c        EE(1,2,iti)=0.5d0*eenew(1,iti)
+c        EE(2,1,iti)=0.5d0*eenew(1,iti)
+c        b1(2,iti)=bnew1(1,2,iti)*sin(alpha(i))*sin(beta(i))
+c        b2(2,iti)=bnew2(1,2,iti)*sin(alpha(i))*sin(beta(i))
+       b1tilde(1,i-2)=b1(1,i-2)
+       b1tilde(2,i-2)=-b1(2,i-2)
+       b2tilde(1,i-2)=b2(1,i-2)
+       b2tilde(2,i-2)=-b2(2,i-2)
+c       write (iout,*) 'i=',i-2,gtb1(2,i-2),gtb1(1,i-2)
+c       write(iout,*)  'b1=',b1(1,i-2)
+c       write (iout,*) 'theta=', theta(i-1)
+       enddo
+#else
+        if (i.gt. nnt+2 .and. i.lt.nct+2) then
+          iti = itype2loc(itype(i-2))
+        else
+          iti=nloctyp
+        endif
+c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
+        if (i.gt. nnt+1 .and. i.lt.nct+1) then
+          iti1 = itype2loc(itype(i-1))
+        else
+          iti1=nloctyp
+        endif
+        b1(1,i-2)=b(3,iti)
+        b1(2,i-2)=b(5,iti)
+        b2(1,i-2)=b(2,iti)
+        b2(2,i-2)=b(4,iti)
+       b1tilde(1,i-2)=b1(1,i-2)
+       b1tilde(2,i-2)=-b1(2,i-2)
+       b2tilde(1,i-2)=b2(1,i-2)
+       b2tilde(2,i-2)=-b2(2,i-2)
+        EE(1,2,i-2)=eeold(1,2,iti)
+        EE(2,1,i-2)=eeold(2,1,iti)
+        EE(2,2,i-2)=eeold(2,2,iti)
+        EE(1,1,i-2)=eeold(1,1,iti)
+      enddo
+#endif
 #ifdef PARMAT
       do i=ivec_start+2,ivec_end+2
 #else
         endif
 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
         if (i.gt. nnt+2 .and. i.lt.nct+2) then
-          iti = itortyp(itype(i-2))
+          iti = itype2loc(itype(i-2))
         else
-          iti=ntortyp+1
+          iti=nloctyp
         endif
 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         if (i.gt. nnt+1 .and. i.lt.nct+1) then
-          iti1 = itortyp(itype(i-1))
+          iti1 = itype2loc(itype(i-1))
         else
-          iti1=ntortyp+1
+          iti1=nloctyp
         endif
 cd        write (iout,*) '*******i',i,' iti1',iti
 cd        write (iout,*) 'b1',b1(:,iti)
@@ -2341,8 +2956,18 @@ cd        write (iout,*) 'b2',b2(:,iti)
 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
 c        if (i .gt. iatel_s+2) then
         if (i .gt. nnt+2) then
-          call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
-          call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
+          call matvec2(Ug(1,1,i-2),b2(1,i-2),Ub2(1,i-2))
+#ifdef NEWCORR
+          call matvec2(Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2))
+c          write (iout,*) Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2),"chuj"
+#endif
+c          write(iout,*) "co jest kurwa", iti, EE(1,1,i),EE(2,1,i),
+c     &    EE(1,2,iti),EE(2,2,i)
+          call matmat2(EE(1,1,i-2),Ug(1,1,i-2),EUg(1,1,i-2))
+          call matmat2(gtEE(1,1,i-2),Ug(1,1,i-2),gtEUg(1,1,i-2))
+c          write(iout,*) "Macierz EUG",
+c     &    eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2),
+c     &    eug(2,2,i-2)
           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
      &    then
           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
@@ -2364,25 +2989,32 @@ c        if (i .gt. iatel_s+2) then
             enddo
           enddo
         endif
-        call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
-        call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
+        call matvec2(Ugder(1,1,i-2),b2(1,i-2),Ub2der(1,i-2))
+        call matmat2(EE(1,1,i-2),Ugder(1,1,i-2),EUgder(1,1,i-2))
         do k=1,2
           muder(k,i-2)=Ub2der(k,i-2)
         enddo
 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         if (i.gt. nnt+1 .and. i.lt.nct+1) then
           if (itype(i-1).le.ntyp) then
-            iti1 = itortyp(itype(i-1))
+            iti1 = itype2loc(itype(i-1))
           else
-            iti1=ntortyp+1
+            iti1=nloctyp
           endif
         else
-          iti1=ntortyp+1
+          iti1=nloctyp
         endif
         do k=1,2
-          mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
+          mu(k,i-2)=Ub2(k,i-2)+b1(k,i-1)
         enddo
-cd        write (iout,*) 'mu ',mu(:,i-2)
+#ifdef MUOUT
+        write (iout,'(2hmu,i3,3f8.1,12f10.5)') i-2,rad2deg*theta(i-1),
+     &     rad2deg*theta(i),rad2deg*phi(i),mu(1,i-2),mu(2,i-2),
+     &       -b2(1,i-2),b2(2,i-2),b1(1,i-2),b1(2,i-2),
+     &       dsqrt(b2(1,i-1)**2+b2(2,i-1)**2)
+     &      +dsqrt(b1(1,i-1)**2+b1(2,i-1)**2),
+     &      ((ee(l,k,i-2),l=1,2),k=1,2),eenew(1,itype2loc(iti))
+#endif
 cd        write (iout,*) 'mu1',mu1(:,i-2)
 cd        write (iout,*) 'mu2',mu2(:,i-2)
         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
@@ -2393,7 +3025,7 @@ cd        write (iout,*) 'mu2',mu2(:,i-2)
         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
 C Vectors and matrices dependent on a single virtual-bond dihedral.
-        call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
+        call matvec2(DD(1,1,iti),b1tilde(1,i-1),auxvec(1))
         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
@@ -2669,11 +3301,11 @@ c      endif
 #endif
 #endif
 cd      do i=1,nres
-cd        iti = itortyp(itype(i))
+cd        iti = itype2loc(itype(i))
 cd        write (iout,*) i
 cd        do j=1,2
 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
-cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
+cd     &  (EE(j,k,i),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
 cd        enddo
 cd      enddo
       return
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
       include 'COMMON.TIME1'
+      include 'COMMON.SPLITELE'
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij(4)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
      &    num_conti,j1,j2
@@ -2788,9 +3421,25 @@ c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
 C
 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
 C
+C 14/01/2014 TURN3,TUNR4 does no go under periodic boundry condition
       do i=iturn3_start,iturn3_end
+c        if (i.le.1) cycle
+C        write(iout,*) "tu jest i",i
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
-     &  .or. itype(i+2).eq.ntyp1 .or. itype(i+3).eq.ntyp1) cycle
+C changes suggested by Ana to avoid out of bounds
+C Adam: Unnecessary: handled by iturn3_end and iturn3_start
+c     & .or.((i+4).gt.nres)
+c     & .or.((i-1).le.0)
+C end of changes by Ana
+     &  .or. itype(i+2).eq.ntyp1
+     &  .or. itype(i+3).eq.ntyp1) cycle
+C Adam: Instructions below will switch off existing interactions
+c        if(i.gt.1)then
+c          if(itype(i-1).eq.ntyp1)cycle
+c        end if
+c        if(i.LT.nres-3)then
+c          if (itype(i+4).eq.ntyp1) cycle
+c        end if
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
         xmedi=c(1,i)+0.5d0*dxi
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
+          xmedi=mod(xmedi,boxxsize)
+          if (xmedi.lt.0) xmedi=xmedi+boxxsize
+          ymedi=mod(ymedi,boxysize)
+          if (ymedi.lt.0) ymedi=ymedi+boxysize
+          zmedi=mod(zmedi,boxzsize)
+          if (zmedi.lt.0) zmedi=zmedi+boxzsize
         num_conti=0
         call eelecij(i,i+2,ees,evdw1,eel_loc)
         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
         num_cont_hb(i)=num_conti
       enddo
       do i=iturn4_start,iturn4_end
+        if (i.le.1) cycle
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+c     & .or.((i+5).gt.nres)
+c     & .or.((i-1).le.0)
+C end of changes suggested by Ana
      &    .or. itype(i+3).eq.ntyp1
-     &    .or. itype(i+4).eq.ntyp1) cycle
+     &    .or. itype(i+4).eq.ntyp1
+c     &    .or. itype(i+5).eq.ntyp1
+c     &    .or. itype(i).eq.ntyp1
+c     &    .or. itype(i-1).eq.ntyp1
+     &                             ) cycle
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
         xmedi=c(1,i)+0.5d0*dxi
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
+C Return atom into box, boxxsize is size of box in x dimension
+c  194   continue
+c        if (xmedi.gt.((0.5d0)*boxxsize)) xmedi=xmedi-boxxsize
+c        if (xmedi.lt.((-0.5d0)*boxxsize)) xmedi=xmedi+boxxsize
+C Condition for being inside the proper box
+c        if ((xmedi.gt.((0.5d0)*boxxsize)).or.
+c     &       (xmedi.lt.((-0.5d0)*boxxsize))) then
+c        go to 194
+c        endif
+c  195   continue
+c        if (ymedi.gt.((0.5d0)*boxysize)) ymedi=ymedi-boxysize
+c        if (ymedi.lt.((-0.5d0)*boxysize)) ymedi=ymedi+boxysize
+C Condition for being inside the proper box
+c        if ((ymedi.gt.((0.5d0)*boxysize)).or.
+c     &       (ymedi.lt.((-0.5d0)*boxysize))) then
+c        go to 195
+c        endif
+c  196   continue
+c        if (zmedi.gt.((0.5d0)*boxzsize)) zmedi=zmedi-boxzsize
+c        if (zmedi.lt.((-0.5d0)*boxzsize)) zmedi=zmedi+boxzsize
+C Condition for being inside the proper box
+c        if ((zmedi.gt.((0.5d0)*boxzsize)).or.
+c     &       (zmedi.lt.((-0.5d0)*boxzsize))) then
+c        go to 196
+c        endif
+          xmedi=mod(xmedi,boxxsize)
+          if (xmedi.lt.0) xmedi=xmedi+boxxsize
+          ymedi=mod(ymedi,boxysize)
+          if (ymedi.lt.0) ymedi=ymedi+boxysize
+          zmedi=mod(zmedi,boxzsize)
+          if (zmedi.lt.0) zmedi=zmedi+boxzsize
+
         num_conti=num_cont_hb(i)
+c        write(iout,*) "JESTEM W PETLI"
         call eelecij(i,i+3,ees,evdw1,eel_loc)
         if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) 
      &   call eturn4(i,eello_turn4)
         num_cont_hb(i)=num_conti
       enddo   ! i
+C Loop over all neighbouring boxes
+C      do xshift=-1,1
+C      do yshift=-1,1
+C      do zshift=-1,1
 c
 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
 c
+CTU KURWA
       do i=iatel_s,iatel_e
-        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
+C        do i=75,75
+c        if (i.le.1) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+c     & .or.((i+2).gt.nres)
+c     & .or.((i-1).le.0)
+C end of changes by Ana
+c     &  .or. itype(i+2).eq.ntyp1
+c     &  .or. itype(i-1).eq.ntyp1
+     &                ) cycle
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
         xmedi=c(1,i)+0.5d0*dxi
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
+          xmedi=mod(xmedi,boxxsize)
+          if (xmedi.lt.0) xmedi=xmedi+boxxsize
+          ymedi=mod(ymedi,boxysize)
+          if (ymedi.lt.0) ymedi=ymedi+boxysize
+          zmedi=mod(zmedi,boxzsize)
+          if (zmedi.lt.0) zmedi=zmedi+boxzsize
+C          xmedi=xmedi+xshift*boxxsize
+C          ymedi=ymedi+yshift*boxysize
+C          zmedi=zmedi+zshift*boxzsize
+
+C Return tom into box, boxxsize is size of box in x dimension
+c  164   continue
+c        if (xmedi.gt.((xshift+0.5d0)*boxxsize)) xmedi=xmedi-boxxsize
+c        if (xmedi.lt.((xshift-0.5d0)*boxxsize)) xmedi=xmedi+boxxsize
+C Condition for being inside the proper box
+c        if ((xmedi.gt.((xshift+0.5d0)*boxxsize)).or.
+c     &       (xmedi.lt.((xshift-0.5d0)*boxxsize))) then
+c        go to 164
+c        endif
+c  165   continue
+c        if (ymedi.gt.((yshift+0.5d0)*boxysize)) ymedi=ymedi-boxysize
+c        if (ymedi.lt.((yshift-0.5d0)*boxysize)) ymedi=ymedi+boxysize
+C Condition for being inside the proper box
+c        if ((ymedi.gt.((yshift+0.5d0)*boxysize)).or.
+c     &       (ymedi.lt.((yshift-0.5d0)*boxysize))) then
+c        go to 165
+c        endif
+c  166   continue
+c        if (zmedi.gt.((zshift+0.5d0)*boxzsize)) zmedi=zmedi-boxzsize
+c        if (zmedi.lt.((zshift-0.5d0)*boxzsize)) zmedi=zmedi+boxzsize
+cC Condition for being inside the proper box
+c        if ((zmedi.gt.((zshift+0.5d0)*boxzsize)).or.
+c     &       (zmedi.lt.((zshift-0.5d0)*boxzsize))) then
+c        go to 166
+c        endif
+
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         num_conti=num_cont_hb(i)
+C I TU KURWA
         do j=ielstart(i),ielend(i)
-c          write (iout,*) i,j,itype(i),itype(j)
-          if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1) cycle
+C          do j=16,17
+C          write (iout,*) i,j
+         if (j.le.1) cycle
+          if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+c     & .or.((j+2).gt.nres)
+c     & .or.((j-1).le.0)
+C end of changes by Ana
+c     & .or.itype(j+2).eq.ntyp1
+c     & .or.itype(j-1).eq.ntyp1
+     &) cycle
           call eelecij(i,j,ees,evdw1,eel_loc)
         enddo ! j
         num_cont_hb(i)=num_conti
       enddo   ! i
+C     enddo   ! zshift
+C      enddo   ! yshift
+C      enddo   ! xshift
+
 c      write (iout,*) "Number of loop steps in EELEC:",ind
 cd      do i=1,nres
 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
@@ -2877,10 +3638,13 @@ C-------------------------------------------------------------------------------
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
       include 'COMMON.TIME1'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SHIELD'
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij1(4),gmuji1(4),
+     &    gmuij2(4),gmuji2(4)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
      &    num_conti,j1,j2
@@ -2911,10 +3675,84 @@ c          ind=ind+1
           dx_normj=dc_norm(1,j)
           dy_normj=dc_norm(2,j)
           dz_normj=dc_norm(3,j)
-          xj=c(1,j)+0.5D0*dxj-xmedi
-          yj=c(2,j)+0.5D0*dyj-ymedi
-          zj=c(3,j)+0.5D0*dzj-zmedi
+C          xj=c(1,j)+0.5D0*dxj-xmedi
+C          yj=c(2,j)+0.5D0*dyj-ymedi
+C          zj=c(3,j)+0.5D0*dzj-zmedi
+          xj=c(1,j)+0.5D0*dxj
+          yj=c(2,j)+0.5D0*dyj
+          zj=c(3,j)+0.5D0*dzj
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+          if ((zj.lt.0).or.(xj.lt.0).or.(yj.lt.0)) write (*,*) "CHUJ"
+      dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      isubchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            isubchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (isubchap.eq.1) then
+          xj=xj_temp-xmedi
+          yj=yj_temp-ymedi
+          zj=zj_temp-zmedi
+       else
+          xj=xj_safe-xmedi
+          yj=yj_safe-ymedi
+          zj=zj_safe-zmedi
+       endif
+C        if ((i+3).lt.j) then !this condition keeps for turn3 and turn4 not subject to PBC
+c  174   continue
+c        if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize
+c        if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize
+C Condition for being inside the proper box
+c        if ((xj.gt.((0.5d0)*boxxsize)).or.
+c     &       (xj.lt.((-0.5d0)*boxxsize))) then
+c        go to 174
+c        endif
+c  175   continue
+c        if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize
+c        if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize
+C Condition for being inside the proper box
+c        if ((yj.gt.((0.5d0)*boxysize)).or.
+c     &       (yj.lt.((-0.5d0)*boxysize))) then
+c        go to 175
+c        endif
+c  176   continue
+c        if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize
+c        if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize
+C Condition for being inside the proper box
+c        if ((zj.gt.((0.5d0)*boxzsize)).or.
+c     &       (zj.lt.((-0.5d0)*boxzsize))) then
+c        go to 176
+c        endif
+C        endif !endPBC condintion
+C        xj=xj-xmedi
+C        yj=yj-ymedi
+C        zj=zj-zmedi
           rij=xj*xj+yj*yj+zj*zj
+
+            sss=sscale(sqrt(rij))
+            sssgrad=sscagrad(sqrt(rij))
+c            if (sss.gt.0.0d0) then  
           rrmij=1.0D0/rij
           rij=dsqrt(rij)
           rmij=1.0D0/rij
@@ -2930,14 +3768,27 @@ c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
           ev2=bbb*r6ij
           fac3=ael6i*r6ij
           fac4=ael3i*r3ij
-          evdwij=ev1+ev2
+          evdwij=(ev1+ev2)
           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
           el2=fac4*fac       
-          eesij=el1+el2
+C MARYSIA
+C          eesij=(el1+el2)
 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
+          if (shield_mode.gt.0) then
+C          fac_shield(i)=0.4
+C          fac_shield(j)=0.6
+          el1=el1*fac_shield(i)**2*fac_shield(j)**2
+          el2=el2*fac_shield(i)**2*fac_shield(j)**2
+          eesij=(el1+el2)
           ees=ees+eesij
-          evdw1=evdw1+evdwij
+          else
+          fac_shield(i)=1.0
+          fac_shield(j)=1.0
+          eesij=(el1+el2)
+          ees=ees+eesij
+          endif
+          evdw1=evdw1+evdwij*sss
 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
@@ -2947,35 +3798,115 @@ cd     &      xmedi,ymedi,zmedi,xj,yj,zj
               write (iout,'(a6,2i5,0pf7.3,2i5,2e11.3)') 
      &'evdw1',i,j,evdwij
      &,iteli,itelj,aaa,evdw1
-              write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
+              write (iout,'(a6,2i5,0pf7.3,2f8.3)') 'ees',i,j,eesij,
+     &fac_shield(i),fac_shield(j)
           endif
 
 C
 C Calculate contributions to the Cartesian gradient.
 C
 #ifdef SPLITELE
-          facvdw=-6*rrmij*(ev1+evdwij)
+          facvdw=-6*rrmij*(ev1+evdwij)*sss
           facel=-3*rrmij*(el1+eesij)
           fac1=fac
           erij(1)=xj*rmij
           erij(2)=yj*rmij
           erij(3)=zj*rmij
+
 *
 * Radial derivatives. First process both termini of the fragment (i,j)
 *
           ggg(1)=facel*xj
           ggg(2)=facel*yj
           ggg(3)=facel*zj
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eesij/fac_shield(i)
+     &      *2.0
+           gshieldx(k,iresshield)=gshieldx(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield
+C           gshieldc_loc(k,iresshield)=gshieldc_loc(k,iresshield)
+C     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C             if (iresshield.gt.i) then
+C               do ishi=i+1,iresshield-1
+C                gshieldc(k,ishi)=gshieldc(k,ishi)+rlocshield
+C     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C
+C              enddo
+C             else
+C               do ishi=iresshield,i
+C                gshieldc(k,ishi)=gshieldc(k,ishi)-rlocshield
+C     & -grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C
+C               enddo
+C              endif
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eesij/fac_shield(j)
+     &     *2.0
+           gshieldx(k,iresshield)=gshieldx(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)*2.0
+           gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield
+
+C     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+C           gshieldc_loc(k,iresshield)=gshieldc_loc(k,iresshield)
+C     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+C             if (iresshield.gt.j) then
+C               do ishi=j+1,iresshield-1
+C                gshieldc(k,ishi)=gshieldc(k,ishi)+rlocshield
+C     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+C
+C               enddo
+C            else
+C               do ishi=iresshield,j
+C                gshieldc(k,ishi)=gshieldc(k,ishi)-rlocshield
+C     & -grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+C               enddo
+C              endif
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc(k,i)=gshieldc(k,i)+
+     &              grad_shield(k,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,j)=gshieldc(k,j)+
+     &              grad_shield(k,j)*eesij/fac_shield(j)*2.0
+            gshieldc(k,i-1)=gshieldc(k,i-1)+
+     &              grad_shield(k,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,j-1)=gshieldc(k,j-1)+
+     &              grad_shield(k,j)*eesij/fac_shield(j)*2.0
+
+           enddo
+           endif
 c          do k=1,3
 c            ghalf=0.5D0*ggg(k)
 c            gelc(k,i)=gelc(k,i)+ghalf
 c            gelc(k,j)=gelc(k,j)+ghalf
 c          enddo
 c 9/28/08 AL Gradient compotents will be summed only at the end
+C           print *,"before", gelc_long(1,i), gelc_long(1,j)
           do k=1,3
             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
+C     &                    +grad_shield(k,j)*eesij/fac_shield(j)
             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
+C     &                    +grad_shield(k,i)*eesij/fac_shield(i)
+C            gelc_long(k,i-1)=gelc_long(k,i-1)
+C     &                    +grad_shield(k,i)*eesij/fac_shield(i)
+C            gelc_long(k,j-1)=gelc_long(k,j-1)
+C     &                    +grad_shield(k,j)*eesij/fac_shield(j)
           enddo
+C           print *,"bafter", gelc_long(1,i), gelc_long(1,j)
+
 *
 * Loop over residues i+1 thru j-1.
 *
@@ -2984,9 +3915,15 @@ cgrad            do l=1,3
 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
 cgrad            enddo
 cgrad          enddo
-          ggg(1)=facvdw*xj
-          ggg(2)=facvdw*yj
-          ggg(3)=facvdw*zj
+          if (sss.gt.0.0) then
+          ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj
+          ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj
+          ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj
+          else
+          ggg(1)=0.0
+          ggg(2)=0.0
+          ggg(3)=0.0
+          endif
 c          do k=1,3
 c            ghalf=0.5D0*ggg(k)
 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
@@ -3006,8 +3943,9 @@ cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
 cgrad            enddo
 cgrad          enddo
 #else
-          facvdw=ev1+evdwij 
-          facel=el1+eesij  
+C MARYSIA
+          facvdw=(ev1+evdwij)*sss
+          facel=(el1+eesij)
           fac1=fac
           fac=-3*rrmij*(facvdw+facvdw+facel)
           erij(1)=xj*rmij
@@ -3017,8 +3955,11 @@ cgrad          enddo
 * Radial derivatives. First process both termini of the fragment (i,j)
 * 
           ggg(1)=fac*xj
+C+eesij*grad_shield(1,i)+eesij*grad_shield(1,j)
           ggg(2)=fac*yj
+C+eesij*grad_shield(2,i)+eesij*grad_shield(2,j)
           ggg(3)=fac*zj
+C+eesij*grad_shield(3,i)+eesij*grad_shield(3,j)
 c          do k=1,3
 c            ghalf=0.5D0*ggg(k)
 c            gelc(k,i)=gelc(k,i)+ghalf
@@ -3038,9 +3979,9 @@ cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
 cgrad            enddo
 cgrad          enddo
 c 9/28/08 AL Gradient compotents will be summed only at the end
-          ggg(1)=facvdw*xj
-          ggg(2)=facvdw*yj
-          ggg(3)=facvdw*zj
+          ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj
+          ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj
+          ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj
           do k=1,3
             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
@@ -3061,7 +4002,8 @@ c 9/28/08 AL Gradient compotents will be summed only at the end
 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
 cd   &          (dcosg(k),k=1,3)
           do k=1,3
-            ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
+            ggg(k)=(ecosb*dcosb(k)+ecosg*dcosg(k))*
+     &      fac_shield(i)**2*fac_shield(j)**2
           enddo
 c          do k=1,3
 c            ghalf=0.5D0*ggg(k)
@@ -3077,16 +4019,23 @@ cgrad            do l=1,3
 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
 cgrad            enddo
 cgrad          enddo
+C                     print *,"before22", gelc_long(1,i), gelc_long(1,j)
           do k=1,3
             gelc(k,i)=gelc(k,i)
-     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
-     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &           +((ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &           + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1))
+     &           *fac_shield(i)**2*fac_shield(j)**2   
             gelc(k,j)=gelc(k,j)
-     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
-     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &           +((ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &           + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1))
+     &           *fac_shield(i)**2*fac_shield(j)**2
             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
           enddo
+C           print *,"before33", gelc_long(1,i), gelc_long(1,j)
+
+C MARYSIA
+c          endif !sscale
           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
@@ -3097,6 +4046,7 @@ C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
 C   are computed for EVERY pair of non-contiguous peptide groups.
 C
+
           if (j.lt.nres-1) then
             j1=j+1
             j2=j-1
             j2=j-2
           endif
           kkk=0
+          lll=0
           do k=1,2
             do l=1,2
               kkk=kkk+1
               muij(kkk)=mu(k,i)*mu(l,j)
+c              write(iout,*) 'mumu=', mu(k,i),mu(l,j),i,j,k,l
+#ifdef NEWCORR
+             gmuij1(kkk)=gtb1(k,i+1)*mu(l,j)
+c             write(iout,*) 'k=',k,i,gtb1(k,i+1),gtb1(k,i+1)*mu(l,j)
+             gmuij2(kkk)=gUb2(k,i)*mu(l,j)
+             gmuji1(kkk)=mu(k,i)*gtb1(l,j+1)
+c             write(iout,*) 'l=',l,j,gtb1(l,j+1),gtb1(l,j+1)*mu(k,i)
+             gmuji2(kkk)=mu(k,i)*gUb2(l,j)
+#endif
             enddo
           enddo  
 cd         write (iout,*) 'EELEC: i',i,' j',j
@@ -3274,25 +4234,138 @@ cgrad            endif
 C Contribution to the local-electrostatic energy coming from the i-j pair
           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
      &     +a33*muij(4)
+          if (shield_mode.eq.0) then 
+           fac_shield(i)=1.0
+           fac_shield(j)=1.0
+C          else
+C           fac_shield(i)=0.4
+C           fac_shield(j)=0.6
+          endif
+          eel_loc_ij=eel_loc_ij
+     &    *fac_shield(i)*fac_shield(j)
+C Now derivative over eel_loc
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eel_loc_ij
+     &                                          /fac_shield(i)
+C     &      *2.0
+           gshieldx_ll(k,iresshield)=gshieldx_ll(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,iresshield-1)=gshieldc_ll(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eel_loc_ij
+     &                                       /fac_shield(j)
+C     &     *2.0
+           gshieldx_ll(k,iresshield)=gshieldx_ll(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eel_loc_ij/fac_shield(j)
+           gshieldc_ll(k,iresshield-1)=gshieldc_ll(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc_ll(k,i)=gshieldc_ll(k,i)+
+     &              grad_shield(k,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,j)=gshieldc_ll(k,j)+
+     &              grad_shield(k,j)*eel_loc_ij/fac_shield(j)
+            gshieldc_ll(k,i-1)=gshieldc_ll(k,i-1)+
+     &              grad_shield(k,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,j-1)=gshieldc_ll(k,j-1)+
+     &              grad_shield(k,j)*eel_loc_ij/fac_shield(j)
+           enddo
+           endif
+
+
+c          write (iout,*) 'i',i,' j',j,itype(i),itype(j),
+c     &                     ' eel_loc_ij',eel_loc_ij
+C          write(iout,*) 'muije=',i,j,muij(1),muij(2),muij(3),muij(4)
+C Calculate patrial derivative for theta angle
+#ifdef NEWCORR
+         geel_loc_ij=(a22*gmuij1(1)
+     &     +a23*gmuij1(2)
+     &     +a32*gmuij1(3)
+     &     +a33*gmuij1(4))
+     &    *fac_shield(i)*fac_shield(j)
+c         write(iout,*) "derivative over thatai"
+c         write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3),
+c     &   a33*gmuij1(4) 
+         gloc(nphi+i,icg)=gloc(nphi+i,icg)+
+     &      geel_loc_ij*wel_loc
+c         write(iout,*) "derivative over thatai-1" 
+c         write(iout,*) a22*gmuij2(1), a23*gmuij2(2) ,a32*gmuij2(3),
+c     &   a33*gmuij2(4)
+         geel_loc_ij=
+     &     a22*gmuij2(1)
+     &     +a23*gmuij2(2)
+     &     +a32*gmuij2(3)
+     &     +a33*gmuij2(4)
+         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
+     &      geel_loc_ij*wel_loc
+     &    *fac_shield(i)*fac_shield(j)
+
+c  Derivative over j residue
+         geel_loc_ji=a22*gmuji1(1)
+     &     +a23*gmuji1(2)
+     &     +a32*gmuji1(3)
+     &     +a33*gmuji1(4)
+c         write(iout,*) "derivative over thataj" 
+c         write(iout,*) a22*gmuji1(1), a23*gmuji1(2) ,a32*gmuji1(3),
+c     &   a33*gmuji1(4)
+
+        gloc(nphi+j,icg)=gloc(nphi+j,icg)+
+     &      geel_loc_ji*wel_loc
+     &    *fac_shield(i)*fac_shield(j)
+
+         geel_loc_ji=
+     &     +a22*gmuji2(1)
+     &     +a23*gmuji2(2)
+     &     +a32*gmuji2(3)
+     &     +a33*gmuji2(4)
+c         write(iout,*) "derivative over thataj-1"
+c         write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3),
+c     &   a33*gmuji2(4)
+         gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+
+     &      geel_loc_ji*wel_loc
+     &    *fac_shield(i)*fac_shield(j)
+#endif
 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
 
           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
      &            'eelloc',i,j,eel_loc_ij
-c              write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
+c           if (eel_loc_ij.ne.0)
+c     &      write (iout,'(a4,2i4,8f9.5)')'chuj',
+c     &     i,j,a22,muij(1),a23,muij(2),a32,muij(3),a33,muij(4)
 
           eel_loc=eel_loc+eel_loc_ij
 C Partial derivatives in virtual-bond dihedral angles gamma
           if (i.gt.1)
      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
-     &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
-     &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
+     &            (a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
+     &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j))
+     &    *fac_shield(i)*fac_shield(j)
+
           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
-     &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
-     &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
+     &           (a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
+     &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j))
+     &    *fac_shield(i)*fac_shield(j)
 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
           do l=1,3
-            ggg(l)=agg(l,1)*muij(1)+
-     &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
+            ggg(l)=(agg(l,1)*muij(1)+
+     &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
 cgrad            ghalf=0.5d0*ggg(l)
@@ -3306,14 +4379,22 @@ cgrad            enddo
 cgrad          enddo
 C Remaining derivatives of eello
           do l=1,3
-            gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
-     &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
-            gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
-     &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
-            gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
-     &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
-            gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
-     &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
+            gel_loc(l,i)=gel_loc(l,i)+(aggi(l,1)*muij(1)+
+     &        aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+
+            gel_loc(l,i+1)=gel_loc(l,i+1)+(aggi1(l,1)*muij(1)+
+     &     aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+
+            gel_loc(l,j)=gel_loc(l,j)+(aggj(l,1)*muij(1)+
+     &       aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+
+            gel_loc(l,j1)=gel_loc(l,j1)+(aggj1(l,1)*muij(1)+
+     &     aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4))
+     &    *fac_shield(i)*fac_shield(j)
+
           enddo
           ENDIF
 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
@@ -3392,8 +4473,18 @@ c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
                   ees0mij=0
                 endif
 c               ees0mij=0.0D0
+                if (shield_mode.eq.0) then
+                fac_shield(i)=1.0d0
+                fac_shield(j)=1.0d0
+                else
+                ees0plist(num_conti,i)=j
+C                fac_shield(i)=0.4d0
+C                fac_shield(j)=0.6d0
+                endif
                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
+     &          *fac_shield(i)*fac_shield(j) 
                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
+     &          *fac_shield(i)*fac_shield(j)
 C Diagnostics. Comment out or remove after debugging!
 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
@@ -3461,17 +4552,29 @@ cgrad                  ghalfm=0.5D0*gggm(k)
                   gacontp_hb1(k,num_conti,i)=!ghalfp
      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontp_hb2(k,num_conti,i)=!ghalfp
      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontp_hb3(k,num_conti,i)=gggp(k)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb1(k,num_conti,i)=!ghalfm
      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb2(k,num_conti,i)=!ghalfm
      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb3(k,num_conti,i)=gggm(k)
+     &          *fac_shield(i)*fac_shield(j)
+
                 enddo
 C Diagnostics. Comment out or remove after debugging!
 cdiag           do k=1,3
@@ -3523,10 +4626,13 @@ C Third- and fourth-order contributions from turns
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
       include 'COMMON.CONTROL'
+      include 'COMMON.SHIELD'
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
-     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),gpizda1(2,2),
+     &  gpizda2(2,2),auxgmat1(2,2),auxgmatt1(2,2),
+     &  auxgmat2(2,2),auxgmatt2(2,2)
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
+c auxalary matices for theta gradient
+c auxalary matrix for i+1 and constant i+2
+        call matmat2(gtEUg(1,1,i+1),EUg(1,1,i+2),auxgmat1(1,1))
+c auxalary matrix for i+2 and constant i+1
+        call matmat2(EUg(1,1,i+1),gtEUg(1,1,i+2),auxgmat2(1,1))
         call transpose2(auxmat(1,1),auxmat1(1,1))
+        call transpose2(auxgmat1(1,1),auxgmatt1(1,1))
+        call transpose2(auxgmat2(1,1),auxgmatt2(1,1))
         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+        call matmat2(a_temp(1,1),auxgmatt1(1,1),gpizda1(1,1))
+        call matmat2(a_temp(1,1),auxgmatt2(1,1),gpizda2(1,1))
+        if (shield_mode.eq.0) then
+        fac_shield(i)=1.0
+        fac_shield(j)=1.0
+C        else
+C        fac_shield(i)=0.4
+C        fac_shield(j)=0.6
+        endif
         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
-        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
-     &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
+     &  *fac_shield(i)*fac_shield(j)
+        eello_t3=0.5d0*(pizda(1,1)+pizda(2,2))
+     &  *fac_shield(i)*fac_shield(j)
+C Derivatives in theta
+        gloc(nphi+i,icg)=gloc(nphi+i,icg)
+     &  +0.5d0*(gpizda1(1,1)+gpizda1(2,2))*wturn3
+     &   *fac_shield(i)*fac_shield(j)
+        gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)
+     &  +0.5d0*(gpizda2(1,1)+gpizda2(2,2))*wturn3
+     &   *fac_shield(i)*fac_shield(j)
+
+
+C        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+C Derivatives in shield mode
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eello_t3/fac_shield(i)
+C     &      *2.0
+           gshieldx_t3(k,iresshield)=gshieldx_t3(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,iresshield-1)=gshieldc_t3(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eello_t3/fac_shield(j)
+C     &     *2.0
+           gshieldx_t3(k,iresshield)=gshieldx_t3(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eello_t3/fac_shield(j)
+           gshieldc_t3(k,iresshield-1)=gshieldc_t3(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc_t3(k,i)=gshieldc_t3(k,i)+
+     &              grad_shield(k,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,j)=gshieldc_t3(k,j)+
+     &              grad_shield(k,j)*eello_t3/fac_shield(j)
+            gshieldc_t3(k,i-1)=gshieldc_t3(k,i-1)+
+     &              grad_shield(k,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,j-1)=gshieldc_t3(k,j-1)+
+     &              grad_shield(k,j)*eello_t3/fac_shield(j)
+           enddo
+           endif
+
+C        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
 cd     &    ' eello_turn3_num',4*eello_turn3_num
@@ -3563,12 +4740,14 @@ C Derivatives in gamma(i)
         call transpose2(auxmat2(1,1),auxmat3(1,1))
         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
 C Derivatives in gamma(i+1)
         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
         call transpose2(auxmat2(1,1),auxmat3(1,1))
         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
      &    +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
 C Cartesian derivatives
         do l=1,3
 c            ghalf1=0.5d0*agg(l,1)
@@ -3582,6 +4761,8 @@ c            ghalf4=0.5d0*agg(l,4)
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,i)=gcorr3_turn(l,i)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+
           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
@@ -3589,6 +4770,7 @@ c            ghalf4=0.5d0*agg(l,4)
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
           a_temp(1,1)=aggj(l,1)!+ghalf1
           a_temp(1,2)=aggj(l,2)!+ghalf2
           a_temp(2,1)=aggj(l,3)!+ghalf3
@@ -3596,6 +4778,7 @@ c            ghalf4=0.5d0*agg(l,4)
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,j)=gcorr3_turn(l,j)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
           a_temp(1,1)=aggj1(l,1)
           a_temp(1,2)=aggj1(l,2)
           a_temp(2,1)=aggj1(l,3)
@@ -3603,6 +4786,7 @@ c            ghalf4=0.5d0*agg(l,4)
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
         enddo
       return
       end
@@ -3623,10 +4807,15 @@ C Third- and fourth-order contributions from turns
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
       include 'COMMON.CONTROL'
+      include 'COMMON.SHIELD'
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
-     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),auxgvec(2),
+     &  auxgEvec1(2),auxgEvec2(2),auxgEvec3(2),
+     &  gte1t(2,2),gte2t(2,2),gte3t(2,2),
+     &  gte1a(2,2),gtae3(2,2),gtae3e2(2,2), ae3gte2(2,2),
+     &  gtEpizda1(2,2),gtEpizda2(2,2),gtEpizda3(2,2)
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
+c        write(iout,*)"WCHODZE W PROGRAM"
         a_temp(1,1)=a22
         a_temp(1,2)=a23
         a_temp(2,1)=a32
         a_temp(2,2)=a33
-        iti1=itortyp(itype(i+1))
-        iti2=itortyp(itype(i+2))
-        iti3=itortyp(itype(i+3))
+        iti1=itype2loc(itype(i+1))
+        iti2=itype2loc(itype(i+2))
+        iti3=itype2loc(itype(i+3))
 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
         call transpose2(EUg(1,1,i+1),e1t(1,1))
         call transpose2(Eug(1,1,i+2),e2t(1,1))
         call transpose2(Eug(1,1,i+3),e3t(1,1))
+C Ematrix derivative in theta
+        call transpose2(gtEUg(1,1,i+1),gte1t(1,1))
+        call transpose2(gtEug(1,1,i+2),gte2t(1,1))
+        call transpose2(gtEug(1,1,i+3),gte3t(1,1))
         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+c       eta1 in derivative theta
+        call matmat2(gte1t(1,1),a_temp(1,1),gte1a(1,1))
         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+c       auxgvec is derivative of Ub2 so i+3 theta
+        call matvec2(e1a(1,1),gUb2(1,i+3),auxgvec(1)) 
+c       auxalary matrix of E i+1
+        call matvec2(gte1a(1,1),Ub2(1,i+3),auxgEvec1(1))
+c        s1=0.0
+c        gs1=0.0    
+        s1=scalar2(b1(1,i+2),auxvec(1))
+c derivative of theta i+2 with constant i+3
+        gs23=scalar2(gtb1(1,i+2),auxvec(1))
+c derivative of theta i+2 with constant i+2
+        gs32=scalar2(b1(1,i+2),auxgvec(1))
+c derivative of E matix in theta of i+1
+        gsE13=scalar2(b1(1,i+2),auxgEvec1(1))
+
         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+c       ea31 in derivative theta
+        call matmat2(a_temp(1,1),gte3t(1,1),gtae3(1,1))
         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+c auxilary matrix auxgvec of Ub2 with constant E matirx
+        call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1))
+c auxilary matrix auxgEvec1 of E matix with Ub2 constant
+        call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1))
+
+c        s2=0.0
+c        gs2=0.0
+        s2=scalar2(b1(1,i+1),auxvec(1))
+c derivative of theta i+1 with constant i+3
+        gs13=scalar2(gtb1(1,i+1),auxvec(1))
+c derivative of theta i+2 with constant i+1
+        gs21=scalar2(b1(1,i+1),auxgvec(1))
+c derivative of theta i+3 with constant i+1
+        gsE31=scalar2(b1(1,i+1),auxgEvec3(1))
+c        write(iout,*) gs1,gs2,'i=',i,auxgvec(1),gUb2(1,i+2),gtb1(1,i+2),
+c     &  gtb1(1,i+1)
         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+c two derivatives over diffetent matrices
+c gtae3e2 is derivative over i+3
+        call matmat2(gtae3(1,1),e2t(1,1),gtae3e2(1,1))
+c ae3gte2 is derivative over i+2
+        call matmat2(ae3(1,1),gte2t(1,1),ae3gte2(1,1))
         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+c three possible derivative over theta E matices
+c i+1
+        call matmat2(ae3e2(1,1),gte1t(1,1),gtEpizda1(1,1))
+c i+2
+        call matmat2(ae3gte2(1,1),e1t(1,1),gtEpizda2(1,1))
+c i+3
+        call matmat2(gtae3e2(1,1),e1t(1,1),gtEpizda3(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
+
+        gsEE1=0.5d0*(gtEpizda1(1,1)+gtEpizda1(2,2))
+        gsEE2=0.5d0*(gtEpizda2(1,1)+gtEpizda2(2,2))
+        gsEE3=0.5d0*(gtEpizda3(1,1)+gtEpizda3(2,2))
+        if (shield_mode.eq.0) then
+        fac_shield(i)=1.0
+        fac_shield(j)=1.0
+C        else
+C        fac_shield(i)=0.6
+C        fac_shield(j)=0.4
+        endif
         eello_turn4=eello_turn4-(s1+s2+s3)
-        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
-     &      'eturn4',i,j,-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+        eello_t4=-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+c             write(iout,*)'chujOWO', auxvec(1),b1(1,iti2)
+        if (energy_dec) write (iout,'(a6,2i5,0pf7.3,3f7.3)')
+     &      'eturn4',i,j,-(s1+s2+s3),s1,s2,s3
+C Now derivative over shield:
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eello_t4/fac_shield(i)
+C     &      *2.0
+           gshieldx_t4(k,iresshield)=gshieldx_t4(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,iresshield-1)=gshieldc_t4(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eello_t4/fac_shield(j)
+C     &     *2.0
+           gshieldx_t4(k,iresshield)=gshieldx_t4(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eello_t4/fac_shield(j)
+           gshieldc_t4(k,iresshield-1)=gshieldc_t4(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc_t4(k,i)=gshieldc_t4(k,i)+
+     &              grad_shield(k,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,j)=gshieldc_t4(k,j)+
+     &              grad_shield(k,j)*eello_t4/fac_shield(j)
+            gshieldc_t4(k,i-1)=gshieldc_t4(k,i-1)+
+     &              grad_shield(k,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,j-1)=gshieldc_t4(k,j-1)+
+     &              grad_shield(k,j)*eello_t4/fac_shield(j)
+           enddo
+           endif
+
+
+
+
+
+
 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
 cd     &    ' eello_turn4_num',8*eello_turn4_num
+#ifdef NEWCORR
+        gloc(nphi+i,icg)=gloc(nphi+i,icg)
+     &                  -(gs13+gsE13+gsEE1)*wturn4
+     &  *fac_shield(i)*fac_shield(j)
+        gloc(nphi+i+1,icg)= gloc(nphi+i+1,icg)
+     &                    -(gs23+gs21+gsEE2)*wturn4
+     &  *fac_shield(i)*fac_shield(j)
+
+        gloc(nphi+i+2,icg)= gloc(nphi+i+2,icg)
+     &                    -(gs32+gsE31+gsEE3)*wturn4
+     &  *fac_shield(i)*fac_shield(j)
+
+c         gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)-
+c     &   gs2
+#endif
+        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &      'eturn4',i,j,-(s1+s2+s3)
+c        write (iout,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
+c     &    ' eello_turn4_num',8*eello_turn4_num
 C Derivatives in gamma(i)
         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+2),auxvec(1))
         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
+     &  *fac_shield(i)*fac_shield(j)
 C Derivatives in gamma(i+1)
         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
 C Derivatives in gamma(i+2)
         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+2),auxvec(1))
         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
 C Cartesian derivatives
 C Derivatives of this turn contributions in DC(i+2)
         if (j.lt.nres-1) then
@@ -3708,15 +5031,16 @@ C Derivatives of this turn contributions in DC(i+2)
             a_temp(2,2)=agg(l,4)
             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-            s1=scalar2(b1(1,iti2),auxvec(1))
+            s1=scalar2(b1(1,i+2),auxvec(1))
             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-            s2=scalar2(b1(1,iti1),auxvec(1))
+            s2=scalar2(b1(1,i+1),auxvec(1))
             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
             s3=0.5d0*(pizda(1,1)+pizda(2,2))
             ggg(l)=-(s1+s2+s3)
             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
           enddo
         endif
 C Remaining derivatives of this turn contribution
@@ -3727,57 +5051,61 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggi(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
           a_temp(1,1)=aggi1(l,1)
           a_temp(1,2)=aggi1(l,2)
           a_temp(2,1)=aggi1(l,3)
           a_temp(2,2)=aggi1(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
           a_temp(1,1)=aggj(l,1)
           a_temp(1,2)=aggj(l,2)
           a_temp(2,1)=aggj(l,3)
           a_temp(2,2)=aggj(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
           a_temp(1,1)=aggj1(l,1)
           a_temp(1,2)=aggj1(l,2)
           a_temp(2,1)=aggj1(l,3)
           a_temp(2,2)=aggj1(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
         enddo
       return
       end
       r0_scp=4.5d0
 cd    print '(a)','Enter ESCP'
 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
+C      do xshift=-1,1
+C      do yshift=-1,1
+C      do zshift=-1,1
       do i=iatscp_s,iatscp_e
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         iteli=itel(i)
         xi=0.5D0*(c(1,i)+c(1,i+1))
         yi=0.5D0*(c(2,i)+c(2,i+1))
         zi=0.5D0*(c(3,i)+c(3,i+1))
-
+C Return atom into box, boxxsize is size of box in x dimension
+c  134   continue
+c        if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize
+c        if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize
+C Condition for being inside the proper box
+c        if ((xi.gt.((xshift+0.5d0)*boxxsize)).or.
+c     &       (xi.lt.((xshift-0.5d0)*boxxsize))) then
+c        go to 134
+c        endif
+c  135   continue
+c        if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize
+c        if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize
+C Condition for being inside the proper box
+c        if ((yi.gt.((yshift+0.5d0)*boxysize)).or.
+c     &       (yi.lt.((yshift-0.5d0)*boxysize))) then
+c        go to 135
+c c       endif
+c  136   continue
+c        if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize
+c        if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize
+cC Condition for being inside the proper box
+c        if ((zi.gt.((zshift+0.5d0)*boxzsize)).or.
+c     &       (zi.lt.((zshift-0.5d0)*boxzsize))) then
+c        go to 136
+c        endif
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+C          xi=xi+xshift*boxxsize
+C          yi=yi+yshift*boxysize
+C          zi=zi+zshift*boxzsize
         do iint=1,nscp_gr(i)
 
         do j=iscpstart(i,iint),iscpend(i,iint)
@@ -3855,10 +5219,75 @@ c         xj=c(1,nres+j)-xi
 c         yj=c(2,nres+j)-yi
 c         zj=c(3,nres+j)-zi
 C Uncomment following three lines for Ca-p interactions
-          xj=c(1,j)-xi
-          yj=c(2,j)-yi
-          zj=c(3,j)-zi
+          xj=c(1,j)
+          yj=c(2,j)
+          zj=c(3,j)
+c  174   continue
+c        if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize
+c        if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize
+C Condition for being inside the proper box
+c        if ((xj.gt.((0.5d0)*boxxsize)).or.
+c     &       (xj.lt.((-0.5d0)*boxxsize))) then
+c        go to 174
+c        endif
+c  175   continue
+c        if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize
+c        if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize
+cC Condition for being inside the proper box
+c        if ((yj.gt.((0.5d0)*boxysize)).or.
+c     &       (yj.lt.((-0.5d0)*boxysize))) then
+c        go to 175
+c        endif
+c  176   continue
+c        if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize
+c        if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize
+C Condition for being inside the proper box
+c        if ((zj.gt.((0.5d0)*boxzsize)).or.
+c     &       (zj.lt.((-0.5d0)*boxzsize))) then
+c        go to 176
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
+c c       endif
+C          xj=xj-xi
+C          yj=yj-yi
+C          zj=zj-zi
           rij=xj*xj+yj*yj+zj*zj
+
           r0ij=r0_scp
           r0ijsq=r0ij*r0ij
           if (rij.lt.r0ijsq) then
@@ -3909,6 +5338,9 @@ cgrad          enddo
 
         enddo ! iint
       enddo ! i
+C      enddo !zshift
+C      enddo !yshift
+C      enddo !xshift
       return
       end
 C-----------------------------------------------------------------------------
       include 'COMMON.FFIELD'
       include 'COMMON.IOUNITS'
       include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
       dimension ggg(3)
       evdw2=0.0D0
       evdw2_14=0.0d0
+c        print *,boxxsize,boxysize,boxzsize,'wymiary pudla'
 cd    print '(a)','Enter ESCP'
 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
+C      do xshift=-1,1
+C      do yshift=-1,1
+C      do zshift=-1,1
       do i=iatscp_s,iatscp_e
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         iteli=itel(i)
         xi=0.5D0*(c(1,i)+c(1,i+1))
         yi=0.5D0*(c(2,i)+c(2,i+1))
         zi=0.5D0*(c(3,i)+c(3,i+1))
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+c          xi=xi+xshift*boxxsize
+c          yi=yi+yshift*boxysize
+c          zi=zi+zshift*boxzsize
+c        print *,xi,yi,zi,'polozenie i'
+C Return atom into box, boxxsize is size of box in x dimension
+c  134   continue
+c        if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize
+c        if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize
+C Condition for being inside the proper box
+c        if ((xi.gt.((xshift+0.5d0)*boxxsize)).or.
+c     &       (xi.lt.((xshift-0.5d0)*boxxsize))) then
+c        go to 134
+c        endif
+c  135   continue
+c          print *,xi,boxxsize,"pierwszy"
 
+c        if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize
+c        if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize
+C Condition for being inside the proper box
+c        if ((yi.gt.((yshift+0.5d0)*boxysize)).or.
+c     &       (yi.lt.((yshift-0.5d0)*boxysize))) then
+c        go to 135
+c        endif
+c  136   continue
+c        if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize
+c        if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize
+C Condition for being inside the proper box
+c        if ((zi.gt.((zshift+0.5d0)*boxzsize)).or.
+c     &       (zi.lt.((zshift-0.5d0)*boxzsize))) then
+c        go to 136
+c        endif
         do iint=1,nscp_gr(i)
 
         do j=iscpstart(i,iint),iscpend(i,iint)
@@ -3951,27 +5424,97 @@ c         xj=c(1,nres+j)-xi
 c         yj=c(2,nres+j)-yi
 c         zj=c(3,nres+j)-zi
 C Uncomment following three lines for Ca-p interactions
-          xj=c(1,j)-xi
-          yj=c(2,j)-yi
-          zj=c(3,j)-zi
+          xj=c(1,j)
+          yj=c(2,j)
+          zj=c(3,j)
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+c  174   continue
+c        if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize
+c        if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize
+C Condition for being inside the proper box
+c        if ((xj.gt.((0.5d0)*boxxsize)).or.
+c     &       (xj.lt.((-0.5d0)*boxxsize))) then
+c        go to 174
+c        endif
+c  175   continue
+c        if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize
+c        if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize
+cC Condition for being inside the proper box
+c        if ((yj.gt.((0.5d0)*boxysize)).or.
+c     &       (yj.lt.((-0.5d0)*boxysize))) then
+c        go to 175
+c        endif
+c  176   continue
+c        if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize
+c        if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize
+C Condition for being inside the proper box
+c        if ((zj.gt.((0.5d0)*boxzsize)).or.
+c     &       (zj.lt.((-0.5d0)*boxzsize))) then
+c        go to 176
+c        endif
+CHERE IS THE CALCULATION WHICH MIRROR IMAGE IS THE CLOSEST ONE
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
+c          print *,xj,yj,zj,'polozenie j'
           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+c          print *,rrij
+          sss=sscale(1.0d0/(dsqrt(rrij)))
+c          print *,r_cut,1.0d0/dsqrt(rrij),sss,'tu patrz'
+c          if (sss.eq.0) print *,'czasem jest OK'
+          if (sss.le.0.0d0) cycle
+          sssgrad=sscagrad(1.0d0/(dsqrt(rrij)))
           fac=rrij**expon2
           e1=fac*fac*aad(itypj,iteli)
           e2=fac*bad(itypj,iteli)
           if (iabs(j-i) .le. 2) then
             e1=scal14*e1
             e2=scal14*e2
-            evdw2_14=evdw2_14+e1+e2
+            evdw2_14=evdw2_14+(e1+e2)*sss
           endif
           evdwij=e1+e2
-          evdw2=evdw2+evdwij
+          evdw2=evdw2+evdwij*sss
           if (energy_dec) write (iout,'(a6,2i5,0pf7.3,2i3,3e11.3)')
      &        'evdw2',i,j,evdwij,iteli,itypj,fac,aad(itypj,iteli),
      &       bad(itypj,iteli)
 C
 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
 C
-          fac=-(evdwij+e1)*rrij
+          fac=-(evdwij+e1)*rrij*sss
+          fac=fac+(evdwij)*sssgrad*dsqrt(rrij)/expon
           ggg(1)=xj*fac
           ggg(2)=yj*fac
           ggg(3)=zj*fac
@@ -4006,10 +5549,14 @@ cgrad          enddo
             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
           enddo
-        enddo
+c        endif !endif for sscale cutoff
+        enddo ! j
 
         enddo ! iint
       enddo ! i
+c      enddo !zshift
+c      enddo !yshift
+c      enddo !xshift
       do i=1,nct
         do j=1,3
           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
@@ -4041,8 +5588,13 @@ C
       include 'COMMON.VAR'
       include 'COMMON.INTERACT'
       include 'COMMON.IOUNITS'
+      include 'COMMON.CONTROL'
       dimension ggg(3)
       ehpb=0.0D0
+      do i=1,3
+       ggg(i)=0.0d0
+      enddo
+C      write (iout,*) ,"link_end",link_end,constr_dist
 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
       if (link_end.eq.0) return
@@ -4059,53 +5611,118 @@ C iii and jjj point to the residues for which the distance is assigned.
           iii=ii
           jjj=jj
         endif
-cd        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj
+c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
+c     &    dhpb(i),dhpb1(i),forcon(i)
 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
 C    distance and angle dependent SS bond potential.
-        if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and.
+C        if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and.
+C     & iabs(itype(jjj)).eq.1) then
+cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
+C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
+        if (.not.dyn_ss .and. i.le.nss) then
+C 15/02/13 CC dynamic SSbond - additional check
+         if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and.
      & iabs(itype(jjj)).eq.1) then
           call ssbond_ene(iii,jjj,eij)
           ehpb=ehpb+2*eij
+         endif
 cd          write (iout,*) "eij",eij
+cd   &   ' waga=',waga,' fac=',fac
+        else if (ii.gt.nres .and. jj.gt.nres) then
+c Restraints from contact prediction
+          dd=dist(ii,jj)
+          if (constr_dist.eq.11) then
+            ehpb=ehpb+fordepth(i)**4.0d0
+     &          *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i))
+            fac=fordepth(i)**4.0d0
+     &          *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd
+          if (energy_dec) write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj,
+     &    ehpb,fordepth(i),dd
+           else
+          if (dhpb1(i).gt.0.0d0) then
+            ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
+            fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
+c            write (iout,*) "beta nmr",
+c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
+          else
+            dd=dist(ii,jj)
+            rdis=dd-dhpb(i)
+C Get the force constant corresponding to this distance.
+            waga=forcon(i)
+C Calculate the contribution to energy.
+            ehpb=ehpb+waga*rdis*rdis
+c            write (iout,*) "beta reg",dd,waga*rdis*rdis
+C
+C Evaluate gradient.
+C
+            fac=waga*rdis/dd
+          endif
+          endif
+          do j=1,3
+            ggg(j)=fac*(c(j,jj)-c(j,ii))
+          enddo
+          do j=1,3
+            ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
+            ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
+          enddo
+          do k=1,3
+            ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
+            ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
+          enddo
         else
 C Calculate the distance between the two points and its difference from the
 C target distance.
-        dd=dist(ii,jj)
-        rdis=dd-dhpb(i)
+          dd=dist(ii,jj)
+          if (constr_dist.eq.11) then
+            ehpb=ehpb+fordepth(i)**4.0d0
+     &           *rlornmr1(dd,dhpb(i),dhpb1(i),forcon(i))
+            fac=fordepth(i)**4.0d0
+     &           *rlornmr1prim(dd,dhpb(i),dhpb1(i),forcon(i))/dd
+          if (energy_dec) write (iout,'(a6,2i5,3f8.3)') "edisl",ii,jj,
+     &    ehpb,fordepth(i),dd
+           else   
+          if (dhpb1(i).gt.0.0d0) then
+            ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
+            fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
+c            write (iout,*) "alph nmr",
+c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
+          else
+            rdis=dd-dhpb(i)
 C Get the force constant corresponding to this distance.
-        waga=forcon(i)
+            waga=forcon(i)
 C Calculate the contribution to energy.
-        ehpb=ehpb+waga*rdis*rdis
+            ehpb=ehpb+waga*rdis*rdis
+c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
 C
 C Evaluate gradient.
 C
-        fac=waga*rdis/dd
-cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
-cd   &   ' waga=',waga,' fac=',fac
-        do j=1,3
-          ggg(j)=fac*(c(j,jj)-c(j,ii))
-        enddo
+            fac=waga*rdis/dd
+          endif
+          endif
+            do j=1,3
+              ggg(j)=fac*(c(j,jj)-c(j,ii))
+            enddo
 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
 C If this is a SC-SC distance, we need to calculate the contributions to the
 C Cartesian gradient in the SC vectors (ghpbx).
-        if (iii.lt.ii) then
+          if (iii.lt.ii) then
           do j=1,3
             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
           enddo
-        endif
+          endif
 cgrad        do j=iii,jjj-1
 cgrad          do k=1,3
 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
 cgrad          enddo
 cgrad        enddo
-        do k=1,3
-          ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
-          ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
-        enddo
+          do k=1,3
+            ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
+            ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
+          enddo
         endif
       enddo
-      ehpb=0.5D0*ehpb
+      if (constr_dist.ne.11) ehpb=0.5D0*ehpb
       return
       end
 C--------------------------------------------------------------------------
       estr=0.0d0
       estr1=0.0d0
       do i=ibondp_start,ibondp_end
-        if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then
-          estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax)
-          do j=1,3
-          gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax)
-     &      *dc(j,i-1)/vbld(i)
-          enddo
-          if (energy_dec) write(iout,*) 
-     &       "estr1",i,gnmr1(vbld(i),-1.0d0,distchainmax)
-        else
+        if (itype(i-1).eq.ntyp1 .and. itype(i).eq.ntyp1) cycle
+c          estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax)
+c          do j=1,3
+c          gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax)
+c     &      *dc(j,i-1)/vbld(i)
+c          enddo
+c          if (energy_dec) write(iout,*) 
+c     &       "estr1",i,gnmr1(vbld(i),-1.0d0,distchainmax)
+c        else
+C       Checking if it involves dummy (NH3+ or COO-) group
+         if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then
+C YES   vbldpDUM is the equlibrium length of spring for Dummy atom
+        diff = vbld(i)-vbldpDUM
+         else
+C NO    vbldp0 is the equlibrium lenght of spring for peptide group
         diff = vbld(i)-vbldp0
-        if (energy_dec) write (iout,*) 
+         endif 
+        if (energy_dec)    write (iout,'(a7,i5,4f7.3)') 
      &     "estr bb",i,vbld(i),vbldp0,diff,AKP*diff*diff
         estr=estr+diff*diff
         do j=1,3
           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
         enddo
 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
-        endif
+c        endif
       enddo
       estr=0.5d0*AKP*estr+estr1
 c
@@ -4247,7 +5871,7 @@ c
           nbi=nbondterm(iti)
           if (nbi.eq.1) then
             diff=vbld(i+nres)-vbldsc0(1,iti)
-            if (energy_dec) write (iout,*) 
+            if (energy_dec)  write (iout,*) 
      &      "estr sc",i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
      &      AKSC(1,iti),AKSC(1,iti)*diff*diff
             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
@@ -4289,7 +5913,7 @@ c
       end 
 #ifdef CRYST_THETA
 C--------------------------------------------------------------------------
-      subroutine ebend(etheta)
+      subroutine ebend(etheta,ethetacnstr)
 C
 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
 C angles gamma and its derivatives in consecutive thetas and gammas.
@@ -4306,6 +5930,7 @@ C
       include 'COMMON.NAMES'
       include 'COMMON.FFIELD'
       include 'COMMON.CONTROL'
+      include 'COMMON.TORCNSTR'
       common /calcthet/ term1,term2,termm,diffak,ratak,
      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
@@ -4316,7 +5941,8 @@ c      time12=1.0d0
       etheta=0.0D0
 c     write (*,'(a,i2)') 'EBEND ICG=',icg
       do i=ithet_start,ithet_end
-        if (itype(i-1).eq.ntyp1) cycle
+        if ((itype(i-1).eq.ntyp1).or.itype(i-2).eq.ntyp1
+     &  .or.itype(i).eq.ntyp1) cycle
 C Zero the energy function and its derivative at 0 or pi.
         call splinthet(theta(i),0.5d0*delta,ss,ssd)
         it=itype(i-1)
@@ -4333,7 +5959,7 @@ C Zero the energy function and its derivative at 0 or pi.
           ichir22=isign(1,itype(i))
          endif
 
-        if (i.gt.3 .and. itype(i-2).ne.ntyp1) then
+        if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
 #ifdef OSF
          phii=phi(i)
           if (phii.ne.phii) phii=150.0
@@ -4346,7 +5972,7 @@ C Zero the energy function and its derivative at 0 or pi.
           y(1)=0.0D0
           y(2)=0.0D0
         endif
-        if (i.lt.nres .and. itype(i).ne.ntyp1) then
+        if (i.lt.nres .and. itype(i+1).ne.ntyp1) then
 #ifdef OSF
          phii1=phi(i+1)
           if (phii1.ne.phii1) phii1=150.0
@@ -4354,8 +5980,8 @@ C Zero the energy function and its derivative at 0 or pi.
           z(1)=cos(phii1)
 #else
           phii1=phi(i+1)
-          z(1)=dcos(phii1)
 #endif
+          z(1)=dcos(phii1)
           z(2)=dsin(phii1)
         else
           z(1)=0.0D0
@@ -4373,6 +5999,7 @@ C In following comments this theta will be referred to as t_c.
              bthetk=bthet(k,itype2,ichir21,ichir22)
           endif
          thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
+c         write(iout,*) 'chuj tu', y(k),z(k)
         enddo
         dthett=thet_pred_mean*ssd
         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
@@ -4408,13 +6035,41 @@ C Derivatives of the "mean" values in gamma1 and gamma2.
           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
      &        E_theta,E_tc)
         endif
-        etheta=etheta+ethetai
-        if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
-     &      'ebend',i,ethetai
-        if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
-        if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
-        gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
+        etheta=etheta+ethetai
+        if (energy_dec) write (iout,'(a6,i5,0pf7.3,f7.3,i5)')
+     &      'ebend',i,ethetai,theta(i),itype(i)
+        if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
+        if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
+        gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg)
+      enddo
+      ethetacnstr=0.0d0
+C      print *,ithetaconstr_start,ithetaconstr_end,"TU"
+      do i=ithetaconstr_start,ithetaconstr_end
+        itheta=itheta_constr(i)
+        thetiii=theta(itheta)
+        difi=pinorm(thetiii-theta_constr0(i))
+        if (difi.gt.theta_drange(i)) then
+          difi=difi-theta_drange(i)
+          ethetacnstr=ethetcnstr+0.25d0*for_thet_constr(i)*difi**4
+          gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg)
+     &    +for_thet_constr(i)*difi**3
+        else if (difi.lt.-drange(i)) then
+          difi=difi+drange(i)
+          ethetacnstr=ethetcnstr+0.25d0*for_thet_constr(i)*difi**4
+          gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg)
+     &    +for_thet_constr(i)*difi**3
+        else
+          difi=0.0
+        endif
+       if (energy_dec) then
+        write (iout,'(a6,2i5,4f8.3,2e14.5)') "ethetc",
+     &    i,itheta,rad2deg*thetiii,
+     &    rad2deg*theta_constr0(i),  rad2deg*theta_drange(i),
+     &    rad2deg*difi,0.25d0*for_thet_constr(i)*difi**4,
+     &    gloc(itheta+nphi-2,icg)
+        endif
       enddo
+
 C Ufff.... We've done all this!!! 
       return
       end
@@ -4431,7 +6086,8 @@ C---------------------------------------------------------------------------
 C Calculate the contributions to both Gaussian lobes.
 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
 C The "polynomial part" of the "standard deviation" of this part of 
-C the distribution.
+C the distributioni.
+ccc        write (iout,*) thetai,thet_pred_mean
         sig=polthet(3,it)
         do j=2,0,-1
           sig=sig*thet_pred_mean+polthet(j,it)
@@ -4461,6 +6117,7 @@ C Following variable is sigma(t_c)**(-2)
         delthe0=thetai-theta0i
         term1=-0.5D0*sigcsq*delthec*delthec
         term2=-0.5D0*sig0inv*delthe0*delthe0
+C        write (iout,*)'term1',term1,term2,sigcsq,delthec,sig0inv,delthe0
 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
 C NaNs in taking the logarithm. We extract the largest exponent which is added
 C to the energy (this being the log of the distribution) at the end of energy
@@ -4488,6 +6145,7 @@ C Contribution of the bending energy from this theta is just the -log of
 C the sum of the contributions from the two lobes and the pre-exponential
 C factor. Simple enough, isn't it?
         ethetai=(-dlog(termexp)-termm+dlog(termpre))
+C       write (iout,*) 'termexp',termexp,termm,termpre,i
 C NOW the derivatives!!!
 C 6/6/97 Take into account the deformation.
         E_theta=(delthec*sigcsq*term1
@@ -4528,7 +6186,7 @@ C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
       end
 #else
 C--------------------------------------------------------------------------
-      subroutine ebend(etheta)
+      subroutine ebend(etheta,ethetacnstr)
 C
 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
 C angles gamma and its derivatives in consecutive thetas and gammas.
@@ -4547,6 +6205,7 @@ C
       include 'COMMON.NAMES'
       include 'COMMON.FFIELD'
       include 'COMMON.CONTROL'
+      include 'COMMON.TORCNSTR'
       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
@@ -4554,7 +6213,10 @@ C
       logical lprn /.false./, lprn1 /.false./
       etheta=0.0D0
       do i=ithet_start,ithet_end
-        if (itype(i-1).eq.ntyp1) cycle
+c        print *,i,itype(i-1),itype(i),itype(i-2)
+        if ((itype(i-1).eq.ntyp1).or.itype(i-2).eq.ntyp1
+     &  .or.itype(i).eq.ntyp1) cycle
+C        print *,i,theta(i)
         if (iabs(itype(i+1)).eq.20) iblock=2
         if (iabs(itype(i+1)).ne.20) iblock=1
         dethetai=0.0d0
@@ -4566,7 +6228,8 @@ C
           coskt(k)=dcos(k*theti2)
           sinkt(k)=dsin(k*theti2)
         enddo
-        if (i.gt.3 .and. itype(i-2).ne.ntyp1) then
+C        print *,ethetai
+        if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
 #ifdef OSF
           phii=phi(i)
           if (phii.ne.phii) phii=150.0
@@ -4581,13 +6244,13 @@ C propagation of chirality for glycine type
           enddo
         else
           phii=0.0d0
-          ityp1=nthetyp+1
           do k=1,nsingle
+          ityp1=ithetyp((itype(i-2)))
             cosph1(k)=0.0d0
             sinph1(k)=0.0d0
           enddo 
         endif
-        if (i.lt.nres .and. itype(i).ne.ntyp1) then
+        if (i.lt.nres .and. itype(i+1).ne.ntyp1) then
 #ifdef OSF
           phii1=phi(i+1)
           if (phii1.ne.phii1) phii1=150.0
@@ -4602,7 +6265,7 @@ C propagation of chirality for glycine type
           enddo
         else
           phii1=0.0d0
-          ityp3=nthetyp+1
+          ityp3=ithetyp((itype(i)))
           do k=1,nsingle
             cosph2(k)=0.0d0
             sinph2(k)=0.0d0
@@ -4652,6 +6315,7 @@ C propagation of chirality for glycine type
         enddo
         write(iout,*) "ethetai",ethetai
         endif
+C       print *,ethetai
         do m=1,ntheterm2
           do k=1,nsingle
             aux=bbthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)
@@ -4672,10 +6336,16 @@ C propagation of chirality for glycine type
      &         ccthet(k,m,ityp1,ityp2,ityp3,iblock)," ddthet",
      &         ddthet(k,m,ityp1,ityp2,ityp3,iblock)," eethet",
      &         eethet(k,m,ityp1,ityp2,ityp3,iblock)," ethetai",ethetai
+C        print *,"tu",cosph1(k),sinph1(k),cosph2(k),sinph2(k)
           enddo
         enddo
+C        print *,"cosph1", (cosph1(k), k=1,nsingle)
+C        print *,"cosph2", (cosph2(k), k=1,nsingle)
+C        print *,"sinph1", (sinph1(k), k=1,nsingle)
+C        print *,"sinph2", (sinph2(k), k=1,nsingle)
         if (lprn)
      &  write(iout,*) "ethetai",ethetai
+C        print *,"tu",cosph1(k),sinph1(k),cosph2(k),sinph2(k)
         do m=1,ntheterm3
           do k=2,ndouble
             do l=1,k-1
@@ -4711,6 +6381,7 @@ C propagation of chirality for glycine type
         enddo
 10      continue
 c        lprn1=.true.
+C        print *,ethetai
         if (lprn1) 
      &    write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
      &   i,theta(i)*rad2deg,phii*rad2deg,
@@ -4719,8 +6390,37 @@ c        lprn1=.false.
         etheta=etheta+ethetai
         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
-        gloc(nphi+i-2,icg)=wang*dethetai
+        gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai
+      enddo
+C now constrains
+      ethetacnstr=0.0d0
+C      print *,ithetaconstr_start,ithetaconstr_end,"TU"
+      do i=ithetaconstr_start,ithetaconstr_end
+        itheta=itheta_constr(i)
+        thetiii=theta(itheta)
+        difi=pinorm(thetiii-theta_constr0(i))
+        if (difi.gt.theta_drange(i)) then
+          difi=difi-theta_drange(i)
+          ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4
+          gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg)
+     &    +for_thet_constr(i)*difi**3
+        else if (difi.lt.-drange(i)) then
+          difi=difi+drange(i)
+          ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4
+          gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg)
+     &    +for_thet_constr(i)*difi**3
+        else
+          difi=0.0
+        endif
+       if (energy_dec) then
+        write (iout,'(a6,2i5,4f8.3,2e14.5)') "ethetc",
+     &    i,itheta,rad2deg*thetiii,
+     &    rad2deg*theta_constr0(i),  rad2deg*theta_drange(i),
+     &    rad2deg*difi,0.25d0*for_thet_constr(i)*difi**4,
+     &    gloc(itheta+nphi-2,icg)
+        endif
       enddo
+
       return
       end
 #endif
@@ -5485,9 +7185,9 @@ c      lprn=.true.
       do i=iphi_start,iphi_end
       etors_ii=0.0D0
         if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1
-     &      .or. itype(i).eq.ntyp1) cycle
-       itori=itortyp(itype(i-2))
-       itori1=itortyp(itype(i-1))
+     &      .or. itype(i).eq.ntyp1 .or. itype(i-3).eq.ntyp1) cycle
+        itori=itortyp(itype(i-2))
+        itori1=itortyp(itype(i-1))
         phii=phi(i)
         gloci=0.0D0
 C Proline-Proline pair is a special case...
@@ -5540,12 +7240,12 @@ c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
         difi=phii-phi0(i)
         if (difi.gt.drange(i)) then
           difi=difi-drange(i)
-          edihcnstr=edihcnstr+0.25d0*ftors*difi**4
-          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
+          edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3
         else if (difi.lt.-drange(i)) then
           difi=difi+drange(i)
-          edihcnstr=edihcnstr+0.25d0*ftors*difi**4
-          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
+          edihcnstr=edihcnstr+0.25d0*ftors(i)**difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3
         endif
 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
@@ -5581,8 +7281,15 @@ C Set lprn=.true. for debugging
 c     lprn=.true.
       etors=0.0D0
       do i=iphi_start,iphi_end
-        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 
-     &       .or. itype(i).eq.ntyp1) cycle
+C ANY TWO ARE DUMMY ATOMS in row CYCLE
+c        if (((itype(i-3).eq.ntyp1).and.(itype(i-2).eq.ntyp1)).or.
+c     &      ((itype(i-2).eq.ntyp1).and.(itype(i-1).eq.ntyp1))  .or.
+c     &      ((itype(i-1).eq.ntyp1).and.(itype(i).eq.ntyp1))) cycle
+        if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1
+     &      .or. itype(i).eq.ntyp1 .or. itype(i-3).eq.ntyp1) cycle
+C In current verion the ALL DUMMY ATOM POTENTIALS ARE OFF
+C For introducing the NH3+ and COO- group please check the etor_d for reference
+C and guidance
         etors_ii=0.0D0
          if (iabs(itype(i)).eq.20) then
          iblock=2
@@ -5644,18 +7351,21 @@ c      do i=1,ndih_constr
         difi=pinorm(phii-phi0(i))
         if (difi.gt.drange(i)) then
           difi=difi-drange(i)
-          edihcnstr=edihcnstr+0.25d0*ftors*difi**4
-          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
+          edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3
         else if (difi.lt.-drange(i)) then
           difi=difi+drange(i)
-          edihcnstr=edihcnstr+0.25d0*ftors*difi**4
-          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
+          edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3
         else
           difi=0.0
         endif
-cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
-cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
-cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
+       if (energy_dec) then
+        write (iout,'(a6,2i5,4f8.3,2e14.5)') "edihc",
+     &    i,itori,rad2deg*phii,
+     &    rad2deg*phi0(i),  rad2deg*drange(i),
+     &    rad2deg*difi,0.25d0*ftors(i)*difi**4,gloc(itori-3,icg)
+        endif
       enddo
 cd       write (iout,*) 'edihcnstr',edihcnstr
       return
@@ -5683,8 +7393,15 @@ c     lprn=.true.
       etors_d=0.0D0
 c      write(iout,*) "a tu??"
       do i=iphid_start,iphid_end
-        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
-     &      .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
+C ANY TWO ARE DUMMY ATOMS in row CYCLE
+C        if (((itype(i-3).eq.ntyp1).and.(itype(i-2).eq.ntyp1)).or.
+C     &      ((itype(i-2).eq.ntyp1).and.(itype(i-1).eq.ntyp1)).or.
+C     &      ((itype(i-1).eq.ntyp1).and.(itype(i).eq.ntyp1))  .or.
+C     &      ((itype(i).eq.ntyp1).and.(itype(i+1).eq.ntyp1))) cycle
+         if ((itype(i-2).eq.ntyp1).or.itype(i-3).eq.ntyp1.or.
+     &  (itype(i-1).eq.ntyp1).or.(itype(i).eq.ntyp1).or.
+     &  (itype(i+1).eq.ntyp1)) cycle
+C In current verion the ALL DUMMY ATOM POTENTIALS ARE OFF
         itori=itortyp(itype(i-2))
         itori1=itortyp(itype(i-1))
         itori2=itortyp(itype(i))
@@ -5694,9 +7411,21 @@ c      write(iout,*) "a tu??"
         gloci2=0.0D0
         iblock=1
         if (iabs(itype(i+1)).eq.20) iblock=2
+C Iblock=2 Proline type
+C ADASKO: WHEN PARAMETERS FOR THIS TYPE OF BLOCKING GROUP IS READY UNCOMMENT
+C CHECK WEATHER THERE IS NECCESITY FOR iblock=3 for COO-
+C        if (itype(i+1).eq.ntyp1) iblock=3
+C The problem of NH3+ group can be resolved by adding new parameters please note if there
+C IS or IS NOT need for this
+C IF Yes uncomment below and add to parmread.F appropriate changes and to v1cij and so on
+C        is (itype(i-3).eq.ntyp1) ntblock=2
+C        ntblock is N-terminal blocking group
 
 C Regular cosine and sine terms
         do j=1,ntermd_1(itori,itori1,itori2,iblock)
+C Example of changes for NH3+ blocking group
+C       do j=1,ntermd_1(itori,itori1,itori2,iblock,ntblock)
+C          v1cij=v1c(1,j,itori,itori1,itori2,iblock,ntblock)
           v1cij=v1c(1,j,itori,itori1,itori2,iblock)
           v1sij=v1s(1,j,itori,itori1,itori2,iblock)
           v2cij=v1c(2,j,itori,itori1,itori2,iblock)
@@ -5734,6 +7463,252 @@ C Regular cosine and sine terms
       return
       end
 #endif
+C----------------------------------------------------------------------------------
+C The rigorous attempt to derive energy function
+      subroutine etor_kcc(etors,edihcnstr)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.TORSION'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TORCNSTR'
+      include 'COMMON.CONTROL'
+      logical lprn
+c      double precision thybt1(maxtermkcc),thybt2(maxtermkcc)
+C Set lprn=.true. for debugging
+      lprn=.false.
+c     lprn=.true.
+C      print *,"wchodze kcc"
+      if (lprn) write (iout,*) "etor_kcc tor_mode",tor_mode
+      if (tor_mode.ne.2) then
+      etors=0.0D0
+      endif
+      do i=iphi_start,iphi_end
+C ANY TWO ARE DUMMY ATOMS in row CYCLE
+c        if (((itype(i-3).eq.ntyp1).and.(itype(i-2).eq.ntyp1)).or.
+c     &      ((itype(i-2).eq.ntyp1).and.(itype(i-1).eq.ntyp1))  .or.
+c     &      ((itype(i-1).eq.ntyp1).and.(itype(i).eq.ntyp1))) cycle
+        if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1
+     &      .or. itype(i).eq.ntyp1 .or. itype(i-3).eq.ntyp1) cycle
+        itori=itortyp_kcc(itype(i-2))
+        itori1=itortyp_kcc(itype(i-1))
+        phii=phi(i)
+        glocig=0.0D0
+        glocit1=0.0d0
+        glocit2=0.0d0
+        sumnonchebyshev=0.0d0
+        sumchebyshev=0.0d0
+C to avoid multiple devision by 2
+c        theti22=0.5d0*theta(i)
+C theta 12 is the theta_1 /2
+C theta 22 is theta_2 /2
+c        theti12=0.5d0*theta(i-1)
+C and appropriate sinus function
+        sinthet1=dsin(theta(i-1))
+        sinthet2=dsin(theta(i))
+        costhet1=dcos(theta(i-1))
+        costhet2=dcos(theta(i))
+c Cosines of halves thetas
+        costheti12=0.5d0*(1.0d0+costhet1)
+        costheti22=0.5d0*(1.0d0+costhet2)
+C to speed up lets store its mutliplication
+        sint1t2=sinthet2*sinthet1        
+        sint1t2n=1.0d0
+C \sum_{i=1}^n (sin(theta_1) * sin(theta_2))^n * (c_n* cos(n*gamma)
+C +d_n*sin(n*gamma)) *
+C \sum_{i=1}^m (1+a_m*Tb_m(cos(theta_1 /2))+b_m*Tb_m(cos(theta_2 /2))) 
+C we have two sum 1) Non-Chebyshev which is with n and gamma
+        etori=0.0d0
+        do j=1,nterm_kcc(itori,itori1)
+
+          nval=nterm_kcc_Tb(itori,itori1)
+          v1ij=v1_kcc(j,itori,itori1)
+          v2ij=v2_kcc(j,itori,itori1)
+c          write (iout,*) "i",i," j",j," v1",v1ij," v2",v2ij
+C v1ij is c_n and d_n in euation above
+          cosphi=dcos(j*phii)
+          sinphi=dsin(j*phii)
+          sint1t2n1=sint1t2n
+          sint1t2n=sint1t2n*sint1t2
+          sumth1tyb1=tschebyshev(1,nval,v11_chyb(1,j,itori,itori1),
+     &        costheti12)
+          gradth1tyb1=-0.5d0*sinthet1*gradtschebyshev(0,nval-1,
+     &        v11_chyb(1,j,itori,itori1),costheti12)
+c          write (iout,*) "v11",(v11_chyb(k,j,itori,itori1),k=1,nval),
+c     &      " sumth1tyb1",sumth1tyb1," gradth1tyb1",gradth1tyb1
+          sumth2tyb1=tschebyshev(1,nval,v21_chyb(1,j,itori,itori1),
+     &        costheti22)
+          gradth2tyb1=-0.5d0*sinthet2*gradtschebyshev(0,nval-1,
+     &        v21_chyb(1,j,itori,itori1),costheti22)
+c          write (iout,*) "v21",(v21_chyb(k,j,itori,itori1),k=1,nval),
+c     &      " sumth2tyb1",sumth2tyb1," gradth2tyb1",gradth2tyb1
+          sumth1tyb2=tschebyshev(1,nval,v12_chyb(1,j,itori,itori1),
+     &        costheti12)
+          gradth1tyb2=-0.5d0*sinthet1*gradtschebyshev(0,nval-1,
+     &        v12_chyb(1,j,itori,itori1),costheti12)
+c          write (iout,*) "v12",(v12_chyb(k,j,itori,itori1),k=1,nval),
+c     &      " sumth1tyb2",sumth1tyb2," gradth1tyb2",gradth1tyb2
+          sumth2tyb2=tschebyshev(1,nval,v22_chyb(1,j,itori,itori1),
+     &        costheti22)
+          gradth2tyb2=-0.5d0*sinthet2*gradtschebyshev(0,nval-1,
+     &        v22_chyb(1,j,itori,itori1),costheti22)
+c          write (iout,*) "v22",(v22_chyb(k,j,itori,itori1),k=1,nval),
+c     &      " sumth2tyb2",sumth2tyb2," gradth2tyb2",gradth2tyb2
+C          etors=etors+sint1t2n*(v1ij*cosphi+v2ij*sinphi)
+C          if (energy_dec) etors_ii=etors_ii+
+C     &                v1ij*cosphi+v2ij*sinphi
+C glocig is the gradient local i site in gamma
+          actval1=v1ij*cosphi*(1.0d0+sumth1tyb1+sumth2tyb1)
+          actval2=v2ij*sinphi*(1.0d0+sumth1tyb2+sumth2tyb2)
+          etori=etori+sint1t2n*(actval1+actval2)
+          glocig=glocig+
+     &        j*sint1t2n*(v2ij*cosphi*(1.0d0+sumth1tyb2+sumth2tyb2)
+     &        -v1ij*sinphi*(1.0d0+sumth1tyb1+sumth2tyb1))
+C now gradient over theta_1
+          glocit1=glocit1+
+     &       j*sint1t2n1*costhet1*sinthet2*(actval1+actval2)+
+     &       sint1t2n*(v1ij*cosphi*gradth1tyb1+v2ij*sinphi*gradth1tyb2)
+          glocit2=glocit2+
+     &       j*sint1t2n1*sinthet1*costhet2*(actval1+actval2)+
+     &       sint1t2n*(v1ij*cosphi*gradth2tyb1+v2ij*sinphi*gradth2tyb2)
+
+C now the Czebyshev polinominal sum
+c        do k=1,nterm_kcc_Tb(itori,itori1)
+c         thybt1(k)=v1_chyb(k,j,itori,itori1)
+c         thybt2(k)=v2_chyb(k,j,itori,itori1)
+C         thybt1(k)=0.0
+C         thybt2(k)=0.0
+c        enddo 
+C        print *, sumth1thyb, gradthybt1, sumth2thyb, gradthybt2,
+C     &         gradtschebyshev
+C     &         (0,nterm_kcc_Tb(itori,itori1)-1,thybt2(1),
+C     &         dcos(theti22)**2),
+C     &         dsin(theti22)
+
+C now overal sumation
+C         print *,"sumnon", sumnonchebyshev,sumth1thyb+sumth2thyb
+        enddo ! j
+        etors=etors+etori
+C derivative over gamma
+        gloc(i-3,icg)=gloc(i-3,icg)+wtor*glocig
+C derivative over theta1
+        gloc(nphi+i-3,icg)=gloc(nphi+i-3,icg)+wtor*glocit1
+C now derivative over theta2
+        gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wtor*glocit2
+        if (lprn) 
+     &    write (iout,*) i-2,i-1,itype(i-2),itype(i-1),itori,itori1,
+     &       theta(i-1)*rad2deg,theta(i)*rad2deg,phii*rad2deg,etori
+      enddo
+C        gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
+! 6/20/98 - dihedral angle constraints
+      if (tor_mode.ne.2) then
+      edihcnstr=0.0d0
+c      do i=1,ndih_constr
+      do i=idihconstr_start,idihconstr_end
+        itori=idih_constr(i)
+        phii=phi(itori)
+        difi=pinorm(phii-phi0(i))
+        if (difi.gt.drange(i)) then
+          difi=difi-drange(i)
+          edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3
+        else if (difi.lt.-drange(i)) then
+          difi=difi+drange(i)
+          edihcnstr=edihcnstr+0.25d0*ftors(i)*difi**4
+          gloc(itori-3,icg)=gloc(itori-3,icg)+ftors(i)*difi**3
+        else
+          difi=0.0
+        endif
+       enddo
+       endif
+      return
+      end
+
+C The rigorous attempt to derive energy function
+      subroutine ebend_kcc(etheta,ethetacnstr)
+
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.VAR'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.TORSION'
+      include 'COMMON.INTERACT'
+      include 'COMMON.DERIV'
+      include 'COMMON.CHAIN'
+      include 'COMMON.NAMES'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.FFIELD'
+      include 'COMMON.TORCNSTR'
+      include 'COMMON.CONTROL'
+      logical lprn
+      double precision thybt1(maxtermkcc)
+C Set lprn=.true. for debugging
+      lprn=.false.
+c     lprn=.true.
+C      print *,"wchodze kcc"
+      if (lprn) write (iout,*) "ebend_kcc tor_mode",tor_mode
+      if (tor_mode.ne.2) etheta=0.0D0
+      do i=ithet_start,ithet_end
+c        print *,i,itype(i-1),itype(i),itype(i-2)
+        if ((itype(i-1).eq.ntyp1).or.itype(i-2).eq.ntyp1
+     &  .or.itype(i).eq.ntyp1) cycle
+         iti=itortyp_kcc(itype(i-1))
+        sinthet=dsin(theta(i)/2.0d0)
+        costhet=dcos(theta(i)/2.0d0)
+         do j=1,nbend_kcc_Tb(iti)
+          thybt1(j)=v1bend_chyb(j,iti)
+         enddo
+         sumth1thyb=tschebyshev
+     &         (1,nbend_kcc_Tb(iti),thybt1(1),costhet)
+        if (lprn) write (iout,*) i-1,itype(i-1),iti,theta(i)*rad2deg,
+     &    sumth1thyb
+        ihelp=nbend_kcc_Tb(iti)-1
+        gradthybt1=gradtschebyshev
+     &         (0,ihelp,thybt1(1),costhet)
+        etheta=etheta+sumth1thyb
+C        print *,sumth1thyb,gradthybt1,sinthet*(-0.5d0)
+        gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*
+     &   gradthybt1*sinthet*(-0.5d0)
+      enddo
+      if (tor_mode.ne.2) then
+      ethetacnstr=0.0d0
+C      print *,ithetaconstr_start,ithetaconstr_end,"TU"
+      do i=ithetaconstr_start,ithetaconstr_end
+        itheta=itheta_constr(i)
+        thetiii=theta(itheta)
+        difi=pinorm(thetiii-theta_constr0(i))
+        if (difi.gt.theta_drange(i)) then
+          difi=difi-theta_drange(i)
+          ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4
+          gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg)
+     &    +for_thet_constr(i)*difi**3
+        else if (difi.lt.-drange(i)) then
+          difi=difi+drange(i)
+          ethetacnstr=ethetacnstr+0.25d0*for_thet_constr(i)*difi**4
+          gloc(itheta+nphi-2,icg)=gloc(itheta+nphi-2,icg)
+     &    +for_thet_constr(i)*difi**3
+        else
+          difi=0.0
+        endif
+       if (energy_dec) then
+        write (iout,'(a6,2i5,4f8.3,2e14.5)') "ethetc",
+     &    i,itheta,rad2deg*thetiii,
+     &    rad2deg*theta_constr0(i),  rad2deg*theta_drange(i),
+     &    rad2deg*difi,0.25d0*for_thet_constr(i)*difi**4,
+     &    gloc(itheta+nphi-2,icg)
+        endif
+      enddo
+      endif
+      return
+      end
 c------------------------------------------------------------------------------
       subroutine eback_sc_corr(esccor)
 c 7/21/2007 Correlations between the backbone-local and side-chain-local
@@ -5875,6 +7850,7 @@ c------------------------------------------------------------------------------
       include 'COMMON.DERIV'
       include 'COMMON.INTERACT'
       include 'COMMON.CONTACTS'
+      include 'COMMON.SHIELD'
       double precision gx(3),gx1(3)
       logical lprn
       lprn=.false.
@@ -6293,6 +8269,7 @@ C This subroutine calculates multi-body contributions to hydrogen-bonding
       include 'COMMON.CONTACTS'
       include 'COMMON.CHAIN'
       include 'COMMON.CONTROL'
+      include 'COMMON.SHIELD'
       double precision gx(3),gx1(3)
       integer num_cont_hb_old(maxres)
       logical lprn,ldone
@@ -6595,6 +8572,7 @@ cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
                 call calc_eello(i,jp,i+1,jp1,jj,kk)
                 if (wcorr4.gt.0.0d0) 
      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
+CC     &            *fac_shield(i)**2*fac_shield(j)**2
                   if (energy_dec.and.wcorr4.gt.0.0d0) 
      1                 write (iout,'(a6,4i5,0pf7.3)')
      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
@@ -6714,9 +8692,12 @@ c------------------------------------------------------------------------------
       include 'COMMON.DERIV'
       include 'COMMON.INTERACT'
       include 'COMMON.CONTACTS'
+      include 'COMMON.SHIELD'
+      include 'COMMON.CONTROL'
       double precision gx(3),gx1(3)
       logical lprn
       lprn=.false.
+C      print *,"wchodze",fac_shield(i),shield_mode
       eij=facont_hb(jj,i)
       ekl=facont_hb(kk,k)
       ees0pij=ees0p(jj,i)
@@ -6725,6 +8706,8 @@ c------------------------------------------------------------------------------
       ees0mkl=ees0m(kk,k)
       ekont=eij*ekl
       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
+C*
+C     & fac_shield(i)**2*fac_shield(j)**2
 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
 C Following 4 lines for diagnostics.
 cd    ees0pkl=0.0D0
@@ -6788,7 +8771,89 @@ cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
 cgrad        enddo
 cgrad      enddo 
 c      write (iout,*) "ehbcorr",ekont*ees
+C      print *,ekont,ees,i,k
       ehbcorr=ekont*ees
+C now gradient over shielding
+C      return
+      if (shield_mode.gt.0) then
+       j=ees0plist(jj,i)
+       l=ees0plist(kk,k)
+C        print *,i,j,fac_shield(i),fac_shield(j),
+C     &fac_shield(k),fac_shield(l)
+        if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &      (fac_shield(k).gt.0).and.(fac_shield(l).gt.0)) then
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,i)*ehbcorr/fac_shield(i)
+C     &      *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &+rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,j)*ehbcorr/fac_shield(j)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,j)*ehbcorr/fac_shield(j)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+
+          do ilist=1,ishield_list(k)
+           iresshield=shield_list(ilist,k)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,k)*ehbcorr/fac_shield(k)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,k)*ehbcorr/fac_shield(k)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(l)
+           iresshield=shield_list(ilist,l)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,l)*ehbcorr/fac_shield(l)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,l)*ehbcorr/fac_shield(l)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+C          print *,gshieldx(m,iresshield)
+          do m=1,3
+            gshieldc_ec(m,i)=gshieldc_ec(m,i)+
+     &              grad_shield(m,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,j)=gshieldc_ec(m,j)+
+     &              grad_shield(m,j)*ehbcorr/fac_shield(j)
+            gshieldc_ec(m,i-1)=gshieldc_ec(m,i-1)+
+     &              grad_shield(m,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,j-1)=gshieldc_ec(m,j-1)+
+     &              grad_shield(m,j)*ehbcorr/fac_shield(j)
+
+            gshieldc_ec(m,k)=gshieldc_ec(m,k)+
+     &              grad_shield(m,k)*ehbcorr/fac_shield(k)
+            gshieldc_ec(m,l)=gshieldc_ec(m,l)+
+     &              grad_shield(m,l)*ehbcorr/fac_shield(l)
+            gshieldc_ec(m,k-1)=gshieldc_ec(m,k-1)+
+     &              grad_shield(m,k)*ehbcorr/fac_shield(k)
+            gshieldc_ec(m,l-1)=gshieldc_ec(m,l-1)+
+     &              grad_shield(m,l)*ehbcorr/fac_shield(l)
+
+           enddo       
+      endif
+      endif
       return
       end
 #ifdef MOMENT
@@ -6809,17 +8874,17 @@ C---------------------------------------------------------------------------
      &  auxmat(2,2)
       iti1 = itortyp(itype(i+1))
       if (j.lt.nres-1) then
-        itj1 = itortyp(itype(j+1))
+        itj1 = itype2loc(itype(j+1))
       else
-        itj1=ntortyp+1
+        itj1=nloctyp
       endif
       do iii=1,2
         dipi(iii,1)=Ub2(iii,i)
         dipderi(iii)=Ub2der(iii,i)
-        dipi(iii,2)=b1(iii,iti1)
+        dipi(iii,2)=b1(iii,i+1)
         dipj(iii,1)=Ub2(iii,j)
         dipderj(iii)=Ub2der(iii,j)
-        dipj(iii,2)=b1(iii,itj1)
+        dipj(iii,2)=b1(iii,j+1)
       enddo
       kkk=0
       do iii=1,2
@@ -6899,16 +8964,16 @@ cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
       if (l.eq.j+1) then
 C parallel orientation of the two CA-CA-CA frames.
         if (i.gt.1) then
-          iti=itortyp(itype(i))
+          iti=itype2loc(itype(i))
         else
-          iti=ntortyp+1
+          iti=nloctyp
         endif
-        itk1=itortyp(itype(k+1))
-        itj=itortyp(itype(j))
+        itk1=itype2loc(itype(k+1))
+        itj=itype2loc(itype(j))
         if (l.lt.nres-1) then
-          itl1=itortyp(itype(l+1))
+          itl1=itype2loc(itype(l+1))
         else
-          itl1=ntortyp+1
+          itl1=nloctyp
         endif
 C A1 kernel(j+1) A2T
 cd        do iii=1,2
@@ -6999,26 +9064,26 @@ C They are needed only when the fifth- or the sixth-order cumulants are
 C indluded.
         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
         call transpose2(AEA(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
         call transpose2(AEAderg(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
-        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
-        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1))
         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
         call transpose2(AEA(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
         call transpose2(AEAderg(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j),AEAb1derg(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
-        call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
-        call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),b1(1,l+1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,l+1),AEAb1derg(1,2,2))
         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
@@ -7027,20 +9092,20 @@ C Calculate the Cartesian derivatives of the vectors.
           do kkk=1,5
             do lll=1,3
               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,iti),
+              call matvec2(auxmat(1,1),b1(1,i),
      &          AEAb1derx(1,lll,kkk,iii,1,1))
               call matvec2(auxmat(1,1),Ub2(1,i),
      &          AEAb2derx(1,lll,kkk,iii,1,1))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &          AEAb1derx(1,lll,kkk,iii,2,1))
               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
      &          AEAb2derx(1,lll,kkk,iii,2,1))
               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,itj),
+              call matvec2(auxmat(1,1),b1(1,j),
      &          AEAb1derx(1,lll,kkk,iii,1,2))
               call matvec2(auxmat(1,1),Ub2(1,j),
      &          AEAb2derx(1,lll,kkk,iii,1,2))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,l+1),
      &          AEAb1derx(1,lll,kkk,iii,2,2))
               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
      &          AEAb2derx(1,lll,kkk,iii,2,2))
@@ -7052,17 +9117,17 @@ C End vectors
       else
 C Antiparallel orientation of the two CA-CA-CA frames.
         if (i.gt.1) then
-          iti=itortyp(itype(i))
+          iti=itype2loc(itype(i))
         else
-          iti=ntortyp+1
+          iti=nloctyp
         endif
-        itk1=itortyp(itype(k+1))
-        itl=itortyp(itype(l))
-        itj=itortyp(itype(j))
+        itk1=itype2loc(itype(k+1))
+        itl=itype2loc(itype(l))
+        itj=itype2loc(itype(j))
         if (j.lt.nres-1) then
-          itj1=itortyp(itype(j+1))
+          itj1=itype2loc(itype(j+1))
         else 
-          itj1=ntortyp+1
+          itj1=nloctyp
         endif
 C A2 kernel(j-1)T A1T
         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
@@ -7137,26 +9202,26 @@ C indluded.
         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
         call transpose2(AEA(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
         call transpose2(AEAderg(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
-        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
-        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1))
         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
         call transpose2(AEA(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j+1),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
         call transpose2(AEAderg(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,l),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
-        call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
-        call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),b1(1,j+1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,j+1),AEAb1derg(1,2,2))
         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
@@ -7165,20 +9230,20 @@ C Calculate the Cartesian derivatives of the vectors.
           do kkk=1,5
             do lll=1,3
               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,iti),
+              call matvec2(auxmat(1,1),b1(1,i),
      &          AEAb1derx(1,lll,kkk,iii,1,1))
               call matvec2(auxmat(1,1),Ub2(1,i),
      &          AEAb2derx(1,lll,kkk,iii,1,1))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &          AEAb1derx(1,lll,kkk,iii,2,1))
               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
      &          AEAb2derx(1,lll,kkk,iii,2,1))
               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,itl),
+              call matvec2(auxmat(1,1),b1(1,l),
      &          AEAb1derx(1,lll,kkk,iii,1,2))
               call matvec2(auxmat(1,1),Ub2(1,l),
      &          AEAb2derx(1,lll,kkk,iii,1,2))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,j+1),
      &          AEAb1derx(1,lll,kkk,iii,2,2))
               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
      &          AEAb2derx(1,lll,kkk,iii,2,2))
@@ -7400,9 +9465,9 @@ cd      endif
 cd      write (iout,*)
 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
 cd     &   ' and',k,l
-      itk=itortyp(itype(k))
-      itl=itortyp(itype(l))
-      itj=itortyp(itype(j))
+      itk=itype2loc(itype(k))
+      itl=itype2loc(itype(l))
+      itj=itype2loc(itype(j))
       eello5_1=0.0d0
       eello5_2=0.0d0
       eello5_3=0.0d0
@@ -7471,11 +9536,11 @@ C Cartesian gradient
 c      goto 1112
 c1111  continue
 C Contribution from graph II 
-      call transpose2(EE(1,1,itk),auxmat(1,1))
+      call transpose2(EE(1,1,k),auxmat(1,1))
       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
-      eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
+      eello5_2=scalar2(AEAb1(1,2,1),b1(1,k))
      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
 C Explicit gradient in virtual-dihedral angles.
       g_corr5_loc(k-1)=g_corr5_loc(k-1)
@@ -7485,11 +9550,11 @@ C Explicit gradient in virtual-dihedral angles.
       vv(2)=pizda(2,1)-pizda(1,2)
       if (l.eq.j+1) then
         g_corr5_loc(l-1)=g_corr5_loc(l-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
       else
         g_corr5_loc(j-1)=g_corr5_loc(j-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
       endif
 C Cartesian gradient
@@ -7501,7 +9566,7 @@ C Cartesian gradient
             vv(1)=pizda(1,1)+pizda(2,2)
             vv(2)=pizda(2,1)-pizda(1,2)
             derx(lll,kkk,iii)=derx(lll,kkk,iii)
-     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
+     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,k))
      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
           enddo
         enddo
@@ -7552,11 +9617,11 @@ C Cartesian gradient
 cd        goto 1112
 C Contribution from graph IV
 cd1110    continue
-        call transpose2(EE(1,1,itl),auxmat(1,1))
+        call transpose2(EE(1,1,l),auxmat(1,1))
         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
-        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,l))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
 C Explicit gradient in virtual-dihedral angles.
         g_corr5_loc(l-1)=g_corr5_loc(l-1)
@@ -7565,7 +9630,7 @@ C Explicit gradient in virtual-dihedral angles.
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
         g_corr5_loc(k-1)=g_corr5_loc(k-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,l))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
 C Cartesian gradient
         do iii=1,2
@@ -7576,7 +9641,7 @@ C Cartesian gradient
               vv(1)=pizda(1,1)+pizda(2,2)
               vv(2)=pizda(2,1)-pizda(1,2)
               derx(lll,kkk,iii)=derx(lll,kkk,iii)
-     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,l))
      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
             enddo
           enddo
@@ -7625,11 +9690,11 @@ C Cartesian gradient
 cd        goto 1112
 C Contribution from graph IV
 1110    continue
-        call transpose2(EE(1,1,itj),auxmat(1,1))
+        call transpose2(EE(1,1,j),auxmat(1,1))
         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
-        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,j))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
 C Explicit gradient in virtual-dihedral angles.
         g_corr5_loc(j-1)=g_corr5_loc(j-1)
@@ -7638,7 +9703,7 @@ C Explicit gradient in virtual-dihedral angles.
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
         g_corr5_loc(k-1)=g_corr5_loc(k-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,j))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
 C Cartesian gradient
         do iii=1,2
@@ -7649,7 +9714,7 @@ C Cartesian gradient
               vv(1)=pizda(1,1)+pizda(2,2)
               vv(2)=pizda(2,1)-pizda(1,2)
               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
-     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,j))
      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
             enddo
           enddo
@@ -7713,9 +9778,9 @@ cd        ghalf=0.0d0
 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
 cgrad        ghalf=0.5d0*ggg2(ll)
 cd        ghalf=0.0d0
-        gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
+        gradcorr5(ll,k)=gradcorr5(ll,k)+ekont*derx(ll,2,2)
         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
-        gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
+        gradcorr5(ll,l)=gradcorr5(ll,l)+ekont*derx(ll,4,2)
         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
@@ -7922,7 +9987,7 @@ C       o     o       o     o                                                  C
 C       i             i                                                        C
 C                                                                              C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
-      itk=itortyp(itype(k))
+      itk=itype2loc(itype(k))
       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
@@ -7931,8 +9996,8 @@ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
       vv1(1)=pizda1(1,1)-pizda1(2,2)
       vv1(2)=pizda1(1,2)+pizda1(2,1)
       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
-      vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
-      vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
+      vv(1)=AEAb1(1,2,imat)*b1(1,k)-AEAb1(2,2,imat)*b1(2,k)
+      vv(2)=AEAb1(1,2,imat)*b1(2,k)+AEAb1(2,2,imat)*b1(1,k)
       s5=scalar2(vv(1),Dtobr2(1,i))
 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
@@ -7945,8 +10010,8 @@ cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
       vv1(1)=pizda1(1,1)-pizda1(2,2)
       vv1(2)=pizda1(1,2)+pizda1(2,1)
-      vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
-      vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
+      vv(1)=AEAb1derg(1,2,imat)*b1(1,k)-AEAb1derg(2,2,imat)*b1(2,k)
+      vv(2)=AEAb1derg(1,2,imat)*b1(2,k)+AEAb1derg(2,2,imat)*b1(1,k)
       if (l.eq.j+1) then
         g_corr6_loc(l-1)=g_corr6_loc(l-1)
      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
@@ -7985,10 +10050,10 @@ cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
             vv1(1)=pizda1(1,1)-pizda1(2,2)
             vv1(2)=pizda1(1,2)+pizda1(2,1)
             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
-            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
-     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
-            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
-     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
+            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,k)
+     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,k)
+            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,k)
+     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,k)
             s5=scalar2(vv(1),Dtobr2(1,i))
             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
           enddo
@@ -8020,12 +10085,12 @@ C                                                                              C
 C          o             o                                                     C
 C     \   /l\           /j\   /                                                C
 C      \ /   \         /   \ /                                                 C
-C       o| o |         | o |o                                                  C
+C       o| o |         | o |o                                                  C                
 C     \ j|/k\|      \  |/k\|l                                                  C
 C      \ /   \       \ /   \                                                   C
 C       o             o                                                        C
-C       i             i                                                        C
-C                                                                              C
+C       i             i                                                        C 
+C                                                                              C           
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
 C AL 7/4/01 s1 would occur in the sixth-order moment, 
@@ -8196,10 +10261,10 @@ c----------------------------------------------------------------------------
       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
       logical swap
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
-C                                                                              C
+C                                                                              C 
 C      Parallel       Antiparallel                                             C
 C                                                                              C
-C          o             o                                                     C
+C          o             o                                                     C 
 C         /l\   /   \   /j\                                                    C 
 C        /   \ /     \ /   \                                                   C
 C       /| o |o       o| o |\                                                  C
@@ -8214,25 +10279,25 @@ C 4/7/01 AL Component s1 was removed, because it pertains to the respective
 C           energy moment and not to the cluster cumulant.
       iti=itortyp(itype(i))
       if (j.lt.nres-1) then
-        itj1=itortyp(itype(j+1))
+        itj1=itype2loc(itype(j+1))
       else
-        itj1=ntortyp+1
+        itj1=nloctyp
       endif
-      itk=itortyp(itype(k))
-      itk1=itortyp(itype(k+1))
+      itk=itype2loc(itype(k))
+      itk1=itype2loc(itype(k+1))
       if (l.lt.nres-1) then
-        itl1=itortyp(itype(l+1))
+        itl1=itype2loc(itype(l+1))
       else
-        itl1=ntortyp+1
+        itl1=nloctyp
       endif
 #ifdef MOMENT
       s1=dip(4,jj,i)*dip(4,kk,k)
 #endif
-      call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
-      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
-      call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
-      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
-      call transpose2(EE(1,1,itk),auxmat(1,1))
+      call matvec2(AECA(1,1,1),b1(1,k+1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,k),auxvec(1))
+      call matvec2(AECA(1,1,2),b1(1,l+1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
+      call transpose2(EE(1,1,k),auxmat(1,1))
       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
@@ -8246,13 +10311,13 @@ cd     & "sum",-(s2+s3+s4)
 #endif
 c      eello6_graph3=-s4
 C Derivatives in gamma(k-1)
-      call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
-      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      call matvec2(AECAderg(1,1,2),b1(1,l+1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
 C Derivatives in gamma(l-1)
-      call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
-      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
+      call matvec2(AECAderg(1,1,1),b1(1,k+1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,k),auxvec(1))
       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
@@ -8269,12 +10334,12 @@ C Cartesian derivatives.
               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
             endif
 #endif
-            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &        auxvec(1))
-            s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
-            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+            s2=0.5d0*scalar2(b1(1,k),auxvec(1))
+            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,l+1),
      &        auxvec(1))
-            s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+            s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
      &        pizda(1,1))
             vv(1)=pizda(1,1)+pizda(2,2)
@@ -8313,7 +10378,7 @@ c----------------------------------------------------------------------------
      & auxvec1(2),auxmat1(2,2)
       logical swap
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
-C                                                                              C
+C                                                                              C                       
 C      Parallel       Antiparallel                                             C
 C                                                                              C
 C          o             o                                                     C
@@ -8321,33 +10386,33 @@ C         /l\   /   \   /j\                                                    C
 C        /   \ /     \ /   \                                                   C
 C       /| o |o       o| o |\                                                  C
 C     \ j|/k\|      \  |/k\|l                                                  C
-C      \ /   \       \ /   \                                                   C
+C      \ /   \       \ /   \                                                   C 
 C       o     \       o     \                                                  C
 C       i             i                                                        C
-C                                                                              C
+C                                                                              C 
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
 C           energy moment and not to the cluster cumulant.
 cd      write (2,*) 'eello_graph4: wturn6',wturn6
-      iti=itortyp(itype(i))
-      itj=itortyp(itype(j))
+      iti=itype2loc(itype(i))
+      itj=itype2loc(itype(j))
       if (j.lt.nres-1) then
-        itj1=itortyp(itype(j+1))
+        itj1=itype2loc(itype(j+1))
       else
-        itj1=ntortyp+1
+        itj1=nloctyp
       endif
-      itk=itortyp(itype(k))
+      itk=itype2loc(itype(k))
       if (k.lt.nres-1) then
-        itk1=itortyp(itype(k+1))
+        itk1=itype2loc(itype(k+1))
       else
-        itk1=ntortyp+1
+        itk1=nloctyp
       endif
-      itl=itortyp(itype(l))
+      itl=itype2loc(itype(l))
       if (l.lt.nres-1) then
-        itl1=itortyp(itype(l+1))
+        itl1=itype2loc(itype(l+1))
       else
-        itl1=ntortyp+1
+        itl1=nloctyp
       endif
 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
@@ -8362,11 +10427,11 @@ cd     & ' itl',itl,' itl1',itl1
       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
       if (j.eq.l+1) then
-        call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,j+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
       else
-        call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,l+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
       endif
       call transpose2(EUg(1,1,k),auxmat(1,1))
       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
@@ -8390,11 +10455,11 @@ C Derivatives in gamma(i-1)
 #endif
         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
         if (j.eq.l+1) then
-          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
-          s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,j+1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
         else
-          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
-          s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,l+1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
         endif
         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
@@ -8423,11 +10488,11 @@ C Derivatives in gamma(k-1)
       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
       if (j.eq.l+1) then
-        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,j+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
       else
-        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,l+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
       endif
       call transpose2(EUgder(1,1,k),auxmat1(1,1))
       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
@@ -8493,12 +10558,12 @@ C Cartesian derivatives.
             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
             if (j.eq.l+1) then
               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
-     &          b1(1,itj1),auxvec(1))
-              s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
+     &          b1(1,j+1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,j),auxvec(1))
             else
               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
-     &          b1(1,itl1),auxvec(1))
-              s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
+     &          b1(1,l+1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,l),auxvec(1))
             endif
             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
      &        pizda(1,1))
       j=i+4
       k=i+1
       l=i+3
-      iti=itortyp(itype(i))
-      itk=itortyp(itype(k))
-      itk1=itortyp(itype(k+1))
-      itl=itortyp(itype(l))
-      itj=itortyp(itype(j))
+      iti=itype2loc(itype(i))
+      itk=itype2loc(itype(k))
+      itk1=itype2loc(itype(k+1))
+      itl=itype2loc(itype(l))
+      itj=itype2loc(itype(j))
 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
@@ -8598,12 +10663,12 @@ cd      write (2,*) 'eello6_5',eello6_5
 #ifdef MOMENT
       call transpose2(AEA(1,1,1),auxmat(1,1))
       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
-      ss1=scalar2(Ub2(1,i+2),b1(1,itl))
+      ss1=scalar2(Ub2(1,i+2),b1(1,l))
       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
 #endif
-      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+      call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1))
       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
-      s2 = scalar2(b1(1,itk),vtemp1(1))
+      s2 = scalar2(b1(1,k),vtemp1(1))
 #ifdef MOMENT
       call transpose2(AEA(1,1,2),atemp(1,1))
       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
@@ -8618,7 +10683,7 @@ cd      write (2,*) 'eello6_5',eello6_5
       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
-      ss13 = scalar2(b1(1,itk),vtemp4(1))
+      ss13 = scalar2(b1(1,k),vtemp4(1))
       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
 #endif
 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
@@ -8652,12 +10717,12 @@ C Derivatives in gamma(i+3)
 #ifdef MOMENT
       call transpose2(AEA(1,1,1),auxmatd(1,1))
       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
-      ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
+      ss1d=scalar2(Ub2der(1,i+2),b1(1,l))
       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
 #endif
-      call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(EUgder(1,1,i+2),b1(1,l),vtemp1d(1))
       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
-      s2d = scalar2(b1(1,itk),vtemp1d(1))
+      s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
@@ -8705,9 +10770,9 @@ C Derivatives in gamma(i+5)
       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
 #endif
-      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1d(1))
       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
-      s2d = scalar2(b1(1,itk),vtemp1d(1))
+      s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
       call transpose2(AEA(1,1,2),atempd(1,1))
       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
@@ -8717,7 +10782,7 @@ C Derivatives in gamma(i+5)
       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
 #ifdef MOMENT
       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
-      ss13d = scalar2(b1(1,itk),vtemp4d(1))
+      ss13d = scalar2(b1(1,k),vtemp4d(1))
       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
 #endif
 c      s1d=0.0d0
@@ -8741,10 +10806,10 @@ C Cartesian derivatives
             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
 #endif
-            call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+            call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1))
             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
      &          vtemp1d(1))
-            s2d = scalar2(b1(1,itk),vtemp1d(1))
+            s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
@@ -8788,7 +10853,7 @@ c      s13d=0.0d0
           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
      &      vtemp4d(1)) 
-          ss13d = scalar2(b1(1,itk),vtemp4d(1))
+          ss13d = scalar2(b1(1,k),vtemp4d(1))
           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
         enddo
@@ -9024,4 +11089,579 @@ crc      print *,((prod(i,j),i=1,2),j=1,2)
 
       return
       end
+CCC----------------------------------------------
+      subroutine Eliptransfer(eliptran)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+C this is done by Adasko
+C      print *,"wchodze"
+C structure of box:
+C      water
+C--bordliptop-- buffore starts
+C--bufliptop--- here true lipid starts
+C      lipid
+C--buflipbot--- lipid ends buffore starts
+C--bordlipbot--buffore ends
+      eliptran=0.0
+      do i=ilip_start,ilip_end
+C       do i=1,1
+        if (itype(i).eq.ntyp1) cycle
+
+        positi=(mod(((c(3,i)+c(3,i+1))/2.0d0),boxzsize))
+        if (positi.le.0) positi=positi+boxzsize
+C        print *,i
+C first for peptide groups
+c for each residue check if it is in lipid or lipid water border area
+       if ((positi.gt.bordlipbot)
+     &.and.(positi.lt.bordliptop)) then
+C the energy transfer exist
+        if (positi.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((positi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslip=sscalelip(fracinbuf)
+         ssgradlip=-sscagradlip(fracinbuf)/lipbufthick
+         eliptran=eliptran+sslip*pepliptran
+         gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0
+         gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0
+C         gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran
+
+C        print *,"doing sccale for lower part"
+C         print *,i,sslip,fracinbuf,ssgradlip
+        elseif (positi.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick)
+         sslip=sscalelip(fracinbuf)
+         ssgradlip=sscagradlip(fracinbuf)/lipbufthick
+         eliptran=eliptran+sslip*pepliptran
+         gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0
+         gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0
+C         gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran
+C          print *, "doing sscalefor top part"
+C         print *,i,sslip,fracinbuf,ssgradlip
+        else
+         eliptran=eliptran+pepliptran
+C         print *,"I am in true lipid"
+        endif
+C       else
+C       eliptran=elpitran+0.0 ! I am in water
+       endif
+       enddo
+C       print *, "nic nie bylo w lipidzie?"
+C now multiply all by the peptide group transfer factor
+C       eliptran=eliptran*pepliptran
+C now the same for side chains
+CV       do i=1,1
+       do i=ilip_start,ilip_end
+        if (itype(i).eq.ntyp1) cycle
+        positi=(mod(c(3,i+nres),boxzsize))
+        if (positi.le.0) positi=positi+boxzsize
+C       print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop
+c for each residue check if it is in lipid or lipid water border area
+C       respos=mod(c(3,i+nres),boxzsize)
+C       print *,positi,bordlipbot,buflipbot
+       if ((positi.gt.bordlipbot)
+     & .and.(positi.lt.bordliptop)) then
+C the energy transfer exist
+        if (positi.lt.buflipbot) then
+         fracinbuf=1.0d0-
+     &     ((positi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslip=sscalelip(fracinbuf)
+         ssgradlip=-sscagradlip(fracinbuf)/lipbufthick
+         eliptran=eliptran+sslip*liptranene(itype(i))
+         gliptranx(3,i)=gliptranx(3,i)
+     &+ssgradlip*liptranene(itype(i))
+         gliptranc(3,i-1)= gliptranc(3,i-1)
+     &+ssgradlip*liptranene(itype(i))
+C         print *,"doing sccale for lower part"
+        elseif (positi.gt.bufliptop) then
+         fracinbuf=1.0d0-
+     &((bordliptop-positi)/lipbufthick)
+         sslip=sscalelip(fracinbuf)
+         ssgradlip=sscagradlip(fracinbuf)/lipbufthick
+         eliptran=eliptran+sslip*liptranene(itype(i))
+         gliptranx(3,i)=gliptranx(3,i)
+     &+ssgradlip*liptranene(itype(i))
+         gliptranc(3,i-1)= gliptranc(3,i-1)
+     &+ssgradlip*liptranene(itype(i))
+C          print *, "doing sscalefor top part",sslip,fracinbuf
+        else
+         eliptran=eliptran+liptranene(itype(i))
+C         print *,"I am in true lipid"
+        endif
+        endif ! if in lipid or buffor
+C       else
+C       eliptran=elpitran+0.0 ! I am in water
+       enddo
+       return
+       end
+C---------------------------------------------------------
+C AFM soubroutine for constant force
+       subroutine AFMforce(Eafmforce)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      real*8 diffafm(3)
+      dist=0.0d0
+      Eafmforce=0.0d0
+      do i=1,3
+      diffafm(i)=c(i,afmend)-c(i,afmbeg)
+      dist=dist+diffafm(i)**2
+      enddo
+      dist=dsqrt(dist)
+      Eafmforce=-forceAFMconst*(dist-distafminit)
+      do i=1,3
+      gradafm(i,afmend-1)=-forceAFMconst*diffafm(i)/dist
+      gradafm(i,afmbeg-1)=forceAFMconst*diffafm(i)/dist
+      enddo
+C      print *,'AFM',Eafmforce
+      return
+      end
+C---------------------------------------------------------
+C AFM subroutine with pseudoconstant velocity
+       subroutine AFMvel(Eafmforce)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      real*8 diffafm(3)
+C Only for check grad COMMENT if not used for checkgrad
+C      totT=3.0d0
+C--------------------------------------------------------
+C      print *,"wchodze"
+      dist=0.0d0
+      Eafmforce=0.0d0
+      do i=1,3
+      diffafm(i)=c(i,afmend)-c(i,afmbeg)
+      dist=dist+diffafm(i)**2
+      enddo
+      dist=dsqrt(dist)
+      Eafmforce=0.5d0*forceAFMconst
+     & *(distafminit+totTafm*velAFMconst-dist)**2
+C      Eafmforce=-forceAFMconst*(dist-distafminit)
+      do i=1,3
+      gradafm(i,afmend-1)=-forceAFMconst*
+     &(distafminit+totTafm*velAFMconst-dist)
+     &*diffafm(i)/dist
+      gradafm(i,afmbeg-1)=forceAFMconst*
+     &(distafminit+totTafm*velAFMconst-dist)
+     &*diffafm(i)/dist
+      enddo
+C      print *,'AFM',Eafmforce,totTafm*velAFMconst,dist
+      return
+      end
+C-----------------------------------------------------------
+C first for shielding is setting of function of side-chains
+       subroutine set_shield_fac
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SHIELD'
+      include 'COMMON.INTERACT'
+C this is the squar root 77 devided by 81 the epislion in lipid (in protein)
+      double precision div77_81/0.974996043d0/,
+     &div4_81/0.2222222222d0/,sh_frac_dist_grad(3)
+      
+C the vector between center of side_chain and peptide group
+       double precision pep_side(3),long,side_calf(3),
+     &pept_group(3),costhet_grad(3),cosphi_grad_long(3),
+     &cosphi_grad_loc(3),pep_side_norm(3),side_calf_norm(3)
+C the line belowe needs to be changed for FGPROC>1
+      do i=1,nres-1
+      if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle
+      ishield_list(i)=0
+Cif there two consequtive dummy atoms there is no peptide group between them
+C the line below has to be changed for FGPROC>1
+      VolumeTotal=0.0
+      do k=1,nres
+       if ((itype(k).eq.ntyp1).or.(itype(k).eq.10)) cycle
+       dist_pep_side=0.0
+       dist_side_calf=0.0
+       do j=1,3
+C first lets set vector conecting the ithe side-chain with kth side-chain
+      pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0
+C      pep_side(j)=2.0d0
+C and vector conecting the side-chain with its proper calfa
+      side_calf(j)=c(j,k+nres)-c(j,k)
+C      side_calf(j)=2.0d0
+      pept_group(j)=c(j,i)-c(j,i+1)
+C lets have their lenght
+      dist_pep_side=pep_side(j)**2+dist_pep_side
+      dist_side_calf=dist_side_calf+side_calf(j)**2
+      dist_pept_group=dist_pept_group+pept_group(j)**2
+      enddo
+       dist_pep_side=dsqrt(dist_pep_side)
+       dist_pept_group=dsqrt(dist_pept_group)
+       dist_side_calf=dsqrt(dist_side_calf)
+      do j=1,3
+        pep_side_norm(j)=pep_side(j)/dist_pep_side
+        side_calf_norm(j)=dist_side_calf
+      enddo
+C now sscale fraction
+       sh_frac_dist=-(dist_pep_side-rpp(1,1)-buff_shield)/buff_shield
+C       print *,buff_shield,"buff"
+C now sscale
+        if (sh_frac_dist.le.0.0) cycle
+C If we reach here it means that this side chain reaches the shielding sphere
+C Lets add him to the list for gradient       
+        ishield_list(i)=ishield_list(i)+1
+C ishield_list is a list of non 0 side-chain that contribute to factor gradient
+C this list is essential otherwise problem would be O3
+        shield_list(ishield_list(i),i)=k
+C Lets have the sscale value
+        if (sh_frac_dist.gt.1.0) then
+         scale_fac_dist=1.0d0
+         do j=1,3
+         sh_frac_dist_grad(j)=0.0d0
+         enddo
+        else
+         scale_fac_dist=-sh_frac_dist*sh_frac_dist
+     &                   *(2.0*sh_frac_dist-3.0d0)
+         fac_help_scale=6.0*(sh_frac_dist-sh_frac_dist**2)
+     &                  /dist_pep_side/buff_shield*0.5
+C remember for the final gradient multiply sh_frac_dist_grad(j) 
+C for side_chain by factor -2 ! 
+         do j=1,3
+         sh_frac_dist_grad(j)=fac_help_scale*pep_side(j)
+C         print *,"jestem",scale_fac_dist,fac_help_scale,
+C     &                    sh_frac_dist_grad(j)
+         enddo
+        endif
+C        if ((i.eq.3).and.(k.eq.2)) then
+C        print *,i,sh_frac_dist,dist_pep,fac_help_scale,scale_fac_dist
+C     & ,"TU"
+C        endif
+
+C this is what is now we have the distance scaling now volume...
+      short=short_r_sidechain(itype(k))
+      long=long_r_sidechain(itype(k))
+      costhet=1.0d0/dsqrt(1.0+short**2/dist_pep_side**2)
+C now costhet_grad
+C       costhet=0.0d0
+       costhet_fac=costhet**3*short**2*(-0.5)/dist_pep_side**4
+C       costhet_fac=0.0d0
+       do j=1,3
+         costhet_grad(j)=costhet_fac*pep_side(j)
+       enddo
+C remember for the final gradient multiply costhet_grad(j) 
+C for side_chain by factor -2 !
+C fac alfa is angle between CB_k,CA_k, CA_i,CA_i+1
+C pep_side0pept_group is vector multiplication  
+      pep_side0pept_group=0.0
+      do j=1,3
+      pep_side0pept_group=pep_side0pept_group+pep_side(j)*side_calf(j)
+      enddo
+      cosalfa=(pep_side0pept_group/
+     & (dist_pep_side*dist_side_calf))
+      fac_alfa_sin=1.0-cosalfa**2
+      fac_alfa_sin=dsqrt(fac_alfa_sin)
+      rkprim=fac_alfa_sin*(long-short)+short
+C now costhet_grad
+       cosphi=1.0d0/dsqrt(1.0+rkprim**2/dist_pep_side**2)
+       cosphi_fac=cosphi**3*rkprim**2*(-0.5)/dist_pep_side**4
+       
+       do j=1,3
+         cosphi_grad_long(j)=cosphi_fac*pep_side(j)
+     &+cosphi**3*0.5/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa/
+     &((dist_pep_side*dist_side_calf))*
+     &((side_calf(j))-cosalfa*
+     &((pep_side(j)/dist_pep_side)*dist_side_calf))
+
+        cosphi_grad_loc(j)=cosphi**3*0.5/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa
+     &/((dist_pep_side*dist_side_calf))*
+     &(pep_side(j)-
+     &cosalfa*side_calf(j)/dist_side_calf*dist_pep_side)
+       enddo
+
+      VofOverlap=VSolvSphere/2.0d0*(1.0-costhet)*(1.0-cosphi)
+     &                    /VSolvSphere_div
+     &                    *wshield
+C now the gradient...
+C grad_shield is gradient of Calfa for peptide groups
+C      write(iout,*) "shield_compon",i,k,VSolvSphere,scale_fac_dist,
+C     &               costhet,cosphi
+C       write(iout,*) "cosphi_compon",i,k,pep_side0pept_group,
+C     & dist_pep_side,dist_side_calf,c(1,k+nres),c(1,k),itype(k)
+      do j=1,3
+      grad_shield(j,i)=grad_shield(j,i)
+C gradient po skalowaniu
+     &                +(sh_frac_dist_grad(j)
+C  gradient po costhet
+     &-scale_fac_dist*costhet_grad(j)/(1.0-costhet)
+     &-scale_fac_dist*(cosphi_grad_long(j))
+     &/(1.0-cosphi) )*div77_81
+     &*VofOverlap
+C grad_shield_side is Cbeta sidechain gradient
+      grad_shield_side(j,ishield_list(i),i)=
+     &        (sh_frac_dist_grad(j)*-2.0d0
+     &       +scale_fac_dist*costhet_grad(j)*2.0d0/(1.0-costhet)
+     &       +scale_fac_dist*(cosphi_grad_long(j))
+     &        *2.0d0/(1.0-cosphi))
+     &        *div77_81*VofOverlap
+
+       grad_shield_loc(j,ishield_list(i),i)=
+     &   scale_fac_dist*cosphi_grad_loc(j)
+     &        *2.0d0/(1.0-cosphi)
+     &        *div77_81*VofOverlap
+      enddo
+      VolumeTotal=VolumeTotal+VofOverlap*scale_fac_dist
+      enddo
+      fac_shield(i)=VolumeTotal*div77_81+div4_81
+C      write(2,*) "TOTAL VOLUME",i,VolumeTotal,fac_shield(i)
+      enddo
+      return
+      end
+C--------------------------------------------------------------------------
+      double precision function tschebyshev(m,n,x,y)
+      implicit none
+      include "DIMENSIONS"
+      integer i,m,n
+      double precision x(n),y,yy(0:maxvar),aux
+c Tschebyshev polynomial. Note that the first term is omitted 
+c m=0: the constant term is included
+c m=1: the constant term is not included
+      yy(0)=1.0d0
+      yy(1)=y
+      do i=2,n
+        yy(i)=2*yy(1)*yy(i-1)-yy(i-2)
+      enddo
+      aux=0.0d0
+      do i=m,n
+        aux=aux+x(i)*yy(i)
+      enddo
+      tschebyshev=aux
+      return
+      end
+C--------------------------------------------------------------------------
+      double precision function gradtschebyshev(m,n,x,y)
+      implicit none
+      include "DIMENSIONS"
+      integer i,m,n
+      double precision x(n+1),y,yy(0:maxvar),aux
+c Tschebyshev polynomial. Note that the first term is omitted
+c m=0: the constant term is included
+c m=1: the constant term is not included
+      yy(0)=1.0d0
+      yy(1)=2.0d0*y
+      do i=2,n
+        yy(i)=2*y*yy(i-1)-yy(i-2)
+      enddo
+      aux=0.0d0
+      do i=m,n
+        aux=aux+x(i+1)*yy(i)*(i+1)
+C        print *, x(i+1),yy(i),i
+      enddo
+      gradtschebyshev=aux
+      return
+      end
+C------------------------------------------------------------------------
+C first for shielding is setting of function of side-chains
+       subroutine set_shield_fac2
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SHIELD'
+      include 'COMMON.INTERACT'
+C this is the squar root 77 devided by 81 the epislion in lipid (in protein)
+      double precision div77_81/0.974996043d0/,
+     &div4_81/0.2222222222d0/,sh_frac_dist_grad(3)
+
+C the vector between center of side_chain and peptide group
+       double precision pep_side(3),long,side_calf(3),
+     &pept_group(3),costhet_grad(3),cosphi_grad_long(3),
+     &cosphi_grad_loc(3),pep_side_norm(3),side_calf_norm(3)
+C the line belowe needs to be changed for FGPROC>1
+      do i=1,nres-1
+      if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle
+      ishield_list(i)=0
+Cif there two consequtive dummy atoms there is no peptide group between them
+C the line below has to be changed for FGPROC>1
+      VolumeTotal=0.0
+      do k=1,nres
+       if ((itype(k).eq.ntyp1).or.(itype(k).eq.10)) cycle
+       dist_pep_side=0.0
+       dist_side_calf=0.0
+       do j=1,3
+C first lets set vector conecting the ithe side-chain with kth side-chain
+      pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0
+C      pep_side(j)=2.0d0
+C and vector conecting the side-chain with its proper calfa
+      side_calf(j)=c(j,k+nres)-c(j,k)
+C      side_calf(j)=2.0d0
+      pept_group(j)=c(j,i)-c(j,i+1)
+C lets have their lenght
+      dist_pep_side=pep_side(j)**2+dist_pep_side
+      dist_side_calf=dist_side_calf+side_calf(j)**2
+      dist_pept_group=dist_pept_group+pept_group(j)**2
+      enddo
+       dist_pep_side=dsqrt(dist_pep_side)
+       dist_pept_group=dsqrt(dist_pept_group)
+       dist_side_calf=dsqrt(dist_side_calf)
+      do j=1,3
+        pep_side_norm(j)=pep_side(j)/dist_pep_side
+        side_calf_norm(j)=dist_side_calf
+      enddo
+C now sscale fraction
+       sh_frac_dist=-(dist_pep_side-rpp(1,1)-buff_shield)/buff_shield
+C       print *,buff_shield,"buff"
+C now sscale
+        if (sh_frac_dist.le.0.0) cycle
+C If we reach here it means that this side chain reaches the shielding sphere
+C Lets add him to the list for gradient       
+        ishield_list(i)=ishield_list(i)+1
+C ishield_list is a list of non 0 side-chain that contribute to factor gradient
+C this list is essential otherwise problem would be O3
+        shield_list(ishield_list(i),i)=k
+C Lets have the sscale value
+        if (sh_frac_dist.gt.1.0) then
+         scale_fac_dist=1.0d0
+         do j=1,3
+         sh_frac_dist_grad(j)=0.0d0
+         enddo
+        else
+         scale_fac_dist=-sh_frac_dist*sh_frac_dist
+     &                   *(2.0d0*sh_frac_dist-3.0d0)
+         fac_help_scale=6.0d0*(sh_frac_dist-sh_frac_dist**2)
+     &                  /dist_pep_side/buff_shield*0.5d0
+C remember for the final gradient multiply sh_frac_dist_grad(j) 
+C for side_chain by factor -2 ! 
+         do j=1,3
+         sh_frac_dist_grad(j)=fac_help_scale*pep_side(j)
+C         sh_frac_dist_grad(j)=0.0d0
+C         scale_fac_dist=1.0d0
+C         print *,"jestem",scale_fac_dist,fac_help_scale,
+C     &                    sh_frac_dist_grad(j)
+         enddo
+        endif
+C this is what is now we have the distance scaling now volume...
+      short=short_r_sidechain(itype(k))
+      long=long_r_sidechain(itype(k))
+      costhet=1.0d0/dsqrt(1.0d0+short**2/dist_pep_side**2)
+      sinthet=short/dist_pep_side*costhet
+C now costhet_grad
+C       costhet=0.6d0
+C       sinthet=0.8
+       costhet_fac=costhet**3*short**2*(-0.5d0)/dist_pep_side**4
+C       sinthet_fac=costhet**2*0.5d0*(short**3/dist_pep_side**4*costhet
+C     &             -short/dist_pep_side**2/costhet)
+C       costhet_fac=0.0d0
+       do j=1,3
+         costhet_grad(j)=costhet_fac*pep_side(j)
+       enddo
+C remember for the final gradient multiply costhet_grad(j) 
+C for side_chain by factor -2 !
+C fac alfa is angle between CB_k,CA_k, CA_i,CA_i+1
+C pep_side0pept_group is vector multiplication  
+      pep_side0pept_group=0.0d0
+      do j=1,3
+      pep_side0pept_group=pep_side0pept_group+pep_side(j)*side_calf(j)
+      enddo
+      cosalfa=(pep_side0pept_group/
+     & (dist_pep_side*dist_side_calf))
+      fac_alfa_sin=1.0d0-cosalfa**2
+      fac_alfa_sin=dsqrt(fac_alfa_sin)
+      rkprim=fac_alfa_sin*(long-short)+short
+C      rkprim=short
+
+C now costhet_grad
+       cosphi=1.0d0/dsqrt(1.0d0+rkprim**2/dist_pep_side**2)
+C       cosphi=0.6
+       cosphi_fac=cosphi**3*rkprim**2*(-0.5d0)/dist_pep_side**4
+       sinphi=rkprim/dist_pep_side/dsqrt(1.0d0+rkprim**2/
+     &      dist_pep_side**2)
+C       sinphi=0.8
+       do j=1,3
+         cosphi_grad_long(j)=cosphi_fac*pep_side(j)
+     &+cosphi**3*0.5d0/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa/
+     &((dist_pep_side*dist_side_calf))*
+     &((side_calf(j))-cosalfa*
+     &((pep_side(j)/dist_pep_side)*dist_side_calf))
+C       cosphi_grad_long(j)=0.0d0
+        cosphi_grad_loc(j)=cosphi**3*0.5d0/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa
+     &/((dist_pep_side*dist_side_calf))*
+     &(pep_side(j)-
+     &cosalfa*side_calf(j)/dist_side_calf*dist_pep_side)
+C       cosphi_grad_loc(j)=0.0d0
+       enddo
+C      print *,sinphi,sinthet
+      VofOverlap=VSolvSphere/2.0d0*(1.0d0-dsqrt(1.0d0-sinphi*sinthet))
+     &                    /VSolvSphere_div
+C     &                    *wshield
+C now the gradient...
+      do j=1,3
+      grad_shield(j,i)=grad_shield(j,i)
+C gradient po skalowaniu
+     &                +(sh_frac_dist_grad(j)*VofOverlap
+C  gradient po costhet
+     &       +scale_fac_dist*VSolvSphere/VSolvSphere_div/4.0d0*
+     &(1.0d0/(-dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinphi/sinthet*costhet*costhet_grad(j)
+     &      +sinthet/sinphi*cosphi*cosphi_grad_long(j)))
+     & )*wshield
+C grad_shield_side is Cbeta sidechain gradient
+      grad_shield_side(j,ishield_list(i),i)=
+     &        (sh_frac_dist_grad(j)*-2.0d0
+     &        *VofOverlap
+     &       -scale_fac_dist*VSolvSphere/VSolvSphere_div/2.0d0*
+     &(1.0d0/(-dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinphi/sinthet*costhet*costhet_grad(j)
+     &      +sinthet/sinphi*cosphi*cosphi_grad_long(j)))
+     &       )*wshield        
+
+       grad_shield_loc(j,ishield_list(i),i)=
+     &       scale_fac_dist*VSolvSphere/VSolvSphere_div/2.0d0*
+     &(1.0d0/(dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinthet/sinphi*cosphi*cosphi_grad_loc(j)
+     &        ))
+     &        *wshield
+      enddo
+      VolumeTotal=VolumeTotal+VofOverlap*scale_fac_dist
+      enddo
+      fac_shield(i)=VolumeTotal*wshield+(1.0d0-wshield)
+C      write(2,*) "TOTAL VOLUME",i,VolumeTotal,fac_shield(i)
+      enddo
+      return
+      end