sprawdzenie shieldingu
[unres.git] / source / unres / src_MD-M / energy_p_new_barrier.F
index 53d2eb4..82d6a3f 100644 (file)
@@ -141,6 +141,7 @@ C Introduction of shielding effect first for each peptide group
 C the shielding factor is set this factor is describing how each
 C peptide group is shielded by side-chains
 C the matrix - shield_fac(i) the i index describe the ith between i and i+1
+C      write (iout,*) "shield_mode",shield_mode
       if (shield_mode.gt.0) then
        call set_shield_fac
       endif
@@ -545,6 +546,7 @@ c      enddo
      &                wstrain*ghpbc(j,i)
      &                +wliptran*gliptranc(j,i)
      &                +gradafm(j,i)
+     &                 +welec*gshieldc(j,i)
 
         enddo
       enddo 
@@ -563,6 +565,7 @@ c      enddo
      &                wstrain*ghpbc(j,i)
      &                +wliptran*gliptranc(j,i)
      &                +gradafm(j,i)
+     &                 +welec*gshieldc(j,i)
 
         enddo
       enddo 
@@ -681,6 +684,13 @@ c      enddo
       do i=-1,nct
         do j=1,3
 #ifdef SPLITELE
+C          print *,gradbufc(1,13)
+C          print *,welec*gelc(1,13)
+C          print *,wel_loc*gel_loc(1,13)
+C          print *,0.5d0*(wscp*gvdwc_scpp(1,13))
+C          print *,welec*gelc_long(1,13)+wvdwpp*gvdwpp(1,13)
+C          print *,wel_loc*gel_loc_long(1,13)
+C          print *,gradafm(1,13),"AFM"
           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
      &                wel_loc*gel_loc(j,i)+
      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
@@ -701,6 +711,10 @@ c      enddo
      &               +wscloc*gscloc(j,i)
      &               +wliptran*gliptranc(j,i)
      &                +gradafm(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+
+
 #else
           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
      &                wel_loc*gel_loc(j,i)+
@@ -722,6 +736,9 @@ c      enddo
      &               +wscloc*gscloc(j,i)
      &               +wliptran*gliptranc(j,i)
      &                +gradafm(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+
 
 #endif
           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
@@ -730,6 +747,7 @@ c      enddo
      &                  wsccor*gsccorx(j,i)
      &                 +wscloc*gsclocx(j,i)
      &                 +wliptran*gliptranx(j,i)
+     &                 +welec*gshieldx(j,i)
         enddo
       enddo 
 #ifdef DEBUG
@@ -2762,6 +2780,17 @@ c       write(iout,*)  'b1=',b1(1,i-2)
 c       write (iout,*) 'theta=', theta(i-1)
        enddo
 #else
+        if (i.gt. nnt+2 .and. i.lt.nct+2) then
+          iti = itortyp(itype(i-2))
+        else
+          iti=ntortyp+1
+        endif
+c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
+        if (i.gt. nnt+1 .and. i.lt.nct+1) then
+          iti1 = itortyp(itype(i-1))
+        else
+          iti1=ntortyp+1
+        endif
         b1(1,i-2)=b(3,iti)
         b1(2,i-2)=b(5,iti)
         b2(1,i-2)=b(2,iti)
@@ -2916,6 +2945,7 @@ c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         do k=1,2
           mu(k,i-2)=Ub2(k,i-2)+b1(k,i-1)
         enddo
+C        write (iout,*) 'mumu',i,b1(1,i-1),Ub2(1,i-2)
 c        write (iout,*) 'mu ',mu(:,i-2),i-2
 cd        write (iout,*) 'mu1',mu1(:,i-2)
 cd        write (iout,*) 'mu2',mu2(:,i-2)
@@ -3428,7 +3458,9 @@ C      do zshift=-1,1
 c
 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
 c
+CTU KURWA
       do i=iatel_s,iatel_e
+C        do i=75,75
         if (i.le.1) cycle
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
 C changes suggested by Ana to avoid out of bounds
@@ -3485,7 +3517,9 @@ c        endif
 
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         num_conti=num_cont_hb(i)
+C I TU KURWA
         do j=ielstart(i),ielend(i)
+C          do j=16,17
 C          write (iout,*) i,j
          if (j.le.1) cycle
           if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1
@@ -3535,6 +3569,7 @@ C-------------------------------------------------------------------------------
       include 'COMMON.FFIELD'
       include 'COMMON.TIME1'
       include 'COMMON.SPLITELE'
+      include 'COMMON.SHIELD'
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
@@ -3667,10 +3702,22 @@ c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
           el2=fac4*fac       
 C MARYSIA
-          eesij=(el1+el2)
+C          eesij=(el1+el2)
 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
+          if (shield_mode.gt.0) then
+C          fac_shield(i)=0.4
+C          fac_shield(j)=0.6
+          el1=el1*fac_shield(i)*fac_shield(j)
+          el2=el2*fac_shield(i)*fac_shield(j)
+          eesij=(el1+el2)
           ees=ees+eesij
+          else
+          fac_shield(i)=1.0
+          fac_shield(j)=1.0
+          eesij=(el1+el2)
+          ees=ees+eesij
+          endif
           evdw1=evdw1+evdwij*sss
 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
@@ -3681,7 +3728,8 @@ cd     &      xmedi,ymedi,zmedi,xj,yj,zj
               write (iout,'(a6,2i5,0pf7.3,2i5,2e11.3)') 
      &'evdw1',i,j,evdwij
      &,iteli,itelj,aaa,evdw1
-              write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
+              write (iout,'(a6,2i5,0pf7.3,2f8.3)') 'ees',i,j,eesij,
+     &fac_shield(i),fac_shield(j)
           endif
 
 C
           erij(1)=xj*rmij
           erij(2)=yj*rmij
           erij(3)=zj*rmij
+
 *
 * Radial derivatives. First process both termini of the fragment (i,j)
 *
           ggg(1)=facel*xj
           ggg(2)=facel*yj
           ggg(3)=facel*zj
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eesij/fac_shield(i)
+           gshieldx(k,iresshield)=gshieldx(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+            gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield
+C           gshieldc_loc(k,iresshield)=gshieldc_loc(k,iresshield)
+C     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C             if (iresshield.gt.i) then
+C               do ishi=i+1,iresshield-1
+C                gshieldc(k,ishi)=gshieldc(k,ishi)+rlocshield
+C     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C
+C              enddo
+C             else
+C               do ishi=iresshield,i
+C                gshieldc(k,ishi)=gshieldc(k,ishi)-rlocshield
+C     & -grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C
+C               enddo
+C              endif
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eesij/fac_shield(j)
+           gshieldx(k,iresshield)=gshieldx(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+           gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield
+
+C     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+C           gshieldc_loc(k,iresshield)=gshieldc_loc(k,iresshield)
+C     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+C             if (iresshield.gt.j) then
+C               do ishi=j+1,iresshield-1
+C                gshieldc(k,ishi)=gshieldc(k,ishi)+rlocshield
+C     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+C
+C               enddo
+C            else
+C               do ishi=iresshield,j
+C                gshieldc(k,ishi)=gshieldc(k,ishi)-rlocshield
+C     & -grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)
+C               enddo
+C              endif
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc(k,i)=gshieldc(k,i)+
+     &              grad_shield(k,i)*eesij/fac_shield(i)
+            gshieldc(k,j)=gshieldc(k,j)+
+     &              grad_shield(k,j)*eesij/fac_shield(j)
+            gshieldc(k,i-1)=gshieldc(k,i-1)+
+     &              grad_shield(k,i)*eesij/fac_shield(i)
+            gshieldc(k,j-1)=gshieldc(k,j-1)+
+     &              grad_shield(k,j)*eesij/fac_shield(j)
+
+           enddo
+           endif
 c          do k=1,3
 c            ghalf=0.5D0*ggg(k)
 c            gelc(k,i)=gelc(k,i)+ghalf
 c            gelc(k,j)=gelc(k,j)+ghalf
 c          enddo
 c 9/28/08 AL Gradient compotents will be summed only at the end
+C           print *,"before", gelc_long(1,i), gelc_long(1,j)
           do k=1,3
             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
+C     &                    +grad_shield(k,j)*eesij/fac_shield(j)
             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
+C     &                    +grad_shield(k,i)*eesij/fac_shield(i)
+C            gelc_long(k,i-1)=gelc_long(k,i-1)
+C     &                    +grad_shield(k,i)*eesij/fac_shield(i)
+C            gelc_long(k,j-1)=gelc_long(k,j-1)
+C     &                    +grad_shield(k,j)*eesij/fac_shield(j)
           enddo
+C           print *,"bafter", gelc_long(1,i), gelc_long(1,j)
+
 *
 * Loop over residues i+1 thru j-1.
 *
@@ -3758,8 +3883,11 @@ C MARYSIA
 * Radial derivatives. First process both termini of the fragment (i,j)
 * 
           ggg(1)=fac*xj
+C+eesij*grad_shield(1,i)+eesij*grad_shield(1,j)
           ggg(2)=fac*yj
+C+eesij*grad_shield(2,i)+eesij*grad_shield(2,j)
           ggg(3)=fac*zj
+C+eesij*grad_shield(3,i)+eesij*grad_shield(3,j)
 c          do k=1,3
 c            ghalf=0.5D0*ggg(k)
 c            gelc(k,i)=gelc(k,i)+ghalf
@@ -3802,7 +3930,8 @@ c 9/28/08 AL Gradient compotents will be summed only at the end
 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
 cd   &          (dcosg(k),k=1,3)
           do k=1,3
-            ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
+            ggg(k)=(ecosb*dcosb(k)+ecosg*dcosg(k))*
+     &      fac_shield(i)*fac_shield(j)
           enddo
 c          do k=1,3
 c            ghalf=0.5D0*ggg(k)
@@ -3818,16 +3947,21 @@ cgrad            do l=1,3
 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
 cgrad            enddo
 cgrad          enddo
+C                     print *,"before22", gelc_long(1,i), gelc_long(1,j)
           do k=1,3
             gelc(k,i)=gelc(k,i)
-     &           +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
-     &           + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &           +((ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &           + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1))
+     &           *fac_shield(i)*fac_shield(j)   
             gelc(k,j)=gelc(k,j)
-     &           +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
-     &           + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &           +((ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &           + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1))
+     &           *fac_shield(i)*fac_shield(j)
             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
           enddo
+C           print *,"before33", gelc_long(1,i), gelc_long(1,j)
+
 C MARYSIA
 c          endif !sscale
           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
@@ -4030,7 +4164,7 @@ C Contribution to the local-electrostatic energy coming from the i-j pair
      &     +a33*muij(4)
 c          write (iout,*) 'i',i,' j',j,itype(i),itype(j),
 c     &                     ' eel_loc_ij',eel_loc_ij
-c          write(iout,*) 'muije=',muij(1),muij(2),muij(3),muij(4)
+C          write(iout,*) 'muije=',i,j,muij(1),muij(2),muij(3),muij(4)
 C Calculate patrial derivative for theta angle
 #ifdef NEWCORR
          geel_loc_ij=a22*gmuij1(1)
@@ -10512,4 +10646,168 @@ C      Eafmforce=-forceAFMconst*(dist-distafminit)
 C      print *,'AFM',Eafmforce,totTafm*velAFMconst,dist
       return
       end
+C-----------------------------------------------------------
+C first for shielding is setting of function of side-chains
+       subroutine set_shield_fac
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SHIELD'
+      include 'COMMON.INTERACT'
+C this is the squar root 77 devided by 81 the epislion in lipid (in protein)
+      double precision div77_81/0.974996043d0/,
+     &div4_81/0.2222222222d0/,sh_frac_dist_grad(3)
+      
+C the vector between center of side_chain and peptide group
+       double precision pep_side(3),long,side_calf(3),
+     &pept_group(3),costhet_grad(3),cosphi_grad_long(3),
+     &cosphi_grad_loc(3),pep_side_norm(3),side_calf_norm(3)
+C the line belowe needs to be changed for FGPROC>1
+      do i=1,nres-1
+      if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle
+      ishield_list(i)=0
+Cif there two consequtive dummy atoms there is no peptide group between them
+C the line below has to be changed for FGPROC>1
+      VolumeTotal=0.0
+      do k=1,nres
+       if ((itype(k).eq.ntyp1).or.(itype(k).eq.10)) cycle
+       dist_pep_side=0.0
+       dist_side_calf=0.0
+       do j=1,3
+C first lets set vector conecting the ithe side-chain with kth side-chain
+      pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0
+C      pep_side(j)=2.0d0
+C and vector conecting the side-chain with its proper calfa
+      side_calf(j)=c(j,k+nres)-c(j,k)
+C      side_calf(j)=2.0d0
+      pept_group(j)=c(j,i)-c(j,i+1)
+C lets have their lenght
+      dist_pep_side=pep_side(j)**2+dist_pep_side
+      dist_side_calf=dist_side_calf+side_calf(j)**2
+      dist_pept_group=dist_pept_group+pept_group(j)**2
+      enddo
+       dist_pep_side=dsqrt(dist_pep_side)
+       dist_pept_group=dsqrt(dist_pept_group)
+       dist_side_calf=dsqrt(dist_side_calf)
+      do j=1,3
+        pep_side_norm(j)=pep_side(j)/dist_pep_side
+        side_calf_norm(j)=dist_side_calf
+      enddo
+C now sscale fraction
+       sh_frac_dist=-(dist_pep_side-rpp(1,1)-buff_shield)/buff_shield
+C       print *,buff_shield,"buff"
+C now sscale
+        if (sh_frac_dist.le.0.0) cycle
+C If we reach here it means that this side chain reaches the shielding sphere
+C Lets add him to the list for gradient       
+        ishield_list(i)=ishield_list(i)+1
+C ishield_list is a list of non 0 side-chain that contribute to factor gradient
+C this list is essential otherwise problem would be O3
+        shield_list(ishield_list(i),i)=k
+C Lets have the sscale value
+        if (sh_frac_dist.gt.1.0) then
+         scale_fac_dist=1.0d0
+         do j=1,3
+         sh_frac_dist_grad(j)=0.0d0
+         enddo
+        else
+         scale_fac_dist=-sh_frac_dist*sh_frac_dist
+     &                   *(2.0*sh_frac_dist-3.0d0)
+         fac_help_scale=6.0*(sh_frac_dist-sh_frac_dist**2)
+     &                  /dist_pep_side/buff_shield*0.5
+C remember for the final gradient multiply sh_frac_dist_grad(j) 
+C for side_chain by factor -2 ! 
+         do j=1,3
+         sh_frac_dist_grad(j)=fac_help_scale*pep_side(j)
+C         print *,"jestem",scale_fac_dist,fac_help_scale,
+C     &                    sh_frac_dist_grad(j)
+         enddo
+        endif
+C        if ((i.eq.3).and.(k.eq.2)) then
+C        print *,i,sh_frac_dist,dist_pep,fac_help_scale,scale_fac_dist
+C     & ,"TU"
+C        endif
+
+C this is what is now we have the distance scaling now volume...
+      short=short_r_sidechain(itype(k))
+      long=long_r_sidechain(itype(k))
+      costhet=1.0d0/dsqrt(1.0+short**2/dist_pep_side**2)
+C now costhet_grad
+C       costhet=0.0d0
+       costhet_fac=costhet**3*short**2*(-0.5)/dist_pep_side**4
+C       costhet_fac=0.0d0
+       do j=1,3
+         costhet_grad(j)=costhet_fac*pep_side(j)
+       enddo
+C remember for the final gradient multiply costhet_grad(j) 
+C for side_chain by factor -2 !
+C fac alfa is angle between CB_k,CA_k, CA_i,CA_i+1
+C pep_side0pept_group is vector multiplication  
+      pep_side0pept_group=0.0
+      do j=1,3
+      pep_side0pept_group=pep_side0pept_group+pep_side(j)*side_calf(j)
+      enddo
+      cosalfa=(pep_side0pept_group/
+     & (dist_pep_side*dist_side_calf))
+      fac_alfa_sin=1.0-cosalfa**2
+      fac_alfa_sin=dsqrt(fac_alfa_sin)
+      rkprim=fac_alfa_sin*(long-short)+short
+C now costhet_grad
+       cosphi=1.0d0/dsqrt(1.0+rkprim**2/dist_pep_side**2)
+       cosphi_fac=cosphi**3*rkprim**2*(-0.5)/dist_pep_side**4
+       
+       do j=1,3
+         cosphi_grad_long(j)=cosphi_fac*pep_side(j)
+     &+cosphi**3*0.5/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa/
+     &((dist_pep_side*dist_side_calf))*
+     &((side_calf(j))-cosalfa*
+     &((pep_side(j)/dist_pep_side)*dist_side_calf))
+
+        cosphi_grad_loc(j)=cosphi**3*0.5/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa
+     &/((dist_pep_side*dist_side_calf))*
+     &(pep_side(j)-
+     &cosalfa*side_calf(j)/dist_side_calf*dist_pep_side)
+       enddo
+
+      VofOverlap=VSolvSphere/2.0d0*(1.0-costhet)*(1.0-cosphi)
+     &                    /VSolvSphere_div
+C now the gradient...
+C grad_shield is gradient of Calfa for peptide groups
+C      write(iout,*) "shield_compon",i,k,VSolvSphere,scale_fac_dist,
+C     &               costhet,cosphi
+C       write(iout,*) "cosphi_compon",i,k,pep_side0pept_group,
+C     & dist_pep_side,dist_side_calf,c(1,k+nres),c(1,k),itype(k)
+      do j=1,3
+      grad_shield(j,i)=grad_shield(j,i)
+C gradient po skalowaniu
+     &                +(sh_frac_dist_grad(j)
+C  gradient po costhet
+     &-scale_fac_dist*costhet_grad(j)/(1.0-costhet)
+     &-scale_fac_dist*(cosphi_grad_long(j))
+     &/(1.0-cosphi) )*div77_81
+     &*VofOverlap
+C grad_shield_side is Cbeta sidechain gradient
+      grad_shield_side(j,ishield_list(i),i)=
+     &        (sh_frac_dist_grad(j)*-2.0d0
+     &       +scale_fac_dist*costhet_grad(j)*2.0d0/(1.0-costhet)
+     &       +scale_fac_dist*(cosphi_grad_long(j))
+     &        *2.0d0/(1.0-cosphi))
+     &        *div77_81*VofOverlap
+
+       grad_shield_loc(j,ishield_list(i),i)=
+     &   scale_fac_dist*cosphi_grad_loc(j)
+     &        *2.0d0/(1.0-cosphi)
+     &        *div77_81*VofOverlap
+      enddo
+      VolumeTotal=VolumeTotal+VofOverlap*scale_fac_dist
+      enddo
+      fac_shield(i)=VolumeTotal*div77_81+div4_81
+C      write(2,*) "TOTAL VOLUME",i,VolumeTotal,fac_shield(i)
+      enddo
+      return
+      end