Merge branch 'devel' into AFM
[unres.git] / source / unres / src_MD-M / energy_p_new_barrier.F
index 9414f1c..53d2eb4 100644 (file)
@@ -24,6 +24,7 @@ cMS$ATTRIBUTES C ::  proc_proc
       include 'COMMON.MD'
       include 'COMMON.CONTROL'
       include 'COMMON.TIME1'
+      include 'COMMON.SPLITELE'
 #ifdef MPI      
 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
 c     & " nfgtasks",nfgtasks
@@ -98,6 +99,7 @@ c      endif
 C 
 C Compute the side-chain and electrostatic interaction energy
 C
+C      print *,ipot
       goto (101,102,103,104,105,106) ipot
 C Lennard-Jones potential.
   101 call elj(evdw)
@@ -111,6 +113,7 @@ C Berne-Pechukas potential (dilated LJ, angular dependence).
       goto 107
 C Gay-Berne potential (shifted LJ, angular dependence).
   104 call egb(evdw)
+C      print *,"bylem w egb"
       goto 107
 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
   105 call egbv(evdw)
@@ -134,6 +137,13 @@ c      print *,"Processor",myrank," computed USCSC"
 #ifdef TIMING
       time_vec=time_vec+MPI_Wtime()-time01
 #endif
+C Introduction of shielding effect first for each peptide group
+C the shielding factor is set this factor is describing how each
+C peptide group is shielded by side-chains
+C the matrix - shield_fac(i) the i index describe the ith between i and i+1
+      if (shield_mode.gt.0) then
+       call set_shield_fac
+      endif
 c      print *,"Processor",myrank," left VEC_AND_DERIV"
       if (ipot.lt.6) then
 #ifdef SPLITELE
@@ -156,9 +166,9 @@ c      print *,"Processor",myrank," left VEC_AND_DERIV"
             eello_turn4=0.0d0
          endif
       else
-c        write (iout,*) "Soft-spheer ELEC potential"
-        call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
-     &   eello_turn4)
+        write (iout,*) "Soft-spheer ELEC potential"
+c        call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
+c     &   eello_turn4)
       endif
 c      print *,"Processor",myrank," computed UELEC"
 C
@@ -199,6 +209,7 @@ c      print *,"Processor",myrank," computed UB"
 C
 C Calculate the SC local energy.
 C
+C      print *,"TU DOCHODZE?"
       call esc(escloc)
 c      print *,"Processor",myrank," computed USC"
 C
@@ -229,6 +240,7 @@ C
       else
         esccor=0.0d0
       endif
+C      print *,"PRZED MULIt"
 c      print *,"Processor",myrank," computed Usccorr"
 C 
 C 12/1/95 Multi-body terms
@@ -261,6 +273,19 @@ C  after the equilibration time
          Uconst=0.0d0
          Uconst_back=0.0d0
       endif
+C 01/27/2015 added by adasko
+C the energy component below is energy transfer into lipid environment 
+C based on partition function
+C      print *,"przed lipidami"
+      if (wliptran.gt.0) then
+        call Eliptransfer(eliptran)
+      endif
+C      print *,"za lipidami"
+      if (AFMlog.gt.0) then
+        call AFMforce(Eafmforce)
+      else if (selfguide.gt.0) then
+        call AFMvel(Eafmforce)
+      endif
 #ifdef TIMING
       time_enecalc=time_enecalc+MPI_Wtime()-time00
 #endif
@@ -302,8 +327,8 @@ C
       energia(17)=estr
       energia(20)=Uconst+Uconst_back
       energia(21)=esccor
-C      energia(22)=eliptrans (the energy for lipid transfere implemented in lipid branch)
-C      energia(23)= ... (energy for AFM, steered molecular dynamics)
+      energia(22)=eliptran
+      energia(23)=Eafmforce
       energia(24)=ethetacnstr
 c    Here are the energies showed per procesor if the are more processors 
 c    per molecule then we sum it up in sum_energy subroutine 
@@ -396,22 +421,26 @@ cMS$ATTRIBUTES C ::  proc_proc
       estr=energia(17)
       Uconst=energia(20)
       esccor=energia(21)
+      eliptran=energia(22)
+      Eafmforce=energia(23)
       ethetacnstr=energia(24)
-
 #ifdef SPLITELE
       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
      & +wang*ebe+wtor*etors+wscloc*escloc
      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
-     & +wbond*estr+Uconst+wsccor*esccor+ethetacnstr
+     & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran+Eafmforce
+     & +ethetacnstr
 #else
       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
      & +wang*ebe+wtor*etors+wscloc*escloc
      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
-     & +wbond*estr+Uconst+wsccor*esccor+ethetacnstr
+     & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran
+     & +Eafmforce
+     & +ethetacnstr
 #endif
       energia(0)=etot
 c detecting NaNQ
@@ -447,9 +476,10 @@ cMS$ATTRIBUTES C ::  proc_proc
 #endif
 #ifdef MPI
       include 'mpif.h'
-      double precision gradbufc(3,maxres),gradbufx(3,maxres),
-     &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
 #endif
+      double precision gradbufc(3,-1:maxres),gradbufx(3,-1:maxres),
+     & glocbuf(4*maxres),gradbufc_sum(3,-1:maxres)
+     & ,gloc_scbuf(3,-1:maxres)
       include 'COMMON.SETUP'
       include 'COMMON.IOUNITS'
       include 'COMMON.FFIELD'
@@ -502,7 +532,7 @@ c      enddo
       call flush(iout)
 #endif
 #ifdef SPLITELE
-      do i=1,nct
+      do i=0,nct
         do j=1,3
           gradbufc(j,i)=wsc*gvdwc(j,i)+
      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
@@ -513,10 +543,13 @@ c      enddo
      &                wcorr6*gradcorr6_long(j,i)+
      &                wturn6*gcorr6_turn_long(j,i)+
      &                wstrain*ghpbc(j,i)
+     &                +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+
         enddo
       enddo 
 #else
-      do i=1,nct
+      do i=0,nct
         do j=1,3
           gradbufc(j,i)=wsc*gvdwc(j,i)+
      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
@@ -528,6 +561,9 @@ c      enddo
      &                wcorr6*gradcorr6_long(j,i)+
      &                wturn6*gcorr6_turn_long(j,i)+
      &                wstrain*ghpbc(j,i)
+     &                +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+
         enddo
       enddo 
 #endif
@@ -541,7 +577,7 @@ c      enddo
       enddo
       call flush(iout)
 #endif
-      do i=1,nres
+      do i=0,nres
         do j=1,3
           gradbufc_sum(j,i)=gradbufc(j,i)
         enddo
@@ -584,7 +620,7 @@ c      enddo
       do j=1,3
         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
       enddo
-      do i=nres-2,nnt,-1
+      do i=nres-2,-1,-1
         do j=1,3
           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
         enddo
@@ -605,7 +641,7 @@ c      enddo
       enddo
       call flush(iout)
 #endif
-      do i=1,nres
+      do i=-1,nres
         do j=1,3
           gradbufc_sum(j,i)=gradbufc(j,i)
           gradbufc(j,i)=0.0d0
@@ -614,7 +650,7 @@ c      enddo
       do j=1,3
         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
       enddo
-      do i=nres-2,nnt,-1
+      do i=nres-2,-1,-1
         do j=1,3
           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
         enddo
@@ -642,7 +678,7 @@ c      enddo
       do k=1,3
         gradbufc(k,nres)=0.0d0
       enddo
-      do i=1,nct
+      do i=-1,nct
         do j=1,3
 #ifdef SPLITELE
           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
@@ -663,6 +699,8 @@ c      enddo
      &                wturn6*gcorr6_turn(j,i)+
      &                wsccor*gsccorc(j,i)
      &               +wscloc*gscloc(j,i)
+     &               +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
 #else
           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
      &                wel_loc*gel_loc(j,i)+
@@ -682,12 +720,16 @@ c      enddo
      &                wturn6*gcorr6_turn(j,i)+
      &                wsccor*gsccorc(j,i)
      &               +wscloc*gscloc(j,i)
+     &               +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+
 #endif
           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
      &                  wbond*gradbx(j,i)+
      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
      &                  wsccor*gsccorx(j,i)
      &                 +wscloc*gsclocx(j,i)
+     &                 +wliptran*gliptranx(j,i)
         enddo
       enddo 
 #ifdef DEBUG
@@ -976,6 +1018,8 @@ C------------------------------------------------------------------------
       estr=energia(17)
       Uconst=energia(20)
       esccor=energia(21)
+      eliptran=energia(22)
+      Eafmforce=energia(23) 
       ethetacnstr=energia(24)
 #ifdef SPLITELE
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
@@ -983,10 +1027,9 @@ C------------------------------------------------------------------------
      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
      &  ecorr,wcorr,
      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
-     &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
-     &  edihcnstr,
-     &  ethetacnstr,ebr*nss,
-     &  Uconst,etot
+     &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
+     &  ethetacnstr,ebr*nss,Uconst,eliptran,wliptran,Eafmforc,
+     &  etot
    10 format (/'Virtual-chain energies:'//
      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
@@ -1011,7 +1054,10 @@ C------------------------------------------------------------------------
      & 'ETHETC= ',1pE16.6,' (valence angle constraints)'/
      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
+     & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/
+     & 'EAFM=  ',1pE16.6,' (atomic-force microscopy)'/
      & 'ETOT=  ',1pE16.6,' (total)')
+
 #else
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
      &  estr,wbond,ebe,wang,
@@ -1019,8 +1065,8 @@ C------------------------------------------------------------------------
      &  ecorr,wcorr,
      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
-     &  ethetacnstr,
-     &  ebr*nss,Uconst,etot
+     &  ethetacnstr,ebr*nss,Uconst,eliptran,wliptran,Eafmforc,
+     &  etot
    10 format (/'Virtual-chain energies:'//
      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
@@ -1044,6 +1090,8 @@ C------------------------------------------------------------------------
      & 'ETHETC= ',1pE16.6,' (valence angle constraints)'/
      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
+     & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/
+     & 'EAFM=  ',1pE16.6,' (atomic-force microscopy)'/
      & 'ETOT=  ',1pE16.6,' (total)')
 #endif
       return
@@ -1098,13 +1146,14 @@ C Change 12/1/95 to calculate four-body interactions
 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
             eps0ij=eps(itypi,itypj)
             fac=rrij**expon2
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+C have you changed here?
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=e1+e2
 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
-cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
+cd   &        restyp(itypi),i,restyp(itypj),j,a(itypi,itypj),
 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
             evdw=evdw+evdwij
@@ -1248,8 +1297,9 @@ C
             rij=1.0D0/r_inv_ij 
             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
             fac=r_shift_inv**expon
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+C have you changed here?
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=e_augm+e1+e2
 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
@@ -1375,17 +1425,18 @@ C Calculate the angle-dependent terms of energy & contributions to derivatives.
             call sc_angular
 C Calculate whole angle-dependent part of epsilon and contributions
 C to its derivatives
+C have you changed here?
             fac=(rrij*sigsq)**expon2
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
             evdwij=evdwij*eps2rt*eps3rt
             evdw=evdw+evdwij
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
 cd     &        restyp(itypi),i,restyp(itypj),j,
 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
       include 'COMMON.IOUNITS'
       include 'COMMON.CALC'
       include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
       include 'COMMON.SBRIDGE'
       logical lprn
-
-c      write(iout,*) "Jestem w egb(evdw)"
+      integer xshift,yshift,zshift
 
       evdw=0.0D0
 ccccc      energy_dec=.false.
-c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+C      print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
       evdw=0.0D0
       lprn=.false.
 c     if (icall.eq.0) lprn=.false.
       ind=0
+C the loop over all 27 posible neigbours (for xshift=0,yshift=0,zshift=0
+C we have the original box)
+C      do xshift=-1,1
+C      do yshift=-1,1
+C      do zshift=-1,1
       do i=iatsc_s,iatsc_e
         itypi=iabs(itype(i))
         if (itypi.eq.ntyp1) cycle
@@ -1448,6 +1504,70 @@ c     if (icall.eq.0) lprn=.false.
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
+C Return atom into box, boxxsize is size of box in x dimension
+c  134   continue
+c        if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize
+c        if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize
+C Condition for being inside the proper box
+c        if ((xi.gt.((xshift+0.5d0)*boxxsize)).or.
+c     &       (xi.lt.((xshift-0.5d0)*boxxsize))) then
+c        go to 134
+c        endif
+c  135   continue
+c        if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize
+c        if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize
+C Condition for being inside the proper box
+c        if ((yi.gt.((yshift+0.5d0)*boxysize)).or.
+c     &       (yi.lt.((yshift-0.5d0)*boxysize))) then
+c        go to 135
+c        endif
+c  136   continue
+c        if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize
+c        if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize
+C Condition for being inside the proper box
+c        if ((zi.gt.((zshift+0.5d0)*boxzsize)).or.
+c     &       (zi.lt.((zshift-0.5d0)*boxzsize))) then
+c        go to 136
+c        endif
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+C define scaling factor for lipids
+
+C        if (positi.le.0) positi=positi+boxzsize
+C        print *,i
+C first for peptide groups
+c for each residue check if it is in lipid or lipid water border area
+       if ((zi.gt.bordlipbot)
+     &.and.(zi.lt.bordliptop)) then
+C the energy transfer exist
+        if (zi.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zi.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick)
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipi=1.0d0
+         ssgradlipi=0.0
+        endif
+       else
+         sslipi=0.0d0
+         ssgradlipi=0.0
+       endif
+
+C          xi=xi+xshift*boxxsize
+C          yi=yi+yshift*boxysize
+C          zi=zi+zshift*boxzsize
+
         dxi=dc_norm(1,nres+i)
         dyi=dc_norm(2,nres+i)
         dzi=dc_norm(3,nres+i)
@@ -1520,17 +1640,118 @@ c           chip12=0.0D0
 c           alf1=0.0D0
 c           alf2=0.0D0
 c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
+            xj=c(1,nres+j)
+            yj=c(2,nres+j)
+            zj=c(3,nres+j)
+C Return atom J into box the original box
+c  137   continue
+c        if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize
+c        if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize
+C Condition for being inside the proper box
+c        if ((xj.gt.((0.5d0)*boxxsize)).or.
+c     &       (xj.lt.((-0.5d0)*boxxsize))) then
+c        go to 137
+c        endif
+c  138   continue
+c        if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize
+c        if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize
+C Condition for being inside the proper box
+c        if ((yj.gt.((0.5d0)*boxysize)).or.
+c     &       (yj.lt.((-0.5d0)*boxysize))) then
+c        go to 138
+c        endif
+c  139   continue
+c        if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize
+c        if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize
+C Condition for being inside the proper box
+c        if ((zj.gt.((0.5d0)*boxzsize)).or.
+c     &       (zj.lt.((-0.5d0)*boxzsize))) then
+c        go to 139
+c        endif
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+       if ((zj.gt.bordlipbot)
+     &.and.(zj.lt.bordliptop)) then
+C the energy transfer exist
+        if (zj.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zj-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zj.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick)
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipj=1.0d0
+         ssgradlipj=0.0
+        endif
+       else
+         sslipj=0.0d0
+         ssgradlipj=0.0
+       endif
+      aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+      bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+C      if (aa.ne.aa_aq(itypi,itypj)) write(63,'(2e10.5)')
+C     &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj))
+C      if (ssgradlipj.gt.0.0d0) print *,"??WTF??"
+C      print *,sslipi,sslipj,bordlipbot,zi,zj
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
             dxj=dc_norm(1,nres+j)
             dyj=dc_norm(2,nres+j)
             dzj=dc_norm(3,nres+j)
+C            xj=xj-xi
+C            yj=yj-yi
+C            zj=zj-zi
 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
 c            write (iout,*) "j",j," dc_norm",
 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
             rij=dsqrt(rrij)
+            sss=sscale((1.0d0/rij)/sigma(itypi,itypj))
+            sssgrad=sscagrad((1.0d0/rij)/sigma(itypi,itypj))
+             
+c            write (iout,'(a7,4f8.3)') 
+c    &      "ssscale",sss,((1.0d0/rij)/sigma(itypi,itypj)),r_cut,rlamb
+            if (sss.gt.0.0d0) then
 C Calculate angle-dependent terms of energy and contributions to their
 C derivatives.
             call sc_angular
@@ -1551,18 +1772,24 @@ cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq)
 c---------------------------------------------------------------
             rij_shift=1.0D0/rij_shift 
             fac=rij_shift**expon
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+C here to start with
+C            if (c(i,3).gt.
+            faclip=fac
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
+C       write(63,'(2i3,2e10.3,2f10.5)') i,j,aa,bb, evdwij,
+C     &((sslipi+sslipj)/2.0d0+
+C     &(2.0d0-sslipi-sslipj)/2.0d0)
 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
             evdwij=evdwij*eps2rt*eps3rt
-            evdw=evdw+evdwij
+            evdw=evdw+evdwij*sss
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
      &        restyp(itypi),i,restyp(itypj),j,
      &        epsi,sigm,chi1,chi2,chip1,chip2,
@@ -1579,17 +1806,32 @@ C Calculate gradient components.
             fac=-expon*(e1+evdwij)*rij_shift
             sigder=fac*sigder
             fac=rij*fac
+c            print '(2i4,6f8.4)',i,j,sss,sssgrad*
+c     &      evdwij,fac,sigma(itypi,itypj),expon
+            fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij
 c            fac=0.0d0
 C Calculate the radial part of the gradient
+            gg_lipi(3)=eps1*(eps2rt*eps2rt)
+     &*(eps3rt*eps3rt)*sss/2.0d0*(faclip*faclip*
+     & (aa_lip(itypi,itypj)-aa_aq(itypi,itypj))
+     &+faclip*(bb_lip(itypi,itypj)-bb_aq(itypi,itypj)))
+            gg_lipj(3)=ssgradlipj*gg_lipi(3)
+            gg_lipi(3)=gg_lipi(3)*ssgradlipi
+C            gg_lipi(3)=0.0d0
+C            gg_lipj(3)=0.0d0
             gg(1)=xj*fac
             gg(2)=yj*fac
             gg(3)=zj*fac
 C Calculate angular part of the gradient.
             call sc_grad
+            endif
             ENDIF    ! dyn_ss            
           enddo      ! j
         enddo        ! iint
       enddo          ! i
+C      enddo          ! zshift
+C      enddo          ! yshift
+C      enddo          ! xshift
 c      write (iout,*) "Number of loop steps in EGB:",ind
 cccc      energy_dec=.false.
       return
@@ -1626,6 +1868,41 @@ c     if (icall.eq.0) lprn=.true.
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+C define scaling factor for lipids
+
+C        if (positi.le.0) positi=positi+boxzsize
+C        print *,i
+C first for peptide groups
+c for each residue check if it is in lipid or lipid water border area
+       if ((zi.gt.bordlipbot)
+     &.and.(zi.lt.bordliptop)) then
+C the energy transfer exist
+        if (zi.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zi.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick)
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipi=1.0d0
+         ssgradlipi=0.0
+        endif
+       else
+         sslipi=0.0d0
+         ssgradlipi=0.0
+       endif
+
         dxi=dc_norm(1,nres+i)
         dyi=dc_norm(2,nres+i)
         dzi=dc_norm(3,nres+i)
@@ -1662,9 +1939,74 @@ c           chip12=0.0D0
 c           alf1=0.0D0
 c           alf2=0.0D0
 c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
+C            xj=c(1,nres+j)-xi
+C            yj=c(2,nres+j)-yi
+C            zj=c(3,nres+j)-zi
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+       if ((zj.gt.bordlipbot)
+     &.and.(zj.lt.bordliptop)) then
+C the energy transfer exist
+        if (zj.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zj-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zj.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick)
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipj=1.0d0
+         ssgradlipj=0.0
+        endif
+       else
+         sslipj=0.0d0
+         ssgradlipj=0.0
+       endif
+      aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+      bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+C      if (aa.ne.aa_aq(itypi,itypj)) write(63,'2e10.5') 
+C     &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj))
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
             dxj=dc_norm(1,nres+j)
             dyj=dc_norm(2,nres+j)
             dzj=dc_norm(3,nres+j)
@@ -1685,8 +2027,8 @@ C I hate to put IF's in the loops, but here don't have another choice!!!!
 c---------------------------------------------------------------
             rij_shift=1.0D0/rij_shift 
             fac=rij_shift**expon
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
@@ -1695,8 +2037,8 @@ c---------------------------------------------------------------
             evdwij=evdwij*eps2rt*eps3rt
             evdw=evdw+evdwij+e_augm
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
      &        restyp(itypi),i,restyp(itypj),j,
      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
@@ -1710,6 +2052,7 @@ C Calculate gradient components.
             fac=-expon*(e1+evdwij)*rij_shift
             sigder=fac*sigder
             fac=rij*fac-2*expon*rrij*e_augm
+            fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij
 C Calculate the radial part of the gradient
             gg(1)=xj*fac
             gg(2)=yj*fac
@@ -1797,6 +2140,7 @@ C----------------------------------------------------------------------------
       include 'COMMON.CALC'
       include 'COMMON.IOUNITS'
       double precision dcosom1(3),dcosom2(3)
+cc      print *,'sss=',sss
       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
@@ -1815,16 +2159,16 @@ c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
       enddo
       do k=1,3
-        gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
+        gg(k)=(gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k))*sss
       enddo 
 c      write (iout,*) "gg",(gg(k),k=1,3)
       do k=1,3
-        gvdwx(k,i)=gvdwx(k,i)-gg(k)
+        gvdwx(k,i)=gvdwx(k,i)-gg(k)+gg_lipi(k)
      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
-     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
-        gvdwx(k,j)=gvdwx(k,j)+gg(k)
+     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv*sss
+        gvdwx(k,j)=gvdwx(k,j)+gg(k)+gg_lipj(k)
      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
-     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
+     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv*sss
 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
@@ -1839,8 +2183,8 @@ cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
 cgrad        enddo
 cgrad      enddo
       do l=1,3
-        gvdwc(l,i)=gvdwc(l,i)-gg(l)
-        gvdwc(l,j)=gvdwc(l,j)+gg(l)
+        gvdwc(l,i)=gvdwc(l,i)-gg(l)+gg_lipi(l)
+        gvdwc(l,j)=gvdwc(l,j)+gg(l)+gg_lipj(l)
       enddo
       return
       end
@@ -1942,7 +2286,7 @@ C
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
       dimension ggg(3)
-cd      write(iout,*) 'In EELEC_soft_sphere'
+C      write(iout,*) 'In EELEC_soft_sphere'
       ees=0.0D0
       evdw1=0.0D0
       eel_loc=0.0d0 
@@ -1957,6 +2301,12 @@ cd      write(iout,*) 'In EELEC_soft_sphere'
         xmedi=c(1,i)+0.5d0*dxi
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
+          xmedi=mod(xmedi,boxxsize)
+          if (xmedi.lt.0) xmedi=xmedi+boxxsize
+          ymedi=mod(ymedi,boxysize)
+          if (ymedi.lt.0) ymedi=ymedi+boxysize
+          zmedi=mod(zmedi,boxzsize)
+          if (zmedi.lt.0) zmedi=zmedi+boxzsize
         num_conti=0
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         do j=ielstart(i),ielend(i)
@@ -1970,10 +2320,49 @@ c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
           dxj=dc(1,j)
           dyj=dc(2,j)
           dzj=dc(3,j)
-          xj=c(1,j)+0.5D0*dxj-xmedi
-          yj=c(2,j)+0.5D0*dyj-ymedi
-          zj=c(3,j)+0.5D0*dzj-zmedi
+          xj=c(1,j)+0.5D0*dxj
+          yj=c(2,j)+0.5D0*dyj
+          zj=c(3,j)+0.5D0*dzj
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+      dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      isubchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            isubchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (isubchap.eq.1) then
+          xj=xj_temp-xmedi
+          yj=yj_temp-ymedi
+          zj=zj_temp-zmedi
+       else
+          xj=xj_safe-xmedi
+          yj=yj_safe-ymedi
+          zj=zj_safe-zmedi
+       endif
           rij=xj*xj+yj*yj+zj*zj
+            sss=sscale(sqrt(rij))
+            sssgrad=sscagrad(sqrt(rij))
           if (rij.lt.r0ijsq) then
             evdw1ij=0.25d0*(rij-r0ijsq)**2
             fac=rij-r0ijsq
@@ -1981,13 +2370,13 @@ c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
             evdw1ij=0.0d0
             fac=0.0d0
           endif
-          evdw1=evdw1+evdw1ij
+          evdw1=evdw1+evdw1ij*sss
 C
 C Calculate contributions to the Cartesian gradient.
 C
-          ggg(1)=fac*xj
-          ggg(2)=fac*yj
-          ggg(3)=fac*zj
+          ggg(1)=fac*xj*sssgrad
+          ggg(2)=fac*yj*sssgrad
+          ggg(3)=fac*zj*sssgrad
           do k=1,3
             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
@@ -2306,6 +2695,87 @@ C
 C Compute the virtual-bond-torsional-angle dependent quantities needed
 C to calculate the el-loc multibody terms of various order.
 C
+c      write(iout,*) 'nphi=',nphi,nres
+#ifdef PARMAT
+      do i=ivec_start+2,ivec_end+2
+#else
+      do i=3,nres+1
+#endif
+#ifdef NEWCORR
+        if (i.gt. nnt+2 .and. i.lt.nct+2) then
+          iti = itortyp(itype(i-2))
+        else
+          iti=ntortyp+1
+        endif
+c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
+        if (i.gt. nnt+1 .and. i.lt.nct+1) then
+          iti1 = itortyp(itype(i-1))
+        else
+          iti1=ntortyp+1
+        endif
+c        write(iout,*),i
+        b1(1,i-2)=bnew1(1,1,iti)*dsin(theta(i-1)/2.0)
+     &           +bnew1(2,1,iti)*dsin(theta(i-1))
+     &           +bnew1(3,1,iti)*dcos(theta(i-1)/2.0)
+        gtb1(1,i-2)=bnew1(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0
+     &             +bnew1(2,1,iti)*dcos(theta(i-1))
+     &             -bnew1(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0
+c     &           +bnew1(3,1,iti)*sin(alpha(i))*cos(beta(i))
+c     &*(cos(theta(i)/2.0)
+        b2(1,i-2)=bnew2(1,1,iti)*dsin(theta(i-1)/2.0)
+     &           +bnew2(2,1,iti)*dsin(theta(i-1))
+     &           +bnew2(3,1,iti)*dcos(theta(i-1)/2.0)
+c     &           +bnew2(3,1,iti)*sin(alpha(i))*cos(beta(i))
+c     &*(cos(theta(i)/2.0)
+        gtb2(1,i-2)=bnew2(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0
+     &             +bnew2(2,1,iti)*dcos(theta(i-1))
+     &             -bnew2(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0
+c        if (ggb1(1,i).eq.0.0d0) then
+c        write(iout,*) 'i=',i,ggb1(1,i),
+c     &bnew1(1,1,iti)*cos(theta(i)/2.0)/2.0,
+c     &bnew1(2,1,iti)*cos(theta(i)),
+c     &bnew1(3,1,iti)*sin(theta(i)/2.0)/2.0
+c        endif
+        b1(2,i-2)=bnew1(1,2,iti)
+        gtb1(2,i-2)=0.0
+        b2(2,i-2)=bnew2(1,2,iti)
+        gtb2(2,i-2)=0.0
+        EE(1,1,i-2)=eenew(1,iti)*dcos(theta(i-1))
+        EE(1,2,i-2)=eeold(1,2,iti)
+        EE(2,1,i-2)=eeold(2,1,iti)
+        EE(2,2,i-2)=eeold(2,2,iti)
+        gtEE(1,1,i-2)=-eenew(1,iti)*dsin(theta(i-1))
+        gtEE(1,2,i-2)=0.0d0
+        gtEE(2,2,i-2)=0.0d0
+        gtEE(2,1,i-2)=0.0d0
+c        EE(2,2,iti)=0.0d0
+c        EE(1,2,iti)=0.5d0*eenew(1,iti)
+c        EE(2,1,iti)=0.5d0*eenew(1,iti)
+c        b1(2,iti)=bnew1(1,2,iti)*sin(alpha(i))*sin(beta(i))
+c        b2(2,iti)=bnew2(1,2,iti)*sin(alpha(i))*sin(beta(i))
+       b1tilde(1,i-2)=b1(1,i-2)
+       b1tilde(2,i-2)=-b1(2,i-2)
+       b2tilde(1,i-2)=b2(1,i-2)
+       b2tilde(2,i-2)=-b2(2,i-2)
+c       write (iout,*) 'i=',i-2,gtb1(2,i-2),gtb1(1,i-2)
+c       write(iout,*)  'b1=',b1(1,i-2)
+c       write (iout,*) 'theta=', theta(i-1)
+       enddo
+#else
+        b1(1,i-2)=b(3,iti)
+        b1(2,i-2)=b(5,iti)
+        b2(1,i-2)=b(2,iti)
+        b2(2,i-2)=b(4,iti)
+       b1tilde(1,i-2)=b1(1,i-2)
+       b1tilde(2,i-2)=-b1(2,i-2)
+       b2tilde(1,i-2)=b2(1,i-2)
+       b2tilde(2,i-2)=-b2(2,i-2)
+        EE(1,2,i-2)=eeold(1,2,iti)
+        EE(2,1,i-2)=eeold(2,1,iti)
+        EE(2,2,i-2)=eeold(2,2,iti)
+        EE(1,1,i-2)=eeold(1,1,iti)
+      enddo
+#endif
 #ifdef PARMAT
       do i=ivec_start+2,ivec_end+2
 #else
@@ -2381,13 +2851,13 @@ c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
         if (i.gt. nnt+2 .and. i.lt.nct+2) then
           iti = itortyp(itype(i-2))
         else
-          iti=ntortyp+1
+          iti=ntortyp
         endif
 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         if (i.gt. nnt+1 .and. i.lt.nct+1) then
           iti1 = itortyp(itype(i-1))
         else
-          iti1=ntortyp+1
+          iti1=ntortyp
         endif
 cd        write (iout,*) '*******i',i,' iti1',iti
 cd        write (iout,*) 'b1',b1(:,iti)
@@ -2395,8 +2865,18 @@ cd        write (iout,*) 'b2',b2(:,iti)
 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
 c        if (i .gt. iatel_s+2) then
         if (i .gt. nnt+2) then
-          call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
-          call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
+          call matvec2(Ug(1,1,i-2),b2(1,i-2),Ub2(1,i-2))
+#ifdef NEWCORR
+          call matvec2(Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2))
+c          write (iout,*) Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2),"chuj"
+#endif
+c          write(iout,*) "co jest kurwa", iti, EE(1,1,iti),EE(2,1,iti),
+c     &    EE(1,2,iti),EE(2,2,iti)
+          call matmat2(EE(1,1,i-2),Ug(1,1,i-2),EUg(1,1,i-2))
+          call matmat2(gtEE(1,1,i-2),Ug(1,1,i-2),gtEUg(1,1,i-2))
+c          write(iout,*) "Macierz EUG",
+c     &    eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2),
+c     &    eug(2,2,i-2)
           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
      &    then
           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
@@ -2418,8 +2898,8 @@ c        if (i .gt. iatel_s+2) then
             enddo
           enddo
         endif
-        call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
-        call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
+        call matvec2(Ugder(1,1,i-2),b2(1,i-2),Ub2der(1,i-2))
+        call matmat2(EE(1,1,i-2),Ugder(1,1,i-2),EUgder(1,1,i-2))
         do k=1,2
           muder(k,i-2)=Ub2der(k,i-2)
         enddo
@@ -2428,15 +2908,15 @@ c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
           if (itype(i-1).le.ntyp) then
             iti1 = itortyp(itype(i-1))
           else
-            iti1=ntortyp+1
+            iti1=ntortyp
           endif
         else
-          iti1=ntortyp+1
+          iti1=ntortyp
         endif
         do k=1,2
-          mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
+          mu(k,i-2)=Ub2(k,i-2)+b1(k,i-1)
         enddo
-cd        write (iout,*) 'mu ',mu(:,i-2)
+c        write (iout,*) 'mu ',mu(:,i-2),i-2
 cd        write (iout,*) 'mu1',mu1(:,i-2)
 cd        write (iout,*) 'mu2',mu2(:,i-2)
         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
@@ -2447,7 +2927,7 @@ cd        write (iout,*) 'mu2',mu2(:,i-2)
         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
 C Vectors and matrices dependent on a single virtual-bond dihedral.
-        call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
+        call matvec2(DD(1,1,iti),b1tilde(1,i-1),auxvec(1))
         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
       include 'COMMON.TIME1'
+      include 'COMMON.SPLITELE'
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij(4)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
      &    num_conti,j1,j2
@@ -2842,9 +3323,23 @@ c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
 C
 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
 C
+C 14/01/2014 TURN3,TUNR4 does no go under periodic boundry condition
       do i=iturn3_start,iturn3_end
+        if (i.le.1) cycle
+C        write(iout,*) "tu jest i",i
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
-     &  .or. itype(i+2).eq.ntyp1 .or. itype(i+3).eq.ntyp1) cycle
+C changes suggested by Ana to avoid out of bounds
+     & .or.((i+4).gt.nres)
+     & .or.((i-1).le.0)
+C end of changes by Ana
+     &  .or. itype(i+2).eq.ntyp1
+     &  .or. itype(i+3).eq.ntyp1) cycle
+        if(i.gt.1)then
+          if(itype(i-1).eq.ntyp1)cycle
+        end if
+        if(i.LT.nres-3)then
+          if (itype(i+4).eq.ntyp1) cycle
+        end if
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
         xmedi=c(1,i)+0.5d0*dxi
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
+          xmedi=mod(xmedi,boxxsize)
+          if (xmedi.lt.0) xmedi=xmedi+boxxsize
+          ymedi=mod(ymedi,boxysize)
+          if (ymedi.lt.0) ymedi=ymedi+boxysize
+          zmedi=mod(zmedi,boxzsize)
+          if (zmedi.lt.0) zmedi=zmedi+boxzsize
         num_conti=0
         call eelecij(i,i+2,ees,evdw1,eel_loc)
         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
         num_cont_hb(i)=num_conti
       enddo
       do i=iturn4_start,iturn4_end
+        if (i.le.1) cycle
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+     & .or.((i+5).gt.nres)
+     & .or.((i-1).le.0)
+C end of changes suggested by Ana
      &    .or. itype(i+3).eq.ntyp1
-     &    .or. itype(i+4).eq.ntyp1) cycle
+     &    .or. itype(i+4).eq.ntyp1
+     &    .or. itype(i+5).eq.ntyp1
+     &    .or. itype(i).eq.ntyp1
+     &    .or. itype(i-1).eq.ntyp1
+     &                             ) cycle
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
         xmedi=c(1,i)+0.5d0*dxi
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
+C Return atom into box, boxxsize is size of box in x dimension
+c  194   continue
+c        if (xmedi.gt.((0.5d0)*boxxsize)) xmedi=xmedi-boxxsize
+c        if (xmedi.lt.((-0.5d0)*boxxsize)) xmedi=xmedi+boxxsize
+C Condition for being inside the proper box
+c        if ((xmedi.gt.((0.5d0)*boxxsize)).or.
+c     &       (xmedi.lt.((-0.5d0)*boxxsize))) then
+c        go to 194
+c        endif
+c  195   continue
+c        if (ymedi.gt.((0.5d0)*boxysize)) ymedi=ymedi-boxysize
+c        if (ymedi.lt.((-0.5d0)*boxysize)) ymedi=ymedi+boxysize
+C Condition for being inside the proper box
+c        if ((ymedi.gt.((0.5d0)*boxysize)).or.
+c     &       (ymedi.lt.((-0.5d0)*boxysize))) then
+c        go to 195
+c        endif
+c  196   continue
+c        if (zmedi.gt.((0.5d0)*boxzsize)) zmedi=zmedi-boxzsize
+c        if (zmedi.lt.((-0.5d0)*boxzsize)) zmedi=zmedi+boxzsize
+C Condition for being inside the proper box
+c        if ((zmedi.gt.((0.5d0)*boxzsize)).or.
+c     &       (zmedi.lt.((-0.5d0)*boxzsize))) then
+c        go to 196
+c        endif
+          xmedi=mod(xmedi,boxxsize)
+          if (xmedi.lt.0) xmedi=xmedi+boxxsize
+          ymedi=mod(ymedi,boxysize)
+          if (ymedi.lt.0) ymedi=ymedi+boxysize
+          zmedi=mod(zmedi,boxzsize)
+          if (zmedi.lt.0) zmedi=zmedi+boxzsize
+
         num_conti=num_cont_hb(i)
+c        write(iout,*) "JESTEM W PETLI"
         call eelecij(i,i+3,ees,evdw1,eel_loc)
         if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) 
      &   call eturn4(i,eello_turn4)
         num_cont_hb(i)=num_conti
       enddo   ! i
+C Loop over all neighbouring boxes
+C      do xshift=-1,1
+C      do yshift=-1,1
+C      do zshift=-1,1
 c
 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
 c
       do i=iatel_s,iatel_e
-        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
+        if (i.le.1) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+     & .or.((i+2).gt.nres)
+     & .or.((i-1).le.0)
+C end of changes by Ana
+     &  .or. itype(i+2).eq.ntyp1
+     &  .or. itype(i-1).eq.ntyp1
+     &                ) cycle
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
         xmedi=c(1,i)+0.5d0*dxi
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
+          xmedi=mod(xmedi,boxxsize)
+          if (xmedi.lt.0) xmedi=xmedi+boxxsize
+          ymedi=mod(ymedi,boxysize)
+          if (ymedi.lt.0) ymedi=ymedi+boxysize
+          zmedi=mod(zmedi,boxzsize)
+          if (zmedi.lt.0) zmedi=zmedi+boxzsize
+C          xmedi=xmedi+xshift*boxxsize
+C          ymedi=ymedi+yshift*boxysize
+C          zmedi=zmedi+zshift*boxzsize
+
+C Return tom into box, boxxsize is size of box in x dimension
+c  164   continue
+c        if (xmedi.gt.((xshift+0.5d0)*boxxsize)) xmedi=xmedi-boxxsize
+c        if (xmedi.lt.((xshift-0.5d0)*boxxsize)) xmedi=xmedi+boxxsize
+C Condition for being inside the proper box
+c        if ((xmedi.gt.((xshift+0.5d0)*boxxsize)).or.
+c     &       (xmedi.lt.((xshift-0.5d0)*boxxsize))) then
+c        go to 164
+c        endif
+c  165   continue
+c        if (ymedi.gt.((yshift+0.5d0)*boxysize)) ymedi=ymedi-boxysize
+c        if (ymedi.lt.((yshift-0.5d0)*boxysize)) ymedi=ymedi+boxysize
+C Condition for being inside the proper box
+c        if ((ymedi.gt.((yshift+0.5d0)*boxysize)).or.
+c     &       (ymedi.lt.((yshift-0.5d0)*boxysize))) then
+c        go to 165
+c        endif
+c  166   continue
+c        if (zmedi.gt.((zshift+0.5d0)*boxzsize)) zmedi=zmedi-boxzsize
+c        if (zmedi.lt.((zshift-0.5d0)*boxzsize)) zmedi=zmedi+boxzsize
+cC Condition for being inside the proper box
+c        if ((zmedi.gt.((zshift+0.5d0)*boxzsize)).or.
+c     &       (zmedi.lt.((zshift-0.5d0)*boxzsize))) then
+c        go to 166
+c        endif
+
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         num_conti=num_cont_hb(i)
         do j=ielstart(i),ielend(i)
-c          write (iout,*) i,j,itype(i),itype(j)
-          if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1) cycle
+C          write (iout,*) i,j
+         if (j.le.1) cycle
+          if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+     & .or.((j+2).gt.nres)
+     & .or.((j-1).le.0)
+C end of changes by Ana
+     & .or.itype(j+2).eq.ntyp1
+     & .or.itype(j-1).eq.ntyp1
+     &) cycle
           call eelecij(i,j,ees,evdw1,eel_loc)
         enddo ! j
         num_cont_hb(i)=num_conti
       enddo   ! i
+C     enddo   ! zshift
+C      enddo   ! yshift
+C      enddo   ! xshift
+
 c      write (iout,*) "Number of loop steps in EELEC:",ind
 cd      do i=1,nres
 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
@@ -2931,10 +3534,12 @@ C-------------------------------------------------------------------------------
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
       include 'COMMON.TIME1'
+      include 'COMMON.SPLITELE'
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij1(4),gmuji1(4),
+     &    gmuij2(4),gmuji2(4)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
      &    num_conti,j1,j2
@@ -2965,10 +3570,84 @@ c          ind=ind+1
           dx_normj=dc_norm(1,j)
           dy_normj=dc_norm(2,j)
           dz_normj=dc_norm(3,j)
-          xj=c(1,j)+0.5D0*dxj-xmedi
-          yj=c(2,j)+0.5D0*dyj-ymedi
-          zj=c(3,j)+0.5D0*dzj-zmedi
+C          xj=c(1,j)+0.5D0*dxj-xmedi
+C          yj=c(2,j)+0.5D0*dyj-ymedi
+C          zj=c(3,j)+0.5D0*dzj-zmedi
+          xj=c(1,j)+0.5D0*dxj
+          yj=c(2,j)+0.5D0*dyj
+          zj=c(3,j)+0.5D0*dzj
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+          if ((zj.lt.0).or.(xj.lt.0).or.(yj.lt.0)) write (*,*) "CHUJ"
+      dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      isubchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            isubchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (isubchap.eq.1) then
+          xj=xj_temp-xmedi
+          yj=yj_temp-ymedi
+          zj=zj_temp-zmedi
+       else
+          xj=xj_safe-xmedi
+          yj=yj_safe-ymedi
+          zj=zj_safe-zmedi
+       endif
+C        if ((i+3).lt.j) then !this condition keeps for turn3 and turn4 not subject to PBC
+c  174   continue
+c        if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize
+c        if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize
+C Condition for being inside the proper box
+c        if ((xj.gt.((0.5d0)*boxxsize)).or.
+c     &       (xj.lt.((-0.5d0)*boxxsize))) then
+c        go to 174
+c        endif
+c  175   continue
+c        if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize
+c        if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize
+C Condition for being inside the proper box
+c        if ((yj.gt.((0.5d0)*boxysize)).or.
+c     &       (yj.lt.((-0.5d0)*boxysize))) then
+c        go to 175
+c        endif
+c  176   continue
+c        if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize
+c        if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize
+C Condition for being inside the proper box
+c        if ((zj.gt.((0.5d0)*boxzsize)).or.
+c     &       (zj.lt.((-0.5d0)*boxzsize))) then
+c        go to 176
+c        endif
+C        endif !endPBC condintion
+C        xj=xj-xmedi
+C        yj=yj-ymedi
+C        zj=zj-zmedi
           rij=xj*xj+yj*yj+zj*zj
+
+            sss=sscale(sqrt(rij))
+            sssgrad=sscagrad(sqrt(rij))
+c            if (sss.gt.0.0d0) then  
           rrmij=1.0D0/rij
           rij=dsqrt(rij)
           rmij=1.0D0/rij
@@ -2984,14 +3663,15 @@ c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
           ev2=bbb*r6ij
           fac3=ael6i*r6ij
           fac4=ael3i*r3ij
-          evdwij=ev1+ev2
+          evdwij=(ev1+ev2)
           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
           el2=fac4*fac       
-          eesij=el1+el2
+C MARYSIA
+          eesij=(el1+el2)
 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
           ees=ees+eesij
-          evdw1=evdw1+evdwij
+          evdw1=evdw1+evdwij*sss
 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
@@ -3008,7 +3688,7 @@ C
 C Calculate contributions to the Cartesian gradient.
 C
 #ifdef SPLITELE
-          facvdw=-6*rrmij*(ev1+evdwij)
+          facvdw=-6*rrmij*(ev1+evdwij)*sss
           facel=-3*rrmij*(el1+eesij)
           fac1=fac
           erij(1)=xj*rmij
@@ -3038,9 +3718,15 @@ cgrad            do l=1,3
 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
 cgrad            enddo
 cgrad          enddo
-          ggg(1)=facvdw*xj
-          ggg(2)=facvdw*yj
-          ggg(3)=facvdw*zj
+          if (sss.gt.0.0) then
+          ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj
+          ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj
+          ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj
+          else
+          ggg(1)=0.0
+          ggg(2)=0.0
+          ggg(3)=0.0
+          endif
 c          do k=1,3
 c            ghalf=0.5D0*ggg(k)
 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
@@ -3060,8 +3746,9 @@ cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
 cgrad            enddo
 cgrad          enddo
 #else
-          facvdw=ev1+evdwij 
-          facel=el1+eesij  
+C MARYSIA
+          facvdw=(ev1+evdwij)*sss
+          facel=(el1+eesij)
           fac1=fac
           fac=-3*rrmij*(facvdw+facvdw+facel)
           erij(1)=xj*rmij
@@ -3092,9 +3779,9 @@ cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
 cgrad            enddo
 cgrad          enddo
 c 9/28/08 AL Gradient compotents will be summed only at the end
-          ggg(1)=facvdw*xj
-          ggg(2)=facvdw*yj
-          ggg(3)=facvdw*zj
+          ggg(1)=facvdw*xj+sssgrad*rmij*evdwij*xj
+          ggg(2)=facvdw*yj+sssgrad*rmij*evdwij*yj
+          ggg(3)=facvdw*zj+sssgrad*rmij*evdwij*zj
           do k=1,3
             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
@@ -3133,14 +3820,16 @@ cgrad            enddo
 cgrad          enddo
           do k=1,3
             gelc(k,i)=gelc(k,i)
-     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
-     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &           +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
+     &           + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
             gelc(k,j)=gelc(k,j)
-     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
-     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &           +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
+     &           + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
           enddo
+C MARYSIA
+c          endif !sscale
           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
@@ -3151,6 +3840,7 @@ C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
 C   are computed for EVERY pair of non-contiguous peptide groups.
 C
+
           if (j.lt.nres-1) then
             j1=j+1
             j2=j-1
             j2=j-2
           endif
           kkk=0
+          lll=0
           do k=1,2
             do l=1,2
               kkk=kkk+1
               muij(kkk)=mu(k,i)*mu(l,j)
+c              write(iout,*) 'mumu=', mu(k,i),mu(l,j),i,j,k,l
+#ifdef NEWCORR
+             gmuij1(kkk)=gtb1(k,i+1)*mu(l,j)
+c             write(iout,*) 'k=',k,i,gtb1(k,i+1),gtb1(k,i+1)*mu(l,j)
+             gmuij2(kkk)=gUb2(k,i)*mu(l,j)
+             gmuji1(kkk)=mu(k,i)*gtb1(l,j+1)
+c             write(iout,*) 'l=',l,j,gtb1(l,j+1),gtb1(l,j+1)*mu(k,i)
+             gmuji2(kkk)=mu(k,i)*gUb2(l,j)
+#endif
             enddo
           enddo  
 cd         write (iout,*) 'EELEC: i',i,' j',j
@@ -3328,11 +4028,59 @@ cgrad            endif
 C Contribution to the local-electrostatic energy coming from the i-j pair
           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
      &     +a33*muij(4)
+c          write (iout,*) 'i',i,' j',j,itype(i),itype(j),
+c     &                     ' eel_loc_ij',eel_loc_ij
+c          write(iout,*) 'muije=',muij(1),muij(2),muij(3),muij(4)
+C Calculate patrial derivative for theta angle
+#ifdef NEWCORR
+         geel_loc_ij=a22*gmuij1(1)
+     &     +a23*gmuij1(2)
+     &     +a32*gmuij1(3)
+     &     +a33*gmuij1(4)         
+c         write(iout,*) "derivative over thatai"
+c         write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3),
+c     &   a33*gmuij1(4) 
+         gloc(nphi+i,icg)=gloc(nphi+i,icg)+
+     &      geel_loc_ij*wel_loc
+c         write(iout,*) "derivative over thatai-1" 
+c         write(iout,*) a22*gmuij2(1), a23*gmuij2(2) ,a32*gmuij2(3),
+c     &   a33*gmuij2(4)
+         geel_loc_ij=
+     &     a22*gmuij2(1)
+     &     +a23*gmuij2(2)
+     &     +a32*gmuij2(3)
+     &     +a33*gmuij2(4)
+         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
+     &      geel_loc_ij*wel_loc
+c  Derivative over j residue
+         geel_loc_ji=a22*gmuji1(1)
+     &     +a23*gmuji1(2)
+     &     +a32*gmuji1(3)
+     &     +a33*gmuji1(4)
+c         write(iout,*) "derivative over thataj" 
+c         write(iout,*) a22*gmuji1(1), a23*gmuji1(2) ,a32*gmuji1(3),
+c     &   a33*gmuji1(4)
+
+        gloc(nphi+j,icg)=gloc(nphi+j,icg)+
+     &      geel_loc_ji*wel_loc
+         geel_loc_ji=
+     &     +a22*gmuji2(1)
+     &     +a23*gmuji2(2)
+     &     +a32*gmuji2(3)
+     &     +a33*gmuji2(4)
+c         write(iout,*) "derivative over thataj-1"
+c         write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3),
+c     &   a33*gmuji2(4)
+         gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+
+     &      geel_loc_ji*wel_loc
+#endif
 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
 
           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
      &            'eelloc',i,j,eel_loc_ij
-c              write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
+c           if (eel_loc_ij.ne.0)
+c     &      write (iout,'(a4,2i4,8f9.5)')'chuj',
+c     &     i,j,a22,muij(1),a23,muij(2),a32,muij(3),a33,muij(4)
 
           eel_loc=eel_loc+eel_loc_ij
 C Partial derivatives in virtual-bond dihedral angles gamma
@@ -3360,14 +4108,14 @@ cgrad            enddo
 cgrad          enddo
 C Remaining derivatives of eello
           do l=1,3
-            gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
-     &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
-            gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
-     &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
-            gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
-     &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
-            gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
-     &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
+            gel_loc(l,i)=gel_loc(l,i)+(aggi(l,1)*muij(1)+
+     &        aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4))
+            gel_loc(l,i+1)=gel_loc(l,i+1)+(aggi1(l,1)*muij(1)+
+     &     aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4))
+            gel_loc(l,j)=gel_loc(l,j)+(aggj(l,1)*muij(1)+
+     &       aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4))
+            gel_loc(l,j1)=gel_loc(l,j1)+(aggj1(l,1)*muij(1)+
+     &     aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4))
           enddo
           ENDIF
 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
@@ -3580,7 +4328,9 @@ C Third- and fourth-order contributions from turns
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
-     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),gpizda1(2,2),
+     &  gpizda2(2,2),auxgmat1(2,2),auxgmatt1(2,2),
+     &  auxgmat2(2,2),auxgmatt2(2,2)
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
@@ -3604,9 +4354,24 @@ C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
+c auxalary matices for theta gradient
+c auxalary matrix for i+1 and constant i+2
+        call matmat2(gtEUg(1,1,i+1),EUg(1,1,i+2),auxgmat1(1,1))
+c auxalary matrix for i+2 and constant i+1
+        call matmat2(EUg(1,1,i+1),gtEUg(1,1,i+2),auxgmat2(1,1))
         call transpose2(auxmat(1,1),auxmat1(1,1))
+        call transpose2(auxgmat1(1,1),auxgmatt1(1,1))
+        call transpose2(auxgmat2(1,1),auxgmatt2(1,1))
         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+        call matmat2(a_temp(1,1),auxgmatt1(1,1),gpizda1(1,1))
+        call matmat2(a_temp(1,1),auxgmatt2(1,1),gpizda2(1,1))
         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
+C Derivatives in theta
+        gloc(nphi+i,icg)=gloc(nphi+i,icg)
+     &  +0.5d0*(gpizda1(1,1)+gpizda1(2,2))*wturn3
+        gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)
+     &  +0.5d0*(gpizda2(1,1)+gpizda2(2,2))*wturn3
+
         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
@@ -3680,7 +4445,11 @@ C Third- and fourth-order contributions from turns
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
-     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),auxgvec(2),
+     &  auxgEvec1(2),auxgEvec2(2),auxgEvec3(2),
+     &  gte1t(2,2),gte2t(2,2),gte3t(2,2),
+     &  gte1a(2,2),gtae3(2,2),gtae3e2(2,2), ae3gte2(2,2),
+     &  gtEpizda1(2,2),gtEpizda2(2,2),gtEpizda3(2,2)
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
@@ -3700,6 +4469,7 @@ C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
+c        write(iout,*)"WCHODZE W PROGRAM"
         a_temp(1,1)=a22
         a_temp(1,2)=a23
         a_temp(2,1)=a32
@@ -3711,32 +4481,100 @@ c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
         call transpose2(EUg(1,1,i+1),e1t(1,1))
         call transpose2(Eug(1,1,i+2),e2t(1,1))
         call transpose2(Eug(1,1,i+3),e3t(1,1))
+C Ematrix derivative in theta
+        call transpose2(gtEUg(1,1,i+1),gte1t(1,1))
+        call transpose2(gtEug(1,1,i+2),gte2t(1,1))
+        call transpose2(gtEug(1,1,i+3),gte3t(1,1))
         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+c       eta1 in derivative theta
+        call matmat2(gte1t(1,1),a_temp(1,1),gte1a(1,1))
         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+c       auxgvec is derivative of Ub2 so i+3 theta
+        call matvec2(e1a(1,1),gUb2(1,i+3),auxgvec(1)) 
+c       auxalary matrix of E i+1
+        call matvec2(gte1a(1,1),Ub2(1,i+3),auxgEvec1(1))
+c        s1=0.0
+c        gs1=0.0    
+        s1=scalar2(b1(1,i+2),auxvec(1))
+c derivative of theta i+2 with constant i+3
+        gs23=scalar2(gtb1(1,i+2),auxvec(1))
+c derivative of theta i+2 with constant i+2
+        gs32=scalar2(b1(1,i+2),auxgvec(1))
+c derivative of E matix in theta of i+1
+        gsE13=scalar2(b1(1,i+2),auxgEvec1(1))
+
         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+c       ea31 in derivative theta
+        call matmat2(a_temp(1,1),gte3t(1,1),gtae3(1,1))
         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+c auxilary matrix auxgvec of Ub2 with constant E matirx
+        call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1))
+c auxilary matrix auxgEvec1 of E matix with Ub2 constant
+        call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1))
+
+c        s2=0.0
+c        gs2=0.0
+        s2=scalar2(b1(1,i+1),auxvec(1))
+c derivative of theta i+1 with constant i+3
+        gs13=scalar2(gtb1(1,i+1),auxvec(1))
+c derivative of theta i+2 with constant i+1
+        gs21=scalar2(b1(1,i+1),auxgvec(1))
+c derivative of theta i+3 with constant i+1
+        gsE31=scalar2(b1(1,i+1),auxgEvec3(1))
+c        write(iout,*) gs1,gs2,'i=',i,auxgvec(1),gUb2(1,i+2),gtb1(1,i+2),
+c     &  gtb1(1,i+1)
         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+c two derivatives over diffetent matrices
+c gtae3e2 is derivative over i+3
+        call matmat2(gtae3(1,1),e2t(1,1),gtae3e2(1,1))
+c ae3gte2 is derivative over i+2
+        call matmat2(ae3(1,1),gte2t(1,1),ae3gte2(1,1))
         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+c three possible derivative over theta E matices
+c i+1
+        call matmat2(ae3e2(1,1),gte1t(1,1),gtEpizda1(1,1))
+c i+2
+        call matmat2(ae3gte2(1,1),e1t(1,1),gtEpizda2(1,1))
+c i+3
+        call matmat2(gtae3e2(1,1),e1t(1,1),gtEpizda3(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
+
+        gsEE1=0.5d0*(gtEpizda1(1,1)+gtEpizda1(2,2))
+        gsEE2=0.5d0*(gtEpizda2(1,1)+gtEpizda2(2,2))
+        gsEE3=0.5d0*(gtEpizda3(1,1)+gtEpizda3(2,2))
+
         eello_turn4=eello_turn4-(s1+s2+s3)
-        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
-     &      'eturn4',i,j,-(s1+s2+s3)
+c             write(iout,*)'chujOWO', auxvec(1),b1(1,iti2)
+        if (energy_dec) write (iout,'(a6,2i5,0pf7.3,3f7.3)')
+     &      'eturn4',i,j,-(s1+s2+s3),s1,s2,s3
 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
 cd     &    ' eello_turn4_num',8*eello_turn4_num
+#ifdef NEWCORR
+        gloc(nphi+i,icg)=gloc(nphi+i,icg)
+     &                  -(gs13+gsE13+gsEE1)*wturn4
+        gloc(nphi+i+1,icg)= gloc(nphi+i+1,icg)
+     &                    -(gs23+gs21+gsEE2)*wturn4
+        gloc(nphi+i+2,icg)= gloc(nphi+i+2,icg)
+     &                    -(gs32+gsE31+gsEE3)*wturn4
+c         gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)-
+c     &   gs2
+#endif
+        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &      'eturn4',i,j,-(s1+s2+s3)
+c        write (iout,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
+c     &    ' eello_turn4_num',8*eello_turn4_num
 C Derivatives in gamma(i)
         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+2),auxvec(1))
         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
 C Derivatives in gamma(i+1)
         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3744,10 +4582,10 @@ C Derivatives in gamma(i+1)
 C Derivatives in gamma(i+2)
         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+2),auxvec(1))
         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3762,10 +4600,10 @@ C Derivatives of this turn contributions in DC(i+2)
             a_temp(2,2)=agg(l,4)
             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-            s1=scalar2(b1(1,iti2),auxvec(1))
+            s1=scalar2(b1(1,i+2),auxvec(1))
             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-            s2=scalar2(b1(1,iti1),auxvec(1))
+            s2=scalar2(b1(1,i+1),auxvec(1))
             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
             s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3781,10 +4619,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggi(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3795,10 +4633,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggi1(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3809,10 +4647,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggj(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3823,10 +4661,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggj1(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
       r0_scp=4.5d0
 cd    print '(a)','Enter ESCP'
 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
+C      do xshift=-1,1
+C      do yshift=-1,1
+C      do zshift=-1,1
       do i=iatscp_s,iatscp_e
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         iteli=itel(i)
         xi=0.5D0*(c(1,i)+c(1,i+1))
         yi=0.5D0*(c(2,i)+c(2,i+1))
         zi=0.5D0*(c(3,i)+c(3,i+1))
-
+C Return atom into box, boxxsize is size of box in x dimension
+c  134   continue
+c        if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize
+c        if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize
+C Condition for being inside the proper box
+c        if ((xi.gt.((xshift+0.5d0)*boxxsize)).or.
+c     &       (xi.lt.((xshift-0.5d0)*boxxsize))) then
+c        go to 134
+c        endif
+c  135   continue
+c        if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize
+c        if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize
+C Condition for being inside the proper box
+c        if ((yi.gt.((yshift+0.5d0)*boxysize)).or.
+c     &       (yi.lt.((yshift-0.5d0)*boxysize))) then
+c        go to 135
+c c       endif
+c  136   continue
+c        if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize
+c        if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize
+cC Condition for being inside the proper box
+c        if ((zi.gt.((zshift+0.5d0)*boxzsize)).or.
+c     &       (zi.lt.((zshift-0.5d0)*boxzsize))) then
+c        go to 136
+c        endif
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+C          xi=xi+xshift*boxxsize
+C          yi=yi+yshift*boxysize
+C          zi=zi+zshift*boxzsize
         do iint=1,nscp_gr(i)
 
         do j=iscpstart(i,iint),iscpend(i,iint)
@@ -3909,10 +4783,75 @@ c         xj=c(1,nres+j)-xi
 c         yj=c(2,nres+j)-yi
 c         zj=c(3,nres+j)-zi
 C Uncomment following three lines for Ca-p interactions
-          xj=c(1,j)-xi
-          yj=c(2,j)-yi
-          zj=c(3,j)-zi
+          xj=c(1,j)
+          yj=c(2,j)
+          zj=c(3,j)
+c  174   continue
+c        if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize
+c        if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize
+C Condition for being inside the proper box
+c        if ((xj.gt.((0.5d0)*boxxsize)).or.
+c     &       (xj.lt.((-0.5d0)*boxxsize))) then
+c        go to 174
+c        endif
+c  175   continue
+c        if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize
+c        if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize
+cC Condition for being inside the proper box
+c        if ((yj.gt.((0.5d0)*boxysize)).or.
+c     &       (yj.lt.((-0.5d0)*boxysize))) then
+c        go to 175
+c        endif
+c  176   continue
+c        if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize
+c        if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize
+C Condition for being inside the proper box
+c        if ((zj.gt.((0.5d0)*boxzsize)).or.
+c     &       (zj.lt.((-0.5d0)*boxzsize))) then
+c        go to 176
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
+c c       endif
+C          xj=xj-xi
+C          yj=yj-yi
+C          zj=zj-zi
           rij=xj*xj+yj*yj+zj*zj
+
           r0ij=r0_scp
           r0ijsq=r0ij*r0ij
           if (rij.lt.r0ijsq) then
@@ -3963,6 +4902,9 @@ cgrad          enddo
 
         enddo ! iint
       enddo ! i
+C      enddo !zshift
+C      enddo !yshift
+C      enddo !xshift
       return
       end
 C-----------------------------------------------------------------------------
       include 'COMMON.FFIELD'
       include 'COMMON.IOUNITS'
       include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
       dimension ggg(3)
       evdw2=0.0D0
       evdw2_14=0.0d0
+c        print *,boxxsize,boxysize,boxzsize,'wymiary pudla'
 cd    print '(a)','Enter ESCP'
 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
+C      do xshift=-1,1
+C      do yshift=-1,1
+C      do zshift=-1,1
       do i=iatscp_s,iatscp_e
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         iteli=itel(i)
         xi=0.5D0*(c(1,i)+c(1,i+1))
         yi=0.5D0*(c(2,i)+c(2,i+1))
         zi=0.5D0*(c(3,i)+c(3,i+1))
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+c          xi=xi+xshift*boxxsize
+c          yi=yi+yshift*boxysize
+c          zi=zi+zshift*boxzsize
+c        print *,xi,yi,zi,'polozenie i'
+C Return atom into box, boxxsize is size of box in x dimension
+c  134   continue
+c        if (xi.gt.((xshift+0.5d0)*boxxsize)) xi=xi-boxxsize
+c        if (xi.lt.((xshift-0.5d0)*boxxsize)) xi=xi+boxxsize
+C Condition for being inside the proper box
+c        if ((xi.gt.((xshift+0.5d0)*boxxsize)).or.
+c     &       (xi.lt.((xshift-0.5d0)*boxxsize))) then
+c        go to 134
+c        endif
+c  135   continue
+c          print *,xi,boxxsize,"pierwszy"
 
+c        if (yi.gt.((yshift+0.5d0)*boxysize)) yi=yi-boxysize
+c        if (yi.lt.((yshift-0.5d0)*boxysize)) yi=yi+boxysize
+C Condition for being inside the proper box
+c        if ((yi.gt.((yshift+0.5d0)*boxysize)).or.
+c     &       (yi.lt.((yshift-0.5d0)*boxysize))) then
+c        go to 135
+c        endif
+c  136   continue
+c        if (zi.gt.((zshift+0.5d0)*boxzsize)) zi=zi-boxzsize
+c        if (zi.lt.((zshift-0.5d0)*boxzsize)) zi=zi+boxzsize
+C Condition for being inside the proper box
+c        if ((zi.gt.((zshift+0.5d0)*boxzsize)).or.
+c     &       (zi.lt.((zshift-0.5d0)*boxzsize))) then
+c        go to 136
+c        endif
         do iint=1,nscp_gr(i)
 
         do j=iscpstart(i,iint),iscpend(i,iint)
@@ -4005,27 +4988,97 @@ c         xj=c(1,nres+j)-xi
 c         yj=c(2,nres+j)-yi
 c         zj=c(3,nres+j)-zi
 C Uncomment following three lines for Ca-p interactions
-          xj=c(1,j)-xi
-          yj=c(2,j)-yi
-          zj=c(3,j)-zi
+          xj=c(1,j)
+          yj=c(2,j)
+          zj=c(3,j)
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+c  174   continue
+c        if (xj.gt.((0.5d0)*boxxsize)) xj=xj-boxxsize
+c        if (xj.lt.((-0.5d0)*boxxsize)) xj=xj+boxxsize
+C Condition for being inside the proper box
+c        if ((xj.gt.((0.5d0)*boxxsize)).or.
+c     &       (xj.lt.((-0.5d0)*boxxsize))) then
+c        go to 174
+c        endif
+c  175   continue
+c        if (yj.gt.((0.5d0)*boxysize)) yj=yj-boxysize
+c        if (yj.lt.((-0.5d0)*boxysize)) yj=yj+boxysize
+cC Condition for being inside the proper box
+c        if ((yj.gt.((0.5d0)*boxysize)).or.
+c     &       (yj.lt.((-0.5d0)*boxysize))) then
+c        go to 175
+c        endif
+c  176   continue
+c        if (zj.gt.((0.5d0)*boxzsize)) zj=zj-boxzsize
+c        if (zj.lt.((-0.5d0)*boxzsize)) zj=zj+boxzsize
+C Condition for being inside the proper box
+c        if ((zj.gt.((0.5d0)*boxzsize)).or.
+c     &       (zj.lt.((-0.5d0)*boxzsize))) then
+c        go to 176
+c        endif
+CHERE IS THE CALCULATION WHICH MIRROR IMAGE IS THE CLOSEST ONE
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
+c          print *,xj,yj,zj,'polozenie j'
           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+c          print *,rrij
+          sss=sscale(1.0d0/(dsqrt(rrij)))
+c          print *,r_cut,1.0d0/dsqrt(rrij),sss,'tu patrz'
+c          if (sss.eq.0) print *,'czasem jest OK'
+          if (sss.le.0.0d0) cycle
+          sssgrad=sscagrad(1.0d0/(dsqrt(rrij)))
           fac=rrij**expon2
           e1=fac*fac*aad(itypj,iteli)
           e2=fac*bad(itypj,iteli)
           if (iabs(j-i) .le. 2) then
             e1=scal14*e1
             e2=scal14*e2
-            evdw2_14=evdw2_14+e1+e2
+            evdw2_14=evdw2_14+(e1+e2)*sss
           endif
           evdwij=e1+e2
-          evdw2=evdw2+evdwij
+          evdw2=evdw2+evdwij*sss
           if (energy_dec) write (iout,'(a6,2i5,0pf7.3,2i3,3e11.3)')
      &        'evdw2',i,j,evdwij,iteli,itypj,fac,aad(itypj,iteli),
      &       bad(itypj,iteli)
 C
 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
 C
-          fac=-(evdwij+e1)*rrij
+          fac=-(evdwij+e1)*rrij*sss
+          fac=fac+(evdwij)*sssgrad*dsqrt(rrij)/expon
           ggg(1)=xj*fac
           ggg(2)=yj*fac
           ggg(3)=zj*fac
@@ -4060,10 +5113,14 @@ cgrad          enddo
             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
           enddo
-        enddo
+c        endif !endif for sscale cutoff
+        enddo ! j
 
         enddo ! iint
       enddo ! i
+c      enddo !zshift
+c      enddo !yshift
+c      enddo !xshift
       do i=1,nct
         do j=1,3
           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
@@ -4122,6 +5179,8 @@ c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
 c     &    dhpb(i),dhpb1(i),forcon(i)
 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
 C    distance and angle dependent SS bond potential.
+C        if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and.
+C     & iabs(itype(jjj)).eq.1) then
 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
         if (.not.dyn_ss .and. i.le.nss) then
       estr=0.0d0
       estr1=0.0d0
       do i=ibondp_start,ibondp_end
-        if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then
-          estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax)
-          do j=1,3
-          gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax)
-     &      *dc(j,i-1)/vbld(i)
-          enddo
-          if (energy_dec) write(iout,*) 
-     &       "estr1",i,gnmr1(vbld(i),-1.0d0,distchainmax)
-        else
+        if (itype(i-1).eq.ntyp1 .and. itype(i).eq.ntyp1) cycle
+c          estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax)
+c          do j=1,3
+c          gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax)
+c     &      *dc(j,i-1)/vbld(i)
+c          enddo
+c          if (energy_dec) write(iout,*) 
+c     &       "estr1",i,gnmr1(vbld(i),-1.0d0,distchainmax)
+c        else
+C       Checking if it involves dummy (NH3+ or COO-) group
+         if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then
+C YES   vbldpDUM is the equlibrium length of spring for Dummy atom
+        diff = vbld(i)-vbldpDUM
+         else
+C NO    vbldp0 is the equlibrium lenght of spring for peptide group
         diff = vbld(i)-vbldp0
-        if (energy_dec) write (iout,*) 
+         endif 
+        if (energy_dec)    write (iout,'(a7,i5,4f7.3)') 
      &     "estr bb",i,vbld(i),vbldp0,diff,AKP*diff*diff
         estr=estr+diff*diff
         do j=1,3
           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
         enddo
 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
-        endif
+c        endif
       enddo
       estr=0.5d0*AKP*estr+estr1
 c
@@ -4369,7 +5435,7 @@ c
           nbi=nbondterm(iti)
           if (nbi.eq.1) then
             diff=vbld(i+nres)-vbldsc0(1,iti)
-            if (energy_dec) write (iout,*) 
+            if (energy_dec)  write (iout,*) 
      &      "estr sc",i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
      &      AKSC(1,iti),AKSC(1,iti)*diff*diff
             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
@@ -4439,7 +5505,8 @@ c      time12=1.0d0
       etheta=0.0D0
 c     write (*,'(a,i2)') 'EBEND ICG=',icg
       do i=ithet_start,ithet_end
-        if (itype(i-1).eq.ntyp1) cycle
+        if ((itype(i-1).eq.ntyp1).or.itype(i-2).eq.ntyp1
+     &  .or.itype(i).eq.ntyp1) cycle
 C Zero the energy function and its derivative at 0 or pi.
         call splinthet(theta(i),0.5d0*delta,ss,ssd)
         it=itype(i-1)
@@ -4456,7 +5523,7 @@ C Zero the energy function and its derivative at 0 or pi.
           ichir22=isign(1,itype(i))
          endif
 
-        if (i.gt.3 .and. itype(i-2).ne.ntyp1) then
+        if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
 #ifdef OSF
          phii=phi(i)
           if (phii.ne.phii) phii=150.0
@@ -4469,7 +5536,7 @@ C Zero the energy function and its derivative at 0 or pi.
           y(1)=0.0D0
           y(2)=0.0D0
         endif
-        if (i.lt.nres .and. itype(i).ne.ntyp1) then
+        if (i.lt.nres .and. itype(i+1).ne.ntyp1) then
 #ifdef OSF
          phii1=phi(i+1)
           if (phii1.ne.phii1) phii1=150.0
@@ -4477,8 +5544,8 @@ C Zero the energy function and its derivative at 0 or pi.
           z(1)=cos(phii1)
 #else
           phii1=phi(i+1)
-          z(1)=dcos(phii1)
 #endif
+          z(1)=dcos(phii1)
           z(2)=dsin(phii1)
         else
           z(1)=0.0D0
@@ -4496,6 +5563,7 @@ C In following comments this theta will be referred to as t_c.
              bthetk=bthet(k,itype2,ichir21,ichir22)
           endif
          thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
+c         write(iout,*) 'chuj tu', y(k),z(k)
         enddo
         dthett=thet_pred_mean*ssd
         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
@@ -4532,11 +5600,11 @@ C Derivatives of the "mean" values in gamma1 and gamma2.
      &        E_theta,E_tc)
         endif
         etheta=etheta+ethetai
-        if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
-     &      'ebend',i,ethetai
+        if (energy_dec) write (iout,'(a6,i5,0pf7.3,f7.3,i5)')
+     &      'ebend',i,ethetai,theta(i),itype(i)
         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
-        gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
+        gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg)
       enddo
       ethetacnstr=0.0d0
 C      print *,ithetaconstr_start,ithetaconstr_end,"TU"
@@ -4582,7 +5650,8 @@ C---------------------------------------------------------------------------
 C Calculate the contributions to both Gaussian lobes.
 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
 C The "polynomial part" of the "standard deviation" of this part of 
-C the distribution.
+C the distributioni.
+ccc        write (iout,*) thetai,thet_pred_mean
         sig=polthet(3,it)
         do j=2,0,-1
           sig=sig*thet_pred_mean+polthet(j,it)
@@ -4612,6 +5681,7 @@ C Following variable is sigma(t_c)**(-2)
         delthe0=thetai-theta0i
         term1=-0.5D0*sigcsq*delthec*delthec
         term2=-0.5D0*sig0inv*delthe0*delthe0
+C        write (iout,*)'term1',term1,term2,sigcsq,delthec,sig0inv,delthe0
 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
 C NaNs in taking the logarithm. We extract the largest exponent which is added
 C to the energy (this being the log of the distribution) at the end of energy
@@ -4639,6 +5709,7 @@ C Contribution of the bending energy from this theta is just the -log of
 C the sum of the contributions from the two lobes and the pre-exponential
 C factor. Simple enough, isn't it?
         ethetai=(-dlog(termexp)-termm+dlog(termpre))
+C       write (iout,*) 'termexp',termexp,termm,termpre,i
 C NOW the derivatives!!!
 C 6/6/97 Take into account the deformation.
         E_theta=(delthec*sigcsq*term1
@@ -4706,8 +5777,9 @@ C
       logical lprn /.false./, lprn1 /.false./
       etheta=0.0D0
       do i=ithet_start,ithet_end
-        if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
-     &(itype(i).eq.ntyp1)) cycle
+c        print *,i,itype(i-1),itype(i),itype(i-2)
+        if ((itype(i-1).eq.ntyp1).or.itype(i-2).eq.ntyp1
+     &  .or.itype(i).eq.ntyp1) cycle
 C        print *,i,theta(i)
         if (iabs(itype(i+1)).eq.20) iblock=2
         if (iabs(itype(i+1)).ne.20) iblock=1
@@ -4721,7 +5793,6 @@ C        print *,i,theta(i)
           sinkt(k)=dsin(k*theti2)
         enddo
 C        print *,ethetai
-
         if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
 #ifdef OSF
           phii=phi(i)
@@ -5678,9 +6749,9 @@ c      lprn=.true.
       do i=iphi_start,iphi_end
       etors_ii=0.0D0
         if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1
-     &      .or. itype(i).eq.ntyp1) cycle
-       itori=itortyp(itype(i-2))
-       itori1=itortyp(itype(i-1))
+     &      .or. itype(i).eq.ntyp1 .or. itype(i-3).eq.ntyp1) cycle
+        itori=itortyp(itype(i-2))
+        itori1=itortyp(itype(i-1))
         phii=phi(i)
         gloci=0.0D0
 C Proline-Proline pair is a special case...
@@ -5774,8 +6845,15 @@ C Set lprn=.true. for debugging
 c     lprn=.true.
       etors=0.0D0
       do i=iphi_start,iphi_end
-        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 
-     &       .or. itype(i).eq.ntyp1) cycle
+C ANY TWO ARE DUMMY ATOMS in row CYCLE
+c        if (((itype(i-3).eq.ntyp1).and.(itype(i-2).eq.ntyp1)).or.
+c     &      ((itype(i-2).eq.ntyp1).and.(itype(i-1).eq.ntyp1))  .or.
+c     &      ((itype(i-1).eq.ntyp1).and.(itype(i).eq.ntyp1))) cycle
+        if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1
+     &      .or. itype(i).eq.ntyp1 .or. itype(i-3).eq.ntyp1) cycle
+C In current verion the ALL DUMMY ATOM POTENTIALS ARE OFF
+C For introducing the NH3+ and COO- group please check the etor_d for reference
+C and guidance
         etors_ii=0.0D0
          if (iabs(itype(i)).eq.20) then
          iblock=2
@@ -5879,8 +6957,15 @@ c     lprn=.true.
       etors_d=0.0D0
 c      write(iout,*) "a tu??"
       do i=iphid_start,iphid_end
-        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
-     &      .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
+C ANY TWO ARE DUMMY ATOMS in row CYCLE
+C        if (((itype(i-3).eq.ntyp1).and.(itype(i-2).eq.ntyp1)).or.
+C     &      ((itype(i-2).eq.ntyp1).and.(itype(i-1).eq.ntyp1)).or.
+C     &      ((itype(i-1).eq.ntyp1).and.(itype(i).eq.ntyp1))  .or.
+C     &      ((itype(i).eq.ntyp1).and.(itype(i+1).eq.ntyp1))) cycle
+         if ((itype(i-2).eq.ntyp1).or.itype(i-3).eq.ntyp1.or.
+     &  (itype(i-1).eq.ntyp1).or.(itype(i).eq.ntyp1).or.
+     &  (itype(i+1).eq.ntyp1)) cycle
+C In current verion the ALL DUMMY ATOM POTENTIALS ARE OFF
         itori=itortyp(itype(i-2))
         itori1=itortyp(itype(i-1))
         itori2=itortyp(itype(i))
@@ -5890,9 +6975,21 @@ c      write(iout,*) "a tu??"
         gloci2=0.0D0
         iblock=1
         if (iabs(itype(i+1)).eq.20) iblock=2
+C Iblock=2 Proline type
+C ADASKO: WHEN PARAMETERS FOR THIS TYPE OF BLOCKING GROUP IS READY UNCOMMENT
+C CHECK WEATHER THERE IS NECCESITY FOR iblock=3 for COO-
+C        if (itype(i+1).eq.ntyp1) iblock=3
+C The problem of NH3+ group can be resolved by adding new parameters please note if there
+C IS or IS NOT need for this
+C IF Yes uncomment below and add to parmread.F appropriate changes and to v1cij and so on
+C        is (itype(i-3).eq.ntyp1) ntblock=2
+C        ntblock is N-terminal blocking group
 
 C Regular cosine and sine terms
         do j=1,ntermd_1(itori,itori1,itori2,iblock)
+C Example of changes for NH3+ blocking group
+C       do j=1,ntermd_1(itori,itori1,itori2,iblock,ntblock)
+C          v1cij=v1c(1,j,itori,itori1,itori2,iblock,ntblock)
           v1cij=v1c(1,j,itori,itori1,itori2,iblock)
           v1sij=v1s(1,j,itori,itori1,itori2,iblock)
           v2cij=v1c(2,j,itori,itori1,itori2,iblock)
@@ -7007,15 +8104,15 @@ C---------------------------------------------------------------------------
       if (j.lt.nres-1) then
         itj1 = itortyp(itype(j+1))
       else
-        itj1=ntortyp+1
+        itj1=ntortyp
       endif
       do iii=1,2
         dipi(iii,1)=Ub2(iii,i)
         dipderi(iii)=Ub2der(iii,i)
-        dipi(iii,2)=b1(iii,iti1)
+        dipi(iii,2)=b1(iii,i+1)
         dipj(iii,1)=Ub2(iii,j)
         dipderj(iii)=Ub2der(iii,j)
-        dipj(iii,2)=b1(iii,itj1)
+        dipj(iii,2)=b1(iii,j+1)
       enddo
       kkk=0
       do iii=1,2
@@ -7097,14 +8194,14 @@ C parallel orientation of the two CA-CA-CA frames.
         if (i.gt.1) then
           iti=itortyp(itype(i))
         else
-          iti=ntortyp+1
+          iti=ntortyp
         endif
         itk1=itortyp(itype(k+1))
         itj=itortyp(itype(j))
         if (l.lt.nres-1) then
           itl1=itortyp(itype(l+1))
         else
-          itl1=ntortyp+1
+          itl1=ntortyp
         endif
 C A1 kernel(j+1) A2T
 cd        do iii=1,2
@@ -7195,26 +8292,26 @@ C They are needed only when the fifth- or the sixth-order cumulants are
 C indluded.
         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
         call transpose2(AEA(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
         call transpose2(AEAderg(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
-        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
-        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1))
         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
         call transpose2(AEA(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
         call transpose2(AEAderg(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j),AEAb1derg(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
-        call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
-        call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),b1(1,l+1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,l+1),AEAb1derg(1,2,2))
         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
@@ -7223,20 +8320,20 @@ C Calculate the Cartesian derivatives of the vectors.
           do kkk=1,5
             do lll=1,3
               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,iti),
+              call matvec2(auxmat(1,1),b1(1,i),
      &          AEAb1derx(1,lll,kkk,iii,1,1))
               call matvec2(auxmat(1,1),Ub2(1,i),
      &          AEAb2derx(1,lll,kkk,iii,1,1))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &          AEAb1derx(1,lll,kkk,iii,2,1))
               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
      &          AEAb2derx(1,lll,kkk,iii,2,1))
               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,itj),
+              call matvec2(auxmat(1,1),b1(1,j),
      &          AEAb1derx(1,lll,kkk,iii,1,2))
               call matvec2(auxmat(1,1),Ub2(1,j),
      &          AEAb2derx(1,lll,kkk,iii,1,2))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,l+1),
      &          AEAb1derx(1,lll,kkk,iii,2,2))
               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
      &          AEAb2derx(1,lll,kkk,iii,2,2))
@@ -7250,7 +8347,7 @@ C Antiparallel orientation of the two CA-CA-CA frames.
         if (i.gt.1) then
           iti=itortyp(itype(i))
         else
-          iti=ntortyp+1
+          iti=ntortyp
         endif
         itk1=itortyp(itype(k+1))
         itl=itortyp(itype(l))
@@ -7258,7 +8355,7 @@ C Antiparallel orientation of the two CA-CA-CA frames.
         if (j.lt.nres-1) then
           itj1=itortyp(itype(j+1))
         else 
-          itj1=ntortyp+1
+          itj1=ntortyp
         endif
 C A2 kernel(j-1)T A1T
         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
@@ -7333,26 +8430,26 @@ C indluded.
         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
         call transpose2(AEA(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
         call transpose2(AEAderg(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
-        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
-        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1))
         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
         call transpose2(AEA(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j+1),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
         call transpose2(AEAderg(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,l),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
-        call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
-        call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),b1(1,j+1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,j+1),AEAb1derg(1,2,2))
         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
@@ -7361,20 +8458,20 @@ C Calculate the Cartesian derivatives of the vectors.
           do kkk=1,5
             do lll=1,3
               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,iti),
+              call matvec2(auxmat(1,1),b1(1,i),
      &          AEAb1derx(1,lll,kkk,iii,1,1))
               call matvec2(auxmat(1,1),Ub2(1,i),
      &          AEAb2derx(1,lll,kkk,iii,1,1))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &          AEAb1derx(1,lll,kkk,iii,2,1))
               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
      &          AEAb2derx(1,lll,kkk,iii,2,1))
               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,itl),
+              call matvec2(auxmat(1,1),b1(1,l),
      &          AEAb1derx(1,lll,kkk,iii,1,2))
               call matvec2(auxmat(1,1),Ub2(1,l),
      &          AEAb2derx(1,lll,kkk,iii,1,2))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,j+1),
      &          AEAb1derx(1,lll,kkk,iii,2,2))
               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
      &          AEAb2derx(1,lll,kkk,iii,2,2))
@@ -7671,7 +8768,7 @@ C Contribution from graph II
       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
-      eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
+      eello5_2=scalar2(AEAb1(1,2,1),b1(1,k))
      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
 C Explicit gradient in virtual-dihedral angles.
       g_corr5_loc(k-1)=g_corr5_loc(k-1)
@@ -7681,11 +8778,11 @@ C Explicit gradient in virtual-dihedral angles.
       vv(2)=pizda(2,1)-pizda(1,2)
       if (l.eq.j+1) then
         g_corr5_loc(l-1)=g_corr5_loc(l-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
       else
         g_corr5_loc(j-1)=g_corr5_loc(j-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
       endif
 C Cartesian gradient
@@ -7697,7 +8794,7 @@ C Cartesian gradient
             vv(1)=pizda(1,1)+pizda(2,2)
             vv(2)=pizda(2,1)-pizda(1,2)
             derx(lll,kkk,iii)=derx(lll,kkk,iii)
-     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
+     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,k))
      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
           enddo
         enddo
@@ -7752,7 +8849,7 @@ cd1110    continue
         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
-        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,l))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
 C Explicit gradient in virtual-dihedral angles.
         g_corr5_loc(l-1)=g_corr5_loc(l-1)
@@ -7761,7 +8858,7 @@ C Explicit gradient in virtual-dihedral angles.
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
         g_corr5_loc(k-1)=g_corr5_loc(k-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,l))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
 C Cartesian gradient
         do iii=1,2
@@ -7772,7 +8869,7 @@ C Cartesian gradient
               vv(1)=pizda(1,1)+pizda(2,2)
               vv(2)=pizda(2,1)-pizda(1,2)
               derx(lll,kkk,iii)=derx(lll,kkk,iii)
-     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,l))
      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
             enddo
           enddo
@@ -7825,7 +8922,7 @@ C Contribution from graph IV
         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
-        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,j))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
 C Explicit gradient in virtual-dihedral angles.
         g_corr5_loc(j-1)=g_corr5_loc(j-1)
@@ -7834,7 +8931,7 @@ C Explicit gradient in virtual-dihedral angles.
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
         g_corr5_loc(k-1)=g_corr5_loc(k-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,j))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
 C Cartesian gradient
         do iii=1,2
@@ -7845,7 +8942,7 @@ C Cartesian gradient
               vv(1)=pizda(1,1)+pizda(2,2)
               vv(2)=pizda(2,1)-pizda(1,2)
               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
-     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,j))
      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
             enddo
           enddo
@@ -8127,8 +9224,8 @@ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
       vv1(1)=pizda1(1,1)-pizda1(2,2)
       vv1(2)=pizda1(1,2)+pizda1(2,1)
       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
-      vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
-      vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
+      vv(1)=AEAb1(1,2,imat)*b1(1,k)-AEAb1(2,2,imat)*b1(2,k)
+      vv(2)=AEAb1(1,2,imat)*b1(2,k)+AEAb1(2,2,imat)*b1(1,k)
       s5=scalar2(vv(1),Dtobr2(1,i))
 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
@@ -8141,8 +9238,8 @@ cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
       vv1(1)=pizda1(1,1)-pizda1(2,2)
       vv1(2)=pizda1(1,2)+pizda1(2,1)
-      vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
-      vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
+      vv(1)=AEAb1derg(1,2,imat)*b1(1,k)-AEAb1derg(2,2,imat)*b1(2,k)
+      vv(2)=AEAb1derg(1,2,imat)*b1(2,k)+AEAb1derg(2,2,imat)*b1(1,k)
       if (l.eq.j+1) then
         g_corr6_loc(l-1)=g_corr6_loc(l-1)
      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
@@ -8181,10 +9278,10 @@ cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
             vv1(1)=pizda1(1,1)-pizda1(2,2)
             vv1(2)=pizda1(1,2)+pizda1(2,1)
             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
-            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
-     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
-            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
-     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
+            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,k)
+     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,k)
+            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,k)
+     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,k)
             s5=scalar2(vv(1),Dtobr2(1,i))
             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
           enddo
@@ -8412,22 +9509,22 @@ C           energy moment and not to the cluster cumulant.
       if (j.lt.nres-1) then
         itj1=itortyp(itype(j+1))
       else
-        itj1=ntortyp+1
+        itj1=ntortyp
       endif
       itk=itortyp(itype(k))
       itk1=itortyp(itype(k+1))
       if (l.lt.nres-1) then
         itl1=itortyp(itype(l+1))
       else
-        itl1=ntortyp+1
+        itl1=ntortyp
       endif
 #ifdef MOMENT
       s1=dip(4,jj,i)*dip(4,kk,k)
 #endif
-      call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
-      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
-      call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
-      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      call matvec2(AECA(1,1,1),b1(1,k+1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,k),auxvec(1))
+      call matvec2(AECA(1,1,2),b1(1,l+1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
       call transpose2(EE(1,1,itk),auxmat(1,1))
       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
@@ -8442,13 +9539,13 @@ cd     & "sum",-(s2+s3+s4)
 #endif
 c      eello6_graph3=-s4
 C Derivatives in gamma(k-1)
-      call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
-      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      call matvec2(AECAderg(1,1,2),b1(1,l+1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
 C Derivatives in gamma(l-1)
-      call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
-      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
+      call matvec2(AECAderg(1,1,1),b1(1,k+1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,k),auxvec(1))
       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
@@ -8465,12 +9562,12 @@ C Cartesian derivatives.
               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
             endif
 #endif
-            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &        auxvec(1))
-            s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
-            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+            s2=0.5d0*scalar2(b1(1,k),auxvec(1))
+            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,l+1),
      &        auxvec(1))
-            s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+            s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
      &        pizda(1,1))
             vv(1)=pizda(1,1)+pizda(2,2)
@@ -8531,19 +9628,19 @@ cd      write (2,*) 'eello_graph4: wturn6',wturn6
       if (j.lt.nres-1) then
         itj1=itortyp(itype(j+1))
       else
-        itj1=ntortyp+1
+        itj1=ntortyp
       endif
       itk=itortyp(itype(k))
       if (k.lt.nres-1) then
         itk1=itortyp(itype(k+1))
       else
-        itk1=ntortyp+1
+        itk1=ntortyp
       endif
       itl=itortyp(itype(l))
       if (l.lt.nres-1) then
         itl1=itortyp(itype(l+1))
       else
-        itl1=ntortyp+1
+        itl1=ntortyp
       endif
 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
@@ -8558,11 +9655,11 @@ cd     & ' itl',itl,' itl1',itl1
       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
       if (j.eq.l+1) then
-        call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,j+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
       else
-        call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,l+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
       endif
       call transpose2(EUg(1,1,k),auxmat(1,1))
       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
@@ -8586,11 +9683,11 @@ C Derivatives in gamma(i-1)
 #endif
         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
         if (j.eq.l+1) then
-          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
-          s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,j+1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
         else
-          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
-          s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,l+1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
         endif
         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
@@ -8619,11 +9716,11 @@ C Derivatives in gamma(k-1)
       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
       if (j.eq.l+1) then
-        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,j+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
       else
-        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,l+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
       endif
       call transpose2(EUgder(1,1,k),auxmat1(1,1))
       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
@@ -8689,12 +9786,12 @@ C Cartesian derivatives.
             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
             if (j.eq.l+1) then
               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
-     &          b1(1,itj1),auxvec(1))
-              s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
+     &          b1(1,j+1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,j),auxvec(1))
             else
               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
-     &          b1(1,itl1),auxvec(1))
-              s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
+     &          b1(1,l+1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,l),auxvec(1))
             endif
             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
      &        pizda(1,1))
@@ -8794,12 +9891,12 @@ cd      write (2,*) 'eello6_5',eello6_5
 #ifdef MOMENT
       call transpose2(AEA(1,1,1),auxmat(1,1))
       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
-      ss1=scalar2(Ub2(1,i+2),b1(1,itl))
+      ss1=scalar2(Ub2(1,i+2),b1(1,l))
       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
 #endif
-      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+      call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1))
       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
-      s2 = scalar2(b1(1,itk),vtemp1(1))
+      s2 = scalar2(b1(1,k),vtemp1(1))
 #ifdef MOMENT
       call transpose2(AEA(1,1,2),atemp(1,1))
       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
@@ -8814,7 +9911,7 @@ cd      write (2,*) 'eello6_5',eello6_5
       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
-      ss13 = scalar2(b1(1,itk),vtemp4(1))
+      ss13 = scalar2(b1(1,k),vtemp4(1))
       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
 #endif
 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
@@ -8848,12 +9945,12 @@ C Derivatives in gamma(i+3)
 #ifdef MOMENT
       call transpose2(AEA(1,1,1),auxmatd(1,1))
       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
-      ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
+      ss1d=scalar2(Ub2der(1,i+2),b1(1,l))
       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
 #endif
-      call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(EUgder(1,1,i+2),b1(1,l),vtemp1d(1))
       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
-      s2d = scalar2(b1(1,itk),vtemp1d(1))
+      s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
@@ -8901,9 +9998,9 @@ C Derivatives in gamma(i+5)
       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
 #endif
-      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1d(1))
       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
-      s2d = scalar2(b1(1,itk),vtemp1d(1))
+      s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
       call transpose2(AEA(1,1,2),atempd(1,1))
       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
@@ -8913,7 +10010,7 @@ C Derivatives in gamma(i+5)
       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
 #ifdef MOMENT
       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
-      ss13d = scalar2(b1(1,itk),vtemp4d(1))
+      ss13d = scalar2(b1(1,k),vtemp4d(1))
       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
 #endif
 c      s1d=0.0d0
@@ -8937,10 +10034,10 @@ C Cartesian derivatives
             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
 #endif
-            call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+            call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1))
             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
      &          vtemp1d(1))
-            s2d = scalar2(b1(1,itk),vtemp1d(1))
+            s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
@@ -8984,7 +10081,7 @@ c      s13d=0.0d0
           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
      &      vtemp4d(1)) 
-          ss13d = scalar2(b1(1,itk),vtemp4d(1))
+          ss13d = scalar2(b1(1,k),vtemp4d(1))
           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
         enddo
@@ -9220,4 +10317,199 @@ crc      print *,((prod(i,j),i=1,2),j=1,2)
 
       return
       end
+CCC----------------------------------------------
+      subroutine Eliptransfer(eliptran)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+C this is done by Adasko
+C      print *,"wchodze"
+C structure of box:
+C      water
+C--bordliptop-- buffore starts
+C--bufliptop--- here true lipid starts
+C      lipid
+C--buflipbot--- lipid ends buffore starts
+C--bordlipbot--buffore ends
+      eliptran=0.0
+      do i=ilip_start,ilip_end
+C       do i=1,1
+        if (itype(i).eq.ntyp1) cycle
+
+        positi=(mod(((c(3,i)+c(3,i+1))/2.0d0),boxzsize))
+        if (positi.le.0) positi=positi+boxzsize
+C        print *,i
+C first for peptide groups
+c for each residue check if it is in lipid or lipid water border area
+       if ((positi.gt.bordlipbot)
+     &.and.(positi.lt.bordliptop)) then
+C the energy transfer exist
+        if (positi.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((positi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslip=sscalelip(fracinbuf)
+         ssgradlip=-sscagradlip(fracinbuf)/lipbufthick
+         eliptran=eliptran+sslip*pepliptran
+         gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0
+         gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0
+C         gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran
+
+C        print *,"doing sccale for lower part"
+C         print *,i,sslip,fracinbuf,ssgradlip
+        elseif (positi.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick)
+         sslip=sscalelip(fracinbuf)
+         ssgradlip=sscagradlip(fracinbuf)/lipbufthick
+         eliptran=eliptran+sslip*pepliptran
+         gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0
+         gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0
+C         gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran
+C          print *, "doing sscalefor top part"
+C         print *,i,sslip,fracinbuf,ssgradlip
+        else
+         eliptran=eliptran+pepliptran
+C         print *,"I am in true lipid"
+        endif
+C       else
+C       eliptran=elpitran+0.0 ! I am in water
+       endif
+       enddo
+C       print *, "nic nie bylo w lipidzie?"
+C now multiply all by the peptide group transfer factor
+C       eliptran=eliptran*pepliptran
+C now the same for side chains
+CV       do i=1,1
+       do i=ilip_start,ilip_end
+        if (itype(i).eq.ntyp1) cycle
+        positi=(mod(c(3,i+nres),boxzsize))
+        if (positi.le.0) positi=positi+boxzsize
+C       print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop
+c for each residue check if it is in lipid or lipid water border area
+C       respos=mod(c(3,i+nres),boxzsize)
+C       print *,positi,bordlipbot,buflipbot
+       if ((positi.gt.bordlipbot)
+     & .and.(positi.lt.bordliptop)) then
+C the energy transfer exist
+        if (positi.lt.buflipbot) then
+         fracinbuf=1.0d0-
+     &     ((positi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslip=sscalelip(fracinbuf)
+         ssgradlip=-sscagradlip(fracinbuf)/lipbufthick
+         eliptran=eliptran+sslip*liptranene(itype(i))
+         gliptranx(3,i)=gliptranx(3,i)
+     &+ssgradlip*liptranene(itype(i))
+         gliptranc(3,i-1)= gliptranc(3,i-1)
+     &+ssgradlip*liptranene(itype(i))
+C         print *,"doing sccale for lower part"
+        elseif (positi.gt.bufliptop) then
+         fracinbuf=1.0d0-
+     &((bordliptop-positi)/lipbufthick)
+         sslip=sscalelip(fracinbuf)
+         ssgradlip=sscagradlip(fracinbuf)/lipbufthick
+         eliptran=eliptran+sslip*liptranene(itype(i))
+         gliptranx(3,i)=gliptranx(3,i)
+     &+ssgradlip*liptranene(itype(i))
+         gliptranc(3,i-1)= gliptranc(3,i-1)
+     &+ssgradlip*liptranene(itype(i))
+C          print *, "doing sscalefor top part",sslip,fracinbuf
+        else
+         eliptran=eliptran+liptranene(itype(i))
+C         print *,"I am in true lipid"
+        endif
+        endif ! if in lipid or buffor
+C       else
+C       eliptran=elpitran+0.0 ! I am in water
+       enddo
+       return
+       end
+C---------------------------------------------------------
+C AFM soubroutine for constant force
+       subroutine AFMforce(Eafmforce)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      real*8 diffafm(3)
+      dist=0.0d0
+      Eafmforce=0.0d0
+      do i=1,3
+      diffafm(i)=c(i,afmend)-c(i,afmbeg)
+      dist=dist+diffafm(i)**2
+      enddo
+      dist=dsqrt(dist)
+      Eafmforce=-forceAFMconst*(dist-distafminit)
+      do i=1,3
+      gradafm(i,afmend-1)=-forceAFMconst*diffafm(i)/dist
+      gradafm(i,afmbeg-1)=forceAFMconst*diffafm(i)/dist
+      enddo
+C      print *,'AFM',Eafmforce
+      return
+      end
+C---------------------------------------------------------
+C AFM subroutine with pseudoconstant velocity
+       subroutine AFMvel(Eafmforce)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      real*8 diffafm(3)
+C Only for check grad COMMENT if not used for checkgrad
+C      totT=3.0d0
+C--------------------------------------------------------
+C      print *,"wchodze"
+      dist=0.0d0
+      Eafmforce=0.0d0
+      do i=1,3
+      diffafm(i)=c(i,afmend)-c(i,afmbeg)
+      dist=dist+diffafm(i)**2
+      enddo
+      dist=dsqrt(dist)
+      Eafmforce=0.5d0*forceAFMconst
+     & *(distafminit+totTafm*velAFMconst-dist)**2
+C      Eafmforce=-forceAFMconst*(dist-distafminit)
+      do i=1,3
+      gradafm(i,afmend-1)=-forceAFMconst*
+     &(distafminit+totTafm*velAFMconst-dist)
+     &*diffafm(i)/dist
+      gradafm(i,afmbeg-1)=forceAFMconst*
+     &(distafminit+totTafm*velAFMconst-dist)
+     &*diffafm(i)/dist
+      enddo
+C      print *,'AFM',Eafmforce,totTafm*velAFMconst,dist
+      return
+      end