Merge branch 'AFM' into multichain
[unres.git] / source / unres / src_MD-M / energy_p_new_barrier.F
index 7207b35..3192819 100644 (file)
@@ -99,6 +99,7 @@ c      endif
 C 
 C Compute the side-chain and electrostatic interaction energy
 C
+C      print *,ipot
       goto (101,102,103,104,105,106) ipot
 C Lennard-Jones potential.
   101 call elj(evdw)
@@ -112,6 +113,7 @@ C Berne-Pechukas potential (dilated LJ, angular dependence).
       goto 107
 C Gay-Berne potential (shifted LJ, angular dependence).
   104 call egb(evdw)
+C      print *,"bylem w egb"
       goto 107
 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
   105 call egbv(evdw)
@@ -271,6 +273,11 @@ C      print *,"przed lipidami"
         call Eliptransfer(eliptran)
       endif
 C      print *,"za lipidami"
+      if (AFMlog.gt.0) then
+        call AFMforce(Eafmforce)
+      else if (selfguide.gt.0) then
+        call AFMvel(Eafmforce)
+      endif
 #ifdef TIMING
       time_enecalc=time_enecalc+MPI_Wtime()-time00
 #endif
@@ -313,6 +320,7 @@ C
       energia(20)=Uconst+Uconst_back
       energia(21)=esccor
       energia(22)=eliptran
+      energia(23)=Eafmforce
 c    Here are the energies showed per procesor if the are more processors 
 c    per molecule then we sum it up in sum_energy subroutine 
 c      print *," Processor",myrank," calls SUM_ENERGY"
@@ -405,13 +413,14 @@ cMS$ATTRIBUTES C ::  proc_proc
       Uconst=energia(20)
       esccor=energia(21)
       eliptran=energia(22)
+      Eafmforce=energia(23)
 #ifdef SPLITELE
       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
      & +wang*ebe+wtor*etors+wscloc*escloc
      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
-     & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran
+     & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran+Eafmforce
 #else
       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
      & +wang*ebe+wtor*etors+wscloc*escloc
@@ -419,6 +428,7 @@ cMS$ATTRIBUTES C ::  proc_proc
      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
      & +wbond*estr+Uconst+wsccor*esccor+wliptran*eliptran
+     & +Eafmforce
 #endif
       energia(0)=etot
 c detecting NaNQ
@@ -455,8 +465,9 @@ cMS$ATTRIBUTES C ::  proc_proc
 #ifdef MPI
       include 'mpif.h'
 #endif
-      double precision gradbufc(3,0:maxres),gradbufx(3,0:maxres),
-     & glocbuf(4*maxres),gradbufc_sum(3,0:maxres),gloc_scbuf(3,0:maxres)
+      double precision gradbufc(3,-1:maxres),gradbufx(3,-1:maxres),
+     & glocbuf(4*maxres),gradbufc_sum(3,-1:maxres)
+     & ,gloc_scbuf(3,-1:maxres)
       include 'COMMON.SETUP'
       include 'COMMON.IOUNITS'
       include 'COMMON.FFIELD'
@@ -509,7 +520,7 @@ c      enddo
       call flush(iout)
 #endif
 #ifdef SPLITELE
-      do i=1,nct
+      do i=0,nct
         do j=1,3
           gradbufc(j,i)=wsc*gvdwc(j,i)+
      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
@@ -521,11 +532,12 @@ c      enddo
      &                wturn6*gcorr6_turn_long(j,i)+
      &                wstrain*ghpbc(j,i)
      &                +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
 
         enddo
       enddo 
 #else
-      do i=1,nct
+      do i=0,nct
         do j=1,3
           gradbufc(j,i)=wsc*gvdwc(j,i)+
      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
@@ -538,6 +550,8 @@ c      enddo
      &                wturn6*gcorr6_turn_long(j,i)+
      &                wstrain*ghpbc(j,i)
      &                +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+
         enddo
       enddo 
 #endif
@@ -551,7 +565,7 @@ c      enddo
       enddo
       call flush(iout)
 #endif
-      do i=1,nres
+      do i=0,nres
         do j=1,3
           gradbufc_sum(j,i)=gradbufc(j,i)
         enddo
@@ -594,7 +608,7 @@ c      enddo
       do j=1,3
         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
       enddo
-      do i=nres-2,nnt,-1
+      do i=nres-2,-1,-1
         do j=1,3
           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
         enddo
@@ -615,7 +629,7 @@ c      enddo
       enddo
       call flush(iout)
 #endif
-      do i=1,nres
+      do i=-1,nres
         do j=1,3
           gradbufc_sum(j,i)=gradbufc(j,i)
           gradbufc(j,i)=0.0d0
@@ -624,7 +638,7 @@ c      enddo
       do j=1,3
         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
       enddo
-      do i=nres-2,nnt,-1
+      do i=nres-2,-1,-1
         do j=1,3
           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
         enddo
@@ -652,7 +666,7 @@ c      enddo
       do k=1,3
         gradbufc(k,nres)=0.0d0
       enddo
-      do i=1,nct
+      do i=-1,nct
         do j=1,3
 #ifdef SPLITELE
           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
@@ -674,6 +688,7 @@ c      enddo
      &                wsccor*gsccorc(j,i)
      &               +wscloc*gscloc(j,i)
      &               +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
 #else
           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
      &                wel_loc*gel_loc(j,i)+
@@ -694,6 +709,8 @@ c      enddo
      &                wsccor*gsccorc(j,i)
      &               +wscloc*gscloc(j,i)
      &               +wliptran*gliptranc(j,i)
+     &                +gradafm(j,i)
+
 #endif
           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
      &                  wbond*gradbx(j,i)+
@@ -990,6 +1007,7 @@ C------------------------------------------------------------------------
       Uconst=energia(20)
       esccor=energia(21)
       eliptran=energia(22)
+      Eafmforce=energia(23) 
 #ifdef SPLITELE
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
      &  estr,wbond,ebe,wang,
@@ -998,7 +1016,7 @@ C------------------------------------------------------------------------
      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
      &  edihcnstr,ebr*nss,
-     &  Uconst,eliptran,wliptran,etot
+     &  Uconst,eliptran,wliptran,Eafmforce,etot
    10 format (/'Virtual-chain energies:'//
      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
@@ -1023,7 +1041,9 @@ C------------------------------------------------------------------------
      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
      & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/
+     & 'EAFM=  ',1pE16.6,' (atomic-force microscopy)'/
      & 'ETOT=  ',1pE16.6,' (total)')
+
 #else
       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
      &  estr,wbond,ebe,wang,
@@ -1031,7 +1051,7 @@ C------------------------------------------------------------------------
      &  ecorr,wcorr,
      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
-     &  ebr*nss,Uconst,eliptran,wliptran,etot
+     &  ebr*nss,Uconst,eliptran,wliptran,Eafmforc,etot
    10 format (/'Virtual-chain energies:'//
      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
@@ -1055,6 +1075,7 @@ C------------------------------------------------------------------------
      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
      & 'ELT=',1pE16.6, ' WEIGHT=',1pD16.6,' (Lipid transfer energy)'/
+     & 'EAFM=  ',1pE16.6,' (atomic-force microscopy)'/
      & 'ETOT=  ',1pE16.6,' (total)')
 #endif
       return
@@ -1110,13 +1131,13 @@ c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
             eps0ij=eps(itypi,itypj)
             fac=rrij**expon2
 C have you changed here?
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=e1+e2
 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
-cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
+cd   &        restyp(itypi),i,restyp(itypj),j,a(itypi,itypj),
 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
             evdw=evdw+evdwij
@@ -1261,8 +1282,8 @@ C
             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
             fac=r_shift_inv**expon
 C have you changed here?
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=e_augm+e1+e2
 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
@@ -1390,16 +1411,16 @@ C Calculate whole angle-dependent part of epsilon and contributions
 C to its derivatives
 C have you changed here?
             fac=(rrij*sigsq)**expon2
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
             evdwij=evdwij*eps2rt*eps3rt
             evdw=evdw+evdwij
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
 cd     &        restyp(itypi),i,restyp(itypj),j,
 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
@@ -1449,7 +1470,7 @@ C
       integer xshift,yshift,zshift
       evdw=0.0D0
 ccccc      energy_dec=.false.
-c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
+C      print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
       evdw=0.0D0
       lprn=.false.
 c     if (icall.eq.0) lprn=.false.
@@ -1497,6 +1518,35 @@ c        endif
           if (yi.lt.0) yi=yi+boxysize
           zi=mod(zi,boxzsize)
           if (zi.lt.0) zi=zi+boxzsize
+C define scaling factor for lipids
+
+C        if (positi.le.0) positi=positi+boxzsize
+C        print *,i
+C first for peptide groups
+c for each residue check if it is in lipid or lipid water border area
+       if ((zi.gt.bordlipbot)
+     &.and.(zi.lt.bordliptop)) then
+C the energy transfer exist
+        if (zi.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zi.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick)
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipi=1.0d0
+         ssgradlipi=0.0
+        endif
+       else
+         sslipi=0.0d0
+         ssgradlipi=0.0
+       endif
+
 C          xi=xi+xshift*boxxsize
 C          yi=yi+yshift*boxysize
 C          zi=zi+zshift*boxzsize
@@ -1581,6 +1631,36 @@ c        endif
           if (yj.lt.0) yj=yj+boxysize
           zj=mod(zj,boxzsize)
           if (zj.lt.0) zj=zj+boxzsize
+       if ((zj.gt.bordlipbot)
+     &.and.(zj.lt.bordliptop)) then
+C the energy transfer exist
+        if (zj.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zj-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zj.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick)
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipj=1.0d0
+         ssgradlipj=0.0
+        endif
+       else
+         sslipj=0.0d0
+         ssgradlipj=0.0
+       endif
+      aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+      bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+C      if (aa.ne.aa_aq(itypi,itypj)) write(63,'(2e10.5)')
+C     &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj))
+C      if (ssgradlipj.gt.0.0d0) print *,"??WTF??"
+C      print *,sslipi,sslipj,bordlipbot,zi,zj
       dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
       xj_safe=xj
       yj_safe=yj
@@ -1651,18 +1731,22 @@ c---------------------------------------------------------------
             fac=rij_shift**expon
 C here to start with
 C            if (c(i,3).gt.
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            faclip=fac
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
+C       write(63,'(2i3,2e10.3,2f10.5)') i,j,aa,bb, evdwij,
+C     &((sslipi+sslipj)/2.0d0+
+C     &(2.0d0-sslipi-sslipj)/2.0d0)
 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
             evdwij=evdwij*eps2rt*eps3rt
             evdw=evdw+evdwij*sss
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
      &        restyp(itypi),i,restyp(itypj),j,
      &        epsi,sigm,chi1,chi2,chip1,chip2,
@@ -1684,6 +1768,14 @@ c     &      evdwij,fac,sigma(itypi,itypj),expon
             fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij
 c            fac=0.0d0
 C Calculate the radial part of the gradient
+            gg_lipi(3)=eps1*(eps2rt*eps2rt)
+     &*(eps3rt*eps3rt)*sss/2.0d0*(faclip*faclip*
+     & (aa_lip(itypi,itypj)-aa_aq(itypi,itypj))
+     &+faclip*(bb_lip(itypi,itypj)-bb_aq(itypi,itypj)))
+            gg_lipj(3)=ssgradlipj*gg_lipi(3)
+            gg_lipi(3)=gg_lipi(3)*ssgradlipi
+C            gg_lipi(3)=0.0d0
+C            gg_lipj(3)=0.0d0
             gg(1)=xj*fac
             gg(2)=yj*fac
             gg(3)=zj*fac
@@ -1733,6 +1825,41 @@ c     if (icall.eq.0) lprn=.true.
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
+          xi=mod(xi,boxxsize)
+          if (xi.lt.0) xi=xi+boxxsize
+          yi=mod(yi,boxysize)
+          if (yi.lt.0) yi=yi+boxysize
+          zi=mod(zi,boxzsize)
+          if (zi.lt.0) zi=zi+boxzsize
+C define scaling factor for lipids
+
+C        if (positi.le.0) positi=positi+boxzsize
+C        print *,i
+C first for peptide groups
+c for each residue check if it is in lipid or lipid water border area
+       if ((zi.gt.bordlipbot)
+     &.and.(zi.lt.bordliptop)) then
+C the energy transfer exist
+        if (zi.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zi-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zi.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zi)/lipbufthick)
+         sslipi=sscalelip(fracinbuf)
+         ssgradlipi=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipi=1.0d0
+         ssgradlipi=0.0
+        endif
+       else
+         sslipi=0.0d0
+         ssgradlipi=0.0
+       endif
+
         dxi=dc_norm(1,nres+i)
         dyi=dc_norm(2,nres+i)
         dzi=dc_norm(3,nres+i)
@@ -1769,9 +1896,74 @@ c           chip12=0.0D0
 c           alf1=0.0D0
 c           alf2=0.0D0
 c           alf12=0.0D0
-            xj=c(1,nres+j)-xi
-            yj=c(2,nres+j)-yi
-            zj=c(3,nres+j)-zi
+C            xj=c(1,nres+j)-xi
+C            yj=c(2,nres+j)-yi
+C            zj=c(3,nres+j)-zi
+          xj=mod(xj,boxxsize)
+          if (xj.lt.0) xj=xj+boxxsize
+          yj=mod(yj,boxysize)
+          if (yj.lt.0) yj=yj+boxysize
+          zj=mod(zj,boxzsize)
+          if (zj.lt.0) zj=zj+boxzsize
+       if ((zj.gt.bordlipbot)
+     &.and.(zj.lt.bordliptop)) then
+C the energy transfer exist
+        if (zj.lt.buflipbot) then
+C what fraction I am in
+         fracinbuf=1.0d0-
+     &        ((zj-bordlipbot)/lipbufthick)
+C lipbufthick is thickenes of lipid buffore
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=-sscagradlip(fracinbuf)/lipbufthick
+        elseif (zj.gt.bufliptop) then
+         fracinbuf=1.0d0-((bordliptop-zj)/lipbufthick)
+         sslipj=sscalelip(fracinbuf)
+         ssgradlipj=sscagradlip(fracinbuf)/lipbufthick
+        else
+         sslipj=1.0d0
+         ssgradlipj=0.0
+        endif
+       else
+         sslipj=0.0d0
+         ssgradlipj=0.0
+       endif
+      aa=aa_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +aa_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+      bb=bb_lip(itypi,itypj)*(sslipi+sslipj)/2.0d0
+     &  +bb_aq(itypi,itypj)*(2.0d0-sslipi-sslipj)/2.0d0
+C      if (aa.ne.aa_aq(itypi,itypj)) write(63,'2e10.5') 
+C     &(aa-aa_aq(itypi,itypj)),(bb-bb_aq(itypi,itypj))
+      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      xj_safe=xj
+      yj_safe=yj
+      zj_safe=zj
+      subchap=0
+      do xshift=-1,1
+      do yshift=-1,1
+      do zshift=-1,1
+          xj=xj_safe+xshift*boxxsize
+          yj=yj_safe+yshift*boxysize
+          zj=zj_safe+zshift*boxzsize
+          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          if(dist_temp.lt.dist_init) then
+            dist_init=dist_temp
+            xj_temp=xj
+            yj_temp=yj
+            zj_temp=zj
+            subchap=1
+          endif
+       enddo
+       enddo
+       enddo
+       if (subchap.eq.1) then
+          xj=xj_temp-xi
+          yj=yj_temp-yi
+          zj=zj_temp-zi
+       else
+          xj=xj_safe-xi
+          yj=yj_safe-yi
+          zj=zj_safe-zi
+       endif
             dxj=dc_norm(1,nres+j)
             dyj=dc_norm(2,nres+j)
             dzj=dc_norm(3,nres+j)
@@ -1792,8 +1984,8 @@ C I hate to put IF's in the loops, but here don't have another choice!!!!
 c---------------------------------------------------------------
             rij_shift=1.0D0/rij_shift 
             fac=rij_shift**expon
-            e1=fac*fac*aa(itypi,itypj)
-            e2=fac*bb(itypi,itypj)
+            e1=fac*fac*aa
+            e2=fac*bb
             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
             eps2der=evdwij*eps3rt
             eps3der=evdwij*eps2rt
@@ -1802,8 +1994,8 @@ c---------------------------------------------------------------
             evdwij=evdwij*eps2rt*eps3rt
             evdw=evdw+evdwij+e_augm
             if (lprn) then
-            sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
-            epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
+            sigm=dabs(aa/bb)**(1.0D0/6.0D0)
+            epsi=bb**2/aa
             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
      &        restyp(itypi),i,restyp(itypj),j,
      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
@@ -1817,6 +2009,7 @@ C Calculate gradient components.
             fac=-expon*(e1+evdwij)*rij_shift
             sigder=fac*sigder
             fac=rij*fac-2*expon*rrij*e_augm
+            fac=fac+evdwij/sss*sssgrad/sigma(itypi,itypj)*rij
 C Calculate the radial part of the gradient
             gg(1)=xj*fac
             gg(2)=yj*fac
@@ -1927,10 +2120,10 @@ c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
       enddo 
 c      write (iout,*) "gg",(gg(k),k=1,3)
       do k=1,3
-        gvdwx(k,i)=gvdwx(k,i)-gg(k)
+        gvdwx(k,i)=gvdwx(k,i)-gg(k)+gg_lipi(k)
      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv*sss
-        gvdwx(k,j)=gvdwx(k,j)+gg(k)
+        gvdwx(k,j)=gvdwx(k,j)+gg(k)+gg_lipj(k)
      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv*sss
 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
@@ -1947,8 +2140,8 @@ cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
 cgrad        enddo
 cgrad      enddo
       do l=1,3
-        gvdwc(l,i)=gvdwc(l,i)-gg(l)
-        gvdwc(l,j)=gvdwc(l,j)+gg(l)
+        gvdwc(l,i)=gvdwc(l,i)-gg(l)+gg_lipi(l)
+        gvdwc(l,j)=gvdwc(l,j)+gg(l)+gg_lipj(l)
       enddo
       return
       end
@@ -2459,6 +2652,87 @@ C
 C Compute the virtual-bond-torsional-angle dependent quantities needed
 C to calculate the el-loc multibody terms of various order.
 C
+c      write(iout,*) 'nphi=',nphi,nres
+#ifdef PARMAT
+      do i=ivec_start+2,ivec_end+2
+#else
+      do i=3,nres+1
+#endif
+#ifdef NEWCORR
+        if (i.gt. nnt+2 .and. i.lt.nct+2) then
+          iti = itortyp(itype(i-2))
+        else
+          iti=ntortyp+1
+        endif
+c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
+        if (i.gt. nnt+1 .and. i.lt.nct+1) then
+          iti1 = itortyp(itype(i-1))
+        else
+          iti1=ntortyp+1
+        endif
+c        write(iout,*),i
+        b1(1,i-2)=bnew1(1,1,iti)*dsin(theta(i-1)/2.0)
+     &           +bnew1(2,1,iti)*dsin(theta(i-1))
+     &           +bnew1(3,1,iti)*dcos(theta(i-1)/2.0)
+        gtb1(1,i-2)=bnew1(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0
+     &             +bnew1(2,1,iti)*dcos(theta(i-1))
+     &             -bnew1(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0
+c     &           +bnew1(3,1,iti)*sin(alpha(i))*cos(beta(i))
+c     &*(cos(theta(i)/2.0)
+        b2(1,i-2)=bnew2(1,1,iti)*dsin(theta(i-1)/2.0)
+     &           +bnew2(2,1,iti)*dsin(theta(i-1))
+     &           +bnew2(3,1,iti)*dcos(theta(i-1)/2.0)
+c     &           +bnew2(3,1,iti)*sin(alpha(i))*cos(beta(i))
+c     &*(cos(theta(i)/2.0)
+        gtb2(1,i-2)=bnew2(1,1,iti)*dcos(theta(i-1)/2.0d0)/2.0d0
+     &             +bnew2(2,1,iti)*dcos(theta(i-1))
+     &             -bnew2(3,1,iti)*dsin(theta(i-1)/2.0d0)/2.0d0
+c        if (ggb1(1,i).eq.0.0d0) then
+c        write(iout,*) 'i=',i,ggb1(1,i),
+c     &bnew1(1,1,iti)*cos(theta(i)/2.0)/2.0,
+c     &bnew1(2,1,iti)*cos(theta(i)),
+c     &bnew1(3,1,iti)*sin(theta(i)/2.0)/2.0
+c        endif
+        b1(2,i-2)=bnew1(1,2,iti)
+        gtb1(2,i-2)=0.0
+        b2(2,i-2)=bnew2(1,2,iti)
+        gtb2(2,i-2)=0.0
+        EE(1,1,i-2)=eenew(1,iti)*dcos(theta(i-1))
+        EE(1,2,i-2)=eeold(1,2,iti)
+        EE(2,1,i-2)=eeold(2,1,iti)
+        EE(2,2,i-2)=eeold(2,2,iti)
+        gtEE(1,1,i-2)=-eenew(1,iti)*dsin(theta(i-1))
+        gtEE(1,2,i-2)=0.0d0
+        gtEE(2,2,i-2)=0.0d0
+        gtEE(2,1,i-2)=0.0d0
+c        EE(2,2,iti)=0.0d0
+c        EE(1,2,iti)=0.5d0*eenew(1,iti)
+c        EE(2,1,iti)=0.5d0*eenew(1,iti)
+c        b1(2,iti)=bnew1(1,2,iti)*sin(alpha(i))*sin(beta(i))
+c        b2(2,iti)=bnew2(1,2,iti)*sin(alpha(i))*sin(beta(i))
+       b1tilde(1,i-2)=b1(1,i-2)
+       b1tilde(2,i-2)=-b1(2,i-2)
+       b2tilde(1,i-2)=b2(1,i-2)
+       b2tilde(2,i-2)=-b2(2,i-2)
+c       write (iout,*) 'i=',i-2,gtb1(2,i-2),gtb1(1,i-2)
+c       write(iout,*)  'b1=',b1(1,i-2)
+c       write (iout,*) 'theta=', theta(i-1)
+       enddo
+#else
+        b1(1,i-2)=b(3,iti)
+        b1(2,i-2)=b(5,iti)
+        b2(1,i-2)=b(2,iti)
+        b2(2,i-2)=b(4,iti)
+       b1tilde(1,i-2)=b1(1,i-2)
+       b1tilde(2,i-2)=-b1(2,i-2)
+       b2tilde(1,i-2)=b2(1,i-2)
+       b2tilde(2,i-2)=-b2(2,i-2)
+        EE(1,2,i-2)=eeold(1,2,iti)
+        EE(2,1,i-2)=eeold(2,1,iti)
+        EE(2,2,i-2)=eeold(2,2,iti)
+        EE(1,1,i-2)=eeold(1,1,iti)
+      enddo
+#endif
 #ifdef PARMAT
       do i=ivec_start+2,ivec_end+2
 #else
@@ -2548,8 +2822,18 @@ cd        write (iout,*) 'b2',b2(:,iti)
 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
 c        if (i .gt. iatel_s+2) then
         if (i .gt. nnt+2) then
-          call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
-          call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
+          call matvec2(Ug(1,1,i-2),b2(1,i-2),Ub2(1,i-2))
+#ifdef NEWCORR
+          call matvec2(Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2))
+c          write (iout,*) Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2),"chuj"
+#endif
+c          write(iout,*) "co jest kurwa", iti, EE(1,1,iti),EE(2,1,iti),
+c     &    EE(1,2,iti),EE(2,2,iti)
+          call matmat2(EE(1,1,i-2),Ug(1,1,i-2),EUg(1,1,i-2))
+          call matmat2(gtEE(1,1,i-2),Ug(1,1,i-2),gtEUg(1,1,i-2))
+c          write(iout,*) "Macierz EUG",
+c     &    eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2),
+c     &    eug(2,2,i-2)
           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
      &    then
           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
@@ -2571,8 +2855,8 @@ c        if (i .gt. iatel_s+2) then
             enddo
           enddo
         endif
-        call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
-        call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
+        call matvec2(Ugder(1,1,i-2),b2(1,i-2),Ub2der(1,i-2))
+        call matmat2(EE(1,1,i-2),Ugder(1,1,i-2),EUgder(1,1,i-2))
         do k=1,2
           muder(k,i-2)=Ub2der(k,i-2)
         enddo
@@ -2587,9 +2871,9 @@ c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
           iti1=ntortyp
         endif
         do k=1,2
-          mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
+          mu(k,i-2)=Ub2(k,i-2)+b1(k,i-1)
         enddo
-cd        write (iout,*) 'mu ',mu(:,i-2)
+c        write (iout,*) 'mu ',mu(:,i-2),i-2
 cd        write (iout,*) 'mu1',mu1(:,i-2)
 cd        write (iout,*) 'mu2',mu2(:,i-2)
         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
@@ -2600,7 +2884,7 @@ cd        write (iout,*) 'mu2',mu2(:,i-2)
         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
 C Vectors and matrices dependent on a single virtual-bond dihedral.
-        call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
+        call matvec2(DD(1,1,iti),b1tilde(1,i-1),auxvec(1))
         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
@@ -2917,7 +3201,7 @@ C
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij(4)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
      &    num_conti,j1,j2
@@ -3001,11 +3285,18 @@ C 14/01/2014 TURN3,TUNR4 does no go under periodic boundry condition
         if (i.le.1) cycle
 C        write(iout,*) "tu jest i",i
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+     & .or.((i+4).gt.nres)
+     & .or.((i-1).le.0)
+C end of changes by Ana
      &  .or. itype(i+2).eq.ntyp1
-     &  .or. itype(i+3).eq.ntyp1
-     &  .or. itype(i-1).eq.ntyp1
-     &  .or. itype(i+4).eq.ntyp1
-     &  ) cycle
+     &  .or. itype(i+3).eq.ntyp1) cycle
+        if(i.gt.1)then
+          if(itype(i-1).eq.ntyp1)cycle
+        end if
+        if(i.LT.nres-3)then
+          if (itype(i+4).eq.ntyp1) cycle
+        end if
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
@@ -3029,6 +3320,10 @@ C        write(iout,*) "tu jest i",i
       do i=iturn4_start,iturn4_end
         if (i.le.1) cycle
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+     & .or.((i+5).gt.nres)
+     & .or.((i-1).le.0)
+C end of changes suggested by Ana
      &    .or. itype(i+3).eq.ntyp1
      &    .or. itype(i+4).eq.ntyp1
      &    .or. itype(i+5).eq.ntyp1
@@ -3077,6 +3372,7 @@ c        endif
           if (zmedi.lt.0) zmedi=zmedi+boxzsize
 
         num_conti=num_cont_hb(i)
+c        write(iout,*) "JESTEM W PETLI"
         call eelecij(i,i+3,ees,evdw1,eel_loc)
         if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) 
      &   call eturn4(i,eello_turn4)
@@ -3092,6 +3388,10 @@ c
       do i=iatel_s,iatel_e
         if (i.le.1) cycle
         if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+     & .or.((i+2).gt.nres)
+     & .or.((i-1).le.0)
+C end of changes by Ana
      &  .or. itype(i+2).eq.ntyp1
      &  .or. itype(i-1).eq.ntyp1
      &                ) cycle
@@ -3146,6 +3446,10 @@ c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
 C          write (iout,*) i,j
          if (j.le.1) cycle
           if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+     & .or.((j+2).gt.nres)
+     & .or.((j-1).le.0)
+C end of changes by Ana
      & .or.itype(j+2).eq.ntyp1
      & .or.itype(j-1).eq.ntyp1
      &) cycle
@@ -3191,7 +3495,8 @@ C-------------------------------------------------------------------------------
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij1(4),gmuji1(4),
+     &    gmuij2(4),gmuji2(4)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
      &    num_conti,j1,j2
@@ -3492,6 +3797,7 @@ C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
 C   are computed for EVERY pair of non-contiguous peptide groups.
 C
+
           if (j.lt.nres-1) then
             j1=j+1
             j2=j-1
             j2=j-2
           endif
           kkk=0
+          lll=0
           do k=1,2
             do l=1,2
               kkk=kkk+1
               muij(kkk)=mu(k,i)*mu(l,j)
+c              write(iout,*) 'mumu=', mu(k,i),mu(l,j),i,j,k,l
+#ifdef NEWCORR
+             gmuij1(kkk)=gtb1(k,i+1)*mu(l,j)
+c             write(iout,*) 'k=',k,i,gtb1(k,i+1),gtb1(k,i+1)*mu(l,j)
+             gmuij2(kkk)=gUb2(k,i)*mu(l,j)
+             gmuji1(kkk)=mu(k,i)*gtb1(l,j+1)
+c             write(iout,*) 'l=',l,j,gtb1(l,j+1),gtb1(l,j+1)*mu(k,i)
+             gmuji2(kkk)=mu(k,i)*gUb2(l,j)
+#endif
             enddo
           enddo  
 cd         write (iout,*) 'EELEC: i',i,' j',j
@@ -3671,6 +3987,51 @@ C Contribution to the local-electrostatic energy coming from the i-j pair
      &     +a33*muij(4)
 c          write (iout,*) 'i',i,' j',j,itype(i),itype(j),
 c     &                     ' eel_loc_ij',eel_loc_ij
+c          write(iout,*) 'muije=',muij(1),muij(2),muij(3),muij(4)
+C Calculate patrial derivative for theta angle
+#ifdef NEWCORR
+         geel_loc_ij=a22*gmuij1(1)
+     &     +a23*gmuij1(2)
+     &     +a32*gmuij1(3)
+     &     +a33*gmuij1(4)         
+c         write(iout,*) "derivative over thatai"
+c         write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3),
+c     &   a33*gmuij1(4) 
+         gloc(nphi+i,icg)=gloc(nphi+i,icg)+
+     &      geel_loc_ij*wel_loc
+c         write(iout,*) "derivative over thatai-1" 
+c         write(iout,*) a22*gmuij2(1), a23*gmuij2(2) ,a32*gmuij2(3),
+c     &   a33*gmuij2(4)
+         geel_loc_ij=
+     &     a22*gmuij2(1)
+     &     +a23*gmuij2(2)
+     &     +a32*gmuij2(3)
+     &     +a33*gmuij2(4)
+         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
+     &      geel_loc_ij*wel_loc
+c  Derivative over j residue
+         geel_loc_ji=a22*gmuji1(1)
+     &     +a23*gmuji1(2)
+     &     +a32*gmuji1(3)
+     &     +a33*gmuji1(4)
+c         write(iout,*) "derivative over thataj" 
+c         write(iout,*) a22*gmuji1(1), a23*gmuji1(2) ,a32*gmuji1(3),
+c     &   a33*gmuji1(4)
+
+        gloc(nphi+j,icg)=gloc(nphi+j,icg)+
+     &      geel_loc_ji*wel_loc
+         geel_loc_ji=
+     &     +a22*gmuji2(1)
+     &     +a23*gmuji2(2)
+     &     +a32*gmuji2(3)
+     &     +a33*gmuji2(4)
+c         write(iout,*) "derivative over thataj-1"
+c         write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3),
+c     &   a33*gmuji2(4)
+         gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+
+     &      geel_loc_ji*wel_loc
+#endif
+cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
 
           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
      &            'eelloc',i,j,eel_loc_ij
@@ -3924,7 +4285,9 @@ C Third- and fourth-order contributions from turns
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
-     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),gpizda1(2,2),
+     &  gpizda2(2,2),auxgmat1(2,2),auxgmatt1(2,2),
+     &  auxgmat2(2,2),auxgmatt2(2,2)
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
@@ -3948,9 +4311,24 @@ C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
+c auxalary matices for theta gradient
+c auxalary matrix for i+1 and constant i+2
+        call matmat2(gtEUg(1,1,i+1),EUg(1,1,i+2),auxgmat1(1,1))
+c auxalary matrix for i+2 and constant i+1
+        call matmat2(EUg(1,1,i+1),gtEUg(1,1,i+2),auxgmat2(1,1))
         call transpose2(auxmat(1,1),auxmat1(1,1))
+        call transpose2(auxgmat1(1,1),auxgmatt1(1,1))
+        call transpose2(auxgmat2(1,1),auxgmatt2(1,1))
         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+        call matmat2(a_temp(1,1),auxgmatt1(1,1),gpizda1(1,1))
+        call matmat2(a_temp(1,1),auxgmatt2(1,1),gpizda2(1,1))
         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
+C Derivatives in theta
+        gloc(nphi+i,icg)=gloc(nphi+i,icg)
+     &  +0.5d0*(gpizda1(1,1)+gpizda1(2,2))*wturn3
+        gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)
+     &  +0.5d0*(gpizda2(1,1)+gpizda2(2,2))*wturn3
+
         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
@@ -4024,7 +4402,11 @@ C Third- and fourth-order contributions from turns
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
-     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),auxgvec(2),
+     &  auxgEvec1(2),auxgEvec2(2),auxgEvec3(2),
+     &  gte1t(2,2),gte2t(2,2),gte3t(2,2),
+     &  gte1a(2,2),gtae3(2,2),gtae3e2(2,2), ae3gte2(2,2),
+     &  gtEpizda1(2,2),gtEpizda2(2,2),gtEpizda3(2,2)
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
@@ -4044,6 +4426,7 @@ C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
+c        write(iout,*)"WCHODZE W PROGRAM"
         a_temp(1,1)=a22
         a_temp(1,2)=a23
         a_temp(2,1)=a32
@@ -4055,33 +4438,100 @@ c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
         call transpose2(EUg(1,1,i+1),e1t(1,1))
         call transpose2(Eug(1,1,i+2),e2t(1,1))
         call transpose2(Eug(1,1,i+3),e3t(1,1))
+C Ematrix derivative in theta
+        call transpose2(gtEUg(1,1,i+1),gte1t(1,1))
+        call transpose2(gtEug(1,1,i+2),gte2t(1,1))
+        call transpose2(gtEug(1,1,i+3),gte3t(1,1))
         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+c       eta1 in derivative theta
+        call matmat2(gte1t(1,1),a_temp(1,1),gte1a(1,1))
         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+c       auxgvec is derivative of Ub2 so i+3 theta
+        call matvec2(e1a(1,1),gUb2(1,i+3),auxgvec(1)) 
+c       auxalary matrix of E i+1
+        call matvec2(gte1a(1,1),Ub2(1,i+3),auxgEvec1(1))
+c        s1=0.0
+c        gs1=0.0    
+        s1=scalar2(b1(1,i+2),auxvec(1))
+c derivative of theta i+2 with constant i+3
+        gs23=scalar2(gtb1(1,i+2),auxvec(1))
+c derivative of theta i+2 with constant i+2
+        gs32=scalar2(b1(1,i+2),auxgvec(1))
+c derivative of E matix in theta of i+1
+        gsE13=scalar2(b1(1,i+2),auxgEvec1(1))
+
         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+c       ea31 in derivative theta
+        call matmat2(a_temp(1,1),gte3t(1,1),gtae3(1,1))
         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+c auxilary matrix auxgvec of Ub2 with constant E matirx
+        call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1))
+c auxilary matrix auxgEvec1 of E matix with Ub2 constant
+        call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1))
+
+c        s2=0.0
+c        gs2=0.0
+        s2=scalar2(b1(1,i+1),auxvec(1))
+c derivative of theta i+1 with constant i+3
+        gs13=scalar2(gtb1(1,i+1),auxvec(1))
+c derivative of theta i+2 with constant i+1
+        gs21=scalar2(b1(1,i+1),auxgvec(1))
+c derivative of theta i+3 with constant i+1
+        gsE31=scalar2(b1(1,i+1),auxgEvec3(1))
+c        write(iout,*) gs1,gs2,'i=',i,auxgvec(1),gUb2(1,i+2),gtb1(1,i+2),
+c     &  gtb1(1,i+1)
         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+c two derivatives over diffetent matrices
+c gtae3e2 is derivative over i+3
+        call matmat2(gtae3(1,1),e2t(1,1),gtae3e2(1,1))
+c ae3gte2 is derivative over i+2
+        call matmat2(ae3(1,1),gte2t(1,1),ae3gte2(1,1))
         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+c three possible derivative over theta E matices
+c i+1
+        call matmat2(ae3e2(1,1),gte1t(1,1),gtEpizda1(1,1))
+c i+2
+        call matmat2(ae3gte2(1,1),e1t(1,1),gtEpizda2(1,1))
+c i+3
+        call matmat2(gtae3e2(1,1),e1t(1,1),gtEpizda3(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
+
+        gsEE1=0.5d0*(gtEpizda1(1,1)+gtEpizda1(2,2))
+        gsEE2=0.5d0*(gtEpizda2(1,1)+gtEpizda2(2,2))
+        gsEE3=0.5d0*(gtEpizda3(1,1)+gtEpizda3(2,2))
+
         eello_turn4=eello_turn4-(s1+s2+s3)
 c             write(iout,*)'chujOWO', auxvec(1),b1(1,iti2)
         if (energy_dec) write (iout,'(a6,2i5,0pf7.3,3f7.3)')
      &      'eturn4',i,j,-(s1+s2+s3),s1,s2,s3
 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
 cd     &    ' eello_turn4_num',8*eello_turn4_num
+#ifdef NEWCORR
+        gloc(nphi+i,icg)=gloc(nphi+i,icg)
+     &                  -(gs13+gsE13+gsEE1)*wturn4
+        gloc(nphi+i+1,icg)= gloc(nphi+i+1,icg)
+     &                    -(gs23+gs21+gsEE2)*wturn4
+        gloc(nphi+i+2,icg)= gloc(nphi+i+2,icg)
+     &                    -(gs32+gsE31+gsEE3)*wturn4
+c         gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)-
+c     &   gs2
+#endif
+        if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
+     &      'eturn4',i,j,-(s1+s2+s3)
+c        write (iout,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
+c     &    ' eello_turn4_num',8*eello_turn4_num
 C Derivatives in gamma(i)
         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+2),auxvec(1))
         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
 C Derivatives in gamma(i+1)
         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -4089,10 +4539,10 @@ C Derivatives in gamma(i+1)
 C Derivatives in gamma(i+2)
         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+2),auxvec(1))
         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -4107,10 +4557,10 @@ C Derivatives of this turn contributions in DC(i+2)
             a_temp(2,2)=agg(l,4)
             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-            s1=scalar2(b1(1,iti2),auxvec(1))
+            s1=scalar2(b1(1,i+2),auxvec(1))
             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-            s2=scalar2(b1(1,iti1),auxvec(1))
+            s2=scalar2(b1(1,i+1),auxvec(1))
             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
             s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -4126,10 +4576,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggi(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -4140,10 +4590,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggi1(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -4154,10 +4604,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggj(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -4168,10 +4618,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggj1(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -5361,7 +5811,7 @@ c        lprn1=.false.
         etheta=etheta+ethetai
         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
-        gloc(nphi+i-2,icg)=wang*dethetai+ gloc(nphi+i-2,icg)
+        gloc(nphi+i-2,icg)=wang*dethetai+gloc(nphi+i-2,icg)
       enddo
       return
       end
@@ -7484,10 +7934,10 @@ C---------------------------------------------------------------------------
       do iii=1,2
         dipi(iii,1)=Ub2(iii,i)
         dipderi(iii)=Ub2der(iii,i)
-        dipi(iii,2)=b1(iii,iti1)
+        dipi(iii,2)=b1(iii,i+1)
         dipj(iii,1)=Ub2(iii,j)
         dipderj(iii)=Ub2der(iii,j)
-        dipj(iii,2)=b1(iii,itj1)
+        dipj(iii,2)=b1(iii,j+1)
       enddo
       kkk=0
       do iii=1,2
@@ -7667,26 +8117,26 @@ C They are needed only when the fifth- or the sixth-order cumulants are
 C indluded.
         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
         call transpose2(AEA(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
         call transpose2(AEAderg(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
-        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
-        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1))
         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
         call transpose2(AEA(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
         call transpose2(AEAderg(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j),AEAb1derg(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
-        call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
-        call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),b1(1,l+1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,l+1),AEAb1derg(1,2,2))
         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
@@ -7695,20 +8145,20 @@ C Calculate the Cartesian derivatives of the vectors.
           do kkk=1,5
             do lll=1,3
               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,iti),
+              call matvec2(auxmat(1,1),b1(1,i),
      &          AEAb1derx(1,lll,kkk,iii,1,1))
               call matvec2(auxmat(1,1),Ub2(1,i),
      &          AEAb2derx(1,lll,kkk,iii,1,1))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &          AEAb1derx(1,lll,kkk,iii,2,1))
               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
      &          AEAb2derx(1,lll,kkk,iii,2,1))
               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,itj),
+              call matvec2(auxmat(1,1),b1(1,j),
      &          AEAb1derx(1,lll,kkk,iii,1,2))
               call matvec2(auxmat(1,1),Ub2(1,j),
      &          AEAb2derx(1,lll,kkk,iii,1,2))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,l+1),
      &          AEAb1derx(1,lll,kkk,iii,2,2))
               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
      &          AEAb2derx(1,lll,kkk,iii,2,2))
@@ -7805,26 +8255,26 @@ C indluded.
         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
         call transpose2(AEA(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
         call transpose2(AEAderg(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
-        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
-        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1))
         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
         call transpose2(AEA(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j+1),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
         call transpose2(AEAderg(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,l),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
-        call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
-        call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),b1(1,j+1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,j+1),AEAb1derg(1,2,2))
         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
@@ -7833,20 +8283,20 @@ C Calculate the Cartesian derivatives of the vectors.
           do kkk=1,5
             do lll=1,3
               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,iti),
+              call matvec2(auxmat(1,1),b1(1,i),
      &          AEAb1derx(1,lll,kkk,iii,1,1))
               call matvec2(auxmat(1,1),Ub2(1,i),
      &          AEAb2derx(1,lll,kkk,iii,1,1))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &          AEAb1derx(1,lll,kkk,iii,2,1))
               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
      &          AEAb2derx(1,lll,kkk,iii,2,1))
               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,itl),
+              call matvec2(auxmat(1,1),b1(1,l),
      &          AEAb1derx(1,lll,kkk,iii,1,2))
               call matvec2(auxmat(1,1),Ub2(1,l),
      &          AEAb2derx(1,lll,kkk,iii,1,2))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,j+1),
      &          AEAb1derx(1,lll,kkk,iii,2,2))
               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
      &          AEAb2derx(1,lll,kkk,iii,2,2))
@@ -8143,7 +8593,7 @@ C Contribution from graph II
       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
-      eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
+      eello5_2=scalar2(AEAb1(1,2,1),b1(1,k))
      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
 C Explicit gradient in virtual-dihedral angles.
       g_corr5_loc(k-1)=g_corr5_loc(k-1)
@@ -8153,11 +8603,11 @@ C Explicit gradient in virtual-dihedral angles.
       vv(2)=pizda(2,1)-pizda(1,2)
       if (l.eq.j+1) then
         g_corr5_loc(l-1)=g_corr5_loc(l-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
       else
         g_corr5_loc(j-1)=g_corr5_loc(j-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
       endif
 C Cartesian gradient
@@ -8169,7 +8619,7 @@ C Cartesian gradient
             vv(1)=pizda(1,1)+pizda(2,2)
             vv(2)=pizda(2,1)-pizda(1,2)
             derx(lll,kkk,iii)=derx(lll,kkk,iii)
-     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
+     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,k))
      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
           enddo
         enddo
@@ -8224,7 +8674,7 @@ cd1110    continue
         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
-        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,l))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
 C Explicit gradient in virtual-dihedral angles.
         g_corr5_loc(l-1)=g_corr5_loc(l-1)
@@ -8233,7 +8683,7 @@ C Explicit gradient in virtual-dihedral angles.
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
         g_corr5_loc(k-1)=g_corr5_loc(k-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,l))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
 C Cartesian gradient
         do iii=1,2
@@ -8244,7 +8694,7 @@ C Cartesian gradient
               vv(1)=pizda(1,1)+pizda(2,2)
               vv(2)=pizda(2,1)-pizda(1,2)
               derx(lll,kkk,iii)=derx(lll,kkk,iii)
-     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,l))
      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
             enddo
           enddo
@@ -8297,7 +8747,7 @@ C Contribution from graph IV
         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
-        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,j))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
 C Explicit gradient in virtual-dihedral angles.
         g_corr5_loc(j-1)=g_corr5_loc(j-1)
@@ -8306,7 +8756,7 @@ C Explicit gradient in virtual-dihedral angles.
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
         g_corr5_loc(k-1)=g_corr5_loc(k-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,j))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
 C Cartesian gradient
         do iii=1,2
@@ -8317,7 +8767,7 @@ C Cartesian gradient
               vv(1)=pizda(1,1)+pizda(2,2)
               vv(2)=pizda(2,1)-pizda(1,2)
               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
-     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,j))
      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
             enddo
           enddo
@@ -8599,8 +9049,8 @@ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
       vv1(1)=pizda1(1,1)-pizda1(2,2)
       vv1(2)=pizda1(1,2)+pizda1(2,1)
       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
-      vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
-      vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
+      vv(1)=AEAb1(1,2,imat)*b1(1,k)-AEAb1(2,2,imat)*b1(2,k)
+      vv(2)=AEAb1(1,2,imat)*b1(2,k)+AEAb1(2,2,imat)*b1(1,k)
       s5=scalar2(vv(1),Dtobr2(1,i))
 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
@@ -8613,8 +9063,8 @@ cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
       vv1(1)=pizda1(1,1)-pizda1(2,2)
       vv1(2)=pizda1(1,2)+pizda1(2,1)
-      vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
-      vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
+      vv(1)=AEAb1derg(1,2,imat)*b1(1,k)-AEAb1derg(2,2,imat)*b1(2,k)
+      vv(2)=AEAb1derg(1,2,imat)*b1(2,k)+AEAb1derg(2,2,imat)*b1(1,k)
       if (l.eq.j+1) then
         g_corr6_loc(l-1)=g_corr6_loc(l-1)
      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
@@ -8653,10 +9103,10 @@ cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
             vv1(1)=pizda1(1,1)-pizda1(2,2)
             vv1(2)=pizda1(1,2)+pizda1(2,1)
             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
-            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
-     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
-            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
-     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
+            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,k)
+     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,k)
+            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,k)
+     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,k)
             s5=scalar2(vv(1),Dtobr2(1,i))
             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
           enddo
@@ -8896,10 +9346,10 @@ C           energy moment and not to the cluster cumulant.
 #ifdef MOMENT
       s1=dip(4,jj,i)*dip(4,kk,k)
 #endif
-      call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
-      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
-      call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
-      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      call matvec2(AECA(1,1,1),b1(1,k+1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,k),auxvec(1))
+      call matvec2(AECA(1,1,2),b1(1,l+1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
       call transpose2(EE(1,1,itk),auxmat(1,1))
       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
@@ -8914,13 +9364,13 @@ cd     & "sum",-(s2+s3+s4)
 #endif
 c      eello6_graph3=-s4
 C Derivatives in gamma(k-1)
-      call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
-      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      call matvec2(AECAderg(1,1,2),b1(1,l+1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
 C Derivatives in gamma(l-1)
-      call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
-      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
+      call matvec2(AECAderg(1,1,1),b1(1,k+1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,k),auxvec(1))
       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
@@ -8937,12 +9387,12 @@ C Cartesian derivatives.
               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
             endif
 #endif
-            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &        auxvec(1))
-            s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
-            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+            s2=0.5d0*scalar2(b1(1,k),auxvec(1))
+            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,l+1),
      &        auxvec(1))
-            s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+            s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
      &        pizda(1,1))
             vv(1)=pizda(1,1)+pizda(2,2)
@@ -9030,11 +9480,11 @@ cd     & ' itl',itl,' itl1',itl1
       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
       if (j.eq.l+1) then
-        call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,j+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
       else
-        call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,l+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
       endif
       call transpose2(EUg(1,1,k),auxmat(1,1))
       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
@@ -9058,11 +9508,11 @@ C Derivatives in gamma(i-1)
 #endif
         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
         if (j.eq.l+1) then
-          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
-          s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,j+1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
         else
-          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
-          s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,l+1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
         endif
         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
@@ -9091,11 +9541,11 @@ C Derivatives in gamma(k-1)
       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
       if (j.eq.l+1) then
-        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,j+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
       else
-        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,l+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
       endif
       call transpose2(EUgder(1,1,k),auxmat1(1,1))
       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
@@ -9161,12 +9611,12 @@ C Cartesian derivatives.
             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
             if (j.eq.l+1) then
               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
-     &          b1(1,itj1),auxvec(1))
-              s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
+     &          b1(1,j+1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,j),auxvec(1))
             else
               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
-     &          b1(1,itl1),auxvec(1))
-              s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
+     &          b1(1,l+1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,l),auxvec(1))
             endif
             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
      &        pizda(1,1))
@@ -9266,12 +9716,12 @@ cd      write (2,*) 'eello6_5',eello6_5
 #ifdef MOMENT
       call transpose2(AEA(1,1,1),auxmat(1,1))
       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
-      ss1=scalar2(Ub2(1,i+2),b1(1,itl))
+      ss1=scalar2(Ub2(1,i+2),b1(1,l))
       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
 #endif
-      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+      call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1))
       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
-      s2 = scalar2(b1(1,itk),vtemp1(1))
+      s2 = scalar2(b1(1,k),vtemp1(1))
 #ifdef MOMENT
       call transpose2(AEA(1,1,2),atemp(1,1))
       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
@@ -9286,7 +9736,7 @@ cd      write (2,*) 'eello6_5',eello6_5
       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
-      ss13 = scalar2(b1(1,itk),vtemp4(1))
+      ss13 = scalar2(b1(1,k),vtemp4(1))
       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
 #endif
 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
@@ -9320,12 +9770,12 @@ C Derivatives in gamma(i+3)
 #ifdef MOMENT
       call transpose2(AEA(1,1,1),auxmatd(1,1))
       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
-      ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
+      ss1d=scalar2(Ub2der(1,i+2),b1(1,l))
       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
 #endif
-      call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(EUgder(1,1,i+2),b1(1,l),vtemp1d(1))
       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
-      s2d = scalar2(b1(1,itk),vtemp1d(1))
+      s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
@@ -9373,9 +9823,9 @@ C Derivatives in gamma(i+5)
       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
 #endif
-      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1d(1))
       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
-      s2d = scalar2(b1(1,itk),vtemp1d(1))
+      s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
       call transpose2(AEA(1,1,2),atempd(1,1))
       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
@@ -9385,7 +9835,7 @@ C Derivatives in gamma(i+5)
       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
 #ifdef MOMENT
       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
-      ss13d = scalar2(b1(1,itk),vtemp4d(1))
+      ss13d = scalar2(b1(1,k),vtemp4d(1))
       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
 #endif
 c      s1d=0.0d0
@@ -9409,10 +9859,10 @@ C Cartesian derivatives
             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
 #endif
-            call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+            call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1))
             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
      &          vtemp1d(1))
-            s2d = scalar2(b1(1,itk),vtemp1d(1))
+            s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
@@ -9456,7 +9906,7 @@ c      s13d=0.0d0
           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
      &      vtemp4d(1)) 
-          ss13d = scalar2(b1(1,itk),vtemp4d(1))
+          ss13d = scalar2(b1(1,k),vtemp4d(1))
           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
         enddo
@@ -9708,6 +10158,7 @@ CCC----------------------------------------------
       include 'COMMON.CONTROL'
       include 'COMMON.SPLITELE'
       include 'COMMON.SBRIDGE'
+C this is done by Adasko
 C      print *,"wchodze"
 C structure of box:
 C      water
@@ -9718,9 +10169,10 @@ C--buflipbot--- lipid ends buffore starts
 C--bordlipbot--buffore ends
       eliptran=0.0
       do i=ilip_start,ilip_end
+C       do i=1,1
         if (itype(i).eq.ntyp1) cycle
 
-        positi=(mod((c(3,i)+c(3,i+1)),boxzsize))
+        positi=(mod(((c(3,i)+c(3,i+1))/2.0d0),boxzsize))
         if (positi.le.0) positi=positi+boxzsize
 C        print *,i
 C first for peptide groups
@@ -9736,11 +10188,12 @@ C lipbufthick is thickenes of lipid buffore
          sslip=sscalelip(fracinbuf)
          ssgradlip=-sscagradlip(fracinbuf)/lipbufthick
          eliptran=eliptran+sslip*pepliptran
-         gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0
-         gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0
+         gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0
+         gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0
 C         gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran
 
-C         print *,"doing sccale for lower part"
+C        print *,"doing sccale for lower part"
+C         print *,i,sslip,fracinbuf,ssgradlip
         elseif (positi.gt.bufliptop) then
          fracinbuf=1.0d0-((bordliptop-positi)/lipbufthick)
          sslip=sscalelip(fracinbuf)
@@ -9749,10 +10202,11 @@ C         print *,"doing sccale for lower part"
          gliptranc(3,i)=gliptranc(3,i)+ssgradlip*pepliptran/2.0d0
          gliptranc(3,i-1)=gliptranc(3,i-1)+ssgradlip*pepliptran/2.0d0
 C         gliptranc(3,i-2)=gliptranc(3,i)+ssgradlip*pepliptran
-          print *, "doing sscalefor top part"
+C          print *, "doing sscalefor top part"
+C         print *,i,sslip,fracinbuf,ssgradlip
         else
          eliptran=eliptran+pepliptran
-         print *,"I am in true lipid"
+C         print *,"I am in true lipid"
         endif
 C       else
 C       eliptran=elpitran+0.0 ! I am in water
@@ -9762,6 +10216,7 @@ C       print *, "nic nie bylo w lipidzie?"
 C now multiply all by the peptide group transfer factor
 C       eliptran=eliptran*pepliptran
 C now the same for side chains
+CV       do i=1,1
        do i=ilip_start,ilip_end
         if (itype(i).eq.ntyp1) cycle
         positi=(mod(c(3,i+nres),boxzsize))
@@ -9769,6 +10224,7 @@ C now the same for side chains
 C       print *,mod(c(3,i+nres),boxzsize),bordlipbot,bordliptop
 c for each residue check if it is in lipid or lipid water border area
 C       respos=mod(c(3,i+nres),boxzsize)
+C       print *,positi,bordlipbot,buflipbot
        if ((positi.gt.bordlipbot)
      & .and.(positi.lt.bordliptop)) then
 C the energy transfer exist
@@ -9780,10 +10236,10 @@ C lipbufthick is thickenes of lipid buffore
          ssgradlip=-sscagradlip(fracinbuf)/lipbufthick
          eliptran=eliptran+sslip*liptranene(itype(i))
          gliptranx(3,i)=gliptranx(3,i)
-     &+ssgradlip*liptranene(itype(i))/2.0d0
-         gliptranc(3,i-1)=
      &+ssgradlip*liptranene(itype(i))
-         print *,"doing sccale for lower part"
+         gliptranc(3,i-1)= gliptranc(3,i-1)
+     &+ssgradlip*liptranene(itype(i))
+C         print *,"doing sccale for lower part"
         elseif (positi.gt.bufliptop) then
          fracinbuf=1.0d0-
      &((bordliptop-positi)/lipbufthick)
@@ -9791,13 +10247,13 @@ C lipbufthick is thickenes of lipid buffore
          ssgradlip=sscagradlip(fracinbuf)/lipbufthick
          eliptran=eliptran+sslip*liptranene(itype(i))
          gliptranx(3,i)=gliptranx(3,i)
-     &+ssgradlip*liptranene(itype(i))/2.0d0
-         gliptranc(3,i-1)=
      &+ssgradlip*liptranene(itype(i))
-          print *, "doing sscalefor top part",sslip,fracinbuf
+         gliptranc(3,i-1)= gliptranc(3,i-1)
+     &+ssgradlip*liptranene(itype(i))
+C          print *, "doing sscalefor top part",sslip,fracinbuf
         else
          eliptran=eliptran+liptranene(itype(i))
-         print *,"I am in true lipid"
+C         print *,"I am in true lipid"
         endif
         endif ! if in lipid or buffor
 C       else
@@ -9805,3 +10261,80 @@ C       eliptran=elpitran+0.0 ! I am in water
        enddo
        return
        end
+C---------------------------------------------------------
+C AFM soubroutine for constant force
+       subroutine AFMforce(Eafmforce)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      real*8 diffafm(3)
+      dist=0.0d0
+      Eafmforce=0.0d0
+      do i=1,3
+      diffafm(i)=c(i,afmend)-c(i,afmbeg)
+      dist=dist+diffafm(i)**2
+      enddo
+      dist=dsqrt(dist)
+      Eafmforce=-forceAFMconst*(dist-distafminit)
+      do i=1,3
+      gradafm(i,afmend-1)=-forceAFMconst*diffafm(i)/dist
+      gradafm(i,afmbeg-1)=forceAFMconst*diffafm(i)/dist
+      enddo
+C      print *,'AFM',Eafmforce
+      return
+      end
+C---------------------------------------------------------
+C AFM subroutine with pseudoconstant velocity
+       subroutine AFMvel(Eafmforce)
+       implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.VAR'
+      include 'COMMON.LOCAL'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.NAMES'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CALC'
+      include 'COMMON.CONTROL'
+      include 'COMMON.SPLITELE'
+      include 'COMMON.SBRIDGE'
+      real*8 diffafm(3)
+C Only for check grad COMMENT if not used for checkgrad
+C      totT=3.0d0
+C--------------------------------------------------------
+C      print *,"wchodze"
+      dist=0.0d0
+      Eafmforce=0.0d0
+      do i=1,3
+      diffafm(i)=c(i,afmend)-c(i,afmbeg)
+      dist=dist+diffafm(i)**2
+      enddo
+      dist=dsqrt(dist)
+      Eafmforce=0.5d0*forceAFMconst
+     & *(distafminit+totTafm*velAFMconst-dist)**2
+C      Eafmforce=-forceAFMconst*(dist-distafminit)
+      do i=1,3
+      gradafm(i,afmend-1)=-forceAFMconst*
+     &(distafminit+totTafm*velAFMconst-dist)
+     &*diffafm(i)/dist
+      gradafm(i,afmbeg-1)=forceAFMconst*
+     &(distafminit+totTafm*velAFMconst-dist)
+     &*diffafm(i)/dist
+      enddo
+C      print *,'AFM',Eafmforce,totTafm*velAFMconst,dist
+      return
+      end
+