Merge branch 'lipid' of mmka.chem.univ.gda.pl:unres into lipid
[unres.git] / source / unres / src_MD-M-newcorr / gen_rand_conf.F
diff --git a/source/unres/src_MD-M-newcorr/gen_rand_conf.F b/source/unres/src_MD-M-newcorr/gen_rand_conf.F
new file mode 100644 (file)
index 0000000..6caa718
--- /dev/null
@@ -0,0 +1,911 @@
+      subroutine gen_rand_conf(nstart,*)
+C Generate random conformation or chain cut and regrowth.
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.LOCAL'
+      include 'COMMON.VAR'
+      include 'COMMON.INTERACT'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.MCM'
+      include 'COMMON.GEO'
+      include 'COMMON.CONTROL'
+      logical overlap,back,fail
+cd    print *,' CG Processor',me,' maxgen=',maxgen
+      maxsi=100
+cd    write (iout,*) 'Gen_Rand_conf: nstart=',nstart
+      if (nstart.lt.5) then
+        it1=iabs(itype(2))
+        phi(4)=gen_phi(4,iabs(itype(2)),iabs(itype(3)))
+c       write(iout,*)'phi(4)=',rad2deg*phi(4)
+        if (nstart.lt.3) theta(3)=gen_theta(iabs(itype(2)),pi,phi(4))
+c       write(iout,*)'theta(3)=',rad2deg*theta(3) 
+        if (it1.ne.10) then
+          nsi=0
+          fail=.true.
+          do while (fail.and.nsi.le.maxsi)
+            call gen_side(it1,theta(3),alph(2),omeg(2),fail)
+            nsi=nsi+1
+          enddo
+          if (nsi.gt.maxsi) return1
+        endif ! it1.ne.10
+        call orig_frame
+        i=4
+        nstart=4
+      else
+        i=nstart
+        nstart=max0(i,4)
+      endif
+
+      maxnit=0
+
+      nit=0
+      niter=0
+      back=.false.
+      do while (i.le.nres .and. niter.lt.maxgen)
+        if (i.lt.nstart) then
+          if(iprint.gt.1) then
+          write (iout,'(/80(1h*)/2a/80(1h*))') 
+     &          'Generation procedure went down to ',
+     &          'chain beginning. Cannot continue...'
+          write (*,'(/80(1h*)/2a/80(1h*))') 
+     &          'Generation procedure went down to ',
+     &          'chain beginning. Cannot continue...'
+          endif
+          return1
+        endif
+       it1=iabs(itype(i-1))
+       it2=iabs(itype(i-2))
+       it=iabs(itype(i))
+c       print *,'Gen_Rand_Conf: i=',i,' it=',it,' it1=',it1,' it2=',it2,
+c    &    ' nit=',nit,' niter=',niter,' maxgen=',maxgen
+       phi(i+1)=gen_phi(i+1,it1,it)
+       if (back) then
+          phi(i)=gen_phi(i+1,it2,it1)
+c         print *,'phi(',i,')=',phi(i)
+         theta(i-1)=gen_theta(it2,phi(i-1),phi(i))
+         if (it2.ne.10) then
+            nsi=0
+            fail=.true.
+            do while (fail.and.nsi.le.maxsi)
+              call gen_side(it2,theta(i-1),alph(i-2),omeg(i-2),fail)
+              nsi=nsi+1
+            enddo
+            if (nsi.gt.maxsi) return1
+          endif
+         call locate_next_res(i-1)
+       endif
+       theta(i)=gen_theta(it1,phi(i),phi(i+1))
+        if (it1.ne.10) then 
+        nsi=0
+        fail=.true.
+        do while (fail.and.nsi.le.maxsi)
+          call gen_side(it1,theta(i),alph(i-1),omeg(i-1),fail)
+          nsi=nsi+1
+        enddo
+        if (nsi.gt.maxsi) return1
+        endif
+       call locate_next_res(i)
+       if (overlap(i-1)) then
+         if (nit.lt.maxnit) then
+           back=.true.
+           nit=nit+1
+          else
+           nit=0
+           if (i.gt.3) then
+             back=.true.
+             i=i-1
+            else
+             write (iout,'(a)') 
+     &  'Cannot generate non-overlaping conformation. Increase MAXNIT.'
+             write (*,'(a)') 
+     &  'Cannot generate non-overlaping conformation. Increase MAXNIT.'
+             return1
+           endif
+          endif
+        else
+         back=.false.
+         nit=0 
+         i=i+1
+        endif
+       niter=niter+1
+      enddo
+      if (niter.ge.maxgen) then
+       write (iout,'(a,2i5)') 
+     & 'Too many trials in conformation generation',niter,maxgen
+       write (*,'(a,2i5)') 
+     & 'Too many trials in conformation generation',niter,maxgen
+       return1
+      endif
+      do j=1,3
+       c(j,nres+1)=c(j,1)
+       c(j,nres+nres)=c(j,nres)
+      enddo
+      return
+      end
+c-------------------------------------------------------------------------
+      logical function overlap(i)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      data redfac /0.5D0/
+      overlap=.false.
+      iti=iabs(itype(i))
+      if (iti.gt.ntyp) return
+C Check for SC-SC overlaps.
+cd    print *,'nnt=',nnt,' nct=',nct
+      do j=nnt,i-1
+        itj=iabs(itype(j))
+        if (j.lt.i-1 .or. ipot.ne.4) then
+          rcomp=sigmaii(iti,itj)
+        else 
+          rcomp=sigma(iti,itj)
+        endif
+cd      print *,'j=',j
+       if (dist(nres+i,nres+j).lt.redfac*rcomp) then
+          overlap=.true.
+c        print *,'overlap, SC-SC: i=',i,' j=',j,
+c     &     ' dist=',dist(nres+i,nres+j),' rcomp=',
+c     &     rcomp
+         return
+        endif
+      enddo
+C Check for overlaps between the added peptide group and the preceding
+C SCs.
+      iteli=itel(i)
+      do j=1,3
+       c(j,maxres2+1)=0.5D0*(c(j,i)+c(j,i+1))
+      enddo
+      do j=nnt,i-2
+       itj=iabs(itype(j))
+cd      print *,'overlap, p-Sc: i=',i,' j=',j,
+cd   &         ' dist=',dist(nres+j,maxres2+1)
+       if (dist(nres+j,maxres2+1).lt.4.0D0*redfac) then
+         overlap=.true.
+         return
+        endif
+      enddo
+C Check for overlaps between the added side chain and the preceding peptide
+C groups.
+      do j=1,nnt-2
+       do k=1,3
+         c(k,maxres2+1)=0.5D0*(c(k,j)+c(k,j+1))
+        enddo
+cd      print *,'overlap, SC-p: i=',i,' j=',j,
+cd   &         ' dist=',dist(nres+i,maxres2+1)
+       if (dist(nres+i,maxres2+1).lt.4.0D0*redfac) then
+          overlap=.true.
+         return
+        endif
+      enddo
+C Check for p-p overlaps
+      do j=1,3
+       c(j,maxres2+2)=0.5D0*(c(j,i)+c(j,i+1))
+      enddo
+      do j=nnt,i-2
+        itelj=itel(j)
+       do k=1,3
+         c(k,maxres2+2)=0.5D0*(c(k,j)+c(k,j+1))
+        enddo
+cd      print *,'overlap, p-p: i=',i,' j=',j,
+cd   &         ' dist=',dist(maxres2+1,maxres2+2)
+        if(iteli.ne.0.and.itelj.ne.0)then
+        if (dist(maxres2+1,maxres2+2).lt.rpp(iteli,itelj)*redfac) then
+          overlap=.true.
+          return
+        endif
+        endif
+      enddo
+      return
+      end
+c--------------------------------------------------------------------------
+      double precision function gen_phi(i,it1,it2)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.BOUNDS'
+c      gen_phi=ran_number(-pi,pi) 
+C 8/13/98 Generate phi using pre-defined boundaries
+      gen_phi=ran_number(phibound(1,i),phibound(2,i)) 
+      return
+      end
+c---------------------------------------------------------------------------
+      double precision function gen_theta(it,gama,gama1)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.LOCAL'
+      include 'COMMON.GEO'
+      double precision y(2),z(2)
+      double precision theta_max,theta_min
+c     print *,'gen_theta: it=',it
+      theta_min=0.05D0*pi
+      theta_max=0.95D0*pi
+      if (dabs(gama).gt.dwapi) then
+        y(1)=dcos(gama)
+        y(2)=dsin(gama)
+      else
+        y(1)=0.0D0
+        y(2)=0.0D0
+      endif
+      if (dabs(gama1).gt.dwapi) then
+        z(1)=dcos(gama1)
+        z(2)=dsin(gama1)
+      else
+       z(1)=0.0D0
+       z(2)=0.0D0
+      endif  
+      thet_pred_mean=a0thet(it)
+      do k=1,2
+        thet_pred_mean=thet_pred_mean+athet(k,it,1,1)*y(k)
+     &     +bthet(k,it,1,1)*z(k)
+      enddo
+      sig=polthet(3,it)
+      do j=2,0,-1
+        sig=sig*thet_pred_mean+polthet(j,it)
+      enddo
+      sig=0.5D0/(sig*sig+sigc0(it))
+      ak=dexp(gthet(1,it)-
+     &0.5D0*((gthet(2,it)-thet_pred_mean)/gthet(3,it))**2)
+c     print '(i5,5(1pe14.4))',it,(gthet(j,it),j=1,3)
+c     print '(5(1pe14.4))',thet_pred_mean,theta0(it),sig,sig0(it),ak
+      theta_temp=binorm(thet_pred_mean,theta0(it),sig,sig0(it),ak) 
+      if (theta_temp.lt.theta_min) theta_temp=theta_min
+      if (theta_temp.gt.theta_max) theta_temp=theta_max
+      gen_theta=theta_temp
+c     print '(a)','Exiting GENTHETA.'
+      return
+      end
+c-------------------------------------------------------------------------
+      subroutine gen_side(it,the,al,om,fail)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.SETUP'
+      include 'COMMON.IOUNITS'
+      double precision MaxBoxLen /10.0D0/
+      double precision Ap_inv(3,3),a(3,3),z(3,maxlob),W1(maxlob),
+     & sumW(0:maxlob),y(2),cm(2),eig(2),box(2,2),work(100),detAp(maxlob)
+      double precision eig_limit /1.0D-8/
+      double precision Big /10.0D0/
+      double precision vec(3,3)
+      logical lprint,fail,lcheck
+      lcheck=.false.
+      lprint=.false.
+      fail=.false.
+      if (the.eq.0.0D0 .or. the.eq.pi) then
+#ifdef MPI
+        write (*,'(a,i4,a,i3,a,1pe14.5)') 
+     & 'CG Processor:',me,' Error in GenSide: it=',it,' theta=',the
+#else
+cd        write (iout,'(a,i3,a,1pe14.5)') 
+cd     &   'Error in GenSide: it=',it,' theta=',the
+#endif
+        fail=.true.
+        return
+      endif
+      tant=dtan(the-pipol)
+      nlobit=nlob(it)
+      if (lprint) then
+#ifdef MPI
+        print '(a,i4,a)','CG Processor:',me,' Enter Gen_Side.'
+        write (iout,'(a,i4,a)') 'Processor:',me,' Enter Gen_Side.'
+#endif
+        print *,'it=',it,' nlobit=',nlobit,' the=',the,' tant=',tant
+        write (iout,*) 'it=',it,' nlobit=',nlobit,' the=',the,
+     &     ' tant=',tant
+      endif
+      do i=1,nlobit
+       zz1=tant-censc(1,i,it)
+        do k=1,3
+          do l=1,3
+            a(k,l)=gaussc(k,l,i,it)
+          enddo
+        enddo
+        detApi=a(2,2)*a(3,3)-a(2,3)**2
+        Ap_inv(2,2)=a(3,3)/detApi
+        Ap_inv(2,3)=-a(2,3)/detApi
+        Ap_inv(3,2)=Ap_inv(2,3)
+        Ap_inv(3,3)=a(2,2)/detApi
+        if (lprint) then
+          write (*,'(/a,i2/)') 'Cluster #',i
+          write (*,'(3(1pe14.5),5x,1pe14.5)') 
+     &    ((a(l,k),l=1,3),censc(k,i,it),k=1,3)
+          write (iout,'(/a,i2/)') 'Cluster #',i
+          write (iout,'(3(1pe14.5),5x,1pe14.5)') 
+     &    ((a(l,k),l=1,3),censc(k,i,it),k=1,3)
+        endif
+        W1i=0.0D0
+        do k=2,3
+          do l=2,3
+            W1i=W1i+a(k,1)*a(l,1)*Ap_inv(k,l)
+          enddo
+        enddo
+        W1i=a(1,1)-W1i
+        W1(i)=dexp(bsc(i,it)-0.5D0*W1i*zz1*zz1)
+c        if (lprint) write(*,'(a,3(1pe15.5)/)')
+c     &          'detAp, W1, anormi',detApi,W1i,anormi
+       do k=2,3
+         zk=censc(k,i,it)
+         do l=2,3
+            zk=zk+zz1*Ap_inv(k,l)*a(l,1)
+          enddo
+         z(k,i)=zk
+        enddo
+        detAp(i)=dsqrt(detApi)
+      enddo
+
+      if (lprint) then
+        print *,'W1:',(w1(i),i=1,nlobit)
+        print *,'detAp:',(detAp(i),i=1,nlobit)
+        print *,'Z'
+        do i=1,nlobit
+          print '(i2,3f10.5)',i,(rad2deg*z(j,i),j=2,3)
+        enddo
+        write (iout,*) 'W1:',(w1(i),i=1,nlobit)
+        write (iout,*) 'detAp:',(detAp(i),i=1,nlobit)
+        write (iout,*) 'Z'
+        do i=1,nlobit
+          write (iout,'(i2,3f10.5)') i,(rad2deg*z(j,i),j=2,3)
+        enddo
+      endif
+      if (lcheck) then
+C Writing the distribution just to check the procedure
+      fac=0.0D0
+      dV=deg2rad**2*10.0D0
+      sum=0.0D0
+      sum1=0.0D0
+      do i=1,nlobit
+        fac=fac+W1(i)/detAp(i)
+      enddo 
+      fac=1.0D0/(2.0D0*fac*pi)
+cd    print *,it,'fac=',fac
+      do ial=90,180,2
+        y(1)=deg2rad*ial
+        do iom=-180,180,5
+          y(2)=deg2rad*iom
+          wart=0.0D0
+          do i=1,nlobit
+            do j=2,3
+              do k=2,3
+                a(j-1,k-1)=gaussc(j,k,i,it)
+              enddo
+            enddo
+            y2=y(2)
+
+            do iii=-1,1
+          
+              y(2)=y2+iii*dwapi
+
+              wykl=0.0D0
+              do j=1,2
+                do k=1,2 
+                  wykl=wykl+a(j,k)*(y(j)-z(j+1,i))*(y(k)-z(k+1,i))
+                enddo
+              enddo
+              wart=wart+W1(i)*dexp(-0.5D0*wykl)
+
+            enddo
+
+            y(2)=y2
+
+          enddo
+c         print *,'y',y(1),y(2),' fac=',fac
+          wart=fac*wart
+          write (20,'(2f10.3,1pd15.5)') y(1)*rad2deg,y(2)*rad2deg,wart
+          sum=sum+wart
+          sum1=sum1+1.0D0
+        enddo
+      enddo
+c     print *,'it=',it,' sum=',sum*dV,' sum1=',sum1*dV
+      return
+      endif
+
+C Calculate the CM of the system
+C
+      do i=1,nlobit
+        W1(i)=W1(i)/detAp(i)
+      enddo
+      sumW(0)=0.0D0
+      do i=1,nlobit
+       sumW(i)=sumW(i-1)+W1(i)
+      enddo
+      cm(1)=z(2,1)*W1(1)
+      cm(2)=z(3,1)*W1(1)
+      do j=2,nlobit
+        cm(1)=cm(1)+z(2,j)*W1(j) 
+        cm(2)=cm(2)+W1(j)*(z(3,1)+pinorm(z(3,j)-z(3,1)))
+      enddo
+      cm(1)=cm(1)/sumW(nlobit)
+      cm(2)=cm(2)/sumW(nlobit)
+      if (cm(1).gt.Big .or. cm(1).lt.-Big .or.
+     & cm(2).gt.Big .or. cm(2).lt.-Big) then
+cd        write (iout,'(a)') 
+cd     & 'Unexpected error in GenSide - CM coordinates too large.'
+cd        write (iout,'(i5,2(1pe14.5))') it,cm(1),cm(2)
+cd        write (*,'(a)') 
+cd     & 'Unexpected error in GenSide - CM coordinates too large.'
+cd        write (*,'(i5,2(1pe14.5))') it,cm(1),cm(2)
+        fail=.true. 
+        return
+      endif
+cd    print *,'CM:',cm(1),cm(2)
+C
+C Find the largest search distance from CM
+C
+      radmax=0.0D0
+      do i=1,nlobit
+       do j=2,3
+         do k=2,3
+           a(j-1,k-1)=gaussc(j,k,i,it) 
+          enddo
+       enddo
+#ifdef NAG
+        call f02faf('N','U',2,a,3,eig,work,100,ifail)
+#else
+        call djacob(2,3,10000,1.0d-10,a,vec,eig)
+#endif
+#ifdef MPI
+        if (lprint) then
+          print *,'*************** CG Processor',me
+          print *,'CM:',cm(1),cm(2)
+          write (iout,*) '*************** CG Processor',me
+          write (iout,*) 'CM:',cm(1),cm(2)
+          print '(A,8f10.5)','Eigenvalues: ',(1.0/dsqrt(eig(k)),k=1,2)
+          write (iout,'(A,8f10.5)')
+     &        'Eigenvalues: ',(1.0/dsqrt(eig(k)),k=1,2)
+        endif
+#endif
+        if (eig(1).lt.eig_limit) then
+          write(iout,'(a)')
+     &     'From Mult_Norm: Eigenvalues of A are too small.'
+          write(*,'(a)')
+     &     'From Mult_Norm: Eigenvalues of A are too small.'
+         fail=.true.
+          return
+        endif
+       radius=0.0D0
+cd      print *,'i=',i
+       do j=1,2
+         radius=radius+pinorm(z(j+1,i)-cm(j))**2
+        enddo
+       radius=dsqrt(radius)+3.0D0/dsqrt(eig(1))
+       if (radius.gt.radmax) radmax=radius
+      enddo
+      if (radmax.gt.pi) radmax=pi
+C
+C Determine the boundaries of the search rectangle.
+C
+      if (lprint) then
+        print '(a,4(1pe14.4))','W1: ',(W1(i),i=1,nlob(it) )
+        print '(a,4(1pe14.4))','radmax: ',radmax
+      endif
+      box(1,1)=dmax1(cm(1)-radmax,0.0D0)
+      box(2,1)=dmin1(cm(1)+radmax,pi)
+      box(1,2)=cm(2)-radmax
+      box(2,2)=cm(2)+radmax
+      if (lprint) then
+#ifdef MPI
+        print *,'CG Processor',me,' Array BOX:'
+#else
+        print *,'Array BOX:'
+#endif
+        print '(4(1pe14.4))',((box(k,j),k=1,2),j=1,2)
+        print '(a,4(1pe14.4))','sumW: ',(sumW(i),i=0,nlob(it) )
+#ifdef MPI
+        write (iout,*)'CG Processor',me,' Array BOX:'
+#else
+        write (iout,*)'Array BOX:'
+#endif
+        write(iout,'(4(1pe14.4))') ((box(k,j),k=1,2),j=1,2)
+        write(iout,'(a,4(1pe14.4))')'sumW: ',(sumW(i),i=0,nlob(it) )
+      endif
+      if (box(1,2).lt.-MaxBoxLen .or. box(2,2).gt.MaxBoxLen) then
+#ifdef MPI
+        write (iout,'(a,i4,a)') 'CG Processor:',me,': bad sampling box.'
+        write (*,'(a,i4,a)') 'CG Processor:',me,': bad sampling box.'
+#else
+c        write (iout,'(a)') 'Bad sampling box.'
+#endif
+        fail=.true.
+        return
+      endif
+      which_lobe=ran_number(0.0D0,sumW(nlobit))
+c     print '(a,1pe14.4)','which_lobe=',which_lobe
+      do i=1,nlobit
+        if (sumW(i-1).le.which_lobe .and. sumW(i).ge.which_lobe) goto 1
+      enddo
+    1 ilob=i
+c     print *,'ilob=',ilob,' nlob=',nlob(it)
+      do i=2,3
+       cm(i-1)=z(i,ilob)
+       do j=2,3
+         a(i-1,j-1)=gaussc(i,j,ilob,it)
+        enddo
+      enddo
+cd    print '(a,i4,a)','CG Processor',me,' Calling MultNorm1.'
+      call mult_norm1(3,2,a,cm,box,y,fail)
+      if (fail) return
+      al=y(1)
+      om=pinorm(y(2))
+cd    print *,'al=',al,' om=',om
+cd    stop
+      return
+      end
+c---------------------------------------------------------------------------
+      double precision function ran_number(x1,x2)
+C Calculate a random real number from the range (x1,x2).
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      double precision x1,x2,fctor
+      data fctor /2147483647.0D0/
+#ifdef MPI
+      include "mpif.h"
+      include 'COMMON.SETUP'
+      ran_number=x1+(x2-x1)*prng_next(me)
+#else
+      call vrnd(ix,1)
+      ran_number=x1+(x2-x1)*ix/fctor
+#endif
+      return
+      end
+c--------------------------------------------------------------------------
+      integer function iran_num(n1,n2)
+C Calculate a random integer number from the range (n1,n2).
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      integer n1,n2,ix
+      real fctor /2147483647.0/
+#ifdef MPI
+      include "mpif.h"
+      include 'COMMON.SETUP'
+      ix=n1+(n2-n1+1)*prng_next(me)
+      if (ix.lt.n1) ix=n1
+      if (ix.gt.n2) ix=n2
+      iran_num=ix
+#else
+      call vrnd(ix,1)
+      ix=n1+(n2-n1+1)*(ix/fctor)
+      if (ix.gt.n2) ix=n2
+      iran_num=ix
+#endif
+      return
+      end
+c--------------------------------------------------------------------------
+      double precision function binorm(x1,x2,sigma1,sigma2,ak)
+      implicit real*8 (a-h,o-z)
+c     print '(a)','Enter BINORM.'
+      alowb=dmin1(x1-3.0D0*sigma1,x2-3.0D0*sigma2)
+      aupb=dmax1(x1+3.0D0*sigma1,x2+3.0D0*sigma2)
+      seg=sigma1/(sigma1+ak*sigma2)
+      alen=ran_number(0.0D0,1.0D0)
+      if (alen.lt.seg) then
+        binorm=anorm_distr(x1,sigma1,alowb,aupb)
+      else
+        binorm=anorm_distr(x2,sigma2,alowb,aupb)
+      endif
+c     print '(a)','Exiting BINORM.'
+      return
+      end
+c-----------------------------------------------------------------------
+c      double precision function anorm_distr(x,sigma,alowb,aupb)
+c      implicit real*8 (a-h,o-z)
+c     print '(a)','Enter ANORM_DISTR.'
+c   10 y=ran_number(alowb,aupb)
+c      expon=dexp(-0.5D0*((y-x)/sigma)**2)
+c      ran=ran_number(0.0D0,1.0D0)
+c      if (expon.lt.ran) goto 10
+c      anorm_distr=y
+c     print '(a)','Exiting ANORM_DISTR.'
+c      return
+c      end
+c-----------------------------------------------------------------------
+        double precision function anorm_distr(x,sigma,alowb,aupb)
+        implicit real*8 (a-h,o-z)
+c  to make a normally distributed deviate with zero mean and unit variance
+c
+        integer iset
+        real fac,gset,rsq,v1,v2,ran1
+        save iset,gset
+        data iset/0/
+        if(iset.eq.0) then
+1               v1=2.0d0*ran_number(0.0d0,1.0d0)-1.0d0
+                v2=2.0d0*ran_number(0.0d0,1.0d0)-1.0d0
+                rsq=v1**2+v2**2
+                if(rsq.ge.1.d0.or.rsq.eq.0.0d0) goto 1
+                fac=sqrt(-2.0d0*log(rsq)/rsq)
+                gset=v1*fac
+                gaussdev=v2*fac
+                iset=1
+        else
+                gaussdev=gset
+                iset=0
+        endif
+        anorm_distr=x+gaussdev*sigma
+        return
+        end
+c------------------------------------------------------------------------ 
+      subroutine mult_norm(lda,n,a,x,fail)
+C
+C Generate the vector X whose elements obey the multiple-normal distribution
+C from exp(-0.5*X'AX). LDA is the leading dimension of the moment matrix A,
+C n is the dimension of the problem. FAIL is set at .TRUE., if the smallest
+C eigenvalue of the matrix A is close to 0.
+C
+      implicit double precision (a-h,o-z)
+      double precision a(lda,n),x(n),eig(100),vec(3,3),work(100)
+      double precision eig_limit /1.0D-8/
+      logical fail
+      fail=.false.
+c     print '(a)','Enter MULT_NORM.'
+C
+C Find the smallest eigenvalue of the matrix A.
+C
+c     do i=1,n
+c       print '(8f10.5)',(a(i,j),j=1,n)
+c     enddo
+#ifdef NAG
+      call f02faf('V','U',2,a,lda,eig,work,100,ifail)
+#else
+      call djacob(2,lda,10000,1.0d-10,a,vec,eig)
+#endif
+c     print '(8f10.5)',(eig(i),i=1,n)
+C     print '(a)'
+c     do i=1,n
+c       print '(8f10.5)',(a(i,j),j=1,n)
+c     enddo
+      if (eig(1).lt.eig_limit) then
+        print *,'From Mult_Norm: Eigenvalues of A are too small.'
+        fail=.true.    
+       return
+      endif
+C 
+C Generate points following the normal distributions along the principal
+C axes of the moment matrix. Store in WORK.
+C
+      do i=1,n
+       sigma=1.0D0/dsqrt(eig(i))
+       alim=-3.0D0*sigma
+       work(i)=anorm_distr(0.0D0,sigma,-alim,alim)
+      enddo
+C
+C Transform the vector of normal variables back to the original basis.
+C
+      do i=1,n
+       xi=0.0D0
+       do j=1,n
+         xi=xi+a(i,j)*work(j)
+        enddo
+       x(i)=xi
+      enddo
+      return
+      end
+c------------------------------------------------------------------------ 
+      subroutine mult_norm1(lda,n,a,z,box,x,fail)
+C
+C Generate the vector X whose elements obey the multi-gaussian multi-dimensional
+C distribution from sum_{i=1}^m W(i)exp[-0.5*X'(i)A(i)X(i)]. LDA is the 
+C leading dimension of the moment matrix A, n is the dimension of the 
+C distribution, nlob is the number of lobes. FAIL is set at .TRUE., if the 
+C smallest eigenvalue of the matrix A is close to 0.
+C
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+#ifdef MPI
+      include 'mpif.h'
+#endif
+      double precision a(lda,n),z(n),x(n),box(n,n)
+      double precision etmp
+      include 'COMMON.IOUNITS'
+#ifdef MP
+      include 'COMMON.SETUP' 
+#endif
+      logical fail
+C 
+C Generate points following the normal distributions along the principal
+C axes of the moment matrix. Store in WORK.
+C
+cd    print *,'CG Processor',me,' entered MultNorm1.'
+cd    print '(2(1pe14.4),3x,1pe14.4)',((a(i,j),j=1,2),z(i),i=1,2)
+cd    do i=1,n
+cd      print *,i,box(1,i),box(2,i)
+cd    enddo
+      istep = 0
+   10 istep = istep + 1
+      if (istep.gt.10000) then
+c        write (iout,'(a,i4,2a)') 'CG Processor: ',me,': too many steps',
+c     & ' in MultNorm1.'
+c        write (*,'(a,i4,2a)') 'CG Processor: ',me,': too many steps',
+c     & ' in MultNorm1.'
+c        write (iout,*) 'box',box
+c        write (iout,*) 'a',a
+c        write (iout,*) 'z',z
+        fail=.true.
+        return
+      endif
+      do i=1,n
+       x(i)=ran_number(box(1,i),box(2,i))
+      enddo
+      ww=0.0D0
+      do i=1,n
+       xi=pinorm(x(i)-z(i))
+       ww=ww+0.5D0*a(i,i)*xi*xi
+       do j=i+1,n
+         ww=ww+a(i,j)*xi*pinorm(x(j)-z(j))
+        enddo
+      enddo
+      dec=ran_number(0.0D0,1.0D0)
+c      print *,(x(i),i=1,n),ww,dexp(-ww),dec
+crc   if (dec.gt.dexp(-ww)) goto 10
+      if(-ww.lt.100) then
+       etmp=dexp(-ww)
+      else
+       return  
+      endif
+      if (dec.gt.etmp) goto 10
+cd    print *,'CG Processor',me,' exitting MultNorm1.'
+      return
+      end
+c
+crc--------------------------------------
+      subroutine overlap_sc(scfail)
+c     Internal and cartesian coordinates must be consistent as input,
+c     and will be up-to-date on return.
+c     At the end of this procedure, scfail is true if there are
+c     overlapping residues left, or false otherwise (success)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.VAR'
+      include 'COMMON.SBRIDGE'
+      include 'COMMON.IOUNITS'
+      logical had_overlaps,fail,scfail
+      integer ioverlap(maxres),ioverlap_last
+
+      had_overlaps=.false.
+      call overlap_sc_list(ioverlap,ioverlap_last)
+      if (ioverlap_last.gt.0) then
+        write (iout,*) '#OVERLAPing residues ',ioverlap_last
+        write (iout,'(20i4)') (ioverlap(k),k=1,ioverlap_last)
+        had_overlaps=.true.
+      endif
+
+      maxsi=1000
+      do k=1,1000
+        if (ioverlap_last.eq.0) exit
+
+        do ires=1,ioverlap_last 
+          i=ioverlap(ires)
+          iti=iabs(itype(i))
+          if (iti.ne.10) then
+            nsi=0
+            fail=.true.
+            do while (fail.and.nsi.le.maxsi)
+              call gen_side(iti,theta(i+1),alph(i),omeg(i),fail)
+              nsi=nsi+1
+            enddo
+            if(fail) goto 999
+          endif
+        enddo
+
+        call chainbuild
+        call overlap_sc_list(ioverlap,ioverlap_last)
+c        write (iout,*) 'Overlaping residues ',ioverlap_last,
+c     &           (ioverlap(j),j=1,ioverlap_last)
+      enddo
+
+      if (k.le.1000.and.ioverlap_last.eq.0) then
+        scfail=.false.
+        if (had_overlaps) then
+          write (iout,*) '#OVERLAPing all corrected after ',k,
+     &         ' random generation'
+        endif
+      else
+        scfail=.true.
+        write (iout,*) '#OVERLAPing NOT all corrected ',ioverlap_last
+        write (iout,'(20i4)') (ioverlap(j),j=1,ioverlap_last)
+      endif
+
+      return
+
+ 999  continue
+      write (iout,'(a30,i5,a12,i4)') 
+     &               '#OVERLAP FAIL in gen_side after',maxsi,
+     &               'iter for RES',i
+      scfail=.true.
+      return
+      end
+
+      subroutine overlap_sc_list(ioverlap,ioverlap_last)
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.GEO'
+      include 'COMMON.LOCAL'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.INTERACT'
+      include 'COMMON.FFIELD'
+      include 'COMMON.VAR'
+      include 'COMMON.CALC'
+      logical fail
+      integer ioverlap(maxres),ioverlap_last
+      data redfac /0.5D0/
+
+      ioverlap_last=0
+C Check for SC-SC overlaps and mark residues
+c      print *,'>>overlap_sc nnt=',nnt,' nct=',nct
+      ind=0
+      do i=iatsc_s,iatsc_e
+        itypi=iabs(itype(i))
+        itypi1=iabs(itype(i+1))
+        xi=c(1,nres+i)
+        yi=c(2,nres+i)
+        zi=c(3,nres+i)
+        dxi=dc_norm(1,nres+i)
+        dyi=dc_norm(2,nres+i)
+        dzi=dc_norm(3,nres+i)
+        dsci_inv=dsc_inv(itypi)
+c
+       do iint=1,nint_gr(i)
+         do j=istart(i,iint),iend(i,iint)
+            ind=ind+1
+            itypj=iabs(itype(j))
+            dscj_inv=dsc_inv(itypj)
+            sig0ij=sigma(itypi,itypj)
+            chi1=chi(itypi,itypj)
+            chi2=chi(itypj,itypi)
+            chi12=chi1*chi2
+            chip1=chip(itypi)
+            chip2=chip(itypj)
+            chip12=chip1*chip2
+            alf1=alp(itypi)   
+            alf2=alp(itypj)   
+            alf12=0.5D0*(alf1+alf2)
+          if (j.gt.i+1) then
+           rcomp=sigmaii(itypi,itypj)
+          else 
+           rcomp=sigma(itypi,itypj)
+          endif
+c         print '(2(a3,2i3),a3,2f10.5)',
+c     &        ' i=',i,iti,' j=',j,itj,' d=',dist(nres+i,nres+j)
+c     &        ,rcomp
+            xj=c(1,nres+j)-xi
+            yj=c(2,nres+j)-yi
+            zj=c(3,nres+j)-zi
+            dxj=dc_norm(1,nres+j)
+            dyj=dc_norm(2,nres+j)
+            dzj=dc_norm(3,nres+j)
+            rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
+            rij=dsqrt(rrij)
+            call sc_angular
+            sigsq=1.0D0/sigsq
+            sig=sig0ij*dsqrt(sigsq)
+            rij_shift=1.0D0/rij-sig+sig0ij
+
+ct          if ( 1.0/rij .lt. redfac*rcomp .or. 
+ct     &       rij_shift.le.0.0D0 ) then
+            if ( rij_shift.le.0.0D0 ) then
+cd           write (iout,'(a,i3,a,i3,a,f10.5,a,3f10.5)')
+cd     &     'overlap SC-SC: i=',i,' j=',j,
+cd     &     ' dist=',dist(nres+i,nres+j),' rcomp=',
+cd     &     rcomp,1.0/rij,rij_shift
+          ioverlap_last=ioverlap_last+1
+          ioverlap(ioverlap_last)=i         
+          do k=1,ioverlap_last-1
+           if (ioverlap(k).eq.i) ioverlap_last=ioverlap_last-1
+          enddo
+          ioverlap_last=ioverlap_last+1
+          ioverlap(ioverlap_last)=j         
+          do k=1,ioverlap_last-1
+           if (ioverlap(k).eq.j) ioverlap_last=ioverlap_last-1
+          enddo 
+         endif
+        enddo
+       enddo
+      enddo
+      return
+      end