introduction of shielding to cluster DEBUG mode
[unres.git] / source / cluster / wham / src-M / energy_p_new.F
index f640679..8203cc4 100644 (file)
@@ -22,6 +22,8 @@ cMS$ATTRIBUTES C ::  proc_proc
       include 'COMMON.INTERACT'
       include 'COMMON.SBRIDGE'
       include 'COMMON.CHAIN'
+      include 'COMMON.SHIELD'
+      include 'COMMON.CONTROL'
       double precision fact(6)
 cd      write(iout, '(a,i2)')'Calling etotal ipot=',ipot
 cd    print *,'nnt=',nnt,' nct=',nct
@@ -47,7 +49,14 @@ C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
 C
 C Calculate electrostatic (H-bonding) energy of the main chain.
 C
-  106 call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
+  106 continue
+      write(iout,*) "shield_mode",shield_mode,ethetacnstr 
+      if (shield_mode.eq.1) then
+       call set_shield_fac
+      else if  (shield_mode.eq.2) then
+       call set_shield_fac2
+      endif
+      call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
 C
 C Calculate excluded-volume interaction energy between peptide groups
 C and side chains.
@@ -102,8 +111,20 @@ c         print *,ecorr,ecorr5,ecorr6,eturn6
       if (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) then
          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
       endif
-c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
+      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
 #ifdef SPLITELE
+      if (shield_mode.gt.0) then
+      etot=fact(1)*wsc*(evdw+fact(6)*evdw_t)+fact(1)*wscp*evdw2
+     & +welec*fact(1)*ees
+     & +fact(1)*wvdwpp*evdw1
+     & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
+     & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
+     & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
+     & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
+     & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
+     & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr
+C     & +wliptran*eliptran
+      else
       etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2+welec*fact(1)*ees
      & +wvdwpp*evdw1
      & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
@@ -112,7 +133,20 @@ c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
      & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
      & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
      & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr
+C     & +wliptran*eliptran
+      endif
 #else
+      if (shield_mode.gt.0) then
+      etot=fact(1)wsc*(evdw+fact(6)*evdw_t)+fact(1)*wscp*evdw2
+     & +welec*fact(1)*(ees+evdw1)
+     & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
+     & +wstrain*ehpb+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
+     & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
+     & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
+     & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
+     & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr
+C     & +wliptran*eliptran
+      else
       etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2
      & +welec*fact(1)*(ees+evdw1)
      & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
@@ -121,7 +155,10 @@ c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
      & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
      & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
      & +wbond*estr+wsccor*fact(1)*esccor+ethetacnstr
+C     & +wliptran*eliptran
+      endif
 #endif
+
       energia(0)=etot
       energia(1)=evdw
 #ifdef SCP14
@@ -181,6 +218,7 @@ C
 #ifdef SPLITELE
       do i=1,nct
         do j=1,3
+      if (shield_mode.eq.0) then
           gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
      &                welec*fact(1)*gelc(j,i)+wvdwpp*gvdwpp(j,i)+
      &                wbond*gradb(j,i)+
@@ -193,14 +231,57 @@ C
      &                wcorr6*fact(5)*gradcorr6(j,i)+
      &                wturn6*fact(5)*gcorr6_turn(j,i)+
      &                wsccor*fact(2)*gsccorc(j,i)
+     &               +wliptran*gliptranc(j,i)
           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
      &                  wbond*gradbx(j,i)+
      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
      &                  wsccor*fact(2)*gsccorx(j,i)
+     &                 +wliptran*gliptranx(j,i)
+        else
+          gradc(j,i,icg)=fact(1)*wsc*gvdwc(j,i)
+     &                +fact(1)*wscp*gvdwc_scp(j,i)+
+     &               welec*fact(1)*gelc(j,i)+fact(1)*wvdwpp*gvdwpp(j,i)+
+     &                wbond*gradb(j,i)+
+     &                wstrain*ghpbc(j,i)+
+     &                wcorr*fact(3)*gradcorr(j,i)+
+     &                wel_loc*fact(2)*gel_loc(j,i)+
+     &                wturn3*fact(2)*gcorr3_turn(j,i)+
+     &                wturn4*fact(3)*gcorr4_turn(j,i)+
+     &                wcorr5*fact(4)*gradcorr5(j,i)+
+     &                wcorr6*fact(5)*gradcorr6(j,i)+
+     &                wturn6*fact(5)*gcorr6_turn(j,i)+
+     &                wsccor*fact(2)*gsccorc(j,i)
+     &               +wliptran*gliptranc(j,i)
+     &                 +welec*gshieldc(j,i)
+     &                 +welec*gshieldc_loc(j,i)
+     &                 +wcorr*gshieldc_ec(j,i)
+     &                 +wcorr*gshieldc_loc_ec(j,i)
+     &                 +wturn3*gshieldc_t3(j,i)
+     &                 +wturn3*gshieldc_loc_t3(j,i)
+     &                 +wturn4*gshieldc_t4(j,i)
+     &                 +wturn4*gshieldc_loc_t4(j,i)
+     &                 +wel_loc*gshieldc_ll(j,i)
+     &                 +wel_loc*gshieldc_loc_ll(j,i)
+
+          gradx(j,i,icg)=fact(1)*wsc*gvdwx(j,i)
+     &                 +fact(1)*wscp*gradx_scp(j,i)+
+     &                  wbond*gradbx(j,i)+
+     &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
+     &                  wsccor*fact(2)*gsccorx(j,i)
+     &                 +wliptran*gliptranx(j,i)
+     &                 +welec*gshieldx(j,i)
+     &                 +wcorr*gshieldx_ec(j,i)
+     &                 +wturn3*gshieldx_t3(j,i)
+     &                 +wturn4*gshieldx_t4(j,i)
+     &                 +wel_loc*gshieldx_ll(j,i)
+
+
+        endif
         enddo
 #else
-      do i=1,nct
+       do i=1,nct
         do j=1,3
+                if (shield_mode.eq.0) then
           gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
      &                welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+
      &                wbond*gradb(j,i)+
@@ -212,11 +293,34 @@ C
      &                wcorr6*fact(5)*gradcorr6(j,i)+
      &                wturn6*fact(5)*gcorr6_turn(j,i)+
      &                wsccor*fact(2)*gsccorc(j,i)
+     &               +wliptran*gliptranc(j,i)
           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
      &                  wbond*gradbx(j,i)+
      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
      &                  wsccor*fact(1)*gsccorx(j,i)
-        enddo
+     &                 +wliptran*gliptranx(j,i)
+              else
+          gradc(j,i,icg)=fact(1)*wsc*gvdwc(j,i)+
+     &                   fact(1)*wscp*gvdwc_scp(j,i)+
+     &                welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+
+     &                wbond*gradb(j,i)+
+     &                wcorr*fact(3)*gradcorr(j,i)+
+     &                wel_loc*fact(2)*gel_loc(j,i)+
+     &                wturn3*fact(2)*gcorr3_turn(j,i)+
+     &                wturn4*fact(3)*gcorr4_turn(j,i)+
+     &                wcorr5*fact(4)*gradcorr5(j,i)+
+     &                wcorr6*fact(5)*gradcorr6(j,i)+
+     &                wturn6*fact(5)*gcorr6_turn(j,i)+
+     &                wsccor*fact(2)*gsccorc(j,i)
+     &               +wliptran*gliptranc(j,i)
+          gradx(j,i,icg)=fact(1)*wsc*gvdwx(j,i)+
+     &                  fact(1)*wscp*gradx_scp(j,i)+
+     &                  wbond*gradbx(j,i)+
+     &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
+     &                  wsccor*fact(1)*gsccorx(j,i)
+     &                 +wliptran*gliptranx(j,i)
+         endif
+        enddo     
 #endif
       enddo
 
@@ -774,7 +878,7 @@ C
       integer icant
       external icant
       integer xshift,yshift,zshift
-      logical energy_dec /.false./
+      logical energy_dec /.true./
 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
       evdw=0.0D0
       evdw_t=0.0d0
@@ -942,13 +1046,13 @@ c     &         aux*e2/eps(itypi,itypj)
 c            if (lprn) then
             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
-c            write (iout,'(2(a3,i3,2x),17(0pf7.3))')
-c     &        restyp(itypi),i,restyp(itypj),j,
-c     &        epsi,sigm,chi1,chi2,chip1,chip2,
-c     &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
-c     &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
-c     &        evdwij
-c             write (iout,*) "pratial sum", evdw,evdw_t
+            write (iout,'(2(a3,i3,2x),17(0pf7.3))')
+     &        restyp(itypi),i,restyp(itypj),j,
+     &        epsi,sigm,chi1,chi2,chip1,chip2,
+     &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
+     &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
+     &        evdwij
+             write (iout,*) "pratial sum", evdw,evdw_t
 c            endif
             if (calc_grad) then
 C Calculate gradient components.
@@ -1837,6 +1941,8 @@ C
       include 'COMMON.TORSION'
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
+      include 'COMMON.SHIELD'
+
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
@@ -1907,15 +2013,15 @@ cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
         gcorr_loc(i)=0.0d0
       enddo
       do i=iatel_s,iatel_e
-          if (i.eq.1) then
+C          if (i.eq.1) then
            if (itype(i).eq.ntyp1.or. itype(i+1).eq.ntyp1
-     &  .or. itype(i+2).eq.ntyp1) cycle
-          else
-        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
-     &  .or. itype(i+2).eq.ntyp1
-     &  .or. itype(i-1).eq.ntyp1
+C     &  .or. itype(i+2).eq.ntyp1) cycle
+C          else
+C        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C     &  .or. itype(i+2).eq.ntyp1
+C     &  .or. itype(i-1).eq.ntyp1
      &) cycle
-         endif
+C         endif
         if (itel(i).eq.0) goto 1215
         dxi=dc(1,i)
         dyi=dc(2,i)
@@ -1935,16 +2041,16 @@ cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
         num_conti=0
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         do j=ielstart(i),ielend(i)
-          if (j.eq.1) then
-           if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1
-     & .or.itype(j+2).eq.ntyp1
-     &) cycle
-          else
+          if (j.le.1) cycle
+C           if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1
+C     & .or.itype(j+2).eq.ntyp1
+C     &) cycle
+C          else
           if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1
-     & .or.itype(j+2).eq.ntyp1
-     & .or.itype(j-1).eq.ntyp1
+C     & .or.itype(j+2).eq.ntyp1
+C     & .or.itype(j-1).eq.ntyp1
      &) cycle
-         endif
+C         endif
           if (itel(j).eq.0) goto 1216
           ind=ind+1
           iteli=itel(i)
@@ -1975,7 +2081,7 @@ C End diagnostics
           if (yj.lt.0) yj=yj+boxysize
           zj=mod(zj,boxzsize)
           if (zj.lt.0) zj=zj+boxzsize
-      dist_init=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+      dist_init=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
       xj_safe=xj
       yj_safe=yj
       zj_safe=zj
@@ -1986,7 +2092,7 @@ C End diagnostics
           xj=xj_safe+xshift*boxxsize
           yj=yj_safe+yshift*boxysize
           zj=zj_safe+zshift*boxzsize
-          dist_temp=(xj-xi)**2+(yj-yi)**2+(zj-zi)**2
+          dist_temp=(xj-xmedi)**2+(yj-ymedi)**2+(zj-zmedi)**2
           if(dist_temp.lt.dist_init) then
             dist_init=dist_temp
             xj_temp=xj
@@ -2032,7 +2138,20 @@ c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
 c          write (iout,*) "i",i,iteli," j",j,itelj," eesij",eesij
 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
+          if (shield_mode.gt.0) then
+C          fac_shield(i)=0.4
+C          fac_shield(j)=0.6
+          el1=el1*fac_shield(i)**2*fac_shield(j)**2
+          el2=el2*fac_shield(i)**2*fac_shield(j)**2
+          eesij=(el1+el2)
           ees=ees+eesij
+          else
+          fac_shield(i)=1.0
+          fac_shield(j)=1.0
+          eesij=(el1+el2)
+          ees=ees+eesij
+          endif
+C          ees=ees+eesij
           evdw1=evdw1+evdwij*sss
 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
@@ -2055,6 +2174,63 @@ C
           ggg(1)=facel*xj
           ggg(2)=facel*yj
           ggg(3)=facel*zj
+
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eesij/fac_shield(i)
+     &      *2.0
+           gshieldx(k,iresshield)=gshieldx(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield
+C           gshieldc_loc(k,iresshield)=gshieldc_loc(k,iresshield)
+C     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C             if (iresshield.gt.i) then
+C               do ishi=i+1,iresshield-1
+C                gshieldc(k,ishi)=gshieldc(k,ishi)+rlocshield
+C     & +grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C
+C              enddo
+C             else
+C               do ishi=iresshield,i
+C                gshieldc(k,ishi)=gshieldc(k,ishi)-rlocshield
+C     & -grad_shield_loc(k,ilist,i)*eesij/fac_shield(i)
+C
+C               enddo
+C              endif
+C           enddo
+C          enddo
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eesij/fac_shield(j)
+     &     *2.0
+           gshieldx(k,iresshield)=gshieldx(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eesij/fac_shield(j)*2.0
+           gshieldc(k,iresshield-1)=gshieldc(k,iresshield-1)+rlocshield
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc(k,i)=gshieldc(k,i)+
+     &              grad_shield(k,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,j)=gshieldc(k,j)+
+     &              grad_shield(k,j)*eesij/fac_shield(j)*2.0
+            gshieldc(k,i-1)=gshieldc(k,i-1)+
+     &              grad_shield(k,i)*eesij/fac_shield(i)*2.0
+            gshieldc(k,j-1)=gshieldc(k,j-1)+
+     &              grad_shield(k,j)*eesij/fac_shield(j)*2.0
+
+           enddo
+           endif
+
           do k=1,3
             ghalf=0.5D0*ggg(k)
             gelc(k,i)=gelc(k,i)+ghalf
@@ -2138,15 +2314,19 @@ cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
 cd   &          (dcosg(k),k=1,3)
           do k=1,3
             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
+     &      *fac_shield(i)**2*fac_shield(j)**2
           enddo
           do k=1,3
             ghalf=0.5D0*ggg(k)
             gelc(k,i)=gelc(k,i)+ghalf
      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &           *fac_shield(i)**2*fac_shield(j)**2
+
             gelc(k,j)=gelc(k,j)+ghalf
      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &           *fac_shield(i)**2*fac_shield(j)**2
           enddo
           do k=i+1,j-1
             do l=1,3
@@ -2394,16 +2574,70 @@ C Contribution to the local-electrostatic energy coming from the i-j pair
      &     +a33*muij(4)
 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
 cd          write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
+          if (shield_mode.eq.0) then
+           fac_shield(i)=1.0
+           fac_shield(j)=1.0
+C          else
+C           fac_shield(i)=0.4
+C           fac_shield(j)=0.6
+          endif
+          eel_loc_ij=eel_loc_ij
+     &    *fac_shield(i)*fac_shield(j)
           eel_loc=eel_loc+eel_loc_ij
 C Partial derivatives in virtual-bond dihedral angles gamma
           if (calc_grad) then
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eel_loc_ij
+     &                                          /fac_shield(i)
+C     &      *2.0
+           gshieldx_ll(k,iresshield)=gshieldx_ll(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,iresshield-1)=gshieldc_ll(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eel_loc_ij
+     &                                       /fac_shield(j)
+C     &     *2.0
+           gshieldx_ll(k,iresshield)=gshieldx_ll(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eel_loc_ij/fac_shield(j)
+           gshieldc_ll(k,iresshield-1)=gshieldc_ll(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+          do k=1,3
+            gshieldc_ll(k,i)=gshieldc_ll(k,i)+
+     &              grad_shield(k,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,j)=gshieldc_ll(k,j)+
+     &              grad_shield(k,j)*eel_loc_ij/fac_shield(j)
+            gshieldc_ll(k,i-1)=gshieldc_ll(k,i-1)+
+     &              grad_shield(k,i)*eel_loc_ij/fac_shield(i)
+            gshieldc_ll(k,j-1)=gshieldc_ll(k,j-1)+
+     &              grad_shield(k,j)*eel_loc_ij/fac_shield(j)
+           enddo
+           endif
           if (i.gt.1)
      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
+     &    *fac_shield(i)*fac_shield(j)
           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
+     &    *fac_shield(i)*fac_shield(j)
+
 cd          call checkint3(i,j,mu1,mu2,a22,a23,a32,a33,acipa,eel_loc_ij)
 cd          write(iout,*) 'agg  ',agg
 cd          write(iout,*) 'aggi ',aggi
@@ -2415,6 +2649,8 @@ C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
           do l=1,3
             ggg(l)=agg(l,1)*muij(1)+
      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
+     &    *fac_shield(i)*fac_shield(j)
+
           enddo
           do k=i+2,j2
             do l=1,3
@@ -2425,12 +2661,20 @@ C Remaining derivatives of eello
           do l=1,3
             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
+     &    *fac_shield(i)*fac_shield(j)
+
             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
+     &    *fac_shield(i)*fac_shield(j)
+
             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
+     &    *fac_shield(i)*fac_shield(j)
+
             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
+     &    *fac_shield(i)*fac_shield(j)
+
           enddo
           endif
           ENDIF
@@ -2536,9 +2780,21 @@ c               fac3=dsqrt(-ael6i)/r0ij**3
                 fac3=dsqrt(-ael6i)*r3ij
                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
                 ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
+                if (shield_mode.eq.0) then
+                fac_shield(i)=1.0d0
+                fac_shield(j)=1.0d0
+                else
+                ees0plist(num_conti,i)=j
+C                fac_shield(i)=0.4d0
+C                fac_shield(j)=0.6d0
+                endif
 c               ees0mij=0.0D0
                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
+     &          *fac_shield(i)*fac_shield(j)
+
                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
+     &          *fac_shield(i)*fac_shield(j)
+
 C Diagnostics. Comment out or remove after debugging!
 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
@@ -2603,17 +2859,29 @@ C Derivatives due to the contact function
                   gacontp_hb1(k,num_conti,i)=ghalfp
      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontp_hb2(k,num_conti,i)=ghalfp
      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontp_hb3(k,num_conti,i)=gggp(k)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb1(k,num_conti,i)=ghalfm
      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb2(k,num_conti,i)=ghalfm
      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
+     &          *fac_shield(i)*fac_shield(j)
+
                   gacontm_hb3(k,num_conti,i)=gggm(k)
+     &          *fac_shield(i)*fac_shield(j)
+
                 enddo
                 endif
 C Diagnostics. Comment out or remove after debugging!
@@ -2659,6 +2927,8 @@ C Third- and fourth-order contributions from turns
       include 'COMMON.TORSION'
       include 'COMMON.VECTORS'
       include 'COMMON.FFIELD'
+      include 'COMMON.SHIELD'
+
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
@@ -2667,6 +2937,18 @@ C Third- and fourth-order contributions from turns
      &    aggj(3,4),aggj1(3,4),a_temp(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1,j2
       if (j.eq.i+2) then
+      if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+C     & .or.((i+5).gt.nres)
+C     & .or.((i-1).le.0)
+C end of changes suggested by Ana
+     &    .or. itype(i+2).eq.ntyp1
+     &    .or. itype(i+3).eq.ntyp1
+C     &    .or. itype(i+5).eq.ntyp1
+C     &    .or. itype(i).eq.ntyp1
+C     &    .or. itype(i-1).eq.ntyp1
+     &    ) goto 179
+
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C               Third-order contributions
@@ -2681,22 +2963,80 @@ cd        call checkint_turn3(i,a_temp,eello_turn3_num)
         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
         call transpose2(auxmat(1,1),auxmat1(1,1))
         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+        if (shield_mode.eq.0) then
+        fac_shield(i)=1.0
+        fac_shield(j)=1.0
+C        else
+C        fac_shield(i)=0.4
+C        fac_shield(j)=0.6
+        endif
         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
+     &  *fac_shield(i)*fac_shield(j)
+        eello_t3=0.5d0*(pizda(1,1)+pizda(2,2))
+     &  *fac_shield(i)*fac_shield(j)
+
 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
 cd     &    ' eello_turn3_num',4*eello_turn3_num
         if (calc_grad) then
+C Derivatives in shield mode
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eello_t3/fac_shield(i)
+C     &      *2.0
+           gshieldx_t3(k,iresshield)=gshieldx_t3(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,iresshield-1)=gshieldc_t3(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eello_t3/fac_shield(j)
+C     &     *2.0
+           gshieldx_t3(k,iresshield)=gshieldx_t3(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eello_t3/fac_shield(j)
+           gshieldc_t3(k,iresshield-1)=gshieldc_t3(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc_t3(k,i)=gshieldc_t3(k,i)+
+     &              grad_shield(k,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,j)=gshieldc_t3(k,j)+
+     &              grad_shield(k,j)*eello_t3/fac_shield(j)
+            gshieldc_t3(k,i-1)=gshieldc_t3(k,i-1)+
+     &              grad_shield(k,i)*eello_t3/fac_shield(i)
+            gshieldc_t3(k,j-1)=gshieldc_t3(k,j-1)+
+     &              grad_shield(k,j)*eello_t3/fac_shield(j)
+           enddo
+           endif
+
 C Derivatives in gamma(i)
         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
         call transpose2(auxmat2(1,1),pizda(1,1))
         call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+
 C Derivatives in gamma(i+1)
         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
         call transpose2(auxmat2(1,1),pizda(1,1))
         call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
      &    +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+
 C Cartesian derivatives
         do l=1,3
           a_temp(1,1)=aggi(l,1)
@@ -2706,6 +3046,8 @@ C Cartesian derivatives
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,i)=gcorr3_turn(l,i)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+
           a_temp(1,1)=aggi1(l,1)
           a_temp(1,2)=aggi1(l,2)
           a_temp(2,1)=aggi1(l,3)
@@ -2713,6 +3055,8 @@ C Cartesian derivatives
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+
           a_temp(1,1)=aggj(l,1)
           a_temp(1,2)=aggj(l,2)
           a_temp(2,1)=aggj(l,3)
@@ -2720,6 +3064,8 @@ C Cartesian derivatives
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,j)=gcorr3_turn(l,j)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+
           a_temp(1,1)=aggj1(l,1)
           a_temp(1,2)=aggj1(l,2)
           a_temp(2,1)=aggj1(l,3)
@@ -2727,9 +3073,24 @@ C Cartesian derivatives
           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
+     &   *fac_shield(i)*fac_shield(j)
+
         enddo
         endif
+  179 continue
       else if (j.eq.i+3 .and. itype(i+2).ne.ntyp1) then
+      if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+C changes suggested by Ana to avoid out of bounds
+C     & .or.((i+5).gt.nres)
+C     & .or.((i-1).le.0)
+C end of changes suggested by Ana
+     &    .or. itype(i+3).eq.ntyp1
+     &    .or. itype(i+4).eq.ntyp1
+C     &    .or. itype(i+5).eq.ntyp1
+     &    .or. itype(i).eq.ntyp1
+C     &    .or. itype(i-1).eq.ntyp1
+     &    ) goto 178
+
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C               Fourth-order contributions
@@ -2757,11 +3118,64 @@ cd        call checkint_turn4(i,a_temp,eello_turn4_num)
         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
+        if (shield_mode.eq.0) then
+        fac_shield(i)=1.0
+        fac_shield(j)=1.0
+C        else
+C        fac_shield(i)=0.4
+C        fac_shield(j)=0.6
+        endif
         eello_turn4=eello_turn4-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+        eello_t4=-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
 cd     &    ' eello_turn4_num',8*eello_turn4_num
 C Derivatives in gamma(i)
         if (calc_grad) then
+          if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &  (shield_mode.gt.0)) then
+C          print *,i,j     
+
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,i)*eello_t4/fac_shield(i)
+C     &      *2.0
+           gshieldx_t4(k,iresshield)=gshieldx_t4(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,iresshield-1)=gshieldc_t4(k,iresshield-1)
+     &      +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do k=1,3
+           rlocshield=grad_shield_side(k,ilist,j)*eello_t4/fac_shield(j)
+C     &     *2.0
+           gshieldx_t4(k,iresshield)=gshieldx_t4(k,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(k,ilist,j)*eello_t4/fac_shield(j)
+           gshieldc_t4(k,iresshield-1)=gshieldc_t4(k,iresshield-1)
+     &             +rlocshield
+
+           enddo
+          enddo
+
+          do k=1,3
+            gshieldc_t4(k,i)=gshieldc_t4(k,i)+
+     &              grad_shield(k,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,j)=gshieldc_t4(k,j)+
+     &              grad_shield(k,j)*eello_t4/fac_shield(j)
+            gshieldc_t4(k,i-1)=gshieldc_t4(k,i-1)+
+     &              grad_shield(k,i)*eello_t4/fac_shield(i)
+            gshieldc_t4(k,j-1)=gshieldc_t4(k,j-1)+
+     &              grad_shield(k,j)*eello_t4/fac_shield(j)
+           enddo
+           endif
+
         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
@@ -2769,6 +3183,8 @@ C Derivatives in gamma(i)
         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
 C Derivatives in gamma(i+1)
         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
@@ -2777,6 +3193,8 @@ C Derivatives in gamma(i+1)
         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
 C Derivatives in gamma(i+2)
         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
@@ -2788,6 +3206,8 @@ C Derivatives in gamma(i+2)
         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
 C Cartesian derivatives
 C Derivatives of this turn contributions in DC(i+2)
         if (j.lt.nres-1) then
@@ -2807,6 +3227,8 @@ C Derivatives of this turn contributions in DC(i+2)
             s3=0.5d0*(pizda(1,1)+pizda(2,2))
             ggg(l)=-(s1+s2+s3)
             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
           enddo
         endif
 C Remaining derivatives of this turn contribution
@@ -2825,6 +3247,8 @@ C Remaining derivatives of this turn contribution
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
           a_temp(1,1)=aggi1(l,1)
           a_temp(1,2)=aggi1(l,2)
           a_temp(2,1)=aggi1(l,3)
@@ -2839,6 +3263,8 @@ C Remaining derivatives of this turn contribution
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
           a_temp(1,1)=aggj(l,1)
           a_temp(1,2)=aggj(l,2)
           a_temp(2,1)=aggj(l,3)
@@ -2853,6 +3279,8 @@ C Remaining derivatives of this turn contribution
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
           a_temp(1,1)=aggj1(l,1)
           a_temp(1,2)=aggj1(l,2)
           a_temp(2,1)=aggj1(l,3)
@@ -2867,8 +3295,11 @@ C Remaining derivatives of this turn contribution
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
+     &  *fac_shield(i)*fac_shield(j)
+
         enddo
         endif
+  178 continue
       endif          
       return
       end
@@ -5549,6 +5980,8 @@ c------------------------------------------------------------------------------
       include 'COMMON.DERIV'
       include 'COMMON.INTERACT'
       include 'COMMON.CONTACTS'
+      include 'COMMON.SHIELD'
+
       double precision gx(3),gx1(3)
       logical lprn
       lprn=.false.
@@ -5606,7 +6039,85 @@ C Calculate multi-body contributions to the gradient.
      &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
      &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
         enddo
-      enddo 
+      enddo
+      if (shield_mode.gt.0) then
+       j=ees0plist(jj,i)
+       l=ees0plist(kk,k)
+C        print *,i,j,fac_shield(i),fac_shield(j),
+C     &fac_shield(k),fac_shield(l)
+        if ((fac_shield(i).gt.0).and.(fac_shield(j).gt.0).and.
+     &      (fac_shield(k).gt.0).and.(fac_shield(l).gt.0)) then
+          do ilist=1,ishield_list(i)
+           iresshield=shield_list(ilist,i)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,i)*ehbcorr/fac_shield(i)
+C     &      *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &+rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(j)
+           iresshield=shield_list(ilist,j)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,j)*ehbcorr/fac_shield(j)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,j)*ehbcorr/fac_shield(j)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(k)
+           iresshield=shield_list(ilist,k)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,k)*ehbcorr/fac_shield(k)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,k)*ehbcorr/fac_shield(k)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+          do ilist=1,ishield_list(l)
+           iresshield=shield_list(ilist,l)
+           do m=1,3
+           rlocshield=grad_shield_side(m,ilist,l)*ehbcorr/fac_shield(l)
+C     &     *2.0
+           gshieldx_ec(m,iresshield)=gshieldx_ec(m,iresshield)+
+     &              rlocshield
+     & +grad_shield_loc(m,ilist,l)*ehbcorr/fac_shield(l)
+           gshieldc_ec(m,iresshield-1)=gshieldc_ec(m,iresshield-1)
+     &     +rlocshield
+           enddo
+          enddo
+C          print *,gshieldx(m,iresshield)
+          do m=1,3
+            gshieldc_ec(m,i)=gshieldc_ec(m,i)+
+     &              grad_shield(m,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,j)=gshieldc_ec(m,j)+
+     &              grad_shield(m,j)*ehbcorr/fac_shield(j)
+            gshieldc_ec(m,i-1)=gshieldc_ec(m,i-1)+
+     &              grad_shield(m,i)*ehbcorr/fac_shield(i)
+            gshieldc_ec(m,j-1)=gshieldc_ec(m,j-1)+
+     &              grad_shield(m,j)*ehbcorr/fac_shield(j)
+
+            gshieldc_ec(m,k)=gshieldc_ec(m,k)+
+     &              grad_shield(m,k)*ehbcorr/fac_shield(k)
+            gshieldc_ec(m,l)=gshieldc_ec(m,l)+
+     &              grad_shield(m,l)*ehbcorr/fac_shield(l)
+            gshieldc_ec(m,k-1)=gshieldc_ec(m,k-1)+
+     &              grad_shield(m,k)*ehbcorr/fac_shield(k)
+            gshieldc_ec(m,l-1)=gshieldc_ec(m,l-1)+
+     &              grad_shield(m,l)*ehbcorr/fac_shield(l)
+
+           enddo
+      endif
+      endif
       endif
       ehbcorr=ekont*ees
       return
@@ -7883,4 +8394,340 @@ C-----------------------------------------------------------------------
       return
       end
 C-----------------------------------------------------------------------
+C first for shielding is setting of function of side-chains
+       subroutine set_shield_fac2
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SHIELD'
+      include 'COMMON.INTERACT'
+C this is the squar root 77 devided by 81 the epislion in lipid (in protein)
+      double precision div77_81/0.974996043d0/,
+     &div4_81/0.2222222222d0/,sh_frac_dist_grad(3)
+
+C the vector between center of side_chain and peptide group
+       double precision pep_side(3),long,side_calf(3),
+     &pept_group(3),costhet_grad(3),cosphi_grad_long(3),
+     &cosphi_grad_loc(3),pep_side_norm(3),side_calf_norm(3)
+C the line belowe needs to be changed for FGPROC>1
+      do i=1,nres-1
+      if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle
+      ishield_list(i)=0
+Cif there two consequtive dummy atoms there is no peptide group between them
+C the line below has to be changed for FGPROC>1
+      VolumeTotal=0.0
+      do k=1,nres
+       if ((itype(k).eq.ntyp1).or.(itype(k).eq.10)) cycle
+       dist_pep_side=0.0
+       dist_side_calf=0.0
+       do j=1,3
+C first lets set vector conecting the ithe side-chain with kth side-chain
+      pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0
+C      pep_side(j)=2.0d0
+C and vector conecting the side-chain with its proper calfa
+      side_calf(j)=c(j,k+nres)-c(j,k)
+C      side_calf(j)=2.0d0
+      pept_group(j)=c(j,i)-c(j,i+1)
+C lets have their lenght
+      dist_pep_side=pep_side(j)**2+dist_pep_side
+      dist_side_calf=dist_side_calf+side_calf(j)**2
+      dist_pept_group=dist_pept_group+pept_group(j)**2
+      enddo
+       dist_pep_side=dsqrt(dist_pep_side)
+       dist_pept_group=dsqrt(dist_pept_group)
+       dist_side_calf=dsqrt(dist_side_calf)
+      do j=1,3
+        pep_side_norm(j)=pep_side(j)/dist_pep_side
+        side_calf_norm(j)=dist_side_calf
+      enddo
+C now sscale fraction
+       sh_frac_dist=-(dist_pep_side-rpp(1,1)-buff_shield)/buff_shield
+C       print *,buff_shield,"buff"
+C now sscale
+        if (sh_frac_dist.le.0.0) cycle
+C If we reach here it means that this side chain reaches the shielding sphere
+C Lets add him to the list for gradient       
+        ishield_list(i)=ishield_list(i)+1
+C ishield_list is a list of non 0 side-chain that contribute to factor gradient
+C this list is essential otherwise problem would be O3
+        shield_list(ishield_list(i),i)=k
+C Lets have the sscale value
+        if (sh_frac_dist.gt.1.0) then
+         scale_fac_dist=1.0d0
+         do j=1,3
+         sh_frac_dist_grad(j)=0.0d0
+         enddo
+        else
+         scale_fac_dist=-sh_frac_dist*sh_frac_dist
+     &                   *(2.0d0*sh_frac_dist-3.0d0)
+         fac_help_scale=6.0d0*(sh_frac_dist-sh_frac_dist**2)
+     &                  /dist_pep_side/buff_shield*0.5d0
+C remember for the final gradient multiply sh_frac_dist_grad(j) 
+C for side_chain by factor -2 ! 
+         do j=1,3
+         sh_frac_dist_grad(j)=fac_help_scale*pep_side(j)
+C         sh_frac_dist_grad(j)=0.0d0
+C         scale_fac_dist=1.0d0
+C         print *,"jestem",scale_fac_dist,fac_help_scale,
+C     &                    sh_frac_dist_grad(j)
+         enddo
+        endif
+C this is what is now we have the distance scaling now volume...
+      short=short_r_sidechain(itype(k))
+      long=long_r_sidechain(itype(k))
+      costhet=1.0d0/dsqrt(1.0d0+short**2/dist_pep_side**2)
+      sinthet=short/dist_pep_side*costhet
+C now costhet_grad
+C       costhet=0.6d0
+C       sinthet=0.8
+       costhet_fac=costhet**3*short**2*(-0.5d0)/dist_pep_side**4
+C       sinthet_fac=costhet**2*0.5d0*(short**3/dist_pep_side**4*costhet
+C     &             -short/dist_pep_side**2/costhet)
+C       costhet_fac=0.0d0
+       do j=1,3
+         costhet_grad(j)=costhet_fac*pep_side(j)
+       enddo
+C remember for the final gradient multiply costhet_grad(j) 
+C for side_chain by factor -2 !
+C fac alfa is angle between CB_k,CA_k, CA_i,CA_i+1
+C pep_side0pept_group is vector multiplication  
+      pep_side0pept_group=0.0d0
+      do j=1,3
+      pep_side0pept_group=pep_side0pept_group+pep_side(j)*side_calf(j)
+      enddo
+      cosalfa=(pep_side0pept_group/
+     & (dist_pep_side*dist_side_calf))
+      fac_alfa_sin=1.0d0-cosalfa**2
+      fac_alfa_sin=dsqrt(fac_alfa_sin)
+      rkprim=fac_alfa_sin*(long-short)+short
+C      rkprim=short
+
+C now costhet_grad
+       cosphi=1.0d0/dsqrt(1.0d0+rkprim**2/dist_pep_side**2)
+C       cosphi=0.6
+       cosphi_fac=cosphi**3*rkprim**2*(-0.5d0)/dist_pep_side**4
+       sinphi=rkprim/dist_pep_side/dsqrt(1.0d0+rkprim**2/
+     &      dist_pep_side**2)
+C       sinphi=0.8
+       do j=1,3
+         cosphi_grad_long(j)=cosphi_fac*pep_side(j)
+     &+cosphi**3*0.5d0/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa/
+     &((dist_pep_side*dist_side_calf))*
+     &((side_calf(j))-cosalfa*
+     &((pep_side(j)/dist_pep_side)*dist_side_calf))
+C       cosphi_grad_long(j)=0.0d0
+        cosphi_grad_loc(j)=cosphi**3*0.5d0/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa
+     &/((dist_pep_side*dist_side_calf))*
+     &(pep_side(j)-
+     &cosalfa*side_calf(j)/dist_side_calf*dist_pep_side)
+C       cosphi_grad_loc(j)=0.0d0
+       enddo
+C      print *,sinphi,sinthet
+      VofOverlap=VSolvSphere/2.0d0*(1.0d0-dsqrt(1.0d0-sinphi*sinthet))
+     &                    /VSolvSphere_div
+C     &                    *wshield
+C now the gradient...
+      do j=1,3
+      grad_shield(j,i)=grad_shield(j,i)
+C gradient po skalowaniu
+     &                +(sh_frac_dist_grad(j)*VofOverlap
+C  gradient po costhet
+     &       +scale_fac_dist*VSolvSphere/VSolvSphere_div/4.0d0*
+     &(1.0d0/(-dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinphi/sinthet*costhet*costhet_grad(j)
+     &      +sinthet/sinphi*cosphi*cosphi_grad_long(j)))
+     & )*wshield
+C grad_shield_side is Cbeta sidechain gradient
+      grad_shield_side(j,ishield_list(i),i)=
+     &        (sh_frac_dist_grad(j)*-2.0d0
+     &        *VofOverlap
+     &       -scale_fac_dist*VSolvSphere/VSolvSphere_div/2.0d0*
+     &(1.0d0/(-dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinphi/sinthet*costhet*costhet_grad(j)
+     &      +sinthet/sinphi*cosphi*cosphi_grad_long(j)))
+     &       )*wshield
+
+       grad_shield_loc(j,ishield_list(i),i)=
+     &       scale_fac_dist*VSolvSphere/VSolvSphere_div/2.0d0*
+     &(1.0d0/(dsqrt(1.0d0-sinphi*sinthet))*(
+     &       sinthet/sinphi*cosphi*cosphi_grad_loc(j)
+     &        ))
+     &        *wshield
+      enddo
+      VolumeTotal=VolumeTotal+VofOverlap*scale_fac_dist
+      enddo
+      fac_shield(i)=VolumeTotal*wshield+(1.0d0-wshield)
+C      write(2,*) "TOTAL VOLUME",i,VolumeTotal,fac_shield(i)
+      enddo
+      return
+      end
+C first for shielding is setting of function of side-chains
+       subroutine set_shield_fac
+      implicit real*8 (a-h,o-z)
+      include 'DIMENSIONS'
+      include 'COMMON.CHAIN'
+      include 'COMMON.DERIV'
+      include 'COMMON.IOUNITS'
+      include 'COMMON.SHIELD'
+      include 'COMMON.INTERACT'
+C this is the squar root 77 devided by 81 the epislion in lipid (in protein)
+      double precision div77_81/0.974996043d0/,
+     &div4_81/0.2222222222d0/,sh_frac_dist_grad(3)
+
+C the vector between center of side_chain and peptide group
+       double precision pep_side(3),long,side_calf(3),
+     &pept_group(3),costhet_grad(3),cosphi_grad_long(3),
+     &cosphi_grad_loc(3),pep_side_norm(3),side_calf_norm(3)
+C the line belowe needs to be changed for FGPROC>1
+      do i=1,nres-1
+      if ((itype(i).eq.ntyp1).and.itype(i+1).eq.ntyp1) cycle
+      ishield_list(i)=0
+Cif there two consequtive dummy atoms there is no peptide group between them
+C the line below has to be changed for FGPROC>1
+      VolumeTotal=0.0
+      do k=1,nres
+       if ((itype(k).eq.ntyp1).or.(itype(k).eq.10)) cycle
+       dist_pep_side=0.0
+       dist_side_calf=0.0
+       do j=1,3
+C first lets set vector conecting the ithe side-chain with kth side-chain
+      pep_side(j)=c(j,k+nres)-(c(j,i)+c(j,i+1))/2.0d0
+C      pep_side(j)=2.0d0
+C and vector conecting the side-chain with its proper calfa
+      side_calf(j)=c(j,k+nres)-c(j,k)
+C      side_calf(j)=2.0d0
+      pept_group(j)=c(j,i)-c(j,i+1)
+C lets have their lenght
+      dist_pep_side=pep_side(j)**2+dist_pep_side
+      dist_side_calf=dist_side_calf+side_calf(j)**2
+      dist_pept_group=dist_pept_group+pept_group(j)**2
+      enddo
+       dist_pep_side=dsqrt(dist_pep_side)
+       dist_pept_group=dsqrt(dist_pept_group)
+       dist_side_calf=dsqrt(dist_side_calf)
+      do j=1,3
+        pep_side_norm(j)=pep_side(j)/dist_pep_side
+        side_calf_norm(j)=dist_side_calf
+      enddo
+C now sscale fraction
+       sh_frac_dist=-(dist_pep_side-rpp(1,1)-buff_shield)/buff_shield
+C       print *,buff_shield,"buff"
+C now sscale
+        if (sh_frac_dist.le.0.0) cycle
+C If we reach here it means that this side chain reaches the shielding sphere
+C Lets add him to the list for gradient       
+        ishield_list(i)=ishield_list(i)+1
+C ishield_list is a list of non 0 side-chain that contribute to factor gradient
+C this list is essential otherwise problem would be O3
+        shield_list(ishield_list(i),i)=k
+C Lets have the sscale value
+        if (sh_frac_dist.gt.1.0) then
+         scale_fac_dist=1.0d0
+         do j=1,3
+         sh_frac_dist_grad(j)=0.0d0
+         enddo
+        else
+         scale_fac_dist=-sh_frac_dist*sh_frac_dist
+     &                   *(2.0*sh_frac_dist-3.0d0)
+         fac_help_scale=6.0*(sh_frac_dist-sh_frac_dist**2)
+     &                  /dist_pep_side/buff_shield*0.5
+C remember for the final gradient multiply sh_frac_dist_grad(j) 
+C for side_chain by factor -2 ! 
+         do j=1,3
+         sh_frac_dist_grad(j)=fac_help_scale*pep_side(j)
+C         print *,"jestem",scale_fac_dist,fac_help_scale,
+C     &                    sh_frac_dist_grad(j)
+         enddo
+        endif
+C        if ((i.eq.3).and.(k.eq.2)) then
+C        print *,i,sh_frac_dist,dist_pep,fac_help_scale,scale_fac_dist
+C     & ,"TU"
+C        endif
+
+C this is what is now we have the distance scaling now volume...
+      short=short_r_sidechain(itype(k))
+      long=long_r_sidechain(itype(k))
+      costhet=1.0d0/dsqrt(1.0+short**2/dist_pep_side**2)
+C now costhet_grad
+C       costhet=0.0d0
+       costhet_fac=costhet**3*short**2*(-0.5)/dist_pep_side**4
+C       costhet_fac=0.0d0
+       do j=1,3
+         costhet_grad(j)=costhet_fac*pep_side(j)
+       enddo
+C remember for the final gradient multiply costhet_grad(j) 
+C for side_chain by factor -2 !
+C fac alfa is angle between CB_k,CA_k, CA_i,CA_i+1
+C pep_side0pept_group is vector multiplication  
+      pep_side0pept_group=0.0
+      do j=1,3
+      pep_side0pept_group=pep_side0pept_group+pep_side(j)*side_calf(j)
+      enddo
+      cosalfa=(pep_side0pept_group/
+     & (dist_pep_side*dist_side_calf))
+      fac_alfa_sin=1.0-cosalfa**2
+      fac_alfa_sin=dsqrt(fac_alfa_sin)
+      rkprim=fac_alfa_sin*(long-short)+short
+C now costhet_grad
+       cosphi=1.0d0/dsqrt(1.0+rkprim**2/dist_pep_side**2)
+       cosphi_fac=cosphi**3*rkprim**2*(-0.5)/dist_pep_side**4
+
+       do j=1,3
+         cosphi_grad_long(j)=cosphi_fac*pep_side(j)
+     &+cosphi**3*0.5/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa/
+     &((dist_pep_side*dist_side_calf))*
+     &((side_calf(j))-cosalfa*
+     &((pep_side(j)/dist_pep_side)*dist_side_calf))
+
+        cosphi_grad_loc(j)=cosphi**3*0.5/dist_pep_side**2*(-rkprim)
+     &*(long-short)/fac_alfa_sin*cosalfa
+     &/((dist_pep_side*dist_side_calf))*
+     &(pep_side(j)-
+     &cosalfa*side_calf(j)/dist_side_calf*dist_pep_side)
+       enddo
+
+      VofOverlap=VSolvSphere/2.0d0*(1.0-costhet)*(1.0-cosphi)
+     &                    /VSolvSphere_div
+     &                    *wshield
+C now the gradient...
+C grad_shield is gradient of Calfa for peptide groups
+C      write(iout,*) "shield_compon",i,k,VSolvSphere,scale_fac_dist,
+C     &               costhet,cosphi
+C       write(iout,*) "cosphi_compon",i,k,pep_side0pept_group,
+C     & dist_pep_side,dist_side_calf,c(1,k+nres),c(1,k),itype(k)
+      do j=1,3
+      grad_shield(j,i)=grad_shield(j,i)
+C gradient po skalowaniu
+     &                +(sh_frac_dist_grad(j)
+C  gradient po costhet
+     &-scale_fac_dist*costhet_grad(j)/(1.0-costhet)
+     &-scale_fac_dist*(cosphi_grad_long(j))
+     &/(1.0-cosphi) )*div77_81
+     &*VofOverlap
+C grad_shield_side is Cbeta sidechain gradient
+      grad_shield_side(j,ishield_list(i),i)=
+     &        (sh_frac_dist_grad(j)*-2.0d0
+     &       +scale_fac_dist*costhet_grad(j)*2.0d0/(1.0-costhet)
+     &       +scale_fac_dist*(cosphi_grad_long(j))
+     &        *2.0d0/(1.0-cosphi))
+     &        *div77_81*VofOverlap
+
+       grad_shield_loc(j,ishield_list(i),i)=
+     &   scale_fac_dist*cosphi_grad_loc(j)
+     &        *2.0d0/(1.0-cosphi)
+     &        *div77_81*VofOverlap
+      enddo
+      VolumeTotal=VolumeTotal+VofOverlap*scale_fac_dist
+      enddo
+      fac_shield(i)=VolumeTotal*div77_81+div4_81
+C      write(2,*) "TOTAL VOLUME",i,VolumeTotal,fac_shield(i)
+      enddo
+      return
+      end
+C--------------------------------------------------------------------------