MPICH2 and energy fixes in WHAM-M and Cluster-M.
[unres.git] / source / cluster / wham / src-M / energy_p_new.F
index c02d085..4814c1d 100644 (file)
@@ -124,7 +124,6 @@ c      write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
 #endif
       energia(0)=etot
       energia(1)=evdw
-c      call enerprint(energia(0),frac)
 #ifdef SCP14
       energia(2)=evdw2-evdw2_14
       energia(17)=evdw2_14
@@ -229,7 +228,8 @@ C
      &   +wturn3*fact(2)*gel_loc_turn3(i)
      &   +wturn6*fact(5)*gel_loc_turn6(i)
      &   +wel_loc*fact(2)*gel_loc_loc(i)
-     &   +wsccor*fact(1)*gsccor_loc(i)
+c     &   +wsccor*fact(1)*gsccor_loc(i)
+c ROZNICA Z WHAMem
       enddo
       endif
       return
@@ -360,12 +360,20 @@ C
       integer icant
       external icant
 cd    print *,'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
+c ROZNICA DODANE Z WHAM
+c      do i=1,210
+c        do j=1,2
+c          eneps_temp(j,i)=0.0d0
+c        enddo
+c      enddo
+cROZNICA
+
       evdw=0.0D0
       evdw_t=0.0d0
       do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        if (itypi.eq.21) cycle
-        itypi1=itype(i+1)
+        itypi=iabs(itype(i))
+        if (itypi.eq.ntyp1) cycle
+        itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
@@ -378,8 +386,8 @@ C
 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
 cd   &                  'iend=',iend(i,iint)
           do j=istart(i,iint),iend(i,iint)
-            itypj=itype(j)
-            if (itypj.eq.21) cycle
+            itypj=iabs(itype(j))
+            if (itypj.eq.ntyp1) cycle
             xj=c(1,nres+j)-xi
             yj=c(2,nres+j)-yi
             zj=c(3,nres+j)-zi
@@ -393,6 +401,11 @@ c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
             e2=fac*bb(itypi,itypj)
             evdwij=e1+e2
             ij=icant(itypi,itypj)
+c ROZNICA z WHAM
+c            eneps_temp(1,ij)=eneps_temp(1,ij)+e1/dabs(eps0ij)
+c            eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps0ij
+c
+
 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
@@ -528,9 +541,9 @@ c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
       evdw=0.0D0
       evdw_t=0.0d0
       do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        if (itypi.eq.21) cycle
-        itypi1=itype(i+1)
+        itypi=iabs(itype(i))
+        if (itypi.eq.ntyp1) cycle
+        itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
@@ -539,8 +552,8 @@ C Calculate SC interaction energy.
 C
         do iint=1,nint_gr(i)
           do j=istart(i,iint),iend(i,iint)
-            itypj=itype(j)
-            if (itypj.eq.21) cycle
+            itypj=iabs(itype(j))
+            if (itypj.eq.ntyp1) cycle
             xj=c(1,nres+j)-xi
             yj=c(2,nres+j)-yi
             zj=c(3,nres+j)-zi
@@ -632,9 +645,9 @@ c     else
 c     endif
       ind=0
       do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        if (itypi.eq.21) cycle
-        itypi1=itype(i+1)
+        itypi=iabs(itype(i))
+        if (itypi.eq.ntyp1) cycle
+        itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
@@ -648,8 +661,8 @@ C
         do iint=1,nint_gr(i)
           do j=istart(i,iint),iend(i,iint)
             ind=ind+1
-            itypj=itype(j)
-            if (itypj.eq.21) cycle
+            itypj=iabs(itype(j))
+            if (itypj.eq.ntyp1) cycle
             dscj_inv=vbld_inv(j+nres)
             chi1=chi(itypi,itypj)
             chi2=chi(itypj,itypi)
@@ -761,9 +774,9 @@ c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
 c      if (icall.gt.0) lprn=.true.
       ind=0
       do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        if (itypi.eq.21) cycle
-        itypi1=itype(i+1)
+        itypi=iabs(itype(i))
+        if (itypi.eq.ntyp1) cycle
+        itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
@@ -777,8 +790,8 @@ C
         do iint=1,nint_gr(i)
           do j=istart(i,iint),iend(i,iint)
             ind=ind+1
-            itypj=itype(j)
-            if (itypj.eq.21) cycle
+            itypj=iabs(itype(j))
+            if (itypj.eq.ntyp1) cycle
             dscj_inv=vbld_inv(j+nres)
             sig0ij=sigma(itypi,itypj)
             chi1=chi(itypi,itypj)
@@ -900,9 +913,9 @@ c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
 c      if (icall.gt.0) lprn=.true.
       ind=0
       do i=iatsc_s,iatsc_e
-        itypi=itype(i)
-        if (itypi.eq.21) cycle
-        itypi1=itype(i+1)
+        itypi=iabs(itype(i))
+        if (itypi.eq.ntyp1) cycle
+        itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
         zi=c(3,nres+i)
@@ -916,8 +929,8 @@ C
         do iint=1,nint_gr(i)
           do j=istart(i,iint),iend(i,iint)
             ind=ind+1
-            itypj=itype(j)
-            if (itypj.eq.21) cycle
+            itypj=iabs(itype(j))
+            if (itypj.eq.ntyp1) cycle
             dscj_inv=vbld_inv(j+nres)
             sig0ij=sigma(itypi,itypj)
             r0ij=r0(itypi,itypj)
@@ -1806,7 +1819,7 @@ cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
         gcorr_loc(i)=0.0d0
       enddo
       do i=iatel_s,iatel_e
-        if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         if (itel(i).eq.0) goto 1215
         dxi=dc(1,i)
         dyi=dc(2,i)
@@ -1820,7 +1833,7 @@ cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
         num_conti=0
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         do j=ielstart(i),ielend(i)
-          if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle
+          if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) cycle
           if (itel(j).eq.0) goto 1216
           ind=ind+1
           iteli=itel(i)
@@ -2556,7 +2569,7 @@ C Cartesian derivatives
      &      +0.5d0*(pizda(1,1)+pizda(2,2))
         enddo
         endif
-      else if (j.eq.i+3 .and. itype(i+2).ne.21) then
+      else if (j.eq.i+3 .and. itype(i+2).ne.ntyp1) then
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C               Fourth-order contributions
@@ -2757,7 +2770,7 @@ cd    print '(a)','Enter ESCP'
 c      write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e,
 c     &  ' scal14',scal14
       do i=iatscp_s,iatscp_e
-        if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         iteli=itel(i)
 c        write (iout,*) "i",i," iteli",iteli," nscp_gr",nscp_gr(i),
 c     &   " iscp",(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
@@ -2769,8 +2782,8 @@ c     &   " iscp",(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
         do iint=1,nscp_gr(i)
 
         do j=iscpstart(i,iint),iscpend(i,iint)
-          itypj=itype(j)
-          if (itypj.eq.21) cycle
+          itypj=iabs(itype(j))
+          if (itypj.eq.ntyp1) cycle
 C Uncomment following three lines for SC-p interactions
 c         xj=c(1,nres+j)-xi
 c         yj=c(2,nres+j)-yi
@@ -2880,7 +2893,8 @@ C iii and jjj point to the residues for which the distance is assigned.
         endif
 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
 C    distance and angle dependent SS bond potential.
-        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
+        if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and.
+     &  iabs(itype(jjj)).eq.1) then
           call ssbond_ene(iii,jjj,eij)
           ehpb=ehpb+2*eij
         else
@@ -2940,7 +2954,7 @@ C
       include 'COMMON.VAR'
       include 'COMMON.IOUNITS'
       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
-      itypi=itype(i)
+      itypi=iabs(itype(i))
       xi=c(1,nres+i)
       yi=c(2,nres+i)
       zi=c(3,nres+i)
@@ -2948,7 +2962,7 @@ C
       dyi=dc_norm(2,nres+i)
       dzi=dc_norm(3,nres+i)
       dsci_inv=dsc_inv(itypi)
-      itypj=itype(j)
+      itypj=iabs(itype(j))
       dscj_inv=dsc_inv(itypj)
       xj=c(1,nres+j)-xi
       yj=c(2,nres+j)-yi
@@ -3026,8 +3040,9 @@ c
       logical energy_dec /.false./
       double precision u(3),ud(3)
       estr=0.0d0
+      estr1=0.0d0
       do i=nnt+1,nct
-        if (itype(i-1).eq.21 .or. itype(i).eq.21) then
+        if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then
           estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax)
           do j=1,3
           gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax)
@@ -3045,13 +3060,13 @@ c          write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
         endif
 
       enddo
-      estr=0.5d0*AKP*estr
+      estr=0.5d0*AKP*estr+estr1
 c
 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
 c
       do i=nnt,nct
-        iti=itype(i)
-        if (iti.ne.10 .and. iti.ne.21) then
+        iti=iabs(itype(i))
+        if (iti.ne.10 .and. iti.ne.ntyp1) then
           nbi=nbondterm(iti)
           if (nbi.eq.1) then
             diff=vbld(i+nres)-vbldsc0(1,iti)
      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
       double precision y(2),z(2)
       delta=0.02d0*pi
-      time11=dexp(-2*time)
-      time12=1.0d0
+c      time11=dexp(-2*time)
+c      time12=1.0d0
       etheta=0.0D0
 c      write (iout,*) "nres",nres
 c     write (*,'(a,i2)') 'EBEND ICG=',icg
 c      write (iout,*) ithet_start,ithet_end
       do i=ithet_start,ithet_end
-        if (itype(i-1).eq.21) cycle
+        if (itype(i-1).eq.ntyp1) cycle
 C Zero the energy function and its derivative at 0 or pi.
         call splinthet(theta(i),0.5d0*delta,ss,ssd)
         it=itype(i-1)
-        if (i.gt.3 .and. itype(i-2).ne.21) then
+        ichir1=isign(1,itype(i-2))
+        ichir2=isign(1,itype(i))
+         if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1))
+         if (itype(i).eq.10) ichir2=isign(1,itype(i-1))
+         if (itype(i-1).eq.10) then
+          itype1=isign(10,itype(i-2))
+          ichir11=isign(1,itype(i-2))
+          ichir12=isign(1,itype(i-2))
+          itype2=isign(10,itype(i))
+          ichir21=isign(1,itype(i))
+          ichir22=isign(1,itype(i))
+         endif
+        if (i.gt.3 .and. itype(i-2).ne.ntyp1) then
 #ifdef OSF
           phii=phi(i)
-          icrc=0
-          call proc_proc(phii,icrc)
+c          icrc=0
+c          call proc_proc(phii,icrc)
           if (icrc.eq.1) phii=150.0
 #else
           phii=phi(i)
@@ -3146,11 +3173,11 @@ C Zero the energy function and its derivative at 0 or pi.
           y(1)=0.0D0
           y(2)=0.0D0
         endif
-        if (i.lt.nres .and. itype(i).ne.21) then
+        if (i.lt.nres .and. itype(i).ne.ntyp1) then
 #ifdef OSF
           phii1=phi(i+1)
-          icrc=0
-          call proc_proc(phii1,icrc)
+c          icrc=0
+c          call proc_proc(phii1,icrc)
           if (icrc.eq.1) phii1=150.0
           phii1=pinorm(phii1)
           z(1)=cos(phii1)
@@ -3168,8 +3195,12 @@ C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
 C In following comments this theta will be referred to as t_c.
         thet_pred_mean=0.0d0
         do k=1,2
-          athetk=athet(k,it)
-          bthetk=bthet(k,it)
+            athetk=athet(k,it,ichir1,ichir2)
+            bthetk=bthet(k,it,ichir1,ichir2)
+          if (it.eq.10) then
+             athetk=athet(k,itype1,ichir11,ichir12)
+             bthetk=bthet(k,itype2,ichir21,ichir22)
+          endif
           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
         enddo
 c        write (iout,*) "thet_pred_mean",thet_pred_mean
@@ -3177,8 +3208,16 @@ c        write (iout,*) "thet_pred_mean",thet_pred_mean
         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
 c        write (iout,*) "thet_pred_mean",thet_pred_mean
 C Derivatives of the "mean" values in gamma1 and gamma2.
-        dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
-        dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
+        dthetg1=(-athet(1,it,ichir1,ichir2)*y(2)
+     &+athet(2,it,ichir1,ichir2)*y(1))*ss
+         dthetg2=(-bthet(1,it,ichir1,ichir2)*z(2)
+     &          +bthet(2,it,ichir1,ichir2)*z(1))*ss
+         if (it.eq.10) then
+      dthetg1=(-athet(1,itype1,ichir11,ichir12)*y(2)
+     &+athet(2,itype1,ichir11,ichir12)*y(1))*ss
+        dthetg2=(-bthet(1,itype2,ichir21,ichir22)*z(2)
+     &         +bthet(2,itype2,ichir21,ichir22)*z(1))*ss
+         endif
         if (theta(i).gt.pi-delta) then
           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
      &         E_tc0)
@@ -3206,7 +3245,7 @@ c     &    rad2deg*phii,rad2deg*phii1,ethetai
         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
- 1215   continue
+c 1215   continue
       enddo
 C Ufff.... We've done all this!!! 
       return
       etheta=0.0D0
 c      write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1)
       do i=ithet_start,ithet_end
-        if (itype(i-1).eq.21) cycle
+c        if (itype(i-1).eq.ntyp1) cycle
+        if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
+     &(itype(i).eq.ntyp1)) cycle
+        if (iabs(itype(i+1)).eq.20) iblock=2
+        if (iabs(itype(i+1)).ne.20) iblock=1
         dethetai=0.0d0
         dephii=0.0d0
         dephii1=0.0d0
         theti2=0.5d0*theta(i)
-        ityp2=ithetyp(itype(i-1))
+CC Ta zmina jest niewlasciwa
+        ityp2=ithetyp((itype(i-1)))
         do k=1,nntheterm
           coskt(k)=dcos(k*theti2)
           sinkt(k)=dsin(k*theti2)
         enddo
-        if (i.gt.3 .and. itype(i-2).ne.21) then
+        if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
 #ifdef OSF
           phii=phi(i)
           if (phii.ne.phii) phii=150.0
 #else
           phii=phi(i)
 #endif
-          ityp1=ithetyp(itype(i-2))
+          ityp1=ithetyp((itype(i-2)))
           do k=1,nsingle
             cosph1(k)=dcos(k*phii)
             sinph1(k)=dsin(k*phii)
           enddo
         else
           phii=0.0d0
-          ityp1=nthetyp+1
+c          ityp1=nthetyp+1
           do k=1,nsingle
+            ityp1=ithetyp((itype(i-2)))
             cosph1(k)=0.0d0
             sinph1(k)=0.0d0
           enddo 
         endif
-        if (i.lt.nres .and. itype(i).ne.21) then
+        if (i.lt.nres .and. itype(i+1).ne.ntyp1) then
 #ifdef OSF
           phii1=phi(i+1)
           if (phii1.ne.phii1) phii1=150.0
@@ -3387,14 +3432,15 @@ c      write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1)
 #else
           phii1=phi(i+1)
 #endif
-          ityp3=ithetyp(itype(i))
+          ityp3=ithetyp((itype(i)))
           do k=1,nsingle
             cosph2(k)=dcos(k*phii1)
             sinph2(k)=dsin(k*phii1)
           enddo
         else
           phii1=0.0d0
-          ityp3=nthetyp+1
+c          ityp3=nthetyp+1
+          ityp3=ithetyp((itype(i)))
           do k=1,nsingle
             cosph2(k)=0.0d0
             sinph2(k)=0.0d0
@@ -3403,7 +3449,7 @@ c      write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1)
 c        write (iout,*) "i",i," ityp1",itype(i-2),ityp1,
 c     &   " ityp2",itype(i-1),ityp2," ityp3",itype(i),ityp3
 c        call flush(iout)
-        ethetai=aa0thet(ityp1,ityp2,ityp3)
+        ethetai=aa0thet(ityp1,ityp2,ityp3,iblock)
         do k=1,ndouble
           do l=1,k-1
             ccl=cosph1(l)*cosph2(k-l)
@@ -3425,11 +3471,12 @@ c        call flush(iout)
         enddo
         endif
         do k=1,ntheterm
-          ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
-          dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
+          ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3,iblock)*sinkt(k)
+          dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3,iblock)
      &      *coskt(k)
           if (lprn)
-     &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
+     &    write (iout,*) "k",k," aathet",
+     &    aathet(k,ityp1,ityp2,ityp3,iblock),
      &     " ethetai",ethetai
         enddo
         if (lprn) then
@@ -3448,24 +3495,24 @@ c        call flush(iout)
         endif
         do m=1,ntheterm2
           do k=1,nsingle
-            aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
-     &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
-     &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
-     &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
+            aux=bbthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)
+     &         +ccthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k)
+     &         +ddthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)
+     &         +eethet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k)
             ethetai=ethetai+sinkt(m)*aux
             dethetai=dethetai+0.5d0*m*aux*coskt(m)
             dephii=dephii+k*sinkt(m)*(
-     &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
-     &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
+     &          ccthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)-
+     &          bbthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k))
             dephii1=dephii1+k*sinkt(m)*(
-     &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
-     &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
+     &          eethet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)-
+     &          ddthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k))
             if (lprn)
      &      write (iout,*) "m",m," k",k," bbthet",
-     &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
-     &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
-     &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
-     &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
+     &         bbthet(k,m,ityp1,ityp2,ityp3,iblock)," ccthet",
+     &         ccthet(k,m,ityp1,ityp2,ityp3,iblock)," ddthet",
+     &         ddthet(k,m,ityp1,ityp2,ityp3,iblock)," eethet",
+     &         eethet(k,m,ityp1,ityp2,ityp3,iblock)," ethetai",ethetai
           enddo
         enddo
         if (lprn)
@@ -3473,28 +3520,29 @@ c        call flush(iout)
         do m=1,ntheterm3
           do k=2,ndouble
             do l=1,k-1
-              aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
-     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
-     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
-     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
+              aux=ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)
               ethetai=ethetai+sinkt(m)*aux
               dethetai=dethetai+0.5d0*m*coskt(m)*aux
               dephii=dephii+l*sinkt(m)*(
-     &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
-     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
-     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
-     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
+     &           -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)-
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l))
               dephii1=dephii1+(k-l)*sinkt(m)*(
-     &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
-     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
-     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
-     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
+     &           -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)-
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l))
               if (lprn) then
               write (iout,*) "m",m," k",k," l",l," ffthet",
-     &            ffthet(l,k,m,ityp1,ityp2,ityp3),
-     &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
-     &            ggthet(l,k,m,ityp1,ityp2,ityp3),
-     &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
+     &            ffthet(l,k,m,ityp1,ityp2,ityp3,iblock),
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)," ggthet",
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock),
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock),
+     &            " ethetai",ethetai
               write (iout,*) cosph1ph2(l,k)*sinkt(m),
      &            cosph1ph2(k,l)*sinkt(m),
      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
@@ -3509,7 +3557,8 @@ c        call flush(iout)
         etheta=etheta+ethetai
         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
-        gloc(nphi+i-2,icg)=wang*dethetai
+c        gloc(nphi+i-2,icg)=wang*dethetai
+        gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai
       enddo
       return
       end
@@ -3540,9 +3589,9 @@ C ALPHA and OMEGA.
 c     write (iout,'(a)') 'ESC'
       do i=loc_start,loc_end
         it=itype(i)
-        if (it.eq.21) cycle
+        if (it.eq.ntyp1) cycle
         if (it.eq.10) goto 1
-        nlobit=nlob(it)
+        nlobit=nlob(iabs(it))
 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
         theti=theta(i+1)-pipol
@@ -3697,7 +3746,7 @@ C Compute the contribution to SC energy and derivatives
         do iii=-1,1
 
           do j=1,nlobit
-            expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
+            expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin)
 cd          print *,'j=',j,' expfac=',expfac
             escloc_i=escloc_i+expfac
             do k=1,3
@@ -3778,7 +3827,7 @@ C Compute the contribution to SC energy and derivatives
 
       dersc12=0.0d0
       do j=1,nlobit
-        expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
+        expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j)+emin)
         escloc_i=escloc_i+expfac
         do k=1,2
           dersc(k)=dersc(k)+Ax(k,j)*expfac
@@ -3833,7 +3882,7 @@ C
       delta=0.02d0*pi
       escloc=0.0D0
       do i=loc_start,loc_end
-        if (itype(i).eq.21) cycle
+        if (itype(i).eq.ntyp1) cycle
         costtab(i+1) =dcos(theta(i+1))
         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
@@ -3842,7 +3891,7 @@ C
         cosfac=dsqrt(cosfac2)
         sinfac2=0.5d0/(1.0d0-costtab(i+1))
         sinfac=dsqrt(sinfac2)
-        it=itype(i)
+        it=iabs(itype(i))
         if (it.eq.10) goto 1
 c
 C  Compute the axes of tghe local cartesian coordinates system; store in
@@ -3860,7 +3909,7 @@ C     &   dc_norm(3,i+nres)
           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
         enddo
         do j = 1,3
-          z_prime(j) = -uz(j,i-1)
+          z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i)))
         enddo     
 c       write (2,*) "i",i
 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
@@ -3892,7 +3941,7 @@ C
 C Compute the energy of the ith side cbain
 C
 c        write (2,*) "xx",xx," yy",yy," zz",zz
-        it=itype(i)
+        it=iabs(itype(i))
         do j = 1,65
           x(j) = sc_parmin(j,it) 
         enddo
@@ -3900,7 +3949,8 @@ c        write (2,*) "xx",xx," yy",yy," zz",zz
 Cc diagnostics - remove later
         xx1 = dcos(alph(2))
         yy1 = dsin(alph(2))*dcos(omeg(2))
-        zz1 = -dsin(alph(2))*dsin(omeg(2))
+c        zz1 = -dsin(alph(2))*dsin(omeg(2))
+        zz1 = -dsign(1.0d0,itype(i))*dsin(alph(2))*dsin(omeg(2))
         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
      &    xx1,yy1,zz1
@@ -4071,8 +4121,10 @@ c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
          dZZ_Ci1(k)=0.0d0
          dZZ_Ci(k)=0.0d0
          do j=1,3
-           dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
-           dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
+           dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)
+     &      *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres)
+           dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)
+     & *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres)
          enddo
           
          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
@@ -4224,8 +4276,8 @@ C Set lprn=.true. for debugging
 c      lprn=.true.
       etors=0.0D0
       do i=iphi_start,iphi_end
-        if (itype(i-2).eq.21 .or. itype(i-1).eq.21
-     &      .or. itype(i).eq.21) cycle
+        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
+     &      .or. itype(i).eq.ntyp1) cycle
        itori=itortyp(itype(i-2))
        itori1=itortyp(itype(i-1))
         phii=phi(i)
@@ -4309,17 +4361,22 @@ C Set lprn=.true. for debugging
 c      lprn=.true.
       etors=0.0D0
       do i=iphi_start,iphi_end
-        if (itype(i-2).eq.21 .or. itype(i-1).eq.21
-     &       .or. itype(i).eq.21) cycle
+        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
+     &       .or. itype(i).eq.ntyp1) cycle
         if (itel(i-2).eq.0 .or. itel(i-1).eq.0) goto 1215
+         if (iabs(itype(i)).eq.20) then
+         iblock=2
+         else
+         iblock=1
+         endif
         itori=itortyp(itype(i-2))
         itori1=itortyp(itype(i-1))
         phii=phi(i)
         gloci=0.0D0
 C Regular cosine and sine terms
-        do j=1,nterm(itori,itori1)
-          v1ij=v1(j,itori,itori1)
-          v2ij=v2(j,itori,itori1)
+        do j=1,nterm(itori,itori1,iblock)
+          v1ij=v1(j,itori,itori1,iblock)
+          v2ij=v2(j,itori,itori1,iblock)
           cosphi=dcos(j*phii)
           sinphi=dsin(j*phii)
           etors=etors+v1ij*cosphi+v2ij*sinphi
@@ -4332,7 +4389,7 @@ C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
 C
         cosphi=dcos(0.5d0*phii)
         sinphi=dsin(0.5d0*phii)
-        do j=1,nlor(itori,itori1)
+        do j=1,nlor(itori,itori1,iblock)
           vl1ij=vlor1(j,itori,itori1)
           vl2ij=vlor2(j,itori,itori1)
           vl3ij=vlor3(j,itori,itori1)
           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
         enddo
 C Subtract the constant term
-        etors=etors-v0(itori,itori1)
+        etors=etors-v0(itori,itori1,iblock)
         if (lprn)
      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
-     &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
+     &  (v1(j,itori,itori1,1),j=1,6),(v2(j,itori,itori1,1),j=1,6)
         gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
  1215   continue
@@ -4403,8 +4460,8 @@ C Set lprn=.true. for debugging
 c     lprn=.true.
       etors_d=0.0D0
       do i=iphi_start,iphi_end-1
-        if (itype(i-2).eq.21 .or. itype(i-1).eq.21
-     &      .or. itype(i).eq.21 .or. itype(i+1).eq.21) cycle
+        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
+     &      .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         if (itel(i-2).eq.0 .or. itel(i-1).eq.0 .or. itel(i).eq.0) 
      &     goto 1215
         itori=itortyp(itype(i-2))
@@ -4414,12 +4471,14 @@ c     lprn=.true.
         phii1=phi(i+1)
         gloci1=0.0D0
         gloci2=0.0D0
+        iblock=1
+        if (iabs(itype(i+1)).eq.20) iblock=2
 C Regular cosine and sine terms
-        do j=1,ntermd_1(itori,itori1,itori2)
-          v1cij=v1c(1,j,itori,itori1,itori2)
-          v1sij=v1s(1,j,itori,itori1,itori2)
-          v2cij=v1c(2,j,itori,itori1,itori2)
-          v2sij=v1s(2,j,itori,itori1,itori2)
+       do j=1,ntermd_1(itori,itori1,itori2,iblock)
+          v1cij=v1c(1,j,itori,itori1,itori2,iblock)
+          v1sij=v1s(1,j,itori,itori1,itori2,iblock)
+          v2cij=v1c(2,j,itori,itori1,itori2,iblock)
+          v2sij=v1s(2,j,itori,itori1,itori2,iblock)
           cosphi1=dcos(j*phii)
           sinphi1=dsin(j*phii)
           cosphi2=dcos(j*phii1)
@@ -4429,12 +4488,12 @@ C Regular cosine and sine terms
           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
         enddo
-        do k=2,ntermd_2(itori,itori1,itori2)
+        do k=2,ntermd_2(itori,itori1,itori2,iblock)
           do l=1,k-1
-            v1cdij = v2c(k,l,itori,itori1,itori2)
-            v2cdij = v2c(l,k,itori,itori1,itori2)
-            v1sdij = v2s(k,l,itori,itori1,itori2)
-            v2sdij = v2s(l,k,itori,itori1,itori2)
+            v1cdij = v2c(k,l,itori,itori1,itori2,iblock)
+            v2cdij = v2c(l,k,itori,itori1,itori2,iblock)
+            v1sdij = v2s(k,l,itori,itori1,itori2,iblock)
+            v2sdij = v2s(l,k,itori,itori1,itori2,iblock)
             cosphi1p2=dcos(l*phii+(k-l)*phii1)
             cosphi1m2=dcos(l*phii-(k-l)*phii1)
             sinphi1p2=dsin(l*phii+(k-l)*phii1)
@@ -4483,26 +4542,48 @@ C Set lprn=.true. for debugging
 c      lprn=.true.
 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
       esccor=0.0D0
-      do i=iphi_start,iphi_end
-        if (itype(i-2).eq.21 .or. itype(i-1).eq.21) cycle
+      do i=itau_start,itau_end
+        if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
         esccor_ii=0.0D0
-        itori=itype(i-2)
-        itori1=itype(i-1)
+        isccori=isccortyp(itype(i-2))
+        isccori1=isccortyp(itype(i-1))
         phii=phi(i)
+        do intertyp=1,3 !intertyp
+cc Added 09 May 2012 (Adasko)
+cc  Intertyp means interaction type of backbone mainchain correlation: 
+c   1 = SC...Ca...Ca...Ca
+c   2 = Ca...Ca...Ca...SC
+c   3 = SC...Ca...Ca...SCi
         gloci=0.0D0
-        do j=1,nterm_sccor
-          v1ij=v1sccor(j,itori,itori1)
-          v2ij=v2sccor(j,itori,itori1)
-          cosphi=dcos(j*phii)
-          sinphi=dsin(j*phii)
-          esccor=esccor+v1ij*cosphi+v2ij*sinphi
-          gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
-        enddo
+        if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
+     &      (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or.
+     &      (itype(i-1).eq.ntyp1)))
+     &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
+     &     .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)
+     &     .or.(itype(i).eq.ntyp1)))
+     &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
+     &      (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
+     &      (itype(i-3).eq.ntyp1)))) cycle
+        if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle
+        if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1))
+     & cycle
+       do j=1,nterm_sccor(isccori,isccori1)
+          v1ij=v1sccor(j,intertyp,isccori,isccori1)
+          v2ij=v2sccor(j,intertyp,isccori,isccori1)
+          cosphi=dcos(j*tauangle(intertyp,i))
+          sinphi=dsin(j*tauangle(intertyp,i))
+           esccor=esccor+v1ij*cosphi+v2ij*sinphi
+c           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
+         enddo
+c      write (iout,*) "EBACK_SC_COR",i,esccor,intertyp
+c      gloc_sc(intertyp,i-3)=gloc_sc(intertyp,i-3)+wsccor*gloci
         if (lprn)
      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
-     &  (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6)
+     &  (v1sccor(j,1,itori,itori1),j=1,6),
+     &  (v2sccor(j,1,itori,itori1),j=1,6)
         gsccor_loc(i-3)=gloci
+       enddo !intertyp
       enddo
       return
       end
@@ -5171,7 +5252,11 @@ C---------------------------------------------------------------------------
      &  auxmat(2,2)
       iti1 = itortyp(itype(i+1))
       if (j.lt.nres-1) then
-        itj1 = itortyp(itype(j+1))
+        if (itype(j).le.ntyp) then
+          itj1 = itortyp(itype(j+1))
+        else
+          itj1=ntortyp+1
+        endif
       else
         itj1=ntortyp+1
       endif
@@ -5259,14 +5344,16 @@ cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
       enddo 
       if (l.eq.j+1) then
 C parallel orientation of the two CA-CA-CA frames.
-        if (i.gt.1) then
+c        if (i.gt.1) then
+        if (i.gt.1 .and. itype(i).le.ntyp) then
           iti=itortyp(itype(i))
         else
           iti=ntortyp+1
         endif
         itk1=itortyp(itype(k+1))
         itj=itortyp(itype(j))
-        if (l.lt.nres-1) then
+c        if (l.lt.nres-1) then
+        if (l.lt.nres-1 .and. itype(l+1).le.ntyp) then
           itl1=itortyp(itype(l+1))
         else
           itl1=ntortyp+1
@@ -5412,7 +5499,8 @@ C Calculate the Cartesian derivatives of the vectors.
 C End vectors
       else
 C Antiparallel orientation of the two CA-CA-CA frames.
-        if (i.gt.1) then
+c        if (i.gt.1) then
+        if (i.gt.1 .and. itype(i).le.ntyp) then
           iti=itortyp(itype(i))
         else
           iti=ntortyp+1
@@ -5420,7 +5508,8 @@ C Antiparallel orientation of the two CA-CA-CA frames.
         itk1=itortyp(itype(k+1))
         itl=itortyp(itype(l))
         itj=itortyp(itype(j))
-        if (j.lt.nres-1) then
+c        if (j.lt.nres-1) then
+        if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then
           itj1=itortyp(itype(j+1))
         else 
           itj1=ntortyp+1
@@ -6373,7 +6462,7 @@ c----------------------------------------------------------------------------
       include 'COMMON.GEO'
       logical swap
       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
-     & auxvec1(2),auxvec2(1),auxmat1(2,2)
+     & auxvec1(2),auxvec2(2),auxmat1(2,2)
       logical lprn
       common /kutas/ lprn
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
 C           energy moment and not to the cluster cumulant.
       iti=itortyp(itype(i))
-      if (j.lt.nres-1) then
+c      if (j.lt.nres-1) then
+      if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then
         itj1=itortyp(itype(j+1))
       else
         itj1=ntortyp+1
       endif
       itk=itortyp(itype(k))
       itk1=itortyp(itype(k+1))
-      if (l.lt.nres-1) then
+c      if (l.lt.nres-1) then
+      if (l.lt.nres-1 .and. itype(l+1).le.ntyp) then
         itl1=itortyp(itype(l+1))
       else
         itl1=ntortyp+1
@@ -6698,13 +6789,15 @@ C           energy moment and not to the cluster cumulant.
 cd      write (2,*) 'eello_graph4: wturn6',wturn6
       iti=itortyp(itype(i))
       itj=itortyp(itype(j))
-      if (j.lt.nres-1) then
+c      if (j.lt.nres-1) then
+      if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then
         itj1=itortyp(itype(j+1))
       else
         itj1=ntortyp+1
       endif
       itk=itortyp(itype(k))
-      if (k.lt.nres-1) then
+c      if (k.lt.nres-1) then
+      if (k.lt.nres-1 .and. itype(k+1).le.ntyp) then
         itk1=itortyp(itype(k+1))
       else
         itk1=ntortyp+1