a647966d6987da5438b94b902c8115138b659210
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=itype(j)
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026         dxi=dc(1,i)
3027         dyi=dc(2,i)
3028         dzi=dc(3,i)
3029         dx_normi=dc_norm(1,i)
3030         dy_normi=dc_norm(2,i)
3031         dz_normi=dc_norm(3,i)
3032         xmedi=c(1,i)+0.5d0*dxi
3033         ymedi=c(2,i)+0.5d0*dyi
3034         zmedi=c(3,i)+0.5d0*dzi
3035         num_conti=0
3036         call eelecij(i,i+2,ees,evdw1,eel_loc)
3037         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3038         num_cont_hb(i)=num_conti
3039       enddo
3040       do i=iturn4_start,iturn4_end
3041         dxi=dc(1,i)
3042         dyi=dc(2,i)
3043         dzi=dc(3,i)
3044         dx_normi=dc_norm(1,i)
3045         dy_normi=dc_norm(2,i)
3046         dz_normi=dc_norm(3,i)
3047         xmedi=c(1,i)+0.5d0*dxi
3048         ymedi=c(2,i)+0.5d0*dyi
3049         zmedi=c(3,i)+0.5d0*dzi
3050         num_conti=num_cont_hb(i)
3051         call eelecij(i,i+3,ees,evdw1,eel_loc)
3052         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3053         num_cont_hb(i)=num_conti
3054       enddo   ! i
3055 c
3056 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3057 c
3058       do i=iatel_s,iatel_e
3059         dxi=dc(1,i)
3060         dyi=dc(2,i)
3061         dzi=dc(3,i)
3062         dx_normi=dc_norm(1,i)
3063         dy_normi=dc_norm(2,i)
3064         dz_normi=dc_norm(3,i)
3065         xmedi=c(1,i)+0.5d0*dxi
3066         ymedi=c(2,i)+0.5d0*dyi
3067         zmedi=c(3,i)+0.5d0*dzi
3068 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3069         num_conti=num_cont_hb(i)
3070         do j=ielstart(i),ielend(i)
3071           call eelecij(i,j,ees,evdw1,eel_loc)
3072         enddo ! j
3073         num_cont_hb(i)=num_conti
3074       enddo   ! i
3075 c      write (iout,*) "Number of loop steps in EELEC:",ind
3076 cd      do i=1,nres
3077 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3078 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3079 cd      enddo
3080 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3081 ccc      eel_loc=eel_loc+eello_turn3
3082 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3083       return
3084       end
3085 C-------------------------------------------------------------------------------
3086       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3087       implicit real*8 (a-h,o-z)
3088       include 'DIMENSIONS'
3089 #ifdef MPI
3090       include "mpif.h"
3091 #endif
3092       include 'COMMON.CONTROL'
3093       include 'COMMON.IOUNITS'
3094       include 'COMMON.GEO'
3095       include 'COMMON.VAR'
3096       include 'COMMON.LOCAL'
3097       include 'COMMON.CHAIN'
3098       include 'COMMON.DERIV'
3099       include 'COMMON.INTERACT'
3100       include 'COMMON.CONTACTS'
3101       include 'COMMON.TORSION'
3102       include 'COMMON.VECTORS'
3103       include 'COMMON.FFIELD'
3104       include 'COMMON.TIME1'
3105       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3106      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3107       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3108      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3109       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3110      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3111      &    num_conti,j1,j2
3112 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3113 #ifdef MOMENT
3114       double precision scal_el /1.0d0/
3115 #else
3116       double precision scal_el /0.5d0/
3117 #endif
3118 C 12/13/98 
3119 C 13-go grudnia roku pamietnego... 
3120       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3121      &                   0.0d0,1.0d0,0.0d0,
3122      &                   0.0d0,0.0d0,1.0d0/
3123 c          time00=MPI_Wtime()
3124 cd      write (iout,*) "eelecij",i,j
3125 c          ind=ind+1
3126           iteli=itel(i)
3127           itelj=itel(j)
3128           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3129           aaa=app(iteli,itelj)
3130           bbb=bpp(iteli,itelj)
3131           ael6i=ael6(iteli,itelj)
3132           ael3i=ael3(iteli,itelj) 
3133           dxj=dc(1,j)
3134           dyj=dc(2,j)
3135           dzj=dc(3,j)
3136           dx_normj=dc_norm(1,j)
3137           dy_normj=dc_norm(2,j)
3138           dz_normj=dc_norm(3,j)
3139           xj=c(1,j)+0.5D0*dxj-xmedi
3140           yj=c(2,j)+0.5D0*dyj-ymedi
3141           zj=c(3,j)+0.5D0*dzj-zmedi
3142           rij=xj*xj+yj*yj+zj*zj
3143           rrmij=1.0D0/rij
3144           rij=dsqrt(rij)
3145           rmij=1.0D0/rij
3146           r3ij=rrmij*rmij
3147           r6ij=r3ij*r3ij  
3148           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3149           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3150           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3151           fac=cosa-3.0D0*cosb*cosg
3152           ev1=aaa*r6ij*r6ij
3153 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3154           if (j.eq.i+2) ev1=scal_el*ev1
3155           ev2=bbb*r6ij
3156           fac3=ael6i*r6ij
3157           fac4=ael3i*r3ij
3158           evdwij=ev1+ev2
3159           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3160           el2=fac4*fac       
3161           eesij=el1+el2
3162 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3163           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3164           ees=ees+eesij
3165           evdw1=evdw1+evdwij
3166 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3167 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3168 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3169 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3170
3171           if (energy_dec) then 
3172               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3173               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3174           endif
3175
3176 C
3177 C Calculate contributions to the Cartesian gradient.
3178 C
3179 #ifdef SPLITELE
3180           facvdw=-6*rrmij*(ev1+evdwij)
3181           facel=-3*rrmij*(el1+eesij)
3182           fac1=fac
3183           erij(1)=xj*rmij
3184           erij(2)=yj*rmij
3185           erij(3)=zj*rmij
3186 *
3187 * Radial derivatives. First process both termini of the fragment (i,j)
3188 *
3189           ggg(1)=facel*xj
3190           ggg(2)=facel*yj
3191           ggg(3)=facel*zj
3192 c          do k=1,3
3193 c            ghalf=0.5D0*ggg(k)
3194 c            gelc(k,i)=gelc(k,i)+ghalf
3195 c            gelc(k,j)=gelc(k,j)+ghalf
3196 c          enddo
3197 c 9/28/08 AL Gradient compotents will be summed only at the end
3198           do k=1,3
3199             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3200             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3201           enddo
3202 *
3203 * Loop over residues i+1 thru j-1.
3204 *
3205 cgrad          do k=i+1,j-1
3206 cgrad            do l=1,3
3207 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3208 cgrad            enddo
3209 cgrad          enddo
3210           ggg(1)=facvdw*xj
3211           ggg(2)=facvdw*yj
3212           ggg(3)=facvdw*zj
3213 c          do k=1,3
3214 c            ghalf=0.5D0*ggg(k)
3215 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3216 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3217 c          enddo
3218 c 9/28/08 AL Gradient compotents will be summed only at the end
3219           do k=1,3
3220             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3221             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3222           enddo
3223 *
3224 * Loop over residues i+1 thru j-1.
3225 *
3226 cgrad          do k=i+1,j-1
3227 cgrad            do l=1,3
3228 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3229 cgrad            enddo
3230 cgrad          enddo
3231 #else
3232           facvdw=ev1+evdwij 
3233           facel=el1+eesij  
3234           fac1=fac
3235           fac=-3*rrmij*(facvdw+facvdw+facel)
3236           erij(1)=xj*rmij
3237           erij(2)=yj*rmij
3238           erij(3)=zj*rmij
3239 *
3240 * Radial derivatives. First process both termini of the fragment (i,j)
3241
3242           ggg(1)=fac*xj
3243           ggg(2)=fac*yj
3244           ggg(3)=fac*zj
3245 c          do k=1,3
3246 c            ghalf=0.5D0*ggg(k)
3247 c            gelc(k,i)=gelc(k,i)+ghalf
3248 c            gelc(k,j)=gelc(k,j)+ghalf
3249 c          enddo
3250 c 9/28/08 AL Gradient compotents will be summed only at the end
3251           do k=1,3
3252             gelc_long(k,j)=gelc(k,j)+ggg(k)
3253             gelc_long(k,i)=gelc(k,i)-ggg(k)
3254           enddo
3255 *
3256 * Loop over residues i+1 thru j-1.
3257 *
3258 cgrad          do k=i+1,j-1
3259 cgrad            do l=1,3
3260 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3261 cgrad            enddo
3262 cgrad          enddo
3263 c 9/28/08 AL Gradient compotents will be summed only at the end
3264           ggg(1)=facvdw*xj
3265           ggg(2)=facvdw*yj
3266           ggg(3)=facvdw*zj
3267           do k=1,3
3268             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3269             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3270           enddo
3271 #endif
3272 *
3273 * Angular part
3274 *          
3275           ecosa=2.0D0*fac3*fac1+fac4
3276           fac4=-3.0D0*fac4
3277           fac3=-6.0D0*fac3
3278           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3279           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3280           do k=1,3
3281             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3282             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3283           enddo
3284 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3285 cd   &          (dcosg(k),k=1,3)
3286           do k=1,3
3287             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3288           enddo
3289 c          do k=1,3
3290 c            ghalf=0.5D0*ggg(k)
3291 c            gelc(k,i)=gelc(k,i)+ghalf
3292 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3293 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3294 c            gelc(k,j)=gelc(k,j)+ghalf
3295 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3296 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3297 c          enddo
3298 cgrad          do k=i+1,j-1
3299 cgrad            do l=1,3
3300 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3301 cgrad            enddo
3302 cgrad          enddo
3303           do k=1,3
3304             gelc(k,i)=gelc(k,i)
3305      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3306      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3307             gelc(k,j)=gelc(k,j)
3308      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3309      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3310             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3311             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3312           enddo
3313           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3314      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3315      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3316 C
3317 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3318 C   energy of a peptide unit is assumed in the form of a second-order 
3319 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3320 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3321 C   are computed for EVERY pair of non-contiguous peptide groups.
3322 C
3323           if (j.lt.nres-1) then
3324             j1=j+1
3325             j2=j-1
3326           else
3327             j1=j-1
3328             j2=j-2
3329           endif
3330           kkk=0
3331           do k=1,2
3332             do l=1,2
3333               kkk=kkk+1
3334               muij(kkk)=mu(k,i)*mu(l,j)
3335             enddo
3336           enddo  
3337 cd         write (iout,*) 'EELEC: i',i,' j',j
3338 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3339 cd          write(iout,*) 'muij',muij
3340           ury=scalar(uy(1,i),erij)
3341           urz=scalar(uz(1,i),erij)
3342           vry=scalar(uy(1,j),erij)
3343           vrz=scalar(uz(1,j),erij)
3344           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3345           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3346           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3347           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3348           fac=dsqrt(-ael6i)*r3ij
3349           a22=a22*fac
3350           a23=a23*fac
3351           a32=a32*fac
3352           a33=a33*fac
3353 cd          write (iout,'(4i5,4f10.5)')
3354 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3355 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3356 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3357 cd     &      uy(:,j),uz(:,j)
3358 cd          write (iout,'(4f10.5)') 
3359 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3360 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3361 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3362 cd           write (iout,'(9f10.5/)') 
3363 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3364 C Derivatives of the elements of A in virtual-bond vectors
3365           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3366           do k=1,3
3367             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3368             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3369             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3370             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3371             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3372             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3373             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3374             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3375             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3376             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3377             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3378             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3379           enddo
3380 C Compute radial contributions to the gradient
3381           facr=-3.0d0*rrmij
3382           a22der=a22*facr
3383           a23der=a23*facr
3384           a32der=a32*facr
3385           a33der=a33*facr
3386           agg(1,1)=a22der*xj
3387           agg(2,1)=a22der*yj
3388           agg(3,1)=a22der*zj
3389           agg(1,2)=a23der*xj
3390           agg(2,2)=a23der*yj
3391           agg(3,2)=a23der*zj
3392           agg(1,3)=a32der*xj
3393           agg(2,3)=a32der*yj
3394           agg(3,3)=a32der*zj
3395           agg(1,4)=a33der*xj
3396           agg(2,4)=a33der*yj
3397           agg(3,4)=a33der*zj
3398 C Add the contributions coming from er
3399           fac3=-3.0d0*fac
3400           do k=1,3
3401             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3402             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3403             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3404             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3405           enddo
3406           do k=1,3
3407 C Derivatives in DC(i) 
3408 cgrad            ghalf1=0.5d0*agg(k,1)
3409 cgrad            ghalf2=0.5d0*agg(k,2)
3410 cgrad            ghalf3=0.5d0*agg(k,3)
3411 cgrad            ghalf4=0.5d0*agg(k,4)
3412             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3413      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3414             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3415      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3416             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3417      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3418             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3419      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3420 C Derivatives in DC(i+1)
3421             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3422      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3423             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3424      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3425             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3426      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3427             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3428      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3429 C Derivatives in DC(j)
3430             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3431      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3432             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3433      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3434             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3435      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3436             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3437      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3438 C Derivatives in DC(j+1) or DC(nres-1)
3439             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3440      &      -3.0d0*vryg(k,3)*ury)
3441             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3442      &      -3.0d0*vrzg(k,3)*ury)
3443             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3444      &      -3.0d0*vryg(k,3)*urz)
3445             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3446      &      -3.0d0*vrzg(k,3)*urz)
3447 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3448 cgrad              do l=1,4
3449 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3450 cgrad              enddo
3451 cgrad            endif
3452           enddo
3453           acipa(1,1)=a22
3454           acipa(1,2)=a23
3455           acipa(2,1)=a32
3456           acipa(2,2)=a33
3457           a22=-a22
3458           a23=-a23
3459           do l=1,2
3460             do k=1,3
3461               agg(k,l)=-agg(k,l)
3462               aggi(k,l)=-aggi(k,l)
3463               aggi1(k,l)=-aggi1(k,l)
3464               aggj(k,l)=-aggj(k,l)
3465               aggj1(k,l)=-aggj1(k,l)
3466             enddo
3467           enddo
3468           if (j.lt.nres-1) then
3469             a22=-a22
3470             a32=-a32
3471             do l=1,3,2
3472               do k=1,3
3473                 agg(k,l)=-agg(k,l)
3474                 aggi(k,l)=-aggi(k,l)
3475                 aggi1(k,l)=-aggi1(k,l)
3476                 aggj(k,l)=-aggj(k,l)
3477                 aggj1(k,l)=-aggj1(k,l)
3478               enddo
3479             enddo
3480           else
3481             a22=-a22
3482             a23=-a23
3483             a32=-a32
3484             a33=-a33
3485             do l=1,4
3486               do k=1,3
3487                 agg(k,l)=-agg(k,l)
3488                 aggi(k,l)=-aggi(k,l)
3489                 aggi1(k,l)=-aggi1(k,l)
3490                 aggj(k,l)=-aggj(k,l)
3491                 aggj1(k,l)=-aggj1(k,l)
3492               enddo
3493             enddo 
3494           endif    
3495           ENDIF ! WCORR
3496           IF (wel_loc.gt.0.0d0) THEN
3497 C Contribution to the local-electrostatic energy coming from the i-j pair
3498           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3499      &     +a33*muij(4)
3500 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3501
3502           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3503      &            'eelloc',i,j,eel_loc_ij
3504
3505           eel_loc=eel_loc+eel_loc_ij
3506 C Partial derivatives in virtual-bond dihedral angles gamma
3507           if (i.gt.1)
3508      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3509      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3510      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3511           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3512      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3513      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3514 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3515           do l=1,3
3516             ggg(l)=agg(l,1)*muij(1)+
3517      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3518             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3519             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3520 cgrad            ghalf=0.5d0*ggg(l)
3521 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3522 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3523           enddo
3524 cgrad          do k=i+1,j2
3525 cgrad            do l=1,3
3526 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3527 cgrad            enddo
3528 cgrad          enddo
3529 C Remaining derivatives of eello
3530           do l=1,3
3531             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3532      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3533             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3534      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3535             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3536      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3537             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3538      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3539           enddo
3540           ENDIF
3541 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3542 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3543           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3544      &       .and. num_conti.le.maxconts) then
3545 c            write (iout,*) i,j," entered corr"
3546 C
3547 C Calculate the contact function. The ith column of the array JCONT will 
3548 C contain the numbers of atoms that make contacts with the atom I (of numbers
3549 C greater than I). The arrays FACONT and GACONT will contain the values of
3550 C the contact function and its derivative.
3551 c           r0ij=1.02D0*rpp(iteli,itelj)
3552 c           r0ij=1.11D0*rpp(iteli,itelj)
3553             r0ij=2.20D0*rpp(iteli,itelj)
3554 c           r0ij=1.55D0*rpp(iteli,itelj)
3555             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3556             if (fcont.gt.0.0D0) then
3557               num_conti=num_conti+1
3558               if (num_conti.gt.maxconts) then
3559                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3560      &                         ' will skip next contacts for this conf.'
3561               else
3562                 jcont_hb(num_conti,i)=j
3563 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3564 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3565                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3566      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3567 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3568 C  terms.
3569                 d_cont(num_conti,i)=rij
3570 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3571 C     --- Electrostatic-interaction matrix --- 
3572                 a_chuj(1,1,num_conti,i)=a22
3573                 a_chuj(1,2,num_conti,i)=a23
3574                 a_chuj(2,1,num_conti,i)=a32
3575                 a_chuj(2,2,num_conti,i)=a33
3576 C     --- Gradient of rij
3577                 do kkk=1,3
3578                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3579                 enddo
3580                 kkll=0
3581                 do k=1,2
3582                   do l=1,2
3583                     kkll=kkll+1
3584                     do m=1,3
3585                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3586                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3587                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3588                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3589                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3590                     enddo
3591                   enddo
3592                 enddo
3593                 ENDIF
3594                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3595 C Calculate contact energies
3596                 cosa4=4.0D0*cosa
3597                 wij=cosa-3.0D0*cosb*cosg
3598                 cosbg1=cosb+cosg
3599                 cosbg2=cosb-cosg
3600 c               fac3=dsqrt(-ael6i)/r0ij**3     
3601                 fac3=dsqrt(-ael6i)*r3ij
3602 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3603                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3604                 if (ees0tmp.gt.0) then
3605                   ees0pij=dsqrt(ees0tmp)
3606                 else
3607                   ees0pij=0
3608                 endif
3609 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3610                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3611                 if (ees0tmp.gt.0) then
3612                   ees0mij=dsqrt(ees0tmp)
3613                 else
3614                   ees0mij=0
3615                 endif
3616 c               ees0mij=0.0D0
3617                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3618                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3619 C Diagnostics. Comment out or remove after debugging!
3620 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3621 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3622 c               ees0m(num_conti,i)=0.0D0
3623 C End diagnostics.
3624 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3625 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3626 C Angular derivatives of the contact function
3627                 ees0pij1=fac3/ees0pij 
3628                 ees0mij1=fac3/ees0mij
3629                 fac3p=-3.0D0*fac3*rrmij
3630                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3631                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3632 c               ees0mij1=0.0D0
3633                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3634                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3635                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3636                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3637                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3638                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3639                 ecosap=ecosa1+ecosa2
3640                 ecosbp=ecosb1+ecosb2
3641                 ecosgp=ecosg1+ecosg2
3642                 ecosam=ecosa1-ecosa2
3643                 ecosbm=ecosb1-ecosb2
3644                 ecosgm=ecosg1-ecosg2
3645 C Diagnostics
3646 c               ecosap=ecosa1
3647 c               ecosbp=ecosb1
3648 c               ecosgp=ecosg1
3649 c               ecosam=0.0D0
3650 c               ecosbm=0.0D0
3651 c               ecosgm=0.0D0
3652 C End diagnostics
3653                 facont_hb(num_conti,i)=fcont
3654                 fprimcont=fprimcont/rij
3655 cd              facont_hb(num_conti,i)=1.0D0
3656 C Following line is for diagnostics.
3657 cd              fprimcont=0.0D0
3658                 do k=1,3
3659                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3660                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3661                 enddo
3662                 do k=1,3
3663                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3664                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3665                 enddo
3666                 gggp(1)=gggp(1)+ees0pijp*xj
3667                 gggp(2)=gggp(2)+ees0pijp*yj
3668                 gggp(3)=gggp(3)+ees0pijp*zj
3669                 gggm(1)=gggm(1)+ees0mijp*xj
3670                 gggm(2)=gggm(2)+ees0mijp*yj
3671                 gggm(3)=gggm(3)+ees0mijp*zj
3672 C Derivatives due to the contact function
3673                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3674                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3675                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3676                 do k=1,3
3677 c
3678 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3679 c          following the change of gradient-summation algorithm.
3680 c
3681 cgrad                  ghalfp=0.5D0*gggp(k)
3682 cgrad                  ghalfm=0.5D0*gggm(k)
3683                   gacontp_hb1(k,num_conti,i)=!ghalfp
3684      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3685      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3686                   gacontp_hb2(k,num_conti,i)=!ghalfp
3687      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3688      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3689                   gacontp_hb3(k,num_conti,i)=gggp(k)
3690                   gacontm_hb1(k,num_conti,i)=!ghalfm
3691      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3692      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3693                   gacontm_hb2(k,num_conti,i)=!ghalfm
3694      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3695      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3696                   gacontm_hb3(k,num_conti,i)=gggm(k)
3697                 enddo
3698 C Diagnostics. Comment out or remove after debugging!
3699 cdiag           do k=1,3
3700 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3701 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3702 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3703 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3704 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3705 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3706 cdiag           enddo
3707               ENDIF ! wcorr
3708               endif  ! num_conti.le.maxconts
3709             endif  ! fcont.gt.0
3710           endif    ! j.gt.i+1
3711           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3712             do k=1,4
3713               do l=1,3
3714                 ghalf=0.5d0*agg(l,k)
3715                 aggi(l,k)=aggi(l,k)+ghalf
3716                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3717                 aggj(l,k)=aggj(l,k)+ghalf
3718               enddo
3719             enddo
3720             if (j.eq.nres-1 .and. i.lt.j-2) then
3721               do k=1,4
3722                 do l=1,3
3723                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3724                 enddo
3725               enddo
3726             endif
3727           endif
3728 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3729       return
3730       end
3731 C-----------------------------------------------------------------------------
3732       subroutine eturn3(i,eello_turn3)
3733 C Third- and fourth-order contributions from turns
3734       implicit real*8 (a-h,o-z)
3735       include 'DIMENSIONS'
3736       include 'COMMON.IOUNITS'
3737       include 'COMMON.GEO'
3738       include 'COMMON.VAR'
3739       include 'COMMON.LOCAL'
3740       include 'COMMON.CHAIN'
3741       include 'COMMON.DERIV'
3742       include 'COMMON.INTERACT'
3743       include 'COMMON.CONTACTS'
3744       include 'COMMON.TORSION'
3745       include 'COMMON.VECTORS'
3746       include 'COMMON.FFIELD'
3747       include 'COMMON.CONTROL'
3748       dimension ggg(3)
3749       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3750      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3751      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3752       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3753      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3754       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3755      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3756      &    num_conti,j1,j2
3757       j=i+2
3758 c      write (iout,*) "eturn3",i,j,j1,j2
3759       a_temp(1,1)=a22
3760       a_temp(1,2)=a23
3761       a_temp(2,1)=a32
3762       a_temp(2,2)=a33
3763 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3764 C
3765 C               Third-order contributions
3766 C        
3767 C                 (i+2)o----(i+3)
3768 C                      | |
3769 C                      | |
3770 C                 (i+1)o----i
3771 C
3772 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3773 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3774         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3775         call transpose2(auxmat(1,1),auxmat1(1,1))
3776         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3777         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3778         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3779      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3780 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3781 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3782 cd     &    ' eello_turn3_num',4*eello_turn3_num
3783 C Derivatives in gamma(i)
3784         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3785         call transpose2(auxmat2(1,1),auxmat3(1,1))
3786         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3787         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3788 C Derivatives in gamma(i+1)
3789         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3790         call transpose2(auxmat2(1,1),auxmat3(1,1))
3791         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3792         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3793      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3794 C Cartesian derivatives
3795         do l=1,3
3796 c            ghalf1=0.5d0*agg(l,1)
3797 c            ghalf2=0.5d0*agg(l,2)
3798 c            ghalf3=0.5d0*agg(l,3)
3799 c            ghalf4=0.5d0*agg(l,4)
3800           a_temp(1,1)=aggi(l,1)!+ghalf1
3801           a_temp(1,2)=aggi(l,2)!+ghalf2
3802           a_temp(2,1)=aggi(l,3)!+ghalf3
3803           a_temp(2,2)=aggi(l,4)!+ghalf4
3804           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3805           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3806      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3807           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3808           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3809           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3810           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3811           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3812           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3813      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3814           a_temp(1,1)=aggj(l,1)!+ghalf1
3815           a_temp(1,2)=aggj(l,2)!+ghalf2
3816           a_temp(2,1)=aggj(l,3)!+ghalf3
3817           a_temp(2,2)=aggj(l,4)!+ghalf4
3818           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3819           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3820      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3821           a_temp(1,1)=aggj1(l,1)
3822           a_temp(1,2)=aggj1(l,2)
3823           a_temp(2,1)=aggj1(l,3)
3824           a_temp(2,2)=aggj1(l,4)
3825           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3826           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3827      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3828         enddo
3829       return
3830       end
3831 C-------------------------------------------------------------------------------
3832       subroutine eturn4(i,eello_turn4)
3833 C Third- and fourth-order contributions from turns
3834       implicit real*8 (a-h,o-z)
3835       include 'DIMENSIONS'
3836       include 'COMMON.IOUNITS'
3837       include 'COMMON.GEO'
3838       include 'COMMON.VAR'
3839       include 'COMMON.LOCAL'
3840       include 'COMMON.CHAIN'
3841       include 'COMMON.DERIV'
3842       include 'COMMON.INTERACT'
3843       include 'COMMON.CONTACTS'
3844       include 'COMMON.TORSION'
3845       include 'COMMON.VECTORS'
3846       include 'COMMON.FFIELD'
3847       include 'COMMON.CONTROL'
3848       dimension ggg(3)
3849       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3850      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3851      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3852       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3853      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3854       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3855      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3856      &    num_conti,j1,j2
3857       j=i+3
3858 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3859 C
3860 C               Fourth-order contributions
3861 C        
3862 C                 (i+3)o----(i+4)
3863 C                     /  |
3864 C               (i+2)o   |
3865 C                     \  |
3866 C                 (i+1)o----i
3867 C
3868 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3869 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3870 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3871         a_temp(1,1)=a22
3872         a_temp(1,2)=a23
3873         a_temp(2,1)=a32
3874         a_temp(2,2)=a33
3875         iti1=itortyp(itype(i+1))
3876         iti2=itortyp(itype(i+2))
3877         iti3=itortyp(itype(i+3))
3878 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3879         call transpose2(EUg(1,1,i+1),e1t(1,1))
3880         call transpose2(Eug(1,1,i+2),e2t(1,1))
3881         call transpose2(Eug(1,1,i+3),e3t(1,1))
3882         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3883         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3884         s1=scalar2(b1(1,iti2),auxvec(1))
3885         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3886         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3887         s2=scalar2(b1(1,iti1),auxvec(1))
3888         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3889         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3890         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3891         eello_turn4=eello_turn4-(s1+s2+s3)
3892         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3893      &      'eturn4',i,j,-(s1+s2+s3)
3894 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3895 cd     &    ' eello_turn4_num',8*eello_turn4_num
3896 C Derivatives in gamma(i)
3897         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3898         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3899         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3900         s1=scalar2(b1(1,iti2),auxvec(1))
3901         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3902         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3904 C Derivatives in gamma(i+1)
3905         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3906         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3907         s2=scalar2(b1(1,iti1),auxvec(1))
3908         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3909         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3910         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3911         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3912 C Derivatives in gamma(i+2)
3913         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3914         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3915         s1=scalar2(b1(1,iti2),auxvec(1))
3916         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3917         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3920         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3923 C Cartesian derivatives
3924 C Derivatives of this turn contributions in DC(i+2)
3925         if (j.lt.nres-1) then
3926           do l=1,3
3927             a_temp(1,1)=agg(l,1)
3928             a_temp(1,2)=agg(l,2)
3929             a_temp(2,1)=agg(l,3)
3930             a_temp(2,2)=agg(l,4)
3931             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3932             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3933             s1=scalar2(b1(1,iti2),auxvec(1))
3934             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3935             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3936             s2=scalar2(b1(1,iti1),auxvec(1))
3937             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3938             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3939             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3940             ggg(l)=-(s1+s2+s3)
3941             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3942           enddo
3943         endif
3944 C Remaining derivatives of this turn contribution
3945         do l=1,3
3946           a_temp(1,1)=aggi(l,1)
3947           a_temp(1,2)=aggi(l,2)
3948           a_temp(2,1)=aggi(l,3)
3949           a_temp(2,2)=aggi(l,4)
3950           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3951           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3952           s1=scalar2(b1(1,iti2),auxvec(1))
3953           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3954           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3955           s2=scalar2(b1(1,iti1),auxvec(1))
3956           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3957           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3958           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3959           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3960           a_temp(1,1)=aggi1(l,1)
3961           a_temp(1,2)=aggi1(l,2)
3962           a_temp(2,1)=aggi1(l,3)
3963           a_temp(2,2)=aggi1(l,4)
3964           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3965           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3966           s1=scalar2(b1(1,iti2),auxvec(1))
3967           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3968           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3969           s2=scalar2(b1(1,iti1),auxvec(1))
3970           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3971           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3972           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3973           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3974           a_temp(1,1)=aggj(l,1)
3975           a_temp(1,2)=aggj(l,2)
3976           a_temp(2,1)=aggj(l,3)
3977           a_temp(2,2)=aggj(l,4)
3978           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3979           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3980           s1=scalar2(b1(1,iti2),auxvec(1))
3981           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3982           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3983           s2=scalar2(b1(1,iti1),auxvec(1))
3984           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3985           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3986           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3987           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3988           a_temp(1,1)=aggj1(l,1)
3989           a_temp(1,2)=aggj1(l,2)
3990           a_temp(2,1)=aggj1(l,3)
3991           a_temp(2,2)=aggj1(l,4)
3992           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3993           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3994           s1=scalar2(b1(1,iti2),auxvec(1))
3995           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3996           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3997           s2=scalar2(b1(1,iti1),auxvec(1))
3998           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3999           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4000           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4001 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4002           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4003         enddo
4004       return
4005       end
4006 C-----------------------------------------------------------------------------
4007       subroutine vecpr(u,v,w)
4008       implicit real*8(a-h,o-z)
4009       dimension u(3),v(3),w(3)
4010       w(1)=u(2)*v(3)-u(3)*v(2)
4011       w(2)=-u(1)*v(3)+u(3)*v(1)
4012       w(3)=u(1)*v(2)-u(2)*v(1)
4013       return
4014       end
4015 C-----------------------------------------------------------------------------
4016       subroutine unormderiv(u,ugrad,unorm,ungrad)
4017 C This subroutine computes the derivatives of a normalized vector u, given
4018 C the derivatives computed without normalization conditions, ugrad. Returns
4019 C ungrad.
4020       implicit none
4021       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4022       double precision vec(3)
4023       double precision scalar
4024       integer i,j
4025 c      write (2,*) 'ugrad',ugrad
4026 c      write (2,*) 'u',u
4027       do i=1,3
4028         vec(i)=scalar(ugrad(1,i),u(1))
4029       enddo
4030 c      write (2,*) 'vec',vec
4031       do i=1,3
4032         do j=1,3
4033           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4034         enddo
4035       enddo
4036 c      write (2,*) 'ungrad',ungrad
4037       return
4038       end
4039 C-----------------------------------------------------------------------------
4040       subroutine escp_soft_sphere(evdw2,evdw2_14)
4041 C
4042 C This subroutine calculates the excluded-volume interaction energy between
4043 C peptide-group centers and side chains and its gradient in virtual-bond and
4044 C side-chain vectors.
4045 C
4046       implicit real*8 (a-h,o-z)
4047       include 'DIMENSIONS'
4048       include 'COMMON.GEO'
4049       include 'COMMON.VAR'
4050       include 'COMMON.LOCAL'
4051       include 'COMMON.CHAIN'
4052       include 'COMMON.DERIV'
4053       include 'COMMON.INTERACT'
4054       include 'COMMON.FFIELD'
4055       include 'COMMON.IOUNITS'
4056       include 'COMMON.CONTROL'
4057       dimension ggg(3)
4058       evdw2=0.0D0
4059       evdw2_14=0.0d0
4060       r0_scp=4.5d0
4061 cd    print '(a)','Enter ESCP'
4062 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4063       do i=iatscp_s,iatscp_e
4064         iteli=itel(i)
4065         xi=0.5D0*(c(1,i)+c(1,i+1))
4066         yi=0.5D0*(c(2,i)+c(2,i+1))
4067         zi=0.5D0*(c(3,i)+c(3,i+1))
4068
4069         do iint=1,nscp_gr(i)
4070
4071         do j=iscpstart(i,iint),iscpend(i,iint)
4072           itypj=itype(j)
4073 C Uncomment following three lines for SC-p interactions
4074 c         xj=c(1,nres+j)-xi
4075 c         yj=c(2,nres+j)-yi
4076 c         zj=c(3,nres+j)-zi
4077 C Uncomment following three lines for Ca-p interactions
4078           xj=c(1,j)-xi
4079           yj=c(2,j)-yi
4080           zj=c(3,j)-zi
4081           rij=xj*xj+yj*yj+zj*zj
4082           r0ij=r0_scp
4083           r0ijsq=r0ij*r0ij
4084           if (rij.lt.r0ijsq) then
4085             evdwij=0.25d0*(rij-r0ijsq)**2
4086             fac=rij-r0ijsq
4087           else
4088             evdwij=0.0d0
4089             fac=0.0d0
4090           endif 
4091           evdw2=evdw2+evdwij
4092 C
4093 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4094 C
4095           ggg(1)=xj*fac
4096           ggg(2)=yj*fac
4097           ggg(3)=zj*fac
4098 cgrad          if (j.lt.i) then
4099 cd          write (iout,*) 'j<i'
4100 C Uncomment following three lines for SC-p interactions
4101 c           do k=1,3
4102 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4103 c           enddo
4104 cgrad          else
4105 cd          write (iout,*) 'j>i'
4106 cgrad            do k=1,3
4107 cgrad              ggg(k)=-ggg(k)
4108 C Uncomment following line for SC-p interactions
4109 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4110 cgrad            enddo
4111 cgrad          endif
4112 cgrad          do k=1,3
4113 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4114 cgrad          enddo
4115 cgrad          kstart=min0(i+1,j)
4116 cgrad          kend=max0(i-1,j-1)
4117 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4118 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4119 cgrad          do k=kstart,kend
4120 cgrad            do l=1,3
4121 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4122 cgrad            enddo
4123 cgrad          enddo
4124           do k=1,3
4125             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4126             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4127           enddo
4128         enddo
4129
4130         enddo ! iint
4131       enddo ! i
4132       return
4133       end
4134 C-----------------------------------------------------------------------------
4135       subroutine escp(evdw2,evdw2_14)
4136 C
4137 C This subroutine calculates the excluded-volume interaction energy between
4138 C peptide-group centers and side chains and its gradient in virtual-bond and
4139 C side-chain vectors.
4140 C
4141       implicit real*8 (a-h,o-z)
4142       include 'DIMENSIONS'
4143       include 'COMMON.GEO'
4144       include 'COMMON.VAR'
4145       include 'COMMON.LOCAL'
4146       include 'COMMON.CHAIN'
4147       include 'COMMON.DERIV'
4148       include 'COMMON.INTERACT'
4149       include 'COMMON.FFIELD'
4150       include 'COMMON.IOUNITS'
4151       include 'COMMON.CONTROL'
4152       dimension ggg(3)
4153       evdw2=0.0D0
4154       evdw2_14=0.0d0
4155 cd    print '(a)','Enter ESCP'
4156 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4157       do i=iatscp_s,iatscp_e
4158         iteli=itel(i)
4159         xi=0.5D0*(c(1,i)+c(1,i+1))
4160         yi=0.5D0*(c(2,i)+c(2,i+1))
4161         zi=0.5D0*(c(3,i)+c(3,i+1))
4162
4163         do iint=1,nscp_gr(i)
4164
4165         do j=iscpstart(i,iint),iscpend(i,iint)
4166           itypj=itype(j)
4167 C Uncomment following three lines for SC-p interactions
4168 c         xj=c(1,nres+j)-xi
4169 c         yj=c(2,nres+j)-yi
4170 c         zj=c(3,nres+j)-zi
4171 C Uncomment following three lines for Ca-p interactions
4172           xj=c(1,j)-xi
4173           yj=c(2,j)-yi
4174           zj=c(3,j)-zi
4175           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4176           fac=rrij**expon2
4177           e1=fac*fac*aad(itypj,iteli)
4178           e2=fac*bad(itypj,iteli)
4179           if (iabs(j-i) .le. 2) then
4180             e1=scal14*e1
4181             e2=scal14*e2
4182             evdw2_14=evdw2_14+e1+e2
4183           endif
4184           evdwij=e1+e2
4185           evdw2=evdw2+evdwij
4186           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4187      &        'evdw2',i,j,evdwij
4188 C
4189 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4190 C
4191           fac=-(evdwij+e1)*rrij
4192           ggg(1)=xj*fac
4193           ggg(2)=yj*fac
4194           ggg(3)=zj*fac
4195 cgrad          if (j.lt.i) then
4196 cd          write (iout,*) 'j<i'
4197 C Uncomment following three lines for SC-p interactions
4198 c           do k=1,3
4199 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4200 c           enddo
4201 cgrad          else
4202 cd          write (iout,*) 'j>i'
4203 cgrad            do k=1,3
4204 cgrad              ggg(k)=-ggg(k)
4205 C Uncomment following line for SC-p interactions
4206 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4207 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4208 cgrad            enddo
4209 cgrad          endif
4210 cgrad          do k=1,3
4211 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4212 cgrad          enddo
4213 cgrad          kstart=min0(i+1,j)
4214 cgrad          kend=max0(i-1,j-1)
4215 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4216 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4217 cgrad          do k=kstart,kend
4218 cgrad            do l=1,3
4219 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4220 cgrad            enddo
4221 cgrad          enddo
4222           do k=1,3
4223             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4224             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4225           enddo
4226         enddo
4227
4228         enddo ! iint
4229       enddo ! i
4230       do i=1,nct
4231         do j=1,3
4232           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4233           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4234           gradx_scp(j,i)=expon*gradx_scp(j,i)
4235         enddo
4236       enddo
4237 C******************************************************************************
4238 C
4239 C                              N O T E !!!
4240 C
4241 C To save time the factor EXPON has been extracted from ALL components
4242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4243 C use!
4244 C
4245 C******************************************************************************
4246       return
4247       end
4248 C--------------------------------------------------------------------------
4249       subroutine edis(ehpb)
4250
4251 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4252 C
4253       implicit real*8 (a-h,o-z)
4254       include 'DIMENSIONS'
4255       include 'COMMON.SBRIDGE'
4256       include 'COMMON.CHAIN'
4257       include 'COMMON.DERIV'
4258       include 'COMMON.VAR'
4259       include 'COMMON.INTERACT'
4260       include 'COMMON.IOUNITS'
4261       dimension ggg(3)
4262       ehpb=0.0D0
4263 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4264 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4265       if (link_end.eq.0) return
4266       do i=link_start,link_end
4267 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4268 C CA-CA distance used in regularization of structure.
4269         ii=ihpb(i)
4270         jj=jhpb(i)
4271 C iii and jjj point to the residues for which the distance is assigned.
4272         if (ii.gt.nres) then
4273           iii=ii-nres
4274           jjj=jj-nres 
4275         else
4276           iii=ii
4277           jjj=jj
4278         endif
4279 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4280 c     &    dhpb(i),dhpb1(i),forcon(i)
4281 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4282 C    distance and angle dependent SS bond potential.
4283 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4284 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4285         if (.not.dyn_ss .and. i.le.nss) then
4286 C 15/02/13 CC dynamic SSbond - additional check
4287          if (ii.gt.nres 
4288      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4289           call ssbond_ene(iii,jjj,eij)
4290           ehpb=ehpb+2*eij
4291          endif
4292 cd          write (iout,*) "eij",eij
4293         else if (ii.gt.nres .and. jj.gt.nres) then
4294 c Restraints from contact prediction
4295           dd=dist(ii,jj)
4296           if (dhpb1(i).gt.0.0d0) then
4297             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4298             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4299 c            write (iout,*) "beta nmr",
4300 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4301           else
4302             dd=dist(ii,jj)
4303             rdis=dd-dhpb(i)
4304 C Get the force constant corresponding to this distance.
4305             waga=forcon(i)
4306 C Calculate the contribution to energy.
4307             ehpb=ehpb+waga*rdis*rdis
4308 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4309 C
4310 C Evaluate gradient.
4311 C
4312             fac=waga*rdis/dd
4313           endif  
4314           do j=1,3
4315             ggg(j)=fac*(c(j,jj)-c(j,ii))
4316           enddo
4317           do j=1,3
4318             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4319             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4320           enddo
4321           do k=1,3
4322             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4323             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4324           enddo
4325         else
4326 C Calculate the distance between the two points and its difference from the
4327 C target distance.
4328           dd=dist(ii,jj)
4329           if (dhpb1(i).gt.0.0d0) then
4330             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4331             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4332 c            write (iout,*) "alph nmr",
4333 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4334           else
4335             rdis=dd-dhpb(i)
4336 C Get the force constant corresponding to this distance.
4337             waga=forcon(i)
4338 C Calculate the contribution to energy.
4339             ehpb=ehpb+waga*rdis*rdis
4340 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4341 C
4342 C Evaluate gradient.
4343 C
4344             fac=waga*rdis/dd
4345           endif
4346 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4347 cd   &   ' waga=',waga,' fac=',fac
4348             do j=1,3
4349               ggg(j)=fac*(c(j,jj)-c(j,ii))
4350             enddo
4351 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4352 C If this is a SC-SC distance, we need to calculate the contributions to the
4353 C Cartesian gradient in the SC vectors (ghpbx).
4354           if (iii.lt.ii) then
4355           do j=1,3
4356             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4357             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4358           enddo
4359           endif
4360 cgrad        do j=iii,jjj-1
4361 cgrad          do k=1,3
4362 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4363 cgrad          enddo
4364 cgrad        enddo
4365           do k=1,3
4366             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4367             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4368           enddo
4369         endif
4370       enddo
4371       ehpb=0.5D0*ehpb
4372       return
4373       end
4374 C--------------------------------------------------------------------------
4375       subroutine ssbond_ene(i,j,eij)
4376
4377 C Calculate the distance and angle dependent SS-bond potential energy
4378 C using a free-energy function derived based on RHF/6-31G** ab initio
4379 C calculations of diethyl disulfide.
4380 C
4381 C A. Liwo and U. Kozlowska, 11/24/03
4382 C
4383       implicit real*8 (a-h,o-z)
4384       include 'DIMENSIONS'
4385       include 'COMMON.SBRIDGE'
4386       include 'COMMON.CHAIN'
4387       include 'COMMON.DERIV'
4388       include 'COMMON.LOCAL'
4389       include 'COMMON.INTERACT'
4390       include 'COMMON.VAR'
4391       include 'COMMON.IOUNITS'
4392       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4393       itypi=itype(i)
4394       xi=c(1,nres+i)
4395       yi=c(2,nres+i)
4396       zi=c(3,nres+i)
4397       dxi=dc_norm(1,nres+i)
4398       dyi=dc_norm(2,nres+i)
4399       dzi=dc_norm(3,nres+i)
4400 c      dsci_inv=dsc_inv(itypi)
4401       dsci_inv=vbld_inv(nres+i)
4402       itypj=itype(j)
4403 c      dscj_inv=dsc_inv(itypj)
4404       dscj_inv=vbld_inv(nres+j)
4405       xj=c(1,nres+j)-xi
4406       yj=c(2,nres+j)-yi
4407       zj=c(3,nres+j)-zi
4408       dxj=dc_norm(1,nres+j)
4409       dyj=dc_norm(2,nres+j)
4410       dzj=dc_norm(3,nres+j)
4411       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4412       rij=dsqrt(rrij)
4413       erij(1)=xj*rij
4414       erij(2)=yj*rij
4415       erij(3)=zj*rij
4416       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4417       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4418       om12=dxi*dxj+dyi*dyj+dzi*dzj
4419       do k=1,3
4420         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4421         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4422       enddo
4423       rij=1.0d0/rij
4424       deltad=rij-d0cm
4425       deltat1=1.0d0-om1
4426       deltat2=1.0d0+om2
4427       deltat12=om2-om1+2.0d0
4428       cosphi=om12-om1*om2
4429       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4430      &  +akct*deltad*deltat12+ebr
4431      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4432 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4433 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4434 c     &  " deltat12",deltat12," eij",eij 
4435       ed=2*akcm*deltad+akct*deltat12
4436       pom1=akct*deltad
4437       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4438       eom1=-2*akth*deltat1-pom1-om2*pom2
4439       eom2= 2*akth*deltat2+pom1-om1*pom2
4440       eom12=pom2
4441       do k=1,3
4442         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4443         ghpbx(k,i)=ghpbx(k,i)-ggk
4444      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4445      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4446         ghpbx(k,j)=ghpbx(k,j)+ggk
4447      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4448      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4449         ghpbc(k,i)=ghpbc(k,i)-ggk
4450         ghpbc(k,j)=ghpbc(k,j)+ggk
4451       enddo
4452 C
4453 C Calculate the components of the gradient in DC and X
4454 C
4455 cgrad      do k=i,j-1
4456 cgrad        do l=1,3
4457 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4458 cgrad        enddo
4459 cgrad      enddo
4460       return
4461       end
4462 C--------------------------------------------------------------------------
4463       subroutine ebond(estr)
4464 c
4465 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4466 c
4467       implicit real*8 (a-h,o-z)
4468       include 'DIMENSIONS'
4469       include 'COMMON.LOCAL'
4470       include 'COMMON.GEO'
4471       include 'COMMON.INTERACT'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.VAR'
4474       include 'COMMON.CHAIN'
4475       include 'COMMON.IOUNITS'
4476       include 'COMMON.NAMES'
4477       include 'COMMON.FFIELD'
4478       include 'COMMON.CONTROL'
4479       include 'COMMON.SETUP'
4480       double precision u(3),ud(3)
4481       estr=0.0d0
4482       do i=ibondp_start,ibondp_end
4483         diff = vbld(i)-vbldp0
4484 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4485         estr=estr+diff*diff
4486         do j=1,3
4487           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4488         enddo
4489 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4490       enddo
4491       estr=0.5d0*AKP*estr
4492 c
4493 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4494 c
4495       do i=ibond_start,ibond_end
4496         iti=itype(i)
4497         if (iti.ne.10) then
4498           nbi=nbondterm(iti)
4499           if (nbi.eq.1) then
4500             diff=vbld(i+nres)-vbldsc0(1,iti)
4501 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4502 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4503             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4504             do j=1,3
4505               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4506             enddo
4507           else
4508             do j=1,nbi
4509               diff=vbld(i+nres)-vbldsc0(j,iti) 
4510               ud(j)=aksc(j,iti)*diff
4511               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4512             enddo
4513             uprod=u(1)
4514             do j=2,nbi
4515               uprod=uprod*u(j)
4516             enddo
4517             usum=0.0d0
4518             usumsqder=0.0d0
4519             do j=1,nbi
4520               uprod1=1.0d0
4521               uprod2=1.0d0
4522               do k=1,nbi
4523                 if (k.ne.j) then
4524                   uprod1=uprod1*u(k)
4525                   uprod2=uprod2*u(k)*u(k)
4526                 endif
4527               enddo
4528               usum=usum+uprod1
4529               usumsqder=usumsqder+ud(j)*uprod2   
4530             enddo
4531             estr=estr+uprod/usum
4532             do j=1,3
4533              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4534             enddo
4535           endif
4536         endif
4537       enddo
4538       return
4539       end 
4540 #ifdef CRYST_THETA
4541 C--------------------------------------------------------------------------
4542       subroutine ebend(etheta)
4543 C
4544 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4545 C angles gamma and its derivatives in consecutive thetas and gammas.
4546 C
4547       implicit real*8 (a-h,o-z)
4548       include 'DIMENSIONS'
4549       include 'COMMON.LOCAL'
4550       include 'COMMON.GEO'
4551       include 'COMMON.INTERACT'
4552       include 'COMMON.DERIV'
4553       include 'COMMON.VAR'
4554       include 'COMMON.CHAIN'
4555       include 'COMMON.IOUNITS'
4556       include 'COMMON.NAMES'
4557       include 'COMMON.FFIELD'
4558       include 'COMMON.CONTROL'
4559       common /calcthet/ term1,term2,termm,diffak,ratak,
4560      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4561      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4562       double precision y(2),z(2)
4563       delta=0.02d0*pi
4564 c      time11=dexp(-2*time)
4565 c      time12=1.0d0
4566       etheta=0.0D0
4567 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4568       do i=ithet_start,ithet_end
4569 C Zero the energy function and its derivative at 0 or pi.
4570         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4571         it=itype(i-1)
4572         if (i.gt.3) then
4573 #ifdef OSF
4574           phii=phi(i)
4575           if (phii.ne.phii) phii=150.0
4576 #else
4577           phii=phi(i)
4578 #endif
4579           y(1)=dcos(phii)
4580           y(2)=dsin(phii)
4581         else 
4582           y(1)=0.0D0
4583           y(2)=0.0D0
4584         endif
4585         if (i.lt.nres) then
4586 #ifdef OSF
4587           phii1=phi(i+1)
4588           if (phii1.ne.phii1) phii1=150.0
4589           phii1=pinorm(phii1)
4590           z(1)=cos(phii1)
4591 #else
4592           phii1=phi(i+1)
4593           z(1)=dcos(phii1)
4594 #endif
4595           z(2)=dsin(phii1)
4596         else
4597           z(1)=0.0D0
4598           z(2)=0.0D0
4599         endif  
4600 C Calculate the "mean" value of theta from the part of the distribution
4601 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4602 C In following comments this theta will be referred to as t_c.
4603         thet_pred_mean=0.0d0
4604         do k=1,2
4605           athetk=athet(k,it)
4606           bthetk=bthet(k,it)
4607           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4608         enddo
4609         dthett=thet_pred_mean*ssd
4610         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4611 C Derivatives of the "mean" values in gamma1 and gamma2.
4612         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4613         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4614         if (theta(i).gt.pi-delta) then
4615           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4616      &         E_tc0)
4617           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4618           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4619           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4620      &        E_theta)
4621           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4622      &        E_tc)
4623         else if (theta(i).lt.delta) then
4624           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4625           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4626           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4627      &        E_theta)
4628           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4630      &        E_tc)
4631         else
4632           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4633      &        E_theta,E_tc)
4634         endif
4635         etheta=etheta+ethetai
4636         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4637      &      'ebend',i,ethetai
4638         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4639         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4640         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4641       enddo
4642 C Ufff.... We've done all this!!! 
4643       return
4644       end
4645 C---------------------------------------------------------------------------
4646       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4647      &     E_tc)
4648       implicit real*8 (a-h,o-z)
4649       include 'DIMENSIONS'
4650       include 'COMMON.LOCAL'
4651       include 'COMMON.IOUNITS'
4652       common /calcthet/ term1,term2,termm,diffak,ratak,
4653      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4654      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4655 C Calculate the contributions to both Gaussian lobes.
4656 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4657 C The "polynomial part" of the "standard deviation" of this part of 
4658 C the distribution.
4659         sig=polthet(3,it)
4660         do j=2,0,-1
4661           sig=sig*thet_pred_mean+polthet(j,it)
4662         enddo
4663 C Derivative of the "interior part" of the "standard deviation of the" 
4664 C gamma-dependent Gaussian lobe in t_c.
4665         sigtc=3*polthet(3,it)
4666         do j=2,1,-1
4667           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4668         enddo
4669         sigtc=sig*sigtc
4670 C Set the parameters of both Gaussian lobes of the distribution.
4671 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4672         fac=sig*sig+sigc0(it)
4673         sigcsq=fac+fac
4674         sigc=1.0D0/sigcsq
4675 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4676         sigsqtc=-4.0D0*sigcsq*sigtc
4677 c       print *,i,sig,sigtc,sigsqtc
4678 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4679         sigtc=-sigtc/(fac*fac)
4680 C Following variable is sigma(t_c)**(-2)
4681         sigcsq=sigcsq*sigcsq
4682         sig0i=sig0(it)
4683         sig0inv=1.0D0/sig0i**2
4684         delthec=thetai-thet_pred_mean
4685         delthe0=thetai-theta0i
4686         term1=-0.5D0*sigcsq*delthec*delthec
4687         term2=-0.5D0*sig0inv*delthe0*delthe0
4688 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4689 C NaNs in taking the logarithm. We extract the largest exponent which is added
4690 C to the energy (this being the log of the distribution) at the end of energy
4691 C term evaluation for this virtual-bond angle.
4692         if (term1.gt.term2) then
4693           termm=term1
4694           term2=dexp(term2-termm)
4695           term1=1.0d0
4696         else
4697           termm=term2
4698           term1=dexp(term1-termm)
4699           term2=1.0d0
4700         endif
4701 C The ratio between the gamma-independent and gamma-dependent lobes of
4702 C the distribution is a Gaussian function of thet_pred_mean too.
4703         diffak=gthet(2,it)-thet_pred_mean
4704         ratak=diffak/gthet(3,it)**2
4705         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4706 C Let's differentiate it in thet_pred_mean NOW.
4707         aktc=ak*ratak
4708 C Now put together the distribution terms to make complete distribution.
4709         termexp=term1+ak*term2
4710         termpre=sigc+ak*sig0i
4711 C Contribution of the bending energy from this theta is just the -log of
4712 C the sum of the contributions from the two lobes and the pre-exponential
4713 C factor. Simple enough, isn't it?
4714         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4715 C NOW the derivatives!!!
4716 C 6/6/97 Take into account the deformation.
4717         E_theta=(delthec*sigcsq*term1
4718      &       +ak*delthe0*sig0inv*term2)/termexp
4719         E_tc=((sigtc+aktc*sig0i)/termpre
4720      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4721      &       aktc*term2)/termexp)
4722       return
4723       end
4724 c-----------------------------------------------------------------------------
4725       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4726       implicit real*8 (a-h,o-z)
4727       include 'DIMENSIONS'
4728       include 'COMMON.LOCAL'
4729       include 'COMMON.IOUNITS'
4730       common /calcthet/ term1,term2,termm,diffak,ratak,
4731      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4732      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4733       delthec=thetai-thet_pred_mean
4734       delthe0=thetai-theta0i
4735 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4736       t3 = thetai-thet_pred_mean
4737       t6 = t3**2
4738       t9 = term1
4739       t12 = t3*sigcsq
4740       t14 = t12+t6*sigsqtc
4741       t16 = 1.0d0
4742       t21 = thetai-theta0i
4743       t23 = t21**2
4744       t26 = term2
4745       t27 = t21*t26
4746       t32 = termexp
4747       t40 = t32**2
4748       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4749      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4750      & *(-t12*t9-ak*sig0inv*t27)
4751       return
4752       end
4753 #else
4754 C--------------------------------------------------------------------------
4755       subroutine ebend(etheta)
4756 C
4757 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4758 C angles gamma and its derivatives in consecutive thetas and gammas.
4759 C ab initio-derived potentials from 
4760 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4761 C
4762       implicit real*8 (a-h,o-z)
4763       include 'DIMENSIONS'
4764       include 'COMMON.LOCAL'
4765       include 'COMMON.GEO'
4766       include 'COMMON.INTERACT'
4767       include 'COMMON.DERIV'
4768       include 'COMMON.VAR'
4769       include 'COMMON.CHAIN'
4770       include 'COMMON.IOUNITS'
4771       include 'COMMON.NAMES'
4772       include 'COMMON.FFIELD'
4773       include 'COMMON.CONTROL'
4774       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4775      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4776      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4777      & sinph1ph2(maxdouble,maxdouble)
4778       logical lprn /.false./, lprn1 /.false./
4779       etheta=0.0D0
4780       do i=ithet_start,ithet_end
4781         dethetai=0.0d0
4782         dephii=0.0d0
4783         dephii1=0.0d0
4784         theti2=0.5d0*theta(i)
4785         ityp2=ithetyp(itype(i-1))
4786         do k=1,nntheterm
4787           coskt(k)=dcos(k*theti2)
4788           sinkt(k)=dsin(k*theti2)
4789         enddo
4790         if (i.gt.3) then
4791 #ifdef OSF
4792           phii=phi(i)
4793           if (phii.ne.phii) phii=150.0
4794 #else
4795           phii=phi(i)
4796 #endif
4797           ityp1=ithetyp(itype(i-2))
4798           do k=1,nsingle
4799             cosph1(k)=dcos(k*phii)
4800             sinph1(k)=dsin(k*phii)
4801           enddo
4802         else
4803           phii=0.0d0
4804           ityp1=nthetyp+1
4805           do k=1,nsingle
4806             cosph1(k)=0.0d0
4807             sinph1(k)=0.0d0
4808           enddo 
4809         endif
4810         if (i.lt.nres) then
4811 #ifdef OSF
4812           phii1=phi(i+1)
4813           if (phii1.ne.phii1) phii1=150.0
4814           phii1=pinorm(phii1)
4815 #else
4816           phii1=phi(i+1)
4817 #endif
4818           ityp3=ithetyp(itype(i))
4819           do k=1,nsingle
4820             cosph2(k)=dcos(k*phii1)
4821             sinph2(k)=dsin(k*phii1)
4822           enddo
4823         else
4824           phii1=0.0d0
4825           ityp3=nthetyp+1
4826           do k=1,nsingle
4827             cosph2(k)=0.0d0
4828             sinph2(k)=0.0d0
4829           enddo
4830         endif  
4831         ethetai=aa0thet(ityp1,ityp2,ityp3)
4832         do k=1,ndouble
4833           do l=1,k-1
4834             ccl=cosph1(l)*cosph2(k-l)
4835             ssl=sinph1(l)*sinph2(k-l)
4836             scl=sinph1(l)*cosph2(k-l)
4837             csl=cosph1(l)*sinph2(k-l)
4838             cosph1ph2(l,k)=ccl-ssl
4839             cosph1ph2(k,l)=ccl+ssl
4840             sinph1ph2(l,k)=scl+csl
4841             sinph1ph2(k,l)=scl-csl
4842           enddo
4843         enddo
4844         if (lprn) then
4845         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4846      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4847         write (iout,*) "coskt and sinkt"
4848         do k=1,nntheterm
4849           write (iout,*) k,coskt(k),sinkt(k)
4850         enddo
4851         endif
4852         do k=1,ntheterm
4853           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4854           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4855      &      *coskt(k)
4856           if (lprn)
4857      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4858      &     " ethetai",ethetai
4859         enddo
4860         if (lprn) then
4861         write (iout,*) "cosph and sinph"
4862         do k=1,nsingle
4863           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4864         enddo
4865         write (iout,*) "cosph1ph2 and sinph2ph2"
4866         do k=2,ndouble
4867           do l=1,k-1
4868             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4869      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4870           enddo
4871         enddo
4872         write(iout,*) "ethetai",ethetai
4873         endif
4874         do m=1,ntheterm2
4875           do k=1,nsingle
4876             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4877      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4878      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4879      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4880             ethetai=ethetai+sinkt(m)*aux
4881             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4882             dephii=dephii+k*sinkt(m)*(
4883      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4884      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4885             dephii1=dephii1+k*sinkt(m)*(
4886      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4887      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4888             if (lprn)
4889      &      write (iout,*) "m",m," k",k," bbthet",
4890      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4891      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4892      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4893      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4894           enddo
4895         enddo
4896         if (lprn)
4897      &  write(iout,*) "ethetai",ethetai
4898         do m=1,ntheterm3
4899           do k=2,ndouble
4900             do l=1,k-1
4901               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4902      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4903      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4904      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4905               ethetai=ethetai+sinkt(m)*aux
4906               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4907               dephii=dephii+l*sinkt(m)*(
4908      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4909      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4910      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4911      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4912               dephii1=dephii1+(k-l)*sinkt(m)*(
4913      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4914      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4915      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4916      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4917               if (lprn) then
4918               write (iout,*) "m",m," k",k," l",l," ffthet",
4919      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4920      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4921      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4922      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4923               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4924      &            cosph1ph2(k,l)*sinkt(m),
4925      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4926               endif
4927             enddo
4928           enddo
4929         enddo
4930 10      continue
4931 c        lprn1=.true.
4932         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
4933      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
4934      &   phii1*rad2deg,ethetai
4935 c        lprn1=.false.
4936         etheta=etheta+ethetai
4937         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4938         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4939         gloc(nphi+i-2,icg)=wang*dethetai
4940       enddo
4941       return
4942       end
4943 #endif
4944 #ifdef CRYST_SC
4945 c-----------------------------------------------------------------------------
4946       subroutine esc(escloc)
4947 C Calculate the local energy of a side chain and its derivatives in the
4948 C corresponding virtual-bond valence angles THETA and the spherical angles 
4949 C ALPHA and OMEGA.
4950       implicit real*8 (a-h,o-z)
4951       include 'DIMENSIONS'
4952       include 'COMMON.GEO'
4953       include 'COMMON.LOCAL'
4954       include 'COMMON.VAR'
4955       include 'COMMON.INTERACT'
4956       include 'COMMON.DERIV'
4957       include 'COMMON.CHAIN'
4958       include 'COMMON.IOUNITS'
4959       include 'COMMON.NAMES'
4960       include 'COMMON.FFIELD'
4961       include 'COMMON.CONTROL'
4962       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4963      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4964       common /sccalc/ time11,time12,time112,theti,it,nlobit
4965       delta=0.02d0*pi
4966       escloc=0.0D0
4967 c     write (iout,'(a)') 'ESC'
4968       do i=loc_start,loc_end
4969         it=itype(i)
4970         if (it.eq.10) goto 1
4971         nlobit=nlob(it)
4972 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4973 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4974         theti=theta(i+1)-pipol
4975         x(1)=dtan(theti)
4976         x(2)=alph(i)
4977         x(3)=omeg(i)
4978
4979         if (x(2).gt.pi-delta) then
4980           xtemp(1)=x(1)
4981           xtemp(2)=pi-delta
4982           xtemp(3)=x(3)
4983           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4984           xtemp(2)=pi
4985           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4986           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4987      &        escloci,dersc(2))
4988           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4989      &        ddersc0(1),dersc(1))
4990           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4991      &        ddersc0(3),dersc(3))
4992           xtemp(2)=pi-delta
4993           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4994           xtemp(2)=pi
4995           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4996           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4997      &            dersc0(2),esclocbi,dersc02)
4998           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4999      &            dersc12,dersc01)
5000           call splinthet(x(2),0.5d0*delta,ss,ssd)
5001           dersc0(1)=dersc01
5002           dersc0(2)=dersc02
5003           dersc0(3)=0.0d0
5004           do k=1,3
5005             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5006           enddo
5007           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5008 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5009 c    &             esclocbi,ss,ssd
5010           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5011 c         escloci=esclocbi
5012 c         write (iout,*) escloci
5013         else if (x(2).lt.delta) then
5014           xtemp(1)=x(1)
5015           xtemp(2)=delta
5016           xtemp(3)=x(3)
5017           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5018           xtemp(2)=0.0d0
5019           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5020           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5021      &        escloci,dersc(2))
5022           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5023      &        ddersc0(1),dersc(1))
5024           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5025      &        ddersc0(3),dersc(3))
5026           xtemp(2)=delta
5027           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5028           xtemp(2)=0.0d0
5029           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5030           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5031      &            dersc0(2),esclocbi,dersc02)
5032           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5033      &            dersc12,dersc01)
5034           dersc0(1)=dersc01
5035           dersc0(2)=dersc02
5036           dersc0(3)=0.0d0
5037           call splinthet(x(2),0.5d0*delta,ss,ssd)
5038           do k=1,3
5039             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5040           enddo
5041           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5042 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5043 c    &             esclocbi,ss,ssd
5044           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5045 c         write (iout,*) escloci
5046         else
5047           call enesc(x,escloci,dersc,ddummy,.false.)
5048         endif
5049
5050         escloc=escloc+escloci
5051         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5052      &     'escloc',i,escloci
5053 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5054
5055         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5056      &   wscloc*dersc(1)
5057         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5058         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5059     1   continue
5060       enddo
5061       return
5062       end
5063 C---------------------------------------------------------------------------
5064       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5065       implicit real*8 (a-h,o-z)
5066       include 'DIMENSIONS'
5067       include 'COMMON.GEO'
5068       include 'COMMON.LOCAL'
5069       include 'COMMON.IOUNITS'
5070       common /sccalc/ time11,time12,time112,theti,it,nlobit
5071       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5072       double precision contr(maxlob,-1:1)
5073       logical mixed
5074 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5075         escloc_i=0.0D0
5076         do j=1,3
5077           dersc(j)=0.0D0
5078           if (mixed) ddersc(j)=0.0d0
5079         enddo
5080         x3=x(3)
5081
5082 C Because of periodicity of the dependence of the SC energy in omega we have
5083 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5084 C To avoid underflows, first compute & store the exponents.
5085
5086         do iii=-1,1
5087
5088           x(3)=x3+iii*dwapi
5089  
5090           do j=1,nlobit
5091             do k=1,3
5092               z(k)=x(k)-censc(k,j,it)
5093             enddo
5094             do k=1,3
5095               Axk=0.0D0
5096               do l=1,3
5097                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5098               enddo
5099               Ax(k,j,iii)=Axk
5100             enddo 
5101             expfac=0.0D0 
5102             do k=1,3
5103               expfac=expfac+Ax(k,j,iii)*z(k)
5104             enddo
5105             contr(j,iii)=expfac
5106           enddo ! j
5107
5108         enddo ! iii
5109
5110         x(3)=x3
5111 C As in the case of ebend, we want to avoid underflows in exponentiation and
5112 C subsequent NaNs and INFs in energy calculation.
5113 C Find the largest exponent
5114         emin=contr(1,-1)
5115         do iii=-1,1
5116           do j=1,nlobit
5117             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5118           enddo 
5119         enddo
5120         emin=0.5D0*emin
5121 cd      print *,'it=',it,' emin=',emin
5122
5123 C Compute the contribution to SC energy and derivatives
5124         do iii=-1,1
5125
5126           do j=1,nlobit
5127 #ifdef OSF
5128             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5129             if(adexp.ne.adexp) adexp=1.0
5130             expfac=dexp(adexp)
5131 #else
5132             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5133 #endif
5134 cd          print *,'j=',j,' expfac=',expfac
5135             escloc_i=escloc_i+expfac
5136             do k=1,3
5137               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5138             enddo
5139             if (mixed) then
5140               do k=1,3,2
5141                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5142      &            +gaussc(k,2,j,it))*expfac
5143               enddo
5144             endif
5145           enddo
5146
5147         enddo ! iii
5148
5149         dersc(1)=dersc(1)/cos(theti)**2
5150         ddersc(1)=ddersc(1)/cos(theti)**2
5151         ddersc(3)=ddersc(3)
5152
5153         escloci=-(dlog(escloc_i)-emin)
5154         do j=1,3
5155           dersc(j)=dersc(j)/escloc_i
5156         enddo
5157         if (mixed) then
5158           do j=1,3,2
5159             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5160           enddo
5161         endif
5162       return
5163       end
5164 C------------------------------------------------------------------------------
5165       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5166       implicit real*8 (a-h,o-z)
5167       include 'DIMENSIONS'
5168       include 'COMMON.GEO'
5169       include 'COMMON.LOCAL'
5170       include 'COMMON.IOUNITS'
5171       common /sccalc/ time11,time12,time112,theti,it,nlobit
5172       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5173       double precision contr(maxlob)
5174       logical mixed
5175
5176       escloc_i=0.0D0
5177
5178       do j=1,3
5179         dersc(j)=0.0D0
5180       enddo
5181
5182       do j=1,nlobit
5183         do k=1,2
5184           z(k)=x(k)-censc(k,j,it)
5185         enddo
5186         z(3)=dwapi
5187         do k=1,3
5188           Axk=0.0D0
5189           do l=1,3
5190             Axk=Axk+gaussc(l,k,j,it)*z(l)
5191           enddo
5192           Ax(k,j)=Axk
5193         enddo 
5194         expfac=0.0D0 
5195         do k=1,3
5196           expfac=expfac+Ax(k,j)*z(k)
5197         enddo
5198         contr(j)=expfac
5199       enddo ! j
5200
5201 C As in the case of ebend, we want to avoid underflows in exponentiation and
5202 C subsequent NaNs and INFs in energy calculation.
5203 C Find the largest exponent
5204       emin=contr(1)
5205       do j=1,nlobit
5206         if (emin.gt.contr(j)) emin=contr(j)
5207       enddo 
5208       emin=0.5D0*emin
5209  
5210 C Compute the contribution to SC energy and derivatives
5211
5212       dersc12=0.0d0
5213       do j=1,nlobit
5214         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5215         escloc_i=escloc_i+expfac
5216         do k=1,2
5217           dersc(k)=dersc(k)+Ax(k,j)*expfac
5218         enddo
5219         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5220      &            +gaussc(1,2,j,it))*expfac
5221         dersc(3)=0.0d0
5222       enddo
5223
5224       dersc(1)=dersc(1)/cos(theti)**2
5225       dersc12=dersc12/cos(theti)**2
5226       escloci=-(dlog(escloc_i)-emin)
5227       do j=1,2
5228         dersc(j)=dersc(j)/escloc_i
5229       enddo
5230       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5231       return
5232       end
5233 #else
5234 c----------------------------------------------------------------------------------
5235       subroutine esc(escloc)
5236 C Calculate the local energy of a side chain and its derivatives in the
5237 C corresponding virtual-bond valence angles THETA and the spherical angles 
5238 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5239 C added by Urszula Kozlowska. 07/11/2007
5240 C
5241       implicit real*8 (a-h,o-z)
5242       include 'DIMENSIONS'
5243       include 'COMMON.GEO'
5244       include 'COMMON.LOCAL'
5245       include 'COMMON.VAR'
5246       include 'COMMON.SCROT'
5247       include 'COMMON.INTERACT'
5248       include 'COMMON.DERIV'
5249       include 'COMMON.CHAIN'
5250       include 'COMMON.IOUNITS'
5251       include 'COMMON.NAMES'
5252       include 'COMMON.FFIELD'
5253       include 'COMMON.CONTROL'
5254       include 'COMMON.VECTORS'
5255       double precision x_prime(3),y_prime(3),z_prime(3)
5256      &    , sumene,dsc_i,dp2_i,x(65),
5257      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5258      &    de_dxx,de_dyy,de_dzz,de_dt
5259       double precision s1_t,s1_6_t,s2_t,s2_6_t
5260       double precision 
5261      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5262      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5263      & dt_dCi(3),dt_dCi1(3)
5264       common /sccalc/ time11,time12,time112,theti,it,nlobit
5265       delta=0.02d0*pi
5266       escloc=0.0D0
5267       do i=loc_start,loc_end
5268         costtab(i+1) =dcos(theta(i+1))
5269         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5270         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5271         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5272         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5273         cosfac=dsqrt(cosfac2)
5274         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5275         sinfac=dsqrt(sinfac2)
5276         it=itype(i)
5277         if (it.eq.10) goto 1
5278 c
5279 C  Compute the axes of tghe local cartesian coordinates system; store in
5280 c   x_prime, y_prime and z_prime 
5281 c
5282         do j=1,3
5283           x_prime(j) = 0.00
5284           y_prime(j) = 0.00
5285           z_prime(j) = 0.00
5286         enddo
5287 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5288 C     &   dc_norm(3,i+nres)
5289         do j = 1,3
5290           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5291           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5292         enddo
5293         do j = 1,3
5294           z_prime(j) = -uz(j,i-1)
5295         enddo     
5296 c       write (2,*) "i",i
5297 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5298 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5299 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5300 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5301 c      & " xy",scalar(x_prime(1),y_prime(1)),
5302 c      & " xz",scalar(x_prime(1),z_prime(1)),
5303 c      & " yy",scalar(y_prime(1),y_prime(1)),
5304 c      & " yz",scalar(y_prime(1),z_prime(1)),
5305 c      & " zz",scalar(z_prime(1),z_prime(1))
5306 c
5307 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5308 C to local coordinate system. Store in xx, yy, zz.
5309 c
5310         xx=0.0d0
5311         yy=0.0d0
5312         zz=0.0d0
5313         do j = 1,3
5314           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5315           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5316           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5317         enddo
5318
5319         xxtab(i)=xx
5320         yytab(i)=yy
5321         zztab(i)=zz
5322 C
5323 C Compute the energy of the ith side cbain
5324 C
5325 c        write (2,*) "xx",xx," yy",yy," zz",zz
5326         it=itype(i)
5327         do j = 1,65
5328           x(j) = sc_parmin(j,it) 
5329         enddo
5330 #ifdef CHECK_COORD
5331 Cc diagnostics - remove later
5332         xx1 = dcos(alph(2))
5333         yy1 = dsin(alph(2))*dcos(omeg(2))
5334         zz1 = -dsin(alph(2))*dsin(omeg(2))
5335         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5336      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5337      &    xx1,yy1,zz1
5338 C,"  --- ", xx_w,yy_w,zz_w
5339 c end diagnostics
5340 #endif
5341         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5342      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5343      &   + x(10)*yy*zz
5344         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5345      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5346      & + x(20)*yy*zz
5347         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5348      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5349      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5350      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5351      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5352      &  +x(40)*xx*yy*zz
5353         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5354      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5355      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5356      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5357      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5358      &  +x(60)*xx*yy*zz
5359         dsc_i   = 0.743d0+x(61)
5360         dp2_i   = 1.9d0+x(62)
5361         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5362      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5363         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5364      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5365         s1=(1+x(63))/(0.1d0 + dscp1)
5366         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5367         s2=(1+x(65))/(0.1d0 + dscp2)
5368         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5369         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5370      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5371 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5372 c     &   sumene4,
5373 c     &   dscp1,dscp2,sumene
5374 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5375         escloc = escloc + sumene
5376 c        write (2,*) "i",i," escloc",sumene,escloc
5377 #ifdef DEBUG
5378 C
5379 C This section to check the numerical derivatives of the energy of ith side
5380 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5381 C #define DEBUG in the code to turn it on.
5382 C
5383         write (2,*) "sumene               =",sumene
5384         aincr=1.0d-7
5385         xxsave=xx
5386         xx=xx+aincr
5387         write (2,*) xx,yy,zz
5388         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5389         de_dxx_num=(sumenep-sumene)/aincr
5390         xx=xxsave
5391         write (2,*) "xx+ sumene from enesc=",sumenep
5392         yysave=yy
5393         yy=yy+aincr
5394         write (2,*) xx,yy,zz
5395         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5396         de_dyy_num=(sumenep-sumene)/aincr
5397         yy=yysave
5398         write (2,*) "yy+ sumene from enesc=",sumenep
5399         zzsave=zz
5400         zz=zz+aincr
5401         write (2,*) xx,yy,zz
5402         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5403         de_dzz_num=(sumenep-sumene)/aincr
5404         zz=zzsave
5405         write (2,*) "zz+ sumene from enesc=",sumenep
5406         costsave=cost2tab(i+1)
5407         sintsave=sint2tab(i+1)
5408         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5409         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5410         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5411         de_dt_num=(sumenep-sumene)/aincr
5412         write (2,*) " t+ sumene from enesc=",sumenep
5413         cost2tab(i+1)=costsave
5414         sint2tab(i+1)=sintsave
5415 C End of diagnostics section.
5416 #endif
5417 C        
5418 C Compute the gradient of esc
5419 C
5420         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5421         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5422         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5423         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5424         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5425         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5426         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5427         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5428         pom1=(sumene3*sint2tab(i+1)+sumene1)
5429      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5430         pom2=(sumene4*cost2tab(i+1)+sumene2)
5431      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5432         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5433         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5434      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5435      &  +x(40)*yy*zz
5436         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5437         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5438      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5439      &  +x(60)*yy*zz
5440         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5441      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5442      &        +(pom1+pom2)*pom_dx
5443 #ifdef DEBUG
5444         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5445 #endif
5446 C
5447         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5448         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5449      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5450      &  +x(40)*xx*zz
5451         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5452         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5453      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5454      &  +x(59)*zz**2 +x(60)*xx*zz
5455         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5456      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5457      &        +(pom1-pom2)*pom_dy
5458 #ifdef DEBUG
5459         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5460 #endif
5461 C
5462         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5463      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5464      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5465      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5466      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5467      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5468      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5469      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5470 #ifdef DEBUG
5471         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5472 #endif
5473 C
5474         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5475      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5476      &  +pom1*pom_dt1+pom2*pom_dt2
5477 #ifdef DEBUG
5478         write(2,*), "de_dt = ", de_dt,de_dt_num
5479 #endif
5480
5481 C
5482        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5483        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5484        cosfac2xx=cosfac2*xx
5485        sinfac2yy=sinfac2*yy
5486        do k = 1,3
5487          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5488      &      vbld_inv(i+1)
5489          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5490      &      vbld_inv(i)
5491          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5492          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5493 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5494 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5495 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5496 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5497          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5498          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5499          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5500          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5501          dZZ_Ci1(k)=0.0d0
5502          dZZ_Ci(k)=0.0d0
5503          do j=1,3
5504            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5505            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5506          enddo
5507           
5508          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5509          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5510          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5511 c
5512          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5513          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5514        enddo
5515
5516        do k=1,3
5517          dXX_Ctab(k,i)=dXX_Ci(k)
5518          dXX_C1tab(k,i)=dXX_Ci1(k)
5519          dYY_Ctab(k,i)=dYY_Ci(k)
5520          dYY_C1tab(k,i)=dYY_Ci1(k)
5521          dZZ_Ctab(k,i)=dZZ_Ci(k)
5522          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5523          dXX_XYZtab(k,i)=dXX_XYZ(k)
5524          dYY_XYZtab(k,i)=dYY_XYZ(k)
5525          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5526        enddo
5527
5528        do k = 1,3
5529 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5530 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5531 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5532 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5533 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5534 c     &    dt_dci(k)
5535 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5536 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5537          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5538      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5539          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5540      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5541          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5542      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5543        enddo
5544 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5545 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5546
5547 C to check gradient call subroutine check_grad
5548
5549     1 continue
5550       enddo
5551       return
5552       end
5553 c------------------------------------------------------------------------------
5554       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5555       implicit none
5556       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5557      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5558       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5559      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5560      &   + x(10)*yy*zz
5561       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5562      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5563      & + x(20)*yy*zz
5564       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5565      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5566      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5567      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5568      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5569      &  +x(40)*xx*yy*zz
5570       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5571      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5572      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5573      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5574      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5575      &  +x(60)*xx*yy*zz
5576       dsc_i   = 0.743d0+x(61)
5577       dp2_i   = 1.9d0+x(62)
5578       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5579      &          *(xx*cost2+yy*sint2))
5580       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5581      &          *(xx*cost2-yy*sint2))
5582       s1=(1+x(63))/(0.1d0 + dscp1)
5583       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5584       s2=(1+x(65))/(0.1d0 + dscp2)
5585       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5586       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5587      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5588       enesc=sumene
5589       return
5590       end
5591 #endif
5592 c------------------------------------------------------------------------------
5593       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5594 C
5595 C This procedure calculates two-body contact function g(rij) and its derivative:
5596 C
5597 C           eps0ij                                     !       x < -1
5598 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5599 C            0                                         !       x > 1
5600 C
5601 C where x=(rij-r0ij)/delta
5602 C
5603 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5604 C
5605       implicit none
5606       double precision rij,r0ij,eps0ij,fcont,fprimcont
5607       double precision x,x2,x4,delta
5608 c     delta=0.02D0*r0ij
5609 c      delta=0.2D0*r0ij
5610       x=(rij-r0ij)/delta
5611       if (x.lt.-1.0D0) then
5612         fcont=eps0ij
5613         fprimcont=0.0D0
5614       else if (x.le.1.0D0) then  
5615         x2=x*x
5616         x4=x2*x2
5617         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5618         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5619       else
5620         fcont=0.0D0
5621         fprimcont=0.0D0
5622       endif
5623       return
5624       end
5625 c------------------------------------------------------------------------------
5626       subroutine splinthet(theti,delta,ss,ssder)
5627       implicit real*8 (a-h,o-z)
5628       include 'DIMENSIONS'
5629       include 'COMMON.VAR'
5630       include 'COMMON.GEO'
5631       thetup=pi-delta
5632       thetlow=delta
5633       if (theti.gt.pipol) then
5634         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5635       else
5636         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5637         ssder=-ssder
5638       endif
5639       return
5640       end
5641 c------------------------------------------------------------------------------
5642       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5643       implicit none
5644       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5645       double precision ksi,ksi2,ksi3,a1,a2,a3
5646       a1=fprim0*delta/(f1-f0)
5647       a2=3.0d0-2.0d0*a1
5648       a3=a1-2.0d0
5649       ksi=(x-x0)/delta
5650       ksi2=ksi*ksi
5651       ksi3=ksi2*ksi  
5652       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5653       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5654       return
5655       end
5656 c------------------------------------------------------------------------------
5657       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5658       implicit none
5659       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5660       double precision ksi,ksi2,ksi3,a1,a2,a3
5661       ksi=(x-x0)/delta  
5662       ksi2=ksi*ksi
5663       ksi3=ksi2*ksi
5664       a1=fprim0x*delta
5665       a2=3*(f1x-f0x)-2*fprim0x*delta
5666       a3=fprim0x*delta-2*(f1x-f0x)
5667       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5668       return
5669       end
5670 C-----------------------------------------------------------------------------
5671 #ifdef CRYST_TOR
5672 C-----------------------------------------------------------------------------
5673       subroutine etor(etors,edihcnstr)
5674       implicit real*8 (a-h,o-z)
5675       include 'DIMENSIONS'
5676       include 'COMMON.VAR'
5677       include 'COMMON.GEO'
5678       include 'COMMON.LOCAL'
5679       include 'COMMON.TORSION'
5680       include 'COMMON.INTERACT'
5681       include 'COMMON.DERIV'
5682       include 'COMMON.CHAIN'
5683       include 'COMMON.NAMES'
5684       include 'COMMON.IOUNITS'
5685       include 'COMMON.FFIELD'
5686       include 'COMMON.TORCNSTR'
5687       include 'COMMON.CONTROL'
5688       logical lprn
5689 C Set lprn=.true. for debugging
5690       lprn=.false.
5691 c      lprn=.true.
5692       etors=0.0D0
5693       do i=iphi_start,iphi_end
5694       etors_ii=0.0D0
5695         itori=itortyp(itype(i-2))
5696         itori1=itortyp(itype(i-1))
5697         phii=phi(i)
5698         gloci=0.0D0
5699 C Proline-Proline pair is a special case...
5700         if (itori.eq.3 .and. itori1.eq.3) then
5701           if (phii.gt.-dwapi3) then
5702             cosphi=dcos(3*phii)
5703             fac=1.0D0/(1.0D0-cosphi)
5704             etorsi=v1(1,3,3)*fac
5705             etorsi=etorsi+etorsi
5706             etors=etors+etorsi-v1(1,3,3)
5707             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5708             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5709           endif
5710           do j=1,3
5711             v1ij=v1(j+1,itori,itori1)
5712             v2ij=v2(j+1,itori,itori1)
5713             cosphi=dcos(j*phii)
5714             sinphi=dsin(j*phii)
5715             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5716             if (energy_dec) etors_ii=etors_ii+
5717      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5718             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5719           enddo
5720         else 
5721           do j=1,nterm_old
5722             v1ij=v1(j,itori,itori1)
5723             v2ij=v2(j,itori,itori1)
5724             cosphi=dcos(j*phii)
5725             sinphi=dsin(j*phii)
5726             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5727             if (energy_dec) etors_ii=etors_ii+
5728      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5729             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5730           enddo
5731         endif
5732         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5733      &        'etor',i,etors_ii
5734         if (lprn)
5735      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5736      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5737      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5738         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5739         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5740       enddo
5741 ! 6/20/98 - dihedral angle constraints
5742       edihcnstr=0.0d0
5743       do i=1,ndih_constr
5744         itori=idih_constr(i)
5745         phii=phi(itori)
5746         difi=phii-phi0(i)
5747         if (difi.gt.drange(i)) then
5748           difi=difi-drange(i)
5749           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5750           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5751         else if (difi.lt.-drange(i)) then
5752           difi=difi+drange(i)
5753           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5754           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5755         endif
5756 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5757 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5758       enddo
5759 !      write (iout,*) 'edihcnstr',edihcnstr
5760       return
5761       end
5762 c------------------------------------------------------------------------------
5763       subroutine etor_d(etors_d)
5764       etors_d=0.0d0
5765       return
5766       end
5767 c----------------------------------------------------------------------------
5768 #else
5769       subroutine etor(etors,edihcnstr)
5770       implicit real*8 (a-h,o-z)
5771       include 'DIMENSIONS'
5772       include 'COMMON.VAR'
5773       include 'COMMON.GEO'
5774       include 'COMMON.LOCAL'
5775       include 'COMMON.TORSION'
5776       include 'COMMON.INTERACT'
5777       include 'COMMON.DERIV'
5778       include 'COMMON.CHAIN'
5779       include 'COMMON.NAMES'
5780       include 'COMMON.IOUNITS'
5781       include 'COMMON.FFIELD'
5782       include 'COMMON.TORCNSTR'
5783       include 'COMMON.CONTROL'
5784       logical lprn
5785 C Set lprn=.true. for debugging
5786       lprn=.false.
5787 c     lprn=.true.
5788       etors=0.0D0
5789       do i=iphi_start,iphi_end
5790       etors_ii=0.0D0
5791         itori=itortyp(itype(i-2))
5792         itori1=itortyp(itype(i-1))
5793         phii=phi(i)
5794         gloci=0.0D0
5795 C Regular cosine and sine terms
5796         do j=1,nterm(itori,itori1)
5797           v1ij=v1(j,itori,itori1)
5798           v2ij=v2(j,itori,itori1)
5799           cosphi=dcos(j*phii)
5800           sinphi=dsin(j*phii)
5801           etors=etors+v1ij*cosphi+v2ij*sinphi
5802           if (energy_dec) etors_ii=etors_ii+
5803      &                v1ij*cosphi+v2ij*sinphi
5804           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5805         enddo
5806 C Lorentz terms
5807 C                         v1
5808 C  E = SUM ----------------------------------- - v1
5809 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5810 C
5811         cosphi=dcos(0.5d0*phii)
5812         sinphi=dsin(0.5d0*phii)
5813         do j=1,nlor(itori,itori1)
5814           vl1ij=vlor1(j,itori,itori1)
5815           vl2ij=vlor2(j,itori,itori1)
5816           vl3ij=vlor3(j,itori,itori1)
5817           pom=vl2ij*cosphi+vl3ij*sinphi
5818           pom1=1.0d0/(pom*pom+1.0d0)
5819           etors=etors+vl1ij*pom1
5820           if (energy_dec) etors_ii=etors_ii+
5821      &                vl1ij*pom1
5822           pom=-pom*pom1*pom1
5823           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5824         enddo
5825 C Subtract the constant term
5826         etors=etors-v0(itori,itori1)
5827           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5828      &         'etor',i,etors_ii-v0(itori,itori1)
5829         if (lprn)
5830      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5831      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5832      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5833         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5834 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5835       enddo
5836 ! 6/20/98 - dihedral angle constraints
5837       edihcnstr=0.0d0
5838 c      do i=1,ndih_constr
5839       do i=idihconstr_start,idihconstr_end
5840         itori=idih_constr(i)
5841         phii=phi(itori)
5842         difi=pinorm(phii-phi0(i))
5843         if (difi.gt.drange(i)) then
5844           difi=difi-drange(i)
5845           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5846           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5847         else if (difi.lt.-drange(i)) then
5848           difi=difi+drange(i)
5849           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5850           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5851         else
5852           difi=0.0
5853         endif
5854 c        write (iout,*) "gloci", gloc(i-3,icg)
5855 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5856 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5857 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5858       enddo
5859 cd       write (iout,*) 'edihcnstr',edihcnstr
5860       return
5861       end
5862 c----------------------------------------------------------------------------
5863       subroutine etor_d(etors_d)
5864 C 6/23/01 Compute double torsional energy
5865       implicit real*8 (a-h,o-z)
5866       include 'DIMENSIONS'
5867       include 'COMMON.VAR'
5868       include 'COMMON.GEO'
5869       include 'COMMON.LOCAL'
5870       include 'COMMON.TORSION'
5871       include 'COMMON.INTERACT'
5872       include 'COMMON.DERIV'
5873       include 'COMMON.CHAIN'
5874       include 'COMMON.NAMES'
5875       include 'COMMON.IOUNITS'
5876       include 'COMMON.FFIELD'
5877       include 'COMMON.TORCNSTR'
5878       logical lprn
5879 C Set lprn=.true. for debugging
5880       lprn=.false.
5881 c     lprn=.true.
5882       etors_d=0.0D0
5883       do i=iphid_start,iphid_end
5884         itori=itortyp(itype(i-2))
5885         itori1=itortyp(itype(i-1))
5886         itori2=itortyp(itype(i))
5887         phii=phi(i)
5888         phii1=phi(i+1)
5889         gloci1=0.0D0
5890         gloci2=0.0D0
5891         do j=1,ntermd_1(itori,itori1,itori2)
5892           v1cij=v1c(1,j,itori,itori1,itori2)
5893           v1sij=v1s(1,j,itori,itori1,itori2)
5894           v2cij=v1c(2,j,itori,itori1,itori2)
5895           v2sij=v1s(2,j,itori,itori1,itori2)
5896           cosphi1=dcos(j*phii)
5897           sinphi1=dsin(j*phii)
5898           cosphi2=dcos(j*phii1)
5899           sinphi2=dsin(j*phii1)
5900           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5901      &     v2cij*cosphi2+v2sij*sinphi2
5902           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5903           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5904         enddo
5905         do k=2,ntermd_2(itori,itori1,itori2)
5906           do l=1,k-1
5907             v1cdij = v2c(k,l,itori,itori1,itori2)
5908             v2cdij = v2c(l,k,itori,itori1,itori2)
5909             v1sdij = v2s(k,l,itori,itori1,itori2)
5910             v2sdij = v2s(l,k,itori,itori1,itori2)
5911             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5912             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5913             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5914             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5915             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5916      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5917             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5918      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5919             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5920      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5921           enddo
5922         enddo
5923         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5924         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5925 c        write (iout,*) "gloci", gloc(i-3,icg)
5926       enddo
5927       return
5928       end
5929 #endif
5930 c------------------------------------------------------------------------------
5931       subroutine eback_sc_corr(esccor)
5932 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5933 c        conformational states; temporarily implemented as differences
5934 c        between UNRES torsional potentials (dependent on three types of
5935 c        residues) and the torsional potentials dependent on all 20 types
5936 c        of residues computed from AM1  energy surfaces of terminally-blocked
5937 c        amino-acid residues.
5938       implicit real*8 (a-h,o-z)
5939       include 'DIMENSIONS'
5940       include 'COMMON.VAR'
5941       include 'COMMON.GEO'
5942       include 'COMMON.LOCAL'
5943       include 'COMMON.TORSION'
5944       include 'COMMON.SCCOR'
5945       include 'COMMON.INTERACT'
5946       include 'COMMON.DERIV'
5947       include 'COMMON.CHAIN'
5948       include 'COMMON.NAMES'
5949       include 'COMMON.IOUNITS'
5950       include 'COMMON.FFIELD'
5951       include 'COMMON.CONTROL'
5952       logical lprn
5953 C Set lprn=.true. for debugging
5954       lprn=.false.
5955 c      lprn=.true.
5956 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5957       esccor=0.0D0
5958       do i=itau_start,itau_end
5959         esccor_ii=0.0D0
5960         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5961         isccori=isccortyp(itype(i-2))
5962         isccori1=isccortyp(itype(i-1))
5963         phii=phi(i)
5964 cccc  Added 9 May 2012
5965 cc Tauangle is torsional engle depending on the value of first digit 
5966 c(see comment below)
5967 cc Omicron is flat angle depending on the value of first digit 
5968 c(see comment below)
5969
5970         
5971         do intertyp=1,3 !intertyp
5972 cc Added 09 May 2012 (Adasko)
5973 cc  Intertyp means interaction type of backbone mainchain correlation: 
5974 c   1 = SC...Ca...Ca...Ca
5975 c   2 = Ca...Ca...Ca...SC
5976 c   3 = SC...Ca...Ca...SCi
5977         gloci=0.0D0
5978         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
5979      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
5980      &      (itype(i-1).eq.21)))
5981      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
5982      &     .or.(itype(i-2).eq.21)))
5983      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
5984      &      (itype(i-1).eq.21)))) cycle  
5985         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
5986         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
5987      & cycle
5988         do j=1,nterm_sccor(isccori,isccori1)
5989           v1ij=v1sccor(j,intertyp,isccori,isccori1)
5990           v2ij=v2sccor(j,intertyp,isccori,isccori1)
5991           cosphi=dcos(j*tauangle(intertyp,i))
5992           sinphi=dsin(j*tauangle(intertyp,i))
5993           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5994           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5995         enddo
5996         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
5997 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
5998 c     &gloc_sc(intertyp,i-3,icg)
5999         if (lprn)
6000      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6001      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6002      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6003      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6004         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6005        enddo !intertyp
6006       enddo
6007 c        do i=1,nres
6008 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6009 c        enddo
6010       return
6011       end
6012 c----------------------------------------------------------------------------
6013       subroutine multibody(ecorr)
6014 C This subroutine calculates multi-body contributions to energy following
6015 C the idea of Skolnick et al. If side chains I and J make a contact and
6016 C at the same time side chains I+1 and J+1 make a contact, an extra 
6017 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6018       implicit real*8 (a-h,o-z)
6019       include 'DIMENSIONS'
6020       include 'COMMON.IOUNITS'
6021       include 'COMMON.DERIV'
6022       include 'COMMON.INTERACT'
6023       include 'COMMON.CONTACTS'
6024       double precision gx(3),gx1(3)
6025       logical lprn
6026
6027 C Set lprn=.true. for debugging
6028       lprn=.false.
6029
6030       if (lprn) then
6031         write (iout,'(a)') 'Contact function values:'
6032         do i=nnt,nct-2
6033           write (iout,'(i2,20(1x,i2,f10.5))') 
6034      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6035         enddo
6036       endif
6037       ecorr=0.0D0
6038       do i=nnt,nct
6039         do j=1,3
6040           gradcorr(j,i)=0.0D0
6041           gradxorr(j,i)=0.0D0
6042         enddo
6043       enddo
6044       do i=nnt,nct-2
6045
6046         DO ISHIFT = 3,4
6047
6048         i1=i+ishift
6049         num_conti=num_cont(i)
6050         num_conti1=num_cont(i1)
6051         do jj=1,num_conti
6052           j=jcont(jj,i)
6053           do kk=1,num_conti1
6054             j1=jcont(kk,i1)
6055             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6056 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6057 cd   &                   ' ishift=',ishift
6058 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6059 C The system gains extra energy.
6060               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6061             endif   ! j1==j+-ishift
6062           enddo     ! kk  
6063         enddo       ! jj
6064
6065         ENDDO ! ISHIFT
6066
6067       enddo         ! i
6068       return
6069       end
6070 c------------------------------------------------------------------------------
6071       double precision function esccorr(i,j,k,l,jj,kk)
6072       implicit real*8 (a-h,o-z)
6073       include 'DIMENSIONS'
6074       include 'COMMON.IOUNITS'
6075       include 'COMMON.DERIV'
6076       include 'COMMON.INTERACT'
6077       include 'COMMON.CONTACTS'
6078       double precision gx(3),gx1(3)
6079       logical lprn
6080       lprn=.false.
6081       eij=facont(jj,i)
6082       ekl=facont(kk,k)
6083 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6084 C Calculate the multi-body contribution to energy.
6085 C Calculate multi-body contributions to the gradient.
6086 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6087 cd   & k,l,(gacont(m,kk,k),m=1,3)
6088       do m=1,3
6089         gx(m) =ekl*gacont(m,jj,i)
6090         gx1(m)=eij*gacont(m,kk,k)
6091         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6092         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6093         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6094         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6095       enddo
6096       do m=i,j-1
6097         do ll=1,3
6098           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6099         enddo
6100       enddo
6101       do m=k,l-1
6102         do ll=1,3
6103           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6104         enddo
6105       enddo 
6106       esccorr=-eij*ekl
6107       return
6108       end
6109 c------------------------------------------------------------------------------
6110       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6111 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6112       implicit real*8 (a-h,o-z)
6113       include 'DIMENSIONS'
6114       include 'COMMON.IOUNITS'
6115 #ifdef MPI
6116       include "mpif.h"
6117       parameter (max_cont=maxconts)
6118       parameter (max_dim=26)
6119       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6120       double precision zapas(max_dim,maxconts,max_fg_procs),
6121      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6122       common /przechowalnia/ zapas
6123       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6124      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6125 #endif
6126       include 'COMMON.SETUP'
6127       include 'COMMON.FFIELD'
6128       include 'COMMON.DERIV'
6129       include 'COMMON.INTERACT'
6130       include 'COMMON.CONTACTS'
6131       include 'COMMON.CONTROL'
6132       include 'COMMON.LOCAL'
6133       double precision gx(3),gx1(3),time00
6134       logical lprn,ldone
6135
6136 C Set lprn=.true. for debugging
6137       lprn=.false.
6138 #ifdef MPI
6139       n_corr=0
6140       n_corr1=0
6141       if (nfgtasks.le.1) goto 30
6142       if (lprn) then
6143         write (iout,'(a)') 'Contact function values before RECEIVE:'
6144         do i=nnt,nct-2
6145           write (iout,'(2i3,50(1x,i2,f5.2))') 
6146      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6147      &    j=1,num_cont_hb(i))
6148         enddo
6149       endif
6150       call flush(iout)
6151       do i=1,ntask_cont_from
6152         ncont_recv(i)=0
6153       enddo
6154       do i=1,ntask_cont_to
6155         ncont_sent(i)=0
6156       enddo
6157 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6158 c     & ntask_cont_to
6159 C Make the list of contacts to send to send to other procesors
6160 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6161 c      call flush(iout)
6162       do i=iturn3_start,iturn3_end
6163 c        write (iout,*) "make contact list turn3",i," num_cont",
6164 c     &    num_cont_hb(i)
6165         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6166       enddo
6167       do i=iturn4_start,iturn4_end
6168 c        write (iout,*) "make contact list turn4",i," num_cont",
6169 c     &   num_cont_hb(i)
6170         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6171       enddo
6172       do ii=1,nat_sent
6173         i=iat_sent(ii)
6174 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6175 c     &    num_cont_hb(i)
6176         do j=1,num_cont_hb(i)
6177         do k=1,4
6178           jjc=jcont_hb(j,i)
6179           iproc=iint_sent_local(k,jjc,ii)
6180 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6181           if (iproc.gt.0) then
6182             ncont_sent(iproc)=ncont_sent(iproc)+1
6183             nn=ncont_sent(iproc)
6184             zapas(1,nn,iproc)=i
6185             zapas(2,nn,iproc)=jjc
6186             zapas(3,nn,iproc)=facont_hb(j,i)
6187             zapas(4,nn,iproc)=ees0p(j,i)
6188             zapas(5,nn,iproc)=ees0m(j,i)
6189             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6190             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6191             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6192             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6193             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6194             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6195             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6196             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6197             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6198             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6199             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6200             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6201             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6202             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6203             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6204             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6205             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6206             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6207             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6208             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6209             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6210           endif
6211         enddo
6212         enddo
6213       enddo
6214       if (lprn) then
6215       write (iout,*) 
6216      &  "Numbers of contacts to be sent to other processors",
6217      &  (ncont_sent(i),i=1,ntask_cont_to)
6218       write (iout,*) "Contacts sent"
6219       do ii=1,ntask_cont_to
6220         nn=ncont_sent(ii)
6221         iproc=itask_cont_to(ii)
6222         write (iout,*) nn," contacts to processor",iproc,
6223      &   " of CONT_TO_COMM group"
6224         do i=1,nn
6225           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6226         enddo
6227       enddo
6228       call flush(iout)
6229       endif
6230       CorrelType=477
6231       CorrelID=fg_rank+1
6232       CorrelType1=478
6233       CorrelID1=nfgtasks+fg_rank+1
6234       ireq=0
6235 C Receive the numbers of needed contacts from other processors 
6236       do ii=1,ntask_cont_from
6237         iproc=itask_cont_from(ii)
6238         ireq=ireq+1
6239         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6240      &    FG_COMM,req(ireq),IERR)
6241       enddo
6242 c      write (iout,*) "IRECV ended"
6243 c      call flush(iout)
6244 C Send the number of contacts needed by other processors
6245       do ii=1,ntask_cont_to
6246         iproc=itask_cont_to(ii)
6247         ireq=ireq+1
6248         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6249      &    FG_COMM,req(ireq),IERR)
6250       enddo
6251 c      write (iout,*) "ISEND ended"
6252 c      write (iout,*) "number of requests (nn)",ireq
6253       call flush(iout)
6254       if (ireq.gt.0) 
6255      &  call MPI_Waitall(ireq,req,status_array,ierr)
6256 c      write (iout,*) 
6257 c     &  "Numbers of contacts to be received from other processors",
6258 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6259 c      call flush(iout)
6260 C Receive contacts
6261       ireq=0
6262       do ii=1,ntask_cont_from
6263         iproc=itask_cont_from(ii)
6264         nn=ncont_recv(ii)
6265 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6266 c     &   " of CONT_TO_COMM group"
6267         call flush(iout)
6268         if (nn.gt.0) then
6269           ireq=ireq+1
6270           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6271      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6272 c          write (iout,*) "ireq,req",ireq,req(ireq)
6273         endif
6274       enddo
6275 C Send the contacts to processors that need them
6276       do ii=1,ntask_cont_to
6277         iproc=itask_cont_to(ii)
6278         nn=ncont_sent(ii)
6279 c        write (iout,*) nn," contacts to processor",iproc,
6280 c     &   " of CONT_TO_COMM group"
6281         if (nn.gt.0) then
6282           ireq=ireq+1 
6283           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6284      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6285 c          write (iout,*) "ireq,req",ireq,req(ireq)
6286 c          do i=1,nn
6287 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6288 c          enddo
6289         endif  
6290       enddo
6291 c      write (iout,*) "number of requests (contacts)",ireq
6292 c      write (iout,*) "req",(req(i),i=1,4)
6293 c      call flush(iout)
6294       if (ireq.gt.0) 
6295      & call MPI_Waitall(ireq,req,status_array,ierr)
6296       do iii=1,ntask_cont_from
6297         iproc=itask_cont_from(iii)
6298         nn=ncont_recv(iii)
6299         if (lprn) then
6300         write (iout,*) "Received",nn," contacts from processor",iproc,
6301      &   " of CONT_FROM_COMM group"
6302         call flush(iout)
6303         do i=1,nn
6304           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6305         enddo
6306         call flush(iout)
6307         endif
6308         do i=1,nn
6309           ii=zapas_recv(1,i,iii)
6310 c Flag the received contacts to prevent double-counting
6311           jj=-zapas_recv(2,i,iii)
6312 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6313 c          call flush(iout)
6314           nnn=num_cont_hb(ii)+1
6315           num_cont_hb(ii)=nnn
6316           jcont_hb(nnn,ii)=jj
6317           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6318           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6319           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6320           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6321           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6322           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6323           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6324           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6325           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6326           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6327           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6328           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6329           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6330           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6331           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6332           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6333           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6334           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6335           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6336           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6337           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6338           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6339           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6340           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6341         enddo
6342       enddo
6343       call flush(iout)
6344       if (lprn) then
6345         write (iout,'(a)') 'Contact function values after receive:'
6346         do i=nnt,nct-2
6347           write (iout,'(2i3,50(1x,i3,f5.2))') 
6348      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6349      &    j=1,num_cont_hb(i))
6350         enddo
6351         call flush(iout)
6352       endif
6353    30 continue
6354 #endif
6355       if (lprn) then
6356         write (iout,'(a)') 'Contact function values:'
6357         do i=nnt,nct-2
6358           write (iout,'(2i3,50(1x,i3,f5.2))') 
6359      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6360      &    j=1,num_cont_hb(i))
6361         enddo
6362       endif
6363       ecorr=0.0D0
6364 C Remove the loop below after debugging !!!
6365       do i=nnt,nct
6366         do j=1,3
6367           gradcorr(j,i)=0.0D0
6368           gradxorr(j,i)=0.0D0
6369         enddo
6370       enddo
6371 C Calculate the local-electrostatic correlation terms
6372       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6373         i1=i+1
6374         num_conti=num_cont_hb(i)
6375         num_conti1=num_cont_hb(i+1)
6376         do jj=1,num_conti
6377           j=jcont_hb(jj,i)
6378           jp=iabs(j)
6379           do kk=1,num_conti1
6380             j1=jcont_hb(kk,i1)
6381             jp1=iabs(j1)
6382 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6383 c     &         ' jj=',jj,' kk=',kk
6384             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6385      &          .or. j.lt.0 .and. j1.gt.0) .and.
6386      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6387 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6388 C The system gains extra energy.
6389               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6390               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6391      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6392               n_corr=n_corr+1
6393             else if (j1.eq.j) then
6394 C Contacts I-J and I-(J+1) occur simultaneously. 
6395 C The system loses extra energy.
6396 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6397             endif
6398           enddo ! kk
6399           do kk=1,num_conti
6400             j1=jcont_hb(kk,i)
6401 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6402 c    &         ' jj=',jj,' kk=',kk
6403             if (j1.eq.j+1) then
6404 C Contacts I-J and (I+1)-J occur simultaneously. 
6405 C The system loses extra energy.
6406 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6407             endif ! j1==j+1
6408           enddo ! kk
6409         enddo ! jj
6410       enddo ! i
6411       return
6412       end
6413 c------------------------------------------------------------------------------
6414       subroutine add_hb_contact(ii,jj,itask)
6415       implicit real*8 (a-h,o-z)
6416       include "DIMENSIONS"
6417       include "COMMON.IOUNITS"
6418       integer max_cont
6419       integer max_dim
6420       parameter (max_cont=maxconts)
6421       parameter (max_dim=26)
6422       include "COMMON.CONTACTS"
6423       double precision zapas(max_dim,maxconts,max_fg_procs),
6424      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6425       common /przechowalnia/ zapas
6426       integer i,j,ii,jj,iproc,itask(4),nn
6427 c      write (iout,*) "itask",itask
6428       do i=1,2
6429         iproc=itask(i)
6430         if (iproc.gt.0) then
6431           do j=1,num_cont_hb(ii)
6432             jjc=jcont_hb(j,ii)
6433 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6434             if (jjc.eq.jj) then
6435               ncont_sent(iproc)=ncont_sent(iproc)+1
6436               nn=ncont_sent(iproc)
6437               zapas(1,nn,iproc)=ii
6438               zapas(2,nn,iproc)=jjc
6439               zapas(3,nn,iproc)=facont_hb(j,ii)
6440               zapas(4,nn,iproc)=ees0p(j,ii)
6441               zapas(5,nn,iproc)=ees0m(j,ii)
6442               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6443               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6444               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6445               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6446               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6447               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6448               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6449               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6450               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6451               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6452               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6453               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6454               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6455               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6456               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6457               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6458               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6459               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6460               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6461               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6462               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6463               exit
6464             endif
6465           enddo
6466         endif
6467       enddo
6468       return
6469       end
6470 c------------------------------------------------------------------------------
6471       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6472      &  n_corr1)
6473 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6474       implicit real*8 (a-h,o-z)
6475       include 'DIMENSIONS'
6476       include 'COMMON.IOUNITS'
6477 #ifdef MPI
6478       include "mpif.h"
6479       parameter (max_cont=maxconts)
6480       parameter (max_dim=70)
6481       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6482       double precision zapas(max_dim,maxconts,max_fg_procs),
6483      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6484       common /przechowalnia/ zapas
6485       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6486      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6487 #endif
6488       include 'COMMON.SETUP'
6489       include 'COMMON.FFIELD'
6490       include 'COMMON.DERIV'
6491       include 'COMMON.LOCAL'
6492       include 'COMMON.INTERACT'
6493       include 'COMMON.CONTACTS'
6494       include 'COMMON.CHAIN'
6495       include 'COMMON.CONTROL'
6496       double precision gx(3),gx1(3)
6497       integer num_cont_hb_old(maxres)
6498       logical lprn,ldone
6499       double precision eello4,eello5,eelo6,eello_turn6
6500       external eello4,eello5,eello6,eello_turn6
6501 C Set lprn=.true. for debugging
6502       lprn=.false.
6503       eturn6=0.0d0
6504 #ifdef MPI
6505       do i=1,nres
6506         num_cont_hb_old(i)=num_cont_hb(i)
6507       enddo
6508       n_corr=0
6509       n_corr1=0
6510       if (nfgtasks.le.1) goto 30
6511       if (lprn) then
6512         write (iout,'(a)') 'Contact function values before RECEIVE:'
6513         do i=nnt,nct-2
6514           write (iout,'(2i3,50(1x,i2,f5.2))') 
6515      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6516      &    j=1,num_cont_hb(i))
6517         enddo
6518       endif
6519       call flush(iout)
6520       do i=1,ntask_cont_from
6521         ncont_recv(i)=0
6522       enddo
6523       do i=1,ntask_cont_to
6524         ncont_sent(i)=0
6525       enddo
6526 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6527 c     & ntask_cont_to
6528 C Make the list of contacts to send to send to other procesors
6529       do i=iturn3_start,iturn3_end
6530 c        write (iout,*) "make contact list turn3",i," num_cont",
6531 c     &    num_cont_hb(i)
6532         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6533       enddo
6534       do i=iturn4_start,iturn4_end
6535 c        write (iout,*) "make contact list turn4",i," num_cont",
6536 c     &   num_cont_hb(i)
6537         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6538       enddo
6539       do ii=1,nat_sent
6540         i=iat_sent(ii)
6541 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6542 c     &    num_cont_hb(i)
6543         do j=1,num_cont_hb(i)
6544         do k=1,4
6545           jjc=jcont_hb(j,i)
6546           iproc=iint_sent_local(k,jjc,ii)
6547 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6548           if (iproc.ne.0) then
6549             ncont_sent(iproc)=ncont_sent(iproc)+1
6550             nn=ncont_sent(iproc)
6551             zapas(1,nn,iproc)=i
6552             zapas(2,nn,iproc)=jjc
6553             zapas(3,nn,iproc)=d_cont(j,i)
6554             ind=3
6555             do kk=1,3
6556               ind=ind+1
6557               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6558             enddo
6559             do kk=1,2
6560               do ll=1,2
6561                 ind=ind+1
6562                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6563               enddo
6564             enddo
6565             do jj=1,5
6566               do kk=1,3
6567                 do ll=1,2
6568                   do mm=1,2
6569                     ind=ind+1
6570                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6571                   enddo
6572                 enddo
6573               enddo
6574             enddo
6575           endif
6576         enddo
6577         enddo
6578       enddo
6579       if (lprn) then
6580       write (iout,*) 
6581      &  "Numbers of contacts to be sent to other processors",
6582      &  (ncont_sent(i),i=1,ntask_cont_to)
6583       write (iout,*) "Contacts sent"
6584       do ii=1,ntask_cont_to
6585         nn=ncont_sent(ii)
6586         iproc=itask_cont_to(ii)
6587         write (iout,*) nn," contacts to processor",iproc,
6588      &   " of CONT_TO_COMM group"
6589         do i=1,nn
6590           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6591         enddo
6592       enddo
6593       call flush(iout)
6594       endif
6595       CorrelType=477
6596       CorrelID=fg_rank+1
6597       CorrelType1=478
6598       CorrelID1=nfgtasks+fg_rank+1
6599       ireq=0
6600 C Receive the numbers of needed contacts from other processors 
6601       do ii=1,ntask_cont_from
6602         iproc=itask_cont_from(ii)
6603         ireq=ireq+1
6604         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6605      &    FG_COMM,req(ireq),IERR)
6606       enddo
6607 c      write (iout,*) "IRECV ended"
6608 c      call flush(iout)
6609 C Send the number of contacts needed by other processors
6610       do ii=1,ntask_cont_to
6611         iproc=itask_cont_to(ii)
6612         ireq=ireq+1
6613         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6614      &    FG_COMM,req(ireq),IERR)
6615       enddo
6616 c      write (iout,*) "ISEND ended"
6617 c      write (iout,*) "number of requests (nn)",ireq
6618       call flush(iout)
6619       if (ireq.gt.0) 
6620      &  call MPI_Waitall(ireq,req,status_array,ierr)
6621 c      write (iout,*) 
6622 c     &  "Numbers of contacts to be received from other processors",
6623 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6624 c      call flush(iout)
6625 C Receive contacts
6626       ireq=0
6627       do ii=1,ntask_cont_from
6628         iproc=itask_cont_from(ii)
6629         nn=ncont_recv(ii)
6630 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6631 c     &   " of CONT_TO_COMM group"
6632         call flush(iout)
6633         if (nn.gt.0) then
6634           ireq=ireq+1
6635           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6636      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6637 c          write (iout,*) "ireq,req",ireq,req(ireq)
6638         endif
6639       enddo
6640 C Send the contacts to processors that need them
6641       do ii=1,ntask_cont_to
6642         iproc=itask_cont_to(ii)
6643         nn=ncont_sent(ii)
6644 c        write (iout,*) nn," contacts to processor",iproc,
6645 c     &   " of CONT_TO_COMM group"
6646         if (nn.gt.0) then
6647           ireq=ireq+1 
6648           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6649      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6650 c          write (iout,*) "ireq,req",ireq,req(ireq)
6651 c          do i=1,nn
6652 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6653 c          enddo
6654         endif  
6655       enddo
6656 c      write (iout,*) "number of requests (contacts)",ireq
6657 c      write (iout,*) "req",(req(i),i=1,4)
6658 c      call flush(iout)
6659       if (ireq.gt.0) 
6660      & call MPI_Waitall(ireq,req,status_array,ierr)
6661       do iii=1,ntask_cont_from
6662         iproc=itask_cont_from(iii)
6663         nn=ncont_recv(iii)
6664         if (lprn) then
6665         write (iout,*) "Received",nn," contacts from processor",iproc,
6666      &   " of CONT_FROM_COMM group"
6667         call flush(iout)
6668         do i=1,nn
6669           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6670         enddo
6671         call flush(iout)
6672         endif
6673         do i=1,nn
6674           ii=zapas_recv(1,i,iii)
6675 c Flag the received contacts to prevent double-counting
6676           jj=-zapas_recv(2,i,iii)
6677 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6678 c          call flush(iout)
6679           nnn=num_cont_hb(ii)+1
6680           num_cont_hb(ii)=nnn
6681           jcont_hb(nnn,ii)=jj
6682           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6683           ind=3
6684           do kk=1,3
6685             ind=ind+1
6686             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6687           enddo
6688           do kk=1,2
6689             do ll=1,2
6690               ind=ind+1
6691               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6692             enddo
6693           enddo
6694           do jj=1,5
6695             do kk=1,3
6696               do ll=1,2
6697                 do mm=1,2
6698                   ind=ind+1
6699                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6700                 enddo
6701               enddo
6702             enddo
6703           enddo
6704         enddo
6705       enddo
6706       call flush(iout)
6707       if (lprn) then
6708         write (iout,'(a)') 'Contact function values after receive:'
6709         do i=nnt,nct-2
6710           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6711      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6712      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6713         enddo
6714         call flush(iout)
6715       endif
6716    30 continue
6717 #endif
6718       if (lprn) then
6719         write (iout,'(a)') 'Contact function values:'
6720         do i=nnt,nct-2
6721           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6722      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6723      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6724         enddo
6725       endif
6726       ecorr=0.0D0
6727       ecorr5=0.0d0
6728       ecorr6=0.0d0
6729 C Remove the loop below after debugging !!!
6730       do i=nnt,nct
6731         do j=1,3
6732           gradcorr(j,i)=0.0D0
6733           gradxorr(j,i)=0.0D0
6734         enddo
6735       enddo
6736 C Calculate the dipole-dipole interaction energies
6737       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6738       do i=iatel_s,iatel_e+1
6739         num_conti=num_cont_hb(i)
6740         do jj=1,num_conti
6741           j=jcont_hb(jj,i)
6742 #ifdef MOMENT
6743           call dipole(i,j,jj)
6744 #endif
6745         enddo
6746       enddo
6747       endif
6748 C Calculate the local-electrostatic correlation terms
6749 c                write (iout,*) "gradcorr5 in eello5 before loop"
6750 c                do iii=1,nres
6751 c                  write (iout,'(i5,3f10.5)') 
6752 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6753 c                enddo
6754       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6755 c        write (iout,*) "corr loop i",i
6756         i1=i+1
6757         num_conti=num_cont_hb(i)
6758         num_conti1=num_cont_hb(i+1)
6759         do jj=1,num_conti
6760           j=jcont_hb(jj,i)
6761           jp=iabs(j)
6762           do kk=1,num_conti1
6763             j1=jcont_hb(kk,i1)
6764             jp1=iabs(j1)
6765 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6766 c     &         ' jj=',jj,' kk=',kk
6767 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6768             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6769      &          .or. j.lt.0 .and. j1.gt.0) .and.
6770      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6771 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6772 C The system gains extra energy.
6773               n_corr=n_corr+1
6774               sqd1=dsqrt(d_cont(jj,i))
6775               sqd2=dsqrt(d_cont(kk,i1))
6776               sred_geom = sqd1*sqd2
6777               IF (sred_geom.lt.cutoff_corr) THEN
6778                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6779      &            ekont,fprimcont)
6780 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6781 cd     &         ' jj=',jj,' kk=',kk
6782                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6783                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6784                 do l=1,3
6785                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6786                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6787                 enddo
6788                 n_corr1=n_corr1+1
6789 cd               write (iout,*) 'sred_geom=',sred_geom,
6790 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6791 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6792 cd               write (iout,*) "g_contij",g_contij
6793 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6794 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6795                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6796                 if (wcorr4.gt.0.0d0) 
6797      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6798                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6799      1                 write (iout,'(a6,4i5,0pf7.3)')
6800      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6801 c                write (iout,*) "gradcorr5 before eello5"
6802 c                do iii=1,nres
6803 c                  write (iout,'(i5,3f10.5)') 
6804 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6805 c                enddo
6806                 if (wcorr5.gt.0.0d0)
6807      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6808 c                write (iout,*) "gradcorr5 after eello5"
6809 c                do iii=1,nres
6810 c                  write (iout,'(i5,3f10.5)') 
6811 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6812 c                enddo
6813                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6814      1                 write (iout,'(a6,4i5,0pf7.3)')
6815      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6816 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6817 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6818                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6819      &               .or. wturn6.eq.0.0d0))then
6820 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6821                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6822                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6823      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6824 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6825 cd     &            'ecorr6=',ecorr6
6826 cd                write (iout,'(4e15.5)') sred_geom,
6827 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6828 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6829 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6830                 else if (wturn6.gt.0.0d0
6831      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6832 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6833                   eturn6=eturn6+eello_turn6(i,jj,kk)
6834                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6835      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6836 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6837                 endif
6838               ENDIF
6839 1111          continue
6840             endif
6841           enddo ! kk
6842         enddo ! jj
6843       enddo ! i
6844       do i=1,nres
6845         num_cont_hb(i)=num_cont_hb_old(i)
6846       enddo
6847 c                write (iout,*) "gradcorr5 in eello5"
6848 c                do iii=1,nres
6849 c                  write (iout,'(i5,3f10.5)') 
6850 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6851 c                enddo
6852       return
6853       end
6854 c------------------------------------------------------------------------------
6855       subroutine add_hb_contact_eello(ii,jj,itask)
6856       implicit real*8 (a-h,o-z)
6857       include "DIMENSIONS"
6858       include "COMMON.IOUNITS"
6859       integer max_cont
6860       integer max_dim
6861       parameter (max_cont=maxconts)
6862       parameter (max_dim=70)
6863       include "COMMON.CONTACTS"
6864       double precision zapas(max_dim,maxconts,max_fg_procs),
6865      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6866       common /przechowalnia/ zapas
6867       integer i,j,ii,jj,iproc,itask(4),nn
6868 c      write (iout,*) "itask",itask
6869       do i=1,2
6870         iproc=itask(i)
6871         if (iproc.gt.0) then
6872           do j=1,num_cont_hb(ii)
6873             jjc=jcont_hb(j,ii)
6874 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6875             if (jjc.eq.jj) then
6876               ncont_sent(iproc)=ncont_sent(iproc)+1
6877               nn=ncont_sent(iproc)
6878               zapas(1,nn,iproc)=ii
6879               zapas(2,nn,iproc)=jjc
6880               zapas(3,nn,iproc)=d_cont(j,ii)
6881               ind=3
6882               do kk=1,3
6883                 ind=ind+1
6884                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6885               enddo
6886               do kk=1,2
6887                 do ll=1,2
6888                   ind=ind+1
6889                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6890                 enddo
6891               enddo
6892               do jj=1,5
6893                 do kk=1,3
6894                   do ll=1,2
6895                     do mm=1,2
6896                       ind=ind+1
6897                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6898                     enddo
6899                   enddo
6900                 enddo
6901               enddo
6902               exit
6903             endif
6904           enddo
6905         endif
6906       enddo
6907       return
6908       end
6909 c------------------------------------------------------------------------------
6910       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6911       implicit real*8 (a-h,o-z)
6912       include 'DIMENSIONS'
6913       include 'COMMON.IOUNITS'
6914       include 'COMMON.DERIV'
6915       include 'COMMON.INTERACT'
6916       include 'COMMON.CONTACTS'
6917       double precision gx(3),gx1(3)
6918       logical lprn
6919       lprn=.false.
6920       eij=facont_hb(jj,i)
6921       ekl=facont_hb(kk,k)
6922       ees0pij=ees0p(jj,i)
6923       ees0pkl=ees0p(kk,k)
6924       ees0mij=ees0m(jj,i)
6925       ees0mkl=ees0m(kk,k)
6926       ekont=eij*ekl
6927       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6928 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6929 C Following 4 lines for diagnostics.
6930 cd    ees0pkl=0.0D0
6931 cd    ees0pij=1.0D0
6932 cd    ees0mkl=0.0D0
6933 cd    ees0mij=1.0D0
6934 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6935 c     & 'Contacts ',i,j,
6936 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6937 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6938 c     & 'gradcorr_long'
6939 C Calculate the multi-body contribution to energy.
6940 c      ecorr=ecorr+ekont*ees
6941 C Calculate multi-body contributions to the gradient.
6942       coeffpees0pij=coeffp*ees0pij
6943       coeffmees0mij=coeffm*ees0mij
6944       coeffpees0pkl=coeffp*ees0pkl
6945       coeffmees0mkl=coeffm*ees0mkl
6946       do ll=1,3
6947 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6948         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6949      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6950      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6951         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6952      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6953      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6954 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6955         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6956      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6957      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6958         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6959      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6960      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6961         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6962      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6963      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6964         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6965         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6966         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6967      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6968      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6969         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6970         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6971 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6972       enddo
6973 c      write (iout,*)
6974 cgrad      do m=i+1,j-1
6975 cgrad        do ll=1,3
6976 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6977 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6978 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6979 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6980 cgrad        enddo
6981 cgrad      enddo
6982 cgrad      do m=k+1,l-1
6983 cgrad        do ll=1,3
6984 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6985 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6986 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6987 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6988 cgrad        enddo
6989 cgrad      enddo 
6990 c      write (iout,*) "ehbcorr",ekont*ees
6991       ehbcorr=ekont*ees
6992       return
6993       end
6994 #ifdef MOMENT
6995 C---------------------------------------------------------------------------
6996       subroutine dipole(i,j,jj)
6997       implicit real*8 (a-h,o-z)
6998       include 'DIMENSIONS'
6999       include 'COMMON.IOUNITS'
7000       include 'COMMON.CHAIN'
7001       include 'COMMON.FFIELD'
7002       include 'COMMON.DERIV'
7003       include 'COMMON.INTERACT'
7004       include 'COMMON.CONTACTS'
7005       include 'COMMON.TORSION'
7006       include 'COMMON.VAR'
7007       include 'COMMON.GEO'
7008       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7009      &  auxmat(2,2)
7010       iti1 = itortyp(itype(i+1))
7011       if (j.lt.nres-1) then
7012         itj1 = itortyp(itype(j+1))
7013       else
7014         itj1=ntortyp+1
7015       endif
7016       do iii=1,2
7017         dipi(iii,1)=Ub2(iii,i)
7018         dipderi(iii)=Ub2der(iii,i)
7019         dipi(iii,2)=b1(iii,iti1)
7020         dipj(iii,1)=Ub2(iii,j)
7021         dipderj(iii)=Ub2der(iii,j)
7022         dipj(iii,2)=b1(iii,itj1)
7023       enddo
7024       kkk=0
7025       do iii=1,2
7026         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7027         do jjj=1,2
7028           kkk=kkk+1
7029           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7030         enddo
7031       enddo
7032       do kkk=1,5
7033         do lll=1,3
7034           mmm=0
7035           do iii=1,2
7036             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7037      &        auxvec(1))
7038             do jjj=1,2
7039               mmm=mmm+1
7040               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7041             enddo
7042           enddo
7043         enddo
7044       enddo
7045       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7046       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7047       do iii=1,2
7048         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7049       enddo
7050       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7051       do iii=1,2
7052         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7053       enddo
7054       return
7055       end
7056 #endif
7057 C---------------------------------------------------------------------------
7058       subroutine calc_eello(i,j,k,l,jj,kk)
7059
7060 C This subroutine computes matrices and vectors needed to calculate 
7061 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7062 C
7063       implicit real*8 (a-h,o-z)
7064       include 'DIMENSIONS'
7065       include 'COMMON.IOUNITS'
7066       include 'COMMON.CHAIN'
7067       include 'COMMON.DERIV'
7068       include 'COMMON.INTERACT'
7069       include 'COMMON.CONTACTS'
7070       include 'COMMON.TORSION'
7071       include 'COMMON.VAR'
7072       include 'COMMON.GEO'
7073       include 'COMMON.FFIELD'
7074       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7075      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7076       logical lprn
7077       common /kutas/ lprn
7078 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7079 cd     & ' jj=',jj,' kk=',kk
7080 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7081 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7082 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7083       do iii=1,2
7084         do jjj=1,2
7085           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7086           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7087         enddo
7088       enddo
7089       call transpose2(aa1(1,1),aa1t(1,1))
7090       call transpose2(aa2(1,1),aa2t(1,1))
7091       do kkk=1,5
7092         do lll=1,3
7093           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7094      &      aa1tder(1,1,lll,kkk))
7095           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7096      &      aa2tder(1,1,lll,kkk))
7097         enddo
7098       enddo 
7099       if (l.eq.j+1) then
7100 C parallel orientation of the two CA-CA-CA frames.
7101         if (i.gt.1) then
7102           iti=itortyp(itype(i))
7103         else
7104           iti=ntortyp+1
7105         endif
7106         itk1=itortyp(itype(k+1))
7107         itj=itortyp(itype(j))
7108         if (l.lt.nres-1) then
7109           itl1=itortyp(itype(l+1))
7110         else
7111           itl1=ntortyp+1
7112         endif
7113 C A1 kernel(j+1) A2T
7114 cd        do iii=1,2
7115 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7116 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7117 cd        enddo
7118         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7119      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7120      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7121 C Following matrices are needed only for 6-th order cumulants
7122         IF (wcorr6.gt.0.0d0) THEN
7123         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7124      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7125      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7126         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7127      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7128      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7129      &   ADtEAderx(1,1,1,1,1,1))
7130         lprn=.false.
7131         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7132      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7133      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7134      &   ADtEA1derx(1,1,1,1,1,1))
7135         ENDIF
7136 C End 6-th order cumulants
7137 cd        lprn=.false.
7138 cd        if (lprn) then
7139 cd        write (2,*) 'In calc_eello6'
7140 cd        do iii=1,2
7141 cd          write (2,*) 'iii=',iii
7142 cd          do kkk=1,5
7143 cd            write (2,*) 'kkk=',kkk
7144 cd            do jjj=1,2
7145 cd              write (2,'(3(2f10.5),5x)') 
7146 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7147 cd            enddo
7148 cd          enddo
7149 cd        enddo
7150 cd        endif
7151         call transpose2(EUgder(1,1,k),auxmat(1,1))
7152         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7153         call transpose2(EUg(1,1,k),auxmat(1,1))
7154         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7155         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7156         do iii=1,2
7157           do kkk=1,5
7158             do lll=1,3
7159               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7160      &          EAEAderx(1,1,lll,kkk,iii,1))
7161             enddo
7162           enddo
7163         enddo
7164 C A1T kernel(i+1) A2
7165         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7166      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7167      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7168 C Following matrices are needed only for 6-th order cumulants
7169         IF (wcorr6.gt.0.0d0) THEN
7170         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7171      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7172      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7173         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7174      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7175      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7176      &   ADtEAderx(1,1,1,1,1,2))
7177         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7178      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7179      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7180      &   ADtEA1derx(1,1,1,1,1,2))
7181         ENDIF
7182 C End 6-th order cumulants
7183         call transpose2(EUgder(1,1,l),auxmat(1,1))
7184         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7185         call transpose2(EUg(1,1,l),auxmat(1,1))
7186         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7187         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7188         do iii=1,2
7189           do kkk=1,5
7190             do lll=1,3
7191               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7192      &          EAEAderx(1,1,lll,kkk,iii,2))
7193             enddo
7194           enddo
7195         enddo
7196 C AEAb1 and AEAb2
7197 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7198 C They are needed only when the fifth- or the sixth-order cumulants are
7199 C indluded.
7200         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7201         call transpose2(AEA(1,1,1),auxmat(1,1))
7202         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7203         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7204         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7205         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7206         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7207         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7208         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7209         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7210         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7211         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7212         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7213         call transpose2(AEA(1,1,2),auxmat(1,1))
7214         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7215         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7216         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7217         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7218         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7219         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7220         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7221         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7222         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7223         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7224         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7225 C Calculate the Cartesian derivatives of the vectors.
7226         do iii=1,2
7227           do kkk=1,5
7228             do lll=1,3
7229               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7230               call matvec2(auxmat(1,1),b1(1,iti),
7231      &          AEAb1derx(1,lll,kkk,iii,1,1))
7232               call matvec2(auxmat(1,1),Ub2(1,i),
7233      &          AEAb2derx(1,lll,kkk,iii,1,1))
7234               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7235      &          AEAb1derx(1,lll,kkk,iii,2,1))
7236               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7237      &          AEAb2derx(1,lll,kkk,iii,2,1))
7238               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7239               call matvec2(auxmat(1,1),b1(1,itj),
7240      &          AEAb1derx(1,lll,kkk,iii,1,2))
7241               call matvec2(auxmat(1,1),Ub2(1,j),
7242      &          AEAb2derx(1,lll,kkk,iii,1,2))
7243               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7244      &          AEAb1derx(1,lll,kkk,iii,2,2))
7245               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7246      &          AEAb2derx(1,lll,kkk,iii,2,2))
7247             enddo
7248           enddo
7249         enddo
7250         ENDIF
7251 C End vectors
7252       else
7253 C Antiparallel orientation of the two CA-CA-CA frames.
7254         if (i.gt.1) then
7255           iti=itortyp(itype(i))
7256         else
7257           iti=ntortyp+1
7258         endif
7259         itk1=itortyp(itype(k+1))
7260         itl=itortyp(itype(l))
7261         itj=itortyp(itype(j))
7262         if (j.lt.nres-1) then
7263           itj1=itortyp(itype(j+1))
7264         else 
7265           itj1=ntortyp+1
7266         endif
7267 C A2 kernel(j-1)T A1T
7268         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7269      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7270      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7271 C Following matrices are needed only for 6-th order cumulants
7272         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7273      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7274         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7275      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7276      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7277         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7278      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7279      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7280      &   ADtEAderx(1,1,1,1,1,1))
7281         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7282      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7283      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7284      &   ADtEA1derx(1,1,1,1,1,1))
7285         ENDIF
7286 C End 6-th order cumulants
7287         call transpose2(EUgder(1,1,k),auxmat(1,1))
7288         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7289         call transpose2(EUg(1,1,k),auxmat(1,1))
7290         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7291         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7292         do iii=1,2
7293           do kkk=1,5
7294             do lll=1,3
7295               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7296      &          EAEAderx(1,1,lll,kkk,iii,1))
7297             enddo
7298           enddo
7299         enddo
7300 C A2T kernel(i+1)T A1
7301         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7302      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7303      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7304 C Following matrices are needed only for 6-th order cumulants
7305         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7306      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7307         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7308      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7309      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7310         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7311      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7312      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7313      &   ADtEAderx(1,1,1,1,1,2))
7314         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7315      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7316      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7317      &   ADtEA1derx(1,1,1,1,1,2))
7318         ENDIF
7319 C End 6-th order cumulants
7320         call transpose2(EUgder(1,1,j),auxmat(1,1))
7321         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7322         call transpose2(EUg(1,1,j),auxmat(1,1))
7323         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7324         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7325         do iii=1,2
7326           do kkk=1,5
7327             do lll=1,3
7328               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7329      &          EAEAderx(1,1,lll,kkk,iii,2))
7330             enddo
7331           enddo
7332         enddo
7333 C AEAb1 and AEAb2
7334 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7335 C They are needed only when the fifth- or the sixth-order cumulants are
7336 C indluded.
7337         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7338      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7339         call transpose2(AEA(1,1,1),auxmat(1,1))
7340         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7341         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7342         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7343         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7344         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7345         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7346         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7347         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7348         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7349         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7350         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7351         call transpose2(AEA(1,1,2),auxmat(1,1))
7352         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7353         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7354         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7355         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7356         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7357         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7358         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7359         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7360         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7361         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7362         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7363 C Calculate the Cartesian derivatives of the vectors.
7364         do iii=1,2
7365           do kkk=1,5
7366             do lll=1,3
7367               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7368               call matvec2(auxmat(1,1),b1(1,iti),
7369      &          AEAb1derx(1,lll,kkk,iii,1,1))
7370               call matvec2(auxmat(1,1),Ub2(1,i),
7371      &          AEAb2derx(1,lll,kkk,iii,1,1))
7372               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7373      &          AEAb1derx(1,lll,kkk,iii,2,1))
7374               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7375      &          AEAb2derx(1,lll,kkk,iii,2,1))
7376               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7377               call matvec2(auxmat(1,1),b1(1,itl),
7378      &          AEAb1derx(1,lll,kkk,iii,1,2))
7379               call matvec2(auxmat(1,1),Ub2(1,l),
7380      &          AEAb2derx(1,lll,kkk,iii,1,2))
7381               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7382      &          AEAb1derx(1,lll,kkk,iii,2,2))
7383               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7384      &          AEAb2derx(1,lll,kkk,iii,2,2))
7385             enddo
7386           enddo
7387         enddo
7388         ENDIF
7389 C End vectors
7390       endif
7391       return
7392       end
7393 C---------------------------------------------------------------------------
7394       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7395      &  KK,KKderg,AKA,AKAderg,AKAderx)
7396       implicit none
7397       integer nderg
7398       logical transp
7399       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7400      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7401      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7402       integer iii,kkk,lll
7403       integer jjj,mmm
7404       logical lprn
7405       common /kutas/ lprn
7406       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7407       do iii=1,nderg 
7408         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7409      &    AKAderg(1,1,iii))
7410       enddo
7411 cd      if (lprn) write (2,*) 'In kernel'
7412       do kkk=1,5
7413 cd        if (lprn) write (2,*) 'kkk=',kkk
7414         do lll=1,3
7415           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7416      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7417 cd          if (lprn) then
7418 cd            write (2,*) 'lll=',lll
7419 cd            write (2,*) 'iii=1'
7420 cd            do jjj=1,2
7421 cd              write (2,'(3(2f10.5),5x)') 
7422 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7423 cd            enddo
7424 cd          endif
7425           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7426      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7427 cd          if (lprn) then
7428 cd            write (2,*) 'lll=',lll
7429 cd            write (2,*) 'iii=2'
7430 cd            do jjj=1,2
7431 cd              write (2,'(3(2f10.5),5x)') 
7432 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7433 cd            enddo
7434 cd          endif
7435         enddo
7436       enddo
7437       return
7438       end
7439 C---------------------------------------------------------------------------
7440       double precision function eello4(i,j,k,l,jj,kk)
7441       implicit real*8 (a-h,o-z)
7442       include 'DIMENSIONS'
7443       include 'COMMON.IOUNITS'
7444       include 'COMMON.CHAIN'
7445       include 'COMMON.DERIV'
7446       include 'COMMON.INTERACT'
7447       include 'COMMON.CONTACTS'
7448       include 'COMMON.TORSION'
7449       include 'COMMON.VAR'
7450       include 'COMMON.GEO'
7451       double precision pizda(2,2),ggg1(3),ggg2(3)
7452 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7453 cd        eello4=0.0d0
7454 cd        return
7455 cd      endif
7456 cd      print *,'eello4:',i,j,k,l,jj,kk
7457 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7458 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7459 cold      eij=facont_hb(jj,i)
7460 cold      ekl=facont_hb(kk,k)
7461 cold      ekont=eij*ekl
7462       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7463 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7464       gcorr_loc(k-1)=gcorr_loc(k-1)
7465      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7466       if (l.eq.j+1) then
7467         gcorr_loc(l-1)=gcorr_loc(l-1)
7468      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7469       else
7470         gcorr_loc(j-1)=gcorr_loc(j-1)
7471      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7472       endif
7473       do iii=1,2
7474         do kkk=1,5
7475           do lll=1,3
7476             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7477      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7478 cd            derx(lll,kkk,iii)=0.0d0
7479           enddo
7480         enddo
7481       enddo
7482 cd      gcorr_loc(l-1)=0.0d0
7483 cd      gcorr_loc(j-1)=0.0d0
7484 cd      gcorr_loc(k-1)=0.0d0
7485 cd      eel4=1.0d0
7486 cd      write (iout,*)'Contacts have occurred for peptide groups',
7487 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7488 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7489       if (j.lt.nres-1) then
7490         j1=j+1
7491         j2=j-1
7492       else
7493         j1=j-1
7494         j2=j-2
7495       endif
7496       if (l.lt.nres-1) then
7497         l1=l+1
7498         l2=l-1
7499       else
7500         l1=l-1
7501         l2=l-2
7502       endif
7503       do ll=1,3
7504 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7505 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7506         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7507         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7508 cgrad        ghalf=0.5d0*ggg1(ll)
7509         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7510         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7511         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7512         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7513         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7514         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7515 cgrad        ghalf=0.5d0*ggg2(ll)
7516         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7517         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7518         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7519         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7520         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7521         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7522       enddo
7523 cgrad      do m=i+1,j-1
7524 cgrad        do ll=1,3
7525 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7526 cgrad        enddo
7527 cgrad      enddo
7528 cgrad      do m=k+1,l-1
7529 cgrad        do ll=1,3
7530 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7531 cgrad        enddo
7532 cgrad      enddo
7533 cgrad      do m=i+2,j2
7534 cgrad        do ll=1,3
7535 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7536 cgrad        enddo
7537 cgrad      enddo
7538 cgrad      do m=k+2,l2
7539 cgrad        do ll=1,3
7540 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7541 cgrad        enddo
7542 cgrad      enddo 
7543 cd      do iii=1,nres-3
7544 cd        write (2,*) iii,gcorr_loc(iii)
7545 cd      enddo
7546       eello4=ekont*eel4
7547 cd      write (2,*) 'ekont',ekont
7548 cd      write (iout,*) 'eello4',ekont*eel4
7549       return
7550       end
7551 C---------------------------------------------------------------------------
7552       double precision function eello5(i,j,k,l,jj,kk)
7553       implicit real*8 (a-h,o-z)
7554       include 'DIMENSIONS'
7555       include 'COMMON.IOUNITS'
7556       include 'COMMON.CHAIN'
7557       include 'COMMON.DERIV'
7558       include 'COMMON.INTERACT'
7559       include 'COMMON.CONTACTS'
7560       include 'COMMON.TORSION'
7561       include 'COMMON.VAR'
7562       include 'COMMON.GEO'
7563       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7564       double precision ggg1(3),ggg2(3)
7565 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7566 C                                                                              C
7567 C                            Parallel chains                                   C
7568 C                                                                              C
7569 C          o             o                   o             o                   C
7570 C         /l\           / \             \   / \           / \   /              C
7571 C        /   \         /   \             \ /   \         /   \ /               C
7572 C       j| o |l1       | o |              o| o |         | o |o                C
7573 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7574 C      \i/   \         /   \ /             /   \         /   \                 C
7575 C       o    k1             o                                                  C
7576 C         (I)          (II)                (III)          (IV)                 C
7577 C                                                                              C
7578 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7579 C                                                                              C
7580 C                            Antiparallel chains                               C
7581 C                                                                              C
7582 C          o             o                   o             o                   C
7583 C         /j\           / \             \   / \           / \   /              C
7584 C        /   \         /   \             \ /   \         /   \ /               C
7585 C      j1| o |l        | o |              o| o |         | o |o                C
7586 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7587 C      \i/   \         /   \ /             /   \         /   \                 C
7588 C       o     k1            o                                                  C
7589 C         (I)          (II)                (III)          (IV)                 C
7590 C                                                                              C
7591 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7592 C                                                                              C
7593 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7594 C                                                                              C
7595 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7596 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7597 cd        eello5=0.0d0
7598 cd        return
7599 cd      endif
7600 cd      write (iout,*)
7601 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7602 cd     &   ' and',k,l
7603       itk=itortyp(itype(k))
7604       itl=itortyp(itype(l))
7605       itj=itortyp(itype(j))
7606       eello5_1=0.0d0
7607       eello5_2=0.0d0
7608       eello5_3=0.0d0
7609       eello5_4=0.0d0
7610 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7611 cd     &   eel5_3_num,eel5_4_num)
7612       do iii=1,2
7613         do kkk=1,5
7614           do lll=1,3
7615             derx(lll,kkk,iii)=0.0d0
7616           enddo
7617         enddo
7618       enddo
7619 cd      eij=facont_hb(jj,i)
7620 cd      ekl=facont_hb(kk,k)
7621 cd      ekont=eij*ekl
7622 cd      write (iout,*)'Contacts have occurred for peptide groups',
7623 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7624 cd      goto 1111
7625 C Contribution from the graph I.
7626 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7627 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7628       call transpose2(EUg(1,1,k),auxmat(1,1))
7629       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7630       vv(1)=pizda(1,1)-pizda(2,2)
7631       vv(2)=pizda(1,2)+pizda(2,1)
7632       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7633      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7634 C Explicit gradient in virtual-dihedral angles.
7635       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7636      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7637      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7638       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7639       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7640       vv(1)=pizda(1,1)-pizda(2,2)
7641       vv(2)=pizda(1,2)+pizda(2,1)
7642       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7643      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7644      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7645       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7646       vv(1)=pizda(1,1)-pizda(2,2)
7647       vv(2)=pizda(1,2)+pizda(2,1)
7648       if (l.eq.j+1) then
7649         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7650      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7651      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7652       else
7653         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7654      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7655      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7656       endif 
7657 C Cartesian gradient
7658       do iii=1,2
7659         do kkk=1,5
7660           do lll=1,3
7661             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7662      &        pizda(1,1))
7663             vv(1)=pizda(1,1)-pizda(2,2)
7664             vv(2)=pizda(1,2)+pizda(2,1)
7665             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7666      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7667      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7668           enddo
7669         enddo
7670       enddo
7671 c      goto 1112
7672 c1111  continue
7673 C Contribution from graph II 
7674       call transpose2(EE(1,1,itk),auxmat(1,1))
7675       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7676       vv(1)=pizda(1,1)+pizda(2,2)
7677       vv(2)=pizda(2,1)-pizda(1,2)
7678       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7679      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7680 C Explicit gradient in virtual-dihedral angles.
7681       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7682      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7683       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7684       vv(1)=pizda(1,1)+pizda(2,2)
7685       vv(2)=pizda(2,1)-pizda(1,2)
7686       if (l.eq.j+1) then
7687         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7688      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7689      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7690       else
7691         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7692      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7693      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7694       endif
7695 C Cartesian gradient
7696       do iii=1,2
7697         do kkk=1,5
7698           do lll=1,3
7699             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7700      &        pizda(1,1))
7701             vv(1)=pizda(1,1)+pizda(2,2)
7702             vv(2)=pizda(2,1)-pizda(1,2)
7703             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7704      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7705      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7706           enddo
7707         enddo
7708       enddo
7709 cd      goto 1112
7710 cd1111  continue
7711       if (l.eq.j+1) then
7712 cd        goto 1110
7713 C Parallel orientation
7714 C Contribution from graph III
7715         call transpose2(EUg(1,1,l),auxmat(1,1))
7716         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7717         vv(1)=pizda(1,1)-pizda(2,2)
7718         vv(2)=pizda(1,2)+pizda(2,1)
7719         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7720      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7721 C Explicit gradient in virtual-dihedral angles.
7722         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7723      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7724      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7725         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7726         vv(1)=pizda(1,1)-pizda(2,2)
7727         vv(2)=pizda(1,2)+pizda(2,1)
7728         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7729      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7730      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7731         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7732         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7733         vv(1)=pizda(1,1)-pizda(2,2)
7734         vv(2)=pizda(1,2)+pizda(2,1)
7735         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7736      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7737      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7738 C Cartesian gradient
7739         do iii=1,2
7740           do kkk=1,5
7741             do lll=1,3
7742               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7743      &          pizda(1,1))
7744               vv(1)=pizda(1,1)-pizda(2,2)
7745               vv(2)=pizda(1,2)+pizda(2,1)
7746               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7747      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7748      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7749             enddo
7750           enddo
7751         enddo
7752 cd        goto 1112
7753 C Contribution from graph IV
7754 cd1110    continue
7755         call transpose2(EE(1,1,itl),auxmat(1,1))
7756         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7757         vv(1)=pizda(1,1)+pizda(2,2)
7758         vv(2)=pizda(2,1)-pizda(1,2)
7759         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7760      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7761 C Explicit gradient in virtual-dihedral angles.
7762         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7763      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7764         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7765         vv(1)=pizda(1,1)+pizda(2,2)
7766         vv(2)=pizda(2,1)-pizda(1,2)
7767         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7768      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7769      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7770 C Cartesian gradient
7771         do iii=1,2
7772           do kkk=1,5
7773             do lll=1,3
7774               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7775      &          pizda(1,1))
7776               vv(1)=pizda(1,1)+pizda(2,2)
7777               vv(2)=pizda(2,1)-pizda(1,2)
7778               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7779      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7780      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7781             enddo
7782           enddo
7783         enddo
7784       else
7785 C Antiparallel orientation
7786 C Contribution from graph III
7787 c        goto 1110
7788         call transpose2(EUg(1,1,j),auxmat(1,1))
7789         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7790         vv(1)=pizda(1,1)-pizda(2,2)
7791         vv(2)=pizda(1,2)+pizda(2,1)
7792         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7793      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7794 C Explicit gradient in virtual-dihedral angles.
7795         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7796      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7797      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7798         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7799         vv(1)=pizda(1,1)-pizda(2,2)
7800         vv(2)=pizda(1,2)+pizda(2,1)
7801         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7802      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7803      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7804         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7805         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7806         vv(1)=pizda(1,1)-pizda(2,2)
7807         vv(2)=pizda(1,2)+pizda(2,1)
7808         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7809      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7810      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7811 C Cartesian gradient
7812         do iii=1,2
7813           do kkk=1,5
7814             do lll=1,3
7815               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7816      &          pizda(1,1))
7817               vv(1)=pizda(1,1)-pizda(2,2)
7818               vv(2)=pizda(1,2)+pizda(2,1)
7819               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7820      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7821      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7822             enddo
7823           enddo
7824         enddo
7825 cd        goto 1112
7826 C Contribution from graph IV
7827 1110    continue
7828         call transpose2(EE(1,1,itj),auxmat(1,1))
7829         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7830         vv(1)=pizda(1,1)+pizda(2,2)
7831         vv(2)=pizda(2,1)-pizda(1,2)
7832         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7833      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7834 C Explicit gradient in virtual-dihedral angles.
7835         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7836      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7837         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7838         vv(1)=pizda(1,1)+pizda(2,2)
7839         vv(2)=pizda(2,1)-pizda(1,2)
7840         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7841      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7842      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7843 C Cartesian gradient
7844         do iii=1,2
7845           do kkk=1,5
7846             do lll=1,3
7847               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7848      &          pizda(1,1))
7849               vv(1)=pizda(1,1)+pizda(2,2)
7850               vv(2)=pizda(2,1)-pizda(1,2)
7851               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7852      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7853      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7854             enddo
7855           enddo
7856         enddo
7857       endif
7858 1112  continue
7859       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7860 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7861 cd        write (2,*) 'ijkl',i,j,k,l
7862 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7863 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7864 cd      endif
7865 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7866 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7867 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7868 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7869       if (j.lt.nres-1) then
7870         j1=j+1
7871         j2=j-1
7872       else
7873         j1=j-1
7874         j2=j-2
7875       endif
7876       if (l.lt.nres-1) then
7877         l1=l+1
7878         l2=l-1
7879       else
7880         l1=l-1
7881         l2=l-2
7882       endif
7883 cd      eij=1.0d0
7884 cd      ekl=1.0d0
7885 cd      ekont=1.0d0
7886 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7887 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7888 C        summed up outside the subrouine as for the other subroutines 
7889 C        handling long-range interactions. The old code is commented out
7890 C        with "cgrad" to keep track of changes.
7891       do ll=1,3
7892 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7893 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7894         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7895         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7896 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7897 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7898 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7899 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7900 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7901 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7902 c     &   gradcorr5ij,
7903 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7904 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7905 cgrad        ghalf=0.5d0*ggg1(ll)
7906 cd        ghalf=0.0d0
7907         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7908         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7909         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7910         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7911         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7912         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7913 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7914 cgrad        ghalf=0.5d0*ggg2(ll)
7915 cd        ghalf=0.0d0
7916         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7917         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7918         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7919         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7920         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7921         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7922       enddo
7923 cd      goto 1112
7924 cgrad      do m=i+1,j-1
7925 cgrad        do ll=1,3
7926 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7927 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7928 cgrad        enddo
7929 cgrad      enddo
7930 cgrad      do m=k+1,l-1
7931 cgrad        do ll=1,3
7932 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7933 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7934 cgrad        enddo
7935 cgrad      enddo
7936 c1112  continue
7937 cgrad      do m=i+2,j2
7938 cgrad        do ll=1,3
7939 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7940 cgrad        enddo
7941 cgrad      enddo
7942 cgrad      do m=k+2,l2
7943 cgrad        do ll=1,3
7944 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7945 cgrad        enddo
7946 cgrad      enddo 
7947 cd      do iii=1,nres-3
7948 cd        write (2,*) iii,g_corr5_loc(iii)
7949 cd      enddo
7950       eello5=ekont*eel5
7951 cd      write (2,*) 'ekont',ekont
7952 cd      write (iout,*) 'eello5',ekont*eel5
7953       return
7954       end
7955 c--------------------------------------------------------------------------
7956       double precision function eello6(i,j,k,l,jj,kk)
7957       implicit real*8 (a-h,o-z)
7958       include 'DIMENSIONS'
7959       include 'COMMON.IOUNITS'
7960       include 'COMMON.CHAIN'
7961       include 'COMMON.DERIV'
7962       include 'COMMON.INTERACT'
7963       include 'COMMON.CONTACTS'
7964       include 'COMMON.TORSION'
7965       include 'COMMON.VAR'
7966       include 'COMMON.GEO'
7967       include 'COMMON.FFIELD'
7968       double precision ggg1(3),ggg2(3)
7969 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7970 cd        eello6=0.0d0
7971 cd        return
7972 cd      endif
7973 cd      write (iout,*)
7974 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7975 cd     &   ' and',k,l
7976       eello6_1=0.0d0
7977       eello6_2=0.0d0
7978       eello6_3=0.0d0
7979       eello6_4=0.0d0
7980       eello6_5=0.0d0
7981       eello6_6=0.0d0
7982 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7983 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7984       do iii=1,2
7985         do kkk=1,5
7986           do lll=1,3
7987             derx(lll,kkk,iii)=0.0d0
7988           enddo
7989         enddo
7990       enddo
7991 cd      eij=facont_hb(jj,i)
7992 cd      ekl=facont_hb(kk,k)
7993 cd      ekont=eij*ekl
7994 cd      eij=1.0d0
7995 cd      ekl=1.0d0
7996 cd      ekont=1.0d0
7997       if (l.eq.j+1) then
7998         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7999         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8000         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8001         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8002         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8003         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8004       else
8005         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8006         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8007         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8008         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8009         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8010           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8011         else
8012           eello6_5=0.0d0
8013         endif
8014         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8015       endif
8016 C If turn contributions are considered, they will be handled separately.
8017       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8018 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8019 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8020 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8021 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8022 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8023 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8024 cd      goto 1112
8025       if (j.lt.nres-1) then
8026         j1=j+1
8027         j2=j-1
8028       else
8029         j1=j-1
8030         j2=j-2
8031       endif
8032       if (l.lt.nres-1) then
8033         l1=l+1
8034         l2=l-1
8035       else
8036         l1=l-1
8037         l2=l-2
8038       endif
8039       do ll=1,3
8040 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8041 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8042 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8043 cgrad        ghalf=0.5d0*ggg1(ll)
8044 cd        ghalf=0.0d0
8045         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8046         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8047         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8048         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8049         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8050         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8051         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8052         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8053 cgrad        ghalf=0.5d0*ggg2(ll)
8054 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8055 cd        ghalf=0.0d0
8056         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8057         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8058         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8059         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8060         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8061         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8062       enddo
8063 cd      goto 1112
8064 cgrad      do m=i+1,j-1
8065 cgrad        do ll=1,3
8066 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8067 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8068 cgrad        enddo
8069 cgrad      enddo
8070 cgrad      do m=k+1,l-1
8071 cgrad        do ll=1,3
8072 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8073 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8074 cgrad        enddo
8075 cgrad      enddo
8076 cgrad1112  continue
8077 cgrad      do m=i+2,j2
8078 cgrad        do ll=1,3
8079 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8080 cgrad        enddo
8081 cgrad      enddo
8082 cgrad      do m=k+2,l2
8083 cgrad        do ll=1,3
8084 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8085 cgrad        enddo
8086 cgrad      enddo 
8087 cd      do iii=1,nres-3
8088 cd        write (2,*) iii,g_corr6_loc(iii)
8089 cd      enddo
8090       eello6=ekont*eel6
8091 cd      write (2,*) 'ekont',ekont
8092 cd      write (iout,*) 'eello6',ekont*eel6
8093       return
8094       end
8095 c--------------------------------------------------------------------------
8096       double precision function eello6_graph1(i,j,k,l,imat,swap)
8097       implicit real*8 (a-h,o-z)
8098       include 'DIMENSIONS'
8099       include 'COMMON.IOUNITS'
8100       include 'COMMON.CHAIN'
8101       include 'COMMON.DERIV'
8102       include 'COMMON.INTERACT'
8103       include 'COMMON.CONTACTS'
8104       include 'COMMON.TORSION'
8105       include 'COMMON.VAR'
8106       include 'COMMON.GEO'
8107       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8108       logical swap
8109       logical lprn
8110       common /kutas/ lprn
8111 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8112 C                                              
8113 C      Parallel       Antiparallel
8114 C                                             
8115 C          o             o         
8116 C         /l\           /j\
8117 C        /   \         /   \
8118 C       /| o |         | o |\
8119 C     \ j|/k\|  /   \  |/k\|l /   
8120 C      \ /   \ /     \ /   \ /    
8121 C       o     o       o     o                
8122 C       i             i                     
8123 C
8124 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8125       itk=itortyp(itype(k))
8126       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8127       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8128       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8129       call transpose2(EUgC(1,1,k),auxmat(1,1))
8130       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8131       vv1(1)=pizda1(1,1)-pizda1(2,2)
8132       vv1(2)=pizda1(1,2)+pizda1(2,1)
8133       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8134       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8135       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8136       s5=scalar2(vv(1),Dtobr2(1,i))
8137 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8138       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8139       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8140      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8141      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8142      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8143      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8144      & +scalar2(vv(1),Dtobr2der(1,i)))
8145       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8146       vv1(1)=pizda1(1,1)-pizda1(2,2)
8147       vv1(2)=pizda1(1,2)+pizda1(2,1)
8148       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8149       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8150       if (l.eq.j+1) then
8151         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8152      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8153      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8154      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8155      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8156       else
8157         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8158      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8159      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8160      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8161      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8162       endif
8163       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8164       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8165       vv1(1)=pizda1(1,1)-pizda1(2,2)
8166       vv1(2)=pizda1(1,2)+pizda1(2,1)
8167       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8168      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8169      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8170      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8171       do iii=1,2
8172         if (swap) then
8173           ind=3-iii
8174         else
8175           ind=iii
8176         endif
8177         do kkk=1,5
8178           do lll=1,3
8179             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8180             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8181             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8182             call transpose2(EUgC(1,1,k),auxmat(1,1))
8183             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8184      &        pizda1(1,1))
8185             vv1(1)=pizda1(1,1)-pizda1(2,2)
8186             vv1(2)=pizda1(1,2)+pizda1(2,1)
8187             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8188             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8189      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8190             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8191      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8192             s5=scalar2(vv(1),Dtobr2(1,i))
8193             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8194           enddo
8195         enddo
8196       enddo
8197       return
8198       end
8199 c----------------------------------------------------------------------------
8200       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8201       implicit real*8 (a-h,o-z)
8202       include 'DIMENSIONS'
8203       include 'COMMON.IOUNITS'
8204       include 'COMMON.CHAIN'
8205       include 'COMMON.DERIV'
8206       include 'COMMON.INTERACT'
8207       include 'COMMON.CONTACTS'
8208       include 'COMMON.TORSION'
8209       include 'COMMON.VAR'
8210       include 'COMMON.GEO'
8211       logical swap
8212       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8213      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8214       logical lprn
8215       common /kutas/ lprn
8216 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8217 C                                                                              C
8218 C      Parallel       Antiparallel                                             C
8219 C                                                                              C
8220 C          o             o                                                     C
8221 C     \   /l\           /j\   /                                                C
8222 C      \ /   \         /   \ /                                                 C
8223 C       o| o |         | o |o                                                  C                
8224 C     \ j|/k\|      \  |/k\|l                                                  C
8225 C      \ /   \       \ /   \                                                   C
8226 C       o             o                                                        C
8227 C       i             i                                                        C 
8228 C                                                                              C           
8229 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8230 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8231 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8232 C           but not in a cluster cumulant
8233 #ifdef MOMENT
8234       s1=dip(1,jj,i)*dip(1,kk,k)
8235 #endif
8236       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8237       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8238       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8239       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8240       call transpose2(EUg(1,1,k),auxmat(1,1))
8241       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8242       vv(1)=pizda(1,1)-pizda(2,2)
8243       vv(2)=pizda(1,2)+pizda(2,1)
8244       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8245 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8246 #ifdef MOMENT
8247       eello6_graph2=-(s1+s2+s3+s4)
8248 #else
8249       eello6_graph2=-(s2+s3+s4)
8250 #endif
8251 c      eello6_graph2=-s3
8252 C Derivatives in gamma(i-1)
8253       if (i.gt.1) then
8254 #ifdef MOMENT
8255         s1=dipderg(1,jj,i)*dip(1,kk,k)
8256 #endif
8257         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8258         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8259         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8260         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8261 #ifdef MOMENT
8262         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8263 #else
8264         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8265 #endif
8266 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8267       endif
8268 C Derivatives in gamma(k-1)
8269 #ifdef MOMENT
8270       s1=dip(1,jj,i)*dipderg(1,kk,k)
8271 #endif
8272       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8273       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8274       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8275       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8276       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8277       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8278       vv(1)=pizda(1,1)-pizda(2,2)
8279       vv(2)=pizda(1,2)+pizda(2,1)
8280       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8281 #ifdef MOMENT
8282       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8283 #else
8284       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8285 #endif
8286 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8287 C Derivatives in gamma(j-1) or gamma(l-1)
8288       if (j.gt.1) then
8289 #ifdef MOMENT
8290         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8291 #endif
8292         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8293         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8294         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8295         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8296         vv(1)=pizda(1,1)-pizda(2,2)
8297         vv(2)=pizda(1,2)+pizda(2,1)
8298         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8299 #ifdef MOMENT
8300         if (swap) then
8301           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8302         else
8303           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8304         endif
8305 #endif
8306         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8307 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8308       endif
8309 C Derivatives in gamma(l-1) or gamma(j-1)
8310       if (l.gt.1) then 
8311 #ifdef MOMENT
8312         s1=dip(1,jj,i)*dipderg(3,kk,k)
8313 #endif
8314         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8315         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8316         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8317         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8318         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8319         vv(1)=pizda(1,1)-pizda(2,2)
8320         vv(2)=pizda(1,2)+pizda(2,1)
8321         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8322 #ifdef MOMENT
8323         if (swap) then
8324           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8325         else
8326           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8327         endif
8328 #endif
8329         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8330 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8331       endif
8332 C Cartesian derivatives.
8333       if (lprn) then
8334         write (2,*) 'In eello6_graph2'
8335         do iii=1,2
8336           write (2,*) 'iii=',iii
8337           do kkk=1,5
8338             write (2,*) 'kkk=',kkk
8339             do jjj=1,2
8340               write (2,'(3(2f10.5),5x)') 
8341      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8342             enddo
8343           enddo
8344         enddo
8345       endif
8346       do iii=1,2
8347         do kkk=1,5
8348           do lll=1,3
8349 #ifdef MOMENT
8350             if (iii.eq.1) then
8351               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8352             else
8353               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8354             endif
8355 #endif
8356             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8357      &        auxvec(1))
8358             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8359             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8360      &        auxvec(1))
8361             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8362             call transpose2(EUg(1,1,k),auxmat(1,1))
8363             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8364      &        pizda(1,1))
8365             vv(1)=pizda(1,1)-pizda(2,2)
8366             vv(2)=pizda(1,2)+pizda(2,1)
8367             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8368 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8369 #ifdef MOMENT
8370             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8371 #else
8372             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8373 #endif
8374             if (swap) then
8375               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8376             else
8377               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8378             endif
8379           enddo
8380         enddo
8381       enddo
8382       return
8383       end
8384 c----------------------------------------------------------------------------
8385       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8386       implicit real*8 (a-h,o-z)
8387       include 'DIMENSIONS'
8388       include 'COMMON.IOUNITS'
8389       include 'COMMON.CHAIN'
8390       include 'COMMON.DERIV'
8391       include 'COMMON.INTERACT'
8392       include 'COMMON.CONTACTS'
8393       include 'COMMON.TORSION'
8394       include 'COMMON.VAR'
8395       include 'COMMON.GEO'
8396       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8397       logical swap
8398 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8399 C                                                                              C 
8400 C      Parallel       Antiparallel                                             C
8401 C                                                                              C
8402 C          o             o                                                     C 
8403 C         /l\   /   \   /j\                                                    C 
8404 C        /   \ /     \ /   \                                                   C
8405 C       /| o |o       o| o |\                                                  C
8406 C       j|/k\|  /      |/k\|l /                                                C
8407 C        /   \ /       /   \ /                                                 C
8408 C       /     o       /     o                                                  C
8409 C       i             i                                                        C
8410 C                                                                              C
8411 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8412 C
8413 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8414 C           energy moment and not to the cluster cumulant.
8415       iti=itortyp(itype(i))
8416       if (j.lt.nres-1) then
8417         itj1=itortyp(itype(j+1))
8418       else
8419         itj1=ntortyp+1
8420       endif
8421       itk=itortyp(itype(k))
8422       itk1=itortyp(itype(k+1))
8423       if (l.lt.nres-1) then
8424         itl1=itortyp(itype(l+1))
8425       else
8426         itl1=ntortyp+1
8427       endif
8428 #ifdef MOMENT
8429       s1=dip(4,jj,i)*dip(4,kk,k)
8430 #endif
8431       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8432       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8433       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8434       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8435       call transpose2(EE(1,1,itk),auxmat(1,1))
8436       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8437       vv(1)=pizda(1,1)+pizda(2,2)
8438       vv(2)=pizda(2,1)-pizda(1,2)
8439       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8440 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8441 cd     & "sum",-(s2+s3+s4)
8442 #ifdef MOMENT
8443       eello6_graph3=-(s1+s2+s3+s4)
8444 #else
8445       eello6_graph3=-(s2+s3+s4)
8446 #endif
8447 c      eello6_graph3=-s4
8448 C Derivatives in gamma(k-1)
8449       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8450       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8451       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8452       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8453 C Derivatives in gamma(l-1)
8454       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8455       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8456       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8457       vv(1)=pizda(1,1)+pizda(2,2)
8458       vv(2)=pizda(2,1)-pizda(1,2)
8459       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8460       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8461 C Cartesian derivatives.
8462       do iii=1,2
8463         do kkk=1,5
8464           do lll=1,3
8465 #ifdef MOMENT
8466             if (iii.eq.1) then
8467               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8468             else
8469               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8470             endif
8471 #endif
8472             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8473      &        auxvec(1))
8474             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8475             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8476      &        auxvec(1))
8477             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8478             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8479      &        pizda(1,1))
8480             vv(1)=pizda(1,1)+pizda(2,2)
8481             vv(2)=pizda(2,1)-pizda(1,2)
8482             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8483 #ifdef MOMENT
8484             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8485 #else
8486             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8487 #endif
8488             if (swap) then
8489               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8490             else
8491               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8492             endif
8493 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8494           enddo
8495         enddo
8496       enddo
8497       return
8498       end
8499 c----------------------------------------------------------------------------
8500       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8501       implicit real*8 (a-h,o-z)
8502       include 'DIMENSIONS'
8503       include 'COMMON.IOUNITS'
8504       include 'COMMON.CHAIN'
8505       include 'COMMON.DERIV'
8506       include 'COMMON.INTERACT'
8507       include 'COMMON.CONTACTS'
8508       include 'COMMON.TORSION'
8509       include 'COMMON.VAR'
8510       include 'COMMON.GEO'
8511       include 'COMMON.FFIELD'
8512       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8513      & auxvec1(2),auxmat1(2,2)
8514       logical swap
8515 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8516 C                                                                              C                       
8517 C      Parallel       Antiparallel                                             C
8518 C                                                                              C
8519 C          o             o                                                     C
8520 C         /l\   /   \   /j\                                                    C
8521 C        /   \ /     \ /   \                                                   C
8522 C       /| o |o       o| o |\                                                  C
8523 C     \ j|/k\|      \  |/k\|l                                                  C
8524 C      \ /   \       \ /   \                                                   C 
8525 C       o     \       o     \                                                  C
8526 C       i             i                                                        C
8527 C                                                                              C 
8528 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8529 C
8530 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8531 C           energy moment and not to the cluster cumulant.
8532 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8533       iti=itortyp(itype(i))
8534       itj=itortyp(itype(j))
8535       if (j.lt.nres-1) then
8536         itj1=itortyp(itype(j+1))
8537       else
8538         itj1=ntortyp+1
8539       endif
8540       itk=itortyp(itype(k))
8541       if (k.lt.nres-1) then
8542         itk1=itortyp(itype(k+1))
8543       else
8544         itk1=ntortyp+1
8545       endif
8546       itl=itortyp(itype(l))
8547       if (l.lt.nres-1) then
8548         itl1=itortyp(itype(l+1))
8549       else
8550         itl1=ntortyp+1
8551       endif
8552 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8553 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8554 cd     & ' itl',itl,' itl1',itl1
8555 #ifdef MOMENT
8556       if (imat.eq.1) then
8557         s1=dip(3,jj,i)*dip(3,kk,k)
8558       else
8559         s1=dip(2,jj,j)*dip(2,kk,l)
8560       endif
8561 #endif
8562       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8563       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8564       if (j.eq.l+1) then
8565         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8566         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8567       else
8568         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8569         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8570       endif
8571       call transpose2(EUg(1,1,k),auxmat(1,1))
8572       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8573       vv(1)=pizda(1,1)-pizda(2,2)
8574       vv(2)=pizda(2,1)+pizda(1,2)
8575       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8576 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8577 #ifdef MOMENT
8578       eello6_graph4=-(s1+s2+s3+s4)
8579 #else
8580       eello6_graph4=-(s2+s3+s4)
8581 #endif
8582 C Derivatives in gamma(i-1)
8583       if (i.gt.1) then
8584 #ifdef MOMENT
8585         if (imat.eq.1) then
8586           s1=dipderg(2,jj,i)*dip(3,kk,k)
8587         else
8588           s1=dipderg(4,jj,j)*dip(2,kk,l)
8589         endif
8590 #endif
8591         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8592         if (j.eq.l+1) then
8593           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8594           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8595         else
8596           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8597           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8598         endif
8599         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8600         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8601 cd          write (2,*) 'turn6 derivatives'
8602 #ifdef MOMENT
8603           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8604 #else
8605           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8606 #endif
8607         else
8608 #ifdef MOMENT
8609           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8610 #else
8611           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8612 #endif
8613         endif
8614       endif
8615 C Derivatives in gamma(k-1)
8616 #ifdef MOMENT
8617       if (imat.eq.1) then
8618         s1=dip(3,jj,i)*dipderg(2,kk,k)
8619       else
8620         s1=dip(2,jj,j)*dipderg(4,kk,l)
8621       endif
8622 #endif
8623       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8624       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8625       if (j.eq.l+1) then
8626         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8627         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8628       else
8629         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8630         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8631       endif
8632       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8633       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8634       vv(1)=pizda(1,1)-pizda(2,2)
8635       vv(2)=pizda(2,1)+pizda(1,2)
8636       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8637       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8638 #ifdef MOMENT
8639         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8640 #else
8641         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8642 #endif
8643       else
8644 #ifdef MOMENT
8645         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8646 #else
8647         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8648 #endif
8649       endif
8650 C Derivatives in gamma(j-1) or gamma(l-1)
8651       if (l.eq.j+1 .and. l.gt.1) then
8652         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8653         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8654         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8655         vv(1)=pizda(1,1)-pizda(2,2)
8656         vv(2)=pizda(2,1)+pizda(1,2)
8657         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8658         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8659       else if (j.gt.1) then
8660         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8661         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8662         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8663         vv(1)=pizda(1,1)-pizda(2,2)
8664         vv(2)=pizda(2,1)+pizda(1,2)
8665         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8666         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8667           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8668         else
8669           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8670         endif
8671       endif
8672 C Cartesian derivatives.
8673       do iii=1,2
8674         do kkk=1,5
8675           do lll=1,3
8676 #ifdef MOMENT
8677             if (iii.eq.1) then
8678               if (imat.eq.1) then
8679                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8680               else
8681                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8682               endif
8683             else
8684               if (imat.eq.1) then
8685                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8686               else
8687                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8688               endif
8689             endif
8690 #endif
8691             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8692      &        auxvec(1))
8693             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8694             if (j.eq.l+1) then
8695               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8696      &          b1(1,itj1),auxvec(1))
8697               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8698             else
8699               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8700      &          b1(1,itl1),auxvec(1))
8701               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8702             endif
8703             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8704      &        pizda(1,1))
8705             vv(1)=pizda(1,1)-pizda(2,2)
8706             vv(2)=pizda(2,1)+pizda(1,2)
8707             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8708             if (swap) then
8709               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8710 #ifdef MOMENT
8711                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8712      &             -(s1+s2+s4)
8713 #else
8714                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8715      &             -(s2+s4)
8716 #endif
8717                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8718               else
8719 #ifdef MOMENT
8720                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8721 #else
8722                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8723 #endif
8724                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8725               endif
8726             else
8727 #ifdef MOMENT
8728               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8729 #else
8730               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8731 #endif
8732               if (l.eq.j+1) then
8733                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8734               else 
8735                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8736               endif
8737             endif 
8738           enddo
8739         enddo
8740       enddo
8741       return
8742       end
8743 c----------------------------------------------------------------------------
8744       double precision function eello_turn6(i,jj,kk)
8745       implicit real*8 (a-h,o-z)
8746       include 'DIMENSIONS'
8747       include 'COMMON.IOUNITS'
8748       include 'COMMON.CHAIN'
8749       include 'COMMON.DERIV'
8750       include 'COMMON.INTERACT'
8751       include 'COMMON.CONTACTS'
8752       include 'COMMON.TORSION'
8753       include 'COMMON.VAR'
8754       include 'COMMON.GEO'
8755       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8756      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8757      &  ggg1(3),ggg2(3)
8758       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8759      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8760 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8761 C           the respective energy moment and not to the cluster cumulant.
8762       s1=0.0d0
8763       s8=0.0d0
8764       s13=0.0d0
8765 c
8766       eello_turn6=0.0d0
8767       j=i+4
8768       k=i+1
8769       l=i+3
8770       iti=itortyp(itype(i))
8771       itk=itortyp(itype(k))
8772       itk1=itortyp(itype(k+1))
8773       itl=itortyp(itype(l))
8774       itj=itortyp(itype(j))
8775 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8776 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8777 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8778 cd        eello6=0.0d0
8779 cd        return
8780 cd      endif
8781 cd      write (iout,*)
8782 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8783 cd     &   ' and',k,l
8784 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8785       do iii=1,2
8786         do kkk=1,5
8787           do lll=1,3
8788             derx_turn(lll,kkk,iii)=0.0d0
8789           enddo
8790         enddo
8791       enddo
8792 cd      eij=1.0d0
8793 cd      ekl=1.0d0
8794 cd      ekont=1.0d0
8795       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8796 cd      eello6_5=0.0d0
8797 cd      write (2,*) 'eello6_5',eello6_5
8798 #ifdef MOMENT
8799       call transpose2(AEA(1,1,1),auxmat(1,1))
8800       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8801       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8802       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8803 #endif
8804       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8805       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8806       s2 = scalar2(b1(1,itk),vtemp1(1))
8807 #ifdef MOMENT
8808       call transpose2(AEA(1,1,2),atemp(1,1))
8809       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8810       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8811       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8812 #endif
8813       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8814       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8815       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8816 #ifdef MOMENT
8817       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8818       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8819       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8820       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8821       ss13 = scalar2(b1(1,itk),vtemp4(1))
8822       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8823 #endif
8824 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8825 c      s1=0.0d0
8826 c      s2=0.0d0
8827 c      s8=0.0d0
8828 c      s12=0.0d0
8829 c      s13=0.0d0
8830       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8831 C Derivatives in gamma(i+2)
8832       s1d =0.0d0
8833       s8d =0.0d0
8834 #ifdef MOMENT
8835       call transpose2(AEA(1,1,1),auxmatd(1,1))
8836       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8837       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8838       call transpose2(AEAderg(1,1,2),atempd(1,1))
8839       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8840       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8841 #endif
8842       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8843       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8844       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8845 c      s1d=0.0d0
8846 c      s2d=0.0d0
8847 c      s8d=0.0d0
8848 c      s12d=0.0d0
8849 c      s13d=0.0d0
8850       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8851 C Derivatives in gamma(i+3)
8852 #ifdef MOMENT
8853       call transpose2(AEA(1,1,1),auxmatd(1,1))
8854       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8855       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8856       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8857 #endif
8858       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8859       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8860       s2d = scalar2(b1(1,itk),vtemp1d(1))
8861 #ifdef MOMENT
8862       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8863       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8864 #endif
8865       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8866 #ifdef MOMENT
8867       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8868       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8869       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8870 #endif
8871 c      s1d=0.0d0
8872 c      s2d=0.0d0
8873 c      s8d=0.0d0
8874 c      s12d=0.0d0
8875 c      s13d=0.0d0
8876 #ifdef MOMENT
8877       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8878      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8879 #else
8880       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8881      &               -0.5d0*ekont*(s2d+s12d)
8882 #endif
8883 C Derivatives in gamma(i+4)
8884       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8885       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8886       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8887 #ifdef MOMENT
8888       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8889       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8890       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8891 #endif
8892 c      s1d=0.0d0
8893 c      s2d=0.0d0
8894 c      s8d=0.0d0
8895 C      s12d=0.0d0
8896 c      s13d=0.0d0
8897 #ifdef MOMENT
8898       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8899 #else
8900       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8901 #endif
8902 C Derivatives in gamma(i+5)
8903 #ifdef MOMENT
8904       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8905       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8906       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8907 #endif
8908       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8909       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8910       s2d = scalar2(b1(1,itk),vtemp1d(1))
8911 #ifdef MOMENT
8912       call transpose2(AEA(1,1,2),atempd(1,1))
8913       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8914       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8915 #endif
8916       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8917       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8918 #ifdef MOMENT
8919       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8920       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8921       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8922 #endif
8923 c      s1d=0.0d0
8924 c      s2d=0.0d0
8925 c      s8d=0.0d0
8926 c      s12d=0.0d0
8927 c      s13d=0.0d0
8928 #ifdef MOMENT
8929       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8930      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8931 #else
8932       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8933      &               -0.5d0*ekont*(s2d+s12d)
8934 #endif
8935 C Cartesian derivatives
8936       do iii=1,2
8937         do kkk=1,5
8938           do lll=1,3
8939 #ifdef MOMENT
8940             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8941             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8942             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8943 #endif
8944             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8945             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8946      &          vtemp1d(1))
8947             s2d = scalar2(b1(1,itk),vtemp1d(1))
8948 #ifdef MOMENT
8949             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8950             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8951             s8d = -(atempd(1,1)+atempd(2,2))*
8952      &           scalar2(cc(1,1,itl),vtemp2(1))
8953 #endif
8954             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8955      &           auxmatd(1,1))
8956             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8957             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8958 c      s1d=0.0d0
8959 c      s2d=0.0d0
8960 c      s8d=0.0d0
8961 c      s12d=0.0d0
8962 c      s13d=0.0d0
8963 #ifdef MOMENT
8964             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8965      &        - 0.5d0*(s1d+s2d)
8966 #else
8967             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8968      &        - 0.5d0*s2d
8969 #endif
8970 #ifdef MOMENT
8971             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8972      &        - 0.5d0*(s8d+s12d)
8973 #else
8974             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8975      &        - 0.5d0*s12d
8976 #endif
8977           enddo
8978         enddo
8979       enddo
8980 #ifdef MOMENT
8981       do kkk=1,5
8982         do lll=1,3
8983           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8984      &      achuj_tempd(1,1))
8985           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8986           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8987           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8988           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8989           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8990      &      vtemp4d(1)) 
8991           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8992           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8993           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8994         enddo
8995       enddo
8996 #endif
8997 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
8998 cd     &  16*eel_turn6_num
8999 cd      goto 1112
9000       if (j.lt.nres-1) then
9001         j1=j+1
9002         j2=j-1
9003       else
9004         j1=j-1
9005         j2=j-2
9006       endif
9007       if (l.lt.nres-1) then
9008         l1=l+1
9009         l2=l-1
9010       else
9011         l1=l-1
9012         l2=l-2
9013       endif
9014       do ll=1,3
9015 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9016 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9017 cgrad        ghalf=0.5d0*ggg1(ll)
9018 cd        ghalf=0.0d0
9019         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9020         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9021         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9022      &    +ekont*derx_turn(ll,2,1)
9023         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9024         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9025      &    +ekont*derx_turn(ll,4,1)
9026         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9027         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9028         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9029 cgrad        ghalf=0.5d0*ggg2(ll)
9030 cd        ghalf=0.0d0
9031         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9032      &    +ekont*derx_turn(ll,2,2)
9033         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9034         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9035      &    +ekont*derx_turn(ll,4,2)
9036         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9037         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9038         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9039       enddo
9040 cd      goto 1112
9041 cgrad      do m=i+1,j-1
9042 cgrad        do ll=1,3
9043 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9044 cgrad        enddo
9045 cgrad      enddo
9046 cgrad      do m=k+1,l-1
9047 cgrad        do ll=1,3
9048 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9049 cgrad        enddo
9050 cgrad      enddo
9051 cgrad1112  continue
9052 cgrad      do m=i+2,j2
9053 cgrad        do ll=1,3
9054 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9055 cgrad        enddo
9056 cgrad      enddo
9057 cgrad      do m=k+2,l2
9058 cgrad        do ll=1,3
9059 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9060 cgrad        enddo
9061 cgrad      enddo 
9062 cd      do iii=1,nres-3
9063 cd        write (2,*) iii,g_corr6_loc(iii)
9064 cd      enddo
9065       eello_turn6=ekont*eel_turn6
9066 cd      write (2,*) 'ekont',ekont
9067 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9068       return
9069       end
9070
9071 C-----------------------------------------------------------------------------
9072       double precision function scalar(u,v)
9073 !DIR$ INLINEALWAYS scalar
9074 #ifndef OSF
9075 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9076 #endif
9077       implicit none
9078       double precision u(3),v(3)
9079 cd      double precision sc
9080 cd      integer i
9081 cd      sc=0.0d0
9082 cd      do i=1,3
9083 cd        sc=sc+u(i)*v(i)
9084 cd      enddo
9085 cd      scalar=sc
9086
9087       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9088       return
9089       end
9090 crc-------------------------------------------------
9091       SUBROUTINE MATVEC2(A1,V1,V2)
9092 !DIR$ INLINEALWAYS MATVEC2
9093 #ifndef OSF
9094 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9095 #endif
9096       implicit real*8 (a-h,o-z)
9097       include 'DIMENSIONS'
9098       DIMENSION A1(2,2),V1(2),V2(2)
9099 c      DO 1 I=1,2
9100 c        VI=0.0
9101 c        DO 3 K=1,2
9102 c    3     VI=VI+A1(I,K)*V1(K)
9103 c        Vaux(I)=VI
9104 c    1 CONTINUE
9105
9106       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9107       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9108
9109       v2(1)=vaux1
9110       v2(2)=vaux2
9111       END
9112 C---------------------------------------
9113       SUBROUTINE MATMAT2(A1,A2,A3)
9114 #ifndef OSF
9115 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9116 #endif
9117       implicit real*8 (a-h,o-z)
9118       include 'DIMENSIONS'
9119       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9120 c      DIMENSION AI3(2,2)
9121 c        DO  J=1,2
9122 c          A3IJ=0.0
9123 c          DO K=1,2
9124 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9125 c          enddo
9126 c          A3(I,J)=A3IJ
9127 c       enddo
9128 c      enddo
9129
9130       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9131       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9132       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9133       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9134
9135       A3(1,1)=AI3_11
9136       A3(2,1)=AI3_21
9137       A3(1,2)=AI3_12
9138       A3(2,2)=AI3_22
9139       END
9140
9141 c-------------------------------------------------------------------------
9142       double precision function scalar2(u,v)
9143 !DIR$ INLINEALWAYS scalar2
9144       implicit none
9145       double precision u(2),v(2)
9146       double precision sc
9147       integer i
9148       scalar2=u(1)*v(1)+u(2)*v(2)
9149       return
9150       end
9151
9152 C-----------------------------------------------------------------------------
9153
9154       subroutine transpose2(a,at)
9155 !DIR$ INLINEALWAYS transpose2
9156 #ifndef OSF
9157 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9158 #endif
9159       implicit none
9160       double precision a(2,2),at(2,2)
9161       at(1,1)=a(1,1)
9162       at(1,2)=a(2,1)
9163       at(2,1)=a(1,2)
9164       at(2,2)=a(2,2)
9165       return
9166       end
9167 c--------------------------------------------------------------------------
9168       subroutine transpose(n,a,at)
9169       implicit none
9170       integer n,i,j
9171       double precision a(n,n),at(n,n)
9172       do i=1,n
9173         do j=1,n
9174           at(j,i)=a(i,j)
9175         enddo
9176       enddo
9177       return
9178       end
9179 C---------------------------------------------------------------------------
9180       subroutine prodmat3(a1,a2,kk,transp,prod)
9181 !DIR$ INLINEALWAYS prodmat3
9182 #ifndef OSF
9183 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9184 #endif
9185       implicit none
9186       integer i,j
9187       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9188       logical transp
9189 crc      double precision auxmat(2,2),prod_(2,2)
9190
9191       if (transp) then
9192 crc        call transpose2(kk(1,1),auxmat(1,1))
9193 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9194 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9195         
9196            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9197      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9198            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9199      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9200            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9201      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9202            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9203      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9204
9205       else
9206 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9207 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9208
9209            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9210      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9211            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9212      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9213            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9214      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9215            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9216      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9217
9218       endif
9219 c      call transpose2(a2(1,1),a2t(1,1))
9220
9221 crc      print *,transp
9222 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9223 crc      print *,((prod(i,j),i=1,2),j=1,2)
9224
9225       return
9226       end
9227