0c6dd2edf83ef119ca8a0eb0320ba3045cf875eb
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31 #ifdef MPI
32         time00=MPI_Wtime()
33 #else
34         time00=tcpu()
35 #endif
36 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
37         if (fg_rank.eq.0) then
38           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
39 c          print *,"Processor",myrank," BROADCAST iorder"
40 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
41 C FG slaves as WEIGHTS array.
42           weights_(1)=wsc
43           weights_(2)=wscp
44           weights_(3)=welec
45           weights_(4)=wcorr
46           weights_(5)=wcorr5
47           weights_(6)=wcorr6
48           weights_(7)=wel_loc
49           weights_(8)=wturn3
50           weights_(9)=wturn4
51           weights_(10)=wturn6
52           weights_(11)=wang
53           weights_(12)=wscloc
54           weights_(13)=wtor
55           weights_(14)=wtor_d
56           weights_(15)=wstrain
57           weights_(16)=wvdwpp
58           weights_(17)=wbond
59           weights_(18)=scal14
60           weights_(21)=wsccor
61           weights_(22)=wsct
62 C FG Master broadcasts the WEIGHTS_ array
63           call MPI_Bcast(weights_(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65         else
66 C FG slaves receive the WEIGHTS array
67           call MPI_Bcast(weights(1),n_ene,
68      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
69           wsc=weights(1)
70           wscp=weights(2)
71           welec=weights(3)
72           wcorr=weights(4)
73           wcorr5=weights(5)
74           wcorr6=weights(6)
75           wel_loc=weights(7)
76           wturn3=weights(8)
77           wturn4=weights(9)
78           wturn6=weights(10)
79           wang=weights(11)
80           wscloc=weights(12)
81           wtor=weights(13)
82           wtor_d=weights(14)
83           wstrain=weights(15)
84           wvdwpp=weights(16)
85           wbond=weights(17)
86           scal14=weights(18)
87           wsccor=weights(21)
88           wsct=weights(22)
89         endif
90         time_Bcast=time_Bcast+MPI_Wtime()-time00
91         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
92 c        call chainbuild_cart
93       endif
94 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
95 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
96 #else
97 c      if (modecalc.eq.12.or.modecalc.eq.14) then
98 c        call int_from_cart1(.false.)
99 c      endif
100 #endif     
101 #ifdef TIMING
102 #ifdef MPI
103       time00=MPI_Wtime()
104 #else
105       time00=tcpu()
106 #endif
107 #endif
108
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj(evdw,evdw_p,evdw_m)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk(evdw,evdw_p,evdw_m)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp(evdw,evdw_p,evdw_m)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv(evdw,evdw_p,evdw_m)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134 cmc
135 cmc Sep-06: egb takes care of dynamic ss bonds too
136 cmc
137 c      if (dyn_ss) call dyn_set_nss
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141 #ifdef MPI
142       time01=MPI_Wtime() 
143 #else
144       time00=tcpu()
145 #endif
146 #endif
147       call vec_and_deriv
148 #ifdef TIMING
149 #ifdef MPI
150       time_vec=time_vec+MPI_Wtime()-time01
151 #else
152       time_vec=time_vec+tcpu()-time01
153 #endif
154 #endif
155 c      print *,"Processor",myrank," left VEC_AND_DERIV"
156       if (ipot.lt.6) then
157 #ifdef SPLITELE
158          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
159      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
160      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
161      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
162 #else
163          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
164      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
165      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
166      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
167 #endif
168             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
169          else
170             ees=0.0d0
171             evdw1=0.0d0
172             eel_loc=0.0d0
173             eello_turn3=0.0d0
174             eello_turn4=0.0d0
175          endif
176       else
177 c        write (iout,*) "Soft-spheer ELEC potential"
178         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
179      &   eello_turn4)
180       endif
181 c      print *,"Processor",myrank," computed UELEC"
182 C
183 C Calculate excluded-volume interaction energy between peptide groups
184 C and side chains.
185 C
186       if (ipot.lt.6) then
187        if(wscp.gt.0d0) then
188         call escp(evdw2,evdw2_14)
189        else
190         evdw2=0
191         evdw2_14=0
192        endif
193       else
194 c        write (iout,*) "Soft-sphere SCP potential"
195         call escp_soft_sphere(evdw2,evdw2_14)
196       endif
197 c
198 c Calculate the bond-stretching energy
199 c
200       call ebond(estr)
201
202 C Calculate the disulfide-bridge and other energy and the contributions
203 C from other distance constraints.
204 cd    print *,'Calling EHPB'
205       call edis(ehpb)
206 cd    print *,'EHPB exitted succesfully.'
207 C
208 C Calculate the virtual-bond-angle energy.
209 C
210       if (wang.gt.0d0) then
211         call ebend(ebe)
212       else
213         ebe=0
214       endif
215 c      print *,"Processor",myrank," computed UB"
216 C
217 C Calculate the SC local energy.
218 C
219       call esc(escloc)
220 c      print *,"Processor",myrank," computed USC"
221 C
222 C Calculate the virtual-bond torsional energy.
223 C
224 cd    print *,'nterm=',nterm
225       if (wtor.gt.0) then
226        call etor(etors,edihcnstr)
227       else
228        etors=0
229        edihcnstr=0
230       endif
231 c      print *,"Processor",myrank," computed Utor"
232 C
233 C 6/23/01 Calculate double-torsional energy
234 C
235       if (wtor_d.gt.0) then
236        call etor_d(etors_d)
237       else
238        etors_d=0
239       endif
240 c      print *,"Processor",myrank," computed Utord"
241 C
242 C 21/5/07 Calculate local sicdechain correlation energy
243 C
244       if (wsccor.gt.0.0d0) then
245         call eback_sc_corr(esccor)
246       else
247         esccor=0.0d0
248       endif
249 c      print *,"Processor",myrank," computed Usccorr"
250
251 C 12/1/95 Multi-body terms
252 C
253       n_corr=0
254       n_corr1=0
255       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
256      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
257          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
258 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
259 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
260       else
261          ecorr=0.0d0
262          ecorr5=0.0d0
263          ecorr6=0.0d0
264          eturn6=0.0d0
265       endif
266       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
267          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
268 cd         write (iout,*) "multibody_hb ecorr",ecorr
269       endif
270 c      print *,"Processor",myrank," computed Ucorr"
271
272 C If performing constraint dynamics, call the constraint energy
273 C  after the equilibration time
274       if(usampl.and.totT.gt.eq_time) then
275          call EconstrQ   
276          call Econstr_back
277       else
278          Uconst=0.0d0
279          Uconst_back=0.0d0
280       endif
281 #ifdef TIMING
282 #ifdef MPI
283       time_enecalc=time_enecalc+MPI_Wtime()-time00
284 #else
285       time_enecalc=time_enecalc+tcpu()-time00
286 #endif
287 #endif
288 c      print *,"Processor",myrank," computed Uconstr"
289 #ifdef TIMING
290 #ifdef MPI
291       time00=MPI_Wtime()
292 #else
293       time00=tcpu()
294 #endif
295 #endif
296 c
297 C Sum the energies
298 C
299       energia(1)=evdw
300 #ifdef SCP14
301       energia(2)=evdw2-evdw2_14
302       energia(18)=evdw2_14
303 #else
304       energia(2)=evdw2
305       energia(18)=0.0d0
306 #endif
307 #ifdef SPLITELE
308       energia(3)=ees
309       energia(16)=evdw1
310 #else
311       energia(3)=ees+evdw1
312       energia(16)=0.0d0
313 #endif
314       energia(4)=ecorr
315       energia(5)=ecorr5
316       energia(6)=ecorr6
317       energia(7)=eel_loc
318       energia(8)=eello_turn3
319       energia(9)=eello_turn4
320       energia(10)=eturn6
321       energia(11)=ebe
322       energia(12)=escloc
323       energia(13)=etors
324       energia(14)=etors_d
325       energia(15)=ehpb
326       energia(19)=edihcnstr
327       energia(17)=estr
328       energia(20)=Uconst+Uconst_back
329       energia(21)=esccor
330       energia(22)=evdw_p
331       energia(23)=evdw_m
332 c      print *," Processor",myrank," calls SUM_ENERGY"
333       call sum_energy(energia,.true.)
334       if (dyn_ss) call dyn_set_nss
335 c      print *," Processor",myrank," left SUM_ENERGY"
336 #ifdef TIMING
337 #ifdef MPI
338       time_sumene=time_sumene+MPI_Wtime()-time00
339 #else
340       time_sumene=time_sumene+tcpu()-time00
341 #endif
342 #endif
343       return
344       end
345 c-------------------------------------------------------------------------------
346       subroutine sum_energy(energia,reduce)
347       implicit real*8 (a-h,o-z)
348       include 'DIMENSIONS'
349 #ifndef ISNAN
350       external proc_proc
351 #ifdef WINPGI
352 cMS$ATTRIBUTES C ::  proc_proc
353 #endif
354 #endif
355 #ifdef MPI
356       include "mpif.h"
357 #endif
358       include 'COMMON.SETUP'
359       include 'COMMON.IOUNITS'
360       double precision energia(0:n_ene),enebuff(0:n_ene+1)
361       include 'COMMON.FFIELD'
362       include 'COMMON.DERIV'
363       include 'COMMON.INTERACT'
364       include 'COMMON.SBRIDGE'
365       include 'COMMON.CHAIN'
366       include 'COMMON.VAR'
367       include 'COMMON.CONTROL'
368       include 'COMMON.TIME1'
369       logical reduce
370 #ifdef MPI
371       if (nfgtasks.gt.1 .and. reduce) then
372 #ifdef DEBUG
373         write (iout,*) "energies before REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         do i=0,n_ene
378           enebuff(i)=energia(i)
379         enddo
380         time00=MPI_Wtime()
381         call MPI_Barrier(FG_COMM,IERR)
382         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
383         time00=MPI_Wtime()
384         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
385      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
386 #ifdef DEBUG
387         write (iout,*) "energies after REDUCE"
388         call enerprint(energia)
389         call flush(iout)
390 #endif
391         time_Reduce=time_Reduce+MPI_Wtime()-time00
392       endif
393       if (fg_rank.eq.0) then
394 #endif
395 #ifdef TSCSC
396       evdw=energia(22)+wsct*energia(23)
397 #else
398       evdw=energia(1)
399 #endif
400 #ifdef SCP14
401       evdw2=energia(2)+energia(18)
402       evdw2_14=energia(18)
403 #else
404       evdw2=energia(2)
405 #endif
406 #ifdef SPLITELE
407       ees=energia(3)
408       evdw1=energia(16)
409 #else
410       ees=energia(3)
411       evdw1=0.0d0
412 #endif
413       ecorr=energia(4)
414       ecorr5=energia(5)
415       ecorr6=energia(6)
416       eel_loc=energia(7)
417       eello_turn3=energia(8)
418       eello_turn4=energia(9)
419       eturn6=energia(10)
420       ebe=energia(11)
421       escloc=energia(12)
422       etors=energia(13)
423       etors_d=energia(14)
424       ehpb=energia(15)
425       edihcnstr=energia(19)
426       estr=energia(17)
427       Uconst=energia(20)
428       esccor=energia(21)
429 #ifdef SPLITELE
430       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
431      & +wang*ebe+wtor*etors+wscloc*escloc
432      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
433      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
434      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
435      & +wbond*estr+Uconst+wsccor*esccor
436 #else
437       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
438      & +wang*ebe+wtor*etors+wscloc*escloc
439      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
440      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
441      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
442      & +wbond*estr+Uconst+wsccor*esccor
443 #endif
444       energia(0)=etot
445 c detecting NaNQ
446 #ifdef ISNAN
447 #ifdef AIX
448       if (isnan(etot).ne.0) energia(0)=1.0d+99
449 #else
450       if (isnan(etot)) energia(0)=1.0d+99
451 #endif
452 #else
453       i=0
454 #ifdef WINPGI
455       idumm=proc_proc(etot,i)
456 #else
457       call proc_proc(etot,i)
458 #endif
459       if(i.eq.1)energia(0)=1.0d+99
460 #endif
461 #ifdef MPI
462       endif
463 #endif
464       return
465       end
466 c-------------------------------------------------------------------------------
467       subroutine sum_gradient
468       implicit real*8 (a-h,o-z)
469       include 'DIMENSIONS'
470 #ifndef ISNAN
471       external proc_proc
472 #ifdef WINPGI
473 cMS$ATTRIBUTES C ::  proc_proc
474 #endif
475 #endif
476 #ifdef MPI
477       include 'mpif.h'
478 #endif
479       double precision gradbufc(3,maxres),gradbufx(3,maxres),
480      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
481       include 'COMMON.SETUP'
482       include 'COMMON.IOUNITS'
483       include 'COMMON.FFIELD'
484       include 'COMMON.DERIV'
485       include 'COMMON.INTERACT'
486       include 'COMMON.SBRIDGE'
487       include 'COMMON.CHAIN'
488       include 'COMMON.VAR'
489       include 'COMMON.CONTROL'
490       include 'COMMON.TIME1'
491       include 'COMMON.MAXGRAD'
492       include 'COMMON.SCCOR'
493 #ifdef TIMING
494 #ifdef MPI
495       time01=MPI_Wtime()
496 #else
497       time01=tcpu()
498 #endif
499 #endif
500 #ifdef DEBUG
501       write (iout,*) "sum_gradient gvdwc, gvdwx"
502       do i=1,nres
503         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
504      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
505      &   (gvdwcT(j,i),j=1,3)
506       enddo
507       call flush(iout)
508 #endif
509 #ifdef MPI
510 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
511         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
512      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
513 #endif
514 C
515 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
516 C            in virtual-bond-vector coordinates
517 C
518 #ifdef DEBUG
519 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
520 c      do i=1,nres-1
521 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
522 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
523 c      enddo
524 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
525 c      do i=1,nres-1
526 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
527 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
528 c      enddo
529       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
530       do i=1,nres
531         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
532      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
533      &   g_corr5_loc(i)
534       enddo
535       call flush(iout)
536 #endif
537 #ifdef SPLITELE
538 #ifdef TSCSC
539       do i=1,nct
540         do j=1,3
541           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
542      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
543      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
544      &                wel_loc*gel_loc_long(j,i)+
545      &                wcorr*gradcorr_long(j,i)+
546      &                wcorr5*gradcorr5_long(j,i)+
547      &                wcorr6*gradcorr6_long(j,i)+
548      &                wturn6*gcorr6_turn_long(j,i)+
549      &                wstrain*ghpbc(j,i)
550         enddo
551       enddo 
552 #else
553       do i=1,nct
554         do j=1,3
555           gradbufc(j,i)=wsc*gvdwc(j,i)+
556      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
557      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
558      &                wel_loc*gel_loc_long(j,i)+
559      &                wcorr*gradcorr_long(j,i)+
560      &                wcorr5*gradcorr5_long(j,i)+
561      &                wcorr6*gradcorr6_long(j,i)+
562      &                wturn6*gcorr6_turn_long(j,i)+
563      &                wstrain*ghpbc(j,i)
564         enddo
565       enddo 
566 #endif
567 #else
568       do i=1,nct
569         do j=1,3
570           gradbufc(j,i)=wsc*gvdwc(j,i)+
571      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
572      &                welec*gelc_long(j,i)+
573      &                wbond*gradb(j,i)+
574      &                wel_loc*gel_loc_long(j,i)+
575      &                wcorr*gradcorr_long(j,i)+
576      &                wcorr5*gradcorr5_long(j,i)+
577      &                wcorr6*gradcorr6_long(j,i)+
578      &                wturn6*gcorr6_turn_long(j,i)+
579      &                wstrain*ghpbc(j,i)
580         enddo
581       enddo 
582 #endif
583 #ifdef MPI
584       if (nfgtasks.gt.1) then
585       time00=MPI_Wtime()
586 #ifdef DEBUG
587       write (iout,*) "gradbufc before allreduce"
588       do i=1,nres
589         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
590       enddo
591       call flush(iout)
592 #endif
593       do i=1,nres
594         do j=1,3
595           gradbufc_sum(j,i)=gradbufc(j,i)
596         enddo
597       enddo
598 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
599 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
600 c      time_reduce=time_reduce+MPI_Wtime()-time00
601 #ifdef DEBUG
602 c      write (iout,*) "gradbufc_sum after allreduce"
603 c      do i=1,nres
604 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
605 c      enddo
606 c      call flush(iout)
607 #endif
608 #ifdef TIMING
609 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
610 #endif
611       do i=nnt,nres
612         do k=1,3
613           gradbufc(k,i)=0.0d0
614         enddo
615       enddo
616 #ifdef DEBUG
617       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
618       write (iout,*) (i," jgrad_start",jgrad_start(i),
619      &                  " jgrad_end  ",jgrad_end(i),
620      &                  i=igrad_start,igrad_end)
621 #endif
622 c
623 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
624 c do not parallelize this part.
625 c
626 c      do i=igrad_start,igrad_end
627 c        do j=jgrad_start(i),jgrad_end(i)
628 c          do k=1,3
629 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
630 c          enddo
631 c        enddo
632 c      enddo
633       do j=1,3
634         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
635       enddo
636       do i=nres-2,nnt,-1
637         do j=1,3
638           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
639         enddo
640       enddo
641 #ifdef DEBUG
642       write (iout,*) "gradbufc after summing"
643       do i=1,nres
644         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
645       enddo
646       call flush(iout)
647 #endif
648       else
649 #endif
650 #ifdef DEBUG
651       write (iout,*) "gradbufc"
652       do i=1,nres
653         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
654       enddo
655       call flush(iout)
656 #endif
657       do i=1,nres
658         do j=1,3
659           gradbufc_sum(j,i)=gradbufc(j,i)
660           gradbufc(j,i)=0.0d0
661         enddo
662       enddo
663       do j=1,3
664         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
665       enddo
666       do i=nres-2,nnt,-1
667         do j=1,3
668           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
669         enddo
670       enddo
671 c      do i=nnt,nres-1
672 c        do k=1,3
673 c          gradbufc(k,i)=0.0d0
674 c        enddo
675 c        do j=i+1,nres
676 c          do k=1,3
677 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
678 c          enddo
679 c        enddo
680 c      enddo
681 #ifdef DEBUG
682       write (iout,*) "gradbufc after summing"
683       do i=1,nres
684         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
685       enddo
686       call flush(iout)
687 #endif
688 #ifdef MPI
689       endif
690 #endif
691       do k=1,3
692         gradbufc(k,nres)=0.0d0
693       enddo
694       do i=1,nct
695         do j=1,3
696 #ifdef SPLITELE
697           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
698      &                wel_loc*gel_loc(j,i)+
699      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
700      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
701      &                wel_loc*gel_loc_long(j,i)+
702      &                wcorr*gradcorr_long(j,i)+
703      &                wcorr5*gradcorr5_long(j,i)+
704      &                wcorr6*gradcorr6_long(j,i)+
705      &                wturn6*gcorr6_turn_long(j,i))+
706      &                wbond*gradb(j,i)+
707      &                wcorr*gradcorr(j,i)+
708      &                wturn3*gcorr3_turn(j,i)+
709      &                wturn4*gcorr4_turn(j,i)+
710      &                wcorr5*gradcorr5(j,i)+
711      &                wcorr6*gradcorr6(j,i)+
712      &                wturn6*gcorr6_turn(j,i)+
713      &                wsccor*gsccorc(j,i)
714      &               +wscloc*gscloc(j,i)
715 #else
716           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
717      &                wel_loc*gel_loc(j,i)+
718      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
719      &                welec*gelc_long(j,i)+
720      &                wel_loc*gel_loc_long(j,i)+
721      &                wcorr*gcorr_long(j,i)+
722      &                wcorr5*gradcorr5_long(j,i)+
723      &                wcorr6*gradcorr6_long(j,i)+
724      &                wturn6*gcorr6_turn_long(j,i))+
725      &                wbond*gradb(j,i)+
726      &                wcorr*gradcorr(j,i)+
727      &                wturn3*gcorr3_turn(j,i)+
728      &                wturn4*gcorr4_turn(j,i)+
729      &                wcorr5*gradcorr5(j,i)+
730      &                wcorr6*gradcorr6(j,i)+
731      &                wturn6*gcorr6_turn(j,i)+
732      &                wsccor*gsccorc(j,i)
733      &               +wscloc*gscloc(j,i)
734 #endif
735 #ifdef TSCSC
736           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
737      &                  wscp*gradx_scp(j,i)+
738      &                  wbond*gradbx(j,i)+
739      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
740      &                  wsccor*gsccorx(j,i)
741      &                 +wscloc*gsclocx(j,i)
742 #else
743           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
744      &                  wbond*gradbx(j,i)+
745      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
746      &                  wsccor*gsccorx(j,i)
747      &                 +wscloc*gsclocx(j,i)
748 #endif
749         enddo
750       enddo 
751 #ifdef DEBUG
752       write (iout,*) "gloc before adding corr"
753       do i=1,4*nres
754         write (iout,*) i,gloc(i,icg)
755       enddo
756 #endif
757       do i=1,nres-3
758         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
759      &   +wcorr5*g_corr5_loc(i)
760      &   +wcorr6*g_corr6_loc(i)
761      &   +wturn4*gel_loc_turn4(i)
762      &   +wturn3*gel_loc_turn3(i)
763      &   +wturn6*gel_loc_turn6(i)
764      &   +wel_loc*gel_loc_loc(i)
765       enddo
766 #ifdef DEBUG
767       write (iout,*) "gloc after adding corr"
768       do i=1,4*nres
769         write (iout,*) i,gloc(i,icg)
770       enddo
771 #endif
772 #ifdef MPI
773       if (nfgtasks.gt.1) then
774         do j=1,3
775           do i=1,nres
776             gradbufc(j,i)=gradc(j,i,icg)
777             gradbufx(j,i)=gradx(j,i,icg)
778           enddo
779         enddo
780         do i=1,4*nres
781           glocbuf(i)=gloc(i,icg)
782         enddo
783 #ifdef DEBUG
784       write (iout,*) "gloc_sc before reduce"
785       do i=1,nres
786        do j=1,3
787         write (iout,*) i,j,gloc_sc(j,i,icg)
788        enddo
789       enddo
790 #endif
791         do i=1,nres
792          do j=1,3
793           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
794          enddo
795         enddo
796         time00=MPI_Wtime()
797         call MPI_Barrier(FG_COMM,IERR)
798         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
799         time00=MPI_Wtime()
800         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
801      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
802         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
803      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
804         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
805      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
806         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
807      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
808         time_reduce=time_reduce+MPI_Wtime()-time00
809 #ifdef DEBUG
810       write (iout,*) "gloc_sc after reduce"
811       do i=1,nres
812        do j=1,3
813         write (iout,*) i,j,gloc_sc(j,i,icg)
814        enddo
815       enddo
816 #endif
817 #ifdef DEBUG
818       write (iout,*) "gloc after reduce"
819       do i=1,4*nres
820         write (iout,*) i,gloc(i,icg)
821       enddo
822 #endif
823       endif
824 #endif
825       if (gnorm_check) then
826 c
827 c Compute the maximum elements of the gradient
828 c
829       gvdwc_max=0.0d0
830       gvdwc_scp_max=0.0d0
831       gelc_max=0.0d0
832       gvdwpp_max=0.0d0
833       gradb_max=0.0d0
834       ghpbc_max=0.0d0
835       gradcorr_max=0.0d0
836       gel_loc_max=0.0d0
837       gcorr3_turn_max=0.0d0
838       gcorr4_turn_max=0.0d0
839       gradcorr5_max=0.0d0
840       gradcorr6_max=0.0d0
841       gcorr6_turn_max=0.0d0
842       gsccorc_max=0.0d0
843       gscloc_max=0.0d0
844       gvdwx_max=0.0d0
845       gradx_scp_max=0.0d0
846       ghpbx_max=0.0d0
847       gradxorr_max=0.0d0
848       gsccorx_max=0.0d0
849       gsclocx_max=0.0d0
850       do i=1,nct
851         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
852         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
853 #ifdef TSCSC
854         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
855         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
856 #endif
857         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
858         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
859      &   gvdwc_scp_max=gvdwc_scp_norm
860         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
861         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
862         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
863         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
864         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
865         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
866         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
867         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
868         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
869         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
870         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
871         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
872         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
873      &    gcorr3_turn(1,i)))
874         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
875      &    gcorr3_turn_max=gcorr3_turn_norm
876         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
877      &    gcorr4_turn(1,i)))
878         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
879      &    gcorr4_turn_max=gcorr4_turn_norm
880         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
881         if (gradcorr5_norm.gt.gradcorr5_max) 
882      &    gradcorr5_max=gradcorr5_norm
883         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
884         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
885         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
886      &    gcorr6_turn(1,i)))
887         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
888      &    gcorr6_turn_max=gcorr6_turn_norm
889         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
890         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
891         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
892         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
893         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
894         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
895 #ifdef TSCSC
896         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
897         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
898 #endif
899         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
900         if (gradx_scp_norm.gt.gradx_scp_max) 
901      &    gradx_scp_max=gradx_scp_norm
902         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
903         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
904         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
905         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
906         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
907         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
908         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
909         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
910       enddo 
911       if (gradout) then
912 #ifdef AIX
913         open(istat,file=statname,position="append")
914 #else
915         open(istat,file=statname,access="append")
916 #endif
917         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
918      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
919      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
920      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
921      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
922      &     gsccorx_max,gsclocx_max
923         close(istat)
924         if (gvdwc_max.gt.1.0d4) then
925           write (iout,*) "gvdwc gvdwx gradb gradbx"
926           do i=nnt,nct
927             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
928      &        gradb(j,i),gradbx(j,i),j=1,3)
929           enddo
930           call pdbout(0.0d0,'cipiszcze',iout)
931           call flush(iout)
932         endif
933       endif
934       endif
935 #ifdef DEBUG
936       write (iout,*) "gradc gradx gloc"
937       do i=1,nres
938         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
939      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
940       enddo 
941 #endif
942 #ifdef TIMING
943 #ifdef MPI
944       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
945 #else
946       time_sumgradient=time_sumgradient+tcpu()-time01
947 #endif
948 #endif
949       return
950       end
951 c-------------------------------------------------------------------------------
952       subroutine rescale_weights(t_bath)
953       implicit real*8 (a-h,o-z)
954       include 'DIMENSIONS'
955       include 'COMMON.IOUNITS'
956       include 'COMMON.FFIELD'
957       include 'COMMON.SBRIDGE'
958       double precision kfac /2.4d0/
959       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
960 c      facT=temp0/t_bath
961 c      facT=2*temp0/(t_bath+temp0)
962       if (rescale_mode.eq.0) then
963         facT=1.0d0
964         facT2=1.0d0
965         facT3=1.0d0
966         facT4=1.0d0
967         facT5=1.0d0
968       else if (rescale_mode.eq.1) then
969         facT=kfac/(kfac-1.0d0+t_bath/temp0)
970         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
971         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
972         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
973         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
974       else if (rescale_mode.eq.2) then
975         x=t_bath/temp0
976         x2=x*x
977         x3=x2*x
978         x4=x3*x
979         x5=x4*x
980         facT=licznik/dlog(dexp(x)+dexp(-x))
981         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
982         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
983         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
984         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
985       else
986         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
987         write (*,*) "Wrong RESCALE_MODE",rescale_mode
988 #ifdef MPI
989        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
990 #endif
991        stop 555
992       endif
993       welec=weights(3)*fact
994       wcorr=weights(4)*fact3
995       wcorr5=weights(5)*fact4
996       wcorr6=weights(6)*fact5
997       wel_loc=weights(7)*fact2
998       wturn3=weights(8)*fact2
999       wturn4=weights(9)*fact3
1000       wturn6=weights(10)*fact5
1001       wtor=weights(13)*fact
1002       wtor_d=weights(14)*fact2
1003       wsccor=weights(21)*fact
1004 #ifdef TSCSC
1005 c      wsct=t_bath/temp0
1006       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1007 #endif
1008       return
1009       end
1010 C------------------------------------------------------------------------
1011       subroutine enerprint(energia)
1012       implicit real*8 (a-h,o-z)
1013       include 'DIMENSIONS'
1014       include 'COMMON.IOUNITS'
1015       include 'COMMON.FFIELD'
1016       include 'COMMON.SBRIDGE'
1017       include 'COMMON.MD'
1018       double precision energia(0:n_ene)
1019       etot=energia(0)
1020 #ifdef TSCSC
1021       evdw=energia(22)+wsct*energia(23)
1022 #else
1023       evdw=energia(1)
1024 #endif
1025       evdw2=energia(2)
1026 #ifdef SCP14
1027       evdw2=energia(2)+energia(18)
1028 #else
1029       evdw2=energia(2)
1030 #endif
1031       ees=energia(3)
1032 #ifdef SPLITELE
1033       evdw1=energia(16)
1034 #endif
1035       ecorr=energia(4)
1036       ecorr5=energia(5)
1037       ecorr6=energia(6)
1038       eel_loc=energia(7)
1039       eello_turn3=energia(8)
1040       eello_turn4=energia(9)
1041       eello_turn6=energia(10)
1042       ebe=energia(11)
1043       escloc=energia(12)
1044       etors=energia(13)
1045       etors_d=energia(14)
1046       ehpb=energia(15)
1047       edihcnstr=energia(19)
1048       estr=energia(17)
1049       Uconst=energia(20)
1050       esccor=energia(21)
1051 #ifdef SPLITELE
1052       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1053      &  estr,wbond,ebe,wang,
1054      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1055      &  ecorr,wcorr,
1056      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1057      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1058      &  edihcnstr,ebr*nss,
1059      &  Uconst,etot
1060    10 format (/'Virtual-chain energies:'//
1061      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1062      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1063      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1064      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1065      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1066      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1067      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1068      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1069      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1070      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1071      & ' (SS bridges & dist. cnstr.)'/
1072      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1073      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1074      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1075      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1076      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1077      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1078      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1079      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1080      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1081      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1082      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1083      & 'ETOT=  ',1pE16.6,' (total)')
1084 #else
1085       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1086      &  estr,wbond,ebe,wang,
1087      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1088      &  ecorr,wcorr,
1089      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1090      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1091      &  ebr*nss,Uconst,etot
1092    10 format (/'Virtual-chain energies:'//
1093      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1094      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1095      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1096      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1097      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1098      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1099      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1100      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1101      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1102      & ' (SS bridges & dist. cnstr.)'/
1103      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1104      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1105      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1106      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1107      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1108      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1109      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1110      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1111      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1112      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1113      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1114      & 'ETOT=  ',1pE16.6,' (total)')
1115 #endif
1116       return
1117       end
1118 C-----------------------------------------------------------------------
1119       subroutine elj(evdw,evdw_p,evdw_m)
1120 C
1121 C This subroutine calculates the interaction energy of nonbonded side chains
1122 C assuming the LJ potential of interaction.
1123 C
1124       implicit real*8 (a-h,o-z)
1125       include 'DIMENSIONS'
1126       parameter (accur=1.0d-10)
1127       include 'COMMON.GEO'
1128       include 'COMMON.VAR'
1129       include 'COMMON.LOCAL'
1130       include 'COMMON.CHAIN'
1131       include 'COMMON.DERIV'
1132       include 'COMMON.INTERACT'
1133       include 'COMMON.TORSION'
1134       include 'COMMON.SBRIDGE'
1135       include 'COMMON.NAMES'
1136       include 'COMMON.IOUNITS'
1137       include 'COMMON.CONTACTS'
1138       dimension gg(3)
1139 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1140       evdw=0.0D0
1141       do i=iatsc_s,iatsc_e
1142         itypi=itype(i)
1143         itypi1=itype(i+1)
1144         xi=c(1,nres+i)
1145         yi=c(2,nres+i)
1146         zi=c(3,nres+i)
1147 C Change 12/1/95
1148         num_conti=0
1149 C
1150 C Calculate SC interaction energy.
1151 C
1152         do iint=1,nint_gr(i)
1153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1154 cd   &                  'iend=',iend(i,iint)
1155           do j=istart(i,iint),iend(i,iint)
1156             itypj=itype(j)
1157             xj=c(1,nres+j)-xi
1158             yj=c(2,nres+j)-yi
1159             zj=c(3,nres+j)-zi
1160 C Change 12/1/95 to calculate four-body interactions
1161             rij=xj*xj+yj*yj+zj*zj
1162             rrij=1.0D0/rij
1163 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1164             eps0ij=eps(itypi,itypj)
1165             fac=rrij**expon2
1166             e1=fac*fac*aa(itypi,itypj)
1167             e2=fac*bb(itypi,itypj)
1168             evdwij=e1+e2
1169 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1170 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1171 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1172 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1173 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1174 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1175 #ifdef TSCSC
1176             if (bb(itypi,itypj).gt.0) then
1177                evdw_p=evdw_p+evdwij
1178             else
1179                evdw_m=evdw_m+evdwij
1180             endif
1181 #else
1182             evdw=evdw+evdwij
1183 #endif
1184
1185 C Calculate the components of the gradient in DC and X
1186 C
1187             fac=-rrij*(e1+evdwij)
1188             gg(1)=xj*fac
1189             gg(2)=yj*fac
1190             gg(3)=zj*fac
1191 #ifdef TSCSC
1192             if (bb(itypi,itypj).gt.0.0d0) then
1193               do k=1,3
1194                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1195                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1196                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1197                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1198               enddo
1199             else
1200               do k=1,3
1201                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1202                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1203                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1204                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1205               enddo
1206             endif
1207 #else
1208             do k=1,3
1209               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1210               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1211               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1212               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1213             enddo
1214 #endif
1215 cgrad            do k=i,j-1
1216 cgrad              do l=1,3
1217 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1218 cgrad              enddo
1219 cgrad            enddo
1220 C
1221 C 12/1/95, revised on 5/20/97
1222 C
1223 C Calculate the contact function. The ith column of the array JCONT will 
1224 C contain the numbers of atoms that make contacts with the atom I (of numbers
1225 C greater than I). The arrays FACONT and GACONT will contain the values of
1226 C the contact function and its derivative.
1227 C
1228 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1229 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1230 C Uncomment next line, if the correlation interactions are contact function only
1231             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1232               rij=dsqrt(rij)
1233               sigij=sigma(itypi,itypj)
1234               r0ij=rs0(itypi,itypj)
1235 C
1236 C Check whether the SC's are not too far to make a contact.
1237 C
1238               rcut=1.5d0*r0ij
1239               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1240 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1241 C
1242               if (fcont.gt.0.0D0) then
1243 C If the SC-SC distance if close to sigma, apply spline.
1244 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1245 cAdam &             fcont1,fprimcont1)
1246 cAdam           fcont1=1.0d0-fcont1
1247 cAdam           if (fcont1.gt.0.0d0) then
1248 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1249 cAdam             fcont=fcont*fcont1
1250 cAdam           endif
1251 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1252 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1253 cga             do k=1,3
1254 cga               gg(k)=gg(k)*eps0ij
1255 cga             enddo
1256 cga             eps0ij=-evdwij*eps0ij
1257 C Uncomment for AL's type of SC correlation interactions.
1258 cadam           eps0ij=-evdwij
1259                 num_conti=num_conti+1
1260                 jcont(num_conti,i)=j
1261                 facont(num_conti,i)=fcont*eps0ij
1262                 fprimcont=eps0ij*fprimcont/rij
1263                 fcont=expon*fcont
1264 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1265 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1266 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1267 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1268                 gacont(1,num_conti,i)=-fprimcont*xj
1269                 gacont(2,num_conti,i)=-fprimcont*yj
1270                 gacont(3,num_conti,i)=-fprimcont*zj
1271 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1272 cd              write (iout,'(2i3,3f10.5)') 
1273 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1274               endif
1275             endif
1276           enddo      ! j
1277         enddo        ! iint
1278 C Change 12/1/95
1279         num_cont(i)=num_conti
1280       enddo          ! i
1281       do i=1,nct
1282         do j=1,3
1283           gvdwc(j,i)=expon*gvdwc(j,i)
1284           gvdwx(j,i)=expon*gvdwx(j,i)
1285         enddo
1286       enddo
1287 C******************************************************************************
1288 C
1289 C                              N O T E !!!
1290 C
1291 C To save time, the factor of EXPON has been extracted from ALL components
1292 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1293 C use!
1294 C
1295 C******************************************************************************
1296       return
1297       end
1298 C-----------------------------------------------------------------------------
1299       subroutine eljk(evdw,evdw_p,evdw_m)
1300 C
1301 C This subroutine calculates the interaction energy of nonbonded side chains
1302 C assuming the LJK potential of interaction.
1303 C
1304       implicit real*8 (a-h,o-z)
1305       include 'DIMENSIONS'
1306       include 'COMMON.GEO'
1307       include 'COMMON.VAR'
1308       include 'COMMON.LOCAL'
1309       include 'COMMON.CHAIN'
1310       include 'COMMON.DERIV'
1311       include 'COMMON.INTERACT'
1312       include 'COMMON.IOUNITS'
1313       include 'COMMON.NAMES'
1314       dimension gg(3)
1315       logical scheck
1316 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1317       evdw=0.0D0
1318       do i=iatsc_s,iatsc_e
1319         itypi=itype(i)
1320         itypi1=itype(i+1)
1321         xi=c(1,nres+i)
1322         yi=c(2,nres+i)
1323         zi=c(3,nres+i)
1324 C
1325 C Calculate SC interaction energy.
1326 C
1327         do iint=1,nint_gr(i)
1328           do j=istart(i,iint),iend(i,iint)
1329             itypj=itype(j)
1330             xj=c(1,nres+j)-xi
1331             yj=c(2,nres+j)-yi
1332             zj=c(3,nres+j)-zi
1333             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1334             fac_augm=rrij**expon
1335             e_augm=augm(itypi,itypj)*fac_augm
1336             r_inv_ij=dsqrt(rrij)
1337             rij=1.0D0/r_inv_ij 
1338             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1339             fac=r_shift_inv**expon
1340             e1=fac*fac*aa(itypi,itypj)
1341             e2=fac*bb(itypi,itypj)
1342             evdwij=e_augm+e1+e2
1343 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1344 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1345 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1346 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1347 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1348 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1349 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1350 #ifdef TSCSC
1351             if (bb(itypi,itypj).gt.0) then
1352                evdw_p=evdw_p+evdwij
1353             else
1354                evdw_m=evdw_m+evdwij
1355             endif
1356 #else
1357             evdw=evdw+evdwij
1358 #endif
1359
1360 C Calculate the components of the gradient in DC and X
1361 C
1362             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1363             gg(1)=xj*fac
1364             gg(2)=yj*fac
1365             gg(3)=zj*fac
1366 #ifdef TSCSC
1367             if (bb(itypi,itypj).gt.0.0d0) then
1368               do k=1,3
1369                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1370                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1371                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1372                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1373               enddo
1374             else
1375               do k=1,3
1376                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1377                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1378                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1379                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1380               enddo
1381             endif
1382 #else
1383             do k=1,3
1384               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1385               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1386               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1387               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1388             enddo
1389 #endif
1390 cgrad            do k=i,j-1
1391 cgrad              do l=1,3
1392 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1393 cgrad              enddo
1394 cgrad            enddo
1395           enddo      ! j
1396         enddo        ! iint
1397       enddo          ! i
1398       do i=1,nct
1399         do j=1,3
1400           gvdwc(j,i)=expon*gvdwc(j,i)
1401           gvdwx(j,i)=expon*gvdwx(j,i)
1402         enddo
1403       enddo
1404       return
1405       end
1406 C-----------------------------------------------------------------------------
1407       subroutine ebp(evdw,evdw_p,evdw_m)
1408 C
1409 C This subroutine calculates the interaction energy of nonbonded side chains
1410 C assuming the Berne-Pechukas potential of interaction.
1411 C
1412       implicit real*8 (a-h,o-z)
1413       include 'DIMENSIONS'
1414       include 'COMMON.GEO'
1415       include 'COMMON.VAR'
1416       include 'COMMON.LOCAL'
1417       include 'COMMON.CHAIN'
1418       include 'COMMON.DERIV'
1419       include 'COMMON.NAMES'
1420       include 'COMMON.INTERACT'
1421       include 'COMMON.IOUNITS'
1422       include 'COMMON.CALC'
1423       common /srutu/ icall
1424 c     double precision rrsave(maxdim)
1425       logical lprn
1426       evdw=0.0D0
1427 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1428       evdw=0.0D0
1429 c     if (icall.eq.0) then
1430 c       lprn=.true.
1431 c     else
1432         lprn=.false.
1433 c     endif
1434       ind=0
1435       do i=iatsc_s,iatsc_e
1436         itypi=itype(i)
1437         itypi1=itype(i+1)
1438         xi=c(1,nres+i)
1439         yi=c(2,nres+i)
1440         zi=c(3,nres+i)
1441         dxi=dc_norm(1,nres+i)
1442         dyi=dc_norm(2,nres+i)
1443         dzi=dc_norm(3,nres+i)
1444 c        dsci_inv=dsc_inv(itypi)
1445         dsci_inv=vbld_inv(i+nres)
1446 C
1447 C Calculate SC interaction energy.
1448 C
1449         do iint=1,nint_gr(i)
1450           do j=istart(i,iint),iend(i,iint)
1451             ind=ind+1
1452             itypj=itype(j)
1453 c            dscj_inv=dsc_inv(itypj)
1454             dscj_inv=vbld_inv(j+nres)
1455             chi1=chi(itypi,itypj)
1456             chi2=chi(itypj,itypi)
1457             chi12=chi1*chi2
1458             chip1=chip(itypi)
1459             chip2=chip(itypj)
1460             chip12=chip1*chip2
1461             alf1=alp(itypi)
1462             alf2=alp(itypj)
1463             alf12=0.5D0*(alf1+alf2)
1464 C For diagnostics only!!!
1465 c           chi1=0.0D0
1466 c           chi2=0.0D0
1467 c           chi12=0.0D0
1468 c           chip1=0.0D0
1469 c           chip2=0.0D0
1470 c           chip12=0.0D0
1471 c           alf1=0.0D0
1472 c           alf2=0.0D0
1473 c           alf12=0.0D0
1474             xj=c(1,nres+j)-xi
1475             yj=c(2,nres+j)-yi
1476             zj=c(3,nres+j)-zi
1477             dxj=dc_norm(1,nres+j)
1478             dyj=dc_norm(2,nres+j)
1479             dzj=dc_norm(3,nres+j)
1480             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1481 cd          if (icall.eq.0) then
1482 cd            rrsave(ind)=rrij
1483 cd          else
1484 cd            rrij=rrsave(ind)
1485 cd          endif
1486             rij=dsqrt(rrij)
1487 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1488             call sc_angular
1489 C Calculate whole angle-dependent part of epsilon and contributions
1490 C to its derivatives
1491             fac=(rrij*sigsq)**expon2
1492             e1=fac*fac*aa(itypi,itypj)
1493             e2=fac*bb(itypi,itypj)
1494             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1495             eps2der=evdwij*eps3rt
1496             eps3der=evdwij*eps2rt
1497             evdwij=evdwij*eps2rt*eps3rt
1498 #ifdef TSCSC
1499             if (bb(itypi,itypj).gt.0) then
1500                evdw_p=evdw_p+evdwij
1501             else
1502                evdw_m=evdw_m+evdwij
1503             endif
1504 #else
1505             evdw=evdw+evdwij
1506 #endif
1507             if (lprn) then
1508             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1509             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1510 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1511 cd     &        restyp(itypi),i,restyp(itypj),j,
1512 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1513 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1514 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1515 cd     &        evdwij
1516             endif
1517 C Calculate gradient components.
1518             e1=e1*eps1*eps2rt**2*eps3rt**2
1519             fac=-expon*(e1+evdwij)
1520             sigder=fac/sigsq
1521             fac=rrij*fac
1522 C Calculate radial part of the gradient
1523             gg(1)=xj*fac
1524             gg(2)=yj*fac
1525             gg(3)=zj*fac
1526 C Calculate the angular part of the gradient and sum add the contributions
1527 C to the appropriate components of the Cartesian gradient.
1528 #ifdef TSCSC
1529             if (bb(itypi,itypj).gt.0) then
1530                call sc_grad
1531             else
1532                call sc_grad_T
1533             endif
1534 #else
1535             call sc_grad
1536 #endif
1537           enddo      ! j
1538         enddo        ! iint
1539       enddo          ! i
1540 c     stop
1541       return
1542       end
1543 C-----------------------------------------------------------------------------
1544       subroutine egb(evdw,evdw_p,evdw_m)
1545 C
1546 C This subroutine calculates the interaction energy of nonbonded side chains
1547 C assuming the Gay-Berne potential of interaction.
1548 C
1549       implicit real*8 (a-h,o-z)
1550       include 'DIMENSIONS'
1551       include 'COMMON.GEO'
1552       include 'COMMON.VAR'
1553       include 'COMMON.LOCAL'
1554       include 'COMMON.CHAIN'
1555       include 'COMMON.DERIV'
1556       include 'COMMON.NAMES'
1557       include 'COMMON.INTERACT'
1558       include 'COMMON.IOUNITS'
1559       include 'COMMON.CALC'
1560       include 'COMMON.CONTROL'
1561       include 'COMMON.SBRIDGE'
1562       logical lprn
1563       evdw=0.0D0
1564 ccccc      energy_dec=.false.
1565 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1566       evdw=0.0D0
1567       evdw_p=0.0D0
1568       evdw_m=0.0D0
1569       lprn=.false.
1570 c     if (icall.eq.0) lprn=.false.
1571       ind=0
1572       do i=iatsc_s,iatsc_e
1573         itypi=itype(i)
1574         itypi1=itype(i+1)
1575         xi=c(1,nres+i)
1576         yi=c(2,nres+i)
1577         zi=c(3,nres+i)
1578         dxi=dc_norm(1,nres+i)
1579         dyi=dc_norm(2,nres+i)
1580         dzi=dc_norm(3,nres+i)
1581 c        dsci_inv=dsc_inv(itypi)
1582         dsci_inv=vbld_inv(i+nres)
1583 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1584 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1585 C
1586 C Calculate SC interaction energy.
1587 C
1588         do iint=1,nint_gr(i)
1589           do j=istart(i,iint),iend(i,iint)
1590             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1591               call dyn_ssbond_ene(i,j,evdwij)
1592               evdw=evdw+evdwij
1593               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1594      &                        'evdw',i,j,evdwij,' ss'
1595             ELSE
1596             ind=ind+1
1597             itypj=itype(j)
1598 c            dscj_inv=dsc_inv(itypj)
1599             dscj_inv=vbld_inv(j+nres)
1600 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1601 c     &       1.0d0/vbld(j+nres)
1602 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1603             sig0ij=sigma(itypi,itypj)
1604             chi1=chi(itypi,itypj)
1605             chi2=chi(itypj,itypi)
1606             chi12=chi1*chi2
1607             chip1=chip(itypi)
1608             chip2=chip(itypj)
1609             chip12=chip1*chip2
1610             alf1=alp(itypi)
1611             alf2=alp(itypj)
1612             alf12=0.5D0*(alf1+alf2)
1613 C For diagnostics only!!!
1614 c           chi1=0.0D0
1615 c           chi2=0.0D0
1616 c           chi12=0.0D0
1617 c           chip1=0.0D0
1618 c           chip2=0.0D0
1619 c           chip12=0.0D0
1620 c           alf1=0.0D0
1621 c           alf2=0.0D0
1622 c           alf12=0.0D0
1623             xj=c(1,nres+j)-xi
1624             yj=c(2,nres+j)-yi
1625             zj=c(3,nres+j)-zi
1626             dxj=dc_norm(1,nres+j)
1627             dyj=dc_norm(2,nres+j)
1628             dzj=dc_norm(3,nres+j)
1629 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1630 c            write (iout,*) "j",j," dc_norm",
1631 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1632             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1633             rij=dsqrt(rrij)
1634 C Calculate angle-dependent terms of energy and contributions to their
1635 C derivatives.
1636             call sc_angular
1637             sigsq=1.0D0/sigsq
1638             sig=sig0ij*dsqrt(sigsq)
1639             rij_shift=1.0D0/rij-sig+sig0ij
1640 c for diagnostics; uncomment
1641 c            rij_shift=1.2*sig0ij
1642 C I hate to put IF's in the loops, but here don't have another choice!!!!
1643             if (rij_shift.le.0.0D0) then
1644               evdw=1.0D20
1645 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1646 cd     &        restyp(itypi),i,restyp(itypj),j,
1647 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1648               return
1649             endif
1650             sigder=-sig*sigsq
1651 c---------------------------------------------------------------
1652             rij_shift=1.0D0/rij_shift 
1653             fac=rij_shift**expon
1654             e1=fac*fac*aa(itypi,itypj)
1655             e2=fac*bb(itypi,itypj)
1656             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1657             eps2der=evdwij*eps3rt
1658             eps3der=evdwij*eps2rt
1659 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1660 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1661             evdwij=evdwij*eps2rt*eps3rt
1662 #ifdef TSCSC
1663             if (bb(itypi,itypj).gt.0) then
1664                evdw_p=evdw_p+evdwij
1665             else
1666                evdw_m=evdw_m+evdwij
1667             endif
1668 #else
1669             evdw=evdw+evdwij
1670 #endif
1671             if (lprn) then
1672             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1673             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1674             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1675      &        restyp(itypi),i,restyp(itypj),j,
1676      &        epsi,sigm,chi1,chi2,chip1,chip2,
1677      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1678      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1679      &        evdwij
1680             endif
1681
1682             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1683      &                        'evdw',i,j,evdwij
1684
1685 C Calculate gradient components.
1686             e1=e1*eps1*eps2rt**2*eps3rt**2
1687             fac=-expon*(e1+evdwij)*rij_shift
1688             sigder=fac*sigder
1689             fac=rij*fac
1690 c            fac=0.0d0
1691 C Calculate the radial part of the gradient
1692             gg(1)=xj*fac
1693             gg(2)=yj*fac
1694             gg(3)=zj*fac
1695 C Calculate angular part of the gradient.
1696 #ifdef TSCSC
1697             if (bb(itypi,itypj).gt.0) then
1698                call sc_grad
1699             else
1700                call sc_grad_T
1701             endif
1702 #else
1703             call sc_grad
1704 #endif
1705             ENDIF    ! dyn_ss            
1706           enddo      ! j
1707         enddo        ! iint
1708       enddo          ! i
1709 c      write (iout,*) "Number of loop steps in EGB:",ind
1710 cccc      energy_dec=.false.
1711       return
1712       end
1713 C-----------------------------------------------------------------------------
1714       subroutine egbv(evdw,evdw_p,evdw_m)
1715 C
1716 C This subroutine calculates the interaction energy of nonbonded side chains
1717 C assuming the Gay-Berne-Vorobjev potential of interaction.
1718 C
1719       implicit real*8 (a-h,o-z)
1720       include 'DIMENSIONS'
1721       include 'COMMON.GEO'
1722       include 'COMMON.VAR'
1723       include 'COMMON.LOCAL'
1724       include 'COMMON.CHAIN'
1725       include 'COMMON.DERIV'
1726       include 'COMMON.NAMES'
1727       include 'COMMON.INTERACT'
1728       include 'COMMON.IOUNITS'
1729       include 'COMMON.CALC'
1730       common /srutu/ icall
1731       logical lprn
1732       evdw=0.0D0
1733 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1734       evdw=0.0D0
1735       lprn=.false.
1736 c     if (icall.eq.0) lprn=.true.
1737       ind=0
1738       do i=iatsc_s,iatsc_e
1739         itypi=itype(i)
1740         itypi1=itype(i+1)
1741         xi=c(1,nres+i)
1742         yi=c(2,nres+i)
1743         zi=c(3,nres+i)
1744         dxi=dc_norm(1,nres+i)
1745         dyi=dc_norm(2,nres+i)
1746         dzi=dc_norm(3,nres+i)
1747 c        dsci_inv=dsc_inv(itypi)
1748         dsci_inv=vbld_inv(i+nres)
1749 C
1750 C Calculate SC interaction energy.
1751 C
1752         do iint=1,nint_gr(i)
1753           do j=istart(i,iint),iend(i,iint)
1754             ind=ind+1
1755             itypj=itype(j)
1756 c            dscj_inv=dsc_inv(itypj)
1757             dscj_inv=vbld_inv(j+nres)
1758             sig0ij=sigma(itypi,itypj)
1759             r0ij=r0(itypi,itypj)
1760             chi1=chi(itypi,itypj)
1761             chi2=chi(itypj,itypi)
1762             chi12=chi1*chi2
1763             chip1=chip(itypi)
1764             chip2=chip(itypj)
1765             chip12=chip1*chip2
1766             alf1=alp(itypi)
1767             alf2=alp(itypj)
1768             alf12=0.5D0*(alf1+alf2)
1769 C For diagnostics only!!!
1770 c           chi1=0.0D0
1771 c           chi2=0.0D0
1772 c           chi12=0.0D0
1773 c           chip1=0.0D0
1774 c           chip2=0.0D0
1775 c           chip12=0.0D0
1776 c           alf1=0.0D0
1777 c           alf2=0.0D0
1778 c           alf12=0.0D0
1779             xj=c(1,nres+j)-xi
1780             yj=c(2,nres+j)-yi
1781             zj=c(3,nres+j)-zi
1782             dxj=dc_norm(1,nres+j)
1783             dyj=dc_norm(2,nres+j)
1784             dzj=dc_norm(3,nres+j)
1785             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1786             rij=dsqrt(rrij)
1787 C Calculate angle-dependent terms of energy and contributions to their
1788 C derivatives.
1789             call sc_angular
1790             sigsq=1.0D0/sigsq
1791             sig=sig0ij*dsqrt(sigsq)
1792             rij_shift=1.0D0/rij-sig+r0ij
1793 C I hate to put IF's in the loops, but here don't have another choice!!!!
1794             if (rij_shift.le.0.0D0) then
1795               evdw=1.0D20
1796               return
1797             endif
1798             sigder=-sig*sigsq
1799 c---------------------------------------------------------------
1800             rij_shift=1.0D0/rij_shift 
1801             fac=rij_shift**expon
1802             e1=fac*fac*aa(itypi,itypj)
1803             e2=fac*bb(itypi,itypj)
1804             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1805             eps2der=evdwij*eps3rt
1806             eps3der=evdwij*eps2rt
1807             fac_augm=rrij**expon
1808             e_augm=augm(itypi,itypj)*fac_augm
1809             evdwij=evdwij*eps2rt*eps3rt
1810 #ifdef TSCSC
1811             if (bb(itypi,itypj).gt.0) then
1812                evdw_p=evdw_p+evdwij+e_augm
1813             else
1814                evdw_m=evdw_m+evdwij+e_augm
1815             endif
1816 #else
1817             evdw=evdw+evdwij+e_augm
1818 #endif
1819             if (lprn) then
1820             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1821             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1822             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1823      &        restyp(itypi),i,restyp(itypj),j,
1824      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1825      &        chi1,chi2,chip1,chip2,
1826      &        eps1,eps2rt**2,eps3rt**2,
1827      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1828      &        evdwij+e_augm
1829             endif
1830 C Calculate gradient components.
1831             e1=e1*eps1*eps2rt**2*eps3rt**2
1832             fac=-expon*(e1+evdwij)*rij_shift
1833             sigder=fac*sigder
1834             fac=rij*fac-2*expon*rrij*e_augm
1835 C Calculate the radial part of the gradient
1836             gg(1)=xj*fac
1837             gg(2)=yj*fac
1838             gg(3)=zj*fac
1839 C Calculate angular part of the gradient.
1840 #ifdef TSCSC
1841             if (bb(itypi,itypj).gt.0) then
1842                call sc_grad
1843             else
1844                call sc_grad_T
1845             endif
1846 #else
1847             call sc_grad
1848 #endif
1849           enddo      ! j
1850         enddo        ! iint
1851       enddo          ! i
1852       end
1853 C-----------------------------------------------------------------------------
1854       subroutine sc_angular
1855 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1856 C om12. Called by ebp, egb, and egbv.
1857       implicit none
1858       include 'COMMON.CALC'
1859       include 'COMMON.IOUNITS'
1860       erij(1)=xj*rij
1861       erij(2)=yj*rij
1862       erij(3)=zj*rij
1863       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1864       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1865       om12=dxi*dxj+dyi*dyj+dzi*dzj
1866       chiom12=chi12*om12
1867 C Calculate eps1(om12) and its derivative in om12
1868       faceps1=1.0D0-om12*chiom12
1869       faceps1_inv=1.0D0/faceps1
1870       eps1=dsqrt(faceps1_inv)
1871 C Following variable is eps1*deps1/dom12
1872       eps1_om12=faceps1_inv*chiom12
1873 c diagnostics only
1874 c      faceps1_inv=om12
1875 c      eps1=om12
1876 c      eps1_om12=1.0d0
1877 c      write (iout,*) "om12",om12," eps1",eps1
1878 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1879 C and om12.
1880       om1om2=om1*om2
1881       chiom1=chi1*om1
1882       chiom2=chi2*om2
1883       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1884       sigsq=1.0D0-facsig*faceps1_inv
1885       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1886       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1887       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1888 c diagnostics only
1889 c      sigsq=1.0d0
1890 c      sigsq_om1=0.0d0
1891 c      sigsq_om2=0.0d0
1892 c      sigsq_om12=0.0d0
1893 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1894 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1895 c     &    " eps1",eps1
1896 C Calculate eps2 and its derivatives in om1, om2, and om12.
1897       chipom1=chip1*om1
1898       chipom2=chip2*om2
1899       chipom12=chip12*om12
1900       facp=1.0D0-om12*chipom12
1901       facp_inv=1.0D0/facp
1902       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1903 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1904 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1905 C Following variable is the square root of eps2
1906       eps2rt=1.0D0-facp1*facp_inv
1907 C Following three variables are the derivatives of the square root of eps
1908 C in om1, om2, and om12.
1909       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1910       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1911       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1912 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1913       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1914 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1915 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1916 c     &  " eps2rt_om12",eps2rt_om12
1917 C Calculate whole angle-dependent part of epsilon and contributions
1918 C to its derivatives
1919       return
1920       end
1921
1922 C----------------------------------------------------------------------------
1923       subroutine sc_grad_T
1924       implicit real*8 (a-h,o-z)
1925       include 'DIMENSIONS'
1926       include 'COMMON.CHAIN'
1927       include 'COMMON.DERIV'
1928       include 'COMMON.CALC'
1929       include 'COMMON.IOUNITS'
1930       double precision dcosom1(3),dcosom2(3)
1931       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1932       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1933       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1934      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1935 c diagnostics only
1936 c      eom1=0.0d0
1937 c      eom2=0.0d0
1938 c      eom12=evdwij*eps1_om12
1939 c end diagnostics
1940 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1941 c     &  " sigder",sigder
1942 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1943 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1944       do k=1,3
1945         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1946         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1947       enddo
1948       do k=1,3
1949         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1950       enddo 
1951 c      write (iout,*) "gg",(gg(k),k=1,3)
1952       do k=1,3
1953         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1954      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1955      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1956         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1957      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1958      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1959 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1960 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1961 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1962 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1963       enddo
1964
1965 C Calculate the components of the gradient in DC and X
1966 C
1967 cgrad      do k=i,j-1
1968 cgrad        do l=1,3
1969 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1970 cgrad        enddo
1971 cgrad      enddo
1972       do l=1,3
1973         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1974         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1975       enddo
1976       return
1977       end
1978
1979 C----------------------------------------------------------------------------
1980       subroutine sc_grad
1981       implicit real*8 (a-h,o-z)
1982       include 'DIMENSIONS'
1983       include 'COMMON.CHAIN'
1984       include 'COMMON.DERIV'
1985       include 'COMMON.CALC'
1986       include 'COMMON.IOUNITS'
1987       double precision dcosom1(3),dcosom2(3)
1988       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1989       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1990       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1991      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1992 c diagnostics only
1993 c      eom1=0.0d0
1994 c      eom2=0.0d0
1995 c      eom12=evdwij*eps1_om12
1996 c end diagnostics
1997 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1998 c     &  " sigder",sigder
1999 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2000 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2001       do k=1,3
2002         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2003         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2004       enddo
2005       do k=1,3
2006         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2007       enddo 
2008 c      write (iout,*) "gg",(gg(k),k=1,3)
2009       do k=1,3
2010         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2011      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2012      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2013         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2014      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2015      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2016 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2017 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2018 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2019 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2020       enddo
2021
2022 C Calculate the components of the gradient in DC and X
2023 C
2024 cgrad      do k=i,j-1
2025 cgrad        do l=1,3
2026 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2027 cgrad        enddo
2028 cgrad      enddo
2029       do l=1,3
2030         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2031         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2032       enddo
2033       return
2034       end
2035 C-----------------------------------------------------------------------
2036       subroutine e_softsphere(evdw)
2037 C
2038 C This subroutine calculates the interaction energy of nonbonded side chains
2039 C assuming the LJ potential of interaction.
2040 C
2041       implicit real*8 (a-h,o-z)
2042       include 'DIMENSIONS'
2043       parameter (accur=1.0d-10)
2044       include 'COMMON.GEO'
2045       include 'COMMON.VAR'
2046       include 'COMMON.LOCAL'
2047       include 'COMMON.CHAIN'
2048       include 'COMMON.DERIV'
2049       include 'COMMON.INTERACT'
2050       include 'COMMON.TORSION'
2051       include 'COMMON.SBRIDGE'
2052       include 'COMMON.NAMES'
2053       include 'COMMON.IOUNITS'
2054       include 'COMMON.CONTACTS'
2055       dimension gg(3)
2056 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2057       evdw=0.0D0
2058       do i=iatsc_s,iatsc_e
2059         itypi=itype(i)
2060         itypi1=itype(i+1)
2061         xi=c(1,nres+i)
2062         yi=c(2,nres+i)
2063         zi=c(3,nres+i)
2064 C
2065 C Calculate SC interaction energy.
2066 C
2067         do iint=1,nint_gr(i)
2068 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2069 cd   &                  'iend=',iend(i,iint)
2070           do j=istart(i,iint),iend(i,iint)
2071             itypj=itype(j)
2072             xj=c(1,nres+j)-xi
2073             yj=c(2,nres+j)-yi
2074             zj=c(3,nres+j)-zi
2075             rij=xj*xj+yj*yj+zj*zj
2076 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2077             r0ij=r0(itypi,itypj)
2078             r0ijsq=r0ij*r0ij
2079 c            print *,i,j,r0ij,dsqrt(rij)
2080             if (rij.lt.r0ijsq) then
2081               evdwij=0.25d0*(rij-r0ijsq)**2
2082               fac=rij-r0ijsq
2083             else
2084               evdwij=0.0d0
2085               fac=0.0d0
2086             endif
2087             evdw=evdw+evdwij
2088
2089 C Calculate the components of the gradient in DC and X
2090 C
2091             gg(1)=xj*fac
2092             gg(2)=yj*fac
2093             gg(3)=zj*fac
2094             do k=1,3
2095               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2097               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2098               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2099             enddo
2100 cgrad            do k=i,j-1
2101 cgrad              do l=1,3
2102 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2103 cgrad              enddo
2104 cgrad            enddo
2105           enddo ! j
2106         enddo ! iint
2107       enddo ! i
2108       return
2109       end
2110 C--------------------------------------------------------------------------
2111       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2112      &              eello_turn4)
2113 C
2114 C Soft-sphere potential of p-p interaction
2115
2116       implicit real*8 (a-h,o-z)
2117       include 'DIMENSIONS'
2118       include 'COMMON.CONTROL'
2119       include 'COMMON.IOUNITS'
2120       include 'COMMON.GEO'
2121       include 'COMMON.VAR'
2122       include 'COMMON.LOCAL'
2123       include 'COMMON.CHAIN'
2124       include 'COMMON.DERIV'
2125       include 'COMMON.INTERACT'
2126       include 'COMMON.CONTACTS'
2127       include 'COMMON.TORSION'
2128       include 'COMMON.VECTORS'
2129       include 'COMMON.FFIELD'
2130       dimension ggg(3)
2131 cd      write(iout,*) 'In EELEC_soft_sphere'
2132       ees=0.0D0
2133       evdw1=0.0D0
2134       eel_loc=0.0d0 
2135       eello_turn3=0.0d0
2136       eello_turn4=0.0d0
2137       ind=0
2138       do i=iatel_s,iatel_e
2139         dxi=dc(1,i)
2140         dyi=dc(2,i)
2141         dzi=dc(3,i)
2142         xmedi=c(1,i)+0.5d0*dxi
2143         ymedi=c(2,i)+0.5d0*dyi
2144         zmedi=c(3,i)+0.5d0*dzi
2145         num_conti=0
2146 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2147         do j=ielstart(i),ielend(i)
2148           ind=ind+1
2149           iteli=itel(i)
2150           itelj=itel(j)
2151           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2152           r0ij=rpp(iteli,itelj)
2153           r0ijsq=r0ij*r0ij 
2154           dxj=dc(1,j)
2155           dyj=dc(2,j)
2156           dzj=dc(3,j)
2157           xj=c(1,j)+0.5D0*dxj-xmedi
2158           yj=c(2,j)+0.5D0*dyj-ymedi
2159           zj=c(3,j)+0.5D0*dzj-zmedi
2160           rij=xj*xj+yj*yj+zj*zj
2161           if (rij.lt.r0ijsq) then
2162             evdw1ij=0.25d0*(rij-r0ijsq)**2
2163             fac=rij-r0ijsq
2164           else
2165             evdw1ij=0.0d0
2166             fac=0.0d0
2167           endif
2168           evdw1=evdw1+evdw1ij
2169 C
2170 C Calculate contributions to the Cartesian gradient.
2171 C
2172           ggg(1)=fac*xj
2173           ggg(2)=fac*yj
2174           ggg(3)=fac*zj
2175           do k=1,3
2176             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2178           enddo
2179 *
2180 * Loop over residues i+1 thru j-1.
2181 *
2182 cgrad          do k=i+1,j-1
2183 cgrad            do l=1,3
2184 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2185 cgrad            enddo
2186 cgrad          enddo
2187         enddo ! j
2188       enddo   ! i
2189 cgrad      do i=nnt,nct-1
2190 cgrad        do k=1,3
2191 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2192 cgrad        enddo
2193 cgrad        do j=i+1,nct-1
2194 cgrad          do k=1,3
2195 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2196 cgrad          enddo
2197 cgrad        enddo
2198 cgrad      enddo
2199       return
2200       end
2201 c------------------------------------------------------------------------------
2202       subroutine vec_and_deriv
2203       implicit real*8 (a-h,o-z)
2204       include 'DIMENSIONS'
2205 #ifdef MPI
2206       include 'mpif.h'
2207 #endif
2208       include 'COMMON.IOUNITS'
2209       include 'COMMON.GEO'
2210       include 'COMMON.VAR'
2211       include 'COMMON.LOCAL'
2212       include 'COMMON.CHAIN'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.SETUP'
2215       include 'COMMON.TIME1'
2216       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2217 C Compute the local reference systems. For reference system (i), the
2218 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2219 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2220 #ifdef PARVEC
2221       do i=ivec_start,ivec_end
2222 #else
2223       do i=1,nres-1
2224 #endif
2225           if (i.eq.nres-1) then
2226 C Case of the last full residue
2227 C Compute the Z-axis
2228             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2229             costh=dcos(pi-theta(nres))
2230             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2231             do k=1,3
2232               uz(k,i)=fac*uz(k,i)
2233             enddo
2234 C Compute the derivatives of uz
2235             uzder(1,1,1)= 0.0d0
2236             uzder(2,1,1)=-dc_norm(3,i-1)
2237             uzder(3,1,1)= dc_norm(2,i-1) 
2238             uzder(1,2,1)= dc_norm(3,i-1)
2239             uzder(2,2,1)= 0.0d0
2240             uzder(3,2,1)=-dc_norm(1,i-1)
2241             uzder(1,3,1)=-dc_norm(2,i-1)
2242             uzder(2,3,1)= dc_norm(1,i-1)
2243             uzder(3,3,1)= 0.0d0
2244             uzder(1,1,2)= 0.0d0
2245             uzder(2,1,2)= dc_norm(3,i)
2246             uzder(3,1,2)=-dc_norm(2,i) 
2247             uzder(1,2,2)=-dc_norm(3,i)
2248             uzder(2,2,2)= 0.0d0
2249             uzder(3,2,2)= dc_norm(1,i)
2250             uzder(1,3,2)= dc_norm(2,i)
2251             uzder(2,3,2)=-dc_norm(1,i)
2252             uzder(3,3,2)= 0.0d0
2253 C Compute the Y-axis
2254             facy=fac
2255             do k=1,3
2256               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2257             enddo
2258 C Compute the derivatives of uy
2259             do j=1,3
2260               do k=1,3
2261                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2262      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2263                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2264               enddo
2265               uyder(j,j,1)=uyder(j,j,1)-costh
2266               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2267             enddo
2268             do j=1,2
2269               do k=1,3
2270                 do l=1,3
2271                   uygrad(l,k,j,i)=uyder(l,k,j)
2272                   uzgrad(l,k,j,i)=uzder(l,k,j)
2273                 enddo
2274               enddo
2275             enddo 
2276             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2277             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2278             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2279             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2280           else
2281 C Other residues
2282 C Compute the Z-axis
2283             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2284             costh=dcos(pi-theta(i+2))
2285             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2286             do k=1,3
2287               uz(k,i)=fac*uz(k,i)
2288             enddo
2289 C Compute the derivatives of uz
2290             uzder(1,1,1)= 0.0d0
2291             uzder(2,1,1)=-dc_norm(3,i+1)
2292             uzder(3,1,1)= dc_norm(2,i+1) 
2293             uzder(1,2,1)= dc_norm(3,i+1)
2294             uzder(2,2,1)= 0.0d0
2295             uzder(3,2,1)=-dc_norm(1,i+1)
2296             uzder(1,3,1)=-dc_norm(2,i+1)
2297             uzder(2,3,1)= dc_norm(1,i+1)
2298             uzder(3,3,1)= 0.0d0
2299             uzder(1,1,2)= 0.0d0
2300             uzder(2,1,2)= dc_norm(3,i)
2301             uzder(3,1,2)=-dc_norm(2,i) 
2302             uzder(1,2,2)=-dc_norm(3,i)
2303             uzder(2,2,2)= 0.0d0
2304             uzder(3,2,2)= dc_norm(1,i)
2305             uzder(1,3,2)= dc_norm(2,i)
2306             uzder(2,3,2)=-dc_norm(1,i)
2307             uzder(3,3,2)= 0.0d0
2308 C Compute the Y-axis
2309             facy=fac
2310             do k=1,3
2311               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2312             enddo
2313 C Compute the derivatives of uy
2314             do j=1,3
2315               do k=1,3
2316                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2317      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2318                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2319               enddo
2320               uyder(j,j,1)=uyder(j,j,1)-costh
2321               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2322             enddo
2323             do j=1,2
2324               do k=1,3
2325                 do l=1,3
2326                   uygrad(l,k,j,i)=uyder(l,k,j)
2327                   uzgrad(l,k,j,i)=uzder(l,k,j)
2328                 enddo
2329               enddo
2330             enddo 
2331             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2332             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2333             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2334             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2335           endif
2336       enddo
2337       do i=1,nres-1
2338         vbld_inv_temp(1)=vbld_inv(i+1)
2339         if (i.lt.nres-1) then
2340           vbld_inv_temp(2)=vbld_inv(i+2)
2341           else
2342           vbld_inv_temp(2)=vbld_inv(i)
2343           endif
2344         do j=1,2
2345           do k=1,3
2346             do l=1,3
2347               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2348               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2349             enddo
2350           enddo
2351         enddo
2352       enddo
2353 #if defined(PARVEC) && defined(MPI)
2354       if (nfgtasks1.gt.1) then
2355         time00=MPI_Wtime()
2356 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2357 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2358 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2359         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2360      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2361      &   FG_COMM1,IERR)
2362         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2363      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2364      &   FG_COMM1,IERR)
2365         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2366      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2367      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2368         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2369      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2370      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2371         time_gather=time_gather+MPI_Wtime()-time00
2372       endif
2373 c      if (fg_rank.eq.0) then
2374 c        write (iout,*) "Arrays UY and UZ"
2375 c        do i=1,nres-1
2376 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2377 c     &     (uz(k,i),k=1,3)
2378 c        enddo
2379 c      endif
2380 #endif
2381       return
2382       end
2383 C-----------------------------------------------------------------------------
2384       subroutine check_vecgrad
2385       implicit real*8 (a-h,o-z)
2386       include 'DIMENSIONS'
2387       include 'COMMON.IOUNITS'
2388       include 'COMMON.GEO'
2389       include 'COMMON.VAR'
2390       include 'COMMON.LOCAL'
2391       include 'COMMON.CHAIN'
2392       include 'COMMON.VECTORS'
2393       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2394       dimension uyt(3,maxres),uzt(3,maxres)
2395       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2396       double precision delta /1.0d-7/
2397       call vec_and_deriv
2398 cd      do i=1,nres
2399 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2400 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2401 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2402 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2403 cd     &     (dc_norm(if90,i),if90=1,3)
2404 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2405 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2406 cd          write(iout,'(a)')
2407 cd      enddo
2408       do i=1,nres
2409         do j=1,2
2410           do k=1,3
2411             do l=1,3
2412               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2413               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2414             enddo
2415           enddo
2416         enddo
2417       enddo
2418       call vec_and_deriv
2419       do i=1,nres
2420         do j=1,3
2421           uyt(j,i)=uy(j,i)
2422           uzt(j,i)=uz(j,i)
2423         enddo
2424       enddo
2425       do i=1,nres
2426 cd        write (iout,*) 'i=',i
2427         do k=1,3
2428           erij(k)=dc_norm(k,i)
2429         enddo
2430         do j=1,3
2431           do k=1,3
2432             dc_norm(k,i)=erij(k)
2433           enddo
2434           dc_norm(j,i)=dc_norm(j,i)+delta
2435 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2436 c          do k=1,3
2437 c            dc_norm(k,i)=dc_norm(k,i)/fac
2438 c          enddo
2439 c          write (iout,*) (dc_norm(k,i),k=1,3)
2440 c          write (iout,*) (erij(k),k=1,3)
2441           call vec_and_deriv
2442           do k=1,3
2443             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2444             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2445             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2446             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2447           enddo 
2448 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2449 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2450 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2451         enddo
2452         do k=1,3
2453           dc_norm(k,i)=erij(k)
2454         enddo
2455 cd        do k=1,3
2456 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2457 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2458 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2459 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2460 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2461 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2462 cd          write (iout,'(a)')
2463 cd        enddo
2464       enddo
2465       return
2466       end
2467 C--------------------------------------------------------------------------
2468       subroutine set_matrices
2469       implicit real*8 (a-h,o-z)
2470       include 'DIMENSIONS'
2471 #ifdef MPI
2472       include "mpif.h"
2473       include "COMMON.SETUP"
2474       integer IERR
2475       integer status(MPI_STATUS_SIZE)
2476 #endif
2477       include 'COMMON.IOUNITS'
2478       include 'COMMON.GEO'
2479       include 'COMMON.VAR'
2480       include 'COMMON.LOCAL'
2481       include 'COMMON.CHAIN'
2482       include 'COMMON.DERIV'
2483       include 'COMMON.INTERACT'
2484       include 'COMMON.CONTACTS'
2485       include 'COMMON.TORSION'
2486       include 'COMMON.VECTORS'
2487       include 'COMMON.FFIELD'
2488       double precision auxvec(2),auxmat(2,2)
2489 C
2490 C Compute the virtual-bond-torsional-angle dependent quantities needed
2491 C to calculate the el-loc multibody terms of various order.
2492 C
2493 #ifdef PARMAT
2494       do i=ivec_start+2,ivec_end+2
2495 #else
2496       do i=3,nres+1
2497 #endif
2498         if (i .lt. nres+1) then
2499           sin1=dsin(phi(i))
2500           cos1=dcos(phi(i))
2501           sintab(i-2)=sin1
2502           costab(i-2)=cos1
2503           obrot(1,i-2)=cos1
2504           obrot(2,i-2)=sin1
2505           sin2=dsin(2*phi(i))
2506           cos2=dcos(2*phi(i))
2507           sintab2(i-2)=sin2
2508           costab2(i-2)=cos2
2509           obrot2(1,i-2)=cos2
2510           obrot2(2,i-2)=sin2
2511           Ug(1,1,i-2)=-cos1
2512           Ug(1,2,i-2)=-sin1
2513           Ug(2,1,i-2)=-sin1
2514           Ug(2,2,i-2)= cos1
2515           Ug2(1,1,i-2)=-cos2
2516           Ug2(1,2,i-2)=-sin2
2517           Ug2(2,1,i-2)=-sin2
2518           Ug2(2,2,i-2)= cos2
2519         else
2520           costab(i-2)=1.0d0
2521           sintab(i-2)=0.0d0
2522           obrot(1,i-2)=1.0d0
2523           obrot(2,i-2)=0.0d0
2524           obrot2(1,i-2)=0.0d0
2525           obrot2(2,i-2)=0.0d0
2526           Ug(1,1,i-2)=1.0d0
2527           Ug(1,2,i-2)=0.0d0
2528           Ug(2,1,i-2)=0.0d0
2529           Ug(2,2,i-2)=1.0d0
2530           Ug2(1,1,i-2)=0.0d0
2531           Ug2(1,2,i-2)=0.0d0
2532           Ug2(2,1,i-2)=0.0d0
2533           Ug2(2,2,i-2)=0.0d0
2534         endif
2535         if (i .gt. 3 .and. i .lt. nres+1) then
2536           obrot_der(1,i-2)=-sin1
2537           obrot_der(2,i-2)= cos1
2538           Ugder(1,1,i-2)= sin1
2539           Ugder(1,2,i-2)=-cos1
2540           Ugder(2,1,i-2)=-cos1
2541           Ugder(2,2,i-2)=-sin1
2542           dwacos2=cos2+cos2
2543           dwasin2=sin2+sin2
2544           obrot2_der(1,i-2)=-dwasin2
2545           obrot2_der(2,i-2)= dwacos2
2546           Ug2der(1,1,i-2)= dwasin2
2547           Ug2der(1,2,i-2)=-dwacos2
2548           Ug2der(2,1,i-2)=-dwacos2
2549           Ug2der(2,2,i-2)=-dwasin2
2550         else
2551           obrot_der(1,i-2)=0.0d0
2552           obrot_der(2,i-2)=0.0d0
2553           Ugder(1,1,i-2)=0.0d0
2554           Ugder(1,2,i-2)=0.0d0
2555           Ugder(2,1,i-2)=0.0d0
2556           Ugder(2,2,i-2)=0.0d0
2557           obrot2_der(1,i-2)=0.0d0
2558           obrot2_der(2,i-2)=0.0d0
2559           Ug2der(1,1,i-2)=0.0d0
2560           Ug2der(1,2,i-2)=0.0d0
2561           Ug2der(2,1,i-2)=0.0d0
2562           Ug2der(2,2,i-2)=0.0d0
2563         endif
2564 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2565         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2566           iti = itortyp(itype(i-2))
2567         else
2568           iti=ntortyp+1
2569         endif
2570 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2571         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2572           iti1 = itortyp(itype(i-1))
2573         else
2574           iti1=ntortyp+1
2575         endif
2576 cd        write (iout,*) '*******i',i,' iti1',iti
2577 cd        write (iout,*) 'b1',b1(:,iti)
2578 cd        write (iout,*) 'b2',b2(:,iti)
2579 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2580 c        if (i .gt. iatel_s+2) then
2581         if (i .gt. nnt+2) then
2582           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2583           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2584           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2585      &    then
2586           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2587           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2588           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2589           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2590           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2591           endif
2592         else
2593           do k=1,2
2594             Ub2(k,i-2)=0.0d0
2595             Ctobr(k,i-2)=0.0d0 
2596             Dtobr2(k,i-2)=0.0d0
2597             do l=1,2
2598               EUg(l,k,i-2)=0.0d0
2599               CUg(l,k,i-2)=0.0d0
2600               DUg(l,k,i-2)=0.0d0
2601               DtUg2(l,k,i-2)=0.0d0
2602             enddo
2603           enddo
2604         endif
2605         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2606         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2607         do k=1,2
2608           muder(k,i-2)=Ub2der(k,i-2)
2609         enddo
2610 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2611         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2612           iti1 = itortyp(itype(i-1))
2613         else
2614           iti1=ntortyp+1
2615         endif
2616         do k=1,2
2617           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2618         enddo
2619 cd        write (iout,*) 'mu ',mu(:,i-2)
2620 cd        write (iout,*) 'mu1',mu1(:,i-2)
2621 cd        write (iout,*) 'mu2',mu2(:,i-2)
2622         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2623      &  then  
2624         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2625         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2626         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2627         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2628         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2629 C Vectors and matrices dependent on a single virtual-bond dihedral.
2630         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2631         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2632         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2633         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2634         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2635         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2636         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2637         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2638         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2639         endif
2640       enddo
2641 C Matrices dependent on two consecutive virtual-bond dihedrals.
2642 C The order of matrices is from left to right.
2643       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2644      &then
2645 c      do i=max0(ivec_start,2),ivec_end
2646       do i=2,nres-1
2647         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2648         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2649         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2650         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2651         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2652         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2653         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2654         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2655       enddo
2656       endif
2657 #if defined(MPI) && defined(PARMAT)
2658 #ifdef DEBUG
2659 c      if (fg_rank.eq.0) then
2660         write (iout,*) "Arrays UG and UGDER before GATHER"
2661         do i=1,nres-1
2662           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2663      &     ((ug(l,k,i),l=1,2),k=1,2),
2664      &     ((ugder(l,k,i),l=1,2),k=1,2)
2665         enddo
2666         write (iout,*) "Arrays UG2 and UG2DER"
2667         do i=1,nres-1
2668           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2669      &     ((ug2(l,k,i),l=1,2),k=1,2),
2670      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2671         enddo
2672         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2673         do i=1,nres-1
2674           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2675      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2676      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2677         enddo
2678         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2679         do i=1,nres-1
2680           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2681      &     costab(i),sintab(i),costab2(i),sintab2(i)
2682         enddo
2683         write (iout,*) "Array MUDER"
2684         do i=1,nres-1
2685           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2686         enddo
2687 c      endif
2688 #endif
2689       if (nfgtasks.gt.1) then
2690         time00=MPI_Wtime()
2691 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2692 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2693 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2694 #ifdef MATGATHER
2695         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2696      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2697      &   FG_COMM1,IERR)
2698         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2699      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2700      &   FG_COMM1,IERR)
2701         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2702      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2703      &   FG_COMM1,IERR)
2704         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2705      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2706      &   FG_COMM1,IERR)
2707         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2708      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2709      &   FG_COMM1,IERR)
2710         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2711      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2712      &   FG_COMM1,IERR)
2713         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2714      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2715      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2716         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2717      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2718      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2719         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2720      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2721      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2722         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2723      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2724      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2725         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2726      &  then
2727         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2728      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2729      &   FG_COMM1,IERR)
2730         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2731      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2732      &   FG_COMM1,IERR)
2733         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2734      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2735      &   FG_COMM1,IERR)
2736        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2737      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2738      &   FG_COMM1,IERR)
2739         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2740      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2745      &   FG_COMM1,IERR)
2746         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2747      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2748      &   FG_COMM1,IERR)
2749         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2750      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2751      &   FG_COMM1,IERR)
2752         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2753      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2754      &   FG_COMM1,IERR)
2755         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2756      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2757      &   FG_COMM1,IERR)
2758         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2759      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2760      &   FG_COMM1,IERR)
2761         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2762      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2763      &   FG_COMM1,IERR)
2764         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2765      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2766      &   FG_COMM1,IERR)
2767         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2768      &   ivec_count(fg_rank1),
2769      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2770      &   FG_COMM1,IERR)
2771         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2772      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2773      &   FG_COMM1,IERR)
2774        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2775      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2776      &   FG_COMM1,IERR)
2777         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2778      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2779      &   FG_COMM1,IERR)
2780        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2784      &   ivec_count(fg_rank1),
2785      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2786      &   FG_COMM1,IERR)
2787         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2788      &   ivec_count(fg_rank1),
2789      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2790      &   FG_COMM1,IERR)
2791         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2792      &   ivec_count(fg_rank1),
2793      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2794      &   MPI_MAT2,FG_COMM1,IERR)
2795         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2796      &   ivec_count(fg_rank1),
2797      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2798      &   MPI_MAT2,FG_COMM1,IERR)
2799         endif
2800 #else
2801 c Passes matrix info through the ring
2802       isend=fg_rank1
2803       irecv=fg_rank1-1
2804       if (irecv.lt.0) irecv=nfgtasks1-1 
2805       iprev=irecv
2806       inext=fg_rank1+1
2807       if (inext.ge.nfgtasks1) inext=0
2808       do i=1,nfgtasks1-1
2809 c        write (iout,*) "isend",isend," irecv",irecv
2810 c        call flush(iout)
2811         lensend=lentyp(isend)
2812         lenrecv=lentyp(irecv)
2813 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2814 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2815 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2816 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2817 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2818 c        write (iout,*) "Gather ROTAT1"
2819 c        call flush(iout)
2820 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2821 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2822 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2823 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2824 c        write (iout,*) "Gather ROTAT2"
2825 c        call flush(iout)
2826         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2827      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2828      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2829      &   iprev,4400+irecv,FG_COMM,status,IERR)
2830 c        write (iout,*) "Gather ROTAT_OLD"
2831 c        call flush(iout)
2832         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2833      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2834      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2835      &   iprev,5500+irecv,FG_COMM,status,IERR)
2836 c        write (iout,*) "Gather PRECOMP11"
2837 c        call flush(iout)
2838         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2839      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2840      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2841      &   iprev,6600+irecv,FG_COMM,status,IERR)
2842 c        write (iout,*) "Gather PRECOMP12"
2843 c        call flush(iout)
2844         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2845      &  then
2846         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2847      &   MPI_ROTAT2(lensend),inext,7700+isend,
2848      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2849      &   iprev,7700+irecv,FG_COMM,status,IERR)
2850 c        write (iout,*) "Gather PRECOMP21"
2851 c        call flush(iout)
2852         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2853      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2854      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2855      &   iprev,8800+irecv,FG_COMM,status,IERR)
2856 c        write (iout,*) "Gather PRECOMP22"
2857 c        call flush(iout)
2858         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2859      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2860      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2861      &   MPI_PRECOMP23(lenrecv),
2862      &   iprev,9900+irecv,FG_COMM,status,IERR)
2863 c        write (iout,*) "Gather PRECOMP23"
2864 c        call flush(iout)
2865         endif
2866         isend=irecv
2867         irecv=irecv-1
2868         if (irecv.lt.0) irecv=nfgtasks1-1
2869       enddo
2870 #endif
2871         time_gather=time_gather+MPI_Wtime()-time00
2872       endif
2873 #ifdef DEBUG
2874 c      if (fg_rank.eq.0) then
2875         write (iout,*) "Arrays UG and UGDER"
2876         do i=1,nres-1
2877           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2878      &     ((ug(l,k,i),l=1,2),k=1,2),
2879      &     ((ugder(l,k,i),l=1,2),k=1,2)
2880         enddo
2881         write (iout,*) "Arrays UG2 and UG2DER"
2882         do i=1,nres-1
2883           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2884      &     ((ug2(l,k,i),l=1,2),k=1,2),
2885      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2886         enddo
2887         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2888         do i=1,nres-1
2889           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2890      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2891      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2892         enddo
2893         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2894         do i=1,nres-1
2895           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2896      &     costab(i),sintab(i),costab2(i),sintab2(i)
2897         enddo
2898         write (iout,*) "Array MUDER"
2899         do i=1,nres-1
2900           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2901         enddo
2902 c      endif
2903 #endif
2904 #endif
2905 cd      do i=1,nres
2906 cd        iti = itortyp(itype(i))
2907 cd        write (iout,*) i
2908 cd        do j=1,2
2909 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2910 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2911 cd        enddo
2912 cd      enddo
2913       return
2914       end
2915 C--------------------------------------------------------------------------
2916       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2917 C
2918 C This subroutine calculates the average interaction energy and its gradient
2919 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2920 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2921 C The potential depends both on the distance of peptide-group centers and on 
2922 C the orientation of the CA-CA virtual bonds.
2923
2924       implicit real*8 (a-h,o-z)
2925 #ifdef MPI
2926       include 'mpif.h'
2927 #endif
2928       include 'DIMENSIONS'
2929       include 'COMMON.CONTROL'
2930       include 'COMMON.SETUP'
2931       include 'COMMON.IOUNITS'
2932       include 'COMMON.GEO'
2933       include 'COMMON.VAR'
2934       include 'COMMON.LOCAL'
2935       include 'COMMON.CHAIN'
2936       include 'COMMON.DERIV'
2937       include 'COMMON.INTERACT'
2938       include 'COMMON.CONTACTS'
2939       include 'COMMON.TORSION'
2940       include 'COMMON.VECTORS'
2941       include 'COMMON.FFIELD'
2942       include 'COMMON.TIME1'
2943       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2944      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2945       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2946      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2947       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2948      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2949      &    num_conti,j1,j2
2950 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2951 #ifdef MOMENT
2952       double precision scal_el /1.0d0/
2953 #else
2954       double precision scal_el /0.5d0/
2955 #endif
2956 C 12/13/98 
2957 C 13-go grudnia roku pamietnego... 
2958       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2959      &                   0.0d0,1.0d0,0.0d0,
2960      &                   0.0d0,0.0d0,1.0d0/
2961 cd      write(iout,*) 'In EELEC'
2962 cd      do i=1,nloctyp
2963 cd        write(iout,*) 'Type',i
2964 cd        write(iout,*) 'B1',B1(:,i)
2965 cd        write(iout,*) 'B2',B2(:,i)
2966 cd        write(iout,*) 'CC',CC(:,:,i)
2967 cd        write(iout,*) 'DD',DD(:,:,i)
2968 cd        write(iout,*) 'EE',EE(:,:,i)
2969 cd      enddo
2970 cd      call check_vecgrad
2971 cd      stop
2972       if (icheckgrad.eq.1) then
2973         do i=1,nres-1
2974           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2975           do k=1,3
2976             dc_norm(k,i)=dc(k,i)*fac
2977           enddo
2978 c          write (iout,*) 'i',i,' fac',fac
2979         enddo
2980       endif
2981       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2982      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2983      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2984 c        call vec_and_deriv
2985 #ifdef TIMING
2986         time01=MPI_Wtime()
2987 #endif
2988         call set_matrices
2989 #ifdef TIMING
2990         time_mat=time_mat+MPI_Wtime()-time01
2991 #endif
2992       endif
2993 cd      do i=1,nres-1
2994 cd        write (iout,*) 'i=',i
2995 cd        do k=1,3
2996 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2997 cd        enddo
2998 cd        do k=1,3
2999 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3000 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3001 cd        enddo
3002 cd      enddo
3003       t_eelecij=0.0d0
3004       ees=0.0D0
3005       evdw1=0.0D0
3006       eel_loc=0.0d0 
3007       eello_turn3=0.0d0
3008       eello_turn4=0.0d0
3009       ind=0
3010       do i=1,nres
3011         num_cont_hb(i)=0
3012       enddo
3013 cd      print '(a)','Enter EELEC'
3014 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3015       do i=1,nres
3016         gel_loc_loc(i)=0.0d0
3017         gcorr_loc(i)=0.0d0
3018       enddo
3019 c
3020 c
3021 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3022 C
3023 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3024 C
3025       do i=iturn3_start,iturn3_end
3026 C        if (itype(i).eq.21 .or. itype(i+1).eq.21
3027 C     &  .or. itype(i+2).eq.21 .or. itype(i+3).eq.21.or.itype(i+4).eq.21)
3028 C     &  cycle
3029         dxi=dc(1,i)
3030         dyi=dc(2,i)
3031         dzi=dc(3,i)
3032         dx_normi=dc_norm(1,i)
3033         dy_normi=dc_norm(2,i)
3034         dz_normi=dc_norm(3,i)
3035         xmedi=c(1,i)+0.5d0*dxi
3036         ymedi=c(2,i)+0.5d0*dyi
3037         zmedi=c(3,i)+0.5d0*dzi
3038         num_conti=0
3039         call eelecij(i,i+2,ees,evdw1,eel_loc)
3040         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3041         num_cont_hb(i)=num_conti
3042       enddo
3043       do i=iturn4_start,iturn4_end
3044 C        if (itype(i).eq.21 .or. itype(i+1).eq.21
3045 C     &  .or. itype(i+2).eq.21 .or. itype(i+3).eq.21.or.itype(i+4).eq.21
3046 C     &  .or. itype(i+5).eq.21)
3047 C     & cycle
3048         dxi=dc(1,i)
3049         dyi=dc(2,i)
3050         dzi=dc(3,i)
3051         dx_normi=dc_norm(1,i)
3052         dy_normi=dc_norm(2,i)
3053         dz_normi=dc_norm(3,i)
3054         xmedi=c(1,i)+0.5d0*dxi
3055         ymedi=c(2,i)+0.5d0*dyi
3056         zmedi=c(3,i)+0.5d0*dzi
3057         num_conti=num_cont_hb(i)
3058         call eelecij(i,i+3,ees,evdw1,eel_loc)
3059         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3060         num_cont_hb(i)=num_conti
3061       enddo   ! i
3062 c
3063 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3064 c
3065       do i=iatel_s,iatel_e
3066 C          if (itype(i).eq.21 .or. itype(i+1).eq.21
3067 C     &.or.itype(i+2)) cycle
3068         dxi=dc(1,i)
3069         dyi=dc(2,i)
3070         dzi=dc(3,i)
3071         dx_normi=dc_norm(1,i)
3072         dy_normi=dc_norm(2,i)
3073         dz_normi=dc_norm(3,i)
3074         xmedi=c(1,i)+0.5d0*dxi
3075         ymedi=c(2,i)+0.5d0*dyi
3076         zmedi=c(3,i)+0.5d0*dzi
3077 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3078         num_conti=num_cont_hb(i)
3079         do j=ielstart(i),ielend(i)
3080 C          if (itype(j).eq.21 .or. itype(j+1).eq.21
3081 C     &.or.itype(j+2)) cycle
3082           call eelecij(i,j,ees,evdw1,eel_loc)
3083         enddo ! j
3084         num_cont_hb(i)=num_conti
3085       enddo   ! i
3086 c      write (iout,*) "Number of loop steps in EELEC:",ind
3087 cd      do i=1,nres
3088 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3089 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3090 cd      enddo
3091 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3092 ccc      eel_loc=eel_loc+eello_turn3
3093 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3094       return
3095       end
3096 C-------------------------------------------------------------------------------
3097       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3098       implicit real*8 (a-h,o-z)
3099       include 'DIMENSIONS'
3100 #ifdef MPI
3101       include "mpif.h"
3102 #endif
3103       include 'COMMON.CONTROL'
3104       include 'COMMON.IOUNITS'
3105       include 'COMMON.GEO'
3106       include 'COMMON.VAR'
3107       include 'COMMON.LOCAL'
3108       include 'COMMON.CHAIN'
3109       include 'COMMON.DERIV'
3110       include 'COMMON.INTERACT'
3111       include 'COMMON.CONTACTS'
3112       include 'COMMON.TORSION'
3113       include 'COMMON.VECTORS'
3114       include 'COMMON.FFIELD'
3115       include 'COMMON.TIME1'
3116       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3117      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3118       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3119      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3120       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3121      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3122      &    num_conti,j1,j2
3123 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3124 #ifdef MOMENT
3125       double precision scal_el /1.0d0/
3126 #else
3127       double precision scal_el /0.5d0/
3128 #endif
3129 C 12/13/98 
3130 C 13-go grudnia roku pamietnego... 
3131       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3132      &                   0.0d0,1.0d0,0.0d0,
3133      &                   0.0d0,0.0d0,1.0d0/
3134 c          time00=MPI_Wtime()
3135 cd      write (iout,*) "eelecij",i,j
3136 c          ind=ind+1
3137           iteli=itel(i)
3138           itelj=itel(j)
3139           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3140           aaa=app(iteli,itelj)
3141           bbb=bpp(iteli,itelj)
3142           ael6i=ael6(iteli,itelj)
3143           ael3i=ael3(iteli,itelj) 
3144           dxj=dc(1,j)
3145           dyj=dc(2,j)
3146           dzj=dc(3,j)
3147           dx_normj=dc_norm(1,j)
3148           dy_normj=dc_norm(2,j)
3149           dz_normj=dc_norm(3,j)
3150           xj=c(1,j)+0.5D0*dxj-xmedi
3151           yj=c(2,j)+0.5D0*dyj-ymedi
3152           zj=c(3,j)+0.5D0*dzj-zmedi
3153           rij=xj*xj+yj*yj+zj*zj
3154           rrmij=1.0D0/rij
3155           rij=dsqrt(rij)
3156           rmij=1.0D0/rij
3157           r3ij=rrmij*rmij
3158           r6ij=r3ij*r3ij  
3159           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3160           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3161           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3162           fac=cosa-3.0D0*cosb*cosg
3163           ev1=aaa*r6ij*r6ij
3164 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3165           if (j.eq.i+2) ev1=scal_el*ev1
3166           ev2=bbb*r6ij
3167           fac3=ael6i*r6ij
3168           fac4=ael3i*r3ij
3169           evdwij=ev1+ev2
3170           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3171           el2=fac4*fac       
3172           eesij=el1+el2
3173 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3174           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3175           ees=ees+eesij
3176           evdw1=evdw1+evdwij
3177 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3178 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3179 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3180 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3181
3182           if (energy_dec) then 
3183               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3184               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3185           endif
3186
3187 C
3188 C Calculate contributions to the Cartesian gradient.
3189 C
3190 #ifdef SPLITELE
3191           facvdw=-6*rrmij*(ev1+evdwij)
3192           facel=-3*rrmij*(el1+eesij)
3193           fac1=fac
3194           erij(1)=xj*rmij
3195           erij(2)=yj*rmij
3196           erij(3)=zj*rmij
3197 *
3198 * Radial derivatives. First process both termini of the fragment (i,j)
3199 *
3200           ggg(1)=facel*xj
3201           ggg(2)=facel*yj
3202           ggg(3)=facel*zj
3203 c          do k=1,3
3204 c            ghalf=0.5D0*ggg(k)
3205 c            gelc(k,i)=gelc(k,i)+ghalf
3206 c            gelc(k,j)=gelc(k,j)+ghalf
3207 c          enddo
3208 c 9/28/08 AL Gradient compotents will be summed only at the end
3209           do k=1,3
3210             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3211             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3212           enddo
3213 *
3214 * Loop over residues i+1 thru j-1.
3215 *
3216 cgrad          do k=i+1,j-1
3217 cgrad            do l=1,3
3218 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3219 cgrad            enddo
3220 cgrad          enddo
3221           ggg(1)=facvdw*xj
3222           ggg(2)=facvdw*yj
3223           ggg(3)=facvdw*zj
3224 c          do k=1,3
3225 c            ghalf=0.5D0*ggg(k)
3226 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3227 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3228 c          enddo
3229 c 9/28/08 AL Gradient compotents will be summed only at the end
3230           do k=1,3
3231             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3232             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3233           enddo
3234 *
3235 * Loop over residues i+1 thru j-1.
3236 *
3237 cgrad          do k=i+1,j-1
3238 cgrad            do l=1,3
3239 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3240 cgrad            enddo
3241 cgrad          enddo
3242 #else
3243           facvdw=ev1+evdwij 
3244           facel=el1+eesij  
3245           fac1=fac
3246           fac=-3*rrmij*(facvdw+facvdw+facel)
3247           erij(1)=xj*rmij
3248           erij(2)=yj*rmij
3249           erij(3)=zj*rmij
3250 *
3251 * Radial derivatives. First process both termini of the fragment (i,j)
3252
3253           ggg(1)=fac*xj
3254           ggg(2)=fac*yj
3255           ggg(3)=fac*zj
3256 c          do k=1,3
3257 c            ghalf=0.5D0*ggg(k)
3258 c            gelc(k,i)=gelc(k,i)+ghalf
3259 c            gelc(k,j)=gelc(k,j)+ghalf
3260 c          enddo
3261 c 9/28/08 AL Gradient compotents will be summed only at the end
3262           do k=1,3
3263             gelc_long(k,j)=gelc(k,j)+ggg(k)
3264             gelc_long(k,i)=gelc(k,i)-ggg(k)
3265           enddo
3266 *
3267 * Loop over residues i+1 thru j-1.
3268 *
3269 cgrad          do k=i+1,j-1
3270 cgrad            do l=1,3
3271 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3272 cgrad            enddo
3273 cgrad          enddo
3274 c 9/28/08 AL Gradient compotents will be summed only at the end
3275           ggg(1)=facvdw*xj
3276           ggg(2)=facvdw*yj
3277           ggg(3)=facvdw*zj
3278           do k=1,3
3279             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3280             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3281           enddo
3282 #endif
3283 *
3284 * Angular part
3285 *          
3286           ecosa=2.0D0*fac3*fac1+fac4
3287           fac4=-3.0D0*fac4
3288           fac3=-6.0D0*fac3
3289           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3290           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3291           do k=1,3
3292             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3293             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3294           enddo
3295 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3296 cd   &          (dcosg(k),k=1,3)
3297           do k=1,3
3298             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3299           enddo
3300 c          do k=1,3
3301 c            ghalf=0.5D0*ggg(k)
3302 c            gelc(k,i)=gelc(k,i)+ghalf
3303 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3304 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3305 c            gelc(k,j)=gelc(k,j)+ghalf
3306 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3307 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3308 c          enddo
3309 cgrad          do k=i+1,j-1
3310 cgrad            do l=1,3
3311 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3312 cgrad            enddo
3313 cgrad          enddo
3314           do k=1,3
3315             gelc(k,i)=gelc(k,i)
3316      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3317      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3318             gelc(k,j)=gelc(k,j)
3319      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3320      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3321             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3322             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3323           enddo
3324           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3325      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3326      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3327 C
3328 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3329 C   energy of a peptide unit is assumed in the form of a second-order 
3330 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3331 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3332 C   are computed for EVERY pair of non-contiguous peptide groups.
3333 C
3334           if (j.lt.nres-1) then
3335             j1=j+1
3336             j2=j-1
3337           else
3338             j1=j-1
3339             j2=j-2
3340           endif
3341           kkk=0
3342           do k=1,2
3343             do l=1,2
3344               kkk=kkk+1
3345               muij(kkk)=mu(k,i)*mu(l,j)
3346             enddo
3347           enddo  
3348 cd         write (iout,*) 'EELEC: i',i,' j',j
3349 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3350 cd          write(iout,*) 'muij',muij
3351           ury=scalar(uy(1,i),erij)
3352           urz=scalar(uz(1,i),erij)
3353           vry=scalar(uy(1,j),erij)
3354           vrz=scalar(uz(1,j),erij)
3355           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3356           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3357           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3358           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3359           fac=dsqrt(-ael6i)*r3ij
3360           a22=a22*fac
3361           a23=a23*fac
3362           a32=a32*fac
3363           a33=a33*fac
3364 cd          write (iout,'(4i5,4f10.5)')
3365 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3366 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3367 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3368 cd     &      uy(:,j),uz(:,j)
3369 cd          write (iout,'(4f10.5)') 
3370 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3371 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3372 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3373 cd           write (iout,'(9f10.5/)') 
3374 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3375 C Derivatives of the elements of A in virtual-bond vectors
3376           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3377           do k=1,3
3378             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3379             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3380             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3381             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3382             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3383             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3384             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3385             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3386             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3387             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3388             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3389             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3390           enddo
3391 C Compute radial contributions to the gradient
3392           facr=-3.0d0*rrmij
3393           a22der=a22*facr
3394           a23der=a23*facr
3395           a32der=a32*facr
3396           a33der=a33*facr
3397           agg(1,1)=a22der*xj
3398           agg(2,1)=a22der*yj
3399           agg(3,1)=a22der*zj
3400           agg(1,2)=a23der*xj
3401           agg(2,2)=a23der*yj
3402           agg(3,2)=a23der*zj
3403           agg(1,3)=a32der*xj
3404           agg(2,3)=a32der*yj
3405           agg(3,3)=a32der*zj
3406           agg(1,4)=a33der*xj
3407           agg(2,4)=a33der*yj
3408           agg(3,4)=a33der*zj
3409 C Add the contributions coming from er
3410           fac3=-3.0d0*fac
3411           do k=1,3
3412             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3413             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3414             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3415             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3416           enddo
3417           do k=1,3
3418 C Derivatives in DC(i) 
3419 cgrad            ghalf1=0.5d0*agg(k,1)
3420 cgrad            ghalf2=0.5d0*agg(k,2)
3421 cgrad            ghalf3=0.5d0*agg(k,3)
3422 cgrad            ghalf4=0.5d0*agg(k,4)
3423             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3424      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3425             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3426      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3427             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3428      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3429             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3430      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3431 C Derivatives in DC(i+1)
3432             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3433      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3434             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3435      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3436             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3437      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3438             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3439      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3440 C Derivatives in DC(j)
3441             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3442      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3443             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3444      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3445             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3446      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3447             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3448      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3449 C Derivatives in DC(j+1) or DC(nres-1)
3450             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3451      &      -3.0d0*vryg(k,3)*ury)
3452             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3453      &      -3.0d0*vrzg(k,3)*ury)
3454             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3455      &      -3.0d0*vryg(k,3)*urz)
3456             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3457      &      -3.0d0*vrzg(k,3)*urz)
3458 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3459 cgrad              do l=1,4
3460 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3461 cgrad              enddo
3462 cgrad            endif
3463           enddo
3464           acipa(1,1)=a22
3465           acipa(1,2)=a23
3466           acipa(2,1)=a32
3467           acipa(2,2)=a33
3468           a22=-a22
3469           a23=-a23
3470           do l=1,2
3471             do k=1,3
3472               agg(k,l)=-agg(k,l)
3473               aggi(k,l)=-aggi(k,l)
3474               aggi1(k,l)=-aggi1(k,l)
3475               aggj(k,l)=-aggj(k,l)
3476               aggj1(k,l)=-aggj1(k,l)
3477             enddo
3478           enddo
3479           if (j.lt.nres-1) then
3480             a22=-a22
3481             a32=-a32
3482             do l=1,3,2
3483               do k=1,3
3484                 agg(k,l)=-agg(k,l)
3485                 aggi(k,l)=-aggi(k,l)
3486                 aggi1(k,l)=-aggi1(k,l)
3487                 aggj(k,l)=-aggj(k,l)
3488                 aggj1(k,l)=-aggj1(k,l)
3489               enddo
3490             enddo
3491           else
3492             a22=-a22
3493             a23=-a23
3494             a32=-a32
3495             a33=-a33
3496             do l=1,4
3497               do k=1,3
3498                 agg(k,l)=-agg(k,l)
3499                 aggi(k,l)=-aggi(k,l)
3500                 aggi1(k,l)=-aggi1(k,l)
3501                 aggj(k,l)=-aggj(k,l)
3502                 aggj1(k,l)=-aggj1(k,l)
3503               enddo
3504             enddo 
3505           endif    
3506           ENDIF ! WCORR
3507           IF (wel_loc.gt.0.0d0) THEN
3508 C Contribution to the local-electrostatic energy coming from the i-j pair
3509           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3510      &     +a33*muij(4)
3511 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3512
3513           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3514      &            'eelloc',i,j,eel_loc_ij
3515
3516           eel_loc=eel_loc+eel_loc_ij
3517 C Partial derivatives in virtual-bond dihedral angles gamma
3518           if (i.gt.1)
3519      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3520      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3521      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3522           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3523      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3524      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3525 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3526           do l=1,3
3527             ggg(l)=agg(l,1)*muij(1)+
3528      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3529             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3530             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3531 cgrad            ghalf=0.5d0*ggg(l)
3532 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3533 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3534           enddo
3535 cgrad          do k=i+1,j2
3536 cgrad            do l=1,3
3537 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3538 cgrad            enddo
3539 cgrad          enddo
3540 C Remaining derivatives of eello
3541           do l=1,3
3542             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3543      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3544             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3545      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3546             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3547      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3548             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3549      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3550           enddo
3551           ENDIF
3552 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3553 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3554           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3555      &       .and. num_conti.le.maxconts) then
3556 c            write (iout,*) i,j," entered corr"
3557 C
3558 C Calculate the contact function. The ith column of the array JCONT will 
3559 C contain the numbers of atoms that make contacts with the atom I (of numbers
3560 C greater than I). The arrays FACONT and GACONT will contain the values of
3561 C the contact function and its derivative.
3562 c           r0ij=1.02D0*rpp(iteli,itelj)
3563 c           r0ij=1.11D0*rpp(iteli,itelj)
3564             r0ij=2.20D0*rpp(iteli,itelj)
3565 c           r0ij=1.55D0*rpp(iteli,itelj)
3566             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3567             if (fcont.gt.0.0D0) then
3568               num_conti=num_conti+1
3569               if (num_conti.gt.maxconts) then
3570                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3571      &                         ' will skip next contacts for this conf.'
3572               else
3573                 jcont_hb(num_conti,i)=j
3574 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3575 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3576                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3577      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3578 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3579 C  terms.
3580                 d_cont(num_conti,i)=rij
3581 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3582 C     --- Electrostatic-interaction matrix --- 
3583                 a_chuj(1,1,num_conti,i)=a22
3584                 a_chuj(1,2,num_conti,i)=a23
3585                 a_chuj(2,1,num_conti,i)=a32
3586                 a_chuj(2,2,num_conti,i)=a33
3587 C     --- Gradient of rij
3588                 do kkk=1,3
3589                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3590                 enddo
3591                 kkll=0
3592                 do k=1,2
3593                   do l=1,2
3594                     kkll=kkll+1
3595                     do m=1,3
3596                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3597                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3598                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3599                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3600                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3601                     enddo
3602                   enddo
3603                 enddo
3604                 ENDIF
3605                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3606 C Calculate contact energies
3607                 cosa4=4.0D0*cosa
3608                 wij=cosa-3.0D0*cosb*cosg
3609                 cosbg1=cosb+cosg
3610                 cosbg2=cosb-cosg
3611 c               fac3=dsqrt(-ael6i)/r0ij**3     
3612                 fac3=dsqrt(-ael6i)*r3ij
3613 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3614                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3615                 if (ees0tmp.gt.0) then
3616                   ees0pij=dsqrt(ees0tmp)
3617                 else
3618                   ees0pij=0
3619                 endif
3620 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3621                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3622                 if (ees0tmp.gt.0) then
3623                   ees0mij=dsqrt(ees0tmp)
3624                 else
3625                   ees0mij=0
3626                 endif
3627 c               ees0mij=0.0D0
3628                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3629                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3630 C Diagnostics. Comment out or remove after debugging!
3631 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3632 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3633 c               ees0m(num_conti,i)=0.0D0
3634 C End diagnostics.
3635 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3636 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3637 C Angular derivatives of the contact function
3638                 ees0pij1=fac3/ees0pij 
3639                 ees0mij1=fac3/ees0mij
3640                 fac3p=-3.0D0*fac3*rrmij
3641                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3642                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3643 c               ees0mij1=0.0D0
3644                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3645                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3646                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3647                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3648                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3649                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3650                 ecosap=ecosa1+ecosa2
3651                 ecosbp=ecosb1+ecosb2
3652                 ecosgp=ecosg1+ecosg2
3653                 ecosam=ecosa1-ecosa2
3654                 ecosbm=ecosb1-ecosb2
3655                 ecosgm=ecosg1-ecosg2
3656 C Diagnostics
3657 c               ecosap=ecosa1
3658 c               ecosbp=ecosb1
3659 c               ecosgp=ecosg1
3660 c               ecosam=0.0D0
3661 c               ecosbm=0.0D0
3662 c               ecosgm=0.0D0
3663 C End diagnostics
3664                 facont_hb(num_conti,i)=fcont
3665                 fprimcont=fprimcont/rij
3666 cd              facont_hb(num_conti,i)=1.0D0
3667 C Following line is for diagnostics.
3668 cd              fprimcont=0.0D0
3669                 do k=1,3
3670                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3671                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3672                 enddo
3673                 do k=1,3
3674                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3675                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3676                 enddo
3677                 gggp(1)=gggp(1)+ees0pijp*xj
3678                 gggp(2)=gggp(2)+ees0pijp*yj
3679                 gggp(3)=gggp(3)+ees0pijp*zj
3680                 gggm(1)=gggm(1)+ees0mijp*xj
3681                 gggm(2)=gggm(2)+ees0mijp*yj
3682                 gggm(3)=gggm(3)+ees0mijp*zj
3683 C Derivatives due to the contact function
3684                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3685                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3686                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3687                 do k=1,3
3688 c
3689 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3690 c          following the change of gradient-summation algorithm.
3691 c
3692 cgrad                  ghalfp=0.5D0*gggp(k)
3693 cgrad                  ghalfm=0.5D0*gggm(k)
3694                   gacontp_hb1(k,num_conti,i)=!ghalfp
3695      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3696      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3697                   gacontp_hb2(k,num_conti,i)=!ghalfp
3698      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3699      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3700                   gacontp_hb3(k,num_conti,i)=gggp(k)
3701                   gacontm_hb1(k,num_conti,i)=!ghalfm
3702      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3703      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3704                   gacontm_hb2(k,num_conti,i)=!ghalfm
3705      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3706      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3707                   gacontm_hb3(k,num_conti,i)=gggm(k)
3708                 enddo
3709 C Diagnostics. Comment out or remove after debugging!
3710 cdiag           do k=1,3
3711 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3712 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3713 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3714 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3715 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3716 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3717 cdiag           enddo
3718               ENDIF ! wcorr
3719               endif  ! num_conti.le.maxconts
3720             endif  ! fcont.gt.0
3721           endif    ! j.gt.i+1
3722           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3723             do k=1,4
3724               do l=1,3
3725                 ghalf=0.5d0*agg(l,k)
3726                 aggi(l,k)=aggi(l,k)+ghalf
3727                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3728                 aggj(l,k)=aggj(l,k)+ghalf
3729               enddo
3730             enddo
3731             if (j.eq.nres-1 .and. i.lt.j-2) then
3732               do k=1,4
3733                 do l=1,3
3734                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3735                 enddo
3736               enddo
3737             endif
3738           endif
3739 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3740       return
3741       end
3742 C-----------------------------------------------------------------------------
3743       subroutine eturn3(i,eello_turn3)
3744 C Third- and fourth-order contributions from turns
3745       implicit real*8 (a-h,o-z)
3746       include 'DIMENSIONS'
3747       include 'COMMON.IOUNITS'
3748       include 'COMMON.GEO'
3749       include 'COMMON.VAR'
3750       include 'COMMON.LOCAL'
3751       include 'COMMON.CHAIN'
3752       include 'COMMON.DERIV'
3753       include 'COMMON.INTERACT'
3754       include 'COMMON.CONTACTS'
3755       include 'COMMON.TORSION'
3756       include 'COMMON.VECTORS'
3757       include 'COMMON.FFIELD'
3758       include 'COMMON.CONTROL'
3759       dimension ggg(3)
3760       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3761      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3762      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3763       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3764      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3765       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3766      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3767      &    num_conti,j1,j2
3768       j=i+2
3769 c      write (iout,*) "eturn3",i,j,j1,j2
3770       a_temp(1,1)=a22
3771       a_temp(1,2)=a23
3772       a_temp(2,1)=a32
3773       a_temp(2,2)=a33
3774 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3775 C
3776 C               Third-order contributions
3777 C        
3778 C                 (i+2)o----(i+3)
3779 C                      | |
3780 C                      | |
3781 C                 (i+1)o----i
3782 C
3783 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3784 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3785         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3786         call transpose2(auxmat(1,1),auxmat1(1,1))
3787         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3788         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3789         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3790      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3791 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3792 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3793 cd     &    ' eello_turn3_num',4*eello_turn3_num
3794 C Derivatives in gamma(i)
3795         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3796         call transpose2(auxmat2(1,1),auxmat3(1,1))
3797         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3798         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3799 C Derivatives in gamma(i+1)
3800         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3801         call transpose2(auxmat2(1,1),auxmat3(1,1))
3802         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3803         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3804      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3805 C Cartesian derivatives
3806         do l=1,3
3807 c            ghalf1=0.5d0*agg(l,1)
3808 c            ghalf2=0.5d0*agg(l,2)
3809 c            ghalf3=0.5d0*agg(l,3)
3810 c            ghalf4=0.5d0*agg(l,4)
3811           a_temp(1,1)=aggi(l,1)!+ghalf1
3812           a_temp(1,2)=aggi(l,2)!+ghalf2
3813           a_temp(2,1)=aggi(l,3)!+ghalf3
3814           a_temp(2,2)=aggi(l,4)!+ghalf4
3815           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3816           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3817      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3818           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3819           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3820           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3821           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3822           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3823           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3824      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3825           a_temp(1,1)=aggj(l,1)!+ghalf1
3826           a_temp(1,2)=aggj(l,2)!+ghalf2
3827           a_temp(2,1)=aggj(l,3)!+ghalf3
3828           a_temp(2,2)=aggj(l,4)!+ghalf4
3829           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3830           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3831      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3832           a_temp(1,1)=aggj1(l,1)
3833           a_temp(1,2)=aggj1(l,2)
3834           a_temp(2,1)=aggj1(l,3)
3835           a_temp(2,2)=aggj1(l,4)
3836           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3837           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3838      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3839         enddo
3840       return
3841       end
3842 C-------------------------------------------------------------------------------
3843       subroutine eturn4(i,eello_turn4)
3844 C Third- and fourth-order contributions from turns
3845       implicit real*8 (a-h,o-z)
3846       include 'DIMENSIONS'
3847       include 'COMMON.IOUNITS'
3848       include 'COMMON.GEO'
3849       include 'COMMON.VAR'
3850       include 'COMMON.LOCAL'
3851       include 'COMMON.CHAIN'
3852       include 'COMMON.DERIV'
3853       include 'COMMON.INTERACT'
3854       include 'COMMON.CONTACTS'
3855       include 'COMMON.TORSION'
3856       include 'COMMON.VECTORS'
3857       include 'COMMON.FFIELD'
3858       include 'COMMON.CONTROL'
3859       dimension ggg(3)
3860       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3861      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3862      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3863       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3864      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3865       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3866      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3867      &    num_conti,j1,j2
3868       j=i+3
3869 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3870 C
3871 C               Fourth-order contributions
3872 C        
3873 C                 (i+3)o----(i+4)
3874 C                     /  |
3875 C               (i+2)o   |
3876 C                     \  |
3877 C                 (i+1)o----i
3878 C
3879 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3880 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3881 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3882         a_temp(1,1)=a22
3883         a_temp(1,2)=a23
3884         a_temp(2,1)=a32
3885         a_temp(2,2)=a33
3886         iti1=itortyp(itype(i+1))
3887         iti2=itortyp(itype(i+2))
3888         iti3=itortyp(itype(i+3))
3889 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3890         call transpose2(EUg(1,1,i+1),e1t(1,1))
3891         call transpose2(Eug(1,1,i+2),e2t(1,1))
3892         call transpose2(Eug(1,1,i+3),e3t(1,1))
3893         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3894         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3895         s1=scalar2(b1(1,iti2),auxvec(1))
3896         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3897         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3898         s2=scalar2(b1(1,iti1),auxvec(1))
3899         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3900         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3901         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3902         eello_turn4=eello_turn4-(s1+s2+s3)
3903         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3904      &      'eturn4',i,j,-(s1+s2+s3)
3905 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3906 cd     &    ' eello_turn4_num',8*eello_turn4_num
3907 C Derivatives in gamma(i)
3908         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3909         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3910         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3911         s1=scalar2(b1(1,iti2),auxvec(1))
3912         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3913         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3914         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3915 C Derivatives in gamma(i+1)
3916         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3917         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3918         s2=scalar2(b1(1,iti1),auxvec(1))
3919         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3920         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3921         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3923 C Derivatives in gamma(i+2)
3924         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3925         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3926         s1=scalar2(b1(1,iti2),auxvec(1))
3927         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3928         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3929         s2=scalar2(b1(1,iti1),auxvec(1))
3930         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3931         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3932         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3933         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3934 C Cartesian derivatives
3935 C Derivatives of this turn contributions in DC(i+2)
3936         if (j.lt.nres-1) then
3937           do l=1,3
3938             a_temp(1,1)=agg(l,1)
3939             a_temp(1,2)=agg(l,2)
3940             a_temp(2,1)=agg(l,3)
3941             a_temp(2,2)=agg(l,4)
3942             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3943             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3944             s1=scalar2(b1(1,iti2),auxvec(1))
3945             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3946             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3947             s2=scalar2(b1(1,iti1),auxvec(1))
3948             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3949             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3950             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3951             ggg(l)=-(s1+s2+s3)
3952             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3953           enddo
3954         endif
3955 C Remaining derivatives of this turn contribution
3956         do l=1,3
3957           a_temp(1,1)=aggi(l,1)
3958           a_temp(1,2)=aggi(l,2)
3959           a_temp(2,1)=aggi(l,3)
3960           a_temp(2,2)=aggi(l,4)
3961           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3962           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3963           s1=scalar2(b1(1,iti2),auxvec(1))
3964           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3965           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3966           s2=scalar2(b1(1,iti1),auxvec(1))
3967           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3968           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3969           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3970           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3971           a_temp(1,1)=aggi1(l,1)
3972           a_temp(1,2)=aggi1(l,2)
3973           a_temp(2,1)=aggi1(l,3)
3974           a_temp(2,2)=aggi1(l,4)
3975           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3976           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3977           s1=scalar2(b1(1,iti2),auxvec(1))
3978           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3979           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3980           s2=scalar2(b1(1,iti1),auxvec(1))
3981           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3982           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3983           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3984           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3985           a_temp(1,1)=aggj(l,1)
3986           a_temp(1,2)=aggj(l,2)
3987           a_temp(2,1)=aggj(l,3)
3988           a_temp(2,2)=aggj(l,4)
3989           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3990           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3991           s1=scalar2(b1(1,iti2),auxvec(1))
3992           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3993           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3994           s2=scalar2(b1(1,iti1),auxvec(1))
3995           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3996           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3997           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3998           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3999           a_temp(1,1)=aggj1(l,1)
4000           a_temp(1,2)=aggj1(l,2)
4001           a_temp(2,1)=aggj1(l,3)
4002           a_temp(2,2)=aggj1(l,4)
4003           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4004           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4005           s1=scalar2(b1(1,iti2),auxvec(1))
4006           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4007           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4008           s2=scalar2(b1(1,iti1),auxvec(1))
4009           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4010           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4011           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4012 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4013           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4014         enddo
4015       return
4016       end
4017 C-----------------------------------------------------------------------------
4018       subroutine vecpr(u,v,w)
4019       implicit real*8(a-h,o-z)
4020       dimension u(3),v(3),w(3)
4021       w(1)=u(2)*v(3)-u(3)*v(2)
4022       w(2)=-u(1)*v(3)+u(3)*v(1)
4023       w(3)=u(1)*v(2)-u(2)*v(1)
4024       return
4025       end
4026 C-----------------------------------------------------------------------------
4027       subroutine unormderiv(u,ugrad,unorm,ungrad)
4028 C This subroutine computes the derivatives of a normalized vector u, given
4029 C the derivatives computed without normalization conditions, ugrad. Returns
4030 C ungrad.
4031       implicit none
4032       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4033       double precision vec(3)
4034       double precision scalar
4035       integer i,j
4036 c      write (2,*) 'ugrad',ugrad
4037 c      write (2,*) 'u',u
4038       do i=1,3
4039         vec(i)=scalar(ugrad(1,i),u(1))
4040       enddo
4041 c      write (2,*) 'vec',vec
4042       do i=1,3
4043         do j=1,3
4044           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4045         enddo
4046       enddo
4047 c      write (2,*) 'ungrad',ungrad
4048       return
4049       end
4050 C-----------------------------------------------------------------------------
4051       subroutine escp_soft_sphere(evdw2,evdw2_14)
4052 C
4053 C This subroutine calculates the excluded-volume interaction energy between
4054 C peptide-group centers and side chains and its gradient in virtual-bond and
4055 C side-chain vectors.
4056 C
4057       implicit real*8 (a-h,o-z)
4058       include 'DIMENSIONS'
4059       include 'COMMON.GEO'
4060       include 'COMMON.VAR'
4061       include 'COMMON.LOCAL'
4062       include 'COMMON.CHAIN'
4063       include 'COMMON.DERIV'
4064       include 'COMMON.INTERACT'
4065       include 'COMMON.FFIELD'
4066       include 'COMMON.IOUNITS'
4067       include 'COMMON.CONTROL'
4068       dimension ggg(3)
4069       evdw2=0.0D0
4070       evdw2_14=0.0d0
4071       r0_scp=4.5d0
4072 cd    print '(a)','Enter ESCP'
4073 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4074       do i=iatscp_s,iatscp_e
4075         iteli=itel(i)
4076         xi=0.5D0*(c(1,i)+c(1,i+1))
4077         yi=0.5D0*(c(2,i)+c(2,i+1))
4078         zi=0.5D0*(c(3,i)+c(3,i+1))
4079
4080         do iint=1,nscp_gr(i)
4081
4082         do j=iscpstart(i,iint),iscpend(i,iint)
4083           itypj=itype(j)
4084 C Uncomment following three lines for SC-p interactions
4085 c         xj=c(1,nres+j)-xi
4086 c         yj=c(2,nres+j)-yi
4087 c         zj=c(3,nres+j)-zi
4088 C Uncomment following three lines for Ca-p interactions
4089           xj=c(1,j)-xi
4090           yj=c(2,j)-yi
4091           zj=c(3,j)-zi
4092           rij=xj*xj+yj*yj+zj*zj
4093           r0ij=r0_scp
4094           r0ijsq=r0ij*r0ij
4095           if (rij.lt.r0ijsq) then
4096             evdwij=0.25d0*(rij-r0ijsq)**2
4097             fac=rij-r0ijsq
4098           else
4099             evdwij=0.0d0
4100             fac=0.0d0
4101           endif 
4102           evdw2=evdw2+evdwij
4103 C
4104 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4105 C
4106           ggg(1)=xj*fac
4107           ggg(2)=yj*fac
4108           ggg(3)=zj*fac
4109 cgrad          if (j.lt.i) then
4110 cd          write (iout,*) 'j<i'
4111 C Uncomment following three lines for SC-p interactions
4112 c           do k=1,3
4113 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4114 c           enddo
4115 cgrad          else
4116 cd          write (iout,*) 'j>i'
4117 cgrad            do k=1,3
4118 cgrad              ggg(k)=-ggg(k)
4119 C Uncomment following line for SC-p interactions
4120 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4121 cgrad            enddo
4122 cgrad          endif
4123 cgrad          do k=1,3
4124 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4125 cgrad          enddo
4126 cgrad          kstart=min0(i+1,j)
4127 cgrad          kend=max0(i-1,j-1)
4128 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4129 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4130 cgrad          do k=kstart,kend
4131 cgrad            do l=1,3
4132 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4133 cgrad            enddo
4134 cgrad          enddo
4135           do k=1,3
4136             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4137             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4138           enddo
4139         enddo
4140
4141         enddo ! iint
4142       enddo ! i
4143       return
4144       end
4145 C-----------------------------------------------------------------------------
4146       subroutine escp(evdw2,evdw2_14)
4147 C
4148 C This subroutine calculates the excluded-volume interaction energy between
4149 C peptide-group centers and side chains and its gradient in virtual-bond and
4150 C side-chain vectors.
4151 C
4152       implicit real*8 (a-h,o-z)
4153       include 'DIMENSIONS'
4154       include 'COMMON.GEO'
4155       include 'COMMON.VAR'
4156       include 'COMMON.LOCAL'
4157       include 'COMMON.CHAIN'
4158       include 'COMMON.DERIV'
4159       include 'COMMON.INTERACT'
4160       include 'COMMON.FFIELD'
4161       include 'COMMON.IOUNITS'
4162       include 'COMMON.CONTROL'
4163       dimension ggg(3)
4164       evdw2=0.0D0
4165       evdw2_14=0.0d0
4166 cd    print '(a)','Enter ESCP'
4167 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4168       do i=iatscp_s,iatscp_e
4169         iteli=itel(i)
4170         xi=0.5D0*(c(1,i)+c(1,i+1))
4171         yi=0.5D0*(c(2,i)+c(2,i+1))
4172         zi=0.5D0*(c(3,i)+c(3,i+1))
4173
4174         do iint=1,nscp_gr(i)
4175
4176         do j=iscpstart(i,iint),iscpend(i,iint)
4177           itypj=itype(j)
4178 C Uncomment following three lines for SC-p interactions
4179 c         xj=c(1,nres+j)-xi
4180 c         yj=c(2,nres+j)-yi
4181 c         zj=c(3,nres+j)-zi
4182 C Uncomment following three lines for Ca-p interactions
4183           xj=c(1,j)-xi
4184           yj=c(2,j)-yi
4185           zj=c(3,j)-zi
4186           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4187           fac=rrij**expon2
4188           e1=fac*fac*aad(itypj,iteli)
4189           e2=fac*bad(itypj,iteli)
4190           if (iabs(j-i) .le. 2) then
4191             e1=scal14*e1
4192             e2=scal14*e2
4193             evdw2_14=evdw2_14+e1+e2
4194           endif
4195           evdwij=e1+e2
4196           evdw2=evdw2+evdwij
4197           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4198      &        'evdw2',i,j,evdwij
4199 C
4200 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4201 C
4202           fac=-(evdwij+e1)*rrij
4203           ggg(1)=xj*fac
4204           ggg(2)=yj*fac
4205           ggg(3)=zj*fac
4206 cgrad          if (j.lt.i) then
4207 cd          write (iout,*) 'j<i'
4208 C Uncomment following three lines for SC-p interactions
4209 c           do k=1,3
4210 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4211 c           enddo
4212 cgrad          else
4213 cd          write (iout,*) 'j>i'
4214 cgrad            do k=1,3
4215 cgrad              ggg(k)=-ggg(k)
4216 C Uncomment following line for SC-p interactions
4217 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4218 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4219 cgrad            enddo
4220 cgrad          endif
4221 cgrad          do k=1,3
4222 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4223 cgrad          enddo
4224 cgrad          kstart=min0(i+1,j)
4225 cgrad          kend=max0(i-1,j-1)
4226 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4227 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4228 cgrad          do k=kstart,kend
4229 cgrad            do l=1,3
4230 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4231 cgrad            enddo
4232 cgrad          enddo
4233           do k=1,3
4234             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4235             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4236           enddo
4237         enddo
4238
4239         enddo ! iint
4240       enddo ! i
4241       do i=1,nct
4242         do j=1,3
4243           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4244           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4245           gradx_scp(j,i)=expon*gradx_scp(j,i)
4246         enddo
4247       enddo
4248 C******************************************************************************
4249 C
4250 C                              N O T E !!!
4251 C
4252 C To save time the factor EXPON has been extracted from ALL components
4253 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4254 C use!
4255 C
4256 C******************************************************************************
4257       return
4258       end
4259 C--------------------------------------------------------------------------
4260       subroutine edis(ehpb)
4261
4262 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4263 C
4264       implicit real*8 (a-h,o-z)
4265       include 'DIMENSIONS'
4266       include 'COMMON.SBRIDGE'
4267       include 'COMMON.CHAIN'
4268       include 'COMMON.DERIV'
4269       include 'COMMON.VAR'
4270       include 'COMMON.INTERACT'
4271       include 'COMMON.IOUNITS'
4272       dimension ggg(3)
4273       ehpb=0.0D0
4274 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4275 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4276       if (link_end.eq.0) return
4277       do i=link_start,link_end
4278 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4279 C CA-CA distance used in regularization of structure.
4280         ii=ihpb(i)
4281         jj=jhpb(i)
4282 C iii and jjj point to the residues for which the distance is assigned.
4283         if (ii.gt.nres) then
4284           iii=ii-nres
4285           jjj=jj-nres 
4286         else
4287           iii=ii
4288           jjj=jj
4289         endif
4290 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4291 c     &    dhpb(i),dhpb1(i),forcon(i)
4292 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4293 C    distance and angle dependent SS bond potential.
4294 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4295 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4296         if (.not.dyn_ss .and. i.le.nss) then
4297 C 15/02/13 CC dynamic SSbond - additional check
4298          if (ii.gt.nres 
4299      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4300           call ssbond_ene(iii,jjj,eij)
4301           ehpb=ehpb+2*eij
4302          endif
4303 cd          write (iout,*) "eij",eij
4304         else if (ii.gt.nres .and. jj.gt.nres) then
4305 c Restraints from contact prediction
4306           dd=dist(ii,jj)
4307           if (dhpb1(i).gt.0.0d0) then
4308             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4309             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4310 c            write (iout,*) "beta nmr",
4311 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4312           else
4313             dd=dist(ii,jj)
4314             rdis=dd-dhpb(i)
4315 C Get the force constant corresponding to this distance.
4316             waga=forcon(i)
4317 C Calculate the contribution to energy.
4318             ehpb=ehpb+waga*rdis*rdis
4319 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4320 C
4321 C Evaluate gradient.
4322 C
4323             fac=waga*rdis/dd
4324           endif  
4325           do j=1,3
4326             ggg(j)=fac*(c(j,jj)-c(j,ii))
4327           enddo
4328           do j=1,3
4329             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4330             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4331           enddo
4332           do k=1,3
4333             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4334             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4335           enddo
4336         else
4337 C Calculate the distance between the two points and its difference from the
4338 C target distance.
4339           dd=dist(ii,jj)
4340           if (dhpb1(i).gt.0.0d0) then
4341             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4342             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4343 c            write (iout,*) "alph nmr",
4344 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4345           else
4346             rdis=dd-dhpb(i)
4347 C Get the force constant corresponding to this distance.
4348             waga=forcon(i)
4349 C Calculate the contribution to energy.
4350             ehpb=ehpb+waga*rdis*rdis
4351 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4352 C
4353 C Evaluate gradient.
4354 C
4355             fac=waga*rdis/dd
4356           endif
4357 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4358 cd   &   ' waga=',waga,' fac=',fac
4359             do j=1,3
4360               ggg(j)=fac*(c(j,jj)-c(j,ii))
4361             enddo
4362 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4363 C If this is a SC-SC distance, we need to calculate the contributions to the
4364 C Cartesian gradient in the SC vectors (ghpbx).
4365           if (iii.lt.ii) then
4366           do j=1,3
4367             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4368             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4369           enddo
4370           endif
4371 cgrad        do j=iii,jjj-1
4372 cgrad          do k=1,3
4373 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4374 cgrad          enddo
4375 cgrad        enddo
4376           do k=1,3
4377             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4378             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4379           enddo
4380         endif
4381       enddo
4382       ehpb=0.5D0*ehpb
4383       return
4384       end
4385 C--------------------------------------------------------------------------
4386       subroutine ssbond_ene(i,j,eij)
4387
4388 C Calculate the distance and angle dependent SS-bond potential energy
4389 C using a free-energy function derived based on RHF/6-31G** ab initio
4390 C calculations of diethyl disulfide.
4391 C
4392 C A. Liwo and U. Kozlowska, 11/24/03
4393 C
4394       implicit real*8 (a-h,o-z)
4395       include 'DIMENSIONS'
4396       include 'COMMON.SBRIDGE'
4397       include 'COMMON.CHAIN'
4398       include 'COMMON.DERIV'
4399       include 'COMMON.LOCAL'
4400       include 'COMMON.INTERACT'
4401       include 'COMMON.VAR'
4402       include 'COMMON.IOUNITS'
4403       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4404       itypi=itype(i)
4405       xi=c(1,nres+i)
4406       yi=c(2,nres+i)
4407       zi=c(3,nres+i)
4408       dxi=dc_norm(1,nres+i)
4409       dyi=dc_norm(2,nres+i)
4410       dzi=dc_norm(3,nres+i)
4411 c      dsci_inv=dsc_inv(itypi)
4412       dsci_inv=vbld_inv(nres+i)
4413       itypj=itype(j)
4414 c      dscj_inv=dsc_inv(itypj)
4415       dscj_inv=vbld_inv(nres+j)
4416       xj=c(1,nres+j)-xi
4417       yj=c(2,nres+j)-yi
4418       zj=c(3,nres+j)-zi
4419       dxj=dc_norm(1,nres+j)
4420       dyj=dc_norm(2,nres+j)
4421       dzj=dc_norm(3,nres+j)
4422       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4423       rij=dsqrt(rrij)
4424       erij(1)=xj*rij
4425       erij(2)=yj*rij
4426       erij(3)=zj*rij
4427       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4428       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4429       om12=dxi*dxj+dyi*dyj+dzi*dzj
4430       do k=1,3
4431         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4432         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4433       enddo
4434       rij=1.0d0/rij
4435       deltad=rij-d0cm
4436       deltat1=1.0d0-om1
4437       deltat2=1.0d0+om2
4438       deltat12=om2-om1+2.0d0
4439       cosphi=om12-om1*om2
4440       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4441      &  +akct*deltad*deltat12+ebr
4442      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4443 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4444 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4445 c     &  " deltat12",deltat12," eij",eij 
4446       ed=2*akcm*deltad+akct*deltat12
4447       pom1=akct*deltad
4448       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4449       eom1=-2*akth*deltat1-pom1-om2*pom2
4450       eom2= 2*akth*deltat2+pom1-om1*pom2
4451       eom12=pom2
4452       do k=1,3
4453         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4454         ghpbx(k,i)=ghpbx(k,i)-ggk
4455      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4456      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4457         ghpbx(k,j)=ghpbx(k,j)+ggk
4458      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4459      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4460         ghpbc(k,i)=ghpbc(k,i)-ggk
4461         ghpbc(k,j)=ghpbc(k,j)+ggk
4462       enddo
4463 C
4464 C Calculate the components of the gradient in DC and X
4465 C
4466 cgrad      do k=i,j-1
4467 cgrad        do l=1,3
4468 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4469 cgrad        enddo
4470 cgrad      enddo
4471       return
4472       end
4473 C--------------------------------------------------------------------------
4474       subroutine ebond(estr)
4475 c
4476 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4477 c
4478       implicit real*8 (a-h,o-z)
4479       include 'DIMENSIONS'
4480       include 'COMMON.LOCAL'
4481       include 'COMMON.GEO'
4482       include 'COMMON.INTERACT'
4483       include 'COMMON.DERIV'
4484       include 'COMMON.VAR'
4485       include 'COMMON.CHAIN'
4486       include 'COMMON.IOUNITS'
4487       include 'COMMON.NAMES'
4488       include 'COMMON.FFIELD'
4489       include 'COMMON.CONTROL'
4490       include 'COMMON.SETUP'
4491       double precision u(3),ud(3)
4492       estr=0.0d0
4493       do i=ibondp_start,ibondp_end
4494         diff = vbld(i)-vbldp0
4495 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4496         estr=estr+diff*diff
4497         do j=1,3
4498           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4499         enddo
4500 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4501       enddo
4502       estr=0.5d0*AKP*estr
4503 c
4504 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4505 c
4506       do i=ibond_start,ibond_end
4507         iti=itype(i)
4508         if (iti.ne.10) then
4509           nbi=nbondterm(iti)
4510           if (nbi.eq.1) then
4511             diff=vbld(i+nres)-vbldsc0(1,iti)
4512 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4513 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4514             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4515             do j=1,3
4516               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4517             enddo
4518           else
4519             do j=1,nbi
4520               diff=vbld(i+nres)-vbldsc0(j,iti) 
4521               ud(j)=aksc(j,iti)*diff
4522               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4523             enddo
4524             uprod=u(1)
4525             do j=2,nbi
4526               uprod=uprod*u(j)
4527             enddo
4528             usum=0.0d0
4529             usumsqder=0.0d0
4530             do j=1,nbi
4531               uprod1=1.0d0
4532               uprod2=1.0d0
4533               do k=1,nbi
4534                 if (k.ne.j) then
4535                   uprod1=uprod1*u(k)
4536                   uprod2=uprod2*u(k)*u(k)
4537                 endif
4538               enddo
4539               usum=usum+uprod1
4540               usumsqder=usumsqder+ud(j)*uprod2   
4541             enddo
4542             estr=estr+uprod/usum
4543             do j=1,3
4544              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4545             enddo
4546           endif
4547         endif
4548       enddo
4549       return
4550       end 
4551 #ifdef CRYST_THETA
4552 C--------------------------------------------------------------------------
4553       subroutine ebend(etheta)
4554 C
4555 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4556 C angles gamma and its derivatives in consecutive thetas and gammas.
4557 C
4558       implicit real*8 (a-h,o-z)
4559       include 'DIMENSIONS'
4560       include 'COMMON.LOCAL'
4561       include 'COMMON.GEO'
4562       include 'COMMON.INTERACT'
4563       include 'COMMON.DERIV'
4564       include 'COMMON.VAR'
4565       include 'COMMON.CHAIN'
4566       include 'COMMON.IOUNITS'
4567       include 'COMMON.NAMES'
4568       include 'COMMON.FFIELD'
4569       include 'COMMON.CONTROL'
4570       common /calcthet/ term1,term2,termm,diffak,ratak,
4571      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4572      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4573       double precision y(2),z(2)
4574       delta=0.02d0*pi
4575 c      time11=dexp(-2*time)
4576 c      time12=1.0d0
4577       etheta=0.0D0
4578 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4579       do i=ithet_start,ithet_end
4580 C Zero the energy function and its derivative at 0 or pi.
4581         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4582         it=itype(i-1)
4583         if (i.gt.3) then
4584 #ifdef OSF
4585           phii=phi(i)
4586           if (phii.ne.phii) phii=150.0
4587 #else
4588           phii=phi(i)
4589 #endif
4590           y(1)=dcos(phii)
4591           y(2)=dsin(phii)
4592         else 
4593           y(1)=0.0D0
4594           y(2)=0.0D0
4595         endif
4596         if (i.lt.nres) then
4597 #ifdef OSF
4598           phii1=phi(i+1)
4599           if (phii1.ne.phii1) phii1=150.0
4600           phii1=pinorm(phii1)
4601           z(1)=cos(phii1)
4602 #else
4603           phii1=phi(i+1)
4604           z(1)=dcos(phii1)
4605 #endif
4606           z(2)=dsin(phii1)
4607         else
4608           z(1)=0.0D0
4609           z(2)=0.0D0
4610         endif  
4611 C Calculate the "mean" value of theta from the part of the distribution
4612 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4613 C In following comments this theta will be referred to as t_c.
4614         thet_pred_mean=0.0d0
4615         do k=1,2
4616           athetk=athet(k,it)
4617           bthetk=bthet(k,it)
4618           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4619         enddo
4620         dthett=thet_pred_mean*ssd
4621         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4622 C Derivatives of the "mean" values in gamma1 and gamma2.
4623         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4624         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4625         if (theta(i).gt.pi-delta) then
4626           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4627      &         E_tc0)
4628           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4629           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4630           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4631      &        E_theta)
4632           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4633      &        E_tc)
4634         else if (theta(i).lt.delta) then
4635           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4636           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4637           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4638      &        E_theta)
4639           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4640           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4641      &        E_tc)
4642         else
4643           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4644      &        E_theta,E_tc)
4645         endif
4646         etheta=etheta+ethetai
4647         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4648      &      'ebend',i,ethetai
4649         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4650         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4651         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4652       enddo
4653 C Ufff.... We've done all this!!! 
4654       return
4655       end
4656 C---------------------------------------------------------------------------
4657       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4658      &     E_tc)
4659       implicit real*8 (a-h,o-z)
4660       include 'DIMENSIONS'
4661       include 'COMMON.LOCAL'
4662       include 'COMMON.IOUNITS'
4663       common /calcthet/ term1,term2,termm,diffak,ratak,
4664      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4665      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4666 C Calculate the contributions to both Gaussian lobes.
4667 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4668 C The "polynomial part" of the "standard deviation" of this part of 
4669 C the distribution.
4670         sig=polthet(3,it)
4671         do j=2,0,-1
4672           sig=sig*thet_pred_mean+polthet(j,it)
4673         enddo
4674 C Derivative of the "interior part" of the "standard deviation of the" 
4675 C gamma-dependent Gaussian lobe in t_c.
4676         sigtc=3*polthet(3,it)
4677         do j=2,1,-1
4678           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4679         enddo
4680         sigtc=sig*sigtc
4681 C Set the parameters of both Gaussian lobes of the distribution.
4682 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4683         fac=sig*sig+sigc0(it)
4684         sigcsq=fac+fac
4685         sigc=1.0D0/sigcsq
4686 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4687         sigsqtc=-4.0D0*sigcsq*sigtc
4688 c       print *,i,sig,sigtc,sigsqtc
4689 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4690         sigtc=-sigtc/(fac*fac)
4691 C Following variable is sigma(t_c)**(-2)
4692         sigcsq=sigcsq*sigcsq
4693         sig0i=sig0(it)
4694         sig0inv=1.0D0/sig0i**2
4695         delthec=thetai-thet_pred_mean
4696         delthe0=thetai-theta0i
4697         term1=-0.5D0*sigcsq*delthec*delthec
4698         term2=-0.5D0*sig0inv*delthe0*delthe0
4699 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4700 C NaNs in taking the logarithm. We extract the largest exponent which is added
4701 C to the energy (this being the log of the distribution) at the end of energy
4702 C term evaluation for this virtual-bond angle.
4703         if (term1.gt.term2) then
4704           termm=term1
4705           term2=dexp(term2-termm)
4706           term1=1.0d0
4707         else
4708           termm=term2
4709           term1=dexp(term1-termm)
4710           term2=1.0d0
4711         endif
4712 C The ratio between the gamma-independent and gamma-dependent lobes of
4713 C the distribution is a Gaussian function of thet_pred_mean too.
4714         diffak=gthet(2,it)-thet_pred_mean
4715         ratak=diffak/gthet(3,it)**2
4716         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4717 C Let's differentiate it in thet_pred_mean NOW.
4718         aktc=ak*ratak
4719 C Now put together the distribution terms to make complete distribution.
4720         termexp=term1+ak*term2
4721         termpre=sigc+ak*sig0i
4722 C Contribution of the bending energy from this theta is just the -log of
4723 C the sum of the contributions from the two lobes and the pre-exponential
4724 C factor. Simple enough, isn't it?
4725         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4726 C NOW the derivatives!!!
4727 C 6/6/97 Take into account the deformation.
4728         E_theta=(delthec*sigcsq*term1
4729      &       +ak*delthe0*sig0inv*term2)/termexp
4730         E_tc=((sigtc+aktc*sig0i)/termpre
4731      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4732      &       aktc*term2)/termexp)
4733       return
4734       end
4735 c-----------------------------------------------------------------------------
4736       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4737       implicit real*8 (a-h,o-z)
4738       include 'DIMENSIONS'
4739       include 'COMMON.LOCAL'
4740       include 'COMMON.IOUNITS'
4741       common /calcthet/ term1,term2,termm,diffak,ratak,
4742      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4743      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4744       delthec=thetai-thet_pred_mean
4745       delthe0=thetai-theta0i
4746 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4747       t3 = thetai-thet_pred_mean
4748       t6 = t3**2
4749       t9 = term1
4750       t12 = t3*sigcsq
4751       t14 = t12+t6*sigsqtc
4752       t16 = 1.0d0
4753       t21 = thetai-theta0i
4754       t23 = t21**2
4755       t26 = term2
4756       t27 = t21*t26
4757       t32 = termexp
4758       t40 = t32**2
4759       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4760      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4761      & *(-t12*t9-ak*sig0inv*t27)
4762       return
4763       end
4764 #else
4765 C--------------------------------------------------------------------------
4766       subroutine ebend(etheta)
4767 C
4768 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4769 C angles gamma and its derivatives in consecutive thetas and gammas.
4770 C ab initio-derived potentials from 
4771 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4772 C
4773       implicit real*8 (a-h,o-z)
4774       include 'DIMENSIONS'
4775       include 'COMMON.LOCAL'
4776       include 'COMMON.GEO'
4777       include 'COMMON.INTERACT'
4778       include 'COMMON.DERIV'
4779       include 'COMMON.VAR'
4780       include 'COMMON.CHAIN'
4781       include 'COMMON.IOUNITS'
4782       include 'COMMON.NAMES'
4783       include 'COMMON.FFIELD'
4784       include 'COMMON.CONTROL'
4785       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4786      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4787      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4788      & sinph1ph2(maxdouble,maxdouble)
4789       logical lprn /.false./, lprn1 /.false./
4790       etheta=0.0D0
4791       do i=ithet_start,ithet_end
4792         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4793      &(itype(i).eq.ntyp1)) cycle
4794         dethetai=0.0d0
4795         dephii=0.0d0
4796         dephii1=0.0d0
4797         theti2=0.5d0*theta(i)
4798         ityp2=ithetyp(itype(i-1))
4799         do k=1,nntheterm
4800           coskt(k)=dcos(k*theti2)
4801           sinkt(k)=dsin(k*theti2)
4802         enddo
4803 C        if (i.gt.3) then
4804          if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4805 #ifdef OSF
4806           phii=phi(i)
4807           if (phii.ne.phii) phii=150.0
4808 #else
4809           phii=phi(i)
4810 #endif
4811           ityp1=ithetyp(itype(i-2))
4812           do k=1,nsingle
4813             cosph1(k)=dcos(k*phii)
4814             sinph1(k)=dsin(k*phii)
4815           enddo
4816         else
4817           phii=0.0d0
4818           ityp1=ithetyp(itype(i-2))
4819           do k=1,nsingle
4820             cosph1(k)=0.0d0
4821             sinph1(k)=0.0d0
4822           enddo 
4823         endif
4824         if ((i.lt.nres).and. itype(i+1).ne.ntyp1) then
4825 #ifdef OSF
4826           phii1=phi(i+1)
4827           if (phii1.ne.phii1) phii1=150.0
4828           phii1=pinorm(phii1)
4829 #else
4830           phii1=phi(i+1)
4831 #endif
4832           ityp3=ithetyp(itype(i))
4833           do k=1,nsingle
4834             cosph2(k)=dcos(k*phii1)
4835             sinph2(k)=dsin(k*phii1)
4836           enddo
4837         else
4838           phii1=0.0d0
4839           ityp3=ithetyp(itype(i))
4840           do k=1,nsingle
4841             cosph2(k)=0.0d0
4842             sinph2(k)=0.0d0
4843           enddo
4844         endif  
4845         ethetai=aa0thet(ityp1,ityp2,ityp3)
4846         do k=1,ndouble
4847           do l=1,k-1
4848             ccl=cosph1(l)*cosph2(k-l)
4849             ssl=sinph1(l)*sinph2(k-l)
4850             scl=sinph1(l)*cosph2(k-l)
4851             csl=cosph1(l)*sinph2(k-l)
4852             cosph1ph2(l,k)=ccl-ssl
4853             cosph1ph2(k,l)=ccl+ssl
4854             sinph1ph2(l,k)=scl+csl
4855             sinph1ph2(k,l)=scl-csl
4856           enddo
4857         enddo
4858         if (lprn) then
4859         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4860      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4861         write (iout,*) "coskt and sinkt"
4862         do k=1,nntheterm
4863           write (iout,*) k,coskt(k),sinkt(k)
4864         enddo
4865         endif
4866         do k=1,ntheterm
4867           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4868           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4869      &      *coskt(k)
4870           if (lprn)
4871      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4872      &     " ethetai",ethetai
4873         enddo
4874         if (lprn) then
4875         write (iout,*) "cosph and sinph"
4876         do k=1,nsingle
4877           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4878         enddo
4879         write (iout,*) "cosph1ph2 and sinph2ph2"
4880         do k=2,ndouble
4881           do l=1,k-1
4882             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4883      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4884           enddo
4885         enddo
4886         write(iout,*) "ethetai",ethetai
4887         endif
4888         do m=1,ntheterm2
4889           do k=1,nsingle
4890             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4891      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4892      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4893      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4894             ethetai=ethetai+sinkt(m)*aux
4895             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4896             dephii=dephii+k*sinkt(m)*(
4897      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4898      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4899             dephii1=dephii1+k*sinkt(m)*(
4900      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4901      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4902             if (lprn)
4903      &      write (iout,*) "m",m," k",k," bbthet",
4904      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4905      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4906      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4907      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4908           enddo
4909         enddo
4910         if (lprn)
4911      &  write(iout,*) "ethetai",ethetai
4912         do m=1,ntheterm3
4913           do k=2,ndouble
4914             do l=1,k-1
4915               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4916      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4917      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4918      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4919               ethetai=ethetai+sinkt(m)*aux
4920               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4921               dephii=dephii+l*sinkt(m)*(
4922      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4923      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4924      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4925      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4926               dephii1=dephii1+(k-l)*sinkt(m)*(
4927      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4928      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4929      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4930      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4931               if (lprn) then
4932               write (iout,*) "m",m," k",k," l",l," ffthet",
4933      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4934      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4935      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4936      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4937               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4938      &            cosph1ph2(k,l)*sinkt(m),
4939      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4940               endif
4941             enddo
4942           enddo
4943         enddo
4944 10      continue
4945         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
4946      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
4947      &   phii1*rad2deg,ethetai
4948         etheta=etheta+ethetai
4949         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4950         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4951         gloc(nphi+i-2,icg)=wang*dethetai
4952       enddo
4953       return
4954       end
4955 #endif
4956 #ifdef CRYST_SC
4957 c-----------------------------------------------------------------------------
4958       subroutine esc(escloc)
4959 C Calculate the local energy of a side chain and its derivatives in the
4960 C corresponding virtual-bond valence angles THETA and the spherical angles 
4961 C ALPHA and OMEGA.
4962       implicit real*8 (a-h,o-z)
4963       include 'DIMENSIONS'
4964       include 'COMMON.GEO'
4965       include 'COMMON.LOCAL'
4966       include 'COMMON.VAR'
4967       include 'COMMON.INTERACT'
4968       include 'COMMON.DERIV'
4969       include 'COMMON.CHAIN'
4970       include 'COMMON.IOUNITS'
4971       include 'COMMON.NAMES'
4972       include 'COMMON.FFIELD'
4973       include 'COMMON.CONTROL'
4974       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4975      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4976       common /sccalc/ time11,time12,time112,theti,it,nlobit
4977       delta=0.02d0*pi
4978       escloc=0.0D0
4979 c     write (iout,'(a)') 'ESC'
4980       do i=loc_start,loc_end
4981         it=itype(i)
4982         if (it.eq.10) goto 1
4983         nlobit=nlob(it)
4984 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4985 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4986         theti=theta(i+1)-pipol
4987         x(1)=dtan(theti)
4988         x(2)=alph(i)
4989         x(3)=omeg(i)
4990
4991         if (x(2).gt.pi-delta) then
4992           xtemp(1)=x(1)
4993           xtemp(2)=pi-delta
4994           xtemp(3)=x(3)
4995           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4996           xtemp(2)=pi
4997           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4998           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4999      &        escloci,dersc(2))
5000           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5001      &        ddersc0(1),dersc(1))
5002           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5003      &        ddersc0(3),dersc(3))
5004           xtemp(2)=pi-delta
5005           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5006           xtemp(2)=pi
5007           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5008           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5009      &            dersc0(2),esclocbi,dersc02)
5010           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5011      &            dersc12,dersc01)
5012           call splinthet(x(2),0.5d0*delta,ss,ssd)
5013           dersc0(1)=dersc01
5014           dersc0(2)=dersc02
5015           dersc0(3)=0.0d0
5016           do k=1,3
5017             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5018           enddo
5019           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5020 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5021 c    &             esclocbi,ss,ssd
5022           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5023 c         escloci=esclocbi
5024 c         write (iout,*) escloci
5025         else if (x(2).lt.delta) then
5026           xtemp(1)=x(1)
5027           xtemp(2)=delta
5028           xtemp(3)=x(3)
5029           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5030           xtemp(2)=0.0d0
5031           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5032           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5033      &        escloci,dersc(2))
5034           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5035      &        ddersc0(1),dersc(1))
5036           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5037      &        ddersc0(3),dersc(3))
5038           xtemp(2)=delta
5039           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5040           xtemp(2)=0.0d0
5041           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5042           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5043      &            dersc0(2),esclocbi,dersc02)
5044           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5045      &            dersc12,dersc01)
5046           dersc0(1)=dersc01
5047           dersc0(2)=dersc02
5048           dersc0(3)=0.0d0
5049           call splinthet(x(2),0.5d0*delta,ss,ssd)
5050           do k=1,3
5051             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5052           enddo
5053           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5054 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5055 c    &             esclocbi,ss,ssd
5056           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5057 c         write (iout,*) escloci
5058         else
5059           call enesc(x,escloci,dersc,ddummy,.false.)
5060         endif
5061
5062         escloc=escloc+escloci
5063         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5064      &     'escloc',i,escloci
5065 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5066
5067         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5068      &   wscloc*dersc(1)
5069         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5070         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5071     1   continue
5072       enddo
5073       return
5074       end
5075 C---------------------------------------------------------------------------
5076       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5077       implicit real*8 (a-h,o-z)
5078       include 'DIMENSIONS'
5079       include 'COMMON.GEO'
5080       include 'COMMON.LOCAL'
5081       include 'COMMON.IOUNITS'
5082       common /sccalc/ time11,time12,time112,theti,it,nlobit
5083       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5084       double precision contr(maxlob,-1:1)
5085       logical mixed
5086 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5087         escloc_i=0.0D0
5088         do j=1,3
5089           dersc(j)=0.0D0
5090           if (mixed) ddersc(j)=0.0d0
5091         enddo
5092         x3=x(3)
5093
5094 C Because of periodicity of the dependence of the SC energy in omega we have
5095 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5096 C To avoid underflows, first compute & store the exponents.
5097
5098         do iii=-1,1
5099
5100           x(3)=x3+iii*dwapi
5101  
5102           do j=1,nlobit
5103             do k=1,3
5104               z(k)=x(k)-censc(k,j,it)
5105             enddo
5106             do k=1,3
5107               Axk=0.0D0
5108               do l=1,3
5109                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5110               enddo
5111               Ax(k,j,iii)=Axk
5112             enddo 
5113             expfac=0.0D0 
5114             do k=1,3
5115               expfac=expfac+Ax(k,j,iii)*z(k)
5116             enddo
5117             contr(j,iii)=expfac
5118           enddo ! j
5119
5120         enddo ! iii
5121
5122         x(3)=x3
5123 C As in the case of ebend, we want to avoid underflows in exponentiation and
5124 C subsequent NaNs and INFs in energy calculation.
5125 C Find the largest exponent
5126         emin=contr(1,-1)
5127         do iii=-1,1
5128           do j=1,nlobit
5129             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5130           enddo 
5131         enddo
5132         emin=0.5D0*emin
5133 cd      print *,'it=',it,' emin=',emin
5134
5135 C Compute the contribution to SC energy and derivatives
5136         do iii=-1,1
5137
5138           do j=1,nlobit
5139 #ifdef OSF
5140             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5141             if(adexp.ne.adexp) adexp=1.0
5142             expfac=dexp(adexp)
5143 #else
5144             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5145 #endif
5146 cd          print *,'j=',j,' expfac=',expfac
5147             escloc_i=escloc_i+expfac
5148             do k=1,3
5149               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5150             enddo
5151             if (mixed) then
5152               do k=1,3,2
5153                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5154      &            +gaussc(k,2,j,it))*expfac
5155               enddo
5156             endif
5157           enddo
5158
5159         enddo ! iii
5160
5161         dersc(1)=dersc(1)/cos(theti)**2
5162         ddersc(1)=ddersc(1)/cos(theti)**2
5163         ddersc(3)=ddersc(3)
5164
5165         escloci=-(dlog(escloc_i)-emin)
5166         do j=1,3
5167           dersc(j)=dersc(j)/escloc_i
5168         enddo
5169         if (mixed) then
5170           do j=1,3,2
5171             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5172           enddo
5173         endif
5174       return
5175       end
5176 C------------------------------------------------------------------------------
5177       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5178       implicit real*8 (a-h,o-z)
5179       include 'DIMENSIONS'
5180       include 'COMMON.GEO'
5181       include 'COMMON.LOCAL'
5182       include 'COMMON.IOUNITS'
5183       common /sccalc/ time11,time12,time112,theti,it,nlobit
5184       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5185       double precision contr(maxlob)
5186       logical mixed
5187
5188       escloc_i=0.0D0
5189
5190       do j=1,3
5191         dersc(j)=0.0D0
5192       enddo
5193
5194       do j=1,nlobit
5195         do k=1,2
5196           z(k)=x(k)-censc(k,j,it)
5197         enddo
5198         z(3)=dwapi
5199         do k=1,3
5200           Axk=0.0D0
5201           do l=1,3
5202             Axk=Axk+gaussc(l,k,j,it)*z(l)
5203           enddo
5204           Ax(k,j)=Axk
5205         enddo 
5206         expfac=0.0D0 
5207         do k=1,3
5208           expfac=expfac+Ax(k,j)*z(k)
5209         enddo
5210         contr(j)=expfac
5211       enddo ! j
5212
5213 C As in the case of ebend, we want to avoid underflows in exponentiation and
5214 C subsequent NaNs and INFs in energy calculation.
5215 C Find the largest exponent
5216       emin=contr(1)
5217       do j=1,nlobit
5218         if (emin.gt.contr(j)) emin=contr(j)
5219       enddo 
5220       emin=0.5D0*emin
5221  
5222 C Compute the contribution to SC energy and derivatives
5223
5224       dersc12=0.0d0
5225       do j=1,nlobit
5226         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5227         escloc_i=escloc_i+expfac
5228         do k=1,2
5229           dersc(k)=dersc(k)+Ax(k,j)*expfac
5230         enddo
5231         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5232      &            +gaussc(1,2,j,it))*expfac
5233         dersc(3)=0.0d0
5234       enddo
5235
5236       dersc(1)=dersc(1)/cos(theti)**2
5237       dersc12=dersc12/cos(theti)**2
5238       escloci=-(dlog(escloc_i)-emin)
5239       do j=1,2
5240         dersc(j)=dersc(j)/escloc_i
5241       enddo
5242       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5243       return
5244       end
5245 #else
5246 c----------------------------------------------------------------------------------
5247       subroutine esc(escloc)
5248 C Calculate the local energy of a side chain and its derivatives in the
5249 C corresponding virtual-bond valence angles THETA and the spherical angles 
5250 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5251 C added by Urszula Kozlowska. 07/11/2007
5252 C
5253       implicit real*8 (a-h,o-z)
5254       include 'DIMENSIONS'
5255       include 'COMMON.GEO'
5256       include 'COMMON.LOCAL'
5257       include 'COMMON.VAR'
5258       include 'COMMON.SCROT'
5259       include 'COMMON.INTERACT'
5260       include 'COMMON.DERIV'
5261       include 'COMMON.CHAIN'
5262       include 'COMMON.IOUNITS'
5263       include 'COMMON.NAMES'
5264       include 'COMMON.FFIELD'
5265       include 'COMMON.CONTROL'
5266       include 'COMMON.VECTORS'
5267       double precision x_prime(3),y_prime(3),z_prime(3)
5268      &    , sumene,dsc_i,dp2_i,x(65),
5269      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5270      &    de_dxx,de_dyy,de_dzz,de_dt
5271       double precision s1_t,s1_6_t,s2_t,s2_6_t
5272       double precision 
5273      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5274      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5275      & dt_dCi(3),dt_dCi1(3)
5276       common /sccalc/ time11,time12,time112,theti,it,nlobit
5277       delta=0.02d0*pi
5278       escloc=0.0D0
5279       do i=loc_start,loc_end
5280         costtab(i+1) =dcos(theta(i+1))
5281         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5282         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5283         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5284         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5285         cosfac=dsqrt(cosfac2)
5286         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5287         sinfac=dsqrt(sinfac2)
5288         it=itype(i)
5289         if (it.eq.10) goto 1
5290 c
5291 C  Compute the axes of tghe local cartesian coordinates system; store in
5292 c   x_prime, y_prime and z_prime 
5293 c
5294         do j=1,3
5295           x_prime(j) = 0.00
5296           y_prime(j) = 0.00
5297           z_prime(j) = 0.00
5298         enddo
5299 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5300 C     &   dc_norm(3,i+nres)
5301         do j = 1,3
5302           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5303           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5304         enddo
5305         do j = 1,3
5306           z_prime(j) = -uz(j,i-1)
5307         enddo     
5308 c       write (2,*) "i",i
5309 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5310 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5311 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5312 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5313 c      & " xy",scalar(x_prime(1),y_prime(1)),
5314 c      & " xz",scalar(x_prime(1),z_prime(1)),
5315 c      & " yy",scalar(y_prime(1),y_prime(1)),
5316 c      & " yz",scalar(y_prime(1),z_prime(1)),
5317 c      & " zz",scalar(z_prime(1),z_prime(1))
5318 c
5319 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5320 C to local coordinate system. Store in xx, yy, zz.
5321 c
5322         xx=0.0d0
5323         yy=0.0d0
5324         zz=0.0d0
5325         do j = 1,3
5326           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5327           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5328           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5329         enddo
5330
5331         xxtab(i)=xx
5332         yytab(i)=yy
5333         zztab(i)=zz
5334 C
5335 C Compute the energy of the ith side cbain
5336 C
5337 c        write (2,*) "xx",xx," yy",yy," zz",zz
5338         it=itype(i)
5339         do j = 1,65
5340           x(j) = sc_parmin(j,it) 
5341         enddo
5342 #ifdef CHECK_COORD
5343 Cc diagnostics - remove later
5344         xx1 = dcos(alph(2))
5345         yy1 = dsin(alph(2))*dcos(omeg(2))
5346         zz1 = -dsin(alph(2))*dsin(omeg(2))
5347         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5348      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5349      &    xx1,yy1,zz1
5350 C,"  --- ", xx_w,yy_w,zz_w
5351 c end diagnostics
5352 #endif
5353         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5354      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5355      &   + x(10)*yy*zz
5356         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5357      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5358      & + x(20)*yy*zz
5359         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5360      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5361      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5362      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5363      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5364      &  +x(40)*xx*yy*zz
5365         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5366      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5367      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5368      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5369      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5370      &  +x(60)*xx*yy*zz
5371         dsc_i   = 0.743d0+x(61)
5372         dp2_i   = 1.9d0+x(62)
5373         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5374      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5375         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5376      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5377         s1=(1+x(63))/(0.1d0 + dscp1)
5378         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5379         s2=(1+x(65))/(0.1d0 + dscp2)
5380         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5381         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5382      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5383 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5384 c     &   sumene4,
5385 c     &   dscp1,dscp2,sumene
5386 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5387         escloc = escloc + sumene
5388 c        write (2,*) "i",i," escloc",sumene,escloc
5389 #ifdef DEBUG
5390 C
5391 C This section to check the numerical derivatives of the energy of ith side
5392 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5393 C #define DEBUG in the code to turn it on.
5394 C
5395         write (2,*) "sumene               =",sumene
5396         aincr=1.0d-7
5397         xxsave=xx
5398         xx=xx+aincr
5399         write (2,*) xx,yy,zz
5400         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5401         de_dxx_num=(sumenep-sumene)/aincr
5402         xx=xxsave
5403         write (2,*) "xx+ sumene from enesc=",sumenep
5404         yysave=yy
5405         yy=yy+aincr
5406         write (2,*) xx,yy,zz
5407         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5408         de_dyy_num=(sumenep-sumene)/aincr
5409         yy=yysave
5410         write (2,*) "yy+ sumene from enesc=",sumenep
5411         zzsave=zz
5412         zz=zz+aincr
5413         write (2,*) xx,yy,zz
5414         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5415         de_dzz_num=(sumenep-sumene)/aincr
5416         zz=zzsave
5417         write (2,*) "zz+ sumene from enesc=",sumenep
5418         costsave=cost2tab(i+1)
5419         sintsave=sint2tab(i+1)
5420         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5421         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5422         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5423         de_dt_num=(sumenep-sumene)/aincr
5424         write (2,*) " t+ sumene from enesc=",sumenep
5425         cost2tab(i+1)=costsave
5426         sint2tab(i+1)=sintsave
5427 C End of diagnostics section.
5428 #endif
5429 C        
5430 C Compute the gradient of esc
5431 C
5432         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5433         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5434         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5435         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5436         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5437         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5438         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5439         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5440         pom1=(sumene3*sint2tab(i+1)+sumene1)
5441      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5442         pom2=(sumene4*cost2tab(i+1)+sumene2)
5443      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5444         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5445         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5446      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5447      &  +x(40)*yy*zz
5448         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5449         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5450      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5451      &  +x(60)*yy*zz
5452         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5453      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5454      &        +(pom1+pom2)*pom_dx
5455 #ifdef DEBUG
5456         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5457 #endif
5458 C
5459         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5460         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5461      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5462      &  +x(40)*xx*zz
5463         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5464         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5465      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5466      &  +x(59)*zz**2 +x(60)*xx*zz
5467         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5468      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5469      &        +(pom1-pom2)*pom_dy
5470 #ifdef DEBUG
5471         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5472 #endif
5473 C
5474         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5475      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5476      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5477      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5478      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5479      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5480      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5481      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5482 #ifdef DEBUG
5483         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5484 #endif
5485 C
5486         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5487      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5488      &  +pom1*pom_dt1+pom2*pom_dt2
5489 #ifdef DEBUG
5490         write(2,*), "de_dt = ", de_dt,de_dt_num
5491 #endif
5492
5493 C
5494        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5495        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5496        cosfac2xx=cosfac2*xx
5497        sinfac2yy=sinfac2*yy
5498        do k = 1,3
5499          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5500      &      vbld_inv(i+1)
5501          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5502      &      vbld_inv(i)
5503          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5504          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5505 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5506 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5507 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5508 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5509          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5510          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5511          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5512          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5513          dZZ_Ci1(k)=0.0d0
5514          dZZ_Ci(k)=0.0d0
5515          do j=1,3
5516            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5517            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5518          enddo
5519           
5520          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5521          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5522          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5523 c
5524          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5525          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5526        enddo
5527
5528        do k=1,3
5529          dXX_Ctab(k,i)=dXX_Ci(k)
5530          dXX_C1tab(k,i)=dXX_Ci1(k)
5531          dYY_Ctab(k,i)=dYY_Ci(k)
5532          dYY_C1tab(k,i)=dYY_Ci1(k)
5533          dZZ_Ctab(k,i)=dZZ_Ci(k)
5534          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5535          dXX_XYZtab(k,i)=dXX_XYZ(k)
5536          dYY_XYZtab(k,i)=dYY_XYZ(k)
5537          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5538        enddo
5539
5540        do k = 1,3
5541 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5542 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5543 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5544 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5545 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5546 c     &    dt_dci(k)
5547 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5548 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5549          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5550      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5551          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5552      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5553          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5554      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5555        enddo
5556 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5557 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5558
5559 C to check gradient call subroutine check_grad
5560
5561     1 continue
5562       enddo
5563       return
5564       end
5565 c------------------------------------------------------------------------------
5566       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5567       implicit none
5568       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5569      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5570       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5571      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5572      &   + x(10)*yy*zz
5573       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5574      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5575      & + x(20)*yy*zz
5576       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5577      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5578      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5579      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5580      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5581      &  +x(40)*xx*yy*zz
5582       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5583      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5584      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5585      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5586      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5587      &  +x(60)*xx*yy*zz
5588       dsc_i   = 0.743d0+x(61)
5589       dp2_i   = 1.9d0+x(62)
5590       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5591      &          *(xx*cost2+yy*sint2))
5592       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5593      &          *(xx*cost2-yy*sint2))
5594       s1=(1+x(63))/(0.1d0 + dscp1)
5595       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5596       s2=(1+x(65))/(0.1d0 + dscp2)
5597       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5598       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5599      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5600       enesc=sumene
5601       return
5602       end
5603 #endif
5604 c------------------------------------------------------------------------------
5605       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5606 C
5607 C This procedure calculates two-body contact function g(rij) and its derivative:
5608 C
5609 C           eps0ij                                     !       x < -1
5610 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5611 C            0                                         !       x > 1
5612 C
5613 C where x=(rij-r0ij)/delta
5614 C
5615 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5616 C
5617       implicit none
5618       double precision rij,r0ij,eps0ij,fcont,fprimcont
5619       double precision x,x2,x4,delta
5620 c     delta=0.02D0*r0ij
5621 c      delta=0.2D0*r0ij
5622       x=(rij-r0ij)/delta
5623       if (x.lt.-1.0D0) then
5624         fcont=eps0ij
5625         fprimcont=0.0D0
5626       else if (x.le.1.0D0) then  
5627         x2=x*x
5628         x4=x2*x2
5629         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5630         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5631       else
5632         fcont=0.0D0
5633         fprimcont=0.0D0
5634       endif
5635       return
5636       end
5637 c------------------------------------------------------------------------------
5638       subroutine splinthet(theti,delta,ss,ssder)
5639       implicit real*8 (a-h,o-z)
5640       include 'DIMENSIONS'
5641       include 'COMMON.VAR'
5642       include 'COMMON.GEO'
5643       thetup=pi-delta
5644       thetlow=delta
5645       if (theti.gt.pipol) then
5646         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5647       else
5648         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5649         ssder=-ssder
5650       endif
5651       return
5652       end
5653 c------------------------------------------------------------------------------
5654       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5655       implicit none
5656       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5657       double precision ksi,ksi2,ksi3,a1,a2,a3
5658       a1=fprim0*delta/(f1-f0)
5659       a2=3.0d0-2.0d0*a1
5660       a3=a1-2.0d0
5661       ksi=(x-x0)/delta
5662       ksi2=ksi*ksi
5663       ksi3=ksi2*ksi  
5664       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5665       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5666       return
5667       end
5668 c------------------------------------------------------------------------------
5669       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5670       implicit none
5671       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5672       double precision ksi,ksi2,ksi3,a1,a2,a3
5673       ksi=(x-x0)/delta  
5674       ksi2=ksi*ksi
5675       ksi3=ksi2*ksi
5676       a1=fprim0x*delta
5677       a2=3*(f1x-f0x)-2*fprim0x*delta
5678       a3=fprim0x*delta-2*(f1x-f0x)
5679       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5680       return
5681       end
5682 C-----------------------------------------------------------------------------
5683 #ifdef CRYST_TOR
5684 C-----------------------------------------------------------------------------
5685       subroutine etor(etors,edihcnstr)
5686       implicit real*8 (a-h,o-z)
5687       include 'DIMENSIONS'
5688       include 'COMMON.VAR'
5689       include 'COMMON.GEO'
5690       include 'COMMON.LOCAL'
5691       include 'COMMON.TORSION'
5692       include 'COMMON.INTERACT'
5693       include 'COMMON.DERIV'
5694       include 'COMMON.CHAIN'
5695       include 'COMMON.NAMES'
5696       include 'COMMON.IOUNITS'
5697       include 'COMMON.FFIELD'
5698       include 'COMMON.TORCNSTR'
5699       include 'COMMON.CONTROL'
5700       logical lprn
5701 C Set lprn=.true. for debugging
5702       lprn=.false.
5703 c      lprn=.true.
5704       etors=0.0D0
5705       do i=iphi_start,iphi_end
5706       etors_ii=0.0D0
5707         itori=itortyp(itype(i-2))
5708         itori1=itortyp(itype(i-1))
5709         phii=phi(i)
5710         gloci=0.0D0
5711 C Proline-Proline pair is a special case...
5712         if (itori.eq.3 .and. itori1.eq.3) then
5713           if (phii.gt.-dwapi3) then
5714             cosphi=dcos(3*phii)
5715             fac=1.0D0/(1.0D0-cosphi)
5716             etorsi=v1(1,3,3)*fac
5717             etorsi=etorsi+etorsi
5718             etors=etors+etorsi-v1(1,3,3)
5719             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5720             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5721           endif
5722           do j=1,3
5723             v1ij=v1(j+1,itori,itori1)
5724             v2ij=v2(j+1,itori,itori1)
5725             cosphi=dcos(j*phii)
5726             sinphi=dsin(j*phii)
5727             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5728             if (energy_dec) etors_ii=etors_ii+
5729      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5730             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5731           enddo
5732         else 
5733           do j=1,nterm_old
5734             v1ij=v1(j,itori,itori1)
5735             v2ij=v2(j,itori,itori1)
5736             cosphi=dcos(j*phii)
5737             sinphi=dsin(j*phii)
5738             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5739             if (energy_dec) etors_ii=etors_ii+
5740      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5741             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5742           enddo
5743         endif
5744         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5745      &        'etor',i,etors_ii
5746         if (lprn)
5747      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5748      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5749      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5750         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5751         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5752       enddo
5753 ! 6/20/98 - dihedral angle constraints
5754       edihcnstr=0.0d0
5755       do i=1,ndih_constr
5756         itori=idih_constr(i)
5757         phii=phi(itori)
5758         difi=phii-phi0(i)
5759         if (difi.gt.drange(i)) then
5760           difi=difi-drange(i)
5761           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5762           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5763         else if (difi.lt.-drange(i)) then
5764           difi=difi+drange(i)
5765           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5766           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5767         endif
5768 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5769 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5770       enddo
5771 !      write (iout,*) 'edihcnstr',edihcnstr
5772       return
5773       end
5774 c------------------------------------------------------------------------------
5775       subroutine etor_d(etors_d)
5776       etors_d=0.0d0
5777       return
5778       end
5779 c----------------------------------------------------------------------------
5780 #else
5781       subroutine etor(etors,edihcnstr)
5782       implicit real*8 (a-h,o-z)
5783       include 'DIMENSIONS'
5784       include 'COMMON.VAR'
5785       include 'COMMON.GEO'
5786       include 'COMMON.LOCAL'
5787       include 'COMMON.TORSION'
5788       include 'COMMON.INTERACT'
5789       include 'COMMON.DERIV'
5790       include 'COMMON.CHAIN'
5791       include 'COMMON.NAMES'
5792       include 'COMMON.IOUNITS'
5793       include 'COMMON.FFIELD'
5794       include 'COMMON.TORCNSTR'
5795       include 'COMMON.CONTROL'
5796       logical lprn
5797 C Set lprn=.true. for debugging
5798       lprn=.false.
5799 c     lprn=.true.
5800       etors=0.0D0
5801       do i=iphi_start,iphi_end
5802       etors_ii=0.0D0
5803         itori=itortyp(itype(i-2))
5804         itori1=itortyp(itype(i-1))
5805         phii=phi(i)
5806         gloci=0.0D0
5807 C Regular cosine and sine terms
5808         do j=1,nterm(itori,itori1)
5809           v1ij=v1(j,itori,itori1)
5810           v2ij=v2(j,itori,itori1)
5811           cosphi=dcos(j*phii)
5812           sinphi=dsin(j*phii)
5813           etors=etors+v1ij*cosphi+v2ij*sinphi
5814           if (energy_dec) etors_ii=etors_ii+
5815      &                v1ij*cosphi+v2ij*sinphi
5816           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5817         enddo
5818 C Lorentz terms
5819 C                         v1
5820 C  E = SUM ----------------------------------- - v1
5821 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5822 C
5823         cosphi=dcos(0.5d0*phii)
5824         sinphi=dsin(0.5d0*phii)
5825         do j=1,nlor(itori,itori1)
5826           vl1ij=vlor1(j,itori,itori1)
5827           vl2ij=vlor2(j,itori,itori1)
5828           vl3ij=vlor3(j,itori,itori1)
5829           pom=vl2ij*cosphi+vl3ij*sinphi
5830           pom1=1.0d0/(pom*pom+1.0d0)
5831           etors=etors+vl1ij*pom1
5832           if (energy_dec) etors_ii=etors_ii+
5833      &                vl1ij*pom1
5834           pom=-pom*pom1*pom1
5835           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5836         enddo
5837 C Subtract the constant term
5838         etors=etors-v0(itori,itori1)
5839           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5840      &         'etor',i,etors_ii-v0(itori,itori1)
5841         if (lprn)
5842      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5843      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5844      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5845         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5846 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5847       enddo
5848 ! 6/20/98 - dihedral angle constraints
5849       edihcnstr=0.0d0
5850 c      do i=1,ndih_constr
5851       do i=idihconstr_start,idihconstr_end
5852         itori=idih_constr(i)
5853         phii=phi(itori)
5854         difi=pinorm(phii-phi0(i))
5855         if (difi.gt.drange(i)) then
5856           difi=difi-drange(i)
5857           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5858           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5859         else if (difi.lt.-drange(i)) then
5860           difi=difi+drange(i)
5861           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5862           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5863         else
5864           difi=0.0
5865         endif
5866 c        write (iout,*) "gloci", gloc(i-3,icg)
5867 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5868 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5869 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5870       enddo
5871 cd       write (iout,*) 'edihcnstr',edihcnstr
5872       return
5873       end
5874 c----------------------------------------------------------------------------
5875       subroutine etor_d(etors_d)
5876 C 6/23/01 Compute double torsional energy
5877       implicit real*8 (a-h,o-z)
5878       include 'DIMENSIONS'
5879       include 'COMMON.VAR'
5880       include 'COMMON.GEO'
5881       include 'COMMON.LOCAL'
5882       include 'COMMON.TORSION'
5883       include 'COMMON.INTERACT'
5884       include 'COMMON.DERIV'
5885       include 'COMMON.CHAIN'
5886       include 'COMMON.NAMES'
5887       include 'COMMON.IOUNITS'
5888       include 'COMMON.FFIELD'
5889       include 'COMMON.TORCNSTR'
5890       include 'COMMON.CONTROL'
5891       logical lprn
5892 C Set lprn=.true. for debugging
5893       lprn=.false.
5894 c     lprn=.true.
5895       etors_d=0.0D0
5896       do i=iphid_start,iphid_end
5897         etors_d_ii=0.0D0
5898         itori=itortyp(itype(i-2))
5899         itori1=itortyp(itype(i-1))
5900         itori2=itortyp(itype(i))
5901         phii=phi(i)
5902         phii1=phi(i+1)
5903         gloci1=0.0D0
5904         gloci2=0.0D0
5905         do j=1,ntermd_1(itori,itori1,itori2)
5906           v1cij=v1c(1,j,itori,itori1,itori2)
5907           v1sij=v1s(1,j,itori,itori1,itori2)
5908           v2cij=v1c(2,j,itori,itori1,itori2)
5909           v2sij=v1s(2,j,itori,itori1,itori2)
5910           cosphi1=dcos(j*phii)
5911           sinphi1=dsin(j*phii)
5912           cosphi2=dcos(j*phii1)
5913           sinphi2=dsin(j*phii1)
5914           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5915      &     v2cij*cosphi2+v2sij*sinphi2
5916           if (energy_dec) etors_d_ii=etors_d_ii+
5917      &     v1cij*cosphi1+v1sij*sinphi1+v2cij*cosphi2+v2sij*sinphi2
5918           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5919           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5920         enddo
5921         do k=2,ntermd_2(itori,itori1,itori2)
5922           do l=1,k-1
5923             v1cdij = v2c(k,l,itori,itori1,itori2)
5924             v2cdij = v2c(l,k,itori,itori1,itori2)
5925             v1sdij = v2s(k,l,itori,itori1,itori2)
5926             v2sdij = v2s(l,k,itori,itori1,itori2)
5927             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5928             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5929             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5930             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5931             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5932      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5933             if (energy_dec) etors_d_ii=etors_d_ii+
5934      &        v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5935      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5936             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5937      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5938             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5939      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5940           enddo
5941         enddo
5942         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5943      &        'etor_d',i,etors_d_ii
5944         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5945         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5946 c        write (iout,*) "gloci", gloc(i-3,icg)
5947       enddo
5948       return
5949       end
5950 #endif
5951 c------------------------------------------------------------------------------
5952       subroutine eback_sc_corr(esccor)
5953 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5954 c        conformational states; temporarily implemented as differences
5955 c        between UNRES torsional potentials (dependent on three types of
5956 c        residues) and the torsional potentials dependent on all 20 types
5957 c        of residues computed from AM1  energy surfaces of terminally-blocked
5958 c        amino-acid residues.
5959       implicit real*8 (a-h,o-z)
5960       include 'DIMENSIONS'
5961       include 'COMMON.VAR'
5962       include 'COMMON.GEO'
5963       include 'COMMON.LOCAL'
5964       include 'COMMON.TORSION'
5965       include 'COMMON.SCCOR'
5966       include 'COMMON.INTERACT'
5967       include 'COMMON.DERIV'
5968       include 'COMMON.CHAIN'
5969       include 'COMMON.NAMES'
5970       include 'COMMON.IOUNITS'
5971       include 'COMMON.FFIELD'
5972       include 'COMMON.CONTROL'
5973       logical lprn
5974 C Set lprn=.true. for debugging
5975       lprn=.false.
5976 c      lprn=.true.
5977 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5978       esccor=0.0D0
5979       do i=itau_start,itau_end
5980 C        do i=42,42
5981         esccor_ii=0.0D0
5982         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
5983         isccori=isccortyp(itype(i-2))
5984         isccori1=isccortyp(itype(i-1))
5985         phii=phi(i)
5986
5987 cccc  Added 9 May 2012
5988 cc Tauangle is torsional engle depending on the value of first digit 
5989 c(see comment below)
5990 cc Omicron is flat angle depending on the value of first digit 
5991 c(see comment below)
5992 C        print *,i,tauangle(1,i)
5993         
5994 c        do intertyp=1,3 !intertyp
5995         do intertyp=2,2 !intertyp
5996 cc Added 09 May 2012 (Adasko)
5997 cc  Intertyp means interaction type of backbone mainchain correlation: 
5998 c   1 = SC...Ca...Ca...Ca
5999 c   2 = Ca...Ca...Ca...SC
6000 c   3 = SC...Ca...Ca...SCi
6001         gloci=0.0D0
6002         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
6003      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
6004      &      (itype(i-1).eq.21)))
6005      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
6006      &     .or.(itype(i-2).eq.21)))
6007      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
6008      &      (itype(i-1).eq.21)))) cycle  
6009         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
6010         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
6011      & cycle
6012         do j=1,nterm_sccor(isccori,isccori1)
6013           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6014           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6015           cosphi=dcos(j*tauangle(intertyp,i))
6016           sinphi=dsin(j*tauangle(intertyp,i))
6017           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6018           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6019         enddo
6020 C        print *,i,tauangle(1,i),gloci
6021         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6022 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6023 c     &gloc_sc(intertyp,i-3,icg)
6024         if (lprn)
6025      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6026      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6027      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6028      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6029         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6030        enddo !intertyp
6031       enddo
6032 c        do i=1,nres
6033 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc_sc(2,i,icg),
6034 c     &   gloc_sc(3,i,icg)
6035 c        enddo
6036       return
6037       end
6038 c----------------------------------------------------------------------------
6039       subroutine multibody(ecorr)
6040 C This subroutine calculates multi-body contributions to energy following
6041 C the idea of Skolnick et al. If side chains I and J make a contact and
6042 C at the same time side chains I+1 and J+1 make a contact, an extra 
6043 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6044       implicit real*8 (a-h,o-z)
6045       include 'DIMENSIONS'
6046       include 'COMMON.IOUNITS'
6047       include 'COMMON.DERIV'
6048       include 'COMMON.INTERACT'
6049       include 'COMMON.CONTACTS'
6050       double precision gx(3),gx1(3)
6051       logical lprn
6052
6053 C Set lprn=.true. for debugging
6054       lprn=.false.
6055
6056       if (lprn) then
6057         write (iout,'(a)') 'Contact function values:'
6058         do i=nnt,nct-2
6059           write (iout,'(i2,20(1x,i2,f10.5))') 
6060      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6061         enddo
6062       endif
6063       ecorr=0.0D0
6064       do i=nnt,nct
6065         do j=1,3
6066           gradcorr(j,i)=0.0D0
6067           gradxorr(j,i)=0.0D0
6068         enddo
6069       enddo
6070       do i=nnt,nct-2
6071
6072         DO ISHIFT = 3,4
6073
6074         i1=i+ishift
6075         num_conti=num_cont(i)
6076         num_conti1=num_cont(i1)
6077         do jj=1,num_conti
6078           j=jcont(jj,i)
6079           do kk=1,num_conti1
6080             j1=jcont(kk,i1)
6081             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6082 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6083 cd   &                   ' ishift=',ishift
6084 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6085 C The system gains extra energy.
6086               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6087             endif   ! j1==j+-ishift
6088           enddo     ! kk  
6089         enddo       ! jj
6090
6091         ENDDO ! ISHIFT
6092
6093       enddo         ! i
6094       return
6095       end
6096 c------------------------------------------------------------------------------
6097       double precision function esccorr(i,j,k,l,jj,kk)
6098       implicit real*8 (a-h,o-z)
6099       include 'DIMENSIONS'
6100       include 'COMMON.IOUNITS'
6101       include 'COMMON.DERIV'
6102       include 'COMMON.INTERACT'
6103       include 'COMMON.CONTACTS'
6104       double precision gx(3),gx1(3)
6105       logical lprn
6106       lprn=.false.
6107       eij=facont(jj,i)
6108       ekl=facont(kk,k)
6109 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6110 C Calculate the multi-body contribution to energy.
6111 C Calculate multi-body contributions to the gradient.
6112 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6113 cd   & k,l,(gacont(m,kk,k),m=1,3)
6114       do m=1,3
6115         gx(m) =ekl*gacont(m,jj,i)
6116         gx1(m)=eij*gacont(m,kk,k)
6117         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6118         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6119         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6120         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6121       enddo
6122       do m=i,j-1
6123         do ll=1,3
6124           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6125         enddo
6126       enddo
6127       do m=k,l-1
6128         do ll=1,3
6129           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6130         enddo
6131       enddo 
6132       esccorr=-eij*ekl
6133       return
6134       end
6135 c------------------------------------------------------------------------------
6136       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6137 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6138       implicit real*8 (a-h,o-z)
6139       include 'DIMENSIONS'
6140       include 'COMMON.IOUNITS'
6141 #ifdef MPI
6142       include "mpif.h"
6143       parameter (max_cont=maxconts)
6144       parameter (max_dim=26)
6145       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6146       double precision zapas(max_dim,maxconts,max_fg_procs),
6147      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6148       common /przechowalnia/ zapas
6149       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6150      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6151 #endif
6152       include 'COMMON.SETUP'
6153       include 'COMMON.FFIELD'
6154       include 'COMMON.DERIV'
6155       include 'COMMON.INTERACT'
6156       include 'COMMON.CONTACTS'
6157       include 'COMMON.CONTROL'
6158       include 'COMMON.LOCAL'
6159       double precision gx(3),gx1(3),time00
6160       logical lprn,ldone
6161
6162 C Set lprn=.true. for debugging
6163       lprn=.false.
6164 #ifdef MPI
6165       n_corr=0
6166       n_corr1=0
6167       if (nfgtasks.le.1) goto 30
6168       if (lprn) then
6169         write (iout,'(a)') 'Contact function values before RECEIVE:'
6170         do i=nnt,nct-2
6171           write (iout,'(2i3,50(1x,i2,f5.2))') 
6172      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6173      &    j=1,num_cont_hb(i))
6174         enddo
6175       endif
6176       call flush(iout)
6177       do i=1,ntask_cont_from
6178         ncont_recv(i)=0
6179       enddo
6180       do i=1,ntask_cont_to
6181         ncont_sent(i)=0
6182       enddo
6183 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6184 c     & ntask_cont_to
6185 C Make the list of contacts to send to send to other procesors
6186 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6187 c      call flush(iout)
6188       do i=iturn3_start,iturn3_end
6189 c        write (iout,*) "make contact list turn3",i," num_cont",
6190 c     &    num_cont_hb(i)
6191         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6192       enddo
6193       do i=iturn4_start,iturn4_end
6194 c        write (iout,*) "make contact list turn4",i," num_cont",
6195 c     &   num_cont_hb(i)
6196         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6197       enddo
6198       do ii=1,nat_sent
6199         i=iat_sent(ii)
6200 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6201 c     &    num_cont_hb(i)
6202         do j=1,num_cont_hb(i)
6203         do k=1,4
6204           jjc=jcont_hb(j,i)
6205           iproc=iint_sent_local(k,jjc,ii)
6206 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6207           if (iproc.gt.0) then
6208             ncont_sent(iproc)=ncont_sent(iproc)+1
6209             nn=ncont_sent(iproc)
6210             zapas(1,nn,iproc)=i
6211             zapas(2,nn,iproc)=jjc
6212             zapas(3,nn,iproc)=facont_hb(j,i)
6213             zapas(4,nn,iproc)=ees0p(j,i)
6214             zapas(5,nn,iproc)=ees0m(j,i)
6215             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6216             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6217             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6218             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6219             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6220             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6221             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6222             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6223             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6224             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6225             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6226             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6227             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6228             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6229             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6230             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6231             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6232             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6233             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6234             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6235             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6236           endif
6237         enddo
6238         enddo
6239       enddo
6240       if (lprn) then
6241       write (iout,*) 
6242      &  "Numbers of contacts to be sent to other processors",
6243      &  (ncont_sent(i),i=1,ntask_cont_to)
6244       write (iout,*) "Contacts sent"
6245       do ii=1,ntask_cont_to
6246         nn=ncont_sent(ii)
6247         iproc=itask_cont_to(ii)
6248         write (iout,*) nn," contacts to processor",iproc,
6249      &   " of CONT_TO_COMM group"
6250         do i=1,nn
6251           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6252         enddo
6253       enddo
6254       call flush(iout)
6255       endif
6256       CorrelType=477
6257       CorrelID=fg_rank+1
6258       CorrelType1=478
6259       CorrelID1=nfgtasks+fg_rank+1
6260       ireq=0
6261 C Receive the numbers of needed contacts from other processors 
6262       do ii=1,ntask_cont_from
6263         iproc=itask_cont_from(ii)
6264         ireq=ireq+1
6265         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6266      &    FG_COMM,req(ireq),IERR)
6267       enddo
6268 c      write (iout,*) "IRECV ended"
6269 c      call flush(iout)
6270 C Send the number of contacts needed by other processors
6271       do ii=1,ntask_cont_to
6272         iproc=itask_cont_to(ii)
6273         ireq=ireq+1
6274         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6275      &    FG_COMM,req(ireq),IERR)
6276       enddo
6277 c      write (iout,*) "ISEND ended"
6278 c      write (iout,*) "number of requests (nn)",ireq
6279       call flush(iout)
6280       if (ireq.gt.0) 
6281      &  call MPI_Waitall(ireq,req,status_array,ierr)
6282 c      write (iout,*) 
6283 c     &  "Numbers of contacts to be received from other processors",
6284 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6285 c      call flush(iout)
6286 C Receive contacts
6287       ireq=0
6288       do ii=1,ntask_cont_from
6289         iproc=itask_cont_from(ii)
6290         nn=ncont_recv(ii)
6291 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6292 c     &   " of CONT_TO_COMM group"
6293         call flush(iout)
6294         if (nn.gt.0) then
6295           ireq=ireq+1
6296           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6297      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6298 c          write (iout,*) "ireq,req",ireq,req(ireq)
6299         endif
6300       enddo
6301 C Send the contacts to processors that need them
6302       do ii=1,ntask_cont_to
6303         iproc=itask_cont_to(ii)
6304         nn=ncont_sent(ii)
6305 c        write (iout,*) nn," contacts to processor",iproc,
6306 c     &   " of CONT_TO_COMM group"
6307         if (nn.gt.0) then
6308           ireq=ireq+1 
6309           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6310      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6311 c          write (iout,*) "ireq,req",ireq,req(ireq)
6312 c          do i=1,nn
6313 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6314 c          enddo
6315         endif  
6316       enddo
6317 c      write (iout,*) "number of requests (contacts)",ireq
6318 c      write (iout,*) "req",(req(i),i=1,4)
6319 c      call flush(iout)
6320       if (ireq.gt.0) 
6321      & call MPI_Waitall(ireq,req,status_array,ierr)
6322       do iii=1,ntask_cont_from
6323         iproc=itask_cont_from(iii)
6324         nn=ncont_recv(iii)
6325         if (lprn) then
6326         write (iout,*) "Received",nn," contacts from processor",iproc,
6327      &   " of CONT_FROM_COMM group"
6328         call flush(iout)
6329         do i=1,nn
6330           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6331         enddo
6332         call flush(iout)
6333         endif
6334         do i=1,nn
6335           ii=zapas_recv(1,i,iii)
6336 c Flag the received contacts to prevent double-counting
6337           jj=-zapas_recv(2,i,iii)
6338 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6339 c          call flush(iout)
6340           nnn=num_cont_hb(ii)+1
6341           num_cont_hb(ii)=nnn
6342           jcont_hb(nnn,ii)=jj
6343           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6344           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6345           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6346           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6347           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6348           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6349           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6350           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6351           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6352           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6353           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6354           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6355           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6356           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6357           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6358           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6359           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6360           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6361           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6362           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6363           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6364           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6365           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6366           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6367         enddo
6368       enddo
6369       call flush(iout)
6370       if (lprn) then
6371         write (iout,'(a)') 'Contact function values after receive:'
6372         do i=nnt,nct-2
6373           write (iout,'(2i3,50(1x,i3,f5.2))') 
6374      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6375      &    j=1,num_cont_hb(i))
6376         enddo
6377         call flush(iout)
6378       endif
6379    30 continue
6380 #endif
6381       if (lprn) then
6382         write (iout,'(a)') 'Contact function values:'
6383         do i=nnt,nct-2
6384           write (iout,'(2i3,50(1x,i3,f5.2))') 
6385      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6386      &    j=1,num_cont_hb(i))
6387         enddo
6388       endif
6389       ecorr=0.0D0
6390 C Remove the loop below after debugging !!!
6391       do i=nnt,nct
6392         do j=1,3
6393           gradcorr(j,i)=0.0D0
6394           gradxorr(j,i)=0.0D0
6395         enddo
6396       enddo
6397 C Calculate the local-electrostatic correlation terms
6398       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6399         i1=i+1
6400         num_conti=num_cont_hb(i)
6401         num_conti1=num_cont_hb(i+1)
6402         do jj=1,num_conti
6403           j=jcont_hb(jj,i)
6404           jp=iabs(j)
6405           do kk=1,num_conti1
6406             j1=jcont_hb(kk,i1)
6407             jp1=iabs(j1)
6408 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6409 c     &         ' jj=',jj,' kk=',kk
6410             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6411      &          .or. j.lt.0 .and. j1.gt.0) .and.
6412      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6413 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6414 C The system gains extra energy.
6415               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6416               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6417      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6418               n_corr=n_corr+1
6419             else if (j1.eq.j) then
6420 C Contacts I-J and I-(J+1) occur simultaneously. 
6421 C The system loses extra energy.
6422 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6423             endif
6424           enddo ! kk
6425           do kk=1,num_conti
6426             j1=jcont_hb(kk,i)
6427 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6428 c    &         ' jj=',jj,' kk=',kk
6429             if (j1.eq.j+1) then
6430 C Contacts I-J and (I+1)-J occur simultaneously. 
6431 C The system loses extra energy.
6432 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6433             endif ! j1==j+1
6434           enddo ! kk
6435         enddo ! jj
6436       enddo ! i
6437       return
6438       end
6439 c------------------------------------------------------------------------------
6440       subroutine add_hb_contact(ii,jj,itask)
6441       implicit real*8 (a-h,o-z)
6442       include "DIMENSIONS"
6443       include "COMMON.IOUNITS"
6444       integer max_cont
6445       integer max_dim
6446       parameter (max_cont=maxconts)
6447       parameter (max_dim=26)
6448       include "COMMON.CONTACTS"
6449       double precision zapas(max_dim,maxconts,max_fg_procs),
6450      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6451       common /przechowalnia/ zapas
6452       integer i,j,ii,jj,iproc,itask(4),nn
6453 c      write (iout,*) "itask",itask
6454       do i=1,2
6455         iproc=itask(i)
6456         if (iproc.gt.0) then
6457           do j=1,num_cont_hb(ii)
6458             jjc=jcont_hb(j,ii)
6459 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6460             if (jjc.eq.jj) then
6461               ncont_sent(iproc)=ncont_sent(iproc)+1
6462               nn=ncont_sent(iproc)
6463               zapas(1,nn,iproc)=ii
6464               zapas(2,nn,iproc)=jjc
6465               zapas(3,nn,iproc)=facont_hb(j,ii)
6466               zapas(4,nn,iproc)=ees0p(j,ii)
6467               zapas(5,nn,iproc)=ees0m(j,ii)
6468               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6469               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6470               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6471               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6472               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6473               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6474               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6475               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6476               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6477               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6478               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6479               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6480               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6481               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6482               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6483               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6484               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6485               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6486               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6487               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6488               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6489               exit
6490             endif
6491           enddo
6492         endif
6493       enddo
6494       return
6495       end
6496 c------------------------------------------------------------------------------
6497       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6498      &  n_corr1)
6499 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6500       implicit real*8 (a-h,o-z)
6501       include 'DIMENSIONS'
6502       include 'COMMON.IOUNITS'
6503 #ifdef MPI
6504       include "mpif.h"
6505       parameter (max_cont=maxconts)
6506       parameter (max_dim=70)
6507       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6508       double precision zapas(max_dim,maxconts,max_fg_procs),
6509      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6510       common /przechowalnia/ zapas
6511       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6512      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6513 #endif
6514       include 'COMMON.SETUP'
6515       include 'COMMON.FFIELD'
6516       include 'COMMON.DERIV'
6517       include 'COMMON.LOCAL'
6518       include 'COMMON.INTERACT'
6519       include 'COMMON.CONTACTS'
6520       include 'COMMON.CHAIN'
6521       include 'COMMON.CONTROL'
6522       double precision gx(3),gx1(3)
6523       integer num_cont_hb_old(maxres)
6524       logical lprn,ldone
6525       double precision eello4,eello5,eelo6,eello_turn6
6526       external eello4,eello5,eello6,eello_turn6
6527 C Set lprn=.true. for debugging
6528       lprn=.false.
6529       eturn6=0.0d0
6530 #ifdef MPI
6531       do i=1,nres
6532         num_cont_hb_old(i)=num_cont_hb(i)
6533       enddo
6534       n_corr=0
6535       n_corr1=0
6536       if (nfgtasks.le.1) goto 30
6537       if (lprn) then
6538         write (iout,'(a)') 'Contact function values before RECEIVE:'
6539         do i=nnt,nct-2
6540           write (iout,'(2i3,50(1x,i2,f5.2))') 
6541      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6542      &    j=1,num_cont_hb(i))
6543         enddo
6544       endif
6545       call flush(iout)
6546       do i=1,ntask_cont_from
6547         ncont_recv(i)=0
6548       enddo
6549       do i=1,ntask_cont_to
6550         ncont_sent(i)=0
6551       enddo
6552 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6553 c     & ntask_cont_to
6554 C Make the list of contacts to send to send to other procesors
6555       do i=iturn3_start,iturn3_end
6556 c        write (iout,*) "make contact list turn3",i," num_cont",
6557 c     &    num_cont_hb(i)
6558         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6559       enddo
6560       do i=iturn4_start,iturn4_end
6561 c        write (iout,*) "make contact list turn4",i," num_cont",
6562 c     &   num_cont_hb(i)
6563         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6564       enddo
6565       do ii=1,nat_sent
6566         i=iat_sent(ii)
6567 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6568 c     &    num_cont_hb(i)
6569         do j=1,num_cont_hb(i)
6570         do k=1,4
6571           jjc=jcont_hb(j,i)
6572           iproc=iint_sent_local(k,jjc,ii)
6573 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6574           if (iproc.ne.0) then
6575             ncont_sent(iproc)=ncont_sent(iproc)+1
6576             nn=ncont_sent(iproc)
6577             zapas(1,nn,iproc)=i
6578             zapas(2,nn,iproc)=jjc
6579             zapas(3,nn,iproc)=d_cont(j,i)
6580             ind=3
6581             do kk=1,3
6582               ind=ind+1
6583               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6584             enddo
6585             do kk=1,2
6586               do ll=1,2
6587                 ind=ind+1
6588                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6589               enddo
6590             enddo
6591             do jj=1,5
6592               do kk=1,3
6593                 do ll=1,2
6594                   do mm=1,2
6595                     ind=ind+1
6596                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6597                   enddo
6598                 enddo
6599               enddo
6600             enddo
6601           endif
6602         enddo
6603         enddo
6604       enddo
6605       if (lprn) then
6606       write (iout,*) 
6607      &  "Numbers of contacts to be sent to other processors",
6608      &  (ncont_sent(i),i=1,ntask_cont_to)
6609       write (iout,*) "Contacts sent"
6610       do ii=1,ntask_cont_to
6611         nn=ncont_sent(ii)
6612         iproc=itask_cont_to(ii)
6613         write (iout,*) nn," contacts to processor",iproc,
6614      &   " of CONT_TO_COMM group"
6615         do i=1,nn
6616           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6617         enddo
6618       enddo
6619       call flush(iout)
6620       endif
6621       CorrelType=477
6622       CorrelID=fg_rank+1
6623       CorrelType1=478
6624       CorrelID1=nfgtasks+fg_rank+1
6625       ireq=0
6626 C Receive the numbers of needed contacts from other processors 
6627       do ii=1,ntask_cont_from
6628         iproc=itask_cont_from(ii)
6629         ireq=ireq+1
6630         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6631      &    FG_COMM,req(ireq),IERR)
6632       enddo
6633 c      write (iout,*) "IRECV ended"
6634 c      call flush(iout)
6635 C Send the number of contacts needed by other processors
6636       do ii=1,ntask_cont_to
6637         iproc=itask_cont_to(ii)
6638         ireq=ireq+1
6639         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6640      &    FG_COMM,req(ireq),IERR)
6641       enddo
6642 c      write (iout,*) "ISEND ended"
6643 c      write (iout,*) "number of requests (nn)",ireq
6644       call flush(iout)
6645       if (ireq.gt.0) 
6646      &  call MPI_Waitall(ireq,req,status_array,ierr)
6647 c      write (iout,*) 
6648 c     &  "Numbers of contacts to be received from other processors",
6649 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6650 c      call flush(iout)
6651 C Receive contacts
6652       ireq=0
6653       do ii=1,ntask_cont_from
6654         iproc=itask_cont_from(ii)
6655         nn=ncont_recv(ii)
6656 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6657 c     &   " of CONT_TO_COMM group"
6658         call flush(iout)
6659         if (nn.gt.0) then
6660           ireq=ireq+1
6661           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6662      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6663 c          write (iout,*) "ireq,req",ireq,req(ireq)
6664         endif
6665       enddo
6666 C Send the contacts to processors that need them
6667       do ii=1,ntask_cont_to
6668         iproc=itask_cont_to(ii)
6669         nn=ncont_sent(ii)
6670 c        write (iout,*) nn," contacts to processor",iproc,
6671 c     &   " of CONT_TO_COMM group"
6672         if (nn.gt.0) then
6673           ireq=ireq+1 
6674           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6675      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6676 c          write (iout,*) "ireq,req",ireq,req(ireq)
6677 c          do i=1,nn
6678 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6679 c          enddo
6680         endif  
6681       enddo
6682 c      write (iout,*) "number of requests (contacts)",ireq
6683 c      write (iout,*) "req",(req(i),i=1,4)
6684 c      call flush(iout)
6685       if (ireq.gt.0) 
6686      & call MPI_Waitall(ireq,req,status_array,ierr)
6687       do iii=1,ntask_cont_from
6688         iproc=itask_cont_from(iii)
6689         nn=ncont_recv(iii)
6690         if (lprn) then
6691         write (iout,*) "Received",nn," contacts from processor",iproc,
6692      &   " of CONT_FROM_COMM group"
6693         call flush(iout)
6694         do i=1,nn
6695           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6696         enddo
6697         call flush(iout)
6698         endif
6699         do i=1,nn
6700           ii=zapas_recv(1,i,iii)
6701 c Flag the received contacts to prevent double-counting
6702           jj=-zapas_recv(2,i,iii)
6703 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6704 c          call flush(iout)
6705           nnn=num_cont_hb(ii)+1
6706           num_cont_hb(ii)=nnn
6707           jcont_hb(nnn,ii)=jj
6708           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6709           ind=3
6710           do kk=1,3
6711             ind=ind+1
6712             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6713           enddo
6714           do kk=1,2
6715             do ll=1,2
6716               ind=ind+1
6717               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6718             enddo
6719           enddo
6720           do jj=1,5
6721             do kk=1,3
6722               do ll=1,2
6723                 do mm=1,2
6724                   ind=ind+1
6725                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6726                 enddo
6727               enddo
6728             enddo
6729           enddo
6730         enddo
6731       enddo
6732       call flush(iout)
6733       if (lprn) then
6734         write (iout,'(a)') 'Contact function values after receive:'
6735         do i=nnt,nct-2
6736           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6737      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6738      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6739         enddo
6740         call flush(iout)
6741       endif
6742    30 continue
6743 #endif
6744       if (lprn) then
6745         write (iout,'(a)') 'Contact function values:'
6746         do i=nnt,nct-2
6747           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6748      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6749      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6750         enddo
6751       endif
6752       ecorr=0.0D0
6753       ecorr5=0.0d0
6754       ecorr6=0.0d0
6755 C Remove the loop below after debugging !!!
6756       do i=nnt,nct
6757         do j=1,3
6758           gradcorr(j,i)=0.0D0
6759           gradxorr(j,i)=0.0D0
6760         enddo
6761       enddo
6762 C Calculate the dipole-dipole interaction energies
6763       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6764       do i=iatel_s,iatel_e+1
6765         num_conti=num_cont_hb(i)
6766         do jj=1,num_conti
6767           j=jcont_hb(jj,i)
6768 #ifdef MOMENT
6769           call dipole(i,j,jj)
6770 #endif
6771         enddo
6772       enddo
6773       endif
6774 C Calculate the local-electrostatic correlation terms
6775 c                write (iout,*) "gradcorr5 in eello5 before loop"
6776 c                do iii=1,nres
6777 c                  write (iout,'(i5,3f10.5)') 
6778 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6779 c                enddo
6780       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6781 c        write (iout,*) "corr loop i",i
6782         i1=i+1
6783         num_conti=num_cont_hb(i)
6784         num_conti1=num_cont_hb(i+1)
6785         do jj=1,num_conti
6786           j=jcont_hb(jj,i)
6787           jp=iabs(j)
6788           do kk=1,num_conti1
6789             j1=jcont_hb(kk,i1)
6790             jp1=iabs(j1)
6791 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6792 c     &         ' jj=',jj,' kk=',kk
6793 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6794             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6795      &          .or. j.lt.0 .and. j1.gt.0) .and.
6796      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6797 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6798 C The system gains extra energy.
6799               n_corr=n_corr+1
6800               sqd1=dsqrt(d_cont(jj,i))
6801               sqd2=dsqrt(d_cont(kk,i1))
6802               sred_geom = sqd1*sqd2
6803               IF (sred_geom.lt.cutoff_corr) THEN
6804                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6805      &            ekont,fprimcont)
6806 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6807 cd     &         ' jj=',jj,' kk=',kk
6808                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6809                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6810                 do l=1,3
6811                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6812                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6813                 enddo
6814                 n_corr1=n_corr1+1
6815 cd               write (iout,*) 'sred_geom=',sred_geom,
6816 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6817 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6818 cd               write (iout,*) "g_contij",g_contij
6819 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6820 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6821                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6822                 if (wcorr4.gt.0.0d0) 
6823      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6824                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6825      1                 write (iout,'(a6,4i5,0pf7.3)')
6826      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6827 c                write (iout,*) "gradcorr5 before eello5"
6828 c                do iii=1,nres
6829 c                  write (iout,'(i5,3f10.5)') 
6830 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6831 c                enddo
6832                 if (wcorr5.gt.0.0d0)
6833      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6834 c                write (iout,*) "gradcorr5 after eello5"
6835 c                do iii=1,nres
6836 c                  write (iout,'(i5,3f10.5)') 
6837 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6838 c                enddo
6839                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6840      1                 write (iout,'(a6,4i5,0pf7.3)')
6841      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6842 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6843 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6844                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6845      &               .or. wturn6.eq.0.0d0))then
6846 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6847                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6848                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6849      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6850 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6851 cd     &            'ecorr6=',ecorr6
6852 cd                write (iout,'(4e15.5)') sred_geom,
6853 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6854 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6855 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6856                 else if (wturn6.gt.0.0d0
6857      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6858 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6859                   eturn6=eturn6+eello_turn6(i,jj,kk)
6860                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6861      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6862 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6863                 endif
6864               ENDIF
6865 1111          continue
6866             endif
6867           enddo ! kk
6868         enddo ! jj
6869       enddo ! i
6870       do i=1,nres
6871         num_cont_hb(i)=num_cont_hb_old(i)
6872       enddo
6873 c                write (iout,*) "gradcorr5 in eello5"
6874 c                do iii=1,nres
6875 c                  write (iout,'(i5,3f10.5)') 
6876 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6877 c                enddo
6878       return
6879       end
6880 c------------------------------------------------------------------------------
6881       subroutine add_hb_contact_eello(ii,jj,itask)
6882       implicit real*8 (a-h,o-z)
6883       include "DIMENSIONS"
6884       include "COMMON.IOUNITS"
6885       integer max_cont
6886       integer max_dim
6887       parameter (max_cont=maxconts)
6888       parameter (max_dim=70)
6889       include "COMMON.CONTACTS"
6890       double precision zapas(max_dim,maxconts,max_fg_procs),
6891      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6892       common /przechowalnia/ zapas
6893       integer i,j,ii,jj,iproc,itask(4),nn
6894 c      write (iout,*) "itask",itask
6895       do i=1,2
6896         iproc=itask(i)
6897         if (iproc.gt.0) then
6898           do j=1,num_cont_hb(ii)
6899             jjc=jcont_hb(j,ii)
6900 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6901             if (jjc.eq.jj) then
6902               ncont_sent(iproc)=ncont_sent(iproc)+1
6903               nn=ncont_sent(iproc)
6904               zapas(1,nn,iproc)=ii
6905               zapas(2,nn,iproc)=jjc
6906               zapas(3,nn,iproc)=d_cont(j,ii)
6907               ind=3
6908               do kk=1,3
6909                 ind=ind+1
6910                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6911               enddo
6912               do kk=1,2
6913                 do ll=1,2
6914                   ind=ind+1
6915                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6916                 enddo
6917               enddo
6918               do jj=1,5
6919                 do kk=1,3
6920                   do ll=1,2
6921                     do mm=1,2
6922                       ind=ind+1
6923                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6924                     enddo
6925                   enddo
6926                 enddo
6927               enddo
6928               exit
6929             endif
6930           enddo
6931         endif
6932       enddo
6933       return
6934       end
6935 c------------------------------------------------------------------------------
6936       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6937       implicit real*8 (a-h,o-z)
6938       include 'DIMENSIONS'
6939       include 'COMMON.IOUNITS'
6940       include 'COMMON.DERIV'
6941       include 'COMMON.INTERACT'
6942       include 'COMMON.CONTACTS'
6943       double precision gx(3),gx1(3)
6944       logical lprn
6945       lprn=.false.
6946       eij=facont_hb(jj,i)
6947       ekl=facont_hb(kk,k)
6948       ees0pij=ees0p(jj,i)
6949       ees0pkl=ees0p(kk,k)
6950       ees0mij=ees0m(jj,i)
6951       ees0mkl=ees0m(kk,k)
6952       ekont=eij*ekl
6953       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6954 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6955 C Following 4 lines for diagnostics.
6956 cd    ees0pkl=0.0D0
6957 cd    ees0pij=1.0D0
6958 cd    ees0mkl=0.0D0
6959 cd    ees0mij=1.0D0
6960 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6961 c     & 'Contacts ',i,j,
6962 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6963 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6964 c     & 'gradcorr_long'
6965 C Calculate the multi-body contribution to energy.
6966 c      ecorr=ecorr+ekont*ees
6967 C Calculate multi-body contributions to the gradient.
6968       coeffpees0pij=coeffp*ees0pij
6969       coeffmees0mij=coeffm*ees0mij
6970       coeffpees0pkl=coeffp*ees0pkl
6971       coeffmees0mkl=coeffm*ees0mkl
6972       do ll=1,3
6973 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6974         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6975      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6976      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6977         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6978      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6979      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6980 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6981         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6982      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6983      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6984         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6985      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6986      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6987         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6988      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6989      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6990         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6991         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6992         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6993      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6994      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6995         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6996         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6997 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6998       enddo
6999 c      write (iout,*)
7000 cgrad      do m=i+1,j-1
7001 cgrad        do ll=1,3
7002 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7003 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
7004 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
7005 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
7006 cgrad        enddo
7007 cgrad      enddo
7008 cgrad      do m=k+1,l-1
7009 cgrad        do ll=1,3
7010 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7011 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7012 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7013 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7014 cgrad        enddo
7015 cgrad      enddo 
7016 c      write (iout,*) "ehbcorr",ekont*ees
7017       ehbcorr=ekont*ees
7018       return
7019       end
7020 #ifdef MOMENT
7021 C---------------------------------------------------------------------------
7022       subroutine dipole(i,j,jj)
7023       implicit real*8 (a-h,o-z)
7024       include 'DIMENSIONS'
7025       include 'COMMON.IOUNITS'
7026       include 'COMMON.CHAIN'
7027       include 'COMMON.FFIELD'
7028       include 'COMMON.DERIV'
7029       include 'COMMON.INTERACT'
7030       include 'COMMON.CONTACTS'
7031       include 'COMMON.TORSION'
7032       include 'COMMON.VAR'
7033       include 'COMMON.GEO'
7034       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7035      &  auxmat(2,2)
7036       iti1 = itortyp(itype(i+1))
7037       if (j.lt.nres-1) then
7038         itj1 = itortyp(itype(j+1))
7039       else
7040         itj1=ntortyp+1
7041       endif
7042       do iii=1,2
7043         dipi(iii,1)=Ub2(iii,i)
7044         dipderi(iii)=Ub2der(iii,i)
7045         dipi(iii,2)=b1(iii,iti1)
7046         dipj(iii,1)=Ub2(iii,j)
7047         dipderj(iii)=Ub2der(iii,j)
7048         dipj(iii,2)=b1(iii,itj1)
7049       enddo
7050       kkk=0
7051       do iii=1,2
7052         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7053         do jjj=1,2
7054           kkk=kkk+1
7055           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7056         enddo
7057       enddo
7058       do kkk=1,5
7059         do lll=1,3
7060           mmm=0
7061           do iii=1,2
7062             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7063      &        auxvec(1))
7064             do jjj=1,2
7065               mmm=mmm+1
7066               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7067             enddo
7068           enddo
7069         enddo
7070       enddo
7071       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7072       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7073       do iii=1,2
7074         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7075       enddo
7076       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7077       do iii=1,2
7078         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7079       enddo
7080       return
7081       end
7082 #endif
7083 C---------------------------------------------------------------------------
7084       subroutine calc_eello(i,j,k,l,jj,kk)
7085
7086 C This subroutine computes matrices and vectors needed to calculate 
7087 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7088 C
7089       implicit real*8 (a-h,o-z)
7090       include 'DIMENSIONS'
7091       include 'COMMON.IOUNITS'
7092       include 'COMMON.CHAIN'
7093       include 'COMMON.DERIV'
7094       include 'COMMON.INTERACT'
7095       include 'COMMON.CONTACTS'
7096       include 'COMMON.TORSION'
7097       include 'COMMON.VAR'
7098       include 'COMMON.GEO'
7099       include 'COMMON.FFIELD'
7100       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7101      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7102       logical lprn
7103       common /kutas/ lprn
7104 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7105 cd     & ' jj=',jj,' kk=',kk
7106 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7107 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7108 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7109       do iii=1,2
7110         do jjj=1,2
7111           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7112           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7113         enddo
7114       enddo
7115       call transpose2(aa1(1,1),aa1t(1,1))
7116       call transpose2(aa2(1,1),aa2t(1,1))
7117       do kkk=1,5
7118         do lll=1,3
7119           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7120      &      aa1tder(1,1,lll,kkk))
7121           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7122      &      aa2tder(1,1,lll,kkk))
7123         enddo
7124       enddo 
7125       if (l.eq.j+1) then
7126 C parallel orientation of the two CA-CA-CA frames.
7127         if (i.gt.1) then
7128           iti=itortyp(itype(i))
7129         else
7130           iti=ntortyp+1
7131         endif
7132         itk1=itortyp(itype(k+1))
7133         itj=itortyp(itype(j))
7134         if (l.lt.nres-1) then
7135           itl1=itortyp(itype(l+1))
7136         else
7137           itl1=ntortyp+1
7138         endif
7139 C A1 kernel(j+1) A2T
7140 cd        do iii=1,2
7141 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7142 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7143 cd        enddo
7144         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7145      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7146      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7147 C Following matrices are needed only for 6-th order cumulants
7148         IF (wcorr6.gt.0.0d0) THEN
7149         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7150      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7151      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7152         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7153      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7154      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7155      &   ADtEAderx(1,1,1,1,1,1))
7156         lprn=.false.
7157         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7158      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7159      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7160      &   ADtEA1derx(1,1,1,1,1,1))
7161         ENDIF
7162 C End 6-th order cumulants
7163 cd        lprn=.false.
7164 cd        if (lprn) then
7165 cd        write (2,*) 'In calc_eello6'
7166 cd        do iii=1,2
7167 cd          write (2,*) 'iii=',iii
7168 cd          do kkk=1,5
7169 cd            write (2,*) 'kkk=',kkk
7170 cd            do jjj=1,2
7171 cd              write (2,'(3(2f10.5),5x)') 
7172 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7173 cd            enddo
7174 cd          enddo
7175 cd        enddo
7176 cd        endif
7177         call transpose2(EUgder(1,1,k),auxmat(1,1))
7178         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7179         call transpose2(EUg(1,1,k),auxmat(1,1))
7180         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7181         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7182         do iii=1,2
7183           do kkk=1,5
7184             do lll=1,3
7185               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7186      &          EAEAderx(1,1,lll,kkk,iii,1))
7187             enddo
7188           enddo
7189         enddo
7190 C A1T kernel(i+1) A2
7191         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7192      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7193      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7194 C Following matrices are needed only for 6-th order cumulants
7195         IF (wcorr6.gt.0.0d0) THEN
7196         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7197      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7198      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7199         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7200      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7201      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7202      &   ADtEAderx(1,1,1,1,1,2))
7203         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7204      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7205      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7206      &   ADtEA1derx(1,1,1,1,1,2))
7207         ENDIF
7208 C End 6-th order cumulants
7209         call transpose2(EUgder(1,1,l),auxmat(1,1))
7210         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7211         call transpose2(EUg(1,1,l),auxmat(1,1))
7212         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7213         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7214         do iii=1,2
7215           do kkk=1,5
7216             do lll=1,3
7217               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7218      &          EAEAderx(1,1,lll,kkk,iii,2))
7219             enddo
7220           enddo
7221         enddo
7222 C AEAb1 and AEAb2
7223 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7224 C They are needed only when the fifth- or the sixth-order cumulants are
7225 C indluded.
7226         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7227         call transpose2(AEA(1,1,1),auxmat(1,1))
7228         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7229         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7230         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7231         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7232         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7233         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7234         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7235         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7236         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7237         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7238         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7239         call transpose2(AEA(1,1,2),auxmat(1,1))
7240         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7241         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7242         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7243         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7244         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7245         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7246         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7247         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7248         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7249         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7250         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7251 C Calculate the Cartesian derivatives of the vectors.
7252         do iii=1,2
7253           do kkk=1,5
7254             do lll=1,3
7255               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7256               call matvec2(auxmat(1,1),b1(1,iti),
7257      &          AEAb1derx(1,lll,kkk,iii,1,1))
7258               call matvec2(auxmat(1,1),Ub2(1,i),
7259      &          AEAb2derx(1,lll,kkk,iii,1,1))
7260               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7261      &          AEAb1derx(1,lll,kkk,iii,2,1))
7262               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7263      &          AEAb2derx(1,lll,kkk,iii,2,1))
7264               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7265               call matvec2(auxmat(1,1),b1(1,itj),
7266      &          AEAb1derx(1,lll,kkk,iii,1,2))
7267               call matvec2(auxmat(1,1),Ub2(1,j),
7268      &          AEAb2derx(1,lll,kkk,iii,1,2))
7269               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7270      &          AEAb1derx(1,lll,kkk,iii,2,2))
7271               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7272      &          AEAb2derx(1,lll,kkk,iii,2,2))
7273             enddo
7274           enddo
7275         enddo
7276         ENDIF
7277 C End vectors
7278       else
7279 C Antiparallel orientation of the two CA-CA-CA frames.
7280         if (i.gt.1) then
7281           iti=itortyp(itype(i))
7282         else
7283           iti=ntortyp+1
7284         endif
7285         itk1=itortyp(itype(k+1))
7286         itl=itortyp(itype(l))
7287         itj=itortyp(itype(j))
7288         if (j.lt.nres-1) then
7289           itj1=itortyp(itype(j+1))
7290         else 
7291           itj1=ntortyp+1
7292         endif
7293 C A2 kernel(j-1)T A1T
7294         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7295      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7296      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7297 C Following matrices are needed only for 6-th order cumulants
7298         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7299      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7300         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7301      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7302      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7303         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7304      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7305      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7306      &   ADtEAderx(1,1,1,1,1,1))
7307         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7308      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7309      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7310      &   ADtEA1derx(1,1,1,1,1,1))
7311         ENDIF
7312 C End 6-th order cumulants
7313         call transpose2(EUgder(1,1,k),auxmat(1,1))
7314         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7315         call transpose2(EUg(1,1,k),auxmat(1,1))
7316         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7317         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7318         do iii=1,2
7319           do kkk=1,5
7320             do lll=1,3
7321               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7322      &          EAEAderx(1,1,lll,kkk,iii,1))
7323             enddo
7324           enddo
7325         enddo
7326 C A2T kernel(i+1)T A1
7327         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7328      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7329      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7330 C Following matrices are needed only for 6-th order cumulants
7331         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7332      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7333         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7334      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7335      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7336         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7337      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7338      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7339      &   ADtEAderx(1,1,1,1,1,2))
7340         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7341      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7342      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7343      &   ADtEA1derx(1,1,1,1,1,2))
7344         ENDIF
7345 C End 6-th order cumulants
7346         call transpose2(EUgder(1,1,j),auxmat(1,1))
7347         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7348         call transpose2(EUg(1,1,j),auxmat(1,1))
7349         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7350         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7351         do iii=1,2
7352           do kkk=1,5
7353             do lll=1,3
7354               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7355      &          EAEAderx(1,1,lll,kkk,iii,2))
7356             enddo
7357           enddo
7358         enddo
7359 C AEAb1 and AEAb2
7360 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7361 C They are needed only when the fifth- or the sixth-order cumulants are
7362 C indluded.
7363         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7364      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7365         call transpose2(AEA(1,1,1),auxmat(1,1))
7366         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7367         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7368         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7369         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7370         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7371         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7372         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7373         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7374         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7375         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7376         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7377         call transpose2(AEA(1,1,2),auxmat(1,1))
7378         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7379         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7380         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7381         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7382         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7383         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7384         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7385         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7386         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7387         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7388         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7389 C Calculate the Cartesian derivatives of the vectors.
7390         do iii=1,2
7391           do kkk=1,5
7392             do lll=1,3
7393               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7394               call matvec2(auxmat(1,1),b1(1,iti),
7395      &          AEAb1derx(1,lll,kkk,iii,1,1))
7396               call matvec2(auxmat(1,1),Ub2(1,i),
7397      &          AEAb2derx(1,lll,kkk,iii,1,1))
7398               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7399      &          AEAb1derx(1,lll,kkk,iii,2,1))
7400               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7401      &          AEAb2derx(1,lll,kkk,iii,2,1))
7402               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7403               call matvec2(auxmat(1,1),b1(1,itl),
7404      &          AEAb1derx(1,lll,kkk,iii,1,2))
7405               call matvec2(auxmat(1,1),Ub2(1,l),
7406      &          AEAb2derx(1,lll,kkk,iii,1,2))
7407               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7408      &          AEAb1derx(1,lll,kkk,iii,2,2))
7409               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7410      &          AEAb2derx(1,lll,kkk,iii,2,2))
7411             enddo
7412           enddo
7413         enddo
7414         ENDIF
7415 C End vectors
7416       endif
7417       return
7418       end
7419 C---------------------------------------------------------------------------
7420       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7421      &  KK,KKderg,AKA,AKAderg,AKAderx)
7422       implicit none
7423       integer nderg
7424       logical transp
7425       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7426      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7427      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7428       integer iii,kkk,lll
7429       integer jjj,mmm
7430       logical lprn
7431       common /kutas/ lprn
7432       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7433       do iii=1,nderg 
7434         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7435      &    AKAderg(1,1,iii))
7436       enddo
7437 cd      if (lprn) write (2,*) 'In kernel'
7438       do kkk=1,5
7439 cd        if (lprn) write (2,*) 'kkk=',kkk
7440         do lll=1,3
7441           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7442      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7443 cd          if (lprn) then
7444 cd            write (2,*) 'lll=',lll
7445 cd            write (2,*) 'iii=1'
7446 cd            do jjj=1,2
7447 cd              write (2,'(3(2f10.5),5x)') 
7448 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7449 cd            enddo
7450 cd          endif
7451           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7452      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7453 cd          if (lprn) then
7454 cd            write (2,*) 'lll=',lll
7455 cd            write (2,*) 'iii=2'
7456 cd            do jjj=1,2
7457 cd              write (2,'(3(2f10.5),5x)') 
7458 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7459 cd            enddo
7460 cd          endif
7461         enddo
7462       enddo
7463       return
7464       end
7465 C---------------------------------------------------------------------------
7466       double precision function eello4(i,j,k,l,jj,kk)
7467       implicit real*8 (a-h,o-z)
7468       include 'DIMENSIONS'
7469       include 'COMMON.IOUNITS'
7470       include 'COMMON.CHAIN'
7471       include 'COMMON.DERIV'
7472       include 'COMMON.INTERACT'
7473       include 'COMMON.CONTACTS'
7474       include 'COMMON.TORSION'
7475       include 'COMMON.VAR'
7476       include 'COMMON.GEO'
7477       double precision pizda(2,2),ggg1(3),ggg2(3)
7478 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7479 cd        eello4=0.0d0
7480 cd        return
7481 cd      endif
7482 cd      print *,'eello4:',i,j,k,l,jj,kk
7483 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7484 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7485 cold      eij=facont_hb(jj,i)
7486 cold      ekl=facont_hb(kk,k)
7487 cold      ekont=eij*ekl
7488       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7489 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7490       gcorr_loc(k-1)=gcorr_loc(k-1)
7491      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7492       if (l.eq.j+1) then
7493         gcorr_loc(l-1)=gcorr_loc(l-1)
7494      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7495       else
7496         gcorr_loc(j-1)=gcorr_loc(j-1)
7497      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7498       endif
7499       do iii=1,2
7500         do kkk=1,5
7501           do lll=1,3
7502             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7503      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7504 cd            derx(lll,kkk,iii)=0.0d0
7505           enddo
7506         enddo
7507       enddo
7508 cd      gcorr_loc(l-1)=0.0d0
7509 cd      gcorr_loc(j-1)=0.0d0
7510 cd      gcorr_loc(k-1)=0.0d0
7511 cd      eel4=1.0d0
7512 cd      write (iout,*)'Contacts have occurred for peptide groups',
7513 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7514 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7515       if (j.lt.nres-1) then
7516         j1=j+1
7517         j2=j-1
7518       else
7519         j1=j-1
7520         j2=j-2
7521       endif
7522       if (l.lt.nres-1) then
7523         l1=l+1
7524         l2=l-1
7525       else
7526         l1=l-1
7527         l2=l-2
7528       endif
7529       do ll=1,3
7530 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7531 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7532         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7533         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7534 cgrad        ghalf=0.5d0*ggg1(ll)
7535         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7536         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7537         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7538         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7539         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7540         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7541 cgrad        ghalf=0.5d0*ggg2(ll)
7542         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7543         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7544         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7545         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7546         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7547         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7548       enddo
7549 cgrad      do m=i+1,j-1
7550 cgrad        do ll=1,3
7551 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7552 cgrad        enddo
7553 cgrad      enddo
7554 cgrad      do m=k+1,l-1
7555 cgrad        do ll=1,3
7556 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7557 cgrad        enddo
7558 cgrad      enddo
7559 cgrad      do m=i+2,j2
7560 cgrad        do ll=1,3
7561 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7562 cgrad        enddo
7563 cgrad      enddo
7564 cgrad      do m=k+2,l2
7565 cgrad        do ll=1,3
7566 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7567 cgrad        enddo
7568 cgrad      enddo 
7569 cd      do iii=1,nres-3
7570 cd        write (2,*) iii,gcorr_loc(iii)
7571 cd      enddo
7572       eello4=ekont*eel4
7573 cd      write (2,*) 'ekont',ekont
7574 cd      write (iout,*) 'eello4',ekont*eel4
7575       return
7576       end
7577 C---------------------------------------------------------------------------
7578       double precision function eello5(i,j,k,l,jj,kk)
7579       implicit real*8 (a-h,o-z)
7580       include 'DIMENSIONS'
7581       include 'COMMON.IOUNITS'
7582       include 'COMMON.CHAIN'
7583       include 'COMMON.DERIV'
7584       include 'COMMON.INTERACT'
7585       include 'COMMON.CONTACTS'
7586       include 'COMMON.TORSION'
7587       include 'COMMON.VAR'
7588       include 'COMMON.GEO'
7589       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7590       double precision ggg1(3),ggg2(3)
7591 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7592 C                                                                              C
7593 C                            Parallel chains                                   C
7594 C                                                                              C
7595 C          o             o                   o             o                   C
7596 C         /l\           / \             \   / \           / \   /              C
7597 C        /   \         /   \             \ /   \         /   \ /               C
7598 C       j| o |l1       | o |              o| o |         | o |o                C
7599 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7600 C      \i/   \         /   \ /             /   \         /   \                 C
7601 C       o    k1             o                                                  C
7602 C         (I)          (II)                (III)          (IV)                 C
7603 C                                                                              C
7604 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7605 C                                                                              C
7606 C                            Antiparallel chains                               C
7607 C                                                                              C
7608 C          o             o                   o             o                   C
7609 C         /j\           / \             \   / \           / \   /              C
7610 C        /   \         /   \             \ /   \         /   \ /               C
7611 C      j1| o |l        | o |              o| o |         | o |o                C
7612 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7613 C      \i/   \         /   \ /             /   \         /   \                 C
7614 C       o     k1            o                                                  C
7615 C         (I)          (II)                (III)          (IV)                 C
7616 C                                                                              C
7617 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7618 C                                                                              C
7619 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7620 C                                                                              C
7621 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7622 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7623 cd        eello5=0.0d0
7624 cd        return
7625 cd      endif
7626 cd      write (iout,*)
7627 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7628 cd     &   ' and',k,l
7629       itk=itortyp(itype(k))
7630       itl=itortyp(itype(l))
7631       itj=itortyp(itype(j))
7632       eello5_1=0.0d0
7633       eello5_2=0.0d0
7634       eello5_3=0.0d0
7635       eello5_4=0.0d0
7636 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7637 cd     &   eel5_3_num,eel5_4_num)
7638       do iii=1,2
7639         do kkk=1,5
7640           do lll=1,3
7641             derx(lll,kkk,iii)=0.0d0
7642           enddo
7643         enddo
7644       enddo
7645 cd      eij=facont_hb(jj,i)
7646 cd      ekl=facont_hb(kk,k)
7647 cd      ekont=eij*ekl
7648 cd      write (iout,*)'Contacts have occurred for peptide groups',
7649 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7650 cd      goto 1111
7651 C Contribution from the graph I.
7652 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7653 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7654       call transpose2(EUg(1,1,k),auxmat(1,1))
7655       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7656       vv(1)=pizda(1,1)-pizda(2,2)
7657       vv(2)=pizda(1,2)+pizda(2,1)
7658       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7659      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7660 C Explicit gradient in virtual-dihedral angles.
7661       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7662      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7663      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7664       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7665       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7666       vv(1)=pizda(1,1)-pizda(2,2)
7667       vv(2)=pizda(1,2)+pizda(2,1)
7668       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7669      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7670      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7671       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7672       vv(1)=pizda(1,1)-pizda(2,2)
7673       vv(2)=pizda(1,2)+pizda(2,1)
7674       if (l.eq.j+1) then
7675         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7676      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7677      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7678       else
7679         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7680      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7681      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7682       endif 
7683 C Cartesian gradient
7684       do iii=1,2
7685         do kkk=1,5
7686           do lll=1,3
7687             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7688      &        pizda(1,1))
7689             vv(1)=pizda(1,1)-pizda(2,2)
7690             vv(2)=pizda(1,2)+pizda(2,1)
7691             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7692      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7693      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7694           enddo
7695         enddo
7696       enddo
7697 c      goto 1112
7698 c1111  continue
7699 C Contribution from graph II 
7700       call transpose2(EE(1,1,itk),auxmat(1,1))
7701       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7702       vv(1)=pizda(1,1)+pizda(2,2)
7703       vv(2)=pizda(2,1)-pizda(1,2)
7704       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7705      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7706 C Explicit gradient in virtual-dihedral angles.
7707       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7708      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7709       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7710       vv(1)=pizda(1,1)+pizda(2,2)
7711       vv(2)=pizda(2,1)-pizda(1,2)
7712       if (l.eq.j+1) then
7713         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7714      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7715      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7716       else
7717         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7718      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7719      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7720       endif
7721 C Cartesian gradient
7722       do iii=1,2
7723         do kkk=1,5
7724           do lll=1,3
7725             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7726      &        pizda(1,1))
7727             vv(1)=pizda(1,1)+pizda(2,2)
7728             vv(2)=pizda(2,1)-pizda(1,2)
7729             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7730      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7731      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7732           enddo
7733         enddo
7734       enddo
7735 cd      goto 1112
7736 cd1111  continue
7737       if (l.eq.j+1) then
7738 cd        goto 1110
7739 C Parallel orientation
7740 C Contribution from graph III
7741         call transpose2(EUg(1,1,l),auxmat(1,1))
7742         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7743         vv(1)=pizda(1,1)-pizda(2,2)
7744         vv(2)=pizda(1,2)+pizda(2,1)
7745         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7746      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7747 C Explicit gradient in virtual-dihedral angles.
7748         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7749      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7750      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7751         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7752         vv(1)=pizda(1,1)-pizda(2,2)
7753         vv(2)=pizda(1,2)+pizda(2,1)
7754         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7755      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7756      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7757         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7758         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7759         vv(1)=pizda(1,1)-pizda(2,2)
7760         vv(2)=pizda(1,2)+pizda(2,1)
7761         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7762      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7763      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7764 C Cartesian gradient
7765         do iii=1,2
7766           do kkk=1,5
7767             do lll=1,3
7768               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7769      &          pizda(1,1))
7770               vv(1)=pizda(1,1)-pizda(2,2)
7771               vv(2)=pizda(1,2)+pizda(2,1)
7772               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7773      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7774      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7775             enddo
7776           enddo
7777         enddo
7778 cd        goto 1112
7779 C Contribution from graph IV
7780 cd1110    continue
7781         call transpose2(EE(1,1,itl),auxmat(1,1))
7782         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7783         vv(1)=pizda(1,1)+pizda(2,2)
7784         vv(2)=pizda(2,1)-pizda(1,2)
7785         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7786      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7787 C Explicit gradient in virtual-dihedral angles.
7788         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7789      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7790         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7791         vv(1)=pizda(1,1)+pizda(2,2)
7792         vv(2)=pizda(2,1)-pizda(1,2)
7793         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7794      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7795      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7796 C Cartesian gradient
7797         do iii=1,2
7798           do kkk=1,5
7799             do lll=1,3
7800               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7801      &          pizda(1,1))
7802               vv(1)=pizda(1,1)+pizda(2,2)
7803               vv(2)=pizda(2,1)-pizda(1,2)
7804               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7805      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7806      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7807             enddo
7808           enddo
7809         enddo
7810       else
7811 C Antiparallel orientation
7812 C Contribution from graph III
7813 c        goto 1110
7814         call transpose2(EUg(1,1,j),auxmat(1,1))
7815         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7816         vv(1)=pizda(1,1)-pizda(2,2)
7817         vv(2)=pizda(1,2)+pizda(2,1)
7818         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7819      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7820 C Explicit gradient in virtual-dihedral angles.
7821         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7822      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7823      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7824         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7825         vv(1)=pizda(1,1)-pizda(2,2)
7826         vv(2)=pizda(1,2)+pizda(2,1)
7827         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7828      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7829      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7830         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7831         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7832         vv(1)=pizda(1,1)-pizda(2,2)
7833         vv(2)=pizda(1,2)+pizda(2,1)
7834         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7835      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7836      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7837 C Cartesian gradient
7838         do iii=1,2
7839           do kkk=1,5
7840             do lll=1,3
7841               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7842      &          pizda(1,1))
7843               vv(1)=pizda(1,1)-pizda(2,2)
7844               vv(2)=pizda(1,2)+pizda(2,1)
7845               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7846      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7847      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7848             enddo
7849           enddo
7850         enddo
7851 cd        goto 1112
7852 C Contribution from graph IV
7853 1110    continue
7854         call transpose2(EE(1,1,itj),auxmat(1,1))
7855         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7856         vv(1)=pizda(1,1)+pizda(2,2)
7857         vv(2)=pizda(2,1)-pizda(1,2)
7858         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7859      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7860 C Explicit gradient in virtual-dihedral angles.
7861         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7862      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7863         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7864         vv(1)=pizda(1,1)+pizda(2,2)
7865         vv(2)=pizda(2,1)-pizda(1,2)
7866         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7867      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7868      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7869 C Cartesian gradient
7870         do iii=1,2
7871           do kkk=1,5
7872             do lll=1,3
7873               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7874      &          pizda(1,1))
7875               vv(1)=pizda(1,1)+pizda(2,2)
7876               vv(2)=pizda(2,1)-pizda(1,2)
7877               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7878      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7879      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7880             enddo
7881           enddo
7882         enddo
7883       endif
7884 1112  continue
7885       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7886 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7887 cd        write (2,*) 'ijkl',i,j,k,l
7888 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7889 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7890 cd      endif
7891 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7892 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7893 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7894 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7895       if (j.lt.nres-1) then
7896         j1=j+1
7897         j2=j-1
7898       else
7899         j1=j-1
7900         j2=j-2
7901       endif
7902       if (l.lt.nres-1) then
7903         l1=l+1
7904         l2=l-1
7905       else
7906         l1=l-1
7907         l2=l-2
7908       endif
7909 cd      eij=1.0d0
7910 cd      ekl=1.0d0
7911 cd      ekont=1.0d0
7912 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7913 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7914 C        summed up outside the subrouine as for the other subroutines 
7915 C        handling long-range interactions. The old code is commented out
7916 C        with "cgrad" to keep track of changes.
7917       do ll=1,3
7918 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7919 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7920         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7921         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7922 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7923 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7924 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7925 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7926 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7927 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7928 c     &   gradcorr5ij,
7929 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7930 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7931 cgrad        ghalf=0.5d0*ggg1(ll)
7932 cd        ghalf=0.0d0
7933         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7934         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7935         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7936         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7937         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7938         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7939 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7940 cgrad        ghalf=0.5d0*ggg2(ll)
7941 cd        ghalf=0.0d0
7942         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7943         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7944         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7945         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7946         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7947         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7948       enddo
7949 cd      goto 1112
7950 cgrad      do m=i+1,j-1
7951 cgrad        do ll=1,3
7952 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7953 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7954 cgrad        enddo
7955 cgrad      enddo
7956 cgrad      do m=k+1,l-1
7957 cgrad        do ll=1,3
7958 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7959 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7960 cgrad        enddo
7961 cgrad      enddo
7962 c1112  continue
7963 cgrad      do m=i+2,j2
7964 cgrad        do ll=1,3
7965 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7966 cgrad        enddo
7967 cgrad      enddo
7968 cgrad      do m=k+2,l2
7969 cgrad        do ll=1,3
7970 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7971 cgrad        enddo
7972 cgrad      enddo 
7973 cd      do iii=1,nres-3
7974 cd        write (2,*) iii,g_corr5_loc(iii)
7975 cd      enddo
7976       eello5=ekont*eel5
7977 cd      write (2,*) 'ekont',ekont
7978 cd      write (iout,*) 'eello5',ekont*eel5
7979       return
7980       end
7981 c--------------------------------------------------------------------------
7982       double precision function eello6(i,j,k,l,jj,kk)
7983       implicit real*8 (a-h,o-z)
7984       include 'DIMENSIONS'
7985       include 'COMMON.IOUNITS'
7986       include 'COMMON.CHAIN'
7987       include 'COMMON.DERIV'
7988       include 'COMMON.INTERACT'
7989       include 'COMMON.CONTACTS'
7990       include 'COMMON.TORSION'
7991       include 'COMMON.VAR'
7992       include 'COMMON.GEO'
7993       include 'COMMON.FFIELD'
7994       double precision ggg1(3),ggg2(3)
7995 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7996 cd        eello6=0.0d0
7997 cd        return
7998 cd      endif
7999 cd      write (iout,*)
8000 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8001 cd     &   ' and',k,l
8002       eello6_1=0.0d0
8003       eello6_2=0.0d0
8004       eello6_3=0.0d0
8005       eello6_4=0.0d0
8006       eello6_5=0.0d0
8007       eello6_6=0.0d0
8008 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8009 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8010       do iii=1,2
8011         do kkk=1,5
8012           do lll=1,3
8013             derx(lll,kkk,iii)=0.0d0
8014           enddo
8015         enddo
8016       enddo
8017 cd      eij=facont_hb(jj,i)
8018 cd      ekl=facont_hb(kk,k)
8019 cd      ekont=eij*ekl
8020 cd      eij=1.0d0
8021 cd      ekl=1.0d0
8022 cd      ekont=1.0d0
8023       if (l.eq.j+1) then
8024         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8025         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8026         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8027         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8028         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8029         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8030       else
8031         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8032         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8033         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8034         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8035         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8036           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8037         else
8038           eello6_5=0.0d0
8039         endif
8040         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8041       endif
8042 C If turn contributions are considered, they will be handled separately.
8043       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8044 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8045 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8046 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8047 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8048 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8049 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8050 cd      goto 1112
8051       if (j.lt.nres-1) then
8052         j1=j+1
8053         j2=j-1
8054       else
8055         j1=j-1
8056         j2=j-2
8057       endif
8058       if (l.lt.nres-1) then
8059         l1=l+1
8060         l2=l-1
8061       else
8062         l1=l-1
8063         l2=l-2
8064       endif
8065       do ll=1,3
8066 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8067 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8068 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8069 cgrad        ghalf=0.5d0*ggg1(ll)
8070 cd        ghalf=0.0d0
8071         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8072         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8073         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8074         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8075         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8076         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8077         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8078         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8079 cgrad        ghalf=0.5d0*ggg2(ll)
8080 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8081 cd        ghalf=0.0d0
8082         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8083         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8084         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8085         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8086         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8087         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8088       enddo
8089 cd      goto 1112
8090 cgrad      do m=i+1,j-1
8091 cgrad        do ll=1,3
8092 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8093 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8094 cgrad        enddo
8095 cgrad      enddo
8096 cgrad      do m=k+1,l-1
8097 cgrad        do ll=1,3
8098 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8099 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8100 cgrad        enddo
8101 cgrad      enddo
8102 cgrad1112  continue
8103 cgrad      do m=i+2,j2
8104 cgrad        do ll=1,3
8105 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8106 cgrad        enddo
8107 cgrad      enddo
8108 cgrad      do m=k+2,l2
8109 cgrad        do ll=1,3
8110 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8111 cgrad        enddo
8112 cgrad      enddo 
8113 cd      do iii=1,nres-3
8114 cd        write (2,*) iii,g_corr6_loc(iii)
8115 cd      enddo
8116       eello6=ekont*eel6
8117 cd      write (2,*) 'ekont',ekont
8118 cd      write (iout,*) 'eello6',ekont*eel6
8119       return
8120       end
8121 c--------------------------------------------------------------------------
8122       double precision function eello6_graph1(i,j,k,l,imat,swap)
8123       implicit real*8 (a-h,o-z)
8124       include 'DIMENSIONS'
8125       include 'COMMON.IOUNITS'
8126       include 'COMMON.CHAIN'
8127       include 'COMMON.DERIV'
8128       include 'COMMON.INTERACT'
8129       include 'COMMON.CONTACTS'
8130       include 'COMMON.TORSION'
8131       include 'COMMON.VAR'
8132       include 'COMMON.GEO'
8133       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8134       logical swap
8135       logical lprn
8136       common /kutas/ lprn
8137 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8138 C                                              
8139 C      Parallel       Antiparallel
8140 C                                             
8141 C          o             o         
8142 C         /l\           /j\
8143 C        /   \         /   \
8144 C       /| o |         | o |\
8145 C     \ j|/k\|  /   \  |/k\|l /   
8146 C      \ /   \ /     \ /   \ /    
8147 C       o     o       o     o                
8148 C       i             i                     
8149 C
8150 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8151       itk=itortyp(itype(k))
8152       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8153       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8154       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8155       call transpose2(EUgC(1,1,k),auxmat(1,1))
8156       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8157       vv1(1)=pizda1(1,1)-pizda1(2,2)
8158       vv1(2)=pizda1(1,2)+pizda1(2,1)
8159       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8160       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8161       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8162       s5=scalar2(vv(1),Dtobr2(1,i))
8163 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8164       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8165       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8166      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8167      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8168      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8169      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8170      & +scalar2(vv(1),Dtobr2der(1,i)))
8171       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8172       vv1(1)=pizda1(1,1)-pizda1(2,2)
8173       vv1(2)=pizda1(1,2)+pizda1(2,1)
8174       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8175       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8176       if (l.eq.j+1) then
8177         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8178      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8179      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8180      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8181      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8182       else
8183         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8184      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8185      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8186      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8187      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8188       endif
8189       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8190       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8191       vv1(1)=pizda1(1,1)-pizda1(2,2)
8192       vv1(2)=pizda1(1,2)+pizda1(2,1)
8193       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8194      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8195      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8196      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8197       do iii=1,2
8198         if (swap) then
8199           ind=3-iii
8200         else
8201           ind=iii
8202         endif
8203         do kkk=1,5
8204           do lll=1,3
8205             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8206             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8207             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8208             call transpose2(EUgC(1,1,k),auxmat(1,1))
8209             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8210      &        pizda1(1,1))
8211             vv1(1)=pizda1(1,1)-pizda1(2,2)
8212             vv1(2)=pizda1(1,2)+pizda1(2,1)
8213             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8214             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8215      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8216             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8217      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8218             s5=scalar2(vv(1),Dtobr2(1,i))
8219             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8220           enddo
8221         enddo
8222       enddo
8223       return
8224       end
8225 c----------------------------------------------------------------------------
8226       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8227       implicit real*8 (a-h,o-z)
8228       include 'DIMENSIONS'
8229       include 'COMMON.IOUNITS'
8230       include 'COMMON.CHAIN'
8231       include 'COMMON.DERIV'
8232       include 'COMMON.INTERACT'
8233       include 'COMMON.CONTACTS'
8234       include 'COMMON.TORSION'
8235       include 'COMMON.VAR'
8236       include 'COMMON.GEO'
8237       logical swap
8238       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8239      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8240       logical lprn
8241       common /kutas/ lprn
8242 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8243 C                                                                              C
8244 C      Parallel       Antiparallel                                             C
8245 C                                                                              C
8246 C          o             o                                                     C
8247 C     \   /l\           /j\   /                                                C
8248 C      \ /   \         /   \ /                                                 C
8249 C       o| o |         | o |o                                                  C                
8250 C     \ j|/k\|      \  |/k\|l                                                  C
8251 C      \ /   \       \ /   \                                                   C
8252 C       o             o                                                        C
8253 C       i             i                                                        C 
8254 C                                                                              C           
8255 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8256 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8257 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8258 C           but not in a cluster cumulant
8259 #ifdef MOMENT
8260       s1=dip(1,jj,i)*dip(1,kk,k)
8261 #endif
8262       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8263       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8264       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8265       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8266       call transpose2(EUg(1,1,k),auxmat(1,1))
8267       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8268       vv(1)=pizda(1,1)-pizda(2,2)
8269       vv(2)=pizda(1,2)+pizda(2,1)
8270       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8271 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8272 #ifdef MOMENT
8273       eello6_graph2=-(s1+s2+s3+s4)
8274 #else
8275       eello6_graph2=-(s2+s3+s4)
8276 #endif
8277 c      eello6_graph2=-s3
8278 C Derivatives in gamma(i-1)
8279       if (i.gt.1) then
8280 #ifdef MOMENT
8281         s1=dipderg(1,jj,i)*dip(1,kk,k)
8282 #endif
8283         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8284         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8285         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8286         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8287 #ifdef MOMENT
8288         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8289 #else
8290         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8291 #endif
8292 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8293       endif
8294 C Derivatives in gamma(k-1)
8295 #ifdef MOMENT
8296       s1=dip(1,jj,i)*dipderg(1,kk,k)
8297 #endif
8298       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8299       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8300       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8301       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8302       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8303       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8304       vv(1)=pizda(1,1)-pizda(2,2)
8305       vv(2)=pizda(1,2)+pizda(2,1)
8306       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8307 #ifdef MOMENT
8308       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8309 #else
8310       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8311 #endif
8312 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8313 C Derivatives in gamma(j-1) or gamma(l-1)
8314       if (j.gt.1) then
8315 #ifdef MOMENT
8316         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8317 #endif
8318         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8319         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8320         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8321         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8322         vv(1)=pizda(1,1)-pizda(2,2)
8323         vv(2)=pizda(1,2)+pizda(2,1)
8324         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8325 #ifdef MOMENT
8326         if (swap) then
8327           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8328         else
8329           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8330         endif
8331 #endif
8332         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8333 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8334       endif
8335 C Derivatives in gamma(l-1) or gamma(j-1)
8336       if (l.gt.1) then 
8337 #ifdef MOMENT
8338         s1=dip(1,jj,i)*dipderg(3,kk,k)
8339 #endif
8340         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8341         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8342         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8343         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8344         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8345         vv(1)=pizda(1,1)-pizda(2,2)
8346         vv(2)=pizda(1,2)+pizda(2,1)
8347         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8348 #ifdef MOMENT
8349         if (swap) then
8350           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8351         else
8352           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8353         endif
8354 #endif
8355         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8356 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8357       endif
8358 C Cartesian derivatives.
8359       if (lprn) then
8360         write (2,*) 'In eello6_graph2'
8361         do iii=1,2
8362           write (2,*) 'iii=',iii
8363           do kkk=1,5
8364             write (2,*) 'kkk=',kkk
8365             do jjj=1,2
8366               write (2,'(3(2f10.5),5x)') 
8367      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8368             enddo
8369           enddo
8370         enddo
8371       endif
8372       do iii=1,2
8373         do kkk=1,5
8374           do lll=1,3
8375 #ifdef MOMENT
8376             if (iii.eq.1) then
8377               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8378             else
8379               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8380             endif
8381 #endif
8382             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8383      &        auxvec(1))
8384             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8385             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8386      &        auxvec(1))
8387             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8388             call transpose2(EUg(1,1,k),auxmat(1,1))
8389             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8390      &        pizda(1,1))
8391             vv(1)=pizda(1,1)-pizda(2,2)
8392             vv(2)=pizda(1,2)+pizda(2,1)
8393             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8394 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8395 #ifdef MOMENT
8396             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8397 #else
8398             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8399 #endif
8400             if (swap) then
8401               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8402             else
8403               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8404             endif
8405           enddo
8406         enddo
8407       enddo
8408       return
8409       end
8410 c----------------------------------------------------------------------------
8411       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8412       implicit real*8 (a-h,o-z)
8413       include 'DIMENSIONS'
8414       include 'COMMON.IOUNITS'
8415       include 'COMMON.CHAIN'
8416       include 'COMMON.DERIV'
8417       include 'COMMON.INTERACT'
8418       include 'COMMON.CONTACTS'
8419       include 'COMMON.TORSION'
8420       include 'COMMON.VAR'
8421       include 'COMMON.GEO'
8422       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8423       logical swap
8424 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8425 C                                                                              C 
8426 C      Parallel       Antiparallel                                             C
8427 C                                                                              C
8428 C          o             o                                                     C 
8429 C         /l\   /   \   /j\                                                    C 
8430 C        /   \ /     \ /   \                                                   C
8431 C       /| o |o       o| o |\                                                  C
8432 C       j|/k\|  /      |/k\|l /                                                C
8433 C        /   \ /       /   \ /                                                 C
8434 C       /     o       /     o                                                  C
8435 C       i             i                                                        C
8436 C                                                                              C
8437 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8438 C
8439 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8440 C           energy moment and not to the cluster cumulant.
8441       iti=itortyp(itype(i))
8442       if (j.lt.nres-1) then
8443         itj1=itortyp(itype(j+1))
8444       else
8445         itj1=ntortyp+1
8446       endif
8447       itk=itortyp(itype(k))
8448       itk1=itortyp(itype(k+1))
8449       if (l.lt.nres-1) then
8450         itl1=itortyp(itype(l+1))
8451       else
8452         itl1=ntortyp+1
8453       endif
8454 #ifdef MOMENT
8455       s1=dip(4,jj,i)*dip(4,kk,k)
8456 #endif
8457       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8458       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8459       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8460       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8461       call transpose2(EE(1,1,itk),auxmat(1,1))
8462       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8463       vv(1)=pizda(1,1)+pizda(2,2)
8464       vv(2)=pizda(2,1)-pizda(1,2)
8465       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8466 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8467 cd     & "sum",-(s2+s3+s4)
8468 #ifdef MOMENT
8469       eello6_graph3=-(s1+s2+s3+s4)
8470 #else
8471       eello6_graph3=-(s2+s3+s4)
8472 #endif
8473 c      eello6_graph3=-s4
8474 C Derivatives in gamma(k-1)
8475       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8476       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8477       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8478       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8479 C Derivatives in gamma(l-1)
8480       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8481       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8482       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8483       vv(1)=pizda(1,1)+pizda(2,2)
8484       vv(2)=pizda(2,1)-pizda(1,2)
8485       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8486       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8487 C Cartesian derivatives.
8488       do iii=1,2
8489         do kkk=1,5
8490           do lll=1,3
8491 #ifdef MOMENT
8492             if (iii.eq.1) then
8493               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8494             else
8495               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8496             endif
8497 #endif
8498             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8499      &        auxvec(1))
8500             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8501             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8502      &        auxvec(1))
8503             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8504             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8505      &        pizda(1,1))
8506             vv(1)=pizda(1,1)+pizda(2,2)
8507             vv(2)=pizda(2,1)-pizda(1,2)
8508             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8509 #ifdef MOMENT
8510             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8511 #else
8512             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8513 #endif
8514             if (swap) then
8515               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8516             else
8517               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8518             endif
8519 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8520           enddo
8521         enddo
8522       enddo
8523       return
8524       end
8525 c----------------------------------------------------------------------------
8526       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8527       implicit real*8 (a-h,o-z)
8528       include 'DIMENSIONS'
8529       include 'COMMON.IOUNITS'
8530       include 'COMMON.CHAIN'
8531       include 'COMMON.DERIV'
8532       include 'COMMON.INTERACT'
8533       include 'COMMON.CONTACTS'
8534       include 'COMMON.TORSION'
8535       include 'COMMON.VAR'
8536       include 'COMMON.GEO'
8537       include 'COMMON.FFIELD'
8538       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8539      & auxvec1(2),auxmat1(2,2)
8540       logical swap
8541 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8542 C                                                                              C                       
8543 C      Parallel       Antiparallel                                             C
8544 C                                                                              C
8545 C          o             o                                                     C
8546 C         /l\   /   \   /j\                                                    C
8547 C        /   \ /     \ /   \                                                   C
8548 C       /| o |o       o| o |\                                                  C
8549 C     \ j|/k\|      \  |/k\|l                                                  C
8550 C      \ /   \       \ /   \                                                   C 
8551 C       o     \       o     \                                                  C
8552 C       i             i                                                        C
8553 C                                                                              C 
8554 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8555 C
8556 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8557 C           energy moment and not to the cluster cumulant.
8558 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8559       iti=itortyp(itype(i))
8560       itj=itortyp(itype(j))
8561       if (j.lt.nres-1) then
8562         itj1=itortyp(itype(j+1))
8563       else
8564         itj1=ntortyp+1
8565       endif
8566       itk=itortyp(itype(k))
8567       if (k.lt.nres-1) then
8568         itk1=itortyp(itype(k+1))
8569       else
8570         itk1=ntortyp+1
8571       endif
8572       itl=itortyp(itype(l))
8573       if (l.lt.nres-1) then
8574         itl1=itortyp(itype(l+1))
8575       else
8576         itl1=ntortyp+1
8577       endif
8578 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8579 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8580 cd     & ' itl',itl,' itl1',itl1
8581 #ifdef MOMENT
8582       if (imat.eq.1) then
8583         s1=dip(3,jj,i)*dip(3,kk,k)
8584       else
8585         s1=dip(2,jj,j)*dip(2,kk,l)
8586       endif
8587 #endif
8588       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8589       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8590       if (j.eq.l+1) then
8591         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8592         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8593       else
8594         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8595         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8596       endif
8597       call transpose2(EUg(1,1,k),auxmat(1,1))
8598       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8599       vv(1)=pizda(1,1)-pizda(2,2)
8600       vv(2)=pizda(2,1)+pizda(1,2)
8601       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8602 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8603 #ifdef MOMENT
8604       eello6_graph4=-(s1+s2+s3+s4)
8605 #else
8606       eello6_graph4=-(s2+s3+s4)
8607 #endif
8608 C Derivatives in gamma(i-1)
8609       if (i.gt.1) then
8610 #ifdef MOMENT
8611         if (imat.eq.1) then
8612           s1=dipderg(2,jj,i)*dip(3,kk,k)
8613         else
8614           s1=dipderg(4,jj,j)*dip(2,kk,l)
8615         endif
8616 #endif
8617         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8618         if (j.eq.l+1) then
8619           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8620           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8621         else
8622           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8623           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8624         endif
8625         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8626         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8627 cd          write (2,*) 'turn6 derivatives'
8628 #ifdef MOMENT
8629           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8630 #else
8631           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8632 #endif
8633         else
8634 #ifdef MOMENT
8635           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8636 #else
8637           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8638 #endif
8639         endif
8640       endif
8641 C Derivatives in gamma(k-1)
8642 #ifdef MOMENT
8643       if (imat.eq.1) then
8644         s1=dip(3,jj,i)*dipderg(2,kk,k)
8645       else
8646         s1=dip(2,jj,j)*dipderg(4,kk,l)
8647       endif
8648 #endif
8649       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8650       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8651       if (j.eq.l+1) then
8652         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8653         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8654       else
8655         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8656         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8657       endif
8658       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8659       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8660       vv(1)=pizda(1,1)-pizda(2,2)
8661       vv(2)=pizda(2,1)+pizda(1,2)
8662       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8663       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8664 #ifdef MOMENT
8665         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8666 #else
8667         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8668 #endif
8669       else
8670 #ifdef MOMENT
8671         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8672 #else
8673         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8674 #endif
8675       endif
8676 C Derivatives in gamma(j-1) or gamma(l-1)
8677       if (l.eq.j+1 .and. l.gt.1) then
8678         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8679         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8680         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8681         vv(1)=pizda(1,1)-pizda(2,2)
8682         vv(2)=pizda(2,1)+pizda(1,2)
8683         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8684         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8685       else if (j.gt.1) then
8686         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8687         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8688         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8689         vv(1)=pizda(1,1)-pizda(2,2)
8690         vv(2)=pizda(2,1)+pizda(1,2)
8691         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8692         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8693           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8694         else
8695           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8696         endif
8697       endif
8698 C Cartesian derivatives.
8699       do iii=1,2
8700         do kkk=1,5
8701           do lll=1,3
8702 #ifdef MOMENT
8703             if (iii.eq.1) then
8704               if (imat.eq.1) then
8705                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8706               else
8707                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8708               endif
8709             else
8710               if (imat.eq.1) then
8711                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8712               else
8713                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8714               endif
8715             endif
8716 #endif
8717             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8718      &        auxvec(1))
8719             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8720             if (j.eq.l+1) then
8721               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8722      &          b1(1,itj1),auxvec(1))
8723               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8724             else
8725               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8726      &          b1(1,itl1),auxvec(1))
8727               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8728             endif
8729             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8730      &        pizda(1,1))
8731             vv(1)=pizda(1,1)-pizda(2,2)
8732             vv(2)=pizda(2,1)+pizda(1,2)
8733             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8734             if (swap) then
8735               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8736 #ifdef MOMENT
8737                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8738      &             -(s1+s2+s4)
8739 #else
8740                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8741      &             -(s2+s4)
8742 #endif
8743                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8744               else
8745 #ifdef MOMENT
8746                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8747 #else
8748                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8749 #endif
8750                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8751               endif
8752             else
8753 #ifdef MOMENT
8754               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8755 #else
8756               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8757 #endif
8758               if (l.eq.j+1) then
8759                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8760               else 
8761                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8762               endif
8763             endif 
8764           enddo
8765         enddo
8766       enddo
8767       return
8768       end
8769 c----------------------------------------------------------------------------
8770       double precision function eello_turn6(i,jj,kk)
8771       implicit real*8 (a-h,o-z)
8772       include 'DIMENSIONS'
8773       include 'COMMON.IOUNITS'
8774       include 'COMMON.CHAIN'
8775       include 'COMMON.DERIV'
8776       include 'COMMON.INTERACT'
8777       include 'COMMON.CONTACTS'
8778       include 'COMMON.TORSION'
8779       include 'COMMON.VAR'
8780       include 'COMMON.GEO'
8781       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8782      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8783      &  ggg1(3),ggg2(3)
8784       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8785      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8786 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8787 C           the respective energy moment and not to the cluster cumulant.
8788       s1=0.0d0
8789       s8=0.0d0
8790       s13=0.0d0
8791 c
8792       eello_turn6=0.0d0
8793       j=i+4
8794       k=i+1
8795       l=i+3
8796       iti=itortyp(itype(i))
8797       itk=itortyp(itype(k))
8798       itk1=itortyp(itype(k+1))
8799       itl=itortyp(itype(l))
8800       itj=itortyp(itype(j))
8801 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8802 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8803 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8804 cd        eello6=0.0d0
8805 cd        return
8806 cd      endif
8807 cd      write (iout,*)
8808 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8809 cd     &   ' and',k,l
8810 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8811       do iii=1,2
8812         do kkk=1,5
8813           do lll=1,3
8814             derx_turn(lll,kkk,iii)=0.0d0
8815           enddo
8816         enddo
8817       enddo
8818 cd      eij=1.0d0
8819 cd      ekl=1.0d0
8820 cd      ekont=1.0d0
8821       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8822 cd      eello6_5=0.0d0
8823 cd      write (2,*) 'eello6_5',eello6_5
8824 #ifdef MOMENT
8825       call transpose2(AEA(1,1,1),auxmat(1,1))
8826       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8827       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8828       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8829 #endif
8830       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8831       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8832       s2 = scalar2(b1(1,itk),vtemp1(1))
8833 #ifdef MOMENT
8834       call transpose2(AEA(1,1,2),atemp(1,1))
8835       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8836       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8837       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8838 #endif
8839       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8840       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8841       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8842 #ifdef MOMENT
8843       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8844       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8845       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8846       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8847       ss13 = scalar2(b1(1,itk),vtemp4(1))
8848       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8849 #endif
8850 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8851 c      s1=0.0d0
8852 c      s2=0.0d0
8853 c      s8=0.0d0
8854 c      s12=0.0d0
8855 c      s13=0.0d0
8856       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8857 C Derivatives in gamma(i+2)
8858       s1d =0.0d0
8859       s8d =0.0d0
8860 #ifdef MOMENT
8861       call transpose2(AEA(1,1,1),auxmatd(1,1))
8862       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8863       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8864       call transpose2(AEAderg(1,1,2),atempd(1,1))
8865       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8866       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8867 #endif
8868       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8869       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8870       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8871 c      s1d=0.0d0
8872 c      s2d=0.0d0
8873 c      s8d=0.0d0
8874 c      s12d=0.0d0
8875 c      s13d=0.0d0
8876       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8877 C Derivatives in gamma(i+3)
8878 #ifdef MOMENT
8879       call transpose2(AEA(1,1,1),auxmatd(1,1))
8880       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8881       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8882       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8883 #endif
8884       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8885       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8886       s2d = scalar2(b1(1,itk),vtemp1d(1))
8887 #ifdef MOMENT
8888       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8889       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8890 #endif
8891       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8892 #ifdef MOMENT
8893       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8894       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8895       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8896 #endif
8897 c      s1d=0.0d0
8898 c      s2d=0.0d0
8899 c      s8d=0.0d0
8900 c      s12d=0.0d0
8901 c      s13d=0.0d0
8902 #ifdef MOMENT
8903       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8904      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8905 #else
8906       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8907      &               -0.5d0*ekont*(s2d+s12d)
8908 #endif
8909 C Derivatives in gamma(i+4)
8910       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8911       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8912       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8913 #ifdef MOMENT
8914       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8915       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8916       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8917 #endif
8918 c      s1d=0.0d0
8919 c      s2d=0.0d0
8920 c      s8d=0.0d0
8921 C      s12d=0.0d0
8922 c      s13d=0.0d0
8923 #ifdef MOMENT
8924       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8925 #else
8926       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8927 #endif
8928 C Derivatives in gamma(i+5)
8929 #ifdef MOMENT
8930       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8931       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8932       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8933 #endif
8934       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8935       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8936       s2d = scalar2(b1(1,itk),vtemp1d(1))
8937 #ifdef MOMENT
8938       call transpose2(AEA(1,1,2),atempd(1,1))
8939       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8940       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8941 #endif
8942       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8943       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8944 #ifdef MOMENT
8945       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8946       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8947       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8948 #endif
8949 c      s1d=0.0d0
8950 c      s2d=0.0d0
8951 c      s8d=0.0d0
8952 c      s12d=0.0d0
8953 c      s13d=0.0d0
8954 #ifdef MOMENT
8955       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8956      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8957 #else
8958       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8959      &               -0.5d0*ekont*(s2d+s12d)
8960 #endif
8961 C Cartesian derivatives
8962       do iii=1,2
8963         do kkk=1,5
8964           do lll=1,3
8965 #ifdef MOMENT
8966             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8967             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8968             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8969 #endif
8970             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8971             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8972      &          vtemp1d(1))
8973             s2d = scalar2(b1(1,itk),vtemp1d(1))
8974 #ifdef MOMENT
8975             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8976             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8977             s8d = -(atempd(1,1)+atempd(2,2))*
8978      &           scalar2(cc(1,1,itl),vtemp2(1))
8979 #endif
8980             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8981      &           auxmatd(1,1))
8982             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8983             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8984 c      s1d=0.0d0
8985 c      s2d=0.0d0
8986 c      s8d=0.0d0
8987 c      s12d=0.0d0
8988 c      s13d=0.0d0
8989 #ifdef MOMENT
8990             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8991      &        - 0.5d0*(s1d+s2d)
8992 #else
8993             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8994      &        - 0.5d0*s2d
8995 #endif
8996 #ifdef MOMENT
8997             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8998      &        - 0.5d0*(s8d+s12d)
8999 #else
9000             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9001      &        - 0.5d0*s12d
9002 #endif
9003           enddo
9004         enddo
9005       enddo
9006 #ifdef MOMENT
9007       do kkk=1,5
9008         do lll=1,3
9009           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9010      &      achuj_tempd(1,1))
9011           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9012           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9013           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9014           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9015           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9016      &      vtemp4d(1)) 
9017           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9018           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9019           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9020         enddo
9021       enddo
9022 #endif
9023 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9024 cd     &  16*eel_turn6_num
9025 cd      goto 1112
9026       if (j.lt.nres-1) then
9027         j1=j+1
9028         j2=j-1
9029       else
9030         j1=j-1
9031         j2=j-2
9032       endif
9033       if (l.lt.nres-1) then
9034         l1=l+1
9035         l2=l-1
9036       else
9037         l1=l-1
9038         l2=l-2
9039       endif
9040       do ll=1,3
9041 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9042 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9043 cgrad        ghalf=0.5d0*ggg1(ll)
9044 cd        ghalf=0.0d0
9045         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9046         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9047         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9048      &    +ekont*derx_turn(ll,2,1)
9049         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9050         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9051      &    +ekont*derx_turn(ll,4,1)
9052         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9053         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9054         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9055 cgrad        ghalf=0.5d0*ggg2(ll)
9056 cd        ghalf=0.0d0
9057         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9058      &    +ekont*derx_turn(ll,2,2)
9059         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9060         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9061      &    +ekont*derx_turn(ll,4,2)
9062         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9063         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9064         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9065       enddo
9066 cd      goto 1112
9067 cgrad      do m=i+1,j-1
9068 cgrad        do ll=1,3
9069 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9070 cgrad        enddo
9071 cgrad      enddo
9072 cgrad      do m=k+1,l-1
9073 cgrad        do ll=1,3
9074 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9075 cgrad        enddo
9076 cgrad      enddo
9077 cgrad1112  continue
9078 cgrad      do m=i+2,j2
9079 cgrad        do ll=1,3
9080 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9081 cgrad        enddo
9082 cgrad      enddo
9083 cgrad      do m=k+2,l2
9084 cgrad        do ll=1,3
9085 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9086 cgrad        enddo
9087 cgrad      enddo 
9088 cd      do iii=1,nres-3
9089 cd        write (2,*) iii,g_corr6_loc(iii)
9090 cd      enddo
9091       eello_turn6=ekont*eel_turn6
9092 cd      write (2,*) 'ekont',ekont
9093 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9094       return
9095       end
9096
9097 C-----------------------------------------------------------------------------
9098       double precision function scalar(u,v)
9099 !DIR$ INLINEALWAYS scalar
9100 #ifndef OSF
9101 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9102 #endif
9103       implicit none
9104       double precision u(3),v(3)
9105 cd      double precision sc
9106 cd      integer i
9107 cd      sc=0.0d0
9108 cd      do i=1,3
9109 cd        sc=sc+u(i)*v(i)
9110 cd      enddo
9111 cd      scalar=sc
9112
9113       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9114       return
9115       end
9116 crc-------------------------------------------------
9117       SUBROUTINE MATVEC2(A1,V1,V2)
9118 !DIR$ INLINEALWAYS MATVEC2
9119 #ifndef OSF
9120 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9121 #endif
9122       implicit real*8 (a-h,o-z)
9123       include 'DIMENSIONS'
9124       DIMENSION A1(2,2),V1(2),V2(2)
9125 c      DO 1 I=1,2
9126 c        VI=0.0
9127 c        DO 3 K=1,2
9128 c    3     VI=VI+A1(I,K)*V1(K)
9129 c        Vaux(I)=VI
9130 c    1 CONTINUE
9131
9132       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9133       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9134
9135       v2(1)=vaux1
9136       v2(2)=vaux2
9137       END
9138 C---------------------------------------
9139       SUBROUTINE MATMAT2(A1,A2,A3)
9140 #ifndef OSF
9141 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9142 #endif
9143       implicit real*8 (a-h,o-z)
9144       include 'DIMENSIONS'
9145       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9146 c      DIMENSION AI3(2,2)
9147 c        DO  J=1,2
9148 c          A3IJ=0.0
9149 c          DO K=1,2
9150 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9151 c          enddo
9152 c          A3(I,J)=A3IJ
9153 c       enddo
9154 c      enddo
9155
9156       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9157       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9158       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9159       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9160
9161       A3(1,1)=AI3_11
9162       A3(2,1)=AI3_21
9163       A3(1,2)=AI3_12
9164       A3(2,2)=AI3_22
9165       END
9166
9167 c-------------------------------------------------------------------------
9168       double precision function scalar2(u,v)
9169 !DIR$ INLINEALWAYS scalar2
9170       implicit none
9171       double precision u(2),v(2)
9172       double precision sc
9173       integer i
9174       scalar2=u(1)*v(1)+u(2)*v(2)
9175       return
9176       end
9177
9178 C-----------------------------------------------------------------------------
9179
9180       subroutine transpose2(a,at)
9181 !DIR$ INLINEALWAYS transpose2
9182 #ifndef OSF
9183 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9184 #endif
9185       implicit none
9186       double precision a(2,2),at(2,2)
9187       at(1,1)=a(1,1)
9188       at(1,2)=a(2,1)
9189       at(2,1)=a(1,2)
9190       at(2,2)=a(2,2)
9191       return
9192       end
9193 c--------------------------------------------------------------------------
9194       subroutine transpose(n,a,at)
9195       implicit none
9196       integer n,i,j
9197       double precision a(n,n),at(n,n)
9198       do i=1,n
9199         do j=1,n
9200           at(j,i)=a(i,j)
9201         enddo
9202       enddo
9203       return
9204       end
9205 C---------------------------------------------------------------------------
9206       subroutine prodmat3(a1,a2,kk,transp,prod)
9207 !DIR$ INLINEALWAYS prodmat3
9208 #ifndef OSF
9209 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9210 #endif
9211       implicit none
9212       integer i,j
9213       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9214       logical transp
9215 crc      double precision auxmat(2,2),prod_(2,2)
9216
9217       if (transp) then
9218 crc        call transpose2(kk(1,1),auxmat(1,1))
9219 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9220 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9221         
9222            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9223      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9224            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9225      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9226            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9227      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9228            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9229      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9230
9231       else
9232 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9233 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9234
9235            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9236      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9237            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9238      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9239            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9240      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9241            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9242      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9243
9244       endif
9245 c      call transpose2(a2(1,1),a2t(1,1))
9246
9247 crc      print *,transp
9248 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9249 crc      print *,((prod(i,j),i=1,2),j=1,2)
9250
9251       return
9252       end
9253