44de1a82e9b983bb393d0f95d836576c689d94e6
[unres.git] / source / unres / src_CSA_DiL / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD_'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       if (nfgtasks.gt.1) then
31         time00=MPI_Wtime()
32 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
33         if (fg_rank.eq.0) then
34           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
35 c          print *,"Processor",myrank," BROADCAST iorder"
36 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
37 C FG slaves as WEIGHTS array.
38           weights_(1)=wsc
39           weights_(2)=wscp
40           weights_(3)=welec
41           weights_(4)=wcorr
42           weights_(5)=wcorr5
43           weights_(6)=wcorr6
44           weights_(7)=wel_loc
45           weights_(8)=wturn3
46           weights_(9)=wturn4
47           weights_(10)=wturn6
48           weights_(11)=wang
49           weights_(12)=wscloc
50           weights_(13)=wtor
51           weights_(14)=wtor_d
52           weights_(15)=wstrain
53           weights_(16)=wvdwpp
54           weights_(17)=wbond
55           weights_(18)=scal14
56           weights_(21)=wsccor
57           weights_(22)=wsct
58 C FG Master broadcasts the WEIGHTS_ array
59           call MPI_Bcast(weights_(1),n_ene,
60      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
61         else
62 C FG slaves receive the WEIGHTS array
63           call MPI_Bcast(weights(1),n_ene,
64      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
65           wsc=weights(1)
66           wscp=weights(2)
67           welec=weights(3)
68           wcorr=weights(4)
69           wcorr5=weights(5)
70           wcorr6=weights(6)
71           wel_loc=weights(7)
72           wturn3=weights(8)
73           wturn4=weights(9)
74           wturn6=weights(10)
75           wang=weights(11)
76           wscloc=weights(12)
77           wtor=weights(13)
78           wtor_d=weights(14)
79           wstrain=weights(15)
80           wvdwpp=weights(16)
81           wbond=weights(17)
82           scal14=weights(18)
83           wsccor=weights(21)
84           wsct=weights(22)
85         endif
86         time_Bcast=time_Bcast+MPI_Wtime()-time00
87         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
88 c        call chainbuild_cart
89       endif
90 c      print *,'Processor',myrank,' calling etotal ipot=',ipot
91 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
92 #else
93 c      if (modecalc.eq.12.or.modecalc.eq.14) then
94 c        call int_from_cart1(.false.)
95 c      endif
96 #endif     
97 #ifdef TIMING
98       time00=MPI_Wtime()
99 #endif
100
101 C Compute the side-chain and electrostatic interaction energy
102 C
103       goto (101,102,103,104,105,106) ipot
104 C Lennard-Jones potential.
105   101 call elj(evdw,evdw_p,evdw_m)
106 cd    print '(a)','Exit ELJ'
107       goto 107
108 C Lennard-Jones-Kihara potential (shifted).
109   102 call eljk(evdw,evdw_p,evdw_m)
110       goto 107
111 C Berne-Pechukas potential (dilated LJ, angular dependence).
112   103 call ebp(evdw,evdw_p,evdw_m)
113       goto 107
114 C Gay-Berne potential (shifted LJ, angular dependence).
115   104 call egb(evdw,evdw_p,evdw_m)
116       goto 107
117 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
118   105 call egbv(evdw,evdw_p,evdw_m)
119       goto 107
120 C Soft-sphere potential
121   106 call e_softsphere(evdw)
122 C
123 C Calculate electrostatic (H-bonding) energy of the main chain.
124 C
125   107 continue
126       
127 C     JUYONG for dfa test!
128       if (wdfa_dist.gt.0) call edfad(edfadis)
129 c      print*, 'edfad is finished!', edfadis
130       if (wdfa_tor.gt.0) call edfat(edfator)
131 c      print*, 'edfat is finished!', edfator
132       if (wdfa_nei.gt.0) call edfan(edfanei)
133 c      print*, 'edfan is finished!', edfanei
134       if (wdfa_beta.gt.0) call edfab(edfabet)
135 c      print*, 'edfab is finished!', edfabet
136 C      stop
137 C     JUYONG
138
139 c      print *,"Processor",myrank," computed USCSC"
140 #ifdef TIMING
141       time01=MPI_Wtime() 
142 #endif
143       call vec_and_deriv
144 #ifdef TIMING
145       time_vec=time_vec+MPI_Wtime()-time01
146 #endif
147 c      print *,"Processor",myrank," left VEC_AND_DERIV"
148       if (ipot.lt.6) then
149 #ifdef SPLITELE
150          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
151      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
152      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
153      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
154 #else
155          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
156      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
157      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
158      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
159 #endif
160             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
161          else
162             ees=0.0d0
163             evdw1=0.0d0
164             eel_loc=0.0d0
165             eello_turn3=0.0d0
166             eello_turn4=0.0d0
167          endif
168       else
169 c        write (iout,*) "Soft-spheer ELEC potential"
170         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
171      &   eello_turn4)
172       endif
173 c      print *,"Processor",myrank," computed UELEC"
174 C
175 C Calculate excluded-volume interaction energy between peptide groups
176 C and side chains.
177 C
178       if (ipot.lt.6) then
179        if(wscp.gt.0d0) then
180         call escp(evdw2,evdw2_14)
181        else
182         evdw2=0
183         evdw2_14=0
184        endif
185       else
186 c        write (iout,*) "Soft-sphere SCP potential"
187         call escp_soft_sphere(evdw2,evdw2_14)
188       endif
189 c
190 c Calculate the bond-stretching energy
191 c
192       call ebond(estr)
193
194 C Calculate the disulfide-bridge and other energy and the contributions
195 C from other distance constraints.
196 cd    print *,'Calling EHPB'
197       call edis(ehpb)
198 cd    print *,'EHPB exitted succesfully.'
199 C
200 C Calculate the virtual-bond-angle energy.
201 C
202       if (wang.gt.0d0) then
203         call ebend(ebe)
204       else
205         ebe=0
206       endif
207 c      print *,"Processor",myrank," computed UB"
208 C
209 C Calculate the SC local energy.
210 C
211       call esc(escloc)
212 c      print *,"Processor",myrank," computed USC"
213 C
214 C Calculate the virtual-bond torsional energy.
215 C
216 cd    print *,'nterm=',nterm
217       if (wtor.gt.0) then
218        call etor(etors,edihcnstr)
219       else
220        etors=0
221        edihcnstr=0
222       endif
223 c      print *,"Processor",myrank," computed Utor"
224 C
225 C 6/23/01 Calculate double-torsional energy
226 C
227       if (wtor_d.gt.0) then
228        call etor_d(etors_d)
229       else
230        etors_d=0
231       endif
232 c      print *,"Processor",myrank," computed Utord"
233 C
234 C 21/5/07 Calculate local sicdechain correlation energy
235 C
236       if (wsccor.gt.0.0d0) then
237         call eback_sc_corr(esccor)
238       else
239         esccor=0.0d0
240       endif
241 c      print *,"Processor",myrank," computed Usccorr"
242
243 C 12/1/95 Multi-body terms
244 C
245       n_corr=0
246       n_corr1=0
247       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
248      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
249          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
250 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
251 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
252       else
253          ecorr=0.0d0
254          ecorr5=0.0d0
255          ecorr6=0.0d0
256          eturn6=0.0d0
257       endif
258       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
259          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
260 cd         write (iout,*) "multibody_hb ecorr",ecorr
261       endif
262 c      print *,"Processor",myrank," computed Ucorr"
263
264 C If performing constraint dynamics, call the constraint energy
265 C  after the equilibration time
266       if(usampl.and.totT.gt.eq_time) then
267 c         call EconstrQ   
268          call Econstr_back
269       else
270          Uconst=0.0d0
271          Uconst_back=0.0d0
272       endif
273 #ifdef TIMING
274       time_enecalc=time_enecalc+MPI_Wtime()-time00
275 #endif
276 c      print *,"Processor",myrank," computed Uconstr"
277 #ifdef TIMING
278       time00=MPI_Wtime()
279 #endif
280 c
281 C Sum the energies
282 C
283       energia(1)=evdw
284 #ifdef SCP14
285       energia(2)=evdw2-evdw2_14
286       energia(18)=evdw2_14
287 #else
288       energia(2)=evdw2
289       energia(18)=0.0d0
290 #endif
291 #ifdef SPLITELE
292       energia(3)=ees
293       energia(16)=evdw1
294 #else
295       energia(3)=ees+evdw1
296       energia(16)=0.0d0
297 #endif
298       energia(4)=ecorr
299       energia(5)=ecorr5
300       energia(6)=ecorr6
301       energia(7)=eel_loc
302       energia(8)=eello_turn3
303       energia(9)=eello_turn4
304       energia(10)=eturn6
305       energia(11)=ebe
306       energia(12)=escloc
307       energia(13)=etors
308       energia(14)=etors_d
309       energia(15)=ehpb
310       energia(19)=edihcnstr
311       energia(17)=estr
312       energia(20)=Uconst+Uconst_back
313       energia(21)=esccor
314       energia(22)=evdw_p
315       energia(23)=evdw_m
316       energia(24)=edfadis
317       energia(25)=edfator
318       energia(26)=edfanei
319       energia(27)=edfabet
320 c      print *," Processor",myrank," calls SUM_ENERGY"
321       call sum_energy(energia,.true.)
322 c      print *," Processor",myrank," left SUM_ENERGY"
323 #ifdef TIMING
324       time_sumene=time_sumene+MPI_Wtime()-time00
325 #endif
326       
327 c      print*, 'etot:',energia(0)
328       
329       return
330       end
331 c-------------------------------------------------------------------------------
332       subroutine sum_energy(energia,reduce)
333       implicit real*8 (a-h,o-z)
334       include 'DIMENSIONS'
335 #ifndef ISNAN
336       external proc_proc
337 #ifdef WINPGI
338 cMS$ATTRIBUTES C ::  proc_proc
339 #endif
340 #endif
341 #ifdef MPI
342       include "mpif.h"
343 #endif
344       include 'COMMON.SETUP'
345       include 'COMMON.IOUNITS'
346       double precision energia(0:n_ene),enebuff(0:n_ene+1)
347       include 'COMMON.FFIELD'
348       include 'COMMON.DERIV'
349       include 'COMMON.INTERACT'
350       include 'COMMON.SBRIDGE'
351       include 'COMMON.CHAIN'
352       include 'COMMON.VAR'
353       include 'COMMON.CONTROL'
354       include 'COMMON.TIME1'
355       logical reduce
356 #ifdef MPI
357       if (nfgtasks.gt.1 .and. reduce) then
358 #ifdef DEBUG
359         write (iout,*) "energies before REDUCE"
360         call enerprint(energia)
361         call flush(iout)
362 #endif
363         do i=0,n_ene
364           enebuff(i)=energia(i)
365         enddo
366         time00=MPI_Wtime()
367         call MPI_Barrier(FG_COMM,IERR)
368         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
369         time00=MPI_Wtime()
370         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
371      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
372 #ifdef DEBUG
373         write (iout,*) "energies after REDUCE"
374         call enerprint(energia)
375         call flush(iout)
376 #endif
377         time_Reduce=time_Reduce+MPI_Wtime()-time00
378       endif
379       if (fg_rank.eq.0) then
380 #endif
381 #ifdef TSCSC
382       evdw=energia(22)+wsct*energia(23)
383 #else
384       evdw=energia(1)
385 #endif
386 #ifdef SCP14
387       evdw2=energia(2)+energia(18)
388       evdw2_14=energia(18)
389 #else
390       evdw2=energia(2)
391 #endif
392 #ifdef SPLITELE
393       ees=energia(3)
394       evdw1=energia(16)
395 #else
396       ees=energia(3)
397       evdw1=0.0d0
398 #endif
399       ecorr=energia(4)
400       ecorr5=energia(5)
401       ecorr6=energia(6)
402       eel_loc=energia(7)
403       eello_turn3=energia(8)
404       eello_turn4=energia(9)
405       eturn6=energia(10)
406       ebe=energia(11)
407       escloc=energia(12)
408       etors=energia(13)
409       etors_d=energia(14)
410       ehpb=energia(15)
411       edihcnstr=energia(19)
412       estr=energia(17)
413       Uconst=energia(20)
414       esccor=energia(21)
415       edfadis=energia(24)
416       edfator=energia(25)
417       edfanei=energia(26)
418       edfabet=energia(27)
419 #ifdef SPLITELE
420       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
421      & +wang*ebe+wtor*etors+wscloc*escloc
422      & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
423      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
424      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
425      & +wbond*estr+Uconst+wsccor*esccor
426      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
427      & +wdfa_beta*edfabet    
428 #else
429       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
430      & +wang*ebe+wtor*etors+wscloc*escloc
431      & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
432      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
433      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
434      & +wbond*estr+Uconst+wsccor*esccor
435      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
436      & +wdfa_beta*edfabet    
437
438 #endif
439       energia(0)=etot
440 c detecting NaNQ
441 #ifdef ISNAN
442 #ifdef AIX
443       if (isnan(etot).ne.0) energia(0)=1.0d+99
444 #else
445       if (isnan(etot)) energia(0)=1.0d+99
446 #endif
447 #else
448       i=0
449 #ifdef WINPGI
450       idumm=proc_proc(etot,i)
451 #else
452       call proc_proc(etot,i)
453 #endif
454       if(i.eq.1)energia(0)=1.0d+99
455 #endif
456 #ifdef MPI
457       endif
458 #endif
459       return
460       end
461 c-------------------------------------------------------------------------------
462       subroutine sum_gradient
463       implicit real*8 (a-h,o-z)
464       include 'DIMENSIONS'
465 #ifndef ISNAN
466       external proc_proc
467 #ifdef WINPGI
468 cMS$ATTRIBUTES C ::  proc_proc
469 #endif
470 #endif
471 #ifdef MPI
472       include 'mpif.h'
473       double precision gradbufc(3,maxres),gradbufx(3,maxres),
474      &  glocbuf(4*maxres),gradbufc_sum(3,maxres)
475 #else
476       double precision gradbufc(3,maxres),gradbufx(3,maxres),
477      &  glocbuf(4*maxres),gradbufc_sum(3,maxres)
478 #endif
479       include 'COMMON.SETUP'
480       include 'COMMON.IOUNITS'
481       include 'COMMON.FFIELD'
482       include 'COMMON.DERIV'
483       include 'COMMON.INTERACT'
484       include 'COMMON.SBRIDGE'
485       include 'COMMON.CHAIN'
486       include 'COMMON.VAR'
487       include 'COMMON.CONTROL'
488       include 'COMMON.TIME1'
489       include 'COMMON.MAXGRAD'
490 #ifdef TIMING
491       time01=MPI_Wtime()
492 #endif
493 #ifdef DEBUG
494       write (iout,*) "sum_gradient gvdwc, gvdwx"
495       do i=1,nres
496         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
497      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
498      &   (gvdwcT(j,i),j=1,3)
499       enddo
500       call flush(iout)
501 #endif
502 #ifdef MPI
503 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
504         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
505      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
506 #endif
507 C
508 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
509 C            in virtual-bond-vector coordinates
510 C
511 #ifdef DEBUG
512 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
513 c      do i=1,nres-1
514 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
515 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
516 c      enddo
517 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
518 c      do i=1,nres-1
519 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
520 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
521 c      enddo
522       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
523       do i=1,nres
524         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
525      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
526      &   g_corr5_loc(i)
527       enddo
528       call flush(iout)
529 #endif
530 #ifdef SPLITELE
531 #ifdef TSCSC
532       do i=1,nct
533         do j=1,3
534           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
535      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
536      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
537      &                wel_loc*gel_loc_long(j,i)+
538      &                wcorr*gradcorr_long(j,i)+
539      &                wcorr5*gradcorr5_long(j,i)+
540      &                wcorr6*gradcorr6_long(j,i)+
541      &                wturn6*gcorr6_turn_long(j,i)+
542      &                wstrain*ghpbc(j,i)+
543      &                wdfa_dist*gdfad(j,i)+
544      &                wdfa_tor*gdfat(j,i)+
545      &                wdfa_nei*gdfan(j,i)+
546      &                wdfa_beta*gdfab(j,i)
547
548         enddo
549       enddo 
550 #else
551       do i=1,nct
552         do j=1,3
553           gradbufc(j,i)=wsc*gvdwc(j,i)+
554      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
555      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
556      &                wel_loc*gel_loc_long(j,i)+
557      &                wcorr*gradcorr_long(j,i)+
558      &                wcorr5*gradcorr5_long(j,i)+
559      &                wcorr6*gradcorr6_long(j,i)+
560      &                wturn6*gcorr6_turn_long(j,i)+
561      &                wstrain*ghpbc(j,i)+
562      &                wdfa_dist*gdfad(j,i)+
563      &                wdfa_tor*gdfat(j,i)+
564      &                wdfa_nei*gdfan(j,i)+
565      &                wdfa_beta*gdfab(j,i)
566
567         enddo
568       enddo 
569 #endif
570 #else
571       do i=1,nct
572         do j=1,3
573           gradbufc(j,i)=wsc*gvdwc(j,i)+
574      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
575      &                welec*gelc_long(j,i)+
576      &                wbond*gradb(j,i)+
577      &                wel_loc*gel_loc_long(j,i)+
578      &                wcorr*gradcorr_long(j,i)+
579      &                wcorr5*gradcorr5_long(j,i)+
580      &                wcorr6*gradcorr6_long(j,i)+
581      &                wturn6*gcorr6_turn_long(j,i)+
582      &                wstrain*ghpbc(j,i)+
583      &                wdfa_dist*gdfad(j,i)+
584      &                wdfa_tor*gdfat(j,i)+
585      &                wdfa_nei*gdfan(j,i)+
586      &                wdfa_beta*gdfab(j,i)
587
588
589         enddo
590       enddo 
591 #endif
592 #ifdef MPI
593       if (nfgtasks.gt.1) then
594       time00=MPI_Wtime()
595 #ifdef DEBUG
596       write (iout,*) "gradbufc before allreduce"
597       do i=1,nres
598         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
599       enddo
600       call flush(iout)
601 #endif
602       call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
603      &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
604       time_reduce=time_reduce+MPI_Wtime()-time00
605 #ifdef DEBUG
606       write (iout,*) "gradbufc_sum after allreduce"
607       do i=1,nres
608         write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
609       enddo
610       call flush(iout)
611 #endif
612 #ifdef TIMING
613       time_allreduce=time_allreduce+MPI_Wtime()-time00
614 #endif
615       do i=nnt,nres
616         do k=1,3
617           gradbufc(k,i)=0.0d0
618         enddo
619       enddo
620       do i=igrad_start,igrad_end
621         do j=jgrad_start(i),jgrad_end(i)
622           do k=1,3
623             gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
624           enddo
625         enddo
626       enddo
627       else
628 #endif
629 #ifdef DEBUG
630       write (iout,*) "gradbufc"
631       do i=1,nres
632         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
633       enddo
634       call flush(iout)
635 #endif
636       do i=nnt,nres-1
637         do k=1,3
638           gradbufc(k,i)=0.0d0
639         enddo
640         do j=i+1,nres
641           do k=1,3
642             gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
643           enddo
644         enddo
645       enddo
646 #ifdef MPI
647       endif
648 #endif
649       do k=1,3
650         gradbufc(k,nres)=0.0d0
651       enddo
652       do i=1,nct
653         do j=1,3
654 #ifdef SPLITELE
655           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
656      &                wel_loc*gel_loc(j,i)+
657      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
658      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
659      &                wel_loc*gel_loc_long(j,i)+
660      &                wcorr*gradcorr_long(j,i)+
661      &                wcorr5*gradcorr5_long(j,i)+
662      &                wcorr6*gradcorr6_long(j,i)+
663      &                wturn6*gcorr6_turn_long(j,i))+
664      &                wbond*gradb(j,i)+
665      &                wcorr*gradcorr(j,i)+
666      &                wturn3*gcorr3_turn(j,i)+
667      &                wturn4*gcorr4_turn(j,i)+
668      &                wcorr5*gradcorr5(j,i)+
669      &                wcorr6*gradcorr6(j,i)+
670      &                wturn6*gcorr6_turn(j,i)+
671      &                wsccor*gsccorc(j,i)
672      &               +wscloc*gscloc(j,i)
673 #else
674           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
675      &                wel_loc*gel_loc(j,i)+
676      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
677      &                welec*gelc_long(j,i)
678      &                wel_loc*gel_loc_long(j,i)+
679      &                wcorr*gcorr_long(j,i)+
680      &                wcorr5*gradcorr5_long(j,i)+
681      &                wcorr6*gradcorr6_long(j,i)+
682      &                wturn6*gcorr6_turn_long(j,i))+
683      &                wbond*gradb(j,i)+
684      &                wcorr*gradcorr(j,i)+
685      &                wturn3*gcorr3_turn(j,i)+
686      &                wturn4*gcorr4_turn(j,i)+
687      &                wcorr5*gradcorr5(j,i)+
688      &                wcorr6*gradcorr6(j,i)+
689      &                wturn6*gcorr6_turn(j,i)+
690      &                wsccor*gsccorc(j,i)
691      &               +wscloc*gscloc(j,i)
692 #endif
693 #ifdef TSCSC
694           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
695      &                  wscp*gradx_scp(j,i)+
696      &                  wbond*gradbx(j,i)+
697      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
698      &                  wsccor*gsccorx(j,i)
699      &                 +wscloc*gsclocx(j,i)
700 #else
701           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
702      &                  wbond*gradbx(j,i)+
703      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
704      &                  wsccor*gsccorx(j,i)
705      &                 +wscloc*gsclocx(j,i)
706 #endif
707         enddo
708       enddo 
709 #ifdef DEBUG
710       write (iout,*) "gloc before adding corr"
711       do i=1,4*nres
712         write (iout,*) i,gloc(i,icg)
713       enddo
714 #endif
715       do i=1,nres-3
716         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
717      &   +wcorr5*g_corr5_loc(i)
718      &   +wcorr6*g_corr6_loc(i)
719      &   +wturn4*gel_loc_turn4(i)
720      &   +wturn3*gel_loc_turn3(i)
721      &   +wturn6*gel_loc_turn6(i)
722      &   +wel_loc*gel_loc_loc(i)
723      &   +wsccor*gsccor_loc(i)
724       enddo
725 #ifdef DEBUG
726       write (iout,*) "gloc after adding corr"
727       do i=1,4*nres
728         write (iout,*) i,gloc(i,icg)
729       enddo
730 #endif
731 #ifdef MPI
732       if (nfgtasks.gt.1) then
733         do j=1,3
734           do i=1,nres
735             gradbufc(j,i)=gradc(j,i,icg)
736             gradbufx(j,i)=gradx(j,i,icg)
737           enddo
738         enddo
739         do i=1,4*nres
740           glocbuf(i)=gloc(i,icg)
741         enddo
742         time00=MPI_Wtime()
743         call MPI_Barrier(FG_COMM,IERR)
744         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
745         time00=MPI_Wtime()
746         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
747      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
748         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
749      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
750         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
751      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
752         time_reduce=time_reduce+MPI_Wtime()-time00
753 #ifdef DEBUG
754       write (iout,*) "gloc after reduce"
755       do i=1,4*nres
756         write (iout,*) i,gloc(i,icg)
757       enddo
758 #endif
759       endif
760 #endif
761       if (gnorm_check) then
762 c
763 c Compute the maximum elements of the gradient
764 c
765       gvdwc_max=0.0d0
766       gvdwc_scp_max=0.0d0
767       gelc_max=0.0d0
768       gvdwpp_max=0.0d0
769       gradb_max=0.0d0
770       ghpbc_max=0.0d0
771       gradcorr_max=0.0d0
772       gel_loc_max=0.0d0
773       gcorr3_turn_max=0.0d0
774       gcorr4_turn_max=0.0d0
775       gradcorr5_max=0.0d0
776       gradcorr6_max=0.0d0
777       gcorr6_turn_max=0.0d0
778       gsccorc_max=0.0d0
779       gscloc_max=0.0d0
780       gvdwx_max=0.0d0
781       gradx_scp_max=0.0d0
782       ghpbx_max=0.0d0
783       gradxorr_max=0.0d0
784       gsccorx_max=0.0d0
785       gsclocx_max=0.0d0
786       do i=1,nct
787         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
788         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
789 #ifdef TSCSC
790         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
791         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
792 #endif
793         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
794         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
795      &   gvdwc_scp_max=gvdwc_scp_norm
796         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
797         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
798         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
799         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
800         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
801         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
802         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
803         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
804         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
805         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
806         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
807         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
808         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
809      &    gcorr3_turn(1,i)))
810         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
811      &    gcorr3_turn_max=gcorr3_turn_norm
812         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
813      &    gcorr4_turn(1,i)))
814         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
815      &    gcorr4_turn_max=gcorr4_turn_norm
816         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
817         if (gradcorr5_norm.gt.gradcorr5_max) 
818      &    gradcorr5_max=gradcorr5_norm
819         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
820         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
821         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
822      &    gcorr6_turn(1,i)))
823         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
824      &    gcorr6_turn_max=gcorr6_turn_norm
825         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
826         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
827         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
828         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
829         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
830         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
831 #ifdef TSCSC
832         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
833         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
834 #endif
835         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
836         if (gradx_scp_norm.gt.gradx_scp_max) 
837      &    gradx_scp_max=gradx_scp_norm
838         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
839         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
840         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
841         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
842         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
843         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
844         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
845         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
846       enddo 
847       if (gradout) then
848 #ifdef AIX
849         open(istat,file=statname,position="append")
850 #else
851         open(istat,file=statname,access="append")
852 #endif
853         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
854      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
855      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
856      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
857      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
858      &     gsccorx_max,gsclocx_max
859         close(istat)
860         if (gvdwc_max.gt.1.0d4) then
861           write (iout,*) "gvdwc gvdwx gradb gradbx"
862           do i=nnt,nct
863             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
864      &        gradb(j,i),gradbx(j,i),j=1,3)
865           enddo
866           call pdbout(0.0d0,'cipiszcze',iout)
867           call flush(iout)
868         endif
869       endif
870       endif
871 #ifdef DEBUG
872       write (iout,*) "gradc gradx gloc"
873       do i=1,nres
874         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
875      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
876       enddo 
877 #endif
878 #ifdef TIMING
879       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
880 #endif
881       return
882       end
883 c-------------------------------------------------------------------------------
884       subroutine rescale_weights(t_bath)
885       implicit real*8 (a-h,o-z)
886       include 'DIMENSIONS'
887       include 'COMMON.IOUNITS'
888       include 'COMMON.FFIELD'
889       include 'COMMON.SBRIDGE'
890       double precision kfac /2.4d0/
891       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
892 c      facT=temp0/t_bath
893 c      facT=2*temp0/(t_bath+temp0)
894       if (rescale_mode.eq.0) then
895         facT=1.0d0
896         facT2=1.0d0
897         facT3=1.0d0
898         facT4=1.0d0
899         facT5=1.0d0
900       else if (rescale_mode.eq.1) then
901         facT=kfac/(kfac-1.0d0+t_bath/temp0)
902         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
903         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
904         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
905         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
906       else if (rescale_mode.eq.2) then
907         x=t_bath/temp0
908         x2=x*x
909         x3=x2*x
910         x4=x3*x
911         x5=x4*x
912         facT=licznik/dlog(dexp(x)+dexp(-x))
913         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
914         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
915         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
916         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
917       else
918         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
919         write (*,*) "Wrong RESCALE_MODE",rescale_mode
920 #ifdef MPI
921        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
922 #endif
923        stop 555
924       endif
925       welec=weights(3)*fact
926       wcorr=weights(4)*fact3
927       wcorr5=weights(5)*fact4
928       wcorr6=weights(6)*fact5
929       wel_loc=weights(7)*fact2
930       wturn3=weights(8)*fact2
931       wturn4=weights(9)*fact3
932       wturn6=weights(10)*fact5
933       wtor=weights(13)*fact
934       wtor_d=weights(14)*fact2
935       wsccor=weights(21)*fact
936 #ifdef TSCSC
937 c      wsct=t_bath/temp0
938       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
939 #endif
940       return
941       end
942 C------------------------------------------------------------------------
943       subroutine enerprint(energia)
944       implicit real*8 (a-h,o-z)
945       include 'DIMENSIONS'
946       include 'COMMON.IOUNITS'
947       include 'COMMON.FFIELD'
948       include 'COMMON.SBRIDGE'
949       include 'COMMON.MD_'
950       double precision energia(0:n_ene)
951       etot=energia(0)
952 #ifdef TSCSC
953       evdw=energia(22)+wsct*energia(23)
954 #else
955       evdw=energia(1)
956 #endif
957       evdw2=energia(2)
958 #ifdef SCP14
959       evdw2=energia(2)+energia(18)
960 #else
961       evdw2=energia(2)
962 #endif
963       ees=energia(3)
964 #ifdef SPLITELE
965       evdw1=energia(16)
966 #endif
967       ecorr=energia(4)
968       ecorr5=energia(5)
969       ecorr6=energia(6)
970       eel_loc=energia(7)
971       eello_turn3=energia(8)
972       eello_turn4=energia(9)
973       eello_turn6=energia(10)
974       ebe=energia(11)
975       escloc=energia(12)
976       etors=energia(13)
977       etors_d=energia(14)
978       ehpb=energia(15)
979       edihcnstr=energia(19)
980       estr=energia(17)
981       Uconst=energia(20)
982       esccor=energia(21)
983 C     Juyong
984       edfadis = energia(24)
985       edfator = energia(25)
986       edfanei = energia(26)
987       edfabet = energia(27)
988 C     
989 #ifdef SPLITELE
990       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
991      &  estr,wbond,ebe,wang,
992      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
993      &  ecorr,wcorr,
994      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
995      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
996      &  edihcnstr,ebr*nss,
997      &  Uconst,edfadis,edfator,edfanei,edfabet,etot
998    10 format (/'Virtual-chain energies:'//
999      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1000      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1001      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1002      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
1003      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1004      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1005      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1006      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1007      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1008      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1009      & ' (SS bridges & dist. cnstr.)'/
1010      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1011      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1012      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1013      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1014      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1015      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1016      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1017      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1018      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1019      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1020      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1021      & 'EDFAD= ',1pE16.6,' (DFA distance energy)'/ 
1022      & 'EDFAT= ',1pE16.6,' (DFA torsion energy)'/ 
1023      & 'EDFAN= ',1pE16.6,' (DFA NCa energy)'/ 
1024      & 'EDFAB= ',1pE16.6,' (DFA Beta energy)'/ 
1025      & 'ETOT=  ',1pE16.6,' (total)')
1026 #else
1027       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1028      &  estr,wbond,ebe,wang,
1029      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1030      &  ecorr,wcorr,
1031      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1032      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1033      &  ebr*nss,
1034      &  Uconst,edfadis,edfator,edfanei,edfabet,etot
1035    10 format (/'Virtual-chain energies:'//
1036      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1037      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1038      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1039      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1040      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1041      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1042      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1043      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1044      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1045      & ' (SS bridges & dist. cnstr.)'/
1046      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1047      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1048      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1049      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1050      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1051      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1052      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1053      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1054      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1055      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1056      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1057      & 'EDFAD= ',1pE16.6,' (DFA distance energy)'/ 
1058      & 'EDFAT= ',1pE16.6,' (DFA torsion energy)'/ 
1059      & 'EDFAN= ',1pE16.6,' (DFA NCa energy)'/ 
1060      & 'EDFAB= ',1pE16.6,' (DFA Beta energy)'/ 
1061      & 'ETOT=  ',1pE16.6,' (total)')
1062 #endif
1063       return
1064       end
1065 C-----------------------------------------------------------------------
1066       subroutine elj(evdw,evdw_p,evdw_m)
1067 C
1068 C This subroutine calculates the interaction energy of nonbonded side chains
1069 C assuming the LJ potential of interaction.
1070 C
1071       implicit real*8 (a-h,o-z)
1072       include 'DIMENSIONS'
1073       parameter (accur=1.0d-10)
1074       include 'COMMON.GEO'
1075       include 'COMMON.VAR'
1076       include 'COMMON.LOCAL'
1077       include 'COMMON.CHAIN'
1078       include 'COMMON.DERIV'
1079       include 'COMMON.INTERACT'
1080       include 'COMMON.TORSION'
1081       include 'COMMON.SBRIDGE'
1082       include 'COMMON.NAMES'
1083       include 'COMMON.IOUNITS'
1084       include 'COMMON.CONTACTS'
1085 #ifdef MOMENT
1086       include 'COMMON.CONTACTS.MOMENT'
1087 #endif  
1088       dimension gg(3)
1089 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1090       evdw=0.0D0
1091       do i=iatsc_s,iatsc_e
1092         itypi=iabs(itype(i))
1093         itypi1=iabs(itype(i+1))
1094         xi=c(1,nres+i)
1095         yi=c(2,nres+i)
1096         zi=c(3,nres+i)
1097 C Change 12/1/95
1098         num_conti=0
1099 C
1100 C Calculate SC interaction energy.
1101 C
1102         do iint=1,nint_gr(i)
1103 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1104 cd   &                  'iend=',iend(i,iint)
1105           do j=istart(i,iint),iend(i,iint)
1106             itypj=iabs(itype(j))
1107             xj=c(1,nres+j)-xi
1108             yj=c(2,nres+j)-yi
1109             zj=c(3,nres+j)-zi
1110 C Change 12/1/95 to calculate four-body interactions
1111             rij=xj*xj+yj*yj+zj*zj
1112             rrij=1.0D0/rij
1113 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1114             eps0ij=eps(itypi,itypj)
1115             fac=rrij**expon2
1116             e1=fac*fac*aa(itypi,itypj)
1117             e2=fac*bb(itypi,itypj)
1118             evdwij=e1+e2
1119 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1120 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1121 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1122 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1123 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1124 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1125 #ifdef TSCSC
1126             if (bb(itypi,itypj).gt.0) then
1127                evdw_p=evdw_p+evdwij
1128             else
1129                evdw_m=evdw_m+evdwij
1130             endif
1131 #else
1132             evdw=evdw+evdwij
1133 #endif
1134
1135 C Calculate the components of the gradient in DC and X
1136 C
1137             fac=-rrij*(e1+evdwij)
1138             gg(1)=xj*fac
1139             gg(2)=yj*fac
1140             gg(3)=zj*fac
1141 #ifdef TSCSC
1142             if (bb(itypi,itypj).gt.0.0d0) then
1143               do k=1,3
1144                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1145                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1146                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1147                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1148               enddo
1149             else
1150               do k=1,3
1151                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1152                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1153                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1154                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1155               enddo
1156             endif
1157 #else
1158             do k=1,3
1159               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1160               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1161               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1162               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1163             enddo
1164 #endif
1165 cgrad            do k=i,j-1
1166 cgrad              do l=1,3
1167 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1168 cgrad              enddo
1169 cgrad            enddo
1170 C
1171 C 12/1/95, revised on 5/20/97
1172 C
1173 C Calculate the contact function. The ith column of the array JCONT will 
1174 C contain the numbers of atoms that make contacts with the atom I (of numbers
1175 C greater than I). The arrays FACONT and GACONT will contain the values of
1176 C the contact function and its derivative.
1177 C
1178 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1179 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1180 C Uncomment next line, if the correlation interactions are contact function only
1181             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1182               rij=dsqrt(rij)
1183               sigij=sigma(itypi,itypj)
1184               r0ij=rs0(itypi,itypj)
1185 C
1186 C Check whether the SC's are not too far to make a contact.
1187 C
1188               rcut=1.5d0*r0ij
1189               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1190 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1191 C
1192               if (fcont.gt.0.0D0) then
1193 C If the SC-SC distance if close to sigma, apply spline.
1194 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1195 cAdam &             fcont1,fprimcont1)
1196 cAdam           fcont1=1.0d0-fcont1
1197 cAdam           if (fcont1.gt.0.0d0) then
1198 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1199 cAdam             fcont=fcont*fcont1
1200 cAdam           endif
1201 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1202 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1203 cga             do k=1,3
1204 cga               gg(k)=gg(k)*eps0ij
1205 cga             enddo
1206 cga             eps0ij=-evdwij*eps0ij
1207 C Uncomment for AL's type of SC correlation interactions.
1208 cadam           eps0ij=-evdwij
1209                 num_conti=num_conti+1
1210                 jcont(num_conti,i)=j
1211                 facont(num_conti,i)=fcont*eps0ij
1212                 fprimcont=eps0ij*fprimcont/rij
1213                 fcont=expon*fcont
1214 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1215 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1216 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1217 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1218                 gacont(1,num_conti,i)=-fprimcont*xj
1219                 gacont(2,num_conti,i)=-fprimcont*yj
1220                 gacont(3,num_conti,i)=-fprimcont*zj
1221 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1222 cd              write (iout,'(2i3,3f10.5)') 
1223 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1224               endif
1225             endif
1226           enddo      ! j
1227         enddo        ! iint
1228 C Change 12/1/95
1229         num_cont(i)=num_conti
1230       enddo          ! i
1231       do i=1,nct
1232         do j=1,3
1233           gvdwc(j,i)=expon*gvdwc(j,i)
1234           gvdwx(j,i)=expon*gvdwx(j,i)
1235         enddo
1236       enddo
1237 C******************************************************************************
1238 C
1239 C                              N O T E !!!
1240 C
1241 C To save time, the factor of EXPON has been extracted from ALL components
1242 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1243 C use!
1244 C
1245 C******************************************************************************
1246       return
1247       end
1248 C-----------------------------------------------------------------------------
1249       subroutine eljk(evdw,evdw_p,evdw_m)
1250 C
1251 C This subroutine calculates the interaction energy of nonbonded side chains
1252 C assuming the LJK potential of interaction.
1253 C
1254       implicit real*8 (a-h,o-z)
1255       include 'DIMENSIONS'
1256       include 'COMMON.GEO'
1257       include 'COMMON.VAR'
1258       include 'COMMON.LOCAL'
1259       include 'COMMON.CHAIN'
1260       include 'COMMON.DERIV'
1261       include 'COMMON.INTERACT'
1262       include 'COMMON.IOUNITS'
1263       include 'COMMON.NAMES'
1264       dimension gg(3)
1265       logical scheck
1266 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1267       evdw=0.0D0
1268       do i=iatsc_s,iatsc_e
1269         itypi=iabs(itype(i))
1270         itypi1=iabs(itype(i+1))
1271         xi=c(1,nres+i)
1272         yi=c(2,nres+i)
1273         zi=c(3,nres+i)
1274 C
1275 C Calculate SC interaction energy.
1276 C
1277         do iint=1,nint_gr(i)
1278           do j=istart(i,iint),iend(i,iint)
1279             itypj=iabs(itype(j))
1280             xj=c(1,nres+j)-xi
1281             yj=c(2,nres+j)-yi
1282             zj=c(3,nres+j)-zi
1283             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1284             fac_augm=rrij**expon
1285             e_augm=augm(itypi,itypj)*fac_augm
1286             r_inv_ij=dsqrt(rrij)
1287             rij=1.0D0/r_inv_ij 
1288             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1289             fac=r_shift_inv**expon
1290             e1=fac*fac*aa(itypi,itypj)
1291             e2=fac*bb(itypi,itypj)
1292             evdwij=e_augm+e1+e2
1293 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1294 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1295 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1296 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1297 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1298 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1299 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1300 #ifdef TSCSC
1301             if (bb(itypi,itypj).gt.0) then
1302                evdw_p=evdw_p+evdwij
1303             else
1304                evdw_m=evdw_m+evdwij
1305             endif
1306 #else
1307             evdw=evdw+evdwij
1308 #endif
1309
1310 C Calculate the components of the gradient in DC and X
1311 C
1312             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1313             gg(1)=xj*fac
1314             gg(2)=yj*fac
1315             gg(3)=zj*fac
1316 #ifdef TSCSC
1317             if (bb(itypi,itypj).gt.0.0d0) then
1318               do k=1,3
1319                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1320                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1321                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1322                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1323               enddo
1324             else
1325               do k=1,3
1326                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1327                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1328                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1329                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1330               enddo
1331             endif
1332 #else
1333             do k=1,3
1334               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1335               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1336               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1337               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1338             enddo
1339 #endif
1340 cgrad            do k=i,j-1
1341 cgrad              do l=1,3
1342 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1343 cgrad              enddo
1344 cgrad            enddo
1345           enddo      ! j
1346         enddo        ! iint
1347       enddo          ! i
1348       do i=1,nct
1349         do j=1,3
1350           gvdwc(j,i)=expon*gvdwc(j,i)
1351           gvdwx(j,i)=expon*gvdwx(j,i)
1352         enddo
1353       enddo
1354       return
1355       end
1356 C-----------------------------------------------------------------------------
1357       subroutine ebp(evdw,evdw_p,evdw_m)
1358 C
1359 C This subroutine calculates the interaction energy of nonbonded side chains
1360 C assuming the Berne-Pechukas potential of interaction.
1361 C
1362       implicit real*8 (a-h,o-z)
1363       include 'DIMENSIONS'
1364       include 'COMMON.GEO'
1365       include 'COMMON.VAR'
1366       include 'COMMON.LOCAL'
1367       include 'COMMON.CHAIN'
1368       include 'COMMON.DERIV'
1369       include 'COMMON.NAMES'
1370       include 'COMMON.INTERACT'
1371       include 'COMMON.IOUNITS'
1372       include 'COMMON.CALC'
1373       common /srutu/ icall
1374 c     double precision rrsave(maxdim)
1375       logical lprn
1376       evdw=0.0D0
1377 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1378       evdw=0.0D0
1379 c     if (icall.eq.0) then
1380 c       lprn=.true.
1381 c     else
1382         lprn=.false.
1383 c     endif
1384       ind=0
1385       do i=iatsc_s,iatsc_e
1386         itypi=iabs(itype(i))
1387         itypi1=iabs(itype(i+1))
1388         xi=c(1,nres+i)
1389         yi=c(2,nres+i)
1390         zi=c(3,nres+i)
1391         dxi=dc_norm(1,nres+i)
1392         dyi=dc_norm(2,nres+i)
1393         dzi=dc_norm(3,nres+i)
1394 c        dsci_inv=dsc_inv(itypi)
1395         dsci_inv=vbld_inv(i+nres)
1396 C
1397 C Calculate SC interaction energy.
1398 C
1399         do iint=1,nint_gr(i)
1400           do j=istart(i,iint),iend(i,iint)
1401             ind=ind+1
1402             itypj=itype(j)
1403 c            dscj_inv=dsc_inv(itypj)
1404             dscj_inv=vbld_inv(j+nres)
1405             chi1=chi(itypi,itypj)
1406             chi2=chi(itypj,itypi)
1407             chi12=chi1*chi2
1408             chip1=chip(itypi)
1409             chip2=chip(itypj)
1410             chip12=chip1*chip2
1411             alf1=alp(itypi)
1412             alf2=alp(itypj)
1413             alf12=0.5D0*(alf1+alf2)
1414 C For diagnostics only!!!
1415 c           chi1=0.0D0
1416 c           chi2=0.0D0
1417 c           chi12=0.0D0
1418 c           chip1=0.0D0
1419 c           chip2=0.0D0
1420 c           chip12=0.0D0
1421 c           alf1=0.0D0
1422 c           alf2=0.0D0
1423 c           alf12=0.0D0
1424             xj=c(1,nres+j)-xi
1425             yj=c(2,nres+j)-yi
1426             zj=c(3,nres+j)-zi
1427             dxj=dc_norm(1,nres+j)
1428             dyj=dc_norm(2,nres+j)
1429             dzj=dc_norm(3,nres+j)
1430             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1431 cd          if (icall.eq.0) then
1432 cd            rrsave(ind)=rrij
1433 cd          else
1434 cd            rrij=rrsave(ind)
1435 cd          endif
1436             rij=dsqrt(rrij)
1437 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1438             call sc_angular
1439 C Calculate whole angle-dependent part of epsilon and contributions
1440 C to its derivatives
1441             fac=(rrij*sigsq)**expon2
1442             e1=fac*fac*aa(itypi,itypj)
1443             e2=fac*bb(itypi,itypj)
1444             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1445             eps2der=evdwij*eps3rt
1446             eps3der=evdwij*eps2rt
1447             evdwij=evdwij*eps2rt*eps3rt
1448 #ifdef TSCSC
1449             if (bb(itypi,itypj).gt.0) then
1450                evdw_p=evdw_p+evdwij
1451             else
1452                evdw_m=evdw_m+evdwij
1453             endif
1454 #else
1455             evdw=evdw+evdwij
1456 #endif
1457             if (lprn) then
1458             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1459             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1460 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1461 cd     &        restyp(itypi),i,restyp(itypj),j,
1462 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1463 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1464 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1465 cd     &        evdwij
1466             endif
1467 C Calculate gradient components.
1468             e1=e1*eps1*eps2rt**2*eps3rt**2
1469             fac=-expon*(e1+evdwij)
1470             sigder=fac/sigsq
1471             fac=rrij*fac
1472 C Calculate radial part of the gradient
1473             gg(1)=xj*fac
1474             gg(2)=yj*fac
1475             gg(3)=zj*fac
1476 C Calculate the angular part of the gradient and sum add the contributions
1477 C to the appropriate components of the Cartesian gradient.
1478 #ifdef TSCSC
1479             if (bb(itypi,itypj).gt.0) then
1480                call sc_grad
1481             else
1482                call sc_grad_T
1483             endif
1484 #else
1485             call sc_grad
1486 #endif
1487           enddo      ! j
1488         enddo        ! iint
1489       enddo          ! i
1490 c     stop
1491       return
1492       end
1493 C-----------------------------------------------------------------------------
1494       subroutine egb(evdw,evdw_p,evdw_m)
1495 C
1496 C This subroutine calculates the interaction energy of nonbonded side chains
1497 C assuming the Gay-Berne potential of interaction.
1498 C
1499       implicit real*8 (a-h,o-z)
1500       include 'DIMENSIONS'
1501       include 'COMMON.GEO'
1502       include 'COMMON.VAR'
1503       include 'COMMON.LOCAL'
1504       include 'COMMON.CHAIN'
1505       include 'COMMON.DERIV'
1506       include 'COMMON.NAMES'
1507       include 'COMMON.INTERACT'
1508       include 'COMMON.IOUNITS'
1509       include 'COMMON.CALC'
1510       include 'COMMON.CONTROL'
1511       logical lprn
1512       evdw=0.0D0
1513 ccccc      energy_dec=.false.
1514 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1515       evdw=0.0D0
1516       evdw_p=0.0D0
1517       evdw_m=0.0D0
1518       lprn=.false.
1519 c     if (icall.eq.0) lprn=.false.
1520       ind=0
1521       do i=iatsc_s,iatsc_e
1522         itypi=iabs(itype(i))
1523         itypi1=iabs(itype(i+1))
1524         xi=c(1,nres+i)
1525         yi=c(2,nres+i)
1526         zi=c(3,nres+i)
1527         dxi=dc_norm(1,nres+i)
1528         dyi=dc_norm(2,nres+i)
1529         dzi=dc_norm(3,nres+i)
1530 c        dsci_inv=dsc_inv(itypi)
1531         dsci_inv=vbld_inv(i+nres)
1532 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1533 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1534 C
1535 C Calculate SC interaction energy.
1536 C
1537         do iint=1,nint_gr(i)
1538           do j=istart(i,iint),iend(i,iint)
1539             ind=ind+1
1540             itypj=iabs(itype(j))
1541 c            dscj_inv=dsc_inv(itypj)
1542             dscj_inv=vbld_inv(j+nres)
1543 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1544 c     &       1.0d0/vbld(j+nres)
1545 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1546             sig0ij=sigma(itypi,itypj)
1547             chi1=chi(itypi,itypj)
1548             chi2=chi(itypj,itypi)
1549             chi12=chi1*chi2
1550             chip1=chip(itypi)
1551             chip2=chip(itypj)
1552             chip12=chip1*chip2
1553             alf1=alp(itypi)
1554             alf2=alp(itypj)
1555             alf12=0.5D0*(alf1+alf2)
1556 C For diagnostics only!!!
1557 c           chi1=0.0D0
1558 c           chi2=0.0D0
1559 c           chi12=0.0D0
1560 c           chip1=0.0D0
1561 c           chip2=0.0D0
1562 c           chip12=0.0D0
1563 c           alf1=0.0D0
1564 c           alf2=0.0D0
1565 c           alf12=0.0D0
1566             xj=c(1,nres+j)-xi
1567             yj=c(2,nres+j)-yi
1568             zj=c(3,nres+j)-zi
1569             dxj=dc_norm(1,nres+j)
1570             dyj=dc_norm(2,nres+j)
1571             dzj=dc_norm(3,nres+j)
1572 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1573 c            write (iout,*) "j",j," dc_norm",
1574 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1575             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1576             rij=dsqrt(rrij)
1577 C Calculate angle-dependent terms of energy and contributions to their
1578 C derivatives.
1579             call sc_angular
1580             sigsq=1.0D0/sigsq
1581             sig=sig0ij*dsqrt(sigsq)
1582             rij_shift=1.0D0/rij-sig+sig0ij
1583 c for diagnostics; uncomment
1584 c            rij_shift=1.2*sig0ij
1585 C I hate to put IF's in the loops, but here don't have another choice!!!!
1586             if (rij_shift.le.0.0D0) then
1587               evdw=1.0D20
1588 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1589 cd     &        restyp(itypi),i,restyp(itypj),j,
1590 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1591               return
1592             endif
1593             sigder=-sig*sigsq
1594 c---------------------------------------------------------------
1595             rij_shift=1.0D0/rij_shift 
1596             fac=rij_shift**expon
1597             e1=fac*fac*aa(itypi,itypj)
1598             e2=fac*bb(itypi,itypj)
1599             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1600             eps2der=evdwij*eps3rt
1601             eps3der=evdwij*eps2rt
1602 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1603 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1604             evdwij=evdwij*eps2rt*eps3rt
1605 #ifdef TSCSC
1606             if (bb(itypi,itypj).gt.0) then
1607                evdw_p=evdw_p+evdwij
1608             else
1609                evdw_m=evdw_m+evdwij
1610             endif
1611 #else
1612             evdw=evdw+evdwij
1613 #endif
1614             if (lprn) then
1615             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1616             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1617             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1618      &        restyp(itypi),i,restyp(itypj),j,
1619      &        epsi,sigm,chi1,chi2,chip1,chip2,
1620      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1621      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1622      &        evdwij
1623             endif
1624
1625             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1626      &                        'evdw',i,j,evdwij
1627
1628 C Calculate gradient components.
1629             e1=e1*eps1*eps2rt**2*eps3rt**2
1630             fac=-expon*(e1+evdwij)*rij_shift
1631             sigder=fac*sigder
1632             fac=rij*fac
1633 c            fac=0.0d0
1634 C Calculate the radial part of the gradient
1635             gg(1)=xj*fac
1636             gg(2)=yj*fac
1637             gg(3)=zj*fac
1638 C Calculate angular part of the gradient.
1639 #ifdef TSCSC
1640             if (bb(itypi,itypj).gt.0) then
1641                call sc_grad
1642             else
1643                call sc_grad_T
1644             endif
1645 #else
1646             call sc_grad
1647 #endif
1648           enddo      ! j
1649         enddo        ! iint
1650       enddo          ! i
1651 c      write (iout,*) "Number of loop steps in EGB:",ind
1652 cccc      energy_dec=.false.
1653       return
1654       end
1655 C-----------------------------------------------------------------------------
1656       subroutine egbv(evdw,evdw_p,evdw_m)
1657 C
1658 C This subroutine calculates the interaction energy of nonbonded side chains
1659 C assuming the Gay-Berne-Vorobjev potential of interaction.
1660 C
1661       implicit real*8 (a-h,o-z)
1662       include 'DIMENSIONS'
1663       include 'COMMON.GEO'
1664       include 'COMMON.VAR'
1665       include 'COMMON.LOCAL'
1666       include 'COMMON.CHAIN'
1667       include 'COMMON.DERIV'
1668       include 'COMMON.NAMES'
1669       include 'COMMON.INTERACT'
1670       include 'COMMON.IOUNITS'
1671       include 'COMMON.CALC'
1672       common /srutu/ icall
1673       logical lprn
1674       evdw=0.0D0
1675 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1676       evdw=0.0D0
1677       lprn=.false.
1678 c     if (icall.eq.0) lprn=.true.
1679       ind=0
1680       do i=iatsc_s,iatsc_e
1681         itypi=iabs(itype(i))
1682         itypi1=iabs(itype(i+1))
1683         xi=c(1,nres+i)
1684         yi=c(2,nres+i)
1685         zi=c(3,nres+i)
1686         dxi=dc_norm(1,nres+i)
1687         dyi=dc_norm(2,nres+i)
1688         dzi=dc_norm(3,nres+i)
1689 c        dsci_inv=dsc_inv(itypi)
1690         dsci_inv=vbld_inv(i+nres)
1691 C
1692 C Calculate SC interaction energy.
1693 C
1694         do iint=1,nint_gr(i)
1695           do j=istart(i,iint),iend(i,iint)
1696             ind=ind+1
1697             itypj=iabs(itype(j))
1698 c            dscj_inv=dsc_inv(itypj)
1699             dscj_inv=vbld_inv(j+nres)
1700             sig0ij=sigma(itypi,itypj)
1701             r0ij=r0(itypi,itypj)
1702             chi1=chi(itypi,itypj)
1703             chi2=chi(itypj,itypi)
1704             chi12=chi1*chi2
1705             chip1=chip(itypi)
1706             chip2=chip(itypj)
1707             chip12=chip1*chip2
1708             alf1=alp(itypi)
1709             alf2=alp(itypj)
1710             alf12=0.5D0*(alf1+alf2)
1711 C For diagnostics only!!!
1712 c           chi1=0.0D0
1713 c           chi2=0.0D0
1714 c           chi12=0.0D0
1715 c           chip1=0.0D0
1716 c           chip2=0.0D0
1717 c           chip12=0.0D0
1718 c           alf1=0.0D0
1719 c           alf2=0.0D0
1720 c           alf12=0.0D0
1721             xj=c(1,nres+j)-xi
1722             yj=c(2,nres+j)-yi
1723             zj=c(3,nres+j)-zi
1724             dxj=dc_norm(1,nres+j)
1725             dyj=dc_norm(2,nres+j)
1726             dzj=dc_norm(3,nres+j)
1727             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1728             rij=dsqrt(rrij)
1729 C Calculate angle-dependent terms of energy and contributions to their
1730 C derivatives.
1731             call sc_angular
1732             sigsq=1.0D0/sigsq
1733             sig=sig0ij*dsqrt(sigsq)
1734             rij_shift=1.0D0/rij-sig+r0ij
1735 C I hate to put IF's in the loops, but here don't have another choice!!!!
1736             if (rij_shift.le.0.0D0) then
1737               evdw=1.0D20
1738               return
1739             endif
1740             sigder=-sig*sigsq
1741 c---------------------------------------------------------------
1742             rij_shift=1.0D0/rij_shift 
1743             fac=rij_shift**expon
1744             e1=fac*fac*aa(itypi,itypj)
1745             e2=fac*bb(itypi,itypj)
1746             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1747             eps2der=evdwij*eps3rt
1748             eps3der=evdwij*eps2rt
1749             fac_augm=rrij**expon
1750             e_augm=augm(itypi,itypj)*fac_augm
1751             evdwij=evdwij*eps2rt*eps3rt
1752 #ifdef TSCSC
1753             if (bb(itypi,itypj).gt.0) then
1754                evdw_p=evdw_p+evdwij+e_augm
1755             else
1756                evdw_m=evdw_m+evdwij+e_augm
1757             endif
1758 #else
1759             evdw=evdw+evdwij+e_augm
1760 #endif
1761             if (lprn) then
1762             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1763             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1764             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1765      &        restyp(itypi),i,restyp(itypj),j,
1766      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1767      &        chi1,chi2,chip1,chip2,
1768      &        eps1,eps2rt**2,eps3rt**2,
1769      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1770      &        evdwij+e_augm
1771             endif
1772 C Calculate gradient components.
1773             e1=e1*eps1*eps2rt**2*eps3rt**2
1774             fac=-expon*(e1+evdwij)*rij_shift
1775             sigder=fac*sigder
1776             fac=rij*fac-2*expon*rrij*e_augm
1777 C Calculate the radial part of the gradient
1778             gg(1)=xj*fac
1779             gg(2)=yj*fac
1780             gg(3)=zj*fac
1781 C Calculate angular part of the gradient.
1782 #ifdef TSCSC
1783             if (bb(itypi,itypj).gt.0) then
1784                call sc_grad
1785             else
1786                call sc_grad_T
1787             endif
1788 #else
1789             call sc_grad
1790 #endif
1791           enddo      ! j
1792         enddo        ! iint
1793       enddo          ! i
1794       end
1795 C-----------------------------------------------------------------------------
1796       subroutine sc_angular
1797 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1798 C om12. Called by ebp, egb, and egbv.
1799       implicit none
1800       include 'COMMON.CALC'
1801       include 'COMMON.IOUNITS'
1802       erij(1)=xj*rij
1803       erij(2)=yj*rij
1804       erij(3)=zj*rij
1805       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1806       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1807       om12=dxi*dxj+dyi*dyj+dzi*dzj
1808       chiom12=chi12*om12
1809 C Calculate eps1(om12) and its derivative in om12
1810       faceps1=1.0D0-om12*chiom12
1811       faceps1_inv=1.0D0/faceps1
1812       eps1=dsqrt(faceps1_inv)
1813 C Following variable is eps1*deps1/dom12
1814       eps1_om12=faceps1_inv*chiom12
1815 c diagnostics only
1816 c      faceps1_inv=om12
1817 c      eps1=om12
1818 c      eps1_om12=1.0d0
1819 c      write (iout,*) "om12",om12," eps1",eps1
1820 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1821 C and om12.
1822       om1om2=om1*om2
1823       chiom1=chi1*om1
1824       chiom2=chi2*om2
1825       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1826       sigsq=1.0D0-facsig*faceps1_inv
1827       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1828       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1829       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1830 c diagnostics only
1831 c      sigsq=1.0d0
1832 c      sigsq_om1=0.0d0
1833 c      sigsq_om2=0.0d0
1834 c      sigsq_om12=0.0d0
1835 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1836 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1837 c     &    " eps1",eps1
1838 C Calculate eps2 and its derivatives in om1, om2, and om12.
1839       chipom1=chip1*om1
1840       chipom2=chip2*om2
1841       chipom12=chip12*om12
1842       facp=1.0D0-om12*chipom12
1843       facp_inv=1.0D0/facp
1844       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1845 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1846 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1847 C Following variable is the square root of eps2
1848       eps2rt=1.0D0-facp1*facp_inv
1849 C Following three variables are the derivatives of the square root of eps
1850 C in om1, om2, and om12.
1851       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1852       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1853       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1854 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1855       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1856 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
1857 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
1858 c     &  " eps2rt_om12",eps2rt_om12
1859 C Calculate whole angle-dependent part of epsilon and contributions
1860 C to its derivatives
1861       return
1862       end
1863
1864 C----------------------------------------------------------------------------
1865       subroutine sc_grad_T
1866       implicit real*8 (a-h,o-z)
1867       include 'DIMENSIONS'
1868       include 'COMMON.CHAIN'
1869       include 'COMMON.DERIV'
1870       include 'COMMON.CALC'
1871       include 'COMMON.IOUNITS'
1872       double precision dcosom1(3),dcosom2(3)
1873       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1874       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1875       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1876      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1877 c diagnostics only
1878 c      eom1=0.0d0
1879 c      eom2=0.0d0
1880 c      eom12=evdwij*eps1_om12
1881 c end diagnostics
1882 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1883 c     &  " sigder",sigder
1884 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1885 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1886       do k=1,3
1887         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1888         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1889       enddo
1890       do k=1,3
1891         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1892       enddo 
1893 c      write (iout,*) "gg",(gg(k),k=1,3)
1894       do k=1,3
1895         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1896      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1897      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1898         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1899      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1900      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1901 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1902 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1903 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1904 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1905       enddo
1906
1907 C Calculate the components of the gradient in DC and X
1908 C
1909 cgrad      do k=i,j-1
1910 cgrad        do l=1,3
1911 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1912 cgrad        enddo
1913 cgrad      enddo
1914       do l=1,3
1915         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
1916         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
1917       enddo
1918       return
1919       end
1920
1921 C----------------------------------------------------------------------------
1922       subroutine sc_grad
1923       implicit real*8 (a-h,o-z)
1924       include 'DIMENSIONS'
1925       include 'COMMON.CHAIN'
1926       include 'COMMON.DERIV'
1927       include 'COMMON.CALC'
1928       include 'COMMON.IOUNITS'
1929       double precision dcosom1(3),dcosom2(3)
1930       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1931       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1932       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1933      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
1934 c diagnostics only
1935 c      eom1=0.0d0
1936 c      eom2=0.0d0
1937 c      eom12=evdwij*eps1_om12
1938 c end diagnostics
1939 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
1940 c     &  " sigder",sigder
1941 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
1942 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
1943       do k=1,3
1944         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1945         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1946       enddo
1947       do k=1,3
1948         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1949       enddo 
1950 c      write (iout,*) "gg",(gg(k),k=1,3)
1951       do k=1,3
1952         gvdwx(k,i)=gvdwx(k,i)-gg(k)
1953      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1954      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1955         gvdwx(k,j)=gvdwx(k,j)+gg(k)
1956      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1957      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1958 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1959 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1960 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1961 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1962       enddo
1963
1964 C Calculate the components of the gradient in DC and X
1965 C
1966 cgrad      do k=i,j-1
1967 cgrad        do l=1,3
1968 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
1969 cgrad        enddo
1970 cgrad      enddo
1971       do l=1,3
1972         gvdwc(l,i)=gvdwc(l,i)-gg(l)
1973         gvdwc(l,j)=gvdwc(l,j)+gg(l)
1974       enddo
1975       return
1976       end
1977 C-----------------------------------------------------------------------
1978       subroutine e_softsphere(evdw)
1979 C
1980 C This subroutine calculates the interaction energy of nonbonded side chains
1981 C assuming the LJ potential of interaction.
1982 C
1983       implicit real*8 (a-h,o-z)
1984       include 'DIMENSIONS'
1985       parameter (accur=1.0d-10)
1986       include 'COMMON.GEO'
1987       include 'COMMON.VAR'
1988       include 'COMMON.LOCAL'
1989       include 'COMMON.CHAIN'
1990       include 'COMMON.DERIV'
1991       include 'COMMON.INTERACT'
1992       include 'COMMON.TORSION'
1993       include 'COMMON.SBRIDGE'
1994       include 'COMMON.NAMES'
1995       include 'COMMON.IOUNITS'
1996       include 'COMMON.CONTACTS'
1997 #ifdef MOMENT
1998       include 'COMMON.CONTACTS.MOMENT'
1999 #endif  
2000       dimension gg(3)
2001 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2002       evdw=0.0D0
2003       do i=iatsc_s,iatsc_e
2004         itypi=iabs(itype(i))
2005         itypi1=iabs(itype(i+1))
2006         xi=c(1,nres+i)
2007         yi=c(2,nres+i)
2008         zi=c(3,nres+i)
2009 C
2010 C Calculate SC interaction energy.
2011 C
2012         do iint=1,nint_gr(i)
2013 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2014 cd   &                  'iend=',iend(i,iint)
2015           do j=istart(i,iint),iend(i,iint)
2016             itypj=iabs(itype(j))
2017             xj=c(1,nres+j)-xi
2018             yj=c(2,nres+j)-yi
2019             zj=c(3,nres+j)-zi
2020             rij=xj*xj+yj*yj+zj*zj
2021 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2022             r0ij=r0(itypi,itypj)
2023             r0ijsq=r0ij*r0ij
2024 c            print *,i,j,r0ij,dsqrt(rij)
2025             if (rij.lt.r0ijsq) then
2026               evdwij=0.25d0*(rij-r0ijsq)**2
2027               fac=rij-r0ijsq
2028             else
2029               evdwij=0.0d0
2030               fac=0.0d0
2031             endif
2032             evdw=evdw+evdwij
2033
2034 C Calculate the components of the gradient in DC and X
2035 C
2036             gg(1)=xj*fac
2037             gg(2)=yj*fac
2038             gg(3)=zj*fac
2039             do k=1,3
2040               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2041               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2042               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2043               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2044             enddo
2045 cgrad            do k=i,j-1
2046 cgrad              do l=1,3
2047 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2048 cgrad              enddo
2049 cgrad            enddo
2050           enddo ! j
2051         enddo ! iint
2052       enddo ! i
2053       return
2054       end
2055 C--------------------------------------------------------------------------
2056       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2057      &              eello_turn4)
2058 C
2059 C Soft-sphere potential of p-p interaction
2060
2061       implicit real*8 (a-h,o-z)
2062       include 'DIMENSIONS'
2063       include 'COMMON.CONTROL'
2064       include 'COMMON.IOUNITS'
2065       include 'COMMON.GEO'
2066       include 'COMMON.VAR'
2067       include 'COMMON.LOCAL'
2068       include 'COMMON.CHAIN'
2069       include 'COMMON.DERIV'
2070       include 'COMMON.INTERACT'
2071       include 'COMMON.CONTACTS'
2072 #ifdef MOMENT
2073       include 'COMMON.CONTACTS.MOMENT'
2074 #endif  
2075       include 'COMMON.TORSION'
2076       include 'COMMON.VECTORS'
2077       include 'COMMON.FFIELD'
2078       dimension ggg(3)
2079 cd      write(iout,*) 'In EELEC_soft_sphere'
2080       ees=0.0D0
2081       evdw1=0.0D0
2082       eel_loc=0.0d0 
2083       eello_turn3=0.0d0
2084       eello_turn4=0.0d0
2085       ind=0
2086       do i=iatel_s,iatel_e
2087         dxi=dc(1,i)
2088         dyi=dc(2,i)
2089         dzi=dc(3,i)
2090         xmedi=c(1,i)+0.5d0*dxi
2091         ymedi=c(2,i)+0.5d0*dyi
2092         zmedi=c(3,i)+0.5d0*dzi
2093         num_conti=0
2094 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2095         do j=ielstart(i),ielend(i)
2096           ind=ind+1
2097           iteli=itel(i)
2098           itelj=itel(j)
2099           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2100           r0ij=rpp(iteli,itelj)
2101           r0ijsq=r0ij*r0ij 
2102           dxj=dc(1,j)
2103           dyj=dc(2,j)
2104           dzj=dc(3,j)
2105           xj=c(1,j)+0.5D0*dxj-xmedi
2106           yj=c(2,j)+0.5D0*dyj-ymedi
2107           zj=c(3,j)+0.5D0*dzj-zmedi
2108           rij=xj*xj+yj*yj+zj*zj
2109           if (rij.lt.r0ijsq) then
2110             evdw1ij=0.25d0*(rij-r0ijsq)**2
2111             fac=rij-r0ijsq
2112           else
2113             evdw1ij=0.0d0
2114             fac=0.0d0
2115           endif
2116           evdw1=evdw1+evdw1ij
2117 C
2118 C Calculate contributions to the Cartesian gradient.
2119 C
2120           ggg(1)=fac*xj
2121           ggg(2)=fac*yj
2122           ggg(3)=fac*zj
2123           do k=1,3
2124             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2125             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2126           enddo
2127 *
2128 * Loop over residues i+1 thru j-1.
2129 *
2130 cgrad          do k=i+1,j-1
2131 cgrad            do l=1,3
2132 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2133 cgrad            enddo
2134 cgrad          enddo
2135         enddo ! j
2136       enddo   ! i
2137 cgrad      do i=nnt,nct-1
2138 cgrad        do k=1,3
2139 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2140 cgrad        enddo
2141 cgrad        do j=i+1,nct-1
2142 cgrad          do k=1,3
2143 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2144 cgrad          enddo
2145 cgrad        enddo
2146 cgrad      enddo
2147       return
2148       end
2149 c------------------------------------------------------------------------------
2150       subroutine vec_and_deriv
2151       implicit real*8 (a-h,o-z)
2152       include 'DIMENSIONS'
2153 #ifdef MPI
2154       include 'mpif.h'
2155 #endif
2156       include 'COMMON.IOUNITS'
2157       include 'COMMON.GEO'
2158       include 'COMMON.VAR'
2159       include 'COMMON.LOCAL'
2160       include 'COMMON.CHAIN'
2161       include 'COMMON.VECTORS'
2162       include 'COMMON.SETUP'
2163       include 'COMMON.TIME1'
2164       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2165 C Compute the local reference systems. For reference system (i), the
2166 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2167 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2168 #ifdef PARVEC
2169       do i=ivec_start,ivec_end
2170 #else
2171       do i=1,nres-1
2172 #endif
2173           if (i.eq.nres-1) then
2174 C Case of the last full residue
2175 C Compute the Z-axis
2176             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2177             costh=dcos(pi-theta(nres))
2178             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2179             do k=1,3
2180               uz(k,i)=fac*uz(k,i)
2181             enddo
2182 C Compute the derivatives of uz
2183             uzder(1,1,1)= 0.0d0
2184             uzder(2,1,1)=-dc_norm(3,i-1)
2185             uzder(3,1,1)= dc_norm(2,i-1) 
2186             uzder(1,2,1)= dc_norm(3,i-1)
2187             uzder(2,2,1)= 0.0d0
2188             uzder(3,2,1)=-dc_norm(1,i-1)
2189             uzder(1,3,1)=-dc_norm(2,i-1)
2190             uzder(2,3,1)= dc_norm(1,i-1)
2191             uzder(3,3,1)= 0.0d0
2192             uzder(1,1,2)= 0.0d0
2193             uzder(2,1,2)= dc_norm(3,i)
2194             uzder(3,1,2)=-dc_norm(2,i) 
2195             uzder(1,2,2)=-dc_norm(3,i)
2196             uzder(2,2,2)= 0.0d0
2197             uzder(3,2,2)= dc_norm(1,i)
2198             uzder(1,3,2)= dc_norm(2,i)
2199             uzder(2,3,2)=-dc_norm(1,i)
2200             uzder(3,3,2)= 0.0d0
2201 C Compute the Y-axis
2202             facy=fac
2203             do k=1,3
2204               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2205             enddo
2206 C Compute the derivatives of uy
2207             do j=1,3
2208               do k=1,3
2209                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2210      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2211                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2212               enddo
2213               uyder(j,j,1)=uyder(j,j,1)-costh
2214               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2215             enddo
2216             do j=1,2
2217               do k=1,3
2218                 do l=1,3
2219                   uygrad(l,k,j,i)=uyder(l,k,j)
2220                   uzgrad(l,k,j,i)=uzder(l,k,j)
2221                 enddo
2222               enddo
2223             enddo 
2224             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2225             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2226             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2227             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2228           else
2229 C Other residues
2230 C Compute the Z-axis
2231             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2232             costh=dcos(pi-theta(i+2))
2233             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2234             do k=1,3
2235               uz(k,i)=fac*uz(k,i)
2236             enddo
2237 C Compute the derivatives of uz
2238             uzder(1,1,1)= 0.0d0
2239             uzder(2,1,1)=-dc_norm(3,i+1)
2240             uzder(3,1,1)= dc_norm(2,i+1) 
2241             uzder(1,2,1)= dc_norm(3,i+1)
2242             uzder(2,2,1)= 0.0d0
2243             uzder(3,2,1)=-dc_norm(1,i+1)
2244             uzder(1,3,1)=-dc_norm(2,i+1)
2245             uzder(2,3,1)= dc_norm(1,i+1)
2246             uzder(3,3,1)= 0.0d0
2247             uzder(1,1,2)= 0.0d0
2248             uzder(2,1,2)= dc_norm(3,i)
2249             uzder(3,1,2)=-dc_norm(2,i) 
2250             uzder(1,2,2)=-dc_norm(3,i)
2251             uzder(2,2,2)= 0.0d0
2252             uzder(3,2,2)= dc_norm(1,i)
2253             uzder(1,3,2)= dc_norm(2,i)
2254             uzder(2,3,2)=-dc_norm(1,i)
2255             uzder(3,3,2)= 0.0d0
2256 C Compute the Y-axis
2257             facy=fac
2258             do k=1,3
2259               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2260             enddo
2261 C Compute the derivatives of uy
2262             do j=1,3
2263               do k=1,3
2264                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2265      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2266                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2267               enddo
2268               uyder(j,j,1)=uyder(j,j,1)-costh
2269               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2270             enddo
2271             do j=1,2
2272               do k=1,3
2273                 do l=1,3
2274                   uygrad(l,k,j,i)=uyder(l,k,j)
2275                   uzgrad(l,k,j,i)=uzder(l,k,j)
2276                 enddo
2277               enddo
2278             enddo 
2279             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2280             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2281             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2282             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2283           endif
2284       enddo
2285       do i=1,nres-1
2286         vbld_inv_temp(1)=vbld_inv(i+1)
2287         if (i.lt.nres-1) then
2288           vbld_inv_temp(2)=vbld_inv(i+2)
2289           else
2290           vbld_inv_temp(2)=vbld_inv(i)
2291           endif
2292         do j=1,2
2293           do k=1,3
2294             do l=1,3
2295               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2296               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2297             enddo
2298           enddo
2299         enddo
2300       enddo
2301 #if defined(PARVEC) && defined(MPI)
2302       if (nfgtasks1.gt.1) then
2303         time00=MPI_Wtime()
2304 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2305 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2306 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2307         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2308      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2309      &   FG_COMM1,IERR)
2310         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2311      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2312      &   FG_COMM1,IERR)
2313         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2314      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2315      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2316         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2317      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2318      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2319         time_gather=time_gather+MPI_Wtime()-time00
2320       endif
2321 c      if (fg_rank.eq.0) then
2322 c        write (iout,*) "Arrays UY and UZ"
2323 c        do i=1,nres-1
2324 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2325 c     &     (uz(k,i),k=1,3)
2326 c        enddo
2327 c      endif
2328 #endif
2329       return
2330       end
2331 C-----------------------------------------------------------------------------
2332       subroutine check_vecgrad
2333       implicit real*8 (a-h,o-z)
2334       include 'DIMENSIONS'
2335       include 'COMMON.IOUNITS'
2336       include 'COMMON.GEO'
2337       include 'COMMON.VAR'
2338       include 'COMMON.LOCAL'
2339       include 'COMMON.CHAIN'
2340       include 'COMMON.VECTORS'
2341       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2342       dimension uyt(3,maxres),uzt(3,maxres)
2343       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2344       double precision delta /1.0d-7/
2345       call vec_and_deriv
2346 cd      do i=1,nres
2347 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2348 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2349 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2350 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2351 cd     &     (dc_norm(if90,i),if90=1,3)
2352 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2353 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2354 cd          write(iout,'(a)')
2355 cd      enddo
2356       do i=1,nres
2357         do j=1,2
2358           do k=1,3
2359             do l=1,3
2360               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2361               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2362             enddo
2363           enddo
2364         enddo
2365       enddo
2366       call vec_and_deriv
2367       do i=1,nres
2368         do j=1,3
2369           uyt(j,i)=uy(j,i)
2370           uzt(j,i)=uz(j,i)
2371         enddo
2372       enddo
2373       do i=1,nres
2374 cd        write (iout,*) 'i=',i
2375         do k=1,3
2376           erij(k)=dc_norm(k,i)
2377         enddo
2378         do j=1,3
2379           do k=1,3
2380             dc_norm(k,i)=erij(k)
2381           enddo
2382           dc_norm(j,i)=dc_norm(j,i)+delta
2383 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2384 c          do k=1,3
2385 c            dc_norm(k,i)=dc_norm(k,i)/fac
2386 c          enddo
2387 c          write (iout,*) (dc_norm(k,i),k=1,3)
2388 c          write (iout,*) (erij(k),k=1,3)
2389           call vec_and_deriv
2390           do k=1,3
2391             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2392             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2393             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2394             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2395           enddo 
2396 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2397 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2398 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2399         enddo
2400         do k=1,3
2401           dc_norm(k,i)=erij(k)
2402         enddo
2403 cd        do k=1,3
2404 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2405 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2406 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2407 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2408 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2409 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2410 cd          write (iout,'(a)')
2411 cd        enddo
2412       enddo
2413       return
2414       end
2415 C--------------------------------------------------------------------------
2416       subroutine set_matrices
2417       implicit real*8 (a-h,o-z)
2418       include 'DIMENSIONS'
2419 #ifdef MPI
2420       include "mpif.h"
2421       include "COMMON.SETUP"
2422       integer IERR
2423       integer status(MPI_STATUS_SIZE)
2424 #endif
2425       include 'COMMON.IOUNITS'
2426       include 'COMMON.GEO'
2427       include 'COMMON.VAR'
2428       include 'COMMON.LOCAL'
2429       include 'COMMON.CHAIN'
2430       include 'COMMON.DERIV'
2431       include 'COMMON.INTERACT'
2432       include 'COMMON.CONTACTS'
2433 #ifdef MOMENT
2434       include 'COMMON.CONTACTS.MOMENT'
2435 #endif  
2436       include 'COMMON.TORSION'
2437       include 'COMMON.VECTORS'
2438       include 'COMMON.FFIELD'
2439       double precision auxvec(2),auxmat(2,2)
2440 C
2441 C Compute the virtual-bond-torsional-angle dependent quantities needed
2442 C to calculate the el-loc multibody terms of various order.
2443 C
2444 #ifdef PARMAT
2445       do i=ivec_start+2,ivec_end+2
2446 #else
2447       do i=3,nres+1
2448 #endif
2449         if (i .lt. nres+1) then
2450           sin1=dsin(phi(i))
2451           cos1=dcos(phi(i))
2452           sintab(i-2)=sin1
2453           costab(i-2)=cos1
2454           obrot(1,i-2)=cos1
2455           obrot(2,i-2)=sin1
2456           sin2=dsin(2*phi(i))
2457           cos2=dcos(2*phi(i))
2458           sintab2(i-2)=sin2
2459           costab2(i-2)=cos2
2460           obrot2(1,i-2)=cos2
2461           obrot2(2,i-2)=sin2
2462           Ug(1,1,i-2)=-cos1
2463           Ug(1,2,i-2)=-sin1
2464           Ug(2,1,i-2)=-sin1
2465           Ug(2,2,i-2)= cos1
2466           Ug2(1,1,i-2)=-cos2
2467           Ug2(1,2,i-2)=-sin2
2468           Ug2(2,1,i-2)=-sin2
2469           Ug2(2,2,i-2)= cos2
2470         else
2471           costab(i-2)=1.0d0
2472           sintab(i-2)=0.0d0
2473           obrot(1,i-2)=1.0d0
2474           obrot(2,i-2)=0.0d0
2475           obrot2(1,i-2)=0.0d0
2476           obrot2(2,i-2)=0.0d0
2477           Ug(1,1,i-2)=1.0d0
2478           Ug(1,2,i-2)=0.0d0
2479           Ug(2,1,i-2)=0.0d0
2480           Ug(2,2,i-2)=1.0d0
2481           Ug2(1,1,i-2)=0.0d0
2482           Ug2(1,2,i-2)=0.0d0
2483           Ug2(2,1,i-2)=0.0d0
2484           Ug2(2,2,i-2)=0.0d0
2485         endif
2486         if (i .gt. 3 .and. i .lt. nres+1) then
2487           obrot_der(1,i-2)=-sin1
2488           obrot_der(2,i-2)= cos1
2489           Ugder(1,1,i-2)= sin1
2490           Ugder(1,2,i-2)=-cos1
2491           Ugder(2,1,i-2)=-cos1
2492           Ugder(2,2,i-2)=-sin1
2493           dwacos2=cos2+cos2
2494           dwasin2=sin2+sin2
2495           obrot2_der(1,i-2)=-dwasin2
2496           obrot2_der(2,i-2)= dwacos2
2497           Ug2der(1,1,i-2)= dwasin2
2498           Ug2der(1,2,i-2)=-dwacos2
2499           Ug2der(2,1,i-2)=-dwacos2
2500           Ug2der(2,2,i-2)=-dwasin2
2501         else
2502           obrot_der(1,i-2)=0.0d0
2503           obrot_der(2,i-2)=0.0d0
2504           Ugder(1,1,i-2)=0.0d0
2505           Ugder(1,2,i-2)=0.0d0
2506           Ugder(2,1,i-2)=0.0d0
2507           Ugder(2,2,i-2)=0.0d0
2508           obrot2_der(1,i-2)=0.0d0
2509           obrot2_der(2,i-2)=0.0d0
2510           Ug2der(1,1,i-2)=0.0d0
2511           Ug2der(1,2,i-2)=0.0d0
2512           Ug2der(2,1,i-2)=0.0d0
2513           Ug2der(2,2,i-2)=0.0d0
2514         endif
2515 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2516         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2517           iti = itortyp(itype(i-2))
2518         else
2519           iti=ntortyp+1
2520         endif
2521 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2522         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2523           iti1 = itortyp(itype(i-1))
2524         else
2525           iti1=ntortyp+1
2526         endif
2527 cd        write (iout,*) '*******i',i,' iti1',iti
2528 cd        write (iout,*) 'b1',b1(:,iti)
2529 cd        write (iout,*) 'b2',b2(:,iti)
2530 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2531 c        if (i .gt. iatel_s+2) then
2532         if (i .gt. nnt+2) then
2533           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2534           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2535           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2536      &    then
2537           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2538           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2539           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2540           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2541           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2542           endif
2543         else
2544           do k=1,2
2545             Ub2(k,i-2)=0.0d0
2546             Ctobr(k,i-2)=0.0d0 
2547             Dtobr2(k,i-2)=0.0d0
2548             do l=1,2
2549               EUg(l,k,i-2)=0.0d0
2550               CUg(l,k,i-2)=0.0d0
2551               DUg(l,k,i-2)=0.0d0
2552               DtUg2(l,k,i-2)=0.0d0
2553             enddo
2554           enddo
2555         endif
2556         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2557         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2558         do k=1,2
2559           muder(k,i-2)=Ub2der(k,i-2)
2560         enddo
2561 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2562         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2563           iti1 = itortyp(itype(i-1))
2564         else
2565           iti1=ntortyp+1
2566         endif
2567         do k=1,2
2568           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2569         enddo
2570 cd        write (iout,*) 'mu ',mu(:,i-2)
2571 cd        write (iout,*) 'mu1',mu1(:,i-2)
2572 cd        write (iout,*) 'mu2',mu2(:,i-2)
2573         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2574      &  then  
2575         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2576         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2577         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2578         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2579         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2580 C Vectors and matrices dependent on a single virtual-bond dihedral.
2581         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2582         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2583         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2584         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2585         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2586         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2587         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2588         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2589         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2590         endif
2591       enddo
2592 C Matrices dependent on two consecutive virtual-bond dihedrals.
2593 C The order of matrices is from left to right.
2594       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2595      &then
2596 c      do i=max0(ivec_start,2),ivec_end
2597       do i=2,nres-1
2598         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2599         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2600         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2601         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2602         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2603         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2604         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2605         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2606       enddo
2607       endif
2608 #if defined(MPI) && defined(PARMAT)
2609 #ifdef DEBUG
2610 c      if (fg_rank.eq.0) then
2611         write (iout,*) "Arrays UG and UGDER before GATHER"
2612         do i=1,nres-1
2613           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2614      &     ((ug(l,k,i),l=1,2),k=1,2),
2615      &     ((ugder(l,k,i),l=1,2),k=1,2)
2616         enddo
2617         write (iout,*) "Arrays UG2 and UG2DER"
2618         do i=1,nres-1
2619           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2620      &     ((ug2(l,k,i),l=1,2),k=1,2),
2621      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2622         enddo
2623         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2624         do i=1,nres-1
2625           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2626      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2627      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2628         enddo
2629         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2630         do i=1,nres-1
2631           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2632      &     costab(i),sintab(i),costab2(i),sintab2(i)
2633         enddo
2634         write (iout,*) "Array MUDER"
2635         do i=1,nres-1
2636           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2637         enddo
2638 c      endif
2639 #endif
2640       if (nfgtasks.gt.1) then
2641         time00=MPI_Wtime()
2642 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2643 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2644 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2645 #ifdef MATGATHER
2646         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2647      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2648      &   FG_COMM1,IERR)
2649         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2650      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2651      &   FG_COMM1,IERR)
2652         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2653      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2654      &   FG_COMM1,IERR)
2655         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2656      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2657      &   FG_COMM1,IERR)
2658         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2659      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2660      &   FG_COMM1,IERR)
2661         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2662      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2663      &   FG_COMM1,IERR)
2664         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2665      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2666      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2667         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2668      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2669      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2670         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2671      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2672      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2673         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2674      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2675      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2676         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2677      &  then
2678         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2679      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2680      &   FG_COMM1,IERR)
2681         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2682      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2683      &   FG_COMM1,IERR)
2684         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2685      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2686      &   FG_COMM1,IERR)
2687        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2688      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2689      &   FG_COMM1,IERR)
2690         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2691      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2692      &   FG_COMM1,IERR)
2693         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2694      &   ivec_count(fg_rank1),
2695      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2696      &   FG_COMM1,IERR)
2697         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2698      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2699      &   FG_COMM1,IERR)
2700         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2701      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2702      &   FG_COMM1,IERR)
2703         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2704      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2705      &   FG_COMM1,IERR)
2706         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2707      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2708      &   FG_COMM1,IERR)
2709         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2710      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2711      &   FG_COMM1,IERR)
2712         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2713      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2714      &   FG_COMM1,IERR)
2715         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2716      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2717      &   FG_COMM1,IERR)
2718         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2719      &   ivec_count(fg_rank1),
2720      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2721      &   FG_COMM1,IERR)
2722         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2723      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2724      &   FG_COMM1,IERR)
2725        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2726      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2727      &   FG_COMM1,IERR)
2728         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2729      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2730      &   FG_COMM1,IERR)
2731        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2732      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2733      &   FG_COMM1,IERR)
2734         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2735      &   ivec_count(fg_rank1),
2736      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2737      &   FG_COMM1,IERR)
2738         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2739      &   ivec_count(fg_rank1),
2740      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2741      &   FG_COMM1,IERR)
2742         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2743      &   ivec_count(fg_rank1),
2744      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2745      &   MPI_MAT2,FG_COMM1,IERR)
2746         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2747      &   ivec_count(fg_rank1),
2748      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2749      &   MPI_MAT2,FG_COMM1,IERR)
2750         endif
2751 #else
2752 c Passes matrix info through the ring
2753       isend=fg_rank1
2754       irecv=fg_rank1-1
2755       if (irecv.lt.0) irecv=nfgtasks1-1 
2756       iprev=irecv
2757       inext=fg_rank1+1
2758       if (inext.ge.nfgtasks1) inext=0
2759       do i=1,nfgtasks1-1
2760 c        write (iout,*) "isend",isend," irecv",irecv
2761 c        call flush(iout)
2762         lensend=lentyp(isend)
2763         lenrecv=lentyp(irecv)
2764 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2765 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2766 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2767 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2768 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2769 c        write (iout,*) "Gather ROTAT1"
2770 c        call flush(iout)
2771 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2772 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2773 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2774 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2775 c        write (iout,*) "Gather ROTAT2"
2776 c        call flush(iout)
2777         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2778      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2779      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2780      &   iprev,4400+irecv,FG_COMM,status,IERR)
2781 c        write (iout,*) "Gather ROTAT_OLD"
2782 c        call flush(iout)
2783         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2784      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2785      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2786      &   iprev,5500+irecv,FG_COMM,status,IERR)
2787 c        write (iout,*) "Gather PRECOMP11"
2788 c        call flush(iout)
2789         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2790      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2791      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2792      &   iprev,6600+irecv,FG_COMM,status,IERR)
2793 c        write (iout,*) "Gather PRECOMP12"
2794 c        call flush(iout)
2795         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2796      &  then
2797         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2798      &   MPI_ROTAT2(lensend),inext,7700+isend,
2799      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2800      &   iprev,7700+irecv,FG_COMM,status,IERR)
2801 c        write (iout,*) "Gather PRECOMP21"
2802 c        call flush(iout)
2803         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2804      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2805      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2806      &   iprev,8800+irecv,FG_COMM,status,IERR)
2807 c        write (iout,*) "Gather PRECOMP22"
2808 c        call flush(iout)
2809         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2810      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2811      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2812      &   MPI_PRECOMP23(lenrecv),
2813      &   iprev,9900+irecv,FG_COMM,status,IERR)
2814 c        write (iout,*) "Gather PRECOMP23"
2815 c        call flush(iout)
2816         endif
2817         isend=irecv
2818         irecv=irecv-1
2819         if (irecv.lt.0) irecv=nfgtasks1-1
2820       enddo
2821 #endif
2822         time_gather=time_gather+MPI_Wtime()-time00
2823       endif
2824 #ifdef DEBUG
2825 c      if (fg_rank.eq.0) then
2826         write (iout,*) "Arrays UG and UGDER"
2827         do i=1,nres-1
2828           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2829      &     ((ug(l,k,i),l=1,2),k=1,2),
2830      &     ((ugder(l,k,i),l=1,2),k=1,2)
2831         enddo
2832         write (iout,*) "Arrays UG2 and UG2DER"
2833         do i=1,nres-1
2834           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2835      &     ((ug2(l,k,i),l=1,2),k=1,2),
2836      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2837         enddo
2838         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2839         do i=1,nres-1
2840           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2841      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2842      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2843         enddo
2844         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2845         do i=1,nres-1
2846           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2847      &     costab(i),sintab(i),costab2(i),sintab2(i)
2848         enddo
2849         write (iout,*) "Array MUDER"
2850         do i=1,nres-1
2851           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2852         enddo
2853 c      endif
2854 #endif
2855 #endif
2856 cd      do i=1,nres
2857 cd        iti = itortyp(itype(i))
2858 cd        write (iout,*) i
2859 cd        do j=1,2
2860 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2861 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2862 cd        enddo
2863 cd      enddo
2864       return
2865       end
2866 C--------------------------------------------------------------------------
2867       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
2868 C
2869 C This subroutine calculates the average interaction energy and its gradient
2870 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
2871 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
2872 C The potential depends both on the distance of peptide-group centers and on 
2873 C the orientation of the CA-CA virtual bonds.
2874
2875       implicit real*8 (a-h,o-z)
2876 #ifdef MPI
2877       include 'mpif.h'
2878 #endif
2879       include 'DIMENSIONS'
2880       include 'COMMON.CONTROL'
2881       include 'COMMON.SETUP'
2882       include 'COMMON.IOUNITS'
2883       include 'COMMON.GEO'
2884       include 'COMMON.VAR'
2885       include 'COMMON.LOCAL'
2886       include 'COMMON.CHAIN'
2887       include 'COMMON.DERIV'
2888       include 'COMMON.INTERACT'
2889       include 'COMMON.CONTACTS'
2890 #ifdef MOMENT
2891       include 'COMMON.CONTACTS.MOMENT'
2892 #endif  
2893       include 'COMMON.TORSION'
2894       include 'COMMON.VECTORS'
2895       include 'COMMON.FFIELD'
2896       include 'COMMON.TIME1'
2897       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
2898      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
2899       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
2900      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
2901       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
2902      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
2903      &    num_conti,j1,j2
2904 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
2905 #ifdef MOMENT
2906       double precision scal_el /1.0d0/
2907 #else
2908       double precision scal_el /0.5d0/
2909 #endif
2910 C 12/13/98 
2911 C 13-go grudnia roku pamietnego... 
2912       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
2913      &                   0.0d0,1.0d0,0.0d0,
2914      &                   0.0d0,0.0d0,1.0d0/
2915 cd      write(iout,*) 'In EELEC'
2916 cd      do i=1,nloctyp
2917 cd        write(iout,*) 'Type',i
2918 cd        write(iout,*) 'B1',B1(:,i)
2919 cd        write(iout,*) 'B2',B2(:,i)
2920 cd        write(iout,*) 'CC',CC(:,:,i)
2921 cd        write(iout,*) 'DD',DD(:,:,i)
2922 cd        write(iout,*) 'EE',EE(:,:,i)
2923 cd      enddo
2924 cd      call check_vecgrad
2925 cd      stop
2926       if (icheckgrad.eq.1) then
2927         do i=1,nres-1
2928           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
2929           do k=1,3
2930             dc_norm(k,i)=dc(k,i)*fac
2931           enddo
2932 c          write (iout,*) 'i',i,' fac',fac
2933         enddo
2934       endif
2935       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
2936      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
2937      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
2938 c        call vec_and_deriv
2939 #ifdef TIMING
2940         time01=MPI_Wtime()
2941 #endif
2942         call set_matrices
2943 #ifdef TIMING
2944         time_mat=time_mat+MPI_Wtime()-time01
2945 #endif
2946       endif
2947 cd      do i=1,nres-1
2948 cd        write (iout,*) 'i=',i
2949 cd        do k=1,3
2950 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
2951 cd        enddo
2952 cd        do k=1,3
2953 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
2954 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
2955 cd        enddo
2956 cd      enddo
2957       t_eelecij=0.0d0
2958       ees=0.0D0
2959       evdw1=0.0D0
2960       eel_loc=0.0d0 
2961       eello_turn3=0.0d0
2962       eello_turn4=0.0d0
2963       ind=0
2964       do i=1,nres
2965         num_cont_hb(i)=0
2966       enddo
2967 cd      print '(a)','Enter EELEC'
2968 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
2969       do i=1,nres
2970         gel_loc_loc(i)=0.0d0
2971         gcorr_loc(i)=0.0d0
2972       enddo
2973 c
2974 c
2975 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
2976 C
2977 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
2978 C
2979       do i=iturn3_start,iturn3_end
2980         dxi=dc(1,i)
2981         dyi=dc(2,i)
2982         dzi=dc(3,i)
2983         dx_normi=dc_norm(1,i)
2984         dy_normi=dc_norm(2,i)
2985         dz_normi=dc_norm(3,i)
2986         xmedi=c(1,i)+0.5d0*dxi
2987         ymedi=c(2,i)+0.5d0*dyi
2988         zmedi=c(3,i)+0.5d0*dzi
2989         num_conti=0
2990         call eelecij(i,i+2,ees,evdw1,eel_loc)
2991         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
2992         num_cont_hb(i)=num_conti
2993       enddo
2994       do i=iturn4_start,iturn4_end
2995         dxi=dc(1,i)
2996         dyi=dc(2,i)
2997         dzi=dc(3,i)
2998         dx_normi=dc_norm(1,i)
2999         dy_normi=dc_norm(2,i)
3000         dz_normi=dc_norm(3,i)
3001         xmedi=c(1,i)+0.5d0*dxi
3002         ymedi=c(2,i)+0.5d0*dyi
3003         zmedi=c(3,i)+0.5d0*dzi
3004         num_conti=num_cont_hb(i)
3005         call eelecij(i,i+3,ees,evdw1,eel_loc)
3006         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3007         num_cont_hb(i)=num_conti
3008       enddo   ! i
3009 c
3010 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3011 c
3012       do i=iatel_s,iatel_e
3013         dxi=dc(1,i)
3014         dyi=dc(2,i)
3015         dzi=dc(3,i)
3016         dx_normi=dc_norm(1,i)
3017         dy_normi=dc_norm(2,i)
3018         dz_normi=dc_norm(3,i)
3019         xmedi=c(1,i)+0.5d0*dxi
3020         ymedi=c(2,i)+0.5d0*dyi
3021         zmedi=c(3,i)+0.5d0*dzi
3022 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3023         num_conti=num_cont_hb(i)
3024         do j=ielstart(i),ielend(i)
3025           call eelecij(i,j,ees,evdw1,eel_loc)
3026         enddo ! j
3027         num_cont_hb(i)=num_conti
3028       enddo   ! i
3029 c      write (iout,*) "Number of loop steps in EELEC:",ind
3030 cd      do i=1,nres
3031 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3032 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3033 cd      enddo
3034 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3035 ccc      eel_loc=eel_loc+eello_turn3
3036 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3037       return
3038       end
3039 C-------------------------------------------------------------------------------
3040       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3041       implicit real*8 (a-h,o-z)
3042       include 'DIMENSIONS'
3043 #ifdef MPI
3044       include "mpif.h"
3045 #endif
3046       include 'COMMON.CONTROL'
3047       include 'COMMON.IOUNITS'
3048       include 'COMMON.GEO'
3049       include 'COMMON.VAR'
3050       include 'COMMON.LOCAL'
3051       include 'COMMON.CHAIN'
3052       include 'COMMON.DERIV'
3053       include 'COMMON.INTERACT'
3054       include 'COMMON.CONTACTS'
3055 #ifdef MOMENT
3056       include 'COMMON.CONTACTS.MOMENT'
3057 #endif  
3058       include 'COMMON.TORSION'
3059       include 'COMMON.VECTORS'
3060       include 'COMMON.FFIELD'
3061       include 'COMMON.TIME1'
3062       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3063      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3064       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3065      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3066       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3067      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3068      &    num_conti,j1,j2
3069 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3070 #ifdef MOMENT
3071       double precision scal_el /1.0d0/
3072 #else
3073       double precision scal_el /0.5d0/
3074 #endif
3075 C 12/13/98 
3076 C 13-go grudnia roku pamietnego... 
3077       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3078      &                   0.0d0,1.0d0,0.0d0,
3079      &                   0.0d0,0.0d0,1.0d0/
3080 c          time00=MPI_Wtime()
3081 cd      write (iout,*) "eelecij",i,j
3082 c          ind=ind+1
3083           iteli=itel(i)
3084           itelj=itel(j)
3085           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3086           aaa=app(iteli,itelj)
3087           bbb=bpp(iteli,itelj)
3088           ael6i=ael6(iteli,itelj)
3089           ael3i=ael3(iteli,itelj) 
3090           dxj=dc(1,j)
3091           dyj=dc(2,j)
3092           dzj=dc(3,j)
3093           dx_normj=dc_norm(1,j)
3094           dy_normj=dc_norm(2,j)
3095           dz_normj=dc_norm(3,j)
3096           xj=c(1,j)+0.5D0*dxj-xmedi
3097           yj=c(2,j)+0.5D0*dyj-ymedi
3098           zj=c(3,j)+0.5D0*dzj-zmedi
3099           rij=xj*xj+yj*yj+zj*zj
3100           rrmij=1.0D0/rij
3101           rij=dsqrt(rij)
3102           rmij=1.0D0/rij
3103           r3ij=rrmij*rmij
3104           r6ij=r3ij*r3ij  
3105           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3106           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3107           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3108           fac=cosa-3.0D0*cosb*cosg
3109           ev1=aaa*r6ij*r6ij
3110 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3111           if (j.eq.i+2) ev1=scal_el*ev1
3112           ev2=bbb*r6ij
3113           fac3=ael6i*r6ij
3114           fac4=ael3i*r3ij
3115           evdwij=ev1+ev2
3116           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3117           el2=fac4*fac       
3118           eesij=el1+el2
3119 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3120           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3121           ees=ees+eesij
3122           evdw1=evdw1+evdwij
3123 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3124 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3125 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3126 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3127
3128           if (energy_dec) then 
3129               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3130               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3131           endif
3132
3133 C
3134 C Calculate contributions to the Cartesian gradient.
3135 C
3136 #ifdef SPLITELE
3137           facvdw=-6*rrmij*(ev1+evdwij)
3138           facel=-3*rrmij*(el1+eesij)
3139           fac1=fac
3140           erij(1)=xj*rmij
3141           erij(2)=yj*rmij
3142           erij(3)=zj*rmij
3143 *
3144 * Radial derivatives. First process both termini of the fragment (i,j)
3145 *
3146           ggg(1)=facel*xj
3147           ggg(2)=facel*yj
3148           ggg(3)=facel*zj
3149 c          do k=1,3
3150 c            ghalf=0.5D0*ggg(k)
3151 c            gelc(k,i)=gelc(k,i)+ghalf
3152 c            gelc(k,j)=gelc(k,j)+ghalf
3153 c          enddo
3154 c 9/28/08 AL Gradient compotents will be summed only at the end
3155           do k=1,3
3156             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3157             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3158           enddo
3159 *
3160 * Loop over residues i+1 thru j-1.
3161 *
3162 cgrad          do k=i+1,j-1
3163 cgrad            do l=1,3
3164 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3165 cgrad            enddo
3166 cgrad          enddo
3167           ggg(1)=facvdw*xj
3168           ggg(2)=facvdw*yj
3169           ggg(3)=facvdw*zj
3170 c          do k=1,3
3171 c            ghalf=0.5D0*ggg(k)
3172 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3173 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3174 c          enddo
3175 c 9/28/08 AL Gradient compotents will be summed only at the end
3176           do k=1,3
3177             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3178             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3179           enddo
3180 *
3181 * Loop over residues i+1 thru j-1.
3182 *
3183 cgrad          do k=i+1,j-1
3184 cgrad            do l=1,3
3185 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3186 cgrad            enddo
3187 cgrad          enddo
3188 #else
3189           facvdw=ev1+evdwij 
3190           facel=el1+eesij  
3191           fac1=fac
3192           fac=-3*rrmij*(facvdw+facvdw+facel)
3193           erij(1)=xj*rmij
3194           erij(2)=yj*rmij
3195           erij(3)=zj*rmij
3196 *
3197 * Radial derivatives. First process both termini of the fragment (i,j)
3198
3199           ggg(1)=fac*xj
3200           ggg(2)=fac*yj
3201           ggg(3)=fac*zj
3202 c          do k=1,3
3203 c            ghalf=0.5D0*ggg(k)
3204 c            gelc(k,i)=gelc(k,i)+ghalf
3205 c            gelc(k,j)=gelc(k,j)+ghalf
3206 c          enddo
3207 c 9/28/08 AL Gradient compotents will be summed only at the end
3208           do k=1,3
3209             gelc_long(k,j)=gelc(k,j)+ggg(k)
3210             gelc_long(k,i)=gelc(k,i)-ggg(k)
3211           enddo
3212 *
3213 * Loop over residues i+1 thru j-1.
3214 *
3215 cgrad          do k=i+1,j-1
3216 cgrad            do l=1,3
3217 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3218 cgrad            enddo
3219 cgrad          enddo
3220 c 9/28/08 AL Gradient compotents will be summed only at the end
3221           ggg(1)=facvdw*xj
3222           ggg(2)=facvdw*yj
3223           ggg(3)=facvdw*zj
3224           do k=1,3
3225             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3226             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3227           enddo
3228 #endif
3229 *
3230 * Angular part
3231 *          
3232           ecosa=2.0D0*fac3*fac1+fac4
3233           fac4=-3.0D0*fac4
3234           fac3=-6.0D0*fac3
3235           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3236           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3237           do k=1,3
3238             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3239             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3240           enddo
3241 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3242 cd   &          (dcosg(k),k=1,3)
3243           do k=1,3
3244             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3245           enddo
3246 c          do k=1,3
3247 c            ghalf=0.5D0*ggg(k)
3248 c            gelc(k,i)=gelc(k,i)+ghalf
3249 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3250 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3251 c            gelc(k,j)=gelc(k,j)+ghalf
3252 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3253 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3254 c          enddo
3255 cgrad          do k=i+1,j-1
3256 cgrad            do l=1,3
3257 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3258 cgrad            enddo
3259 cgrad          enddo
3260           do k=1,3
3261             gelc(k,i)=gelc(k,i)
3262      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3263      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3264             gelc(k,j)=gelc(k,j)
3265      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3266      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3267             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3268             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3269           enddo
3270           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3271      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3272      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3273 C
3274 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3275 C   energy of a peptide unit is assumed in the form of a second-order 
3276 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3277 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3278 C   are computed for EVERY pair of non-contiguous peptide groups.
3279 C
3280           if (j.lt.nres-1) then
3281             j1=j+1
3282             j2=j-1
3283           else
3284             j1=j-1
3285             j2=j-2
3286           endif
3287           kkk=0
3288           do k=1,2
3289             do l=1,2
3290               kkk=kkk+1
3291               muij(kkk)=mu(k,i)*mu(l,j)
3292             enddo
3293           enddo  
3294 cd         write (iout,*) 'EELEC: i',i,' j',j
3295 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3296 cd          write(iout,*) 'muij',muij
3297           ury=scalar(uy(1,i),erij)
3298           urz=scalar(uz(1,i),erij)
3299           vry=scalar(uy(1,j),erij)
3300           vrz=scalar(uz(1,j),erij)
3301           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3302           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3303           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3304           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3305           fac=dsqrt(-ael6i)*r3ij
3306           a22=a22*fac
3307           a23=a23*fac
3308           a32=a32*fac
3309           a33=a33*fac
3310 cd          write (iout,'(4i5,4f10.5)')
3311 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3312 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3313 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3314 cd     &      uy(:,j),uz(:,j)
3315 cd          write (iout,'(4f10.5)') 
3316 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3317 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3318 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3319 cd           write (iout,'(9f10.5/)') 
3320 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3321 C Derivatives of the elements of A in virtual-bond vectors
3322           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3323           do k=1,3
3324             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3325             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3326             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3327             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3328             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3329             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3330             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3331             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3332             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3333             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3334             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3335             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3336           enddo
3337 C Compute radial contributions to the gradient
3338           facr=-3.0d0*rrmij
3339           a22der=a22*facr
3340           a23der=a23*facr
3341           a32der=a32*facr
3342           a33der=a33*facr
3343           agg(1,1)=a22der*xj
3344           agg(2,1)=a22der*yj
3345           agg(3,1)=a22der*zj
3346           agg(1,2)=a23der*xj
3347           agg(2,2)=a23der*yj
3348           agg(3,2)=a23der*zj
3349           agg(1,3)=a32der*xj
3350           agg(2,3)=a32der*yj
3351           agg(3,3)=a32der*zj
3352           agg(1,4)=a33der*xj
3353           agg(2,4)=a33der*yj
3354           agg(3,4)=a33der*zj
3355 C Add the contributions coming from er
3356           fac3=-3.0d0*fac
3357           do k=1,3
3358             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3359             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3360             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3361             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3362           enddo
3363           do k=1,3
3364 C Derivatives in DC(i) 
3365 cgrad            ghalf1=0.5d0*agg(k,1)
3366 cgrad            ghalf2=0.5d0*agg(k,2)
3367 cgrad            ghalf3=0.5d0*agg(k,3)
3368 cgrad            ghalf4=0.5d0*agg(k,4)
3369             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3370      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3371             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3372      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3373             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3374      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3375             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3376      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3377 C Derivatives in DC(i+1)
3378             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3379      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3380             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3381      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3382             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3383      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3384             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3385      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3386 C Derivatives in DC(j)
3387             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3388      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3389             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3390      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3391             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3392      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3393             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3394      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3395 C Derivatives in DC(j+1) or DC(nres-1)
3396             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3397      &      -3.0d0*vryg(k,3)*ury)
3398             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3399      &      -3.0d0*vrzg(k,3)*ury)
3400             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3401      &      -3.0d0*vryg(k,3)*urz)
3402             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3403      &      -3.0d0*vrzg(k,3)*urz)
3404 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3405 cgrad              do l=1,4
3406 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3407 cgrad              enddo
3408 cgrad            endif
3409           enddo
3410           acipa(1,1)=a22
3411           acipa(1,2)=a23
3412           acipa(2,1)=a32
3413           acipa(2,2)=a33
3414           a22=-a22
3415           a23=-a23
3416           do l=1,2
3417             do k=1,3
3418               agg(k,l)=-agg(k,l)
3419               aggi(k,l)=-aggi(k,l)
3420               aggi1(k,l)=-aggi1(k,l)
3421               aggj(k,l)=-aggj(k,l)
3422               aggj1(k,l)=-aggj1(k,l)
3423             enddo
3424           enddo
3425           if (j.lt.nres-1) then
3426             a22=-a22
3427             a32=-a32
3428             do l=1,3,2
3429               do k=1,3
3430                 agg(k,l)=-agg(k,l)
3431                 aggi(k,l)=-aggi(k,l)
3432                 aggi1(k,l)=-aggi1(k,l)
3433                 aggj(k,l)=-aggj(k,l)
3434                 aggj1(k,l)=-aggj1(k,l)
3435               enddo
3436             enddo
3437           else
3438             a22=-a22
3439             a23=-a23
3440             a32=-a32
3441             a33=-a33
3442             do l=1,4
3443               do k=1,3
3444                 agg(k,l)=-agg(k,l)
3445                 aggi(k,l)=-aggi(k,l)
3446                 aggi1(k,l)=-aggi1(k,l)
3447                 aggj(k,l)=-aggj(k,l)
3448                 aggj1(k,l)=-aggj1(k,l)
3449               enddo
3450             enddo 
3451           endif    
3452           ENDIF ! WCORR
3453           IF (wel_loc.gt.0.0d0) THEN
3454 C Contribution to the local-electrostatic energy coming from the i-j pair
3455           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3456      &     +a33*muij(4)
3457 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3458
3459           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3460      &            'eelloc',i,j,eel_loc_ij
3461
3462           eel_loc=eel_loc+eel_loc_ij
3463 C Partial derivatives in virtual-bond dihedral angles gamma
3464           if (i.gt.1)
3465      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3466      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3467      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3468           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3469      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3470      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3471 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3472           do l=1,3
3473             ggg(l)=agg(l,1)*muij(1)+
3474      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3475             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3476             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3477 cgrad            ghalf=0.5d0*ggg(l)
3478 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3479 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3480           enddo
3481 cgrad          do k=i+1,j2
3482 cgrad            do l=1,3
3483 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3484 cgrad            enddo
3485 cgrad          enddo
3486 C Remaining derivatives of eello
3487           do l=1,3
3488             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3489      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3490             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3491      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3492             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3493      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3494             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3495      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3496           enddo
3497           ENDIF
3498 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3499 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3500           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3501      &       .and. num_conti.le.maxconts) then
3502 c            write (iout,*) i,j," entered corr"
3503 C
3504 C Calculate the contact function. The ith column of the array JCONT will 
3505 C contain the numbers of atoms that make contacts with the atom I (of numbers
3506 C greater than I). The arrays FACONT and GACONT will contain the values of
3507 C the contact function and its derivative.
3508 c           r0ij=1.02D0*rpp(iteli,itelj)
3509 c           r0ij=1.11D0*rpp(iteli,itelj)
3510             r0ij=2.20D0*rpp(iteli,itelj)
3511 c           r0ij=1.55D0*rpp(iteli,itelj)
3512             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3513             if (fcont.gt.0.0D0) then
3514               num_conti=num_conti+1
3515               if (num_conti.gt.maxconts) then
3516                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3517      &                         ' will skip next contacts for this conf.'
3518               else
3519                 jcont_hb(num_conti,i)=j
3520 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3521 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3522                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3523      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3524 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3525 C  terms.
3526                 d_cont(num_conti,i)=rij
3527 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3528 C     --- Electrostatic-interaction matrix --- 
3529                 a_chuj(1,1,num_conti,i)=a22
3530                 a_chuj(1,2,num_conti,i)=a23
3531                 a_chuj(2,1,num_conti,i)=a32
3532                 a_chuj(2,2,num_conti,i)=a33
3533 C     --- Gradient of rij
3534                 do kkk=1,3
3535                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3536                 enddo
3537                 kkll=0
3538                 do k=1,2
3539                   do l=1,2
3540                     kkll=kkll+1
3541                     do m=1,3
3542                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3543                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3544                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3545                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3546                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3547                     enddo
3548                   enddo
3549                 enddo
3550                 ENDIF
3551                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3552 C Calculate contact energies
3553                 cosa4=4.0D0*cosa
3554                 wij=cosa-3.0D0*cosb*cosg
3555                 cosbg1=cosb+cosg
3556                 cosbg2=cosb-cosg
3557 c               fac3=dsqrt(-ael6i)/r0ij**3     
3558                 fac3=dsqrt(-ael6i)*r3ij
3559 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3560                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3561                 if (ees0tmp.gt.0) then
3562                   ees0pij=dsqrt(ees0tmp)
3563                 else
3564                   ees0pij=0
3565                 endif
3566 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3567                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3568                 if (ees0tmp.gt.0) then
3569                   ees0mij=dsqrt(ees0tmp)
3570                 else
3571                   ees0mij=0
3572                 endif
3573 c               ees0mij=0.0D0
3574                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3575                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3576 C Diagnostics. Comment out or remove after debugging!
3577 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3578 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3579 c               ees0m(num_conti,i)=0.0D0
3580 C End diagnostics.
3581 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3582 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3583 C Angular derivatives of the contact function
3584                 ees0pij1=fac3/ees0pij 
3585                 ees0mij1=fac3/ees0mij
3586                 fac3p=-3.0D0*fac3*rrmij
3587                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3588                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3589 c               ees0mij1=0.0D0
3590                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3591                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3592                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3593                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3594                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3595                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3596                 ecosap=ecosa1+ecosa2
3597                 ecosbp=ecosb1+ecosb2
3598                 ecosgp=ecosg1+ecosg2
3599                 ecosam=ecosa1-ecosa2
3600                 ecosbm=ecosb1-ecosb2
3601                 ecosgm=ecosg1-ecosg2
3602 C Diagnostics
3603 c               ecosap=ecosa1
3604 c               ecosbp=ecosb1
3605 c               ecosgp=ecosg1
3606 c               ecosam=0.0D0
3607 c               ecosbm=0.0D0
3608 c               ecosgm=0.0D0
3609 C End diagnostics
3610                 facont_hb(num_conti,i)=fcont
3611                 fprimcont=fprimcont/rij
3612 cd              facont_hb(num_conti,i)=1.0D0
3613 C Following line is for diagnostics.
3614 cd              fprimcont=0.0D0
3615                 do k=1,3
3616                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3617                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3618                 enddo
3619                 do k=1,3
3620                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3621                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3622                 enddo
3623                 gggp(1)=gggp(1)+ees0pijp*xj
3624                 gggp(2)=gggp(2)+ees0pijp*yj
3625                 gggp(3)=gggp(3)+ees0pijp*zj
3626                 gggm(1)=gggm(1)+ees0mijp*xj
3627                 gggm(2)=gggm(2)+ees0mijp*yj
3628                 gggm(3)=gggm(3)+ees0mijp*zj
3629 C Derivatives due to the contact function
3630                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3631                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3632                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3633                 do k=1,3
3634 c
3635 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3636 c          following the change of gradient-summation algorithm.
3637 c
3638 cgrad                  ghalfp=0.5D0*gggp(k)
3639 cgrad                  ghalfm=0.5D0*gggm(k)
3640                   gacontp_hb1(k,num_conti,i)=!ghalfp
3641      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3642      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3643                   gacontp_hb2(k,num_conti,i)=!ghalfp
3644      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3645      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3646                   gacontp_hb3(k,num_conti,i)=gggp(k)
3647                   gacontm_hb1(k,num_conti,i)=!ghalfm
3648      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3649      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3650                   gacontm_hb2(k,num_conti,i)=!ghalfm
3651      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3652      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3653                   gacontm_hb3(k,num_conti,i)=gggm(k)
3654                 enddo
3655 C Diagnostics. Comment out or remove after debugging!
3656 cdiag           do k=1,3
3657 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3658 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3659 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3660 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3661 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3662 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3663 cdiag           enddo
3664               ENDIF ! wcorr
3665               endif  ! num_conti.le.maxconts
3666             endif  ! fcont.gt.0
3667           endif    ! j.gt.i+1
3668           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3669             do k=1,4
3670               do l=1,3
3671                 ghalf=0.5d0*agg(l,k)
3672                 aggi(l,k)=aggi(l,k)+ghalf
3673                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3674                 aggj(l,k)=aggj(l,k)+ghalf
3675               enddo
3676             enddo
3677             if (j.eq.nres-1 .and. i.lt.j-2) then
3678               do k=1,4
3679                 do l=1,3
3680                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3681                 enddo
3682               enddo
3683             endif
3684           endif
3685 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3686       return
3687       end
3688 C-----------------------------------------------------------------------------
3689       subroutine eturn3(i,eello_turn3)
3690 C Third- and fourth-order contributions from turns
3691       implicit real*8 (a-h,o-z)
3692       include 'DIMENSIONS'
3693       include 'COMMON.IOUNITS'
3694       include 'COMMON.GEO'
3695       include 'COMMON.VAR'
3696       include 'COMMON.LOCAL'
3697       include 'COMMON.CHAIN'
3698       include 'COMMON.DERIV'
3699       include 'COMMON.INTERACT'
3700       include 'COMMON.CONTACTS'
3701 #ifdef MOMENT
3702       include 'COMMON.CONTACTS.MOMENT'
3703 #endif  
3704       include 'COMMON.TORSION'
3705       include 'COMMON.VECTORS'
3706       include 'COMMON.FFIELD'
3707       include 'COMMON.CONTROL'
3708       dimension ggg(3)
3709       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3710      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3711      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3712       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3713      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3714       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3715      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3716      &    num_conti,j1,j2
3717       j=i+2
3718 c      write (iout,*) "eturn3",i,j,j1,j2
3719       a_temp(1,1)=a22
3720       a_temp(1,2)=a23
3721       a_temp(2,1)=a32
3722       a_temp(2,2)=a33
3723 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3724 C
3725 C               Third-order contributions
3726 C        
3727 C                 (i+2)o----(i+3)
3728 C                      | |
3729 C                      | |
3730 C                 (i+1)o----i
3731 C
3732 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3733 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3734         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3735         call transpose2(auxmat(1,1),auxmat1(1,1))
3736         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3737         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3738         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3739      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3740 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3741 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3742 cd     &    ' eello_turn3_num',4*eello_turn3_num
3743 C Derivatives in gamma(i)
3744         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3745         call transpose2(auxmat2(1,1),auxmat3(1,1))
3746         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3747         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3748 C Derivatives in gamma(i+1)
3749         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3750         call transpose2(auxmat2(1,1),auxmat3(1,1))
3751         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3752         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3753      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3754 C Cartesian derivatives
3755         do l=1,3
3756 c            ghalf1=0.5d0*agg(l,1)
3757 c            ghalf2=0.5d0*agg(l,2)
3758 c            ghalf3=0.5d0*agg(l,3)
3759 c            ghalf4=0.5d0*agg(l,4)
3760           a_temp(1,1)=aggi(l,1)!+ghalf1
3761           a_temp(1,2)=aggi(l,2)!+ghalf2
3762           a_temp(2,1)=aggi(l,3)!+ghalf3
3763           a_temp(2,2)=aggi(l,4)!+ghalf4
3764           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3765           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3766      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3767           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3768           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3769           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3770           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3771           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3772           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3773      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3774           a_temp(1,1)=aggj(l,1)!+ghalf1
3775           a_temp(1,2)=aggj(l,2)!+ghalf2
3776           a_temp(2,1)=aggj(l,3)!+ghalf3
3777           a_temp(2,2)=aggj(l,4)!+ghalf4
3778           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3779           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3780      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3781           a_temp(1,1)=aggj1(l,1)
3782           a_temp(1,2)=aggj1(l,2)
3783           a_temp(2,1)=aggj1(l,3)
3784           a_temp(2,2)=aggj1(l,4)
3785           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3786           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3787      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3788         enddo
3789       return
3790       end
3791 C-------------------------------------------------------------------------------
3792       subroutine eturn4(i,eello_turn4)
3793 C Third- and fourth-order contributions from turns
3794       implicit real*8 (a-h,o-z)
3795       include 'DIMENSIONS'
3796       include 'COMMON.IOUNITS'
3797       include 'COMMON.GEO'
3798       include 'COMMON.VAR'
3799       include 'COMMON.LOCAL'
3800       include 'COMMON.CHAIN'
3801       include 'COMMON.DERIV'
3802       include 'COMMON.INTERACT'
3803       include 'COMMON.CONTACTS'
3804 #ifdef MOMENT
3805       include 'COMMON.CONTACTS.MOMENT'
3806 #endif  
3807       include 'COMMON.TORSION'
3808       include 'COMMON.VECTORS'
3809       include 'COMMON.FFIELD'
3810       include 'COMMON.CONTROL'
3811       dimension ggg(3)
3812       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3813      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3814      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3815       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3816      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3817       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3818      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3819      &    num_conti,j1,j2
3820       j=i+3
3821 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3822 C
3823 C               Fourth-order contributions
3824 C        
3825 C                 (i+3)o----(i+4)
3826 C                     /  |
3827 C               (i+2)o   |
3828 C                     \  |
3829 C                 (i+1)o----i
3830 C
3831 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3832 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3833 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3834         a_temp(1,1)=a22
3835         a_temp(1,2)=a23
3836         a_temp(2,1)=a32
3837         a_temp(2,2)=a33
3838         iti1=itortyp(itype(i+1))
3839         iti2=itortyp(itype(i+2))
3840         iti3=itortyp(itype(i+3))
3841 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3842         call transpose2(EUg(1,1,i+1),e1t(1,1))
3843         call transpose2(Eug(1,1,i+2),e2t(1,1))
3844         call transpose2(Eug(1,1,i+3),e3t(1,1))
3845         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3846         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3847         s1=scalar2(b1(1,iti2),auxvec(1))
3848         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3849         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3850         s2=scalar2(b1(1,iti1),auxvec(1))
3851         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3852         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3853         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3854         eello_turn4=eello_turn4-(s1+s2+s3)
3855         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3856      &      'eturn4',i,j,-(s1+s2+s3)
3857 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3858 cd     &    ' eello_turn4_num',8*eello_turn4_num
3859 C Derivatives in gamma(i)
3860         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3861         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3862         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3863         s1=scalar2(b1(1,iti2),auxvec(1))
3864         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3865         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3866         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3867 C Derivatives in gamma(i+1)
3868         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3869         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3870         s2=scalar2(b1(1,iti1),auxvec(1))
3871         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3872         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3873         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3874         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3875 C Derivatives in gamma(i+2)
3876         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3877         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
3878         s1=scalar2(b1(1,iti2),auxvec(1))
3879         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
3880         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
3881         s2=scalar2(b1(1,iti1),auxvec(1))
3882         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
3883         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
3884         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3885         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
3886 C Cartesian derivatives
3887 C Derivatives of this turn contributions in DC(i+2)
3888         if (j.lt.nres-1) then
3889           do l=1,3
3890             a_temp(1,1)=agg(l,1)
3891             a_temp(1,2)=agg(l,2)
3892             a_temp(2,1)=agg(l,3)
3893             a_temp(2,2)=agg(l,4)
3894             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3895             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3896             s1=scalar2(b1(1,iti2),auxvec(1))
3897             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3898             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3899             s2=scalar2(b1(1,iti1),auxvec(1))
3900             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3901             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3902             s3=0.5d0*(pizda(1,1)+pizda(2,2))
3903             ggg(l)=-(s1+s2+s3)
3904             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
3905           enddo
3906         endif
3907 C Remaining derivatives of this turn contribution
3908         do l=1,3
3909           a_temp(1,1)=aggi(l,1)
3910           a_temp(1,2)=aggi(l,2)
3911           a_temp(2,1)=aggi(l,3)
3912           a_temp(2,2)=aggi(l,4)
3913           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3914           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3915           s1=scalar2(b1(1,iti2),auxvec(1))
3916           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3917           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3918           s2=scalar2(b1(1,iti1),auxvec(1))
3919           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3920           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3921           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3922           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
3923           a_temp(1,1)=aggi1(l,1)
3924           a_temp(1,2)=aggi1(l,2)
3925           a_temp(2,1)=aggi1(l,3)
3926           a_temp(2,2)=aggi1(l,4)
3927           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3928           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3929           s1=scalar2(b1(1,iti2),auxvec(1))
3930           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3931           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3932           s2=scalar2(b1(1,iti1),auxvec(1))
3933           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3934           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3935           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3936           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
3937           a_temp(1,1)=aggj(l,1)
3938           a_temp(1,2)=aggj(l,2)
3939           a_temp(2,1)=aggj(l,3)
3940           a_temp(2,2)=aggj(l,4)
3941           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3942           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3943           s1=scalar2(b1(1,iti2),auxvec(1))
3944           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3945           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3946           s2=scalar2(b1(1,iti1),auxvec(1))
3947           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3948           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3949           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3950           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
3951           a_temp(1,1)=aggj1(l,1)
3952           a_temp(1,2)=aggj1(l,2)
3953           a_temp(2,1)=aggj1(l,3)
3954           a_temp(2,2)=aggj1(l,4)
3955           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3956           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3957           s1=scalar2(b1(1,iti2),auxvec(1))
3958           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3959           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3960           s2=scalar2(b1(1,iti1),auxvec(1))
3961           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3962           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3963           s3=0.5d0*(pizda(1,1)+pizda(2,2))
3964 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
3965           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
3966         enddo
3967       return
3968       end
3969 C-----------------------------------------------------------------------------
3970       subroutine vecpr(u,v,w)
3971       implicit real*8(a-h,o-z)
3972       dimension u(3),v(3),w(3)
3973       w(1)=u(2)*v(3)-u(3)*v(2)
3974       w(2)=-u(1)*v(3)+u(3)*v(1)
3975       w(3)=u(1)*v(2)-u(2)*v(1)
3976       return
3977       end
3978 C-----------------------------------------------------------------------------
3979       subroutine unormderiv(u,ugrad,unorm,ungrad)
3980 C This subroutine computes the derivatives of a normalized vector u, given
3981 C the derivatives computed without normalization conditions, ugrad. Returns
3982 C ungrad.
3983       implicit none
3984       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
3985       double precision vec(3)
3986       double precision scalar
3987       integer i,j
3988 c      write (2,*) 'ugrad',ugrad
3989 c      write (2,*) 'u',u
3990       do i=1,3
3991         vec(i)=scalar(ugrad(1,i),u(1))
3992       enddo
3993 c      write (2,*) 'vec',vec
3994       do i=1,3
3995         do j=1,3
3996           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
3997         enddo
3998       enddo
3999 c      write (2,*) 'ungrad',ungrad
4000       return
4001       end
4002 C-----------------------------------------------------------------------------
4003       subroutine escp_soft_sphere(evdw2,evdw2_14)
4004 C
4005 C This subroutine calculates the excluded-volume interaction energy between
4006 C peptide-group centers and side chains and its gradient in virtual-bond and
4007 C side-chain vectors.
4008 C
4009       implicit real*8 (a-h,o-z)
4010       include 'DIMENSIONS'
4011       include 'COMMON.GEO'
4012       include 'COMMON.VAR'
4013       include 'COMMON.LOCAL'
4014       include 'COMMON.CHAIN'
4015       include 'COMMON.DERIV'
4016       include 'COMMON.INTERACT'
4017       include 'COMMON.FFIELD'
4018       include 'COMMON.IOUNITS'
4019       include 'COMMON.CONTROL'
4020       dimension ggg(3)
4021       evdw2=0.0D0
4022       evdw2_14=0.0d0
4023       r0_scp=4.5d0
4024 cd    print '(a)','Enter ESCP'
4025 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4026       do i=iatscp_s,iatscp_e
4027         iteli=itel(i)
4028         xi=0.5D0*(c(1,i)+c(1,i+1))
4029         yi=0.5D0*(c(2,i)+c(2,i+1))
4030         zi=0.5D0*(c(3,i)+c(3,i+1))
4031
4032         do iint=1,nscp_gr(i)
4033
4034         do j=iscpstart(i,iint),iscpend(i,iint)
4035           itypj=iabs(itype(j))
4036 C Uncomment following three lines for SC-p interactions
4037 c         xj=c(1,nres+j)-xi
4038 c         yj=c(2,nres+j)-yi
4039 c         zj=c(3,nres+j)-zi
4040 C Uncomment following three lines for Ca-p interactions
4041           xj=c(1,j)-xi
4042           yj=c(2,j)-yi
4043           zj=c(3,j)-zi
4044           rij=xj*xj+yj*yj+zj*zj
4045           r0ij=r0_scp
4046           r0ijsq=r0ij*r0ij
4047           if (rij.lt.r0ijsq) then
4048             evdwij=0.25d0*(rij-r0ijsq)**2
4049             fac=rij-r0ijsq
4050           else
4051             evdwij=0.0d0
4052             fac=0.0d0
4053           endif 
4054           evdw2=evdw2+evdwij
4055 C
4056 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4057 C
4058           ggg(1)=xj*fac
4059           ggg(2)=yj*fac
4060           ggg(3)=zj*fac
4061 cgrad          if (j.lt.i) then
4062 cd          write (iout,*) 'j<i'
4063 C Uncomment following three lines for SC-p interactions
4064 c           do k=1,3
4065 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4066 c           enddo
4067 cgrad          else
4068 cd          write (iout,*) 'j>i'
4069 cgrad            do k=1,3
4070 cgrad              ggg(k)=-ggg(k)
4071 C Uncomment following line for SC-p interactions
4072 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4073 cgrad            enddo
4074 cgrad          endif
4075 cgrad          do k=1,3
4076 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4077 cgrad          enddo
4078 cgrad          kstart=min0(i+1,j)
4079 cgrad          kend=max0(i-1,j-1)
4080 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4081 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4082 cgrad          do k=kstart,kend
4083 cgrad            do l=1,3
4084 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4085 cgrad            enddo
4086 cgrad          enddo
4087           do k=1,3
4088             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4089             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4090           enddo
4091         enddo
4092
4093         enddo ! iint
4094       enddo ! i
4095       return
4096       end
4097 C-----------------------------------------------------------------------------
4098       subroutine escp(evdw2,evdw2_14)
4099 C
4100 C This subroutine calculates the excluded-volume interaction energy between
4101 C peptide-group centers and side chains and its gradient in virtual-bond and
4102 C side-chain vectors.
4103 C
4104       implicit real*8 (a-h,o-z)
4105       include 'DIMENSIONS'
4106       include 'COMMON.GEO'
4107       include 'COMMON.VAR'
4108       include 'COMMON.LOCAL'
4109       include 'COMMON.CHAIN'
4110       include 'COMMON.DERIV'
4111       include 'COMMON.INTERACT'
4112       include 'COMMON.FFIELD'
4113       include 'COMMON.IOUNITS'
4114       include 'COMMON.CONTROL'
4115       dimension ggg(3)
4116       evdw2=0.0D0
4117       evdw2_14=0.0d0
4118 cd    print '(a)','Enter ESCP'
4119 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4120       do i=iatscp_s,iatscp_e
4121         iteli=itel(i)
4122         xi=0.5D0*(c(1,i)+c(1,i+1))
4123         yi=0.5D0*(c(2,i)+c(2,i+1))
4124         zi=0.5D0*(c(3,i)+c(3,i+1))
4125
4126         do iint=1,nscp_gr(i)
4127
4128         do j=iscpstart(i,iint),iscpend(i,iint)
4129           itypj=iabs(itype(j))
4130 C Uncomment following three lines for SC-p interactions
4131 c         xj=c(1,nres+j)-xi
4132 c         yj=c(2,nres+j)-yi
4133 c         zj=c(3,nres+j)-zi
4134 C Uncomment following three lines for Ca-p interactions
4135           xj=c(1,j)-xi
4136           yj=c(2,j)-yi
4137           zj=c(3,j)-zi
4138           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4139           fac=rrij**expon2
4140           e1=fac*fac*aad(itypj,iteli)
4141           e2=fac*bad(itypj,iteli)
4142           if (iabs(j-i) .le. 2) then
4143             e1=scal14*e1
4144             e2=scal14*e2
4145             evdw2_14=evdw2_14+e1+e2
4146           endif
4147           evdwij=e1+e2
4148           evdw2=evdw2+evdwij
4149           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4150      &        'evdw2',i,j,evdwij
4151 C
4152 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4153 C
4154           fac=-(evdwij+e1)*rrij
4155           ggg(1)=xj*fac
4156           ggg(2)=yj*fac
4157           ggg(3)=zj*fac
4158 cgrad          if (j.lt.i) then
4159 cd          write (iout,*) 'j<i'
4160 C Uncomment following three lines for SC-p interactions
4161 c           do k=1,3
4162 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4163 c           enddo
4164 cgrad          else
4165 cd          write (iout,*) 'j>i'
4166 cgrad            do k=1,3
4167 cgrad              ggg(k)=-ggg(k)
4168 C Uncomment following line for SC-p interactions
4169 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4170 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4171 cgrad            enddo
4172 cgrad          endif
4173 cgrad          do k=1,3
4174 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4175 cgrad          enddo
4176 cgrad          kstart=min0(i+1,j)
4177 cgrad          kend=max0(i-1,j-1)
4178 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4179 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4180 cgrad          do k=kstart,kend
4181 cgrad            do l=1,3
4182 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4183 cgrad            enddo
4184 cgrad          enddo
4185           do k=1,3
4186             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4187             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4188           enddo
4189         enddo
4190
4191         enddo ! iint
4192       enddo ! i
4193       do i=1,nct
4194         do j=1,3
4195           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4196           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4197           gradx_scp(j,i)=expon*gradx_scp(j,i)
4198         enddo
4199       enddo
4200 C******************************************************************************
4201 C
4202 C                              N O T E !!!
4203 C
4204 C To save time the factor EXPON has been extracted from ALL components
4205 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4206 C use!
4207 C
4208 C******************************************************************************
4209       return
4210       end
4211 C--------------------------------------------------------------------------
4212       subroutine edis(ehpb)
4213
4214 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4215 C
4216       implicit real*8 (a-h,o-z)
4217       include 'DIMENSIONS'
4218       include 'COMMON.SBRIDGE'
4219       include 'COMMON.CHAIN'
4220       include 'COMMON.DERIV'
4221       include 'COMMON.VAR'
4222       include 'COMMON.INTERACT'
4223       include 'COMMON.IOUNITS'
4224       dimension ggg(3)
4225       ehpb=0.0D0
4226 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4227 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4228       if (link_end.eq.0) return
4229       do i=link_start,link_end
4230 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4231 C CA-CA distance used in regularization of structure.
4232         ii=ihpb(i)
4233         jj=jhpb(i)
4234 C iii and jjj point to the residues for which the distance is assigned.
4235         if (ii.gt.nres) then
4236           iii=ii-nres
4237           jjj=jj-nres 
4238         else
4239           iii=ii
4240           jjj=jj
4241         endif
4242 cd        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj
4243 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4244 C    distance and angle dependent SS bond potential.
4245         if (ii.gt.nres .and. iabs(itype(iii)).eq.1 .and. iabs(itype(jjj
4246      &)).eq.1) then
4247           call ssbond_ene(iii,jjj,eij)
4248           ehpb=ehpb+2*eij
4249 cd          write (iout,*) "eij",eij
4250         else
4251 C Calculate the distance between the two points and its difference from the
4252 C target distance.
4253         dd=dist(ii,jj)
4254         rdis=dd-dhpb(i)
4255 C Get the force constant corresponding to this distance.
4256         waga=forcon(i)
4257 C Calculate the contribution to energy.
4258         ehpb=ehpb+waga*rdis*rdis
4259 C
4260 C Evaluate gradient.
4261 C
4262         fac=waga*rdis/dd
4263 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4264 cd   &   ' waga=',waga,' fac=',fac
4265         do j=1,3
4266           ggg(j)=fac*(c(j,jj)-c(j,ii))
4267         enddo
4268 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4269 C If this is a SC-SC distance, we need to calculate the contributions to the
4270 C Cartesian gradient in the SC vectors (ghpbx).
4271         if (iii.lt.ii) then
4272           do j=1,3
4273             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4274             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4275           enddo
4276         endif
4277 cgrad        do j=iii,jjj-1
4278 cgrad          do k=1,3
4279 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4280 cgrad          enddo
4281 cgrad        enddo
4282         do k=1,3
4283           ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4284           ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4285         enddo
4286         endif
4287       enddo
4288       ehpb=0.5D0*ehpb
4289       return
4290       end
4291 C--------------------------------------------------------------------------
4292       subroutine ssbond_ene(i,j,eij)
4293
4294 C Calculate the distance and angle dependent SS-bond potential energy
4295 C using a free-energy function derived based on RHF/6-31G** ab initio
4296 C calculations of diethyl disulfide.
4297 C
4298 C A. Liwo and U. Kozlowska, 11/24/03
4299 C
4300       implicit real*8 (a-h,o-z)
4301       include 'DIMENSIONS'
4302       include 'COMMON.SBRIDGE'
4303       include 'COMMON.CHAIN'
4304       include 'COMMON.DERIV'
4305       include 'COMMON.LOCAL'
4306       include 'COMMON.INTERACT'
4307       include 'COMMON.VAR'
4308       include 'COMMON.IOUNITS'
4309       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4310       itypi=iabs(itype(i))
4311       xi=c(1,nres+i)
4312       yi=c(2,nres+i)
4313       zi=c(3,nres+i)
4314       dxi=dc_norm(1,nres+i)
4315       dyi=dc_norm(2,nres+i)
4316       dzi=dc_norm(3,nres+i)
4317 c      dsci_inv=dsc_inv(itypi)
4318       dsci_inv=vbld_inv(nres+i)
4319       itypj=iabs(itype(j))
4320 c      dscj_inv=dsc_inv(itypj)
4321       dscj_inv=vbld_inv(nres+j)
4322       xj=c(1,nres+j)-xi
4323       yj=c(2,nres+j)-yi
4324       zj=c(3,nres+j)-zi
4325       dxj=dc_norm(1,nres+j)
4326       dyj=dc_norm(2,nres+j)
4327       dzj=dc_norm(3,nres+j)
4328       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4329       rij=dsqrt(rrij)
4330       erij(1)=xj*rij
4331       erij(2)=yj*rij
4332       erij(3)=zj*rij
4333       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4334       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4335       om12=dxi*dxj+dyi*dyj+dzi*dzj
4336       do k=1,3
4337         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4338         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4339       enddo
4340       rij=1.0d0/rij
4341       deltad=rij-d0cm
4342       deltat1=1.0d0-om1
4343       deltat2=1.0d0+om2
4344       deltat12=om2-om1+2.0d0
4345       cosphi=om12-om1*om2
4346       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4347      &  +akct*deltad*deltat12
4348      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4349 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4350 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4351 c     &  " deltat12",deltat12," eij",eij 
4352       ed=2*akcm*deltad+akct*deltat12
4353       pom1=akct*deltad
4354       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4355       eom1=-2*akth*deltat1-pom1-om2*pom2
4356       eom2= 2*akth*deltat2+pom1-om1*pom2
4357       eom12=pom2
4358       do k=1,3
4359         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4360         ghpbx(k,i)=ghpbx(k,i)-ggk
4361      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4362      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4363         ghpbx(k,j)=ghpbx(k,j)+ggk
4364      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4365      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4366         ghpbc(k,i)=ghpbc(k,i)-ggk
4367         ghpbc(k,j)=ghpbc(k,j)+ggk
4368       enddo
4369 C
4370 C Calculate the components of the gradient in DC and X
4371 C
4372 cgrad      do k=i,j-1
4373 cgrad        do l=1,3
4374 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4375 cgrad        enddo
4376 cgrad      enddo
4377       return
4378       end
4379 C--------------------------------------------------------------------------
4380       subroutine ebond(estr)
4381 c
4382 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4383 c
4384       implicit real*8 (a-h,o-z)
4385       include 'DIMENSIONS'
4386       include 'COMMON.LOCAL'
4387       include 'COMMON.GEO'
4388       include 'COMMON.INTERACT'
4389       include 'COMMON.DERIV'
4390       include 'COMMON.VAR'
4391       include 'COMMON.CHAIN'
4392       include 'COMMON.IOUNITS'
4393       include 'COMMON.NAMES'
4394       include 'COMMON.FFIELD'
4395       include 'COMMON.CONTROL'
4396       include 'COMMON.SETUP'
4397       double precision u(3),ud(3)
4398       estr=0.0d0
4399       do i=ibondp_start,ibondp_end
4400         diff = vbld(i)-vbldp0
4401 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4402         estr=estr+diff*diff
4403         do j=1,3
4404           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4405         enddo
4406 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4407       enddo
4408       estr=0.5d0*AKP*estr
4409 c
4410 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4411 c
4412       do i=ibond_start,ibond_end
4413         iti=iabs(itype(i))
4414         if (iti.ne.10) then
4415           nbi=nbondterm(iti)
4416           if (nbi.eq.1) then
4417             diff=vbld(i+nres)-vbldsc0(1,iti)
4418 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4419 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4420             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4421             do j=1,3
4422               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4423             enddo
4424           else
4425             do j=1,nbi
4426               diff=vbld(i+nres)-vbldsc0(j,iti) 
4427               ud(j)=aksc(j,iti)*diff
4428               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4429             enddo
4430             uprod=u(1)
4431             do j=2,nbi
4432               uprod=uprod*u(j)
4433             enddo
4434             usum=0.0d0
4435             usumsqder=0.0d0
4436             do j=1,nbi
4437               uprod1=1.0d0
4438               uprod2=1.0d0
4439               do k=1,nbi
4440                 if (k.ne.j) then
4441                   uprod1=uprod1*u(k)
4442                   uprod2=uprod2*u(k)*u(k)
4443                 endif
4444               enddo
4445               usum=usum+uprod1
4446               usumsqder=usumsqder+ud(j)*uprod2   
4447             enddo
4448             estr=estr+uprod/usum
4449             do j=1,3
4450              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4451             enddo
4452           endif
4453         endif
4454       enddo
4455       return
4456       end 
4457 #ifdef CRYST_THETA
4458 C--------------------------------------------------------------------------
4459       subroutine ebend(etheta)
4460 C
4461 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4462 C angles gamma and its derivatives in consecutive thetas and gammas.
4463 C
4464       implicit real*8 (a-h,o-z)
4465       include 'DIMENSIONS'
4466       include 'COMMON.LOCAL'
4467       include 'COMMON.GEO'
4468       include 'COMMON.INTERACT'
4469       include 'COMMON.DERIV'
4470       include 'COMMON.VAR'
4471       include 'COMMON.CHAIN'
4472       include 'COMMON.IOUNITS'
4473       include 'COMMON.NAMES'
4474       include 'COMMON.FFIELD'
4475       include 'COMMON.CONTROL'
4476       common /calcthet/ term1,term2,termm,diffak,ratak,
4477      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4478      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4479       double precision y(2),z(2)
4480       delta=0.02d0*pi
4481 c      time11=dexp(-2*time)
4482 c      time12=1.0d0
4483       etheta=0.0D0
4484 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4485       do i=ithet_start,ithet_end
4486 C Zero the energy function and its derivative at 0 or pi.
4487         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4488         it=itype(i-1)
4489         ichir1=isign(1,itype(i-2))
4490         ichir2=isign(1,itype(i))
4491         if (itype(i-2).eq.10) ichir1=isign(1,itype(i-1))
4492         if (itype(i).eq.10) ichir2=isign(1,itype(i-1))
4493         if (itype(i-1).eq.10) then
4494          itype1=isign(10,itype(i-2))
4495          ichir11=isign(1,itype(i-2))
4496          ichir12=isign(1,itype(i-2))
4497          itype2=isign(10,itype(i))
4498          ichir21=isign(1,itype(i))
4499          ichir22=isign(1,itype(i))
4500         endif
4501         if (i.gt.3) then
4502 #ifdef OSF
4503           phii=phi(i)
4504           if (phii.ne.phii) phii=150.0
4505 #else
4506           phii=phi(i)
4507 #endif
4508           y(1)=dcos(phii)
4509           y(2)=dsin(phii)
4510         else 
4511           y(1)=0.0D0
4512           y(2)=0.0D0
4513         endif
4514         if (i.lt.nres) then
4515 #ifdef OSF
4516           phii1=phi(i+1)
4517           if (phii1.ne.phii1) phii1=150.0
4518           phii1=pinorm(phii1)
4519           z(1)=cos(phii1)
4520 #else
4521           phii1=phi(i+1)
4522           z(1)=dcos(phii1)
4523 #endif
4524           z(2)=dsin(phii1)
4525         else
4526           z(1)=0.0D0
4527           z(2)=0.0D0
4528         endif  
4529 C Calculate the "mean" value of theta from the part of the distribution
4530 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4531 C In following comments this theta will be referred to as t_c.
4532         thet_pred_mean=0.0d0
4533         do k=1,2
4534           athetk=athet(k,it,ichir1,ichir2)
4535           bthetk=bthet(k,it,ichir1,ichir2)
4536         if (it.eq.10) then
4537            athetk=athet(k,itype1,ichir11,ichir12)
4538            bthetk=bthet(k,itype2,ichir21,ichir22)
4539         endif
4540           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4541         enddo
4542         dthett=thet_pred_mean*ssd
4543         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4544 C Derivatives of the "mean" values in gamma1 and gamma2.
4545         dthetg1=(-athet(1,it,ichir1,ichir2)*y(2)
4546      &+athet(2,it,ichir1,ichir2)*y(1))*ss
4547         dthetg2=(-bthet(1,it,ichir1,ichir2)*z(2)
4548      &          +bthet(2,it,ichir1,ichir2)*z(1))*ss
4549         if (it.eq.10) then
4550       dthetg1=(-athet(1,itype1,ichir11,ichir12)*y(2)
4551      &+athet(2,itype1,ichir11,ichir12)*y(1))*ss
4552         dthetg2=(-bthet(1,itype2,ichir21,ichir22)*z(2)
4553      &         +bthet(2,itype2,ichir21,ichir22)*z(1))*ss
4554         endif
4555         if (theta(i).gt.pi-delta) then
4556           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4557      &         E_tc0)
4558           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4559           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4560           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4561      &        E_theta)
4562           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4563      &        E_tc)
4564         else if (theta(i).lt.delta) then
4565           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4566           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4567           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4568      &        E_theta)
4569           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4570           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4571      &        E_tc)
4572         else
4573           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4574      &        E_theta,E_tc)
4575         endif
4576         etheta=etheta+ethetai
4577         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4578      &      'ebend',i,ethetai
4579         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4580         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4581         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
4582       enddo
4583 C Ufff.... We've done all this!!! 
4584       return
4585       end
4586 C---------------------------------------------------------------------------
4587       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4588      &     E_tc)
4589       implicit real*8 (a-h,o-z)
4590       include 'DIMENSIONS'
4591       include 'COMMON.LOCAL'
4592       include 'COMMON.IOUNITS'
4593       common /calcthet/ term1,term2,termm,diffak,ratak,
4594      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4595      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4596 C Calculate the contributions to both Gaussian lobes.
4597 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4598 C The "polynomial part" of the "standard deviation" of this part of 
4599 C the distribution.
4600         sig=polthet(3,it)
4601         do j=2,0,-1
4602           sig=sig*thet_pred_mean+polthet(j,it)
4603         enddo
4604 C Derivative of the "interior part" of the "standard deviation of the" 
4605 C gamma-dependent Gaussian lobe in t_c.
4606         sigtc=3*polthet(3,it)
4607         do j=2,1,-1
4608           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4609         enddo
4610         sigtc=sig*sigtc
4611 C Set the parameters of both Gaussian lobes of the distribution.
4612 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4613         fac=sig*sig+sigc0(it)
4614         sigcsq=fac+fac
4615         sigc=1.0D0/sigcsq
4616 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4617         sigsqtc=-4.0D0*sigcsq*sigtc
4618 c       print *,i,sig,sigtc,sigsqtc
4619 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4620         sigtc=-sigtc/(fac*fac)
4621 C Following variable is sigma(t_c)**(-2)
4622         sigcsq=sigcsq*sigcsq
4623         sig0i=sig0(it)
4624         sig0inv=1.0D0/sig0i**2
4625         delthec=thetai-thet_pred_mean
4626         delthe0=thetai-theta0i
4627         term1=-0.5D0*sigcsq*delthec*delthec
4628         term2=-0.5D0*sig0inv*delthe0*delthe0
4629 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4630 C NaNs in taking the logarithm. We extract the largest exponent which is added
4631 C to the energy (this being the log of the distribution) at the end of energy
4632 C term evaluation for this virtual-bond angle.
4633         if (term1.gt.term2) then
4634           termm=term1
4635           term2=dexp(term2-termm)
4636           term1=1.0d0
4637         else
4638           termm=term2
4639           term1=dexp(term1-termm)
4640           term2=1.0d0
4641         endif
4642 C The ratio between the gamma-independent and gamma-dependent lobes of
4643 C the distribution is a Gaussian function of thet_pred_mean too.
4644         diffak=gthet(2,it)-thet_pred_mean
4645         ratak=diffak/gthet(3,it)**2
4646         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4647 C Let's differentiate it in thet_pred_mean NOW.
4648         aktc=ak*ratak
4649 C Now put together the distribution terms to make complete distribution.
4650         termexp=term1+ak*term2
4651         termpre=sigc+ak*sig0i
4652 C Contribution of the bending energy from this theta is just the -log of
4653 C the sum of the contributions from the two lobes and the pre-exponential
4654 C factor. Simple enough, isn't it?
4655         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4656 C NOW the derivatives!!!
4657 C 6/6/97 Take into account the deformation.
4658         E_theta=(delthec*sigcsq*term1
4659      &       +ak*delthe0*sig0inv*term2)/termexp
4660         E_tc=((sigtc+aktc*sig0i)/termpre
4661      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4662      &       aktc*term2)/termexp)
4663       return
4664       end
4665 c-----------------------------------------------------------------------------
4666       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4667       implicit real*8 (a-h,o-z)
4668       include 'DIMENSIONS'
4669       include 'COMMON.LOCAL'
4670       include 'COMMON.IOUNITS'
4671       common /calcthet/ term1,term2,termm,diffak,ratak,
4672      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4673      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4674       delthec=thetai-thet_pred_mean
4675       delthe0=thetai-theta0i
4676 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4677       t3 = thetai-thet_pred_mean
4678       t6 = t3**2
4679       t9 = term1
4680       t12 = t3*sigcsq
4681       t14 = t12+t6*sigsqtc
4682       t16 = 1.0d0
4683       t21 = thetai-theta0i
4684       t23 = t21**2
4685       t26 = term2
4686       t27 = t21*t26
4687       t32 = termexp
4688       t40 = t32**2
4689       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4690      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4691      & *(-t12*t9-ak*sig0inv*t27)
4692       return
4693       end
4694 #else
4695 C--------------------------------------------------------------------------
4696       subroutine ebend(etheta)
4697 C
4698 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4699 C angles gamma and its derivatives in consecutive thetas and gammas.
4700 C ab initio-derived potentials from 
4701 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4702 C
4703       implicit real*8 (a-h,o-z)
4704       include 'DIMENSIONS'
4705       include 'COMMON.LOCAL'
4706       include 'COMMON.GEO'
4707       include 'COMMON.INTERACT'
4708       include 'COMMON.DERIV'
4709       include 'COMMON.VAR'
4710       include 'COMMON.CHAIN'
4711       include 'COMMON.IOUNITS'
4712       include 'COMMON.NAMES'
4713       include 'COMMON.FFIELD'
4714       include 'COMMON.CONTROL'
4715       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4716      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4717      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4718      & sinph1ph2(maxdouble,maxdouble)
4719       logical lprn /.false./, lprn1 /.false./
4720       etheta=0.0D0
4721       do i=ithet_start,ithet_end
4722         dethetai=0.0d0
4723         dephii=0.0d0
4724         dephii1=0.0d0
4725         theti2=0.5d0*theta(i)
4726         ityp2=ithetyp(iabs(itype(i-1)))
4727         do k=1,nntheterm
4728           coskt(k)=dcos(k*theti2)
4729           sinkt(k)=dsin(k*theti2)
4730         enddo
4731         if (i.gt.3) then
4732 #ifdef OSF
4733           phii=phi(i)
4734           if (phii.ne.phii) phii=150.0
4735 #else
4736           phii=phi(i)
4737 #endif
4738           ityp1=ithetyp(iabs(itype(i-2)))
4739           do k=1,nsingle
4740             cosph1(k)=dcos(k*phii)
4741             sinph1(k)=dsin(k*phii)
4742           enddo
4743         else
4744           phii=0.0d0
4745           ityp1=nthetyp+1
4746           do k=1,nsingle
4747             cosph1(k)=0.0d0
4748             sinph1(k)=0.0d0
4749           enddo 
4750         endif
4751         if (i.lt.nres) then
4752 #ifdef OSF
4753           phii1=phi(i+1)
4754           if (phii1.ne.phii1) phii1=150.0
4755           phii1=pinorm(phii1)
4756 #else
4757           phii1=phi(i+1)
4758 #endif
4759           ityp3=ithetyp(iabs(itype(i)))
4760           do k=1,nsingle
4761             cosph2(k)=dcos(k*phii1)
4762             sinph2(k)=dsin(k*phii1)
4763           enddo
4764         else
4765           phii1=0.0d0
4766           ityp3=nthetyp+1
4767           do k=1,nsingle
4768             cosph2(k)=0.0d0
4769             sinph2(k)=0.0d0
4770           enddo
4771         endif  
4772         ethetai=aa0thet(ityp1,ityp2,ityp3)
4773         do k=1,ndouble
4774           do l=1,k-1
4775             ccl=cosph1(l)*cosph2(k-l)
4776             ssl=sinph1(l)*sinph2(k-l)
4777             scl=sinph1(l)*cosph2(k-l)
4778             csl=cosph1(l)*sinph2(k-l)
4779             cosph1ph2(l,k)=ccl-ssl
4780             cosph1ph2(k,l)=ccl+ssl
4781             sinph1ph2(l,k)=scl+csl
4782             sinph1ph2(k,l)=scl-csl
4783           enddo
4784         enddo
4785         if (lprn) then
4786         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4787      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4788         write (iout,*) "coskt and sinkt"
4789         do k=1,nntheterm
4790           write (iout,*) k,coskt(k),sinkt(k)
4791         enddo
4792         endif
4793         do k=1,ntheterm
4794           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4795           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4796      &      *coskt(k)
4797           if (lprn)
4798      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4799      &     " ethetai",ethetai
4800         enddo
4801         if (lprn) then
4802         write (iout,*) "cosph and sinph"
4803         do k=1,nsingle
4804           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4805         enddo
4806         write (iout,*) "cosph1ph2 and sinph2ph2"
4807         do k=2,ndouble
4808           do l=1,k-1
4809             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4810      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4811           enddo
4812         enddo
4813         write(iout,*) "ethetai",ethetai
4814         endif
4815         do m=1,ntheterm2
4816           do k=1,nsingle
4817             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4818      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4819      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4820      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4821             ethetai=ethetai+sinkt(m)*aux
4822             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4823             dephii=dephii+k*sinkt(m)*(
4824      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4825      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4826             dephii1=dephii1+k*sinkt(m)*(
4827      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4828      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4829             if (lprn)
4830      &      write (iout,*) "m",m," k",k," bbthet",
4831      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4832      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4833      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4834      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4835           enddo
4836         enddo
4837         if (lprn)
4838      &  write(iout,*) "ethetai",ethetai
4839         do m=1,ntheterm3
4840           do k=2,ndouble
4841             do l=1,k-1
4842               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4843      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4844      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4845      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4846               ethetai=ethetai+sinkt(m)*aux
4847               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4848               dephii=dephii+l*sinkt(m)*(
4849      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4850      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4851      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4852      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4853               dephii1=dephii1+(k-l)*sinkt(m)*(
4854      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4855      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4856      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
4857      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4858               if (lprn) then
4859               write (iout,*) "m",m," k",k," l",l," ffthet",
4860      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
4861      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
4862      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
4863      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4864               write (iout,*) cosph1ph2(l,k)*sinkt(m),
4865      &            cosph1ph2(k,l)*sinkt(m),
4866      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
4867               endif
4868             enddo
4869           enddo
4870         enddo
4871 10      continue
4872         if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
4873      &   i,theta(i)*rad2deg,phii*rad2deg,
4874      &   phii1*rad2deg,ethetai
4875         etheta=etheta+ethetai
4876         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
4877         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
4878         gloc(nphi+i-2,icg)=wang*dethetai
4879       enddo
4880       return
4881       end
4882 #endif
4883 #ifdef CRYST_SC
4884 c-----------------------------------------------------------------------------
4885       subroutine esc(escloc)
4886 C Calculate the local energy of a side chain and its derivatives in the
4887 C corresponding virtual-bond valence angles THETA and the spherical angles 
4888 C ALPHA and OMEGA.
4889       implicit real*8 (a-h,o-z)
4890       include 'DIMENSIONS'
4891       include 'COMMON.GEO'
4892       include 'COMMON.LOCAL'
4893       include 'COMMON.VAR'
4894       include 'COMMON.INTERACT'
4895       include 'COMMON.DERIV'
4896       include 'COMMON.CHAIN'
4897       include 'COMMON.IOUNITS'
4898       include 'COMMON.NAMES'
4899       include 'COMMON.FFIELD'
4900       include 'COMMON.CONTROL'
4901       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
4902      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
4903       common /sccalc/ time11,time12,time112,theti,it,nlobit
4904       delta=0.02d0*pi
4905       escloc=0.0D0
4906 c     write (iout,'(a)') 'ESC'
4907       do i=loc_start,loc_end
4908         it=itype(i)
4909         if (it.eq.10) goto 1
4910         nlobit=nlob(iabs(it))
4911 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
4912 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
4913         theti=theta(i+1)-pipol
4914         x(1)=dtan(theti)
4915         x(2)=alph(i)
4916         x(3)=omeg(i)
4917
4918         if (x(2).gt.pi-delta) then
4919           xtemp(1)=x(1)
4920           xtemp(2)=pi-delta
4921           xtemp(3)=x(3)
4922           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4923           xtemp(2)=pi
4924           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4925           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
4926      &        escloci,dersc(2))
4927           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4928      &        ddersc0(1),dersc(1))
4929           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
4930      &        ddersc0(3),dersc(3))
4931           xtemp(2)=pi-delta
4932           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4933           xtemp(2)=pi
4934           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4935           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
4936      &            dersc0(2),esclocbi,dersc02)
4937           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
4938      &            dersc12,dersc01)
4939           call splinthet(x(2),0.5d0*delta,ss,ssd)
4940           dersc0(1)=dersc01
4941           dersc0(2)=dersc02
4942           dersc0(3)=0.0d0
4943           do k=1,3
4944             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4945           enddo
4946           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4947 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4948 c    &             esclocbi,ss,ssd
4949           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4950 c         escloci=esclocbi
4951 c         write (iout,*) escloci
4952         else if (x(2).lt.delta) then
4953           xtemp(1)=x(1)
4954           xtemp(2)=delta
4955           xtemp(3)=x(3)
4956           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
4957           xtemp(2)=0.0d0
4958           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
4959           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
4960      &        escloci,dersc(2))
4961           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4962      &        ddersc0(1),dersc(1))
4963           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
4964      &        ddersc0(3),dersc(3))
4965           xtemp(2)=delta
4966           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
4967           xtemp(2)=0.0d0
4968           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
4969           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
4970      &            dersc0(2),esclocbi,dersc02)
4971           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
4972      &            dersc12,dersc01)
4973           dersc0(1)=dersc01
4974           dersc0(2)=dersc02
4975           dersc0(3)=0.0d0
4976           call splinthet(x(2),0.5d0*delta,ss,ssd)
4977           do k=1,3
4978             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
4979           enddo
4980           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
4981 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
4982 c    &             esclocbi,ss,ssd
4983           escloci=ss*escloci+(1.0d0-ss)*esclocbi
4984 c         write (iout,*) escloci
4985         else
4986           call enesc(x,escloci,dersc,ddummy,.false.)
4987         endif
4988
4989         escloc=escloc+escloci
4990         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4991      &     'escloc',i,escloci
4992 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
4993
4994         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
4995      &   wscloc*dersc(1)
4996         gloc(ialph(i,1),icg)=wscloc*dersc(2)
4997         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
4998     1   continue
4999       enddo
5000       return
5001       end
5002 C---------------------------------------------------------------------------
5003       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5004       implicit real*8 (a-h,o-z)
5005       include 'DIMENSIONS'
5006       include 'COMMON.GEO'
5007       include 'COMMON.LOCAL'
5008       include 'COMMON.IOUNITS'
5009       common /sccalc/ time11,time12,time112,theti,it,nlobit
5010       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5011       double precision contr(maxlob,-1:1)
5012       logical mixed
5013 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5014         escloc_i=0.0D0
5015         do j=1,3
5016           dersc(j)=0.0D0
5017           if (mixed) ddersc(j)=0.0d0
5018         enddo
5019         x3=x(3)
5020
5021 C Because of periodicity of the dependence of the SC energy in omega we have
5022 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5023 C To avoid underflows, first compute & store the exponents.
5024
5025         do iii=-1,1
5026
5027           x(3)=x3+iii*dwapi
5028  
5029           do j=1,nlobit
5030             do k=1,3
5031               z(k)=x(k)-censc(k,j,it)
5032             enddo
5033             do k=1,3
5034               Axk=0.0D0
5035               do l=1,3
5036                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5037               enddo
5038               Ax(k,j,iii)=Axk
5039             enddo 
5040             expfac=0.0D0 
5041             do k=1,3
5042               expfac=expfac+Ax(k,j,iii)*z(k)
5043             enddo
5044             contr(j,iii)=expfac
5045           enddo ! j
5046
5047         enddo ! iii
5048
5049         x(3)=x3
5050 C As in the case of ebend, we want to avoid underflows in exponentiation and
5051 C subsequent NaNs and INFs in energy calculation.
5052 C Find the largest exponent
5053         emin=contr(1,-1)
5054         do iii=-1,1
5055           do j=1,nlobit
5056             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5057           enddo 
5058         enddo
5059         emin=0.5D0*emin
5060 cd      print *,'it=',it,' emin=',emin
5061
5062 C Compute the contribution to SC energy and derivatives
5063         do iii=-1,1
5064
5065           do j=1,nlobit
5066 #ifdef OSF
5067             adexp=bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin
5068             if(adexp.ne.adexp) adexp=1.0
5069             expfac=dexp(adexp)
5070 #else
5071             expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j,iii)+emin)
5072 #endif
5073 cd          print *,'j=',j,' expfac=',expfac
5074             escloc_i=escloc_i+expfac
5075             do k=1,3
5076               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5077             enddo
5078             if (mixed) then
5079               do k=1,3,2
5080                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5081      &            +gaussc(k,2,j,it))*expfac
5082               enddo
5083             endif
5084           enddo
5085
5086         enddo ! iii
5087
5088         dersc(1)=dersc(1)/cos(theti)**2
5089         ddersc(1)=ddersc(1)/cos(theti)**2
5090         ddersc(3)=ddersc(3)
5091
5092         escloci=-(dlog(escloc_i)-emin)
5093         do j=1,3
5094           dersc(j)=dersc(j)/escloc_i
5095         enddo
5096         if (mixed) then
5097           do j=1,3,2
5098             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5099           enddo
5100         endif
5101       return
5102       end
5103 C------------------------------------------------------------------------------
5104       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5105       implicit real*8 (a-h,o-z)
5106       include 'DIMENSIONS'
5107       include 'COMMON.GEO'
5108       include 'COMMON.LOCAL'
5109       include 'COMMON.IOUNITS'
5110       common /sccalc/ time11,time12,time112,theti,it,nlobit
5111       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5112       double precision contr(maxlob)
5113       logical mixed
5114
5115       escloc_i=0.0D0
5116
5117       do j=1,3
5118         dersc(j)=0.0D0
5119       enddo
5120
5121       do j=1,nlobit
5122         do k=1,2
5123           z(k)=x(k)-censc(k,j,it)
5124         enddo
5125         z(3)=dwapi
5126         do k=1,3
5127           Axk=0.0D0
5128           do l=1,3
5129             Axk=Axk+gaussc(l,k,j,it)*z(l)
5130           enddo
5131           Ax(k,j)=Axk
5132         enddo 
5133         expfac=0.0D0 
5134         do k=1,3
5135           expfac=expfac+Ax(k,j)*z(k)
5136         enddo
5137         contr(j)=expfac
5138       enddo ! j
5139
5140 C As in the case of ebend, we want to avoid underflows in exponentiation and
5141 C subsequent NaNs and INFs in energy calculation.
5142 C Find the largest exponent
5143       emin=contr(1)
5144       do j=1,nlobit
5145         if (emin.gt.contr(j)) emin=contr(j)
5146       enddo 
5147       emin=0.5D0*emin
5148  
5149 C Compute the contribution to SC energy and derivatives
5150
5151       dersc12=0.0d0
5152       do j=1,nlobit
5153         expfac=dexp(bsc(j,iabs(it))-0.5D0*contr(j)+emin)
5154         escloc_i=escloc_i+expfac
5155         do k=1,2
5156           dersc(k)=dersc(k)+Ax(k,j)*expfac
5157         enddo
5158         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5159      &            +gaussc(1,2,j,it))*expfac
5160         dersc(3)=0.0d0
5161       enddo
5162
5163       dersc(1)=dersc(1)/cos(theti)**2
5164       dersc12=dersc12/cos(theti)**2
5165       escloci=-(dlog(escloc_i)-emin)
5166       do j=1,2
5167         dersc(j)=dersc(j)/escloc_i
5168       enddo
5169       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5170       return
5171       end
5172 #else
5173 c----------------------------------------------------------------------------------
5174       subroutine esc(escloc)
5175 C Calculate the local energy of a side chain and its derivatives in the
5176 C corresponding virtual-bond valence angles THETA and the spherical angles 
5177 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5178 C added by Urszula Kozlowska. 07/11/2007
5179 C
5180       implicit real*8 (a-h,o-z)
5181       include 'DIMENSIONS'
5182       include 'COMMON.GEO'
5183       include 'COMMON.LOCAL'
5184       include 'COMMON.VAR'
5185       include 'COMMON.SCROT'
5186       include 'COMMON.INTERACT'
5187       include 'COMMON.DERIV'
5188       include 'COMMON.CHAIN'
5189       include 'COMMON.IOUNITS'
5190       include 'COMMON.NAMES'
5191       include 'COMMON.FFIELD'
5192       include 'COMMON.CONTROL'
5193       include 'COMMON.VECTORS'
5194       double precision x_prime(3),y_prime(3),z_prime(3)
5195      &    , sumene,dsc_i,dp2_i,x(65),
5196      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5197      &    de_dxx,de_dyy,de_dzz,de_dt
5198       double precision s1_t,s1_6_t,s2_t,s2_6_t
5199       double precision 
5200      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5201      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5202      & dt_dCi(3),dt_dCi1(3)
5203       common /sccalc/ time11,time12,time112,theti,it,nlobit
5204       delta=0.02d0*pi
5205       escloc=0.0D0
5206       do i=loc_start,loc_end
5207         costtab(i+1) =dcos(theta(i+1))
5208         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5209         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5210         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5211         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5212         cosfac=dsqrt(cosfac2)
5213         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5214         sinfac=dsqrt(sinfac2)
5215         it=itype(i)
5216         if (it.eq.10) goto 1
5217 c
5218 C  Compute the axes of tghe local cartesian coordinates system; store in
5219 c   x_prime, y_prime and z_prime 
5220 c
5221         do j=1,3
5222           x_prime(j) = 0.00
5223           y_prime(j) = 0.00
5224           z_prime(j) = 0.00
5225         enddo
5226 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5227 C     &   dc_norm(3,i+nres)
5228         do j = 1,3
5229           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5230           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5231         enddo
5232         do j = 1,3
5233           z_prime(j) = -uz(j,i-1)
5234         enddo     
5235 c       write (2,*) "i",i
5236 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5237 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5238 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5239 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5240 c      & " xy",scalar(x_prime(1),y_prime(1)),
5241 c      & " xz",scalar(x_prime(1),z_prime(1)),
5242 c      & " yy",scalar(y_prime(1),y_prime(1)),
5243 c      & " yz",scalar(y_prime(1),z_prime(1)),
5244 c      & " zz",scalar(z_prime(1),z_prime(1))
5245 c
5246 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5247 C to local coordinate system. Store in xx, yy, zz.
5248 c
5249         xx=0.0d0
5250         yy=0.0d0
5251         zz=0.0d0
5252         do j = 1,3
5253           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5254           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5255           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5256         enddo
5257
5258         xxtab(i)=xx
5259         yytab(i)=yy
5260         zztab(i)=zz
5261 C
5262 C Compute the energy of the ith side cbain
5263 C
5264 c        write (2,*) "xx",xx," yy",yy," zz",zz
5265         it=itype(i)
5266         do j = 1,65
5267           x(j) = sc_parmin(j,it) 
5268         enddo
5269 #ifdef CHECK_COORD
5270 Cc diagnostics - remove later
5271         xx1 = dcos(alph(2))
5272         yy1 = dsin(alph(2))*dcos(omeg(2))
5273         zz1 = -dsin(alph(2))*dsin(omeg(2))
5274         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5275      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5276      &    xx1,yy1,zz1
5277 C,"  --- ", xx_w,yy_w,zz_w
5278 c end diagnostics
5279 #endif
5280         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5281      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5282      &   + x(10)*yy*zz
5283         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5284      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5285      & + x(20)*yy*zz
5286         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5287      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5288      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5289      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5290      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5291      &  +x(40)*xx*yy*zz
5292         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5293      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5294      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5295      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5296      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5297      &  +x(60)*xx*yy*zz
5298         dsc_i   = 0.743d0+x(61)
5299         dp2_i   = 1.9d0+x(62)
5300         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5301      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5302         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5303      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5304         s1=(1+x(63))/(0.1d0 + dscp1)
5305         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5306         s2=(1+x(65))/(0.1d0 + dscp2)
5307         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5308         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5309      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5310 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5311 c     &   sumene4,
5312 c     &   dscp1,dscp2,sumene
5313 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5314         escloc = escloc + sumene
5315 c        write (2,*) "i",i," escloc",sumene,escloc
5316 #ifdef DEBUG
5317 C
5318 C This section to check the numerical derivatives of the energy of ith side
5319 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5320 C #define DEBUG in the code to turn it on.
5321 C
5322         write (2,*) "sumene               =",sumene
5323         aincr=1.0d-7
5324         xxsave=xx
5325         xx=xx+aincr
5326         write (2,*) xx,yy,zz
5327         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5328         de_dxx_num=(sumenep-sumene)/aincr
5329         xx=xxsave
5330         write (2,*) "xx+ sumene from enesc=",sumenep
5331         yysave=yy
5332         yy=yy+aincr
5333         write (2,*) xx,yy,zz
5334         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5335         de_dyy_num=(sumenep-sumene)/aincr
5336         yy=yysave
5337         write (2,*) "yy+ sumene from enesc=",sumenep
5338         zzsave=zz
5339         zz=zz+aincr
5340         write (2,*) xx,yy,zz
5341         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5342         de_dzz_num=(sumenep-sumene)/aincr
5343         zz=zzsave
5344         write (2,*) "zz+ sumene from enesc=",sumenep
5345         costsave=cost2tab(i+1)
5346         sintsave=sint2tab(i+1)
5347         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5348         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5349         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5350         de_dt_num=(sumenep-sumene)/aincr
5351         write (2,*) " t+ sumene from enesc=",sumenep
5352         cost2tab(i+1)=costsave
5353         sint2tab(i+1)=sintsave
5354 C End of diagnostics section.
5355 #endif
5356 C        
5357 C Compute the gradient of esc
5358 C
5359         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5360         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5361         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5362         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5363         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5364         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5365         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5366         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5367         pom1=(sumene3*sint2tab(i+1)+sumene1)
5368      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5369         pom2=(sumene4*cost2tab(i+1)+sumene2)
5370      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5371         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5372         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5373      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5374      &  +x(40)*yy*zz
5375         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5376         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5377      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5378      &  +x(60)*yy*zz
5379         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5380      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5381      &        +(pom1+pom2)*pom_dx
5382 #ifdef DEBUG
5383         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5384 #endif
5385 C
5386         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5387         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5388      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5389      &  +x(40)*xx*zz
5390         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5391         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5392      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5393      &  +x(59)*zz**2 +x(60)*xx*zz
5394         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5395      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5396      &        +(pom1-pom2)*pom_dy
5397 #ifdef DEBUG
5398         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5399 #endif
5400 C
5401         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5402      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5403      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5404      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5405      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5406      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5407      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5408      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5409 #ifdef DEBUG
5410         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5411 #endif
5412 C
5413         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5414      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5415      &  +pom1*pom_dt1+pom2*pom_dt2
5416 #ifdef DEBUG
5417         write(2,*), "de_dt = ", de_dt,de_dt_num
5418 #endif
5419
5420 C
5421        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5422        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5423        cosfac2xx=cosfac2*xx
5424        sinfac2yy=sinfac2*yy
5425        do k = 1,3
5426          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5427      &      vbld_inv(i+1)
5428          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5429      &      vbld_inv(i)
5430          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5431          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5432 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5433 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5434 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5435 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5436          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5437          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5438          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5439          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5440          dZZ_Ci1(k)=0.0d0
5441          dZZ_Ci(k)=0.0d0
5442          do j=1,3
5443            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5444            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5445          enddo
5446           
5447          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5448          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5449          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5450 c
5451          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5452          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5453        enddo
5454
5455        do k=1,3
5456          dXX_Ctab(k,i)=dXX_Ci(k)
5457          dXX_C1tab(k,i)=dXX_Ci1(k)
5458          dYY_Ctab(k,i)=dYY_Ci(k)
5459          dYY_C1tab(k,i)=dYY_Ci1(k)
5460          dZZ_Ctab(k,i)=dZZ_Ci(k)
5461          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5462          dXX_XYZtab(k,i)=dXX_XYZ(k)
5463          dYY_XYZtab(k,i)=dYY_XYZ(k)
5464          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5465        enddo
5466
5467        do k = 1,3
5468 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5469 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5470 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5471 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5472 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5473 c     &    dt_dci(k)
5474 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5475 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5476          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5477      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5478          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5479      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5480          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5481      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5482        enddo
5483 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5484 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5485
5486 C to check gradient call subroutine check_grad
5487
5488     1 continue
5489       enddo
5490       return
5491       end
5492 c------------------------------------------------------------------------------
5493       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5494       implicit none
5495       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5496      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5497       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5498      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5499      &   + x(10)*yy*zz
5500       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5501      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5502      & + x(20)*yy*zz
5503       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5504      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5505      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5506      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5507      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5508      &  +x(40)*xx*yy*zz
5509       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5510      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5511      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5512      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5513      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5514      &  +x(60)*xx*yy*zz
5515       dsc_i   = 0.743d0+x(61)
5516       dp2_i   = 1.9d0+x(62)
5517       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5518      &          *(xx*cost2+yy*sint2))
5519       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5520      &          *(xx*cost2-yy*sint2))
5521       s1=(1+x(63))/(0.1d0 + dscp1)
5522       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5523       s2=(1+x(65))/(0.1d0 + dscp2)
5524       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5525       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5526      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5527       enesc=sumene
5528       return
5529       end
5530 #endif
5531 c------------------------------------------------------------------------------
5532       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5533 C
5534 C This procedure calculates two-body contact function g(rij) and its derivative:
5535 C
5536 C           eps0ij                                     !       x < -1
5537 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5538 C            0                                         !       x > 1
5539 C
5540 C where x=(rij-r0ij)/delta
5541 C
5542 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5543 C
5544       implicit none
5545       double precision rij,r0ij,eps0ij,fcont,fprimcont
5546       double precision x,x2,x4,delta
5547 c     delta=0.02D0*r0ij
5548 c      delta=0.2D0*r0ij
5549       x=(rij-r0ij)/delta
5550       if (x.lt.-1.0D0) then
5551         fcont=eps0ij
5552         fprimcont=0.0D0
5553       else if (x.le.1.0D0) then  
5554         x2=x*x
5555         x4=x2*x2
5556         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5557         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5558       else
5559         fcont=0.0D0
5560         fprimcont=0.0D0
5561       endif
5562       return
5563       end
5564 c------------------------------------------------------------------------------
5565       subroutine splinthet(theti,delta,ss,ssder)
5566       implicit real*8 (a-h,o-z)
5567       include 'DIMENSIONS'
5568       include 'COMMON.VAR'
5569       include 'COMMON.GEO'
5570       thetup=pi-delta
5571       thetlow=delta
5572       if (theti.gt.pipol) then
5573         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5574       else
5575         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5576         ssder=-ssder
5577       endif
5578       return
5579       end
5580 c------------------------------------------------------------------------------
5581       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5582       implicit none
5583       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5584       double precision ksi,ksi2,ksi3,a1,a2,a3
5585       a1=fprim0*delta/(f1-f0)
5586       a2=3.0d0-2.0d0*a1
5587       a3=a1-2.0d0
5588       ksi=(x-x0)/delta
5589       ksi2=ksi*ksi
5590       ksi3=ksi2*ksi  
5591       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5592       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5593       return
5594       end
5595 c------------------------------------------------------------------------------
5596       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5597       implicit none
5598       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5599       double precision ksi,ksi2,ksi3,a1,a2,a3
5600       ksi=(x-x0)/delta  
5601       ksi2=ksi*ksi
5602       ksi3=ksi2*ksi
5603       a1=fprim0x*delta
5604       a2=3*(f1x-f0x)-2*fprim0x*delta
5605       a3=fprim0x*delta-2*(f1x-f0x)
5606       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5607       return
5608       end
5609 C-----------------------------------------------------------------------------
5610 #ifdef CRYST_TOR
5611 C-----------------------------------------------------------------------------
5612       subroutine etor(etors,edihcnstr)
5613       implicit real*8 (a-h,o-z)
5614       include 'DIMENSIONS'
5615       include 'COMMON.VAR'
5616       include 'COMMON.GEO'
5617       include 'COMMON.LOCAL'
5618       include 'COMMON.TORSION'
5619       include 'COMMON.INTERACT'
5620       include 'COMMON.DERIV'
5621       include 'COMMON.CHAIN'
5622       include 'COMMON.NAMES'
5623       include 'COMMON.IOUNITS'
5624       include 'COMMON.FFIELD'
5625       include 'COMMON.TORCNSTR'
5626       include 'COMMON.CONTROL'
5627       logical lprn
5628 C Set lprn=.true. for debugging
5629       lprn=.false.
5630 c      lprn=.true.
5631       etors=0.0D0
5632       do i=iphi_start,iphi_end
5633       etors_ii=0.0D0
5634         itori=itortyp(itype(i-2))
5635         itori1=itortyp(itype(i-1))
5636         if (iabs(itype(i)).eq.20) then
5637         iblock=2
5638         else
5639         iblock=1
5640         endif
5641         phii=phi(i)
5642         gloci=0.0D0
5643 C Proline-Proline pair is a special case...
5644         if (itori.eq.3 .and. itori1.eq.3) then
5645           if (phii.gt.-dwapi3) then
5646             cosphi=dcos(3*phii)
5647             fac=1.0D0/(1.0D0-cosphi)
5648             etorsi=v1(1,3,3)*fac
5649             etorsi=etorsi+etorsi
5650             etors=etors+etorsi-v1(1,3,3)
5651             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5652             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5653           endif
5654           do j=1,3
5655             v1ij=v1(j+1,itori,itori1)
5656             v2ij=v2(j+1,itori,itori1)
5657             cosphi=dcos(j*phii)
5658             sinphi=dsin(j*phii)
5659             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5660             if (energy_dec) etors_ii=etors_ii+
5661      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5662             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5663           enddo
5664         else 
5665           do j=1,nterm_old
5666             v1ij=v1(j,itori,itori1)
5667             v2ij=v2(j,itori,itori1)
5668             cosphi=dcos(j*phii)
5669             sinphi=dsin(j*phii)
5670             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5671             if (energy_dec) etors_ii=etors_ii+
5672      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5673             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5674           enddo
5675         endif
5676         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5677      &        'etor',i,etors_ii
5678         if (lprn)
5679      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5680      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5681      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5682         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5683 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5684       enddo
5685 ! 6/20/98 - dihedral angle constraints
5686       edihcnstr=0.0d0
5687       do i=1,ndih_constr
5688         itori=idih_constr(i)
5689         phii=phi(itori)
5690         difi=phii-phi0(i)
5691         if (difi.gt.drange(i)) then
5692           difi=difi-drange(i)
5693           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5694           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5695         else if (difi.lt.-drange(i)) then
5696           difi=difi+drange(i)
5697           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5698           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5699         endif
5700 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5701 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5702       enddo
5703 !      write (iout,*) 'edihcnstr',edihcnstr
5704       return
5705       end
5706 c------------------------------------------------------------------------------
5707       subroutine etor_d(etors_d)
5708       etors_d=0.0d0
5709       return
5710       end
5711 c----------------------------------------------------------------------------
5712 #else
5713       subroutine etor(etors,edihcnstr)
5714       implicit real*8 (a-h,o-z)
5715       include 'DIMENSIONS'
5716       include 'COMMON.VAR'
5717       include 'COMMON.GEO'
5718       include 'COMMON.LOCAL'
5719       include 'COMMON.TORSION'
5720       include 'COMMON.INTERACT'
5721       include 'COMMON.DERIV'
5722       include 'COMMON.CHAIN'
5723       include 'COMMON.NAMES'
5724       include 'COMMON.IOUNITS'
5725       include 'COMMON.FFIELD'
5726       include 'COMMON.TORCNSTR'
5727       include 'COMMON.CONTROL'
5728       logical lprn
5729 C Set lprn=.true. for debugging
5730       lprn=.false.
5731 c     lprn=.true.
5732       etors=0.0D0
5733       do i=iphi_start,iphi_end
5734       etors_ii=0.0D0
5735         itori=itortyp(itype(i-2))
5736         itori1=itortyp(itype(i-1))
5737         phii=phi(i)
5738         gloci=0.0D0
5739 C Regular cosine and sine terms
5740         do j=1,nterm(itori,itori1,iblock)
5741           v1ij=v1(j,itori,itori1,iblock)
5742           v2ij=v2(j,itori,itori1,iblock)
5743           cosphi=dcos(j*phii)
5744           sinphi=dsin(j*phii)
5745           etors=etors+v1ij*cosphi+v2ij*sinphi
5746           if (energy_dec) etors_ii=etors_ii+
5747      &                v1ij*cosphi+v2ij*sinphi
5748           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5749         enddo
5750 C Lorentz terms
5751 C                         v1
5752 C  E = SUM ----------------------------------- - v1
5753 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5754 C
5755         cosphi=dcos(0.5d0*phii)
5756         sinphi=dsin(0.5d0*phii)
5757         do j=1,nlor(itori,itori1,iblock)
5758           vl1ij=vlor1(j,itori,itori1)
5759           vl2ij=vlor2(j,itori,itori1)
5760           vl3ij=vlor3(j,itori,itori1)
5761           pom=vl2ij*cosphi+vl3ij*sinphi
5762           pom1=1.0d0/(pom*pom+1.0d0)
5763           etors=etors+vl1ij*pom1
5764           if (energy_dec) etors_ii=etors_ii+
5765      &                vl1ij*pom1
5766           pom=-pom*pom1*pom1
5767           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5768         enddo
5769 C Subtract the constant term
5770         etors=etors-v0(itori,itori1,iblock)
5771           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5772      &         'etor',i,etors_ii-v0(itori,itori1,iblock)
5773         if (lprn)
5774      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5775      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5776      &  (v1(j,itori,itori1,iblock),j=1,6),
5777      &  (v2(j,itori,itori1,iblock),j=1,6)
5778         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5779 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5780       enddo
5781 ! 6/20/98 - dihedral angle constraints
5782       edihcnstr=0.0d0
5783 c      do i=1,ndih_constr
5784       do i=idihconstr_start,idihconstr_end
5785         itori=idih_constr(i)
5786         phii=phi(itori)
5787         difi=pinorm(phii-phi0(i))
5788         if (difi.gt.drange(i)) then
5789           difi=difi-drange(i)
5790           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5791           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5792         else if (difi.lt.-drange(i)) then
5793           difi=difi+drange(i)
5794           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5795           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5796         else
5797           difi=0.0
5798         endif
5799 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5800 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5801 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5802       enddo
5803 cd       write (iout,*) 'edihcnstr',edihcnstr
5804       return
5805       end
5806 c----------------------------------------------------------------------------
5807       subroutine etor_d(etors_d)
5808 C 6/23/01 Compute double torsional energy
5809       implicit real*8 (a-h,o-z)
5810       include 'DIMENSIONS'
5811       include 'COMMON.VAR'
5812       include 'COMMON.GEO'
5813       include 'COMMON.LOCAL'
5814       include 'COMMON.TORSION'
5815       include 'COMMON.INTERACT'
5816       include 'COMMON.DERIV'
5817       include 'COMMON.CHAIN'
5818       include 'COMMON.NAMES'
5819       include 'COMMON.IOUNITS'
5820       include 'COMMON.FFIELD'
5821       include 'COMMON.TORCNSTR'
5822       logical lprn
5823 C Set lprn=.true. for debugging
5824       lprn=.false.
5825 c     lprn=.true.
5826       etors_d=0.0D0
5827       do i=iphid_start,iphid_end
5828         itori=itortyp(itype(i-2))
5829         itori1=itortyp(itype(i-1))
5830         itori2=itortyp(itype(i))
5831         iblock=1
5832         if (iabs(itype(i+1)).eq.20) iblock=2
5833         phii=phi(i)
5834         phii1=phi(i+1)
5835         gloci1=0.0D0
5836         gloci2=0.0D0
5837 C Regular cosine and sine terms
5838         do j=1,ntermd_1(itori,itori1,itori2,iblock)
5839           v1cij=v1c(1,j,itori,itori1,itori2,iblock)
5840           v1sij=v1s(1,j,itori,itori1,itori2,iblock)
5841           v2cij=v1c(2,j,itori,itori1,itori2,iblock)
5842           v2sij=v1s(2,j,itori,itori1,itori2,iblock)
5843           cosphi1=dcos(j*phii)
5844           sinphi1=dsin(j*phii)
5845           cosphi2=dcos(j*phii1)
5846           sinphi2=dsin(j*phii1)
5847           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
5848      &     v2cij*cosphi2+v2sij*sinphi2
5849           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
5850           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
5851         enddo
5852         do k=2,ntermd_2(itori,itori1,itori2,iblock)
5853           do l=1,k-1
5854             v1cdij = v2c(k,l,itori,itori1,itori2,iblock)
5855             v2cdij = v2c(l,k,itori,itori1,itori2,iblock)
5856             v1sdij = v2s(k,l,itori,itori1,itori2,iblock)
5857             v2sdij = v2s(l,k,itori,itori1,itori2,iblock)
5858             cosphi1p2=dcos(l*phii+(k-l)*phii1)
5859             cosphi1m2=dcos(l*phii-(k-l)*phii1)
5860             sinphi1p2=dsin(l*phii+(k-l)*phii1)
5861             sinphi1m2=dsin(l*phii-(k-l)*phii1)
5862             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
5863      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
5864             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
5865      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
5866             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
5867      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
5868           enddo
5869         enddo
5870         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
5871         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
5872       enddo
5873       return
5874       end
5875 #endif
5876 c------------------------------------------------------------------------------
5877       subroutine eback_sc_corr(esccor)
5878 c 7/21/2007 Correlations between the backbone-local and side-chain-local
5879 c        conformational states; temporarily implemented as differences
5880 c        between UNRES torsional potentials (dependent on three types of
5881 c        residues) and the torsional potentials dependent on all 20 types
5882 c        of residues computed from AM1  energy surfaces of terminally-blocked
5883 c        amino-acid residues.
5884       implicit real*8 (a-h,o-z)
5885       include 'DIMENSIONS'
5886       include 'COMMON.VAR'
5887       include 'COMMON.GEO'
5888       include 'COMMON.LOCAL'
5889       include 'COMMON.TORSION'
5890       include 'COMMON.SCCOR'
5891       include 'COMMON.INTERACT'
5892       include 'COMMON.DERIV'
5893       include 'COMMON.CHAIN'
5894       include 'COMMON.NAMES'
5895       include 'COMMON.IOUNITS'
5896       include 'COMMON.FFIELD'
5897       include 'COMMON.CONTROL'
5898       logical lprn
5899 C Set lprn=.true. for debugging
5900       lprn=.false.
5901 c      lprn=.true.
5902 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
5903       esccor=0.0D0
5904       do i=iphi_start,iphi_end
5905         esccor_ii=0.0D0
5906         itori=itype(i-2)
5907         itori1=itype(i-1)
5908         phii=phi(i)
5909         gloci=0.0D0
5910         do j=1,nterm_sccor
5911           v1ij=v1sccor(j,itori,itori1)
5912           v2ij=v2sccor(j,itori,itori1)
5913           cosphi=dcos(j*phii)
5914           sinphi=dsin(j*phii)
5915           esccor=esccor+v1ij*cosphi+v2ij*sinphi
5916           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5917         enddo
5918         if (lprn)
5919      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5920      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5921      &  (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6)
5922         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
5923       enddo
5924       return
5925       end
5926 c----------------------------------------------------------------------------
5927       subroutine multibody(ecorr)
5928 C This subroutine calculates multi-body contributions to energy following
5929 C the idea of Skolnick et al. If side chains I and J make a contact and
5930 C at the same time side chains I+1 and J+1 make a contact, an extra 
5931 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
5932       implicit real*8 (a-h,o-z)
5933       include 'DIMENSIONS'
5934       include 'COMMON.IOUNITS'
5935       include 'COMMON.DERIV'
5936       include 'COMMON.INTERACT'
5937       include 'COMMON.CONTACTS'
5938 #ifdef MOMENT
5939       include 'COMMON.CONTACTS.MOMENT'
5940 #endif  
5941       double precision gx(3),gx1(3)
5942       logical lprn
5943
5944 C Set lprn=.true. for debugging
5945       lprn=.false.
5946
5947       if (lprn) then
5948         write (iout,'(a)') 'Contact function values:'
5949         do i=nnt,nct-2
5950           write (iout,'(i2,20(1x,i2,f10.5))') 
5951      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
5952         enddo
5953       endif
5954       ecorr=0.0D0
5955       do i=nnt,nct
5956         do j=1,3
5957           gradcorr(j,i)=0.0D0
5958           gradxorr(j,i)=0.0D0
5959         enddo
5960       enddo
5961       do i=nnt,nct-2
5962
5963         DO ISHIFT = 3,4
5964
5965         i1=i+ishift
5966         num_conti=num_cont(i)
5967         num_conti1=num_cont(i1)
5968         do jj=1,num_conti
5969           j=jcont(jj,i)
5970           do kk=1,num_conti1
5971             j1=jcont(kk,i1)
5972             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
5973 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5974 cd   &                   ' ishift=',ishift
5975 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
5976 C The system gains extra energy.
5977               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
5978             endif   ! j1==j+-ishift
5979           enddo     ! kk  
5980         enddo       ! jj
5981
5982         ENDDO ! ISHIFT
5983
5984       enddo         ! i
5985       return
5986       end
5987 c------------------------------------------------------------------------------
5988       double precision function esccorr(i,j,k,l,jj,kk)
5989       implicit real*8 (a-h,o-z)
5990       include 'DIMENSIONS'
5991       include 'COMMON.IOUNITS'
5992       include 'COMMON.DERIV'
5993       include 'COMMON.INTERACT'
5994       include 'COMMON.CONTACTS'
5995 #ifdef MOMENT
5996       include 'COMMON.CONTACTS.MOMENT'
5997 #endif  
5998       double precision gx(3),gx1(3)
5999       logical lprn
6000       lprn=.false.
6001       eij=facont(jj,i)
6002       ekl=facont(kk,k)
6003 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6004 C Calculate the multi-body contribution to energy.
6005 C Calculate multi-body contributions to the gradient.
6006 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6007 cd   & k,l,(gacont(m,kk,k),m=1,3)
6008       do m=1,3
6009         gx(m) =ekl*gacont(m,jj,i)
6010         gx1(m)=eij*gacont(m,kk,k)
6011         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6012         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6013         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6014         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6015       enddo
6016       do m=i,j-1
6017         do ll=1,3
6018           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6019         enddo
6020       enddo
6021       do m=k,l-1
6022         do ll=1,3
6023           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6024         enddo
6025       enddo 
6026       esccorr=-eij*ekl
6027       return
6028       end
6029 c------------------------------------------------------------------------------
6030       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6031 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6032       implicit real*8 (a-h,o-z)
6033       include 'DIMENSIONS'
6034       include 'COMMON.IOUNITS'
6035 #ifdef MPI
6036       include "mpif.h"
6037       parameter (max_cont=maxconts)
6038       parameter (max_dim=26)
6039       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6040       double precision zapas(max_dim,maxconts,max_fg_procs),
6041      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6042       common /przechowalnia/ zapas
6043       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6044      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6045 #endif
6046       include 'COMMON.SETUP'
6047       include 'COMMON.FFIELD'
6048       include 'COMMON.DERIV'
6049       include 'COMMON.INTERACT'
6050       include 'COMMON.CONTACTS'
6051 #ifdef MOMENT
6052       include 'COMMON.CONTACTS.MOMENT'
6053 #endif  
6054       include 'COMMON.CONTROL'
6055       include 'COMMON.LOCAL'
6056       double precision gx(3),gx1(3),time00
6057       logical lprn,ldone
6058
6059 C Set lprn=.true. for debugging
6060       lprn=.false.
6061 #ifdef MPI
6062       n_corr=0
6063       n_corr1=0
6064       if (nfgtasks.le.1) goto 30
6065       if (lprn) then
6066         write (iout,'(a)') 'Contact function values before RECEIVE:'
6067         do i=nnt,nct-2
6068           write (iout,'(2i3,50(1x,i2,f5.2))') 
6069      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6070      &    j=1,num_cont_hb(i))
6071         enddo
6072       endif
6073       call flush(iout)
6074       do i=1,ntask_cont_from
6075         ncont_recv(i)=0
6076       enddo
6077       do i=1,ntask_cont_to
6078         ncont_sent(i)=0
6079       enddo
6080 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6081 c     & ntask_cont_to
6082 C Make the list of contacts to send to send to other procesors
6083 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6084 c      call flush(iout)
6085       do i=iturn3_start,iturn3_end
6086 c        write (iout,*) "make contact list turn3",i," num_cont",
6087 c     &    num_cont_hb(i)
6088         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6089       enddo
6090       do i=iturn4_start,iturn4_end
6091 c        write (iout,*) "make contact list turn4",i," num_cont",
6092 c     &   num_cont_hb(i)
6093         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6094       enddo
6095       do ii=1,nat_sent
6096         i=iat_sent(ii)
6097 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6098 c     &    num_cont_hb(i)
6099         do j=1,num_cont_hb(i)
6100         do k=1,4
6101           jjc=jcont_hb(j,i)
6102           iproc=iint_sent_local(k,jjc,ii)
6103 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6104           if (iproc.gt.0) then
6105             ncont_sent(iproc)=ncont_sent(iproc)+1
6106             nn=ncont_sent(iproc)
6107             zapas(1,nn,iproc)=i
6108             zapas(2,nn,iproc)=jjc
6109             zapas(3,nn,iproc)=facont_hb(j,i)
6110             zapas(4,nn,iproc)=ees0p(j,i)
6111             zapas(5,nn,iproc)=ees0m(j,i)
6112             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6113             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6114             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6115             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6116             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6117             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6118             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6119             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6120             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6121             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6122             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6123             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6124             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6125             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6126             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6127             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6128             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6129             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6130             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6131             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6132             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6133           endif
6134         enddo
6135         enddo
6136       enddo
6137       if (lprn) then
6138       write (iout,*) 
6139      &  "Numbers of contacts to be sent to other processors",
6140      &  (ncont_sent(i),i=1,ntask_cont_to)
6141       write (iout,*) "Contacts sent"
6142       do ii=1,ntask_cont_to
6143         nn=ncont_sent(ii)
6144         iproc=itask_cont_to(ii)
6145         write (iout,*) nn," contacts to processor",iproc,
6146      &   " of CONT_TO_COMM group"
6147         do i=1,nn
6148           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6149         enddo
6150       enddo
6151       call flush(iout)
6152       endif
6153       CorrelType=477
6154       CorrelID=fg_rank+1
6155       CorrelType1=478
6156       CorrelID1=nfgtasks+fg_rank+1
6157       ireq=0
6158 C Receive the numbers of needed contacts from other processors 
6159       do ii=1,ntask_cont_from
6160         iproc=itask_cont_from(ii)
6161         ireq=ireq+1
6162         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6163      &    FG_COMM,req(ireq),IERR)
6164       enddo
6165 c      write (iout,*) "IRECV ended"
6166 c      call flush(iout)
6167 C Send the number of contacts needed by other processors
6168       do ii=1,ntask_cont_to
6169         iproc=itask_cont_to(ii)
6170         ireq=ireq+1
6171         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6172      &    FG_COMM,req(ireq),IERR)
6173       enddo
6174 c      write (iout,*) "ISEND ended"
6175 c      write (iout,*) "number of requests (nn)",ireq
6176       call flush(iout)
6177       if (ireq.gt.0) 
6178      &  call MPI_Waitall(ireq,req,status_array,ierr)
6179 c      write (iout,*) 
6180 c     &  "Numbers of contacts to be received from other processors",
6181 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6182 c      call flush(iout)
6183 C Receive contacts
6184       ireq=0
6185       do ii=1,ntask_cont_from
6186         iproc=itask_cont_from(ii)
6187         nn=ncont_recv(ii)
6188 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6189 c     &   " of CONT_TO_COMM group"
6190         call flush(iout)
6191         if (nn.gt.0) then
6192           ireq=ireq+1
6193           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6194      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6195 c          write (iout,*) "ireq,req",ireq,req(ireq)
6196         endif
6197       enddo
6198 C Send the contacts to processors that need them
6199       do ii=1,ntask_cont_to
6200         iproc=itask_cont_to(ii)
6201         nn=ncont_sent(ii)
6202 c        write (iout,*) nn," contacts to processor",iproc,
6203 c     &   " of CONT_TO_COMM group"
6204         if (nn.gt.0) then
6205           ireq=ireq+1 
6206           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6207      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6208 c          write (iout,*) "ireq,req",ireq,req(ireq)
6209 c          do i=1,nn
6210 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6211 c          enddo
6212         endif  
6213       enddo
6214 c      write (iout,*) "number of requests (contacts)",ireq
6215 c      write (iout,*) "req",(req(i),i=1,4)
6216 c      call flush(iout)
6217       if (ireq.gt.0) 
6218      & call MPI_Waitall(ireq,req,status_array,ierr)
6219       do iii=1,ntask_cont_from
6220         iproc=itask_cont_from(iii)
6221         nn=ncont_recv(iii)
6222         if (lprn) then
6223         write (iout,*) "Received",nn," contacts from processor",iproc,
6224      &   " of CONT_FROM_COMM group"
6225         call flush(iout)
6226         do i=1,nn
6227           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6228         enddo
6229         call flush(iout)
6230         endif
6231         do i=1,nn
6232           ii=zapas_recv(1,i,iii)
6233 c Flag the received contacts to prevent double-counting
6234           jj=-zapas_recv(2,i,iii)
6235 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6236 c          call flush(iout)
6237           nnn=num_cont_hb(ii)+1
6238           num_cont_hb(ii)=nnn
6239           jcont_hb(nnn,ii)=jj
6240           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6241           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6242           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6243           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6244           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6245           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6246           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6247           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6248           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6249           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6250           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6251           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6252           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6253           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6254           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6255           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6256           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6257           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6258           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6259           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6260           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6261           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6262           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6263           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6264         enddo
6265       enddo
6266       call flush(iout)
6267       if (lprn) then
6268         write (iout,'(a)') 'Contact function values after receive:'
6269         do i=nnt,nct-2
6270           write (iout,'(2i3,50(1x,i3,f5.2))') 
6271      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6272      &    j=1,num_cont_hb(i))
6273         enddo
6274         call flush(iout)
6275       endif
6276    30 continue
6277 #endif
6278       if (lprn) then
6279         write (iout,'(a)') 'Contact function values:'
6280         do i=nnt,nct-2
6281           write (iout,'(2i3,50(1x,i3,f5.2))') 
6282      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6283      &    j=1,num_cont_hb(i))
6284         enddo
6285       endif
6286       ecorr=0.0D0
6287 C Remove the loop below after debugging !!!
6288       do i=nnt,nct
6289         do j=1,3
6290           gradcorr(j,i)=0.0D0
6291           gradxorr(j,i)=0.0D0
6292         enddo
6293       enddo
6294 C Calculate the local-electrostatic correlation terms
6295       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6296         i1=i+1
6297         num_conti=num_cont_hb(i)
6298         num_conti1=num_cont_hb(i+1)
6299         do jj=1,num_conti
6300           j=jcont_hb(jj,i)
6301           jp=iabs(j)
6302           do kk=1,num_conti1
6303             j1=jcont_hb(kk,i1)
6304             jp1=iabs(j1)
6305 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6306 c     &         ' jj=',jj,' kk=',kk
6307             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6308      &          .or. j.lt.0 .and. j1.gt.0) .and.
6309      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6310 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6311 C The system gains extra energy.
6312               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
6313               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
6314      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
6315               n_corr=n_corr+1
6316             else if (j1.eq.j) then
6317 C Contacts I-J and I-(J+1) occur simultaneously. 
6318 C The system loses extra energy.
6319 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
6320             endif
6321           enddo ! kk
6322           do kk=1,num_conti
6323             j1=jcont_hb(kk,i)
6324 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6325 c    &         ' jj=',jj,' kk=',kk
6326             if (j1.eq.j+1) then
6327 C Contacts I-J and (I+1)-J occur simultaneously. 
6328 C The system loses extra energy.
6329 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
6330             endif ! j1==j+1
6331           enddo ! kk
6332         enddo ! jj
6333       enddo ! i
6334       return
6335       end
6336 c------------------------------------------------------------------------------
6337       subroutine add_hb_contact(ii,jj,itask)
6338       implicit real*8 (a-h,o-z)
6339       include "DIMENSIONS"
6340       include "COMMON.IOUNITS"
6341       integer max_cont
6342       integer max_dim
6343       parameter (max_cont=maxconts)
6344       parameter (max_dim=26)
6345       include "COMMON.CONTACTS"
6346 #ifdef MOMENT
6347       include 'COMMON.CONTACTS.MOMENT'
6348 #endif  
6349       double precision zapas(max_dim,maxconts,max_fg_procs),
6350      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6351       common /przechowalnia/ zapas
6352       integer i,j,ii,jj,iproc,itask(4),nn
6353 c      write (iout,*) "itask",itask
6354       do i=1,2
6355         iproc=itask(i)
6356         if (iproc.gt.0) then
6357           do j=1,num_cont_hb(ii)
6358             jjc=jcont_hb(j,ii)
6359 c            write (iout,*) "i",ii," j",jj," jjc",jjc
6360             if (jjc.eq.jj) then
6361               ncont_sent(iproc)=ncont_sent(iproc)+1
6362               nn=ncont_sent(iproc)
6363               zapas(1,nn,iproc)=ii
6364               zapas(2,nn,iproc)=jjc
6365               zapas(3,nn,iproc)=facont_hb(j,ii)
6366               zapas(4,nn,iproc)=ees0p(j,ii)
6367               zapas(5,nn,iproc)=ees0m(j,ii)
6368               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
6369               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
6370               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
6371               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
6372               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
6373               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
6374               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
6375               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
6376               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
6377               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
6378               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
6379               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
6380               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
6381               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
6382               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
6383               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
6384               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
6385               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
6386               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
6387               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
6388               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
6389               exit
6390             endif
6391           enddo
6392         endif
6393       enddo
6394       return
6395       end
6396 c------------------------------------------------------------------------------
6397       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
6398      &  n_corr1)
6399 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6400       implicit real*8 (a-h,o-z)
6401       include 'DIMENSIONS'
6402       include 'COMMON.IOUNITS'
6403 #ifdef MPI
6404       include "mpif.h"
6405       parameter (max_cont=maxconts)
6406       parameter (max_dim=70)
6407       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6408       double precision zapas(max_dim,maxconts,max_fg_procs),
6409      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6410       common /przechowalnia/ zapas
6411       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6412      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6413 #endif
6414       include 'COMMON.SETUP'
6415       include 'COMMON.FFIELD'
6416       include 'COMMON.DERIV'
6417       include 'COMMON.LOCAL'
6418       include 'COMMON.INTERACT'
6419       include 'COMMON.CONTACTS'
6420 #ifdef MOMENT
6421       include 'COMMON.CONTACTS.MOMENT'
6422 #endif  
6423       include 'COMMON.CHAIN'
6424       include 'COMMON.CONTROL'
6425       double precision gx(3),gx1(3)
6426       integer num_cont_hb_old(maxres)
6427       logical lprn,ldone
6428       double precision eello4,eello5,eelo6,eello_turn6
6429       external eello4,eello5,eello6,eello_turn6
6430 C Set lprn=.true. for debugging
6431       lprn=.false.
6432       eturn6=0.0d0
6433 #ifdef MPI
6434       do i=1,nres
6435         num_cont_hb_old(i)=num_cont_hb(i)
6436       enddo
6437       n_corr=0
6438       n_corr1=0
6439       if (nfgtasks.le.1) goto 30
6440       if (lprn) then
6441         write (iout,'(a)') 'Contact function values before RECEIVE:'
6442         do i=nnt,nct-2
6443           write (iout,'(2i3,50(1x,i2,f5.2))') 
6444      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6445      &    j=1,num_cont_hb(i))
6446         enddo
6447       endif
6448       call flush(iout)
6449       do i=1,ntask_cont_from
6450         ncont_recv(i)=0
6451       enddo
6452       do i=1,ntask_cont_to
6453         ncont_sent(i)=0
6454       enddo
6455 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6456 c     & ntask_cont_to
6457 C Make the list of contacts to send to send to other procesors
6458       do i=iturn3_start,iturn3_end
6459 c        write (iout,*) "make contact list turn3",i," num_cont",
6460 c     &    num_cont_hb(i)
6461         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
6462       enddo
6463       do i=iturn4_start,iturn4_end
6464 c        write (iout,*) "make contact list turn4",i," num_cont",
6465 c     &   num_cont_hb(i)
6466         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
6467       enddo
6468       do ii=1,nat_sent
6469         i=iat_sent(ii)
6470 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6471 c     &    num_cont_hb(i)
6472         do j=1,num_cont_hb(i)
6473         do k=1,4
6474           jjc=jcont_hb(j,i)
6475           iproc=iint_sent_local(k,jjc,ii)
6476 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6477           if (iproc.ne.0) then
6478             ncont_sent(iproc)=ncont_sent(iproc)+1
6479             nn=ncont_sent(iproc)
6480             zapas(1,nn,iproc)=i
6481             zapas(2,nn,iproc)=jjc
6482             zapas(3,nn,iproc)=d_cont(j,i)
6483             ind=3
6484             do kk=1,3
6485               ind=ind+1
6486               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
6487             enddo
6488             do kk=1,2
6489               do ll=1,2
6490                 ind=ind+1
6491                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
6492               enddo
6493             enddo
6494             do jj=1,5
6495               do kk=1,3
6496                 do ll=1,2
6497                   do mm=1,2
6498                     ind=ind+1
6499                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
6500                   enddo
6501                 enddo
6502               enddo
6503             enddo
6504           endif
6505         enddo
6506         enddo
6507       enddo
6508       if (lprn) then
6509       write (iout,*) 
6510      &  "Numbers of contacts to be sent to other processors",
6511      &  (ncont_sent(i),i=1,ntask_cont_to)
6512       write (iout,*) "Contacts sent"
6513       do ii=1,ntask_cont_to
6514         nn=ncont_sent(ii)
6515         iproc=itask_cont_to(ii)
6516         write (iout,*) nn," contacts to processor",iproc,
6517      &   " of CONT_TO_COMM group"
6518         do i=1,nn
6519           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
6520         enddo
6521       enddo
6522       call flush(iout)
6523       endif
6524       CorrelType=477
6525       CorrelID=fg_rank+1
6526       CorrelType1=478
6527       CorrelID1=nfgtasks+fg_rank+1
6528       ireq=0
6529 C Receive the numbers of needed contacts from other processors 
6530       do ii=1,ntask_cont_from
6531         iproc=itask_cont_from(ii)
6532         ireq=ireq+1
6533         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6534      &    FG_COMM,req(ireq),IERR)
6535       enddo
6536 c      write (iout,*) "IRECV ended"
6537 c      call flush(iout)
6538 C Send the number of contacts needed by other processors
6539       do ii=1,ntask_cont_to
6540         iproc=itask_cont_to(ii)
6541         ireq=ireq+1
6542         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6543      &    FG_COMM,req(ireq),IERR)
6544       enddo
6545 c      write (iout,*) "ISEND ended"
6546 c      write (iout,*) "number of requests (nn)",ireq
6547       call flush(iout)
6548       if (ireq.gt.0) 
6549      &  call MPI_Waitall(ireq,req,status_array,ierr)
6550 c      write (iout,*) 
6551 c     &  "Numbers of contacts to be received from other processors",
6552 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6553 c      call flush(iout)
6554 C Receive contacts
6555       ireq=0
6556       do ii=1,ntask_cont_from
6557         iproc=itask_cont_from(ii)
6558         nn=ncont_recv(ii)
6559 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6560 c     &   " of CONT_TO_COMM group"
6561         call flush(iout)
6562         if (nn.gt.0) then
6563           ireq=ireq+1
6564           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6565      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6566 c          write (iout,*) "ireq,req",ireq,req(ireq)
6567         endif
6568       enddo
6569 C Send the contacts to processors that need them
6570       do ii=1,ntask_cont_to
6571         iproc=itask_cont_to(ii)
6572         nn=ncont_sent(ii)
6573 c        write (iout,*) nn," contacts to processor",iproc,
6574 c     &   " of CONT_TO_COMM group"
6575         if (nn.gt.0) then
6576           ireq=ireq+1 
6577           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6578      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6579 c          write (iout,*) "ireq,req",ireq,req(ireq)
6580 c          do i=1,nn
6581 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6582 c          enddo
6583         endif  
6584       enddo
6585 c      write (iout,*) "number of requests (contacts)",ireq
6586 c      write (iout,*) "req",(req(i),i=1,4)
6587 c      call flush(iout)
6588       if (ireq.gt.0) 
6589      & call MPI_Waitall(ireq,req,status_array,ierr)
6590       do iii=1,ntask_cont_from
6591         iproc=itask_cont_from(iii)
6592         nn=ncont_recv(iii)
6593         if (lprn) then
6594         write (iout,*) "Received",nn," contacts from processor",iproc,
6595      &   " of CONT_FROM_COMM group"
6596         call flush(iout)
6597         do i=1,nn
6598           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
6599         enddo
6600         call flush(iout)
6601         endif
6602         do i=1,nn
6603           ii=zapas_recv(1,i,iii)
6604 c Flag the received contacts to prevent double-counting
6605           jj=-zapas_recv(2,i,iii)
6606 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6607 c          call flush(iout)
6608           nnn=num_cont_hb(ii)+1
6609           num_cont_hb(ii)=nnn
6610           jcont_hb(nnn,ii)=jj
6611           d_cont(nnn,ii)=zapas_recv(3,i,iii)
6612           ind=3
6613           do kk=1,3
6614             ind=ind+1
6615             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
6616           enddo
6617           do kk=1,2
6618             do ll=1,2
6619               ind=ind+1
6620               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
6621             enddo
6622           enddo
6623           do jj=1,5
6624             do kk=1,3
6625               do ll=1,2
6626                 do mm=1,2
6627                   ind=ind+1
6628                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
6629                 enddo
6630               enddo
6631             enddo
6632           enddo
6633         enddo
6634       enddo
6635       call flush(iout)
6636       if (lprn) then
6637         write (iout,'(a)') 'Contact function values after receive:'
6638         do i=nnt,nct-2
6639           write (iout,'(2i3,50(1x,i3,5f6.3))') 
6640      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6641      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6642         enddo
6643         call flush(iout)
6644       endif
6645    30 continue
6646 #endif
6647       if (lprn) then
6648         write (iout,'(a)') 'Contact function values:'
6649         do i=nnt,nct-2
6650           write (iout,'(2i3,50(1x,i2,5f6.3))') 
6651      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
6652      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
6653         enddo
6654       endif
6655       ecorr=0.0D0
6656       ecorr5=0.0d0
6657       ecorr6=0.0d0
6658 C Remove the loop below after debugging !!!
6659       do i=nnt,nct
6660         do j=1,3
6661           gradcorr(j,i)=0.0D0
6662           gradxorr(j,i)=0.0D0
6663         enddo
6664       enddo
6665 C Calculate the dipole-dipole interaction energies
6666       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
6667       do i=iatel_s,iatel_e+1
6668         num_conti=num_cont_hb(i)
6669         do jj=1,num_conti
6670           j=jcont_hb(jj,i)
6671 #ifdef MOMENT
6672           call dipole(i,j,jj)
6673 #endif
6674         enddo
6675       enddo
6676       endif
6677 C Calculate the local-electrostatic correlation terms
6678 c                write (iout,*) "gradcorr5 in eello5 before loop"
6679 c                do iii=1,nres
6680 c                  write (iout,'(i5,3f10.5)') 
6681 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6682 c                enddo
6683       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
6684 c        write (iout,*) "corr loop i",i
6685         i1=i+1
6686         num_conti=num_cont_hb(i)
6687         num_conti1=num_cont_hb(i+1)
6688         do jj=1,num_conti
6689           j=jcont_hb(jj,i)
6690           jp=iabs(j)
6691           do kk=1,num_conti1
6692             j1=jcont_hb(kk,i1)
6693             jp1=iabs(j1)
6694 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6695 c     &         ' jj=',jj,' kk=',kk
6696 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
6697             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6698      &          .or. j.lt.0 .and. j1.gt.0) .and.
6699      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6700 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
6701 C The system gains extra energy.
6702               n_corr=n_corr+1
6703               sqd1=dsqrt(d_cont(jj,i))
6704               sqd2=dsqrt(d_cont(kk,i1))
6705               sred_geom = sqd1*sqd2
6706               IF (sred_geom.lt.cutoff_corr) THEN
6707                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
6708      &            ekont,fprimcont)
6709 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
6710 cd     &         ' jj=',jj,' kk=',kk
6711                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
6712                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
6713                 do l=1,3
6714                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
6715                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
6716                 enddo
6717                 n_corr1=n_corr1+1
6718 cd               write (iout,*) 'sred_geom=',sred_geom,
6719 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
6720 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
6721 cd               write (iout,*) "g_contij",g_contij
6722 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
6723 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
6724                 call calc_eello(i,jp,i+1,jp1,jj,kk)
6725                 if (wcorr4.gt.0.0d0) 
6726      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
6727                   if (energy_dec.and.wcorr4.gt.0.0d0) 
6728      1                 write (iout,'(a6,4i5,0pf7.3)')
6729      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
6730 c                write (iout,*) "gradcorr5 before eello5"
6731 c                do iii=1,nres
6732 c                  write (iout,'(i5,3f10.5)') 
6733 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6734 c                enddo
6735                 if (wcorr5.gt.0.0d0)
6736      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
6737 c                write (iout,*) "gradcorr5 after eello5"
6738 c                do iii=1,nres
6739 c                  write (iout,'(i5,3f10.5)') 
6740 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6741 c                enddo
6742                   if (energy_dec.and.wcorr5.gt.0.0d0) 
6743      1                 write (iout,'(a6,4i5,0pf7.3)')
6744      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
6745 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
6746 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
6747                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
6748      &               .or. wturn6.eq.0.0d0))then
6749 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
6750                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
6751                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6752      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
6753 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
6754 cd     &            'ecorr6=',ecorr6
6755 cd                write (iout,'(4e15.5)') sred_geom,
6756 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
6757 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
6758 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
6759                 else if (wturn6.gt.0.0d0
6760      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
6761 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
6762                   eturn6=eturn6+eello_turn6(i,jj,kk)
6763                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
6764      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
6765 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
6766                 endif
6767               ENDIF
6768 1111          continue
6769             endif
6770           enddo ! kk
6771         enddo ! jj
6772       enddo ! i
6773       do i=1,nres
6774         num_cont_hb(i)=num_cont_hb_old(i)
6775       enddo
6776 c                write (iout,*) "gradcorr5 in eello5"
6777 c                do iii=1,nres
6778 c                  write (iout,'(i5,3f10.5)') 
6779 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
6780 c                enddo
6781       return
6782       end
6783 c------------------------------------------------------------------------------
6784       subroutine add_hb_contact_eello(ii,jj,itask)
6785       implicit real*8 (a-h,o-z)
6786       include "DIMENSIONS"
6787       include "COMMON.IOUNITS"
6788       integer max_cont
6789       integer max_dim
6790       parameter (max_cont=maxconts)
6791       parameter (max_dim=70)
6792       include "COMMON.CONTACTS"
6793 #ifdef MOMENT
6794       include 'COMMON.CONTACTS.MOMENT'
6795 #endif  
6796       double precision zapas(max_dim,maxconts,max_fg_procs),
6797      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6798       common /przechowalnia/ zapas
6799       integer i,j,ii,jj,iproc,itask(4),nn
6800 c      write (iout,*) "itask",itask
6801       do i=1,2
6802         iproc=itask(i)
6803         if (iproc.gt.0) then
6804           do j=1,num_cont_hb(ii)
6805             jjc=jcont_hb(j,ii)
6806 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
6807             if (jjc.eq.jj) then
6808               ncont_sent(iproc)=ncont_sent(iproc)+1
6809               nn=ncont_sent(iproc)
6810               zapas(1,nn,iproc)=ii
6811               zapas(2,nn,iproc)=jjc
6812               zapas(3,nn,iproc)=d_cont(j,ii)
6813               ind=3
6814               do kk=1,3
6815                 ind=ind+1
6816                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
6817               enddo
6818               do kk=1,2
6819                 do ll=1,2
6820                   ind=ind+1
6821                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
6822                 enddo
6823               enddo
6824               do jj=1,5
6825                 do kk=1,3
6826                   do ll=1,2
6827                     do mm=1,2
6828                       ind=ind+1
6829                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
6830                     enddo
6831                   enddo
6832                 enddo
6833               enddo
6834               exit
6835             endif
6836           enddo
6837         endif
6838       enddo
6839       return
6840       end
6841 c------------------------------------------------------------------------------
6842       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
6843       implicit real*8 (a-h,o-z)
6844       include 'DIMENSIONS'
6845       include 'COMMON.IOUNITS'
6846       include 'COMMON.DERIV'
6847       include 'COMMON.INTERACT'
6848       include 'COMMON.CONTACTS'
6849 #ifdef MOMENT
6850       include 'COMMON.CONTACTS.MOMENT'
6851 #endif  
6852       double precision gx(3),gx1(3)
6853       logical lprn
6854       lprn=.false.
6855       eij=facont_hb(jj,i)
6856       ekl=facont_hb(kk,k)
6857       ees0pij=ees0p(jj,i)
6858       ees0pkl=ees0p(kk,k)
6859       ees0mij=ees0m(jj,i)
6860       ees0mkl=ees0m(kk,k)
6861       ekont=eij*ekl
6862       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
6863 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
6864 C Following 4 lines for diagnostics.
6865 cd    ees0pkl=0.0D0
6866 cd    ees0pij=1.0D0
6867 cd    ees0mkl=0.0D0
6868 cd    ees0mij=1.0D0
6869 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
6870 c     & 'Contacts ',i,j,
6871 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
6872 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
6873 c     & 'gradcorr_long'
6874 C Calculate the multi-body contribution to energy.
6875 c      ecorr=ecorr+ekont*ees
6876 C Calculate multi-body contributions to the gradient.
6877       coeffpees0pij=coeffp*ees0pij
6878       coeffmees0mij=coeffm*ees0mij
6879       coeffpees0pkl=coeffp*ees0pkl
6880       coeffmees0mkl=coeffm*ees0mkl
6881       do ll=1,3
6882 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
6883         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
6884      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
6885      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
6886         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
6887      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
6888      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
6889 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
6890         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
6891      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
6892      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
6893         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
6894      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
6895      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
6896         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
6897      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
6898      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
6899         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
6900         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
6901         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
6902      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
6903      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
6904         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
6905         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
6906 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
6907       enddo
6908 c      write (iout,*)
6909 cgrad      do m=i+1,j-1
6910 cgrad        do ll=1,3
6911 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6912 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
6913 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
6914 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
6915 cgrad        enddo
6916 cgrad      enddo
6917 cgrad      do m=k+1,l-1
6918 cgrad        do ll=1,3
6919 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
6920 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
6921 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
6922 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
6923 cgrad        enddo
6924 cgrad      enddo 
6925 c      write (iout,*) "ehbcorr",ekont*ees
6926       ehbcorr=ekont*ees
6927       return
6928       end
6929 #ifdef MOMENT
6930 C---------------------------------------------------------------------------
6931       subroutine dipole(i,j,jj)
6932       implicit real*8 (a-h,o-z)
6933       include 'DIMENSIONS'
6934       include 'COMMON.IOUNITS'
6935       include 'COMMON.CHAIN'
6936       include 'COMMON.FFIELD'
6937       include 'COMMON.DERIV'
6938       include 'COMMON.INTERACT'
6939       include 'COMMON.CONTACTS'
6940 #ifdef MOMENT
6941       include 'COMMON.CONTACTS.MOMENT'
6942 #endif  
6943       include 'COMMON.TORSION'
6944       include 'COMMON.VAR'
6945       include 'COMMON.GEO'
6946       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
6947      &  auxmat(2,2)
6948       iti1 = itortyp(itype(i+1))
6949       if (j.lt.nres-1) then
6950         itj1 = itortyp(itype(j+1))
6951       else
6952         itj1=ntortyp+1
6953       endif
6954       do iii=1,2
6955         dipi(iii,1)=Ub2(iii,i)
6956         dipderi(iii)=Ub2der(iii,i)
6957         dipi(iii,2)=b1(iii,iti1)
6958         dipj(iii,1)=Ub2(iii,j)
6959         dipderj(iii)=Ub2der(iii,j)
6960         dipj(iii,2)=b1(iii,itj1)
6961       enddo
6962       kkk=0
6963       do iii=1,2
6964         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
6965         do jjj=1,2
6966           kkk=kkk+1
6967           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6968         enddo
6969       enddo
6970       do kkk=1,5
6971         do lll=1,3
6972           mmm=0
6973           do iii=1,2
6974             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
6975      &        auxvec(1))
6976             do jjj=1,2
6977               mmm=mmm+1
6978               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
6979             enddo
6980           enddo
6981         enddo
6982       enddo
6983       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
6984       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
6985       do iii=1,2
6986         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
6987       enddo
6988       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
6989       do iii=1,2
6990         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
6991       enddo
6992       return
6993       end
6994 #endif
6995 C---------------------------------------------------------------------------
6996       subroutine calc_eello(i,j,k,l,jj,kk)
6997
6998 C This subroutine computes matrices and vectors needed to calculate 
6999 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7000 C
7001       implicit real*8 (a-h,o-z)
7002       include 'DIMENSIONS'
7003       include 'COMMON.IOUNITS'
7004       include 'COMMON.CHAIN'
7005       include 'COMMON.DERIV'
7006       include 'COMMON.INTERACT'
7007       include 'COMMON.CONTACTS'
7008 #ifdef MOMENT
7009       include 'COMMON.CONTACTS.MOMENT'
7010 #endif  
7011       include 'COMMON.TORSION'
7012       include 'COMMON.VAR'
7013       include 'COMMON.GEO'
7014       include 'COMMON.FFIELD'
7015       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7016      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7017       logical lprn
7018       common /kutas/ lprn
7019 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7020 cd     & ' jj=',jj,' kk=',kk
7021 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7022 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7023 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7024       do iii=1,2
7025         do jjj=1,2
7026           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7027           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7028         enddo
7029       enddo
7030       call transpose2(aa1(1,1),aa1t(1,1))
7031       call transpose2(aa2(1,1),aa2t(1,1))
7032       do kkk=1,5
7033         do lll=1,3
7034           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7035      &      aa1tder(1,1,lll,kkk))
7036           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7037      &      aa2tder(1,1,lll,kkk))
7038         enddo
7039       enddo 
7040       if (l.eq.j+1) then
7041 C parallel orientation of the two CA-CA-CA frames.
7042         if (i.gt.1) then
7043           iti=itortyp(itype(i))
7044         else
7045           iti=ntortyp+1
7046         endif
7047         itk1=itortyp(itype(k+1))
7048         itj=itortyp(itype(j))
7049         if (l.lt.nres-1) then
7050           itl1=itortyp(itype(l+1))
7051         else
7052           itl1=ntortyp+1
7053         endif
7054 C A1 kernel(j+1) A2T
7055 cd        do iii=1,2
7056 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7057 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7058 cd        enddo
7059         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7060      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7061      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7062 C Following matrices are needed only for 6-th order cumulants
7063         IF (wcorr6.gt.0.0d0) THEN
7064         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7065      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7066      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7067         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7068      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7069      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7070      &   ADtEAderx(1,1,1,1,1,1))
7071         lprn=.false.
7072         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7073      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7074      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7075      &   ADtEA1derx(1,1,1,1,1,1))
7076         ENDIF
7077 C End 6-th order cumulants
7078 cd        lprn=.false.
7079 cd        if (lprn) then
7080 cd        write (2,*) 'In calc_eello6'
7081 cd        do iii=1,2
7082 cd          write (2,*) 'iii=',iii
7083 cd          do kkk=1,5
7084 cd            write (2,*) 'kkk=',kkk
7085 cd            do jjj=1,2
7086 cd              write (2,'(3(2f10.5),5x)') 
7087 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7088 cd            enddo
7089 cd          enddo
7090 cd        enddo
7091 cd        endif
7092         call transpose2(EUgder(1,1,k),auxmat(1,1))
7093         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7094         call transpose2(EUg(1,1,k),auxmat(1,1))
7095         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7096         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7097         do iii=1,2
7098           do kkk=1,5
7099             do lll=1,3
7100               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7101      &          EAEAderx(1,1,lll,kkk,iii,1))
7102             enddo
7103           enddo
7104         enddo
7105 C A1T kernel(i+1) A2
7106         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7107      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7108      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7109 C Following matrices are needed only for 6-th order cumulants
7110         IF (wcorr6.gt.0.0d0) THEN
7111         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7112      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7113      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7114         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7115      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7116      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7117      &   ADtEAderx(1,1,1,1,1,2))
7118         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7119      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7120      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7121      &   ADtEA1derx(1,1,1,1,1,2))
7122         ENDIF
7123 C End 6-th order cumulants
7124         call transpose2(EUgder(1,1,l),auxmat(1,1))
7125         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7126         call transpose2(EUg(1,1,l),auxmat(1,1))
7127         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7128         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7129         do iii=1,2
7130           do kkk=1,5
7131             do lll=1,3
7132               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7133      &          EAEAderx(1,1,lll,kkk,iii,2))
7134             enddo
7135           enddo
7136         enddo
7137 C AEAb1 and AEAb2
7138 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7139 C They are needed only when the fifth- or the sixth-order cumulants are
7140 C indluded.
7141         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7142         call transpose2(AEA(1,1,1),auxmat(1,1))
7143         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7144         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7145         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7146         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7147         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7148         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7149         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7150         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7151         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7152         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7153         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7154         call transpose2(AEA(1,1,2),auxmat(1,1))
7155         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7156         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7157         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7158         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7159         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7160         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7161         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7162         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7163         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7164         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7165         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7166 C Calculate the Cartesian derivatives of the vectors.
7167         do iii=1,2
7168           do kkk=1,5
7169             do lll=1,3
7170               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7171               call matvec2(auxmat(1,1),b1(1,iti),
7172      &          AEAb1derx(1,lll,kkk,iii,1,1))
7173               call matvec2(auxmat(1,1),Ub2(1,i),
7174      &          AEAb2derx(1,lll,kkk,iii,1,1))
7175               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7176      &          AEAb1derx(1,lll,kkk,iii,2,1))
7177               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7178      &          AEAb2derx(1,lll,kkk,iii,2,1))
7179               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7180               call matvec2(auxmat(1,1),b1(1,itj),
7181      &          AEAb1derx(1,lll,kkk,iii,1,2))
7182               call matvec2(auxmat(1,1),Ub2(1,j),
7183      &          AEAb2derx(1,lll,kkk,iii,1,2))
7184               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7185      &          AEAb1derx(1,lll,kkk,iii,2,2))
7186               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7187      &          AEAb2derx(1,lll,kkk,iii,2,2))
7188             enddo
7189           enddo
7190         enddo
7191         ENDIF
7192 C End vectors
7193       else
7194 C Antiparallel orientation of the two CA-CA-CA frames.
7195         if (i.gt.1) then
7196           iti=itortyp(itype(i))
7197         else
7198           iti=ntortyp+1
7199         endif
7200         itk1=itortyp(itype(k+1))
7201         itl=itortyp(itype(l))
7202         itj=itortyp(itype(j))
7203         if (j.lt.nres-1) then
7204           itj1=itortyp(itype(j+1))
7205         else 
7206           itj1=ntortyp+1
7207         endif
7208 C A2 kernel(j-1)T A1T
7209         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7210      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7211      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7212 C Following matrices are needed only for 6-th order cumulants
7213         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7214      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7215         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7216      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7217      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7218         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7219      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7220      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7221      &   ADtEAderx(1,1,1,1,1,1))
7222         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7223      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7224      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7225      &   ADtEA1derx(1,1,1,1,1,1))
7226         ENDIF
7227 C End 6-th order cumulants
7228         call transpose2(EUgder(1,1,k),auxmat(1,1))
7229         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7230         call transpose2(EUg(1,1,k),auxmat(1,1))
7231         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7232         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7233         do iii=1,2
7234           do kkk=1,5
7235             do lll=1,3
7236               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7237      &          EAEAderx(1,1,lll,kkk,iii,1))
7238             enddo
7239           enddo
7240         enddo
7241 C A2T kernel(i+1)T A1
7242         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7243      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7244      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7245 C Following matrices are needed only for 6-th order cumulants
7246         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7247      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7248         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7249      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7250      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7251         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7252      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7253      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7254      &   ADtEAderx(1,1,1,1,1,2))
7255         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7256      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7257      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7258      &   ADtEA1derx(1,1,1,1,1,2))
7259         ENDIF
7260 C End 6-th order cumulants
7261         call transpose2(EUgder(1,1,j),auxmat(1,1))
7262         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7263         call transpose2(EUg(1,1,j),auxmat(1,1))
7264         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7265         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7266         do iii=1,2
7267           do kkk=1,5
7268             do lll=1,3
7269               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7270      &          EAEAderx(1,1,lll,kkk,iii,2))
7271             enddo
7272           enddo
7273         enddo
7274 C AEAb1 and AEAb2
7275 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7276 C They are needed only when the fifth- or the sixth-order cumulants are
7277 C indluded.
7278         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7279      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7280         call transpose2(AEA(1,1,1),auxmat(1,1))
7281         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7282         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7283         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7284         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7285         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7286         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7287         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7288         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7289         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7290         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7291         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7292         call transpose2(AEA(1,1,2),auxmat(1,1))
7293         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7294         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7295         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7296         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7297         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7298         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7299         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7300         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7301         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7302         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7303         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7304 C Calculate the Cartesian derivatives of the vectors.
7305         do iii=1,2
7306           do kkk=1,5
7307             do lll=1,3
7308               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7309               call matvec2(auxmat(1,1),b1(1,iti),
7310      &          AEAb1derx(1,lll,kkk,iii,1,1))
7311               call matvec2(auxmat(1,1),Ub2(1,i),
7312      &          AEAb2derx(1,lll,kkk,iii,1,1))
7313               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7314      &          AEAb1derx(1,lll,kkk,iii,2,1))
7315               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7316      &          AEAb2derx(1,lll,kkk,iii,2,1))
7317               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7318               call matvec2(auxmat(1,1),b1(1,itl),
7319      &          AEAb1derx(1,lll,kkk,iii,1,2))
7320               call matvec2(auxmat(1,1),Ub2(1,l),
7321      &          AEAb2derx(1,lll,kkk,iii,1,2))
7322               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7323      &          AEAb1derx(1,lll,kkk,iii,2,2))
7324               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7325      &          AEAb2derx(1,lll,kkk,iii,2,2))
7326             enddo
7327           enddo
7328         enddo
7329         ENDIF
7330 C End vectors
7331       endif
7332       return
7333       end
7334 C---------------------------------------------------------------------------
7335       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
7336      &  KK,KKderg,AKA,AKAderg,AKAderx)
7337       implicit none
7338       integer nderg
7339       logical transp
7340       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
7341      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
7342      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
7343       integer iii,kkk,lll
7344       integer jjj,mmm
7345       logical lprn
7346       common /kutas/ lprn
7347       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
7348       do iii=1,nderg 
7349         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
7350      &    AKAderg(1,1,iii))
7351       enddo
7352 cd      if (lprn) write (2,*) 'In kernel'
7353       do kkk=1,5
7354 cd        if (lprn) write (2,*) 'kkk=',kkk
7355         do lll=1,3
7356           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
7357      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
7358 cd          if (lprn) then
7359 cd            write (2,*) 'lll=',lll
7360 cd            write (2,*) 'iii=1'
7361 cd            do jjj=1,2
7362 cd              write (2,'(3(2f10.5),5x)') 
7363 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
7364 cd            enddo
7365 cd          endif
7366           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
7367      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
7368 cd          if (lprn) then
7369 cd            write (2,*) 'lll=',lll
7370 cd            write (2,*) 'iii=2'
7371 cd            do jjj=1,2
7372 cd              write (2,'(3(2f10.5),5x)') 
7373 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
7374 cd            enddo
7375 cd          endif
7376         enddo
7377       enddo
7378       return
7379       end
7380 C---------------------------------------------------------------------------
7381       double precision function eello4(i,j,k,l,jj,kk)
7382       implicit real*8 (a-h,o-z)
7383       include 'DIMENSIONS'
7384       include 'COMMON.IOUNITS'
7385       include 'COMMON.CHAIN'
7386       include 'COMMON.DERIV'
7387       include 'COMMON.INTERACT'
7388       include 'COMMON.CONTACTS'
7389 #ifdef MOMENT
7390       include 'COMMON.CONTACTS.MOMENT'
7391 #endif  
7392       include 'COMMON.TORSION'
7393       include 'COMMON.VAR'
7394       include 'COMMON.GEO'
7395       double precision pizda(2,2),ggg1(3),ggg2(3)
7396 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
7397 cd        eello4=0.0d0
7398 cd        return
7399 cd      endif
7400 cd      print *,'eello4:',i,j,k,l,jj,kk
7401 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
7402 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
7403 cold      eij=facont_hb(jj,i)
7404 cold      ekl=facont_hb(kk,k)
7405 cold      ekont=eij*ekl
7406       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
7407 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
7408       gcorr_loc(k-1)=gcorr_loc(k-1)
7409      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
7410       if (l.eq.j+1) then
7411         gcorr_loc(l-1)=gcorr_loc(l-1)
7412      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7413       else
7414         gcorr_loc(j-1)=gcorr_loc(j-1)
7415      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
7416       endif
7417       do iii=1,2
7418         do kkk=1,5
7419           do lll=1,3
7420             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
7421      &                        -EAEAderx(2,2,lll,kkk,iii,1)
7422 cd            derx(lll,kkk,iii)=0.0d0
7423           enddo
7424         enddo
7425       enddo
7426 cd      gcorr_loc(l-1)=0.0d0
7427 cd      gcorr_loc(j-1)=0.0d0
7428 cd      gcorr_loc(k-1)=0.0d0
7429 cd      eel4=1.0d0
7430 cd      write (iout,*)'Contacts have occurred for peptide groups',
7431 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
7432 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
7433       if (j.lt.nres-1) then
7434         j1=j+1
7435         j2=j-1
7436       else
7437         j1=j-1
7438         j2=j-2
7439       endif
7440       if (l.lt.nres-1) then
7441         l1=l+1
7442         l2=l-1
7443       else
7444         l1=l-1
7445         l2=l-2
7446       endif
7447       do ll=1,3
7448 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
7449 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
7450         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
7451         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
7452 cgrad        ghalf=0.5d0*ggg1(ll)
7453         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
7454         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
7455         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
7456         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
7457         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
7458         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
7459 cgrad        ghalf=0.5d0*ggg2(ll)
7460         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
7461         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
7462         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
7463         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
7464         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
7465         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
7466       enddo
7467 cgrad      do m=i+1,j-1
7468 cgrad        do ll=1,3
7469 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
7470 cgrad        enddo
7471 cgrad      enddo
7472 cgrad      do m=k+1,l-1
7473 cgrad        do ll=1,3
7474 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
7475 cgrad        enddo
7476 cgrad      enddo
7477 cgrad      do m=i+2,j2
7478 cgrad        do ll=1,3
7479 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
7480 cgrad        enddo
7481 cgrad      enddo
7482 cgrad      do m=k+2,l2
7483 cgrad        do ll=1,3
7484 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
7485 cgrad        enddo
7486 cgrad      enddo 
7487 cd      do iii=1,nres-3
7488 cd        write (2,*) iii,gcorr_loc(iii)
7489 cd      enddo
7490       eello4=ekont*eel4
7491 cd      write (2,*) 'ekont',ekont
7492 cd      write (iout,*) 'eello4',ekont*eel4
7493       return
7494       end
7495 C---------------------------------------------------------------------------
7496       double precision function eello5(i,j,k,l,jj,kk)
7497       implicit real*8 (a-h,o-z)
7498       include 'DIMENSIONS'
7499       include 'COMMON.IOUNITS'
7500       include 'COMMON.CHAIN'
7501       include 'COMMON.DERIV'
7502       include 'COMMON.INTERACT'
7503       include 'COMMON.CONTACTS'
7504 #ifdef MOMENT
7505       include 'COMMON.CONTACTS.MOMENT'
7506 #endif  
7507       include 'COMMON.TORSION'
7508       include 'COMMON.VAR'
7509       include 'COMMON.GEO'
7510       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
7511       double precision ggg1(3),ggg2(3)
7512 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7513 C                                                                              C
7514 C                            Parallel chains                                   C
7515 C                                                                              C
7516 C          o             o                   o             o                   C
7517 C         /l\           / \             \   / \           / \   /              C
7518 C        /   \         /   \             \ /   \         /   \ /               C
7519 C       j| o |l1       | o |              o| o |         | o |o                C
7520 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7521 C      \i/   \         /   \ /             /   \         /   \                 C
7522 C       o    k1             o                                                  C
7523 C         (I)          (II)                (III)          (IV)                 C
7524 C                                                                              C
7525 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7526 C                                                                              C
7527 C                            Antiparallel chains                               C
7528 C                                                                              C
7529 C          o             o                   o             o                   C
7530 C         /j\           / \             \   / \           / \   /              C
7531 C        /   \         /   \             \ /   \         /   \ /               C
7532 C      j1| o |l        | o |              o| o |         | o |o                C
7533 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
7534 C      \i/   \         /   \ /             /   \         /   \                 C
7535 C       o     k1            o                                                  C
7536 C         (I)          (II)                (III)          (IV)                 C
7537 C                                                                              C
7538 C      eello5_1        eello5_2            eello5_3       eello5_4             C
7539 C                                                                              C
7540 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
7541 C                                                                              C
7542 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7543 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
7544 cd        eello5=0.0d0
7545 cd        return
7546 cd      endif
7547 cd      write (iout,*)
7548 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
7549 cd     &   ' and',k,l
7550       itk=itortyp(itype(k))
7551       itl=itortyp(itype(l))
7552       itj=itortyp(itype(j))
7553       eello5_1=0.0d0
7554       eello5_2=0.0d0
7555       eello5_3=0.0d0
7556       eello5_4=0.0d0
7557 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
7558 cd     &   eel5_3_num,eel5_4_num)
7559       do iii=1,2
7560         do kkk=1,5
7561           do lll=1,3
7562             derx(lll,kkk,iii)=0.0d0
7563           enddo
7564         enddo
7565       enddo
7566 cd      eij=facont_hb(jj,i)
7567 cd      ekl=facont_hb(kk,k)
7568 cd      ekont=eij*ekl
7569 cd      write (iout,*)'Contacts have occurred for peptide groups',
7570 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
7571 cd      goto 1111
7572 C Contribution from the graph I.
7573 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
7574 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
7575       call transpose2(EUg(1,1,k),auxmat(1,1))
7576       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
7577       vv(1)=pizda(1,1)-pizda(2,2)
7578       vv(2)=pizda(1,2)+pizda(2,1)
7579       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
7580      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7581 C Explicit gradient in virtual-dihedral angles.
7582       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
7583      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
7584      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
7585       call transpose2(EUgder(1,1,k),auxmat1(1,1))
7586       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
7587       vv(1)=pizda(1,1)-pizda(2,2)
7588       vv(2)=pizda(1,2)+pizda(2,1)
7589       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7590      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
7591      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7592       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
7593       vv(1)=pizda(1,1)-pizda(2,2)
7594       vv(2)=pizda(1,2)+pizda(2,1)
7595       if (l.eq.j+1) then
7596         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
7597      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7598      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7599       else
7600         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
7601      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
7602      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
7603       endif 
7604 C Cartesian gradient
7605       do iii=1,2
7606         do kkk=1,5
7607           do lll=1,3
7608             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
7609      &        pizda(1,1))
7610             vv(1)=pizda(1,1)-pizda(2,2)
7611             vv(2)=pizda(1,2)+pizda(2,1)
7612             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7613      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
7614      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
7615           enddo
7616         enddo
7617       enddo
7618 c      goto 1112
7619 c1111  continue
7620 C Contribution from graph II 
7621       call transpose2(EE(1,1,itk),auxmat(1,1))
7622       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
7623       vv(1)=pizda(1,1)+pizda(2,2)
7624       vv(2)=pizda(2,1)-pizda(1,2)
7625       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
7626      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
7627 C Explicit gradient in virtual-dihedral angles.
7628       g_corr5_loc(k-1)=g_corr5_loc(k-1)
7629      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
7630       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
7631       vv(1)=pizda(1,1)+pizda(2,2)
7632       vv(2)=pizda(2,1)-pizda(1,2)
7633       if (l.eq.j+1) then
7634         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7635      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7636      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7637       else
7638         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7639      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
7640      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
7641       endif
7642 C Cartesian gradient
7643       do iii=1,2
7644         do kkk=1,5
7645           do lll=1,3
7646             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7647      &        pizda(1,1))
7648             vv(1)=pizda(1,1)+pizda(2,2)
7649             vv(2)=pizda(2,1)-pizda(1,2)
7650             derx(lll,kkk,iii)=derx(lll,kkk,iii)
7651      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
7652      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
7653           enddo
7654         enddo
7655       enddo
7656 cd      goto 1112
7657 cd1111  continue
7658       if (l.eq.j+1) then
7659 cd        goto 1110
7660 C Parallel orientation
7661 C Contribution from graph III
7662         call transpose2(EUg(1,1,l),auxmat(1,1))
7663         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7664         vv(1)=pizda(1,1)-pizda(2,2)
7665         vv(2)=pizda(1,2)+pizda(2,1)
7666         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
7667      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7668 C Explicit gradient in virtual-dihedral angles.
7669         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7670      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
7671      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
7672         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7673         vv(1)=pizda(1,1)-pizda(2,2)
7674         vv(2)=pizda(1,2)+pizda(2,1)
7675         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7676      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
7677      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7678         call transpose2(EUgder(1,1,l),auxmat1(1,1))
7679         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7680         vv(1)=pizda(1,1)-pizda(2,2)
7681         vv(2)=pizda(1,2)+pizda(2,1)
7682         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7683      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
7684      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
7685 C Cartesian gradient
7686         do iii=1,2
7687           do kkk=1,5
7688             do lll=1,3
7689               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7690      &          pizda(1,1))
7691               vv(1)=pizda(1,1)-pizda(2,2)
7692               vv(2)=pizda(1,2)+pizda(2,1)
7693               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7694      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
7695      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
7696             enddo
7697           enddo
7698         enddo
7699 cd        goto 1112
7700 C Contribution from graph IV
7701 cd1110    continue
7702         call transpose2(EE(1,1,itl),auxmat(1,1))
7703         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7704         vv(1)=pizda(1,1)+pizda(2,2)
7705         vv(2)=pizda(2,1)-pizda(1,2)
7706         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
7707      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
7708 C Explicit gradient in virtual-dihedral angles.
7709         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7710      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
7711         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7712         vv(1)=pizda(1,1)+pizda(2,2)
7713         vv(2)=pizda(2,1)-pizda(1,2)
7714         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7715      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
7716      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
7717 C Cartesian gradient
7718         do iii=1,2
7719           do kkk=1,5
7720             do lll=1,3
7721               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7722      &          pizda(1,1))
7723               vv(1)=pizda(1,1)+pizda(2,2)
7724               vv(2)=pizda(2,1)-pizda(1,2)
7725               derx(lll,kkk,iii)=derx(lll,kkk,iii)
7726      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
7727      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
7728             enddo
7729           enddo
7730         enddo
7731       else
7732 C Antiparallel orientation
7733 C Contribution from graph III
7734 c        goto 1110
7735         call transpose2(EUg(1,1,j),auxmat(1,1))
7736         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
7737         vv(1)=pizda(1,1)-pizda(2,2)
7738         vv(2)=pizda(1,2)+pizda(2,1)
7739         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
7740      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7741 C Explicit gradient in virtual-dihedral angles.
7742         g_corr5_loc(l-1)=g_corr5_loc(l-1)
7743      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
7744      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
7745         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
7746         vv(1)=pizda(1,1)-pizda(2,2)
7747         vv(2)=pizda(1,2)+pizda(2,1)
7748         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7749      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
7750      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7751         call transpose2(EUgder(1,1,j),auxmat1(1,1))
7752         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
7753         vv(1)=pizda(1,1)-pizda(2,2)
7754         vv(2)=pizda(1,2)+pizda(2,1)
7755         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7756      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
7757      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
7758 C Cartesian gradient
7759         do iii=1,2
7760           do kkk=1,5
7761             do lll=1,3
7762               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
7763      &          pizda(1,1))
7764               vv(1)=pizda(1,1)-pizda(2,2)
7765               vv(2)=pizda(1,2)+pizda(2,1)
7766               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7767      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
7768      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
7769             enddo
7770           enddo
7771         enddo
7772 cd        goto 1112
7773 C Contribution from graph IV
7774 1110    continue
7775         call transpose2(EE(1,1,itj),auxmat(1,1))
7776         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
7777         vv(1)=pizda(1,1)+pizda(2,2)
7778         vv(2)=pizda(2,1)-pizda(1,2)
7779         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
7780      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
7781 C Explicit gradient in virtual-dihedral angles.
7782         g_corr5_loc(j-1)=g_corr5_loc(j-1)
7783      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
7784         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
7785         vv(1)=pizda(1,1)+pizda(2,2)
7786         vv(2)=pizda(2,1)-pizda(1,2)
7787         g_corr5_loc(k-1)=g_corr5_loc(k-1)
7788      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
7789      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
7790 C Cartesian gradient
7791         do iii=1,2
7792           do kkk=1,5
7793             do lll=1,3
7794               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7795      &          pizda(1,1))
7796               vv(1)=pizda(1,1)+pizda(2,2)
7797               vv(2)=pizda(2,1)-pizda(1,2)
7798               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
7799      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
7800      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
7801             enddo
7802           enddo
7803         enddo
7804       endif
7805 1112  continue
7806       eel5=eello5_1+eello5_2+eello5_3+eello5_4
7807 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
7808 cd        write (2,*) 'ijkl',i,j,k,l
7809 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
7810 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
7811 cd      endif
7812 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
7813 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
7814 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
7815 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
7816       if (j.lt.nres-1) then
7817         j1=j+1
7818         j2=j-1
7819       else
7820         j1=j-1
7821         j2=j-2
7822       endif
7823       if (l.lt.nres-1) then
7824         l1=l+1
7825         l2=l-1
7826       else
7827         l1=l-1
7828         l2=l-2
7829       endif
7830 cd      eij=1.0d0
7831 cd      ekl=1.0d0
7832 cd      ekont=1.0d0
7833 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
7834 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
7835 C        summed up outside the subrouine as for the other subroutines 
7836 C        handling long-range interactions. The old code is commented out
7837 C        with "cgrad" to keep track of changes.
7838       do ll=1,3
7839 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
7840 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
7841         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
7842         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
7843 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
7844 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
7845 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
7846 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
7847 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
7848 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
7849 c     &   gradcorr5ij,
7850 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
7851 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
7852 cgrad        ghalf=0.5d0*ggg1(ll)
7853 cd        ghalf=0.0d0
7854         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
7855         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
7856         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
7857         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
7858         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
7859         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
7860 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
7861 cgrad        ghalf=0.5d0*ggg2(ll)
7862 cd        ghalf=0.0d0
7863         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
7864         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
7865         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
7866         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
7867         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
7868         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
7869       enddo
7870 cd      goto 1112
7871 cgrad      do m=i+1,j-1
7872 cgrad        do ll=1,3
7873 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
7874 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
7875 cgrad        enddo
7876 cgrad      enddo
7877 cgrad      do m=k+1,l-1
7878 cgrad        do ll=1,3
7879 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
7880 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
7881 cgrad        enddo
7882 cgrad      enddo
7883 c1112  continue
7884 cgrad      do m=i+2,j2
7885 cgrad        do ll=1,3
7886 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
7887 cgrad        enddo
7888 cgrad      enddo
7889 cgrad      do m=k+2,l2
7890 cgrad        do ll=1,3
7891 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
7892 cgrad        enddo
7893 cgrad      enddo 
7894 cd      do iii=1,nres-3
7895 cd        write (2,*) iii,g_corr5_loc(iii)
7896 cd      enddo
7897       eello5=ekont*eel5
7898 cd      write (2,*) 'ekont',ekont
7899 cd      write (iout,*) 'eello5',ekont*eel5
7900       return
7901       end
7902 c--------------------------------------------------------------------------
7903       double precision function eello6(i,j,k,l,jj,kk)
7904       implicit real*8 (a-h,o-z)
7905       include 'DIMENSIONS'
7906       include 'COMMON.IOUNITS'
7907       include 'COMMON.CHAIN'
7908       include 'COMMON.DERIV'
7909       include 'COMMON.INTERACT'
7910       include 'COMMON.CONTACTS'
7911 #ifdef MOMENT
7912       include 'COMMON.CONTACTS.MOMENT'
7913 #endif  
7914       include 'COMMON.TORSION'
7915       include 'COMMON.VAR'
7916       include 'COMMON.GEO'
7917       include 'COMMON.FFIELD'
7918       double precision ggg1(3),ggg2(3)
7919 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7920 cd        eello6=0.0d0
7921 cd        return
7922 cd      endif
7923 cd      write (iout,*)
7924 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
7925 cd     &   ' and',k,l
7926       eello6_1=0.0d0
7927       eello6_2=0.0d0
7928       eello6_3=0.0d0
7929       eello6_4=0.0d0
7930       eello6_5=0.0d0
7931       eello6_6=0.0d0
7932 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
7933 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
7934       do iii=1,2
7935         do kkk=1,5
7936           do lll=1,3
7937             derx(lll,kkk,iii)=0.0d0
7938           enddo
7939         enddo
7940       enddo
7941 cd      eij=facont_hb(jj,i)
7942 cd      ekl=facont_hb(kk,k)
7943 cd      ekont=eij*ekl
7944 cd      eij=1.0d0
7945 cd      ekl=1.0d0
7946 cd      ekont=1.0d0
7947       if (l.eq.j+1) then
7948         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7949         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
7950         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
7951         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7952         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
7953         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
7954       else
7955         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
7956         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
7957         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
7958         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
7959         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
7960           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7961         else
7962           eello6_5=0.0d0
7963         endif
7964         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
7965       endif
7966 C If turn contributions are considered, they will be handled separately.
7967       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
7968 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
7969 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
7970 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
7971 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
7972 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
7973 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
7974 cd      goto 1112
7975       if (j.lt.nres-1) then
7976         j1=j+1
7977         j2=j-1
7978       else
7979         j1=j-1
7980         j2=j-2
7981       endif
7982       if (l.lt.nres-1) then
7983         l1=l+1
7984         l2=l-1
7985       else
7986         l1=l-1
7987         l2=l-2
7988       endif
7989       do ll=1,3
7990 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
7991 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
7992 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
7993 cgrad        ghalf=0.5d0*ggg1(ll)
7994 cd        ghalf=0.0d0
7995         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
7996         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
7997         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
7998         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
7999         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8000         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8001         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8002         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8003 cgrad        ghalf=0.5d0*ggg2(ll)
8004 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8005 cd        ghalf=0.0d0
8006         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8007         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8008         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8009         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8010         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8011         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8012       enddo
8013 cd      goto 1112
8014 cgrad      do m=i+1,j-1
8015 cgrad        do ll=1,3
8016 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8017 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8018 cgrad        enddo
8019 cgrad      enddo
8020 cgrad      do m=k+1,l-1
8021 cgrad        do ll=1,3
8022 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8023 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8024 cgrad        enddo
8025 cgrad      enddo
8026 cgrad1112  continue
8027 cgrad      do m=i+2,j2
8028 cgrad        do ll=1,3
8029 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8030 cgrad        enddo
8031 cgrad      enddo
8032 cgrad      do m=k+2,l2
8033 cgrad        do ll=1,3
8034 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8035 cgrad        enddo
8036 cgrad      enddo 
8037 cd      do iii=1,nres-3
8038 cd        write (2,*) iii,g_corr6_loc(iii)
8039 cd      enddo
8040       eello6=ekont*eel6
8041 cd      write (2,*) 'ekont',ekont
8042 cd      write (iout,*) 'eello6',ekont*eel6
8043       return
8044       end
8045 c--------------------------------------------------------------------------
8046       double precision function eello6_graph1(i,j,k,l,imat,swap)
8047       implicit real*8 (a-h,o-z)
8048       include 'DIMENSIONS'
8049       include 'COMMON.IOUNITS'
8050       include 'COMMON.CHAIN'
8051       include 'COMMON.DERIV'
8052       include 'COMMON.INTERACT'
8053       include 'COMMON.CONTACTS'
8054 #ifdef MOMENT
8055       include 'COMMON.CONTACTS.MOMENT'
8056 #endif  
8057       include 'COMMON.TORSION'
8058       include 'COMMON.VAR'
8059       include 'COMMON.GEO'
8060       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8061       logical swap
8062       logical lprn
8063       common /kutas/ lprn
8064 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8065 C                                                                              C
8066 C      Parallel       Antiparallel                                             C
8067 C                                                                              C
8068 C          o             o                                                     C
8069 C         /l\           /j\                                                    C
8070 C        /   \         /   \                                                   C
8071 C       /| o |         | o |\                                                  C
8072 C     \ j|/k\|  /   \  |/k\|l /                                                C
8073 C      \ /   \ /     \ /   \ /                                                 C
8074 C       o     o       o     o                                                  C
8075 C       i             i                                                        C
8076 C                                                                              C
8077 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8078       itk=itortyp(itype(k))
8079       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8080       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8081       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8082       call transpose2(EUgC(1,1,k),auxmat(1,1))
8083       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8084       vv1(1)=pizda1(1,1)-pizda1(2,2)
8085       vv1(2)=pizda1(1,2)+pizda1(2,1)
8086       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8087       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8088       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8089       s5=scalar2(vv(1),Dtobr2(1,i))
8090 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8091       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8092       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8093      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8094      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8095      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8096      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8097      & +scalar2(vv(1),Dtobr2der(1,i)))
8098       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8099       vv1(1)=pizda1(1,1)-pizda1(2,2)
8100       vv1(2)=pizda1(1,2)+pizda1(2,1)
8101       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8102       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8103       if (l.eq.j+1) then
8104         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8105      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8106      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8107      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8108      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8109       else
8110         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8111      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8112      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8113      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8114      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8115       endif
8116       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8117       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8118       vv1(1)=pizda1(1,1)-pizda1(2,2)
8119       vv1(2)=pizda1(1,2)+pizda1(2,1)
8120       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8121      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8122      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8123      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8124       do iii=1,2
8125         if (swap) then
8126           ind=3-iii
8127         else
8128           ind=iii
8129         endif
8130         do kkk=1,5
8131           do lll=1,3
8132             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8133             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8134             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8135             call transpose2(EUgC(1,1,k),auxmat(1,1))
8136             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8137      &        pizda1(1,1))
8138             vv1(1)=pizda1(1,1)-pizda1(2,2)
8139             vv1(2)=pizda1(1,2)+pizda1(2,1)
8140             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8141             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8142      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8143             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8144      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8145             s5=scalar2(vv(1),Dtobr2(1,i))
8146             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8147           enddo
8148         enddo
8149       enddo
8150       return
8151       end
8152 c----------------------------------------------------------------------------
8153       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8154       implicit real*8 (a-h,o-z)
8155       include 'DIMENSIONS'
8156       include 'COMMON.IOUNITS'
8157       include 'COMMON.CHAIN'
8158       include 'COMMON.DERIV'
8159       include 'COMMON.INTERACT'
8160       include 'COMMON.CONTACTS'
8161 #ifdef MOMENT
8162       include 'COMMON.CONTACTS.MOMENT'
8163 #endif  
8164       include 'COMMON.TORSION'
8165       include 'COMMON.VAR'
8166       include 'COMMON.GEO'
8167       logical swap
8168       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8169      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8170       logical lprn
8171       common /kutas/ lprn
8172 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8173 C                                                                              C
8174 C      Parallel       Antiparallel                                             C
8175 C                                                                              C 
8176 C          o             o                                                     C
8177 C     \   /l\           /j\   /                                                C
8178 C      \ /   \         /   \ /                                                 C
8179 C       o| o |         | o |o                                                  C                   
8180 C     \ j|/k\|      \  |/k\|l                                                  C
8181 C      \ /   \       \ /   \                                                   C
8182 C       o             o                                                        C
8183 C       i             i                                                        C 
8184 C                                                                              C
8185 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8186 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8187 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8188 C           but not in a cluster cumulant
8189 #ifdef MOMENT
8190       s1=dip(1,jj,i)*dip(1,kk,k)
8191 #endif
8192       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8193       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8194       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8195       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8196       call transpose2(EUg(1,1,k),auxmat(1,1))
8197       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8198       vv(1)=pizda(1,1)-pizda(2,2)
8199       vv(2)=pizda(1,2)+pizda(2,1)
8200       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8201 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8202 #ifdef MOMENT
8203       eello6_graph2=-(s1+s2+s3+s4)
8204 #else
8205       eello6_graph2=-(s2+s3+s4)
8206 #endif
8207 c      eello6_graph2=-s3
8208 C Derivatives in gamma(i-1)
8209       if (i.gt.1) then
8210 #ifdef MOMENT
8211         s1=dipderg(1,jj,i)*dip(1,kk,k)
8212 #endif
8213         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8214         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8215         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8216         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8217 #ifdef MOMENT
8218         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8219 #else
8220         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8221 #endif
8222 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8223       endif
8224 C Derivatives in gamma(k-1)
8225 #ifdef MOMENT
8226       s1=dip(1,jj,i)*dipderg(1,kk,k)
8227 #endif
8228       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8229       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8230       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8231       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8232       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8233       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8234       vv(1)=pizda(1,1)-pizda(2,2)
8235       vv(2)=pizda(1,2)+pizda(2,1)
8236       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8237 #ifdef MOMENT
8238       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8239 #else
8240       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8241 #endif
8242 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8243 C Derivatives in gamma(j-1) or gamma(l-1)
8244       if (j.gt.1) then
8245 #ifdef MOMENT
8246         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8247 #endif
8248         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8249         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8250         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8251         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8252         vv(1)=pizda(1,1)-pizda(2,2)
8253         vv(2)=pizda(1,2)+pizda(2,1)
8254         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8255 #ifdef MOMENT
8256         if (swap) then
8257           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8258         else
8259           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8260         endif
8261 #endif
8262         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8263 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8264       endif
8265 C Derivatives in gamma(l-1) or gamma(j-1)
8266       if (l.gt.1) then 
8267 #ifdef MOMENT
8268         s1=dip(1,jj,i)*dipderg(3,kk,k)
8269 #endif
8270         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8271         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8272         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8273         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8274         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8275         vv(1)=pizda(1,1)-pizda(2,2)
8276         vv(2)=pizda(1,2)+pizda(2,1)
8277         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8278 #ifdef MOMENT
8279         if (swap) then
8280           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8281         else
8282           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8283         endif
8284 #endif
8285         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8286 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8287       endif
8288 C Cartesian derivatives.
8289       if (lprn) then
8290         write (2,*) 'In eello6_graph2'
8291         do iii=1,2
8292           write (2,*) 'iii=',iii
8293           do kkk=1,5
8294             write (2,*) 'kkk=',kkk
8295             do jjj=1,2
8296               write (2,'(3(2f10.5),5x)') 
8297      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8298             enddo
8299           enddo
8300         enddo
8301       endif
8302       do iii=1,2
8303         do kkk=1,5
8304           do lll=1,3
8305 #ifdef MOMENT
8306             if (iii.eq.1) then
8307               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8308             else
8309               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8310             endif
8311 #endif
8312             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8313      &        auxvec(1))
8314             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8315             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8316      &        auxvec(1))
8317             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8318             call transpose2(EUg(1,1,k),auxmat(1,1))
8319             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8320      &        pizda(1,1))
8321             vv(1)=pizda(1,1)-pizda(2,2)
8322             vv(2)=pizda(1,2)+pizda(2,1)
8323             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8324 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8325 #ifdef MOMENT
8326             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8327 #else
8328             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8329 #endif
8330             if (swap) then
8331               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8332             else
8333               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8334             endif
8335           enddo
8336         enddo
8337       enddo
8338       return
8339       end
8340 c----------------------------------------------------------------------------
8341       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8342       implicit real*8 (a-h,o-z)
8343       include 'DIMENSIONS'
8344       include 'COMMON.IOUNITS'
8345       include 'COMMON.CHAIN'
8346       include 'COMMON.DERIV'
8347       include 'COMMON.INTERACT'
8348       include 'COMMON.CONTACTS'
8349 #ifdef MOMENT
8350       include 'COMMON.CONTACTS.MOMENT'
8351 #endif  
8352       include 'COMMON.TORSION'
8353       include 'COMMON.VAR'
8354       include 'COMMON.GEO'
8355       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
8356       logical swap
8357 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8358 C                                                                              C
8359 C      Parallel       Antiparallel                                             C
8360 C                                                                              C
8361 C          o             o                                                     C
8362 C         /l\   /   \   /j\                                                    C
8363 C        /   \ /     \ /   \                                                   C
8364 C       /| o |o       o| o |\                                                  C
8365 C       j|/k\|  /      |/k\|l /                                                C
8366 C        /   \ /       /   \ /                                                 C
8367 C       /     o       /     o                                                  C
8368 C       i             i                                                        C
8369 C                                                                              C
8370 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8371 C
8372 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8373 C           energy moment and not to the cluster cumulant.
8374       iti=itortyp(itype(i))
8375       if (j.lt.nres-1) then
8376         itj1=itortyp(itype(j+1))
8377       else
8378         itj1=ntortyp+1
8379       endif
8380       itk=itortyp(itype(k))
8381       itk1=itortyp(itype(k+1))
8382       if (l.lt.nres-1) then
8383         itl1=itortyp(itype(l+1))
8384       else
8385         itl1=ntortyp+1
8386       endif
8387 #ifdef MOMENT
8388       s1=dip(4,jj,i)*dip(4,kk,k)
8389 #endif
8390       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
8391       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8392       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
8393       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8394       call transpose2(EE(1,1,itk),auxmat(1,1))
8395       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
8396       vv(1)=pizda(1,1)+pizda(2,2)
8397       vv(2)=pizda(2,1)-pizda(1,2)
8398       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8399 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
8400 cd     & "sum",-(s2+s3+s4)
8401 #ifdef MOMENT
8402       eello6_graph3=-(s1+s2+s3+s4)
8403 #else
8404       eello6_graph3=-(s2+s3+s4)
8405 #endif
8406 c      eello6_graph3=-s4
8407 C Derivatives in gamma(k-1)
8408       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
8409       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8410       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
8411       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
8412 C Derivatives in gamma(l-1)
8413       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
8414       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8415       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
8416       vv(1)=pizda(1,1)+pizda(2,2)
8417       vv(2)=pizda(2,1)-pizda(1,2)
8418       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8419       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
8420 C Cartesian derivatives.
8421       do iii=1,2
8422         do kkk=1,5
8423           do lll=1,3
8424 #ifdef MOMENT
8425             if (iii.eq.1) then
8426               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
8427             else
8428               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
8429             endif
8430 #endif
8431             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8432      &        auxvec(1))
8433             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
8434             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
8435      &        auxvec(1))
8436             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
8437             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
8438      &        pizda(1,1))
8439             vv(1)=pizda(1,1)+pizda(2,2)
8440             vv(2)=pizda(2,1)-pizda(1,2)
8441             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
8442 #ifdef MOMENT
8443             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8444 #else
8445             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8446 #endif
8447             if (swap) then
8448               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8449             else
8450               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8451             endif
8452 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
8453           enddo
8454         enddo
8455       enddo
8456       return
8457       end
8458 c----------------------------------------------------------------------------
8459       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
8460       implicit real*8 (a-h,o-z)
8461       include 'DIMENSIONS'
8462       include 'COMMON.IOUNITS'
8463       include 'COMMON.CHAIN'
8464       include 'COMMON.DERIV'
8465       include 'COMMON.INTERACT'
8466       include 'COMMON.CONTACTS'
8467 #ifdef MOMENT
8468       include 'COMMON.CONTACTS.MOMENT'
8469 #endif  
8470       include 'COMMON.TORSION'
8471       include 'COMMON.VAR'
8472       include 'COMMON.GEO'
8473       include 'COMMON.FFIELD'
8474       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8475      & auxvec1(2),auxmat1(2,2)
8476       logical swap
8477 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8478 C                                                                              C
8479 C      Parallel       Antiparallel                                             C
8480 C                                                                              C
8481 C          o             o                                                     C
8482 C         /l\   /   \   /j\                                                    C
8483 C        /   \ /     \ /   \                                                   C
8484 C       /| o |o       o| o |\                                                  C
8485 C     \ j|/k\|      \  |/k\|l                                                  C
8486 C      \ /   \       \ /   \                                                   C
8487 C       o     \       o     \                                                  C
8488 C       i             i                                                        C
8489 C                                                                              C
8490 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8491 C
8492 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
8493 C           energy moment and not to the cluster cumulant.
8494 cd      write (2,*) 'eello_graph4: wturn6',wturn6
8495       iti=itortyp(itype(i))
8496       itj=itortyp(itype(j))
8497       if (j.lt.nres-1) then
8498         itj1=itortyp(itype(j+1))
8499       else
8500         itj1=ntortyp+1
8501       endif
8502       itk=itortyp(itype(k))
8503       if (k.lt.nres-1) then
8504         itk1=itortyp(itype(k+1))
8505       else
8506         itk1=ntortyp+1
8507       endif
8508       itl=itortyp(itype(l))
8509       if (l.lt.nres-1) then
8510         itl1=itortyp(itype(l+1))
8511       else
8512         itl1=ntortyp+1
8513       endif
8514 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
8515 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
8516 cd     & ' itl',itl,' itl1',itl1
8517 #ifdef MOMENT
8518       if (imat.eq.1) then
8519         s1=dip(3,jj,i)*dip(3,kk,k)
8520       else
8521         s1=dip(2,jj,j)*dip(2,kk,l)
8522       endif
8523 #endif
8524       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
8525       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8526       if (j.eq.l+1) then
8527         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
8528         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8529       else
8530         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
8531         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8532       endif
8533       call transpose2(EUg(1,1,k),auxmat(1,1))
8534       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
8535       vv(1)=pizda(1,1)-pizda(2,2)
8536       vv(2)=pizda(2,1)+pizda(1,2)
8537       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8538 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8539 #ifdef MOMENT
8540       eello6_graph4=-(s1+s2+s3+s4)
8541 #else
8542       eello6_graph4=-(s2+s3+s4)
8543 #endif
8544 C Derivatives in gamma(i-1)
8545       if (i.gt.1) then
8546 #ifdef MOMENT
8547         if (imat.eq.1) then
8548           s1=dipderg(2,jj,i)*dip(3,kk,k)
8549         else
8550           s1=dipderg(4,jj,j)*dip(2,kk,l)
8551         endif
8552 #endif
8553         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8554         if (j.eq.l+1) then
8555           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
8556           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8557         else
8558           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
8559           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8560         endif
8561         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8562         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8563 cd          write (2,*) 'turn6 derivatives'
8564 #ifdef MOMENT
8565           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
8566 #else
8567           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
8568 #endif
8569         else
8570 #ifdef MOMENT
8571           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8572 #else
8573           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8574 #endif
8575         endif
8576       endif
8577 C Derivatives in gamma(k-1)
8578 #ifdef MOMENT
8579       if (imat.eq.1) then
8580         s1=dip(3,jj,i)*dipderg(2,kk,k)
8581       else
8582         s1=dip(2,jj,j)*dipderg(4,kk,l)
8583       endif
8584 #endif
8585       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
8586       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
8587       if (j.eq.l+1) then
8588         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
8589         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
8590       else
8591         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
8592         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
8593       endif
8594       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8595       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
8596       vv(1)=pizda(1,1)-pizda(2,2)
8597       vv(2)=pizda(2,1)+pizda(1,2)
8598       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8599       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8600 #ifdef MOMENT
8601         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
8602 #else
8603         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
8604 #endif
8605       else
8606 #ifdef MOMENT
8607         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8608 #else
8609         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8610 #endif
8611       endif
8612 C Derivatives in gamma(j-1) or gamma(l-1)
8613       if (l.eq.j+1 .and. l.gt.1) then
8614         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8615         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8616         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8617         vv(1)=pizda(1,1)-pizda(2,2)
8618         vv(2)=pizda(2,1)+pizda(1,2)
8619         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8620         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
8621       else if (j.gt.1) then
8622         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
8623         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8624         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
8625         vv(1)=pizda(1,1)-pizda(2,2)
8626         vv(2)=pizda(2,1)+pizda(1,2)
8627         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8628         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8629           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
8630         else
8631           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
8632         endif
8633       endif
8634 C Cartesian derivatives.
8635       do iii=1,2
8636         do kkk=1,5
8637           do lll=1,3
8638 #ifdef MOMENT
8639             if (iii.eq.1) then
8640               if (imat.eq.1) then
8641                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
8642               else
8643                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
8644               endif
8645             else
8646               if (imat.eq.1) then
8647                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
8648               else
8649                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
8650               endif
8651             endif
8652 #endif
8653             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
8654      &        auxvec(1))
8655             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
8656             if (j.eq.l+1) then
8657               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8658      &          b1(1,itj1),auxvec(1))
8659               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
8660             else
8661               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
8662      &          b1(1,itl1),auxvec(1))
8663               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
8664             endif
8665             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8666      &        pizda(1,1))
8667             vv(1)=pizda(1,1)-pizda(2,2)
8668             vv(2)=pizda(2,1)+pizda(1,2)
8669             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
8670             if (swap) then
8671               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
8672 #ifdef MOMENT
8673                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8674      &             -(s1+s2+s4)
8675 #else
8676                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
8677      &             -(s2+s4)
8678 #endif
8679                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
8680               else
8681 #ifdef MOMENT
8682                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
8683 #else
8684                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
8685 #endif
8686                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8687               endif
8688             else
8689 #ifdef MOMENT
8690               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8691 #else
8692               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8693 #endif
8694               if (l.eq.j+1) then
8695                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8696               else 
8697                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8698               endif
8699             endif 
8700           enddo
8701         enddo
8702       enddo
8703       return
8704       end
8705 c----------------------------------------------------------------------------
8706       double precision function eello_turn6(i,jj,kk)
8707       implicit real*8 (a-h,o-z)
8708       include 'DIMENSIONS'
8709       include 'COMMON.IOUNITS'
8710       include 'COMMON.CHAIN'
8711       include 'COMMON.DERIV'
8712       include 'COMMON.INTERACT'
8713       include 'COMMON.CONTACTS'
8714 #ifdef MOMENT
8715       include 'COMMON.CONTACTS.MOMENT'
8716 #endif  
8717       include 'COMMON.TORSION'
8718       include 'COMMON.VAR'
8719       include 'COMMON.GEO'
8720       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
8721      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
8722      &  ggg1(3),ggg2(3)
8723       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
8724      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
8725 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
8726 C           the respective energy moment and not to the cluster cumulant.
8727       s1=0.0d0
8728       s8=0.0d0
8729       s13=0.0d0
8730 c
8731       eello_turn6=0.0d0
8732       j=i+4
8733       k=i+1
8734       l=i+3
8735       iti=itortyp(itype(i))
8736       itk=itortyp(itype(k))
8737       itk1=itortyp(itype(k+1))
8738       itl=itortyp(itype(l))
8739       itj=itortyp(itype(j))
8740 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
8741 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
8742 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8743 cd        eello6=0.0d0
8744 cd        return
8745 cd      endif
8746 cd      write (iout,*)
8747 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8748 cd     &   ' and',k,l
8749 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
8750       do iii=1,2
8751         do kkk=1,5
8752           do lll=1,3
8753             derx_turn(lll,kkk,iii)=0.0d0
8754           enddo
8755         enddo
8756       enddo
8757 cd      eij=1.0d0
8758 cd      ekl=1.0d0
8759 cd      ekont=1.0d0
8760       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8761 cd      eello6_5=0.0d0
8762 cd      write (2,*) 'eello6_5',eello6_5
8763 #ifdef MOMENT
8764       call transpose2(AEA(1,1,1),auxmat(1,1))
8765       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
8766       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
8767       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
8768 #endif
8769       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8770       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
8771       s2 = scalar2(b1(1,itk),vtemp1(1))
8772 #ifdef MOMENT
8773       call transpose2(AEA(1,1,2),atemp(1,1))
8774       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
8775       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
8776       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8777 #endif
8778       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
8779       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
8780       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
8781 #ifdef MOMENT
8782       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
8783       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
8784       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
8785       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
8786       ss13 = scalar2(b1(1,itk),vtemp4(1))
8787       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
8788 #endif
8789 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
8790 c      s1=0.0d0
8791 c      s2=0.0d0
8792 c      s8=0.0d0
8793 c      s12=0.0d0
8794 c      s13=0.0d0
8795       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
8796 C Derivatives in gamma(i+2)
8797       s1d =0.0d0
8798       s8d =0.0d0
8799 #ifdef MOMENT
8800       call transpose2(AEA(1,1,1),auxmatd(1,1))
8801       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8802       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8803       call transpose2(AEAderg(1,1,2),atempd(1,1))
8804       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8805       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8806 #endif
8807       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
8808       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8809       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8810 c      s1d=0.0d0
8811 c      s2d=0.0d0
8812 c      s8d=0.0d0
8813 c      s12d=0.0d0
8814 c      s13d=0.0d0
8815       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
8816 C Derivatives in gamma(i+3)
8817 #ifdef MOMENT
8818       call transpose2(AEA(1,1,1),auxmatd(1,1))
8819       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8820       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
8821       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
8822 #endif
8823       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
8824       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
8825       s2d = scalar2(b1(1,itk),vtemp1d(1))
8826 #ifdef MOMENT
8827       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
8828       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
8829 #endif
8830       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
8831 #ifdef MOMENT
8832       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
8833       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8834       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8835 #endif
8836 c      s1d=0.0d0
8837 c      s2d=0.0d0
8838 c      s8d=0.0d0
8839 c      s12d=0.0d0
8840 c      s13d=0.0d0
8841 #ifdef MOMENT
8842       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8843      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8844 #else
8845       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
8846      &               -0.5d0*ekont*(s2d+s12d)
8847 #endif
8848 C Derivatives in gamma(i+4)
8849       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
8850       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8851       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8852 #ifdef MOMENT
8853       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
8854       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
8855       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
8856 #endif
8857 c      s1d=0.0d0
8858 c      s2d=0.0d0
8859 c      s8d=0.0d0
8860 C      s12d=0.0d0
8861 c      s13d=0.0d0
8862 #ifdef MOMENT
8863       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
8864 #else
8865       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
8866 #endif
8867 C Derivatives in gamma(i+5)
8868 #ifdef MOMENT
8869       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
8870       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8871       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8872 #endif
8873       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
8874       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
8875       s2d = scalar2(b1(1,itk),vtemp1d(1))
8876 #ifdef MOMENT
8877       call transpose2(AEA(1,1,2),atempd(1,1))
8878       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
8879       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
8880 #endif
8881       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
8882       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8883 #ifdef MOMENT
8884       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
8885       ss13d = scalar2(b1(1,itk),vtemp4d(1))
8886       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8887 #endif
8888 c      s1d=0.0d0
8889 c      s2d=0.0d0
8890 c      s8d=0.0d0
8891 c      s12d=0.0d0
8892 c      s13d=0.0d0
8893 #ifdef MOMENT
8894       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8895      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
8896 #else
8897       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
8898      &               -0.5d0*ekont*(s2d+s12d)
8899 #endif
8900 C Cartesian derivatives
8901       do iii=1,2
8902         do kkk=1,5
8903           do lll=1,3
8904 #ifdef MOMENT
8905             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
8906             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
8907             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
8908 #endif
8909             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
8910             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
8911      &          vtemp1d(1))
8912             s2d = scalar2(b1(1,itk),vtemp1d(1))
8913 #ifdef MOMENT
8914             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
8915             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
8916             s8d = -(atempd(1,1)+atempd(2,2))*
8917      &           scalar2(cc(1,1,itl),vtemp2(1))
8918 #endif
8919             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
8920      &           auxmatd(1,1))
8921             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
8922             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
8923 c      s1d=0.0d0
8924 c      s2d=0.0d0
8925 c      s8d=0.0d0
8926 c      s12d=0.0d0
8927 c      s13d=0.0d0
8928 #ifdef MOMENT
8929             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8930      &        - 0.5d0*(s1d+s2d)
8931 #else
8932             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
8933      &        - 0.5d0*s2d
8934 #endif
8935 #ifdef MOMENT
8936             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8937      &        - 0.5d0*(s8d+s12d)
8938 #else
8939             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
8940      &        - 0.5d0*s12d
8941 #endif
8942           enddo
8943         enddo
8944       enddo
8945 #ifdef MOMENT
8946       do kkk=1,5
8947         do lll=1,3
8948           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
8949      &      achuj_tempd(1,1))
8950           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
8951           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
8952           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
8953           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
8954           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
8955      &      vtemp4d(1)) 
8956           ss13d = scalar2(b1(1,itk),vtemp4d(1))
8957           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
8958           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
8959         enddo
8960       enddo
8961 #endif
8962 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
8963 cd     &  16*eel_turn6_num
8964 cd      goto 1112
8965       if (j.lt.nres-1) then
8966         j1=j+1
8967         j2=j-1
8968       else
8969         j1=j-1
8970         j2=j-2
8971       endif
8972       if (l.lt.nres-1) then
8973         l1=l+1
8974         l2=l-1
8975       else
8976         l1=l-1
8977         l2=l-2
8978       endif
8979       do ll=1,3
8980 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
8981 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
8982 cgrad        ghalf=0.5d0*ggg1(ll)
8983 cd        ghalf=0.0d0
8984         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
8985         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
8986         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
8987      &    +ekont*derx_turn(ll,2,1)
8988         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
8989         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
8990      &    +ekont*derx_turn(ll,4,1)
8991         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
8992         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
8993         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
8994 cgrad        ghalf=0.5d0*ggg2(ll)
8995 cd        ghalf=0.0d0
8996         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
8997      &    +ekont*derx_turn(ll,2,2)
8998         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
8999         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9000      &    +ekont*derx_turn(ll,4,2)
9001         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9002         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9003         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9004       enddo
9005 cd      goto 1112
9006 cgrad      do m=i+1,j-1
9007 cgrad        do ll=1,3
9008 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9009 cgrad        enddo
9010 cgrad      enddo
9011 cgrad      do m=k+1,l-1
9012 cgrad        do ll=1,3
9013 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9014 cgrad        enddo
9015 cgrad      enddo
9016 cgrad1112  continue
9017 cgrad      do m=i+2,j2
9018 cgrad        do ll=1,3
9019 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9020 cgrad        enddo
9021 cgrad      enddo
9022 cgrad      do m=k+2,l2
9023 cgrad        do ll=1,3
9024 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9025 cgrad        enddo
9026 cgrad      enddo 
9027 cd      do iii=1,nres-3
9028 cd        write (2,*) iii,g_corr6_loc(iii)
9029 cd      enddo
9030       eello_turn6=ekont*eel_turn6
9031 cd      write (2,*) 'ekont',ekont
9032 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9033       return
9034       end
9035
9036 C-----------------------------------------------------------------------------
9037       double precision function scalar(u,v)
9038 !DIR$ INLINEALWAYS scalar
9039 #ifndef OSF
9040 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9041 #endif
9042       implicit none
9043       double precision u(3),v(3)
9044 cd      double precision sc
9045 cd      integer i
9046 cd      sc=0.0d0
9047 cd      do i=1,3
9048 cd        sc=sc+u(i)*v(i)
9049 cd      enddo
9050 cd      scalar=sc
9051
9052       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9053       return
9054       end
9055 crc-------------------------------------------------
9056       SUBROUTINE MATVEC2(A1,V1,V2)
9057 !DIR$ INLINEALWAYS MATVEC2
9058 #ifndef OSF
9059 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9060 #endif
9061       implicit real*8 (a-h,o-z)
9062       include 'DIMENSIONS'
9063       DIMENSION A1(2,2),V1(2),V2(2)
9064 c      DO 1 I=1,2
9065 c        VI=0.0
9066 c        DO 3 K=1,2
9067 c    3     VI=VI+A1(I,K)*V1(K)
9068 c        Vaux(I)=VI
9069 c    1 CONTINUE
9070
9071       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9072       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9073
9074       v2(1)=vaux1
9075       v2(2)=vaux2
9076       END
9077 C---------------------------------------
9078       SUBROUTINE MATMAT2(A1,A2,A3)
9079 #ifndef OSF
9080 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9081 #endif
9082       implicit real*8 (a-h,o-z)
9083       include 'DIMENSIONS'
9084       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9085 c      DIMENSION AI3(2,2)
9086 c        DO  J=1,2
9087 c          A3IJ=0.0
9088 c          DO K=1,2
9089 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9090 c          enddo
9091 c          A3(I,J)=A3IJ
9092 c       enddo
9093 c      enddo
9094
9095       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9096       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9097       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9098       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9099
9100       A3(1,1)=AI3_11
9101       A3(2,1)=AI3_21
9102       A3(1,2)=AI3_12
9103       A3(2,2)=AI3_22
9104       END
9105
9106 c-------------------------------------------------------------------------
9107       double precision function scalar2(u,v)
9108 !DIR$ INLINEALWAYS scalar2
9109       implicit none
9110       double precision u(2),v(2)
9111       double precision sc
9112       integer i
9113       scalar2=u(1)*v(1)+u(2)*v(2)
9114       return
9115       end
9116
9117 C-----------------------------------------------------------------------------
9118
9119       subroutine transpose2(a,at)
9120 !DIR$ INLINEALWAYS transpose2
9121 #ifndef OSF
9122 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9123 #endif
9124       implicit none
9125       double precision a(2,2),at(2,2)
9126       at(1,1)=a(1,1)
9127       at(1,2)=a(2,1)
9128       at(2,1)=a(1,2)
9129       at(2,2)=a(2,2)
9130       return
9131       end
9132 c--------------------------------------------------------------------------
9133       subroutine transpose(n,a,at)
9134       implicit none
9135       integer n,i,j
9136       double precision a(n,n),at(n,n)
9137       do i=1,n
9138         do j=1,n
9139           at(j,i)=a(i,j)
9140         enddo
9141       enddo
9142       return
9143       end
9144 C---------------------------------------------------------------------------
9145       subroutine prodmat3(a1,a2,kk,transp,prod)
9146 !DIR$ INLINEALWAYS prodmat3
9147 #ifndef OSF
9148 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9149 #endif
9150       implicit none
9151       integer i,j
9152       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9153       logical transp
9154 crc      double precision auxmat(2,2),prod_(2,2)
9155
9156       if (transp) then
9157 crc        call transpose2(kk(1,1),auxmat(1,1))
9158 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9159 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9160         
9161            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9162      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9163            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9164      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9165            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9166      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9167            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9168      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9169
9170       else
9171 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9172 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9173
9174            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9175      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9176            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9177      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9178            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9179      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9180            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9181      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9182
9183       endif
9184 c      call transpose2(a2(1,1),a2t(1,1))
9185
9186 crc      print *,transp
9187 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9188 crc      print *,((prod(i,j),i=1,2),j=1,2)
9189
9190       return
9191       end
9192