zmiany w wydruku
[unres.git] / source / unres / src_MD-M / energy_p_new_barrier.F
index 734acc1..be38729 100644 (file)
@@ -296,6 +296,8 @@ C
       energia(17)=estr
       energia(20)=Uconst+Uconst_back
       energia(21)=esccor
+c    Here are the energies showed per procesor if the are more processors 
+c    per molecule then we sum it up in sum_energy subroutine 
 c      print *," Processor",myrank," calls SUM_ENERGY"
       call sum_energy(energia,.true.)
 c      print *," Processor",myrank," left SUM_ENERGY"
@@ -387,14 +389,14 @@ cMS$ATTRIBUTES C ::  proc_proc
 #ifdef SPLITELE
       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
      & +wang*ebe+wtor*etors+wscloc*escloc
-     & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
+     & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
      & +wbond*estr+Uconst+wsccor*esccor
 #else
       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
      & +wang*ebe+wtor*etors+wscloc*escloc
-     & +wstrain*ehpb+nss*ebr+wcorr*ecorr+wcorr5*ecorr5
+     & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
      & +wbond*estr+Uconst+wsccor*esccor
@@ -434,7 +436,7 @@ cMS$ATTRIBUTES C ::  proc_proc
 #ifdef MPI
       include 'mpif.h'
       double precision gradbufc(3,maxres),gradbufx(3,maxres),
-     &  glocbuf(4*maxres),gradbufc_sum(3,maxres)
+     &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
 #endif
       include 'COMMON.SETUP'
       include 'COMMON.IOUNITS'
@@ -447,6 +449,7 @@ cMS$ATTRIBUTES C ::  proc_proc
       include 'COMMON.CONTROL'
       include 'COMMON.TIME1'
       include 'COMMON.MAXGRAD'
+      include 'COMMON.SCCOR'
 #ifdef TIMING
       time01=MPI_Wtime()
 #endif
@@ -689,7 +692,6 @@ c      enddo
      &   +wturn3*gel_loc_turn3(i)
      &   +wturn6*gel_loc_turn6(i)
      &   +wel_loc*gel_loc_loc(i)
-     &   +wsccor*gsccor_loc(i)
       enddo
 #ifdef DEBUG
       write (iout,*) "gloc after adding corr"
@@ -708,6 +710,21 @@ c      enddo
         do i=1,4*nres
           glocbuf(i)=gloc(i,icg)
         enddo
+#define DEBUG
+#ifdef DEBUG
+      write (iout,*) "gloc_sc before reduce"
+      do i=1,nres
+       do j=1,1
+        write (iout,*) i,j,gloc_sc(j,i,icg)
+       enddo
+      enddo
+#endif
+#undef DEBUG
+        do i=1,nres
+         do j=1,3
+          gloc_scbuf(j,i)=gloc_sc(j,i,icg)
+         enddo
+        enddo
         time00=MPI_Wtime()
         call MPI_Barrier(FG_COMM,IERR)
         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
@@ -719,6 +736,19 @@ c      enddo
         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
         time_reduce=time_reduce+MPI_Wtime()-time00
+        call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
+     &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
+        time_reduce=time_reduce+MPI_Wtime()-time00
+#define DEBUG
+#ifdef DEBUG
+      write (iout,*) "gloc_sc after reduce"
+      do i=1,nres
+       do j=1,1
+        write (iout,*) i,j,gloc_sc(j,i,icg)
+       enddo
+      enddo
+#endif
+#undef DEBUG
 #ifdef DEBUG
       write (iout,*) "gloc after reduce"
       do i=1,4*nres
@@ -1026,7 +1056,7 @@ c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
       evdw=0.0D0
       do i=iatsc_s,iatsc_e
         itypi=iabs(itype(i))
-        if (itypi.eq.21) cycle
+        if (itypi.eq.ntyp1) cycle
         itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
@@ -1041,7 +1071,7 @@ cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
 cd   &                  'iend=',iend(i,iint)
           do j=istart(i,iint),iend(i,iint)
             itypj=iabs(itype(j)) 
-            if (itypj.eq.21) cycle
+            if (itypj.eq.ntyp1) cycle
             xj=c(1,nres+j)-xi
             yj=c(2,nres+j)-yi
             zj=c(3,nres+j)-zi
@@ -1179,7 +1209,7 @@ c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
       evdw=0.0D0
       do i=iatsc_s,iatsc_e
         itypi=iabs(itype(i))
-        if (itypi.eq.21) cycle
+        if (itypi.eq.ntyp1) cycle
         itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
@@ -1190,7 +1220,7 @@ C
         do iint=1,nint_gr(i)
           do j=istart(i,iint),iend(i,iint)
             itypj=iabs(itype(j))
-            if (itypj.eq.21) cycle
+            if (itypj.eq.ntyp1) cycle
             xj=c(1,nres+j)-xi
             yj=c(2,nres+j)-yi
             zj=c(3,nres+j)-zi
@@ -1272,7 +1302,7 @@ c     endif
       ind=0
       do i=iatsc_s,iatsc_e
         itypi=iabs(itype(i))
-        if (itypi.eq.21) cycle
+        if (itypi.eq.ntyp1) cycle
         itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
@@ -1289,7 +1319,7 @@ C
           do j=istart(i,iint),iend(i,iint)
             ind=ind+1
             itypj=iabs(itype(j))
-            if (itypj.eq.21) cycle
+            if (itypj.eq.ntyp1) cycle
 c            dscj_inv=dsc_inv(itypj)
             dscj_inv=vbld_inv(j+nres)
             chi1=chi(itypi,itypj)
@@ -1392,7 +1422,7 @@ c     if (icall.eq.0) lprn=.false.
       ind=0
       do i=iatsc_s,iatsc_e
         itypi=iabs(itype(i))
-        if (itypi.eq.21) cycle
+        if (itypi.eq.ntyp1) cycle
         itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
@@ -1411,7 +1441,7 @@ C
           do j=istart(i,iint),iend(i,iint)
             ind=ind+1
             itypj=iabs(itype(j))
-            if (itypj.eq.21) cycle
+            if (itypj.eq.ntyp1) cycle
 c            dscj_inv=dsc_inv(itypj)
             dscj_inv=vbld_inv(j+nres)
 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
@@ -1537,7 +1567,7 @@ c     if (icall.eq.0) lprn=.true.
       ind=0
       do i=iatsc_s,iatsc_e
         itypi=iabs(itype(i))
-        if (itypi.eq.21) cycle
+        if (itypi.eq.ntyp1) cycle
         itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
@@ -1554,7 +1584,7 @@ C
           do j=istart(i,iint),iend(i,iint)
             ind=ind+1
             itypj=iabs(itype(j))
-            if (itypj.eq.21) cycle
+            if (itypj.eq.ntyp1) cycle
 c            dscj_inv=dsc_inv(itypj)
             dscj_inv=vbld_inv(j+nres)
             sig0ij=sigma(itypi,itypj)
@@ -1785,7 +1815,7 @@ cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
       evdw=0.0D0
       do i=iatsc_s,iatsc_e
         itypi=iabs(itype(i))
-        if (itypi.eq.21) cycle
+        if (itypi.eq.ntyp1) cycle
         itypi1=iabs(itype(i+1))
         xi=c(1,nres+i)
         yi=c(2,nres+i)
@@ -1798,7 +1828,7 @@ cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
 cd   &                  'iend=',iend(i,iint)
           do j=istart(i,iint),iend(i,iint)
             itypj=iabs(itype(j))
-            if (itypj.eq.21) cycle
+            if (itypj.eq.ntyp1) cycle
             xj=c(1,nres+j)-xi
             yj=c(2,nres+j)-yi
             zj=c(3,nres+j)-zi
@@ -1866,7 +1896,7 @@ cd      write(iout,*) 'In EELEC_soft_sphere'
       eello_turn4=0.0d0
       ind=0
       do i=iatel_s,iatel_e
-        if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
@@ -1876,7 +1906,7 @@ cd      write(iout,*) 'In EELEC_soft_sphere'
         num_conti=0
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         do j=ielstart(i),ielend(i)
-          if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle
+          if (itype(j).eq.ntyp1 .or. itype(j+1).eq.ntyp1) cycle
           ind=ind+1
           iteli=itel(i)
           itelj=itel(j)
 C Compute the virtual-bond-torsional-angle dependent quantities needed
 C to calculate the el-loc multibody terms of various order.
 C
+      write(iout,*) 'nphi=',nphi,nres
+#ifdef PARMAT
+      do i=ivec_start+2,ivec_end+2
+#else
+      do i=3,nres+1
+#endif
+#ifdef NEWCORR
+        if (i.gt. nnt+2 .and. i.lt.nct+2) then
+          iti = itortyp(itype(i-2))
+        else
+          iti=ntortyp+1
+        endif
+c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
+        if (i.gt. nnt+1 .and. i.lt.nct+1) then
+          iti1 = itortyp(itype(i-1))
+        else
+          iti1=ntortyp+1
+        endif
+c        write(iout,*),i
+        b1(1,i-2)=bnew1(1,1,iti)*sin(theta(i-1)/2.0)
+     &           +bnew1(2,1,iti)*sin(theta(i-1))
+     &           +bnew1(3,1,iti)*cos(theta(i-1)/2.0)
+        gtb1(1,i-2)=bnew1(1,1,iti)*cos(theta(i-1)/2.0)/2.0
+     &             +bnew1(2,1,iti)*cos(theta(i-1))
+     &             -bnew1(3,1,iti)*sin(theta(i-1)/2.0)/2.0
+c     &           +bnew1(3,1,iti)*sin(alpha(i))*cos(beta(i))
+c     &*(cos(theta(i)/2.0)
+        b2(1,i-2)=bnew2(1,1,iti)*sin(theta(i-1)/2.0)
+     &           +bnew2(2,1,iti)*sin(theta(i-1))
+     &           +bnew2(3,1,iti)*cos(theta(i-1)/2.0)
+c     &           +bnew2(3,1,iti)*sin(alpha(i))*cos(beta(i))
+c     &*(cos(theta(i)/2.0)
+        gtb2(1,i-2)=bnew2(1,1,iti)*cos(theta(i-1)/2.0)/2.0
+     &             +bnew2(2,1,iti)*cos(theta(i-1))
+     &             -bnew2(3,1,iti)*sin(theta(i-1)/2.0)/2.0
+c        if (ggb1(1,i).eq.0.0d0) then
+c        write(iout,*) 'i=',i,ggb1(1,i),
+c     &bnew1(1,1,iti)*cos(theta(i)/2.0)/2.0,
+c     &bnew1(2,1,iti)*cos(theta(i)),
+c     &bnew1(3,1,iti)*sin(theta(i)/2.0)/2.0
+c        endif
+        b1(2,i-2)=bnew1(1,2,iti)
+        gtb1(2,i-2)=0.0
+        b2(2,i-2)=bnew2(1,2,iti)
+        gtb2(2,i-2)=0.0
+        EE(1,1,i-2)=eenew(1,iti)*dcos(theta(i-1))
+        EE(1,2,i-2)=eeold(1,2,iti)
+        EE(2,1,i-2)=eeold(2,1,iti)
+        EE(2,2,i-2)=eeold(2,2,iti)
+        gtEE(1,1,i-2)=-eenew(1,iti)*dsin(theta(i-1))
+        gtEE(1,2,i-2)=0.0d0
+        gtEE(2,2,i-2)=0.0d0
+        gtEE(2,1,i-2)=0.0d0
+c        EE(2,2,iti)=0.0d0
+c        EE(1,2,iti)=0.5d0*eenew(1,iti)
+c        EE(2,1,iti)=0.5d0*eenew(1,iti)
+c        b1(2,iti)=bnew1(1,2,iti)*sin(alpha(i))*sin(beta(i))
+c        b2(2,iti)=bnew2(1,2,iti)*sin(alpha(i))*sin(beta(i))
+       b1tilde(1,i-2)=b1(1,i-2)
+       b1tilde(2,i-2)=-b1(2,i-2)
+       b2tilde(1,i-2)=b2(1,i-2)
+       b2tilde(2,i-2)=-b2(2,i-2)
+c       write (iout,*) 'i=',i-2,gtb1(2,i-2),gtb1(1,i-2)
+c       write (iout,*) 'theta=', theta(i-1)
+       enddo
 #ifdef PARMAT
       do i=ivec_start+2,ivec_end+2
 #else
       do i=3,nres+1
 #endif
+#endif
         if (i .lt. nres+1) then
           sin1=dsin(phi(i))
           cos1=dcos(phi(i))
@@ -2311,8 +2407,18 @@ cd        write (iout,*) 'b2',b2(:,iti)
 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
 c        if (i .gt. iatel_s+2) then
         if (i .gt. nnt+2) then
-          call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
-          call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
+          call matvec2(Ug(1,1,i-2),b2(1,i-2),Ub2(1,i-2))
+#ifdef NEWCORR
+          call matvec2(Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2))
+c          write (iout,*) Ug(1,1,i-2),gtb2(1,i-2),gUb2(1,i-2),"chuj"
+#endif
+c          write(iout,*) "co jest kurwa", iti, EE(1,1,iti),EE(2,1,iti),
+c     &    EE(1,2,iti),EE(2,2,iti)
+          call matmat2(EE(1,1,i-2),Ug(1,1,i-2),EUg(1,1,i-2))
+          call matmat2(gtEE(1,1,i-2),Ug(1,1,i-2),gtEUg(1,1,i-2))
+c          write(iout,*) "Macierz EUG",
+c     &    eug(1,1,i-2),eug(1,2,i-2),eug(2,1,i-2),
+c     &    eug(2,2,i-2)
           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
      &    then
           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
@@ -2334,19 +2440,23 @@ c        if (i .gt. iatel_s+2) then
             enddo
           enddo
         endif
-        call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
-        call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
+        call matvec2(Ugder(1,1,i-2),b2(1,i-2),Ub2der(1,i-2))
+        call matmat2(EE(1,1,i-2),Ugder(1,1,i-2),EUgder(1,1,i-2))
         do k=1,2
           muder(k,i-2)=Ub2der(k,i-2)
         enddo
 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
         if (i.gt. nnt+1 .and. i.lt.nct+1) then
-          iti1 = itortyp(itype(i-1))
+          if (itype(i-1).le.ntyp) then
+            iti1 = itortyp(itype(i-1))
+          else
+            iti1=ntortyp+1
+          endif
         else
           iti1=ntortyp+1
         endif
         do k=1,2
-          mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
+          mu(k,i-2)=Ub2(k,i-2)+b1(k,i-1)
         enddo
 cd        write (iout,*) 'mu ',mu(:,i-2)
 cd        write (iout,*) 'mu1',mu1(:,i-2)
@@ -2359,7 +2469,7 @@ cd        write (iout,*) 'mu2',mu2(:,i-2)
         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
 C Vectors and matrices dependent on a single virtual-bond dihedral.
-        call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
+        call matvec2(DD(1,1,iti),b1tilde(1,i-1),auxvec(1))
         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
@@ -2675,7 +2785,7 @@ C
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij(4)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
      &    num_conti,j1,j2
@@ -2755,8 +2865,8 @@ C
 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
 C
       do i=iturn3_start,iturn3_end
-        if (itype(i).eq.21 .or. itype(i+1).eq.21 
-     &  .or. itype(i+2).eq.21 .or. itype(i+3).eq.21) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+     &  .or. itype(i+2).eq.ntyp1 .or. itype(i+3).eq.ntyp1) cycle
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
@@ -2772,9 +2882,9 @@ C
         num_cont_hb(i)=num_conti
       enddo
       do i=iturn4_start,iturn4_end
-        if (itype(i).eq.21 .or. itype(i+1).eq.21
-     &    .or. itype(i+3).eq.21
-     &    .or. itype(i+4).eq.21) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1
+     &    .or. itype(i+3).eq.ntyp1
+     &    .or. itype(i+4).eq.ntyp1) cycle
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
@@ -2785,8 +2895,9 @@ C
         ymedi=c(2,i)+0.5d0*dyi
         zmedi=c(3,i)+0.5d0*dzi
         num_conti=num_cont_hb(i)
+c        write(iout,*) "JESTEM W PETLI"
         call eelecij(i,i+3,ees,evdw1,eel_loc)
-        if (wturn4.gt.0.0d0 .and. itype(i+2).ne.21) 
+        if (wturn4.gt.0.0d0 .and. itype(i+2).ne.ntyp1) 
      &   call eturn4(i,eello_turn4)
         num_cont_hb(i)=num_conti
       enddo   ! i
@@ -2794,7 +2905,8 @@ c
 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
 c
       do i=iatel_s,iatel_e
-        if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle
+c       do i=7,7
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         dxi=dc(1,i)
         dyi=dc(2,i)
         dzi=dc(3,i)
@@ -2807,8 +2919,9 @@ c
 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
         num_conti=num_cont_hb(i)
         do j=ielstart(i),ielend(i)
-c          write (iout,*) i,j,itype(i),itype(j)
-          if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle
+c         do j=13,13
+c          write (iout,*) 'tu wchodze',i,j,itype(i),itype(j)
+          if (itype(j).eq.ntyp1.or. itype(j+1).eq.ntyp1) cycle
           call eelecij(i,j,ees,evdw1,eel_loc)
         enddo ! j
         num_cont_hb(i)=num_conti
@@ -2846,7 +2959,8 @@ C-------------------------------------------------------------------------------
       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
-     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
+     &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4),gmuij1(4),gmuji1(4),
+     &    gmuij2(4),gmuji2(4)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
      &    num_conti,j1,j2
@@ -2910,7 +3024,9 @@ cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
 
           if (energy_dec) then 
-              write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
+              write (iout,'(a6,2i5,0pf7.3,2i5,2e11.3)') 
+     &'evdw1',i,j,evdwij
+     &,iteli,itelj,aaa,evdw1
               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
           endif
 
@@ -3061,6 +3177,7 @@ C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
 C   are computed for EVERY pair of non-contiguous peptide groups.
 C
+
           if (j.lt.nres-1) then
             j1=j+1
             j2=j-1
             j2=j-2
           endif
           kkk=0
+          lll=0
           do k=1,2
             do l=1,2
               kkk=kkk+1
               muij(kkk)=mu(k,i)*mu(l,j)
+#ifdef NEWCORR
+             gmuij1(kkk)=gtb1(k,i)*mu(l,j)
+c             write(iout,*) 'kkk=', gtb1(k,i)*mu(l,j),gtb1(k,i),k,i
+             gmuij2(kkk)=gUb2(k,i-1)*mu(l,j)
+             gmuji1(kkk)=mu(k,i)*gtb1(l,j)
+c             write(iout,*) 'kkk=', gtb1(k,i)*mu(l,j),gtb1(l,j),l,j
+             gmuji2(kkk)=mu(k,i)*gUb2(l,j-1)
+#endif
             enddo
           enddo  
 cd         write (iout,*) 'EELEC: i',i,' j',j
@@ -3238,10 +3364,45 @@ cgrad            endif
 C Contribution to the local-electrostatic energy coming from the i-j pair
           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
      &     +a33*muij(4)
+C Calculate patrial derivative for theta angle
+#ifdef NEWCORR
+         geel_loc_ij=a22*gmuij1(1)
+     &     +a23*gmuij1(2)
+     &     +a32*gmuij1(3)
+     &     +a33*gmuij1(4)         
+c         write(iout,*) "derivative over thatai"
+c         write(iout,*) a22*gmuij1(1), a23*gmuij1(2) ,a32*gmuij1(3),
+c     &   a33*gmuij1(4) 
+         gloc(nphi+i,icg)=gloc(nphi+i,icg)+
+     &      geel_loc_ij*wel_loc
+c         write(iout,*) "derivative over thatai-1" 
+c         write(iout,*) a22*gmuij2(1), a23*gmuij2(2) ,a32*gmuij2(3),
+c     &   a33*gmuij2(4)
+         geel_loc_ij=a22*gmuij2(1)+a23*gmuij2(2)+a32*gmuij2(3)
+     &     +a33*gmuij2(4)
+         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
+     &      geel_loc_ij*wel_loc
+         geel_loc_ji=a22*gmuji1(1)+a23*gmuji1(2)+a32*gmuji1(3)
+     &     +a33*gmuji1(4)
+c         write(iout,*) "derivative over thataj" 
+c         write(iout,*) a22*gmuji1(1), a23*gmuji1(2) ,a32*gmuji1(3),
+c     &   a33*gmuji1(4)
+
+         gloc(nphi+j,icg)=gloc(nphi+j,icg)+
+     &      geel_loc_ji*wel_loc
+         geel_loc_ji=a22*gmuji2(1)+a23*gmuji2(2)+a32*gmuji2(3)
+     &     +a33*gmuji2(4)
+c         write(iout,*) "derivative over thataj-1"
+c         write(iout,*) a22*gmuji2(1), a23*gmuji2(2) ,a32*gmuji2(3),
+c     &   a33*gmuji2(4)
+         gloc(nphi+j-1,icg)=gloc(nphi+j-1,icg)+
+     &      geel_loc_ji*wel_loc
+#endif
 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
 
           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
      &            'eelloc',i,j,eel_loc_ij
+c              write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
 
           eel_loc=eel_loc+eel_loc_ij
 C Partial derivatives in virtual-bond dihedral angles gamma
@@ -3489,7 +3650,9 @@ C Third- and fourth-order contributions from turns
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
-     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),gpizda1(2,2),
+     &  gpizda2(2,2),auxgmat1(2,2),auxgmatt1(2,2),
+     &  auxgmat2(2,2),auxgmatt2(2,2)
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
@@ -3513,9 +3676,24 @@ C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
+c auxalary matices for theta gradient
+c auxalary matrix for i+1 and constant i+2
+        call matmat2(gtEUg(1,1,i+1),EUg(1,1,i+2),auxgmat1(1,1))
+c auxalary matrix for i+2 and constant i+1
+        call matmat2(EUg(1,1,i+1),gtEUg(1,1,i+2),auxgmat2(1,1))
         call transpose2(auxmat(1,1),auxmat1(1,1))
+        call transpose2(auxgmat1(1,1),auxgmatt1(1,1))
+        call transpose2(auxgmat2(1,1),auxgmatt2(1,1))
         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
+        call matmat2(a_temp(1,1),auxgmatt1(1,1),gpizda1(1,1))
+        call matmat2(a_temp(1,1),auxgmatt2(1,1),gpizda2(1,1))
         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
+C Derivatives in theta
+        gloc(nphi+i,icg)=gloc(nphi+i,icg)
+     &  +0.5d0*(gpizda1(1,1)+gpizda1(2,2))*wturn3
+        gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)
+     &  +0.5d0*(gpizda2(1,1)+gpizda2(2,2))*wturn3
+
         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
@@ -3589,7 +3767,11 @@ C Third- and fourth-order contributions from turns
       dimension ggg(3)
       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
-     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
+     &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2),auxgvec(2),
+     &  auxgEvec1(2),auxgEvec2(2),auxgEvec3(2),
+     &  gte1t(2,2),gte2t(2,2),gte3t(2,2),
+     &  gte1a(2,2),gtae3(2,2),gtae3e2(2,2), ae3gte2(2,2),
+     &  gtEpizda1(2,2),gtEpizda2(2,2),gtEpizda3(2,2)
       double precision agg(3,4),aggi(3,4),aggi1(3,4),
      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
@@ -3609,6 +3791,7 @@ C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
+c        write(iout,*)"WCHODZE W PROGRAM"
         a_temp(1,1)=a22
         a_temp(1,2)=a23
         a_temp(2,1)=a32
@@ -3620,32 +3803,95 @@ c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
         call transpose2(EUg(1,1,i+1),e1t(1,1))
         call transpose2(Eug(1,1,i+2),e2t(1,1))
         call transpose2(Eug(1,1,i+3),e3t(1,1))
+C Ematrix derivative in theta
+        call transpose2(gtEUg(1,1,i+1),gte1t(1,1))
+        call transpose2(gtEug(1,1,i+2),gte2t(1,1))
+        call transpose2(gtEug(1,1,i+3),gte3t(1,1))
         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
+c       eta1 in derivative theta
+        call matmat2(gte1t(1,1),a_temp(1,1),gte1a(1,1))
         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+c       auxgvec is derivative of Ub2 so i+3 theta
+        call matvec2(e1a(1,1),gUb2(1,i+3),auxgvec(1)) 
+c       auxalary matrix of E i+1
+        call matvec2(gte1a(1,1),Ub2(1,i+3),auxgEvec1(1))
+c        s1=0.0
+c        gs1=0.0    
+        s1=scalar2(b1(1,i+2),auxvec(1))
+c derivative of theta i+2 with constant i+3
+        gs23=scalar2(gtb1(1,i+2),auxvec(1))
+c derivative of theta i+2 with constant i+2
+        gs32=scalar2(b1(1,i+2),auxgvec(1))
+c derivative of E matix in theta of i+1
+        gsE13=scalar2(b1(1,i+2),auxgEvec1(1))
+
         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
+c       ea31 in derivative theta
+        call matmat2(a_temp(1,1),gte3t(1,1),gtae3(1,1))
         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+c auxilary matrix auxgvec of Ub2 with constant E matirx
+        call matvec2(ae3(1,1),gUb2(1,i+2),auxgvec(1))
+c auxilary matrix auxgEvec1 of E matix with Ub2 constant
+        call matvec2(gtae3(1,1),Ub2(1,i+2),auxgEvec3(1))
+
+c        s2=0.0
+c        gs2=0.0
+        s2=scalar2(b1(1,i+1),auxvec(1))
+c derivative of theta i+1 with constant i+3
+        gs13=scalar2(gtb1(1,i+1),auxvec(1))
+c derivative of theta i+2 with constant i+1
+        gs21=scalar2(b1(1,i+1),auxgvec(1))
+c derivative of theta i+3 with constant i+1
+        gsE31=scalar2(b1(1,i+1),auxgEvec3(1))
+c        write(iout,*) gs1,gs2,'i=',i,auxgvec(1),gUb2(1,i+2),gtb1(1,i+2),
+c     &  gtb1(1,i+1)
         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
+c two derivatives over diffetent matrices
+c gtae3e2 is derivative over i+3
+        call matmat2(gtae3(1,1),e2t(1,1),gtae3e2(1,1))
+c ae3gte2 is derivative over i+2
+        call matmat2(ae3(1,1),gte2t(1,1),ae3gte2(1,1))
         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
+c three possible derivative over theta E matices
+c i+1
+        call matmat2(ae3e2(1,1),gte1t(1,1),gtEpizda1(1,1))
+c i+2
+        call matmat2(ae3gte2(1,1),e1t(1,1),gtEpizda2(1,1))
+c i+3
+        call matmat2(gtae3e2(1,1),e1t(1,1),gtEpizda3(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
+
+        gsEE1=0.5d0*(gtEpizda1(1,1)+gtEpizda1(2,2))
+        gsEE2=0.5d0*(gtEpizda2(1,1)+gtEpizda2(2,2))
+        gsEE3=0.5d0*(gtEpizda3(1,1)+gtEpizda3(2,2))
+
         eello_turn4=eello_turn4-(s1+s2+s3)
+#ifdef NEWCORR
+        gloc(nphi+i,icg)=gloc(nphi+i,icg)
+     &                  -(gs13+gsE13+gsEE1)*wturn4
+        gloc(nphi+i+1,icg)= gloc(nphi+i+1,icg)
+     &                    -(gs23+gs21+gsEE2)*wturn4
+        gloc(nphi+i+2,icg)= gloc(nphi+i+2,icg)
+     &                    -(gs32+gsE31+gsEE3)*wturn4
+c         gloc(nphi+i+1,icg)=gloc(nphi+i+1,icg)-
+c     &   gs2
+#endif
         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
      &      'eturn4',i,j,-(s1+s2+s3)
-cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
-cd     &    ' eello_turn4_num',8*eello_turn4_num
+c        write (iout,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
+c     &    ' eello_turn4_num',8*eello_turn4_num
 C Derivatives in gamma(i)
         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+2),auxvec(1))
         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
 C Derivatives in gamma(i+1)
         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3653,10 +3899,10 @@ C Derivatives in gamma(i+1)
 C Derivatives in gamma(i+2)
         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
-        s1=scalar2(b1(1,iti2),auxvec(1))
+        s1=scalar2(b1(1,i+2),auxvec(1))
         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
-        s2=scalar2(b1(1,iti1),auxvec(1))
+        s2=scalar2(b1(1,i+1),auxvec(1))
         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
         s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3671,10 +3917,10 @@ C Derivatives of this turn contributions in DC(i+2)
             a_temp(2,2)=agg(l,4)
             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-            s1=scalar2(b1(1,iti2),auxvec(1))
+            s1=scalar2(b1(1,i+2),auxvec(1))
             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-            s2=scalar2(b1(1,iti1),auxvec(1))
+            s2=scalar2(b1(1,i+1),auxvec(1))
             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
             s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3690,10 +3936,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggi(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3704,10 +3950,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggi1(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3718,10 +3964,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggj(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3732,10 +3978,10 @@ C Remaining derivatives of this turn contribution
           a_temp(2,2)=aggj1(l,4)
           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
-          s1=scalar2(b1(1,iti2),auxvec(1))
+          s1=scalar2(b1(1,i+2),auxvec(1))
           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
-          s2=scalar2(b1(1,iti1),auxvec(1))
+          s2=scalar2(b1(1,i+1),auxvec(1))
           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
           s3=0.5d0*(pizda(1,1)+pizda(2,2))
@@ -3802,7 +4048,7 @@ C
 cd    print '(a)','Enter ESCP'
 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
       do i=iatscp_s,iatscp_e
-        if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         iteli=itel(i)
         xi=0.5D0*(c(1,i)+c(1,i+1))
         yi=0.5D0*(c(2,i)+c(2,i+1))
@@ -3811,7 +4057,7 @@ cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
         do iint=1,nscp_gr(i)
 
         do j=iscpstart(i,iint),iscpend(i,iint)
-          if (itype(j).eq.21) cycle
+          if (itype(j).eq.ntyp1) cycle
           itypj=iabs(itype(j))
 C Uncomment following three lines for SC-p interactions
 c         xj=c(1,nres+j)-xi
@@ -3898,7 +4144,7 @@ C
 cd    print '(a)','Enter ESCP'
 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
       do i=iatscp_s,iatscp_e
-        if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle
+        if (itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         iteli=itel(i)
         xi=0.5D0*(c(1,i)+c(1,i+1))
         yi=0.5D0*(c(2,i)+c(2,i+1))
@@ -3908,7 +4154,7 @@ cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
 
         do j=iscpstart(i,iint),iscpend(i,iint)
           itypj=iabs(itype(j))
-          if (itypj.eq.21) cycle
+          if (itypj.eq.ntyp1) cycle
 C Uncomment following three lines for SC-p interactions
 c         xj=c(1,nres+j)-xi
 c         yj=c(2,nres+j)-yi
@@ -3928,8 +4174,9 @@ C Uncomment following three lines for Ca-p interactions
           endif
           evdwij=e1+e2
           evdw2=evdw2+evdwij
-          if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
-     &        'evdw2',i,j,evdwij
+          if (energy_dec) write (iout,'(a6,2i5,0pf7.3,2i3,3e11.3)')
+     &        'evdw2',i,j,evdwij,iteli,itypj,fac,aad(itypj,iteli),
+     &       bad(itypj,iteli)
 C
 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
 C
@@ -4127,7 +4374,7 @@ c      dscj_inv=dsc_inv(itypj)
       cosphi=om12-om1*om2
       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
      &  +akct*deltad*deltat12
-     &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
+     &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi+ebr
 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
 c     &  " deltat12",deltat12," eij",eij 
@@ -4180,7 +4427,7 @@ c
       estr=0.0d0
       estr1=0.0d0
       do i=ibondp_start,ibondp_end
-        if (itype(i-1).eq.21 .or. itype(i).eq.21) then
+        if (itype(i-1).eq.ntyp1 .or. itype(i).eq.ntyp1) then
           estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax)
           do j=1,3
           gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax)
@@ -4205,7 +4452,7 @@ c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
 c
       do i=ibond_start,ibond_end
         iti=iabs(itype(i))
-        if (iti.ne.10 .and. iti.ne.21) then
+        if (iti.ne.10 .and. iti.ne.ntyp1) then
           nbi=nbondterm(iti)
           if (nbi.eq.1) then
             diff=vbld(i+nres)-vbldsc0(1,iti)
@@ -4278,7 +4525,7 @@ c      time12=1.0d0
       etheta=0.0D0
 c     write (*,'(a,i2)') 'EBEND ICG=',icg
       do i=ithet_start,ithet_end
-        if (itype(i-1).eq.21) cycle
+        if (itype(i-1).eq.ntyp1) cycle
 C Zero the energy function and its derivative at 0 or pi.
         call splinthet(theta(i),0.5d0*delta,ss,ssd)
         it=itype(i-1)
@@ -4295,7 +4542,7 @@ C Zero the energy function and its derivative at 0 or pi.
           ichir22=isign(1,itype(i))
          endif
 
-        if (i.gt.3 .and. itype(i-2).ne.21) then
+        if (i.gt.3 .and. itype(i-2).ne.ntyp1) then
 #ifdef OSF
          phii=phi(i)
           if (phii.ne.phii) phii=150.0
@@ -4308,7 +4555,7 @@ C Zero the energy function and its derivative at 0 or pi.
           y(1)=0.0D0
           y(2)=0.0D0
         endif
-        if (i.lt.nres .and. itype(i).ne.21) then
+        if (i.lt.nres .and. itype(i).ne.ntyp1) then
 #ifdef OSF
          phii1=phi(i+1)
           if (phii1.ne.phii1) phii1=150.0
@@ -4375,7 +4622,7 @@ C Derivatives of the "mean" values in gamma1 and gamma2.
      &      'ebend',i,ethetai
         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
-        gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
+        gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg)
       enddo
 C Ufff.... We've done all this!!! 
       return
       logical lprn /.false./, lprn1 /.false./
       etheta=0.0D0
       do i=ithet_start,ithet_end
-        if (itype(i-1).eq.21) cycle
+        if (itype(i-1).eq.ntyp1) cycle
+        if (iabs(itype(i+1)).eq.20) iblock=2
+        if (iabs(itype(i+1)).ne.20) iblock=1
         dethetai=0.0d0
         dephii=0.0d0
         dephii1=0.0d0
         theti2=0.5d0*theta(i)
-        ityp2=ithetyp(iabs(itype(i-1)))
+        ityp2=ithetyp((itype(i-1)))
         do k=1,nntheterm
           coskt(k)=dcos(k*theti2)
           sinkt(k)=dsin(k*theti2)
         enddo
-        if (i.gt.3 .and. itype(i-2).ne.21) then
+        if (i.gt.3 .and. itype(i-2).ne.ntyp1) then
 #ifdef OSF
           phii=phi(i)
           if (phii.ne.phii) phii=150.0
 #else
           phii=phi(i)
 #endif
-          ityp1=ithetyp(iabs(itype(i-2)))
+          ityp1=ithetyp((itype(i-2)))
+C propagation of chirality for glycine type
           do k=1,nsingle
             cosph1(k)=dcos(k*phii)
             sinph1(k)=dsin(k*phii)
@@ -4546,7 +4796,7 @@ C
             sinph1(k)=0.0d0
           enddo 
         endif
-        if (i.lt.nres .and. itype(i).ne.21) then
+        if (i.lt.nres .and. itype(i).ne.ntyp1) then
 #ifdef OSF
           phii1=phi(i+1)
           if (phii1.ne.phii1) phii1=150.0
@@ -4554,7 +4804,7 @@ C
 #else
           phii1=phi(i+1)
 #endif
-          ityp3=ithetyp(iabs(itype(i)))
+          ityp3=ithetyp((itype(i)))
           do k=1,nsingle
             cosph2(k)=dcos(k*phii1)
             sinph2(k)=dsin(k*phii1)
@@ -4567,7 +4817,7 @@ C
             sinph2(k)=0.0d0
           enddo
         endif  
-        ethetai=aa0thet(ityp1,ityp2,ityp3)
+        ethetai=aa0thet(ityp1,ityp2,ityp3,iblock)
         do k=1,ndouble
           do l=1,k-1
             ccl=cosph1(l)*cosph2(k-l)
         enddo
         endif
         do k=1,ntheterm
-          ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
-          dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
+          ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3,iblock)*sinkt(k)
+          dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3,iblock)
      &      *coskt(k)
           if (lprn)
-     &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
+     &    write (iout,*) "k",k,"
+     &     aathet",aathet(k,ityp1,ityp2,ityp3,iblock),
      &     " ethetai",ethetai
         enddo
         if (lprn) then
         endif
         do m=1,ntheterm2
           do k=1,nsingle
-            aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
-     &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
-     &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
-     &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
+            aux=bbthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)
+     &         +ccthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k)
+     &         +ddthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)
+     &         +eethet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k)
             ethetai=ethetai+sinkt(m)*aux
             dethetai=dethetai+0.5d0*m*aux*coskt(m)
             dephii=dephii+k*sinkt(m)*(
-     &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
-     &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
+     &          ccthet(k,m,ityp1,ityp2,ityp3,iblock)*cosph1(k)-
+     &          bbthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph1(k))
             dephii1=dephii1+k*sinkt(m)*(
-     &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
-     &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
+     &          eethet(k,m,ityp1,ityp2,ityp3,iblock)*cosph2(k)-
+     &          ddthet(k,m,ityp1,ityp2,ityp3,iblock)*sinph2(k))
             if (lprn)
      &      write (iout,*) "m",m," k",k," bbthet",
-     &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
-     &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
-     &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
-     &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
+     &         bbthet(k,m,ityp1,ityp2,ityp3,iblock)," ccthet",
+     &         ccthet(k,m,ityp1,ityp2,ityp3,iblock)," ddthet",
+     &         ddthet(k,m,ityp1,ityp2,ityp3,iblock)," eethet",
+     &         eethet(k,m,ityp1,ityp2,ityp3,iblock)," ethetai",ethetai
           enddo
         enddo
         if (lprn)
         do m=1,ntheterm3
           do k=2,ndouble
             do l=1,k-1
-              aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
-     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
-     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
-     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
+              aux=ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)
               ethetai=ethetai+sinkt(m)*aux
               dethetai=dethetai+0.5d0*m*coskt(m)*aux
               dephii=dephii+l*sinkt(m)*(
-     &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
-     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
-     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
-     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
+     &           -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)-
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)+
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l))
               dephii1=dephii1+(k-l)*sinkt(m)*(
-     &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
-     &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
-     &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
-     &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
+     &           -ffthet(l,k,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(l,k)+
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)*sinph1ph2(k,l)+
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(l,k)-
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock)*cosph1ph2(k,l))
               if (lprn) then
               write (iout,*) "m",m," k",k," l",l," ffthet",
-     &            ffthet(l,k,m,ityp1,ityp2,ityp3),
-     &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
-     &            ggthet(l,k,m,ityp1,ityp2,ityp3),
-     &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
+     &            ffthet(l,k,m,ityp1,ityp2,ityp3,iblock),
+     &            ffthet(k,l,m,ityp1,ityp2,ityp3,iblock)," ggthet",
+     &            ggthet(l,k,m,ityp1,ityp2,ityp3,iblock),
+     &            ggthet(k,l,m,ityp1,ityp2,ityp3,iblock),
+     &            " ethetai",ethetai
               write (iout,*) cosph1ph2(l,k)*sinkt(m),
      &            cosph1ph2(k,l)*sinkt(m),
      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
           enddo
         enddo
 10      continue
-        if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
+c        lprn1=.true.
+        if (lprn1) 
+     &    write (iout,'(i2,3f8.1,9h ethetai ,f10.5)') 
      &   i,theta(i)*rad2deg,phii*rad2deg,
      &   phii1*rad2deg,ethetai
+c        lprn1=.false.
         etheta=etheta+ethetai
         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
-        gloc(nphi+i-2,icg)=wang*dethetai
+        gloc(nphi+i-2,icg)=wang*dethetai+gloc(nphi+i-2,icg)
       enddo
       return
       end
@@ -4704,7 +4959,7 @@ C ALPHA and OMEGA.
 c     write (iout,'(a)') 'ESC'
       do i=loc_start,loc_end
         it=itype(i)
-        if (it.eq.21) cycle
+        if (it.eq.ntyp1) cycle
         if (it.eq.10) goto 1
         nlobit=nlob(iabs(it))
 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
@@ -5003,7 +5258,7 @@ C
       delta=0.02d0*pi
       escloc=0.0D0
       do i=loc_start,loc_end
-        if (itype(i).eq.21) cycle
+        if (itype(i).eq.ntyp1) cycle
         costtab(i+1) =dcos(theta(i+1))
         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
@@ -5012,7 +5267,7 @@ C
         cosfac=dsqrt(cosfac2)
         sinfac2=0.5d0/(1.0d0-costtab(i+1))
         sinfac=dsqrt(sinfac2)
-        it=itype(i)
+        it=iabs(itype(i))
         if (it.eq.10) goto 1
 c
 C  Compute the axes of tghe local cartesian coordinates system; store in
@@ -5030,7 +5285,7 @@ C     &   dc_norm(3,i+nres)
           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
         enddo
         do j = 1,3
-          z_prime(j) = -uz(j,i-1)
+          z_prime(j) = -uz(j,i-1)*dsign(1.0d0,dfloat(itype(i)))
         enddo     
 c       write (2,*) "i",i
 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
@@ -5062,7 +5317,7 @@ C
 C Compute the energy of the ith side cbain
 C
 c        write (2,*) "xx",xx," yy",yy," zz",zz
-        it=itype(i)
+        it=iabs(itype(i))
         do j = 1,65
           x(j) = sc_parmin(j,it) 
         enddo
@@ -5070,7 +5325,7 @@ c        write (2,*) "xx",xx," yy",yy," zz",zz
 Cc diagnostics - remove later
         xx1 = dcos(alph(2))
         yy1 = dsin(alph(2))*dcos(omeg(2))
-        zz1 = -dsin(alph(2))*dsin(omeg(2))
+        zz1 = -dsign(1.0,dfloat(itype(i)))*dsin(alph(2))*dsin(omeg(2))
         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
      &    xx1,yy1,zz1
@@ -5112,7 +5367,9 @@ c     &   sumene4,
 c     &   dscp1,dscp2,sumene
 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
         escloc = escloc + sumene
-c        write (2,*) "i",i," escloc",sumene,escloc
+c        write (2,*) "i",i," escloc",sumene,escloc,it,itype(i)
+c     & ,zz,xx,yy
+c#define DEBUG
 #ifdef DEBUG
 C
 C This section to check the numerical derivatives of the energy of ith side
@@ -5156,6 +5413,7 @@ C End of diagnostics section.
 C        
 C Compute the gradient of esc
 C
+c        zz=zz*dsign(1.0,dfloat(itype(i)))
         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
@@ -5180,7 +5438,7 @@ C
      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
      &        +(pom1+pom2)*pom_dx
 #ifdef DEBUG
-        write(2,*), "de_dxx = ", de_dxx,de_dxx_num
+        write(2,*), "de_dxx = ", de_dxx,de_dxx_num,itype(i)
 #endif
 C
         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
@@ -5195,7 +5453,7 @@ C
      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
      &        +(pom1-pom2)*pom_dy
 #ifdef DEBUG
-        write(2,*), "de_dyy = ", de_dyy,de_dyy_num
+        write(2,*), "de_dyy = ", de_dyy,de_dyy_num,itype(i)
 #endif
 C
         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
 #ifdef DEBUG
-        write(2,*), "de_dzz = ", de_dzz,de_dzz_num
+        write(2,*), "de_dzz = ", de_dzz,de_dzz_num,itype(i)
 #endif
 C
         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
      &  +pom1*pom_dt1+pom2*pom_dt2
 #ifdef DEBUG
-        write(2,*), "de_dt = ", de_dt,de_dt_num
+        write(2,*), "de_dt = ", de_dt,de_dt_num,itype(i)
 #endif
+c#undef DEBUG
 c 
 C
        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
@@ -5240,13 +5499,16 @@ c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
          dZZ_Ci1(k)=0.0d0
          dZZ_Ci(k)=0.0d0
          do j=1,3
-           dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
-           dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
+           dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)
+     &     *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres)
+           dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)
+     &     *dsign(1.0d0,dfloat(itype(i)))*dC_norm(j,i+nres)
          enddo
           
          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
-         dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
+         dZZ_XYZ(k)=vbld_inv(i+nres)*
+     &   (z_prime(k)-zz*dC_norm(k,i+nres))
 c
          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
@@ -5431,8 +5693,8 @@ c      lprn=.true.
       etors=0.0D0
       do i=iphi_start,iphi_end
       etors_ii=0.0D0
-        if (itype(i-2).eq.21 .or. itype(i-1).eq.21 
-     &      .or. itype(i).eq.21) cycle
+        if (itype(i-2).eq.ntyp1.or. itype(i-1).eq.ntyp1
+     &      .or. itype(i).eq.ntyp1) cycle
        itori=itortyp(itype(i-2))
        itori1=itortyp(itype(i-1))
         phii=phi(i)
@@ -5528,8 +5790,8 @@ C Set lprn=.true. for debugging
 c     lprn=.true.
       etors=0.0D0
       do i=iphi_start,iphi_end
-        if (itype(i-2).eq.21 .or. itype(i-1).eq.21 
-     &       .or. itype(i).eq.21) cycle
+        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1 
+     &       .or. itype(i).eq.ntyp1) cycle
         etors_ii=0.0D0
          if (iabs(itype(i)).eq.20) then
          iblock=2
@@ -5628,9 +5890,10 @@ C Set lprn=.true. for debugging
       lprn=.false.
 c     lprn=.true.
       etors_d=0.0D0
+c      write(iout,*) "a tu??"
       do i=iphid_start,iphid_end
-        if (itype(i-2).eq.21 .or. itype(i-1).eq.21
-     &      .or. itype(i).eq.21 .or. itype(i+1).eq.21) cycle
+        if (itype(i-2).eq.ntyp1 .or. itype(i-1).eq.ntyp1
+     &      .or. itype(i).eq.ntyp1 .or. itype(i+1).eq.ntyp1) cycle
         itori=itortyp(itype(i-2))
         itori1=itortyp(itype(i-1))
         itori2=itortyp(itype(i))
@@ -5706,29 +5969,53 @@ c        amino-acid residues.
 C Set lprn=.true. for debugging
       lprn=.false.
 c      lprn=.true.
-c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
+c      write (iout,*) "EBACK_SC_COR",itau_start,itau_end
       esccor=0.0D0
-      do i=iphi_start,iphi_end
-        if (itype(i-2).eq.21 .or. itype(i-1).eq.21) cycle
+      do i=itau_start,itau_end
+        if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
         esccor_ii=0.0D0
-        itori=iabs(itype(i-2))
-        itori1=iabs(itype(i-1))
+        isccori=isccortyp(itype(i-2))
+        isccori1=isccortyp(itype(i-1))
+c      write (iout,*) "EBACK_SC_COR",i,nterm_sccor(isccori,isccori1)
         phii=phi(i)
+        do intertyp=1,3 !intertyp
+cc Added 09 May 2012 (Adasko)
+cc  Intertyp means interaction type of backbone mainchain correlation: 
+c   1 = SC...Ca...Ca...Ca
+c   2 = Ca...Ca...Ca...SC
+c   3 = SC...Ca...Ca...SCi
         gloci=0.0D0
-        do j=1,nterm_sccor
-          v1ij=v1sccor(j,itori,itori1)
-          v2ij=v2sccor(j,itori,itori1)
-          cosphi=dcos(j*phii)
-          sinphi=dsin(j*phii)
+        if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
+     &      (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or.
+     &      (itype(i-1).eq.ntyp1)))
+     &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
+     &     .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)
+     &     .or.(itype(i).eq.ntyp1)))
+     &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
+     &      (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
+     &      (itype(i-3).eq.ntyp1)))) cycle
+        if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle
+        if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1))
+     & cycle
+       do j=1,nterm_sccor(isccori,isccori1)
+          v1ij=v1sccor(j,intertyp,isccori,isccori1)
+          v2ij=v2sccor(j,intertyp,isccori,isccori1)
+          cosphi=dcos(j*tauangle(intertyp,i))
+          sinphi=dsin(j*tauangle(intertyp,i))
           esccor=esccor+v1ij*cosphi+v2ij*sinphi
           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
         enddo
+c      write (iout,*) "EBACK_SC_COR",i,v1ij*cosphi+v2ij*sinphi,intertyp
+        gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
         if (lprn)
      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
-     &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
-     &  (v1sccor(j,itori,itori1),j=1,6),(v2sccor(j,itori,itori1),j=1,6)
+     &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,isccori,isccori1,
+     &  (v1sccor(j,intertyp,isccori,isccori1),j=1,6)
+     & ,(v2sccor(j,intertyp,isccori,isccori1),j=1,6)
         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
+       enddo !intertyp
       enddo
+
       return
       end
 c----------------------------------------------------------------------------
@@ -6738,10 +7025,10 @@ C---------------------------------------------------------------------------
       do iii=1,2
         dipi(iii,1)=Ub2(iii,i)
         dipderi(iii)=Ub2der(iii,i)
-        dipi(iii,2)=b1(iii,iti1)
+        dipi(iii,2)=b1(iii,i+1)
         dipj(iii,1)=Ub2(iii,j)
         dipderj(iii)=Ub2der(iii,j)
-        dipj(iii,2)=b1(iii,itj1)
+        dipj(iii,2)=b1(iii,j+1)
       enddo
       kkk=0
       do iii=1,2
@@ -6921,26 +7208,26 @@ C They are needed only when the fifth- or the sixth-order cumulants are
 C indluded.
         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
         call transpose2(AEA(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
         call transpose2(AEAderg(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
-        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
-        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1))
         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
         call transpose2(AEA(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
         call transpose2(AEAderg(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j),AEAb1derg(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
-        call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
-        call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),b1(1,l+1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,l+1),AEAb1derg(1,2,2))
         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
@@ -6949,20 +7236,20 @@ C Calculate the Cartesian derivatives of the vectors.
           do kkk=1,5
             do lll=1,3
               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,iti),
+              call matvec2(auxmat(1,1),b1(1,i),
      &          AEAb1derx(1,lll,kkk,iii,1,1))
               call matvec2(auxmat(1,1),Ub2(1,i),
      &          AEAb2derx(1,lll,kkk,iii,1,1))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &          AEAb1derx(1,lll,kkk,iii,2,1))
               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
      &          AEAb2derx(1,lll,kkk,iii,2,1))
               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,itj),
+              call matvec2(auxmat(1,1),b1(1,j),
      &          AEAb1derx(1,lll,kkk,iii,1,2))
               call matvec2(auxmat(1,1),Ub2(1,j),
      &          AEAb2derx(1,lll,kkk,iii,1,2))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,l+1),
      &          AEAb1derx(1,lll,kkk,iii,2,2))
               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
      &          AEAb2derx(1,lll,kkk,iii,2,2))
@@ -7059,26 +7346,26 @@ C indluded.
         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
         call transpose2(AEA(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
         call transpose2(AEAderg(1,1,1),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
+        call matvec2(auxmat(1,1),b1(1,i),AEAb1derg(1,1,1))
         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
-        call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
-        call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
+        call matvec2(AEA(1,1,1),b1(1,k+1),AEAb1(1,2,1))
+        call matvec2(AEAderg(1,1,1),b1(1,k+1),AEAb1derg(1,2,1))
         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
         call transpose2(AEA(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,j+1),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
         call transpose2(AEAderg(1,1,2),auxmat(1,1))
-        call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
+        call matvec2(auxmat(1,1),b1(1,l),AEAb1(1,1,2))
         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
-        call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
-        call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
+        call matvec2(AEA(1,1,2),b1(1,j+1),AEAb1(1,2,2))
+        call matvec2(AEAderg(1,1,2),b1(1,j+1),AEAb1derg(1,2,2))
         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
@@ -7087,20 +7374,20 @@ C Calculate the Cartesian derivatives of the vectors.
           do kkk=1,5
             do lll=1,3
               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,iti),
+              call matvec2(auxmat(1,1),b1(1,i),
      &          AEAb1derx(1,lll,kkk,iii,1,1))
               call matvec2(auxmat(1,1),Ub2(1,i),
      &          AEAb2derx(1,lll,kkk,iii,1,1))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &          AEAb1derx(1,lll,kkk,iii,2,1))
               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
      &          AEAb2derx(1,lll,kkk,iii,2,1))
               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
-              call matvec2(auxmat(1,1),b1(1,itl),
+              call matvec2(auxmat(1,1),b1(1,l),
      &          AEAb1derx(1,lll,kkk,iii,1,2))
               call matvec2(auxmat(1,1),Ub2(1,l),
      &          AEAb2derx(1,lll,kkk,iii,1,2))
-              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
+              call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,j+1),
      &          AEAb1derx(1,lll,kkk,iii,2,2))
               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
      &          AEAb2derx(1,lll,kkk,iii,2,2))
@@ -7397,7 +7684,7 @@ C Contribution from graph II
       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
-      eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
+      eello5_2=scalar2(AEAb1(1,2,1),b1(1,k))
      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
 C Explicit gradient in virtual-dihedral angles.
       g_corr5_loc(k-1)=g_corr5_loc(k-1)
@@ -7407,11 +7694,11 @@ C Explicit gradient in virtual-dihedral angles.
       vv(2)=pizda(2,1)-pizda(1,2)
       if (l.eq.j+1) then
         g_corr5_loc(l-1)=g_corr5_loc(l-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
       else
         g_corr5_loc(j-1)=g_corr5_loc(j-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
+     &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,k))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
       endif
 C Cartesian gradient
@@ -7423,7 +7710,7 @@ C Cartesian gradient
             vv(1)=pizda(1,1)+pizda(2,2)
             vv(2)=pizda(2,1)-pizda(1,2)
             derx(lll,kkk,iii)=derx(lll,kkk,iii)
-     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
+     &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,k))
      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
           enddo
         enddo
@@ -7478,7 +7765,7 @@ cd1110    continue
         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
-        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,l))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
 C Explicit gradient in virtual-dihedral angles.
         g_corr5_loc(l-1)=g_corr5_loc(l-1)
@@ -7487,7 +7774,7 @@ C Explicit gradient in virtual-dihedral angles.
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
         g_corr5_loc(k-1)=g_corr5_loc(k-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,l))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
 C Cartesian gradient
         do iii=1,2
@@ -7498,7 +7785,7 @@ C Cartesian gradient
               vv(1)=pizda(1,1)+pizda(2,2)
               vv(2)=pizda(2,1)-pizda(1,2)
               derx(lll,kkk,iii)=derx(lll,kkk,iii)
-     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,l))
      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
             enddo
           enddo
@@ -7551,7 +7838,7 @@ C Contribution from graph IV
         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
-        eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
+        eello5_4=scalar2(AEAb1(1,2,2),b1(1,j))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
 C Explicit gradient in virtual-dihedral angles.
         g_corr5_loc(j-1)=g_corr5_loc(j-1)
@@ -7560,7 +7847,7 @@ C Explicit gradient in virtual-dihedral angles.
         vv(1)=pizda(1,1)+pizda(2,2)
         vv(2)=pizda(2,1)-pizda(1,2)
         g_corr5_loc(k-1)=g_corr5_loc(k-1)
-     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
+     &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,j))
      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
 C Cartesian gradient
         do iii=1,2
@@ -7571,7 +7858,7 @@ C Cartesian gradient
               vv(1)=pizda(1,1)+pizda(2,2)
               vv(2)=pizda(2,1)-pizda(1,2)
               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
-     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
+     &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,j))
      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
             enddo
           enddo
@@ -7853,8 +8140,8 @@ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
       vv1(1)=pizda1(1,1)-pizda1(2,2)
       vv1(2)=pizda1(1,2)+pizda1(2,1)
       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
-      vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
-      vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
+      vv(1)=AEAb1(1,2,imat)*b1(1,k)-AEAb1(2,2,imat)*b1(2,k)
+      vv(2)=AEAb1(1,2,imat)*b1(2,k)+AEAb1(2,2,imat)*b1(1,k)
       s5=scalar2(vv(1),Dtobr2(1,i))
 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
@@ -7867,8 +8154,8 @@ cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
       vv1(1)=pizda1(1,1)-pizda1(2,2)
       vv1(2)=pizda1(1,2)+pizda1(2,1)
-      vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
-      vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
+      vv(1)=AEAb1derg(1,2,imat)*b1(1,k)-AEAb1derg(2,2,imat)*b1(2,k)
+      vv(2)=AEAb1derg(1,2,imat)*b1(2,k)+AEAb1derg(2,2,imat)*b1(1,k)
       if (l.eq.j+1) then
         g_corr6_loc(l-1)=g_corr6_loc(l-1)
      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
@@ -7907,10 +8194,10 @@ cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
             vv1(1)=pizda1(1,1)-pizda1(2,2)
             vv1(2)=pizda1(1,2)+pizda1(2,1)
             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
-            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
-     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
-            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
-     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
+            vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,k)
+     &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,k)
+            vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,k)
+     &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,k)
             s5=scalar2(vv(1),Dtobr2(1,i))
             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
           enddo
@@ -7932,7 +8219,7 @@ c----------------------------------------------------------------------------
       include 'COMMON.GEO'
       logical swap
       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
-     & auxvec1(2),auxvec2(1),auxmat1(2,2)
+     & auxvec1(2),auxvec2(2),auxmat1(2,2)
       logical lprn
       common /kutas/ lprn
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
@@ -8150,10 +8437,10 @@ C           energy moment and not to the cluster cumulant.
 #ifdef MOMENT
       s1=dip(4,jj,i)*dip(4,kk,k)
 #endif
-      call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
-      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
-      call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
-      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      call matvec2(AECA(1,1,1),b1(1,k+1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,k),auxvec(1))
+      call matvec2(AECA(1,1,2),b1(1,l+1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
       call transpose2(EE(1,1,itk),auxmat(1,1))
       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
@@ -8168,13 +8455,13 @@ cd     & "sum",-(s2+s3+s4)
 #endif
 c      eello6_graph3=-s4
 C Derivatives in gamma(k-1)
-      call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
-      s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+      call matvec2(AECAderg(1,1,2),b1(1,l+1),auxvec(1))
+      s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
 C Derivatives in gamma(l-1)
-      call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
-      s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
+      call matvec2(AECAderg(1,1,1),b1(1,k+1),auxvec(1))
+      s2=0.5d0*scalar2(b1(1,k),auxvec(1))
       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
       vv(1)=pizda(1,1)+pizda(2,2)
       vv(2)=pizda(2,1)-pizda(1,2)
@@ -8191,12 +8478,12 @@ C Cartesian derivatives.
               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
             endif
 #endif
-            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
+            call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,k+1),
      &        auxvec(1))
-            s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
-            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
+            s2=0.5d0*scalar2(b1(1,k),auxvec(1))
+            call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,l+1),
      &        auxvec(1))
-            s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
+            s3=0.5d0*scalar2(b1(1,j+1),auxvec(1))
             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
      &        pizda(1,1))
             vv(1)=pizda(1,1)+pizda(2,2)
@@ -8284,11 +8571,11 @@ cd     & ' itl',itl,' itl1',itl1
       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
       if (j.eq.l+1) then
-        call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,j+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
       else
-        call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        call matvec2(ADtEA1(1,1,3-imat),b1(1,l+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
       endif
       call transpose2(EUg(1,1,k),auxmat(1,1))
       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
@@ -8312,11 +8599,11 @@ C Derivatives in gamma(i-1)
 #endif
         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
         if (j.eq.l+1) then
-          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
-          s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,j+1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
         else
-          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
-          s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+          call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,l+1),auxvec1(1))
+          s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
         endif
         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
@@ -8345,11 +8632,11 @@ C Derivatives in gamma(k-1)
       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
       if (j.eq.l+1) then
-        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,j+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,j),auxvec1(1))
       else
-        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
-        s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
+        call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,l+1),auxvec1(1))
+        s3=-0.5d0*scalar2(b1(1,l),auxvec1(1))
       endif
       call transpose2(EUgder(1,1,k),auxmat1(1,1))
       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
@@ -8415,12 +8702,12 @@ C Cartesian derivatives.
             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
             if (j.eq.l+1) then
               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
-     &          b1(1,itj1),auxvec(1))
-              s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
+     &          b1(1,j+1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,j),auxvec(1))
             else
               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
-     &          b1(1,itl1),auxvec(1))
-              s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
+     &          b1(1,l+1),auxvec(1))
+              s3=-0.5d0*scalar2(b1(1,l),auxvec(1))
             endif
             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
      &        pizda(1,1))
@@ -8520,12 +8807,12 @@ cd      write (2,*) 'eello6_5',eello6_5
 #ifdef MOMENT
       call transpose2(AEA(1,1,1),auxmat(1,1))
       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
-      ss1=scalar2(Ub2(1,i+2),b1(1,itl))
+      ss1=scalar2(Ub2(1,i+2),b1(1,l))
       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
 #endif
-      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+      call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1))
       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
-      s2 = scalar2(b1(1,itk),vtemp1(1))
+      s2 = scalar2(b1(1,k),vtemp1(1))
 #ifdef MOMENT
       call transpose2(AEA(1,1,2),atemp(1,1))
       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
@@ -8540,7 +8827,7 @@ cd      write (2,*) 'eello6_5',eello6_5
       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
-      ss13 = scalar2(b1(1,itk),vtemp4(1))
+      ss13 = scalar2(b1(1,k),vtemp4(1))
       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
 #endif
 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
@@ -8574,12 +8861,12 @@ C Derivatives in gamma(i+3)
 #ifdef MOMENT
       call transpose2(AEA(1,1,1),auxmatd(1,1))
       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
-      ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
+      ss1d=scalar2(Ub2der(1,i+2),b1(1,l))
       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
 #endif
-      call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(EUgder(1,1,i+2),b1(1,l),vtemp1d(1))
       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
-      s2d = scalar2(b1(1,itk),vtemp1d(1))
+      s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
@@ -8627,9 +8914,9 @@ C Derivatives in gamma(i+5)
       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
 #endif
-      call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
+      call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1d(1))
       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
-      s2d = scalar2(b1(1,itk),vtemp1d(1))
+      s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
       call transpose2(AEA(1,1,2),atempd(1,1))
       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
@@ -8639,7 +8926,7 @@ C Derivatives in gamma(i+5)
       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
 #ifdef MOMENT
       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
-      ss13d = scalar2(b1(1,itk),vtemp4d(1))
+      ss13d = scalar2(b1(1,k),vtemp4d(1))
       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
 #endif
 c      s1d=0.0d0
@@ -8663,10 +8950,10 @@ C Cartesian derivatives
             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
 #endif
-            call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
+            call matvec2(EUg(1,1,i+2),b1(1,l),vtemp1(1))
             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
      &          vtemp1d(1))
-            s2d = scalar2(b1(1,itk),vtemp1d(1))
+            s2d = scalar2(b1(1,k),vtemp1d(1))
 #ifdef MOMENT
             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
@@ -8710,7 +8997,7 @@ c      s13d=0.0d0
           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
      &      vtemp4d(1)) 
-          ss13d = scalar2(b1(1,itk),vtemp4d(1))
+          ss13d = scalar2(b1(1,k),vtemp4d(1))
           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
         enddo