3 C Build the virtual polypeptide chain. Side-chain centroids are moveable.
6 implicit real*8 (a-h,o-z)
8 include 'DIMENSIONS.ZSCOPT'
10 include 'COMMON.LOCAL'
13 include 'COMMON.IOUNITS'
14 include 'COMMON.NAMES'
15 include 'COMMON.INTERACT'
17 C Set lprn=.true. for debugging
20 C Define the origin and orientation of the coordinate system and locate the
21 C first three CA's and SC(2).
25 * Build the alpha-carbon chain.
28 call locate_next_res(i)
31 C First and last SC must coincide with the corresponding CA.
35 dc_norm(j,nres+1)=0.0D0
37 dc_norm(j,nres+nres)=0.0D0
39 c(j,nres+nres)=c(j,nres)
47 write (iout,'(/a)') 'Recalculated internal coordinates'
50 c(j,maxres2)=0.5D0*(c(j,i-1)+c(j,i+1))
53 if (i.gt.3) be=rad2deg*beta(i-3,i-2,i-1,i)
54 be1=rad2deg*beta(nres+i,i,maxres2,i+1)
56 if (i.gt.2) alfai=rad2deg*alpha(i-2,i-1,i)
57 write (iout,1212) restyp(itype(i)),i,dist(i-1,i),
58 & alfai,be,dist(nres+i,i),rad2deg*alpha(nres+i,i,maxres2),be1
60 1212 format (a3,'(',i3,')',2(f10.5,2f10.2))
66 c-------------------------------------------------------------------------
69 C Define the origin and orientation of the coordinate system and locate
70 C the first three atoms.
72 implicit real*8 (a-h,o-z)
74 include 'DIMENSIONS.ZSCOPT'
75 include 'COMMON.CHAIN'
76 include 'COMMON.LOCAL'
124 dc_norm(j,2)=prod(j,1,2)
125 dc(j,2)=vbld(3)*prod(j,1,2)
126 c(j,3)=c(j,2)+dc(j,2)
128 call locate_side_chain(2)
131 c-----------------------------------------------------------------------------
132 subroutine locate_next_res(i)
134 C Locate CA(i) and SC(i-1)
136 implicit real*8 (a-h,o-z)
138 include 'DIMENSIONS.ZSCOPT'
139 include 'COMMON.CHAIN'
140 include 'COMMON.LOCAL'
143 include 'COMMON.IOUNITS'
144 include 'COMMON.NAMES'
145 include 'COMMON.INTERACT'
147 C Define the rotation matrices corresponding to CA(i)
152 call proc_proc(theti,icrc)
153 if(icrc.eq.1)theti=100.0
156 call proc_proc(phii,icrc)
157 if(icrc.eq.1)phii=180.0
166 * Define the matrices of the rotation about the virtual-bond valence angles
167 * theta, T(i,j,k), virtual-bond dihedral angles gamma (miscalled PHI in this
168 * program), R(i,j,k), and, the cumulative matrices of rotation RT
190 rt(2,1,i-2)=sint*cosphi
191 rt(2,2,i-2)=-cost*cosphi
193 rt(3,1,i-2)=-sint*sinphi
194 rt(3,2,i-2)=cost*sinphi
196 call matmult(prod(1,1,i-2),rt(1,1,i-2),prod(1,1,i-1))
198 dc_norm(j,i-1)=prod(j,1,i-1)
199 dc(j,i-1)=vbld(i)*prod(j,1,i-1)
200 c(j,i)=c(j,i-1)+dc(j,i-1)
202 cd print '(2i3,2(3f10.5,5x))', i-1,i,(dc(j,i-1),j=1,3),(c(j,i),j=1,3)
204 C Now calculate the coordinates of SC(i-1)
206 call locate_side_chain(i-1)
209 c-----------------------------------------------------------------------------
210 subroutine locate_side_chain(i)
212 C Locate the side-chain centroid i, 1 < i < NRES. Put in C(*,NRES+i).
214 implicit real*8 (a-h,o-z)
216 include 'DIMENSIONS.ZSCOPT'
217 include 'COMMON.CHAIN'
218 include 'COMMON.LOCAL'
221 include 'COMMON.IOUNITS'
222 include 'COMMON.NAMES'
223 include 'COMMON.INTERACT'
227 c dsci_inv=dsc_inv(itype(i))
229 dsci_inv=vbld_inv(i+nres)
235 call proc_proc(alphi,icrc)
236 if(icrc.eq.1)alphi=100.0
238 call proc_proc(omegi,icrc)
239 if(icrc.eq.1)omegi=-100.0
249 yp= dsci*sinalphi*cosomegi
250 zp=-dsci*sinalphi*sinomegi
251 * Now we have to rotate the coordinate system by 180-theta(i)/2 so as to get its
252 * X-axis aligned with the vector DC(*,i)
253 theta2=pi-0.5D0*theta(i+1)
256 xx(1)= xp*cost2+yp*sint2
257 xx(2)=-xp*sint2+yp*cost2
259 cd print '(a3,i3,3f10.5,5x,3f10.5)',restyp(itype(i)),i,
260 cd & xp,yp,zp,(xx(k),k=1,3)
264 * Bring the SC vectors to the common coordinate system.
266 xx(2)=xloc(2,i)*r(2,2,i-1)+xloc(3,i)*r(2,3,i-1)
267 xx(3)=xloc(2,i)*r(3,2,i-1)+xloc(3,i)*r(3,3,i-1)
274 rj=rj+prod(j,k,i-1)*xx(k)
277 dc_norm(j,nres+i)=rj*dsci_inv
278 c(j,nres+i)=c(j,i)+rj