1 subroutine etotal(energia,fact)
2 implicit real*8 (a-h,o-z)
4 include 'DIMENSIONS.ZSCOPT'
10 cMS$ATTRIBUTES C :: proc_proc
13 include 'COMMON.IOUNITS'
14 double precision energia(0:max_ene),energia1(0:max_ene+1)
20 include 'COMMON.FFIELD'
21 include 'COMMON.DERIV'
22 include 'COMMON.INTERACT'
23 include 'COMMON.SBRIDGE'
24 include 'COMMON.CHAIN'
25 double precision fact(6)
26 cd write(iout, '(a,i2)')'Calling etotal ipot=',ipot
27 cd print *,'nnt=',nnt,' nct=',nct
29 C Compute the side-chain and electrostatic interaction energy
31 goto (101,102,103,104,105) ipot
32 C Lennard-Jones potential.
33 101 call elj(evdw,evdw_t)
34 cd print '(a)','Exit ELJ'
36 C Lennard-Jones-Kihara potential (shifted).
37 102 call eljk(evdw,evdw_t)
39 C Berne-Pechukas potential (dilated LJ, angular dependence).
40 103 call ebp(evdw,evdw_t)
42 C Gay-Berne potential (shifted LJ, angular dependence).
43 104 call egb(evdw,evdw_t)
45 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
46 105 call egbv(evdw,evdw_t)
48 C Calculate electrostatic (H-bonding) energy of the main chain.
50 106 call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
52 C Calculate excluded-volume interaction energy between peptide groups
55 call escp(evdw2,evdw2_14)
57 c Calculate the bond-stretching energy
60 c write (iout,*) "estr",estr
62 C Calculate the disulfide-bridge and other energy and the contributions
63 C from other distance constraints.
64 cd print *,'Calling EHPB'
66 cd print *,'EHPB exitted succesfully.'
68 C Calculate the virtual-bond-angle energy.
71 cd print *,'Bend energy finished.'
73 C Calculate the SC local energy.
76 cd print *,'SCLOC energy finished.'
78 C Calculate the virtual-bond torsional energy.
80 cd print *,'nterm=',nterm
81 call etor(etors,edihcnstr,fact(1))
83 C 6/23/01 Calculate double-torsional energy
85 call etor_d(etors_d,fact(2))
87 C 21/5/07 Calculate local sicdechain correlation energy
89 call eback_sc_corr(esccor)
91 C 12/1/95 Multi-body terms
95 if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0
96 & .or. wturn6.gt.0.0d0) then
97 c print *,"calling multibody_eello"
98 call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
99 c write (*,*) 'n_corr=',n_corr,' n_corr1=',n_corr1
100 c print *,ecorr,ecorr5,ecorr6,eturn6
102 if (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) then
103 call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
105 c write (iout,*) "ft(6)",fact(6)," evdw",evdw," evdw_t",evdw_t
107 etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2+welec*fact(1)*ees
109 & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
110 & +wstrain*ehpb+nss*ebr+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
111 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
112 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
113 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
114 & +wbond*estr+wsccor*fact(1)*esccor
116 etot=wsc*(evdw+fact(6)*evdw_t)+wscp*evdw2
117 & +welec*fact(1)*(ees+evdw1)
118 & +wang*ebe+wtor*fact(1)*etors+wscloc*escloc
119 & +wstrain*ehpb+nss*ebr+wcorr*fact(3)*ecorr+wcorr5*fact(4)*ecorr5
120 & +wcorr6*fact(5)*ecorr6+wturn4*fact(3)*eello_turn4
121 & +wturn3*fact(2)*eello_turn3+wturn6*fact(5)*eturn6
122 & +wel_loc*fact(2)*eel_loc+edihcnstr+wtor_d*fact(2)*etors_d
123 & +wbond*estr+wsccor*fact(1)*esccor
128 energia(2)=evdw2-evdw2_14
145 energia(8)=eello_turn3
146 energia(9)=eello_turn4
155 energia(20)=edihcnstr
160 if (isnan(etot).ne.0) energia(0)=1.0d+99
162 if (isnan(etot)) energia(0)=1.0d+99
167 idumm=proc_proc(etot,i)
169 call proc_proc(etot,i)
171 if(i.eq.1)energia(0)=1.0d+99
178 C Sum up the components of the Cartesian gradient.
183 gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
184 & welec*fact(1)*gelc(j,i)+wvdwpp*gvdwpp(j,i)+
186 & wstrain*ghpbc(j,i)+
187 & wcorr*fact(3)*gradcorr(j,i)+
188 & wel_loc*fact(2)*gel_loc(j,i)+
189 & wturn3*fact(2)*gcorr3_turn(j,i)+
190 & wturn4*fact(3)*gcorr4_turn(j,i)+
191 & wcorr5*fact(4)*gradcorr5(j,i)+
192 & wcorr6*fact(5)*gradcorr6(j,i)+
193 & wturn6*fact(5)*gcorr6_turn(j,i)+
194 & wsccor*fact(2)*gsccorc(j,i)
195 gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
197 & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
198 & wsccor*fact(2)*gsccorx(j,i)
203 gradc(j,i,icg)=wsc*gvdwc(j,i)+wscp*gvdwc_scp(j,i)+
204 & welec*fact(1)*gelc(j,i)+wstrain*ghpbc(j,i)+
206 & wcorr*fact(3)*gradcorr(j,i)+
207 & wel_loc*fact(2)*gel_loc(j,i)+
208 & wturn3*fact(2)*gcorr3_turn(j,i)+
209 & wturn4*fact(3)*gcorr4_turn(j,i)+
210 & wcorr5*fact(4)*gradcorr5(j,i)+
211 & wcorr6*fact(5)*gradcorr6(j,i)+
212 & wturn6*fact(5)*gcorr6_turn(j,i)+
213 & wsccor*fact(2)*gsccorc(j,i)
214 gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
216 & wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
217 & wsccor*fact(1)*gsccorx(j,i)
224 gloc(i,icg)=gloc(i,icg)+wcorr*fact(3)*gcorr_loc(i)
225 & +wcorr5*fact(4)*g_corr5_loc(i)
226 & +wcorr6*fact(5)*g_corr6_loc(i)
227 & +wturn4*fact(3)*gel_loc_turn4(i)
228 & +wturn3*fact(2)*gel_loc_turn3(i)
229 & +wturn6*fact(5)*gel_loc_turn6(i)
230 & +wel_loc*fact(2)*gel_loc_loc(i)
235 C------------------------------------------------------------------------
236 subroutine enerprint(energia,fact)
237 implicit real*8 (a-h,o-z)
239 include 'DIMENSIONS.ZSCOPT'
240 include 'COMMON.IOUNITS'
241 include 'COMMON.FFIELD'
242 include 'COMMON.SBRIDGE'
243 double precision energia(0:max_ene),fact(6)
245 evdw=energia(1)+fact(6)*energia(21)
247 evdw2=energia(2)+energia(17)
259 eello_turn3=energia(8)
260 eello_turn4=energia(9)
261 eello_turn6=energia(10)
268 edihcnstr=energia(20)
271 write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),evdw1,
273 & estr,wbond,ebe,wang,escloc,wscloc,etors,wtor*fact(1),
274 & etors_d,wtor_d*fact(2),ehpb,wstrain,
275 & ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),ecorr6,wcorr6*fact(5),
276 & eel_loc,wel_loc*fact(2),eello_turn3,wturn3*fact(2),
277 & eello_turn4,wturn4*fact(3),eello_turn6,wturn6*fact(5),
278 & esccor,wsccor*fact(1),edihcnstr,ebr*nss,etot
279 10 format (/'Virtual-chain energies:'//
280 & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
281 & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
282 & 'EES= ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p elec)'/
283 & 'EVDWPP=',1pE16.6,' WEIGHT=',1pD16.6,' (p-p VDW)'/
284 & 'ESTR= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
285 & 'EBE= ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
286 & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
287 & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
288 & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
289 & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6,
290 & ' (SS bridges & dist. cnstr.)'/
291 & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
292 & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
293 & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
294 & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
295 & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
296 & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
297 & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
298 & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
299 & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
300 & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
301 & 'ETOT= ',1pE16.6,' (total)')
303 write (iout,10) evdw,wsc,evdw2,wscp,ees,welec*fact(1),estr,wbond,
304 & ebe,wang,escloc,wscloc,etors,wtor*fact(1),etors_d,wtor_d*fact2,
305 & ehpb,wstrain,ecorr,wcorr*fact(3),ecorr5,wcorr5*fact(4),
306 & ecorr6,wcorr6*fact(5),eel_loc,wel_loc*fact(2),
307 & eello_turn3,wturn3*fact(2),eello_turn4,wturn4*fact(3),
308 & eello_turn6,wturn6*fact(5),esccor*fact(1),wsccor,
309 & edihcnstr,ebr*nss,etot
310 10 format (/'Virtual-chain energies:'//
311 & 'EVDW= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
312 & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
313 & 'EES= ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
314 & 'ESTR= ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
315 & 'EBE= ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
316 & 'ESC= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
317 & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
318 & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
319 & 'EHBP= ',1pE16.6,' WEIGHT=',1pD16.6,
320 & ' (SS bridges & dist. cnstr.)'/
321 & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
322 & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
323 & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
324 & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
325 & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
326 & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
327 & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
328 & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
329 & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
330 & 'ESS= ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
331 & 'ETOT= ',1pE16.6,' (total)')
335 C-----------------------------------------------------------------------
336 subroutine elj(evdw,evdw_t)
338 C This subroutine calculates the interaction energy of nonbonded side chains
339 C assuming the LJ potential of interaction.
341 implicit real*8 (a-h,o-z)
343 include 'DIMENSIONS.ZSCOPT'
344 include "DIMENSIONS.COMPAR"
345 parameter (accur=1.0d-10)
348 include 'COMMON.LOCAL'
349 include 'COMMON.CHAIN'
350 include 'COMMON.DERIV'
351 include 'COMMON.INTERACT'
352 include 'COMMON.TORSION'
353 include 'COMMON.ENEPS'
354 include 'COMMON.SBRIDGE'
355 include 'COMMON.NAMES'
356 include 'COMMON.IOUNITS'
357 include 'COMMON.CONTACTS'
361 cd print *,'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
364 eneps_temp(j,i)=0.0d0
371 if (itypi.eq.21) cycle
379 C Calculate SC interaction energy.
382 cd write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
383 cd & 'iend=',iend(i,iint)
384 do j=istart(i,iint),iend(i,iint)
386 if (itypj.eq.21) cycle
390 C Change 12/1/95 to calculate four-body interactions
391 rij=xj*xj+yj*yj+zj*zj
393 c write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
394 eps0ij=eps(itypi,itypj)
396 e1=fac*fac*aa(itypi,itypj)
397 e2=fac*bb(itypi,itypj)
399 ij=icant(itypi,itypj)
400 eneps_temp(1,ij)=eneps_temp(1,ij)+e1/dabs(eps0ij)
401 eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps0ij
402 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
403 cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
404 cd write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
405 cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
406 cd & bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
407 cd & (c(k,i),k=1,3),(c(k,j),k=1,3)
408 if (bb(itypi,itypj).gt.0.0d0) then
415 C Calculate the components of the gradient in DC and X
417 fac=-rrij*(e1+evdwij)
422 gvdwx(k,i)=gvdwx(k,i)-gg(k)
423 gvdwx(k,j)=gvdwx(k,j)+gg(k)
427 gvdwc(l,k)=gvdwc(l,k)+gg(l)
432 C 12/1/95, revised on 5/20/97
434 C Calculate the contact function. The ith column of the array JCONT will
435 C contain the numbers of atoms that make contacts with the atom I (of numbers
436 C greater than I). The arrays FACONT and GACONT will contain the values of
437 C the contact function and its derivative.
439 C Uncomment next line, if the correlation interactions include EVDW explicitly.
440 c if (j.gt.i+1 .and. evdwij.le.0.0D0) then
441 C Uncomment next line, if the correlation interactions are contact function only
442 if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
444 sigij=sigma(itypi,itypj)
445 r0ij=rs0(itypi,itypj)
447 C Check whether the SC's are not too far to make a contact.
450 call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
451 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
453 if (fcont.gt.0.0D0) then
454 C If the SC-SC distance if close to sigma, apply spline.
455 cAdam call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
456 cAdam & fcont1,fprimcont1)
457 cAdam fcont1=1.0d0-fcont1
458 cAdam if (fcont1.gt.0.0d0) then
459 cAdam fprimcont=fprimcont*fcont1+fcont*fprimcont1
460 cAdam fcont=fcont*fcont1
462 C Uncomment following 4 lines to have the geometric average of the epsilon0's
463 cga eps0ij=1.0d0/dsqrt(eps0ij)
465 cga gg(k)=gg(k)*eps0ij
467 cga eps0ij=-evdwij*eps0ij
468 C Uncomment for AL's type of SC correlation interactions.
470 num_conti=num_conti+1
472 facont(num_conti,i)=fcont*eps0ij
473 fprimcont=eps0ij*fprimcont/rij
475 cAdam gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
476 cAdam gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
477 cAdam gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
478 C Uncomment following 3 lines for Skolnick's type of SC correlation.
479 gacont(1,num_conti,i)=-fprimcont*xj
480 gacont(2,num_conti,i)=-fprimcont*yj
481 gacont(3,num_conti,i)=-fprimcont*zj
482 cd write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
483 cd write (iout,'(2i3,3f10.5)')
484 cd & i,j,(gacont(kk,num_conti,i),kk=1,3)
490 num_cont(i)=num_conti
495 gvdwc(j,i)=expon*gvdwc(j,i)
496 gvdwx(j,i)=expon*gvdwx(j,i)
500 C******************************************************************************
504 C To save time, the factor of EXPON has been extracted from ALL components
505 C of GVDWC and GRADX. Remember to multiply them by this factor before further
508 C******************************************************************************
511 C-----------------------------------------------------------------------------
512 subroutine eljk(evdw,evdw_t)
514 C This subroutine calculates the interaction energy of nonbonded side chains
515 C assuming the LJK potential of interaction.
517 implicit real*8 (a-h,o-z)
519 include 'DIMENSIONS.ZSCOPT'
520 include "DIMENSIONS.COMPAR"
523 include 'COMMON.LOCAL'
524 include 'COMMON.CHAIN'
525 include 'COMMON.DERIV'
526 include 'COMMON.INTERACT'
527 include 'COMMON.ENEPS'
528 include 'COMMON.IOUNITS'
529 include 'COMMON.NAMES'
534 c print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
537 eneps_temp(j,i)=0.0d0
544 if (itypi.eq.21) cycle
550 C Calculate SC interaction energy.
553 do j=istart(i,iint),iend(i,iint)
555 if (itypj.eq.21) cycle
559 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
561 e_augm=augm(itypi,itypj)*fac_augm
564 r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
565 fac=r_shift_inv**expon
566 e1=fac*fac*aa(itypi,itypj)
567 e2=fac*bb(itypi,itypj)
569 ij=icant(itypi,itypj)
570 eneps_temp(1,ij)=eneps_temp(1,ij)+(e1+a_augm)
571 & /dabs(eps(itypi,itypj))
572 eneps_temp(2,ij)=eneps_temp(2,ij)+e2/eps(itypi,itypj)
573 cd sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
574 cd epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
575 cd write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
576 cd & restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
577 cd & bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
578 cd & sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
579 cd & (c(k,i),k=1,3),(c(k,j),k=1,3)
580 if (bb(itypi,itypj).gt.0.0d0) then
587 C Calculate the components of the gradient in DC and X
589 fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
594 gvdwx(k,i)=gvdwx(k,i)-gg(k)
595 gvdwx(k,j)=gvdwx(k,j)+gg(k)
599 gvdwc(l,k)=gvdwc(l,k)+gg(l)
609 gvdwc(j,i)=expon*gvdwc(j,i)
610 gvdwx(j,i)=expon*gvdwx(j,i)
616 C-----------------------------------------------------------------------------
617 subroutine ebp(evdw,evdw_t)
619 C This subroutine calculates the interaction energy of nonbonded side chains
620 C assuming the Berne-Pechukas potential of interaction.
622 implicit real*8 (a-h,o-z)
624 include 'DIMENSIONS.ZSCOPT'
625 include "DIMENSIONS.COMPAR"
628 include 'COMMON.LOCAL'
629 include 'COMMON.CHAIN'
630 include 'COMMON.DERIV'
631 include 'COMMON.NAMES'
632 include 'COMMON.INTERACT'
633 include 'COMMON.ENEPS'
634 include 'COMMON.IOUNITS'
635 include 'COMMON.CALC'
637 c double precision rrsave(maxdim)
643 eneps_temp(j,i)=0.0d0
648 c print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
649 c if (icall.eq.0) then
657 if (itypi.eq.21) cycle
662 dxi=dc_norm(1,nres+i)
663 dyi=dc_norm(2,nres+i)
664 dzi=dc_norm(3,nres+i)
665 dsci_inv=vbld_inv(i+nres)
667 C Calculate SC interaction energy.
670 do j=istart(i,iint),iend(i,iint)
673 if (itypj.eq.21) cycle
674 dscj_inv=vbld_inv(j+nres)
675 chi1=chi(itypi,itypj)
676 chi2=chi(itypj,itypi)
683 alf12=0.5D0*(alf1+alf2)
684 C For diagnostics only!!!
697 dxj=dc_norm(1,nres+j)
698 dyj=dc_norm(2,nres+j)
699 dzj=dc_norm(3,nres+j)
700 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
701 cd if (icall.eq.0) then
707 C Calculate the angle-dependent terms of energy & contributions to derivatives.
709 C Calculate whole angle-dependent part of epsilon and contributions
711 fac=(rrij*sigsq)**expon2
712 e1=fac*fac*aa(itypi,itypj)
713 e2=fac*bb(itypi,itypj)
714 evdwij=eps1*eps2rt*eps3rt*(e1+e2)
715 eps2der=evdwij*eps3rt
716 eps3der=evdwij*eps2rt
717 evdwij=evdwij*eps2rt*eps3rt
718 ij=icant(itypi,itypj)
719 aux=eps1*eps2rt**2*eps3rt**2
720 eneps_temp(1,ij)=eneps_temp(1,ij)+e1*aux
721 & /dabs(eps(itypi,itypj))
722 eneps_temp(2,ij)=eneps_temp(2,ij)+e2*aux/eps(itypi,itypj)
723 if (bb(itypi,itypj).gt.0.0d0) then
730 sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
731 epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
732 write (iout,'(2(a3,i3,2x),15(0pf7.3))')
733 & restyp(itypi),i,restyp(itypj),j,
734 & epsi,sigm,chi1,chi2,chip1,chip2,
735 & eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
736 & om1,om2,om12,1.0D0/dsqrt(rrij),
739 C Calculate gradient components.
740 e1=e1*eps1*eps2rt**2*eps3rt**2
741 fac=-expon*(e1+evdwij)
744 C Calculate radial part of the gradient
748 C Calculate the angular part of the gradient and sum add the contributions
749 C to the appropriate components of the Cartesian gradient.
758 C-----------------------------------------------------------------------------
759 subroutine egb(evdw,evdw_t)
761 C This subroutine calculates the interaction energy of nonbonded side chains
762 C assuming the Gay-Berne potential of interaction.
764 implicit real*8 (a-h,o-z)
766 include 'DIMENSIONS.ZSCOPT'
767 include "DIMENSIONS.COMPAR"
770 include 'COMMON.LOCAL'
771 include 'COMMON.CHAIN'
772 include 'COMMON.DERIV'
773 include 'COMMON.NAMES'
774 include 'COMMON.INTERACT'
775 include 'COMMON.ENEPS'
776 include 'COMMON.IOUNITS'
777 include 'COMMON.CALC'
784 eneps_temp(j,i)=0.0d0
787 c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
791 c if (icall.gt.0) lprn=.true.
795 if (itypi.eq.21) cycle
800 dxi=dc_norm(1,nres+i)
801 dyi=dc_norm(2,nres+i)
802 dzi=dc_norm(3,nres+i)
803 dsci_inv=vbld_inv(i+nres)
805 C Calculate SC interaction energy.
808 do j=istart(i,iint),iend(i,iint)
811 if (itypj.eq.21) cycle
812 dscj_inv=vbld_inv(j+nres)
813 sig0ij=sigma(itypi,itypj)
814 chi1=chi(itypi,itypj)
815 chi2=chi(itypj,itypi)
822 alf12=0.5D0*(alf1+alf2)
823 C For diagnostics only!!!
836 dxj=dc_norm(1,nres+j)
837 dyj=dc_norm(2,nres+j)
838 dzj=dc_norm(3,nres+j)
839 c write (iout,*) i,j,xj,yj,zj
840 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
842 C Calculate angle-dependent terms of energy and contributions to their
846 sig=sig0ij*dsqrt(sigsq)
847 rij_shift=1.0D0/rij-sig+sig0ij
848 C I hate to put IF's in the loops, but here don't have another choice!!!!
849 if (rij_shift.le.0.0D0) then
854 c---------------------------------------------------------------
855 rij_shift=1.0D0/rij_shift
857 e1=fac*fac*aa(itypi,itypj)
858 e2=fac*bb(itypi,itypj)
859 evdwij=eps1*eps2rt*eps3rt*(e1+e2)
860 eps2der=evdwij*eps3rt
861 eps3der=evdwij*eps2rt
862 evdwij=evdwij*eps2rt*eps3rt
863 if (bb(itypi,itypj).gt.0) then
868 ij=icant(itypi,itypj)
869 aux=eps1*eps2rt**2*eps3rt**2
870 eneps_temp(1,ij)=eneps_temp(1,ij)+aux*e1
871 & /dabs(eps(itypi,itypj))
872 eneps_temp(2,ij)=eneps_temp(2,ij)+aux*e2/eps(itypi,itypj)
873 c write (iout,*) "i",i," j",j," itypi",itypi," itypj",itypj,
874 c & " ij",ij," eneps",aux*e1/dabs(eps(itypi,itypj)),
875 c & aux*e2/eps(itypi,itypj)
877 sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
878 epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
880 write (iout,'(2(a3,i3,2x),17(0pf7.3))')
881 & restyp(itypi),i,restyp(itypj),j,
882 & epsi,sigm,chi1,chi2,chip1,chip2,
883 & eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
884 & om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
886 write (iout,*) "partial sum", evdw, evdw_t
890 C Calculate gradient components.
891 e1=e1*eps1*eps2rt**2*eps3rt**2
892 fac=-expon*(e1+evdwij)*rij_shift
895 C Calculate the radial part of the gradient
899 C Calculate angular part of the gradient.
907 C-----------------------------------------------------------------------------
908 subroutine egbv(evdw,evdw_t)
910 C This subroutine calculates the interaction energy of nonbonded side chains
911 C assuming the Gay-Berne-Vorobjev potential of interaction.
913 implicit real*8 (a-h,o-z)
915 include 'DIMENSIONS.ZSCOPT'
916 include "DIMENSIONS.COMPAR"
919 include 'COMMON.LOCAL'
920 include 'COMMON.CHAIN'
921 include 'COMMON.DERIV'
922 include 'COMMON.NAMES'
923 include 'COMMON.INTERACT'
924 include 'COMMON.ENEPS'
925 include 'COMMON.IOUNITS'
926 include 'COMMON.CALC'
933 eneps_temp(j,i)=0.0d0
938 c print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
941 c if (icall.gt.0) lprn=.true.
945 if (itypi.eq.21) cycle
950 dxi=dc_norm(1,nres+i)
951 dyi=dc_norm(2,nres+i)
952 dzi=dc_norm(3,nres+i)
953 dsci_inv=vbld_inv(i+nres)
955 C Calculate SC interaction energy.
958 do j=istart(i,iint),iend(i,iint)
961 if (itypj.eq.21) cycle
962 dscj_inv=vbld_inv(j+nres)
963 sig0ij=sigma(itypi,itypj)
965 chi1=chi(itypi,itypj)
966 chi2=chi(itypj,itypi)
973 alf12=0.5D0*(alf1+alf2)
974 C For diagnostics only!!!
987 dxj=dc_norm(1,nres+j)
988 dyj=dc_norm(2,nres+j)
989 dzj=dc_norm(3,nres+j)
990 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
992 C Calculate angle-dependent terms of energy and contributions to their
996 sig=sig0ij*dsqrt(sigsq)
997 rij_shift=1.0D0/rij-sig+r0ij
998 C I hate to put IF's in the loops, but here don't have another choice!!!!
999 if (rij_shift.le.0.0D0) then
1004 c---------------------------------------------------------------
1005 rij_shift=1.0D0/rij_shift
1006 fac=rij_shift**expon
1007 e1=fac*fac*aa(itypi,itypj)
1008 e2=fac*bb(itypi,itypj)
1009 evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1010 eps2der=evdwij*eps3rt
1011 eps3der=evdwij*eps2rt
1012 fac_augm=rrij**expon
1013 e_augm=augm(itypi,itypj)*fac_augm
1014 evdwij=evdwij*eps2rt*eps3rt
1015 if (bb(itypi,itypj).gt.0.0d0) then
1016 evdw=evdw+evdwij+e_augm
1018 evdw_t=evdw_t+evdwij+e_augm
1020 ij=icant(itypi,itypj)
1021 aux=eps1*eps2rt**2*eps3rt**2
1022 eneps_temp(1,ij)=eneps_temp(1,ij)+aux*(e1+e_augm)
1023 & /dabs(eps(itypi,itypj))
1024 eneps_temp(2,ij)=eneps_temp(2,ij)+aux*e2/eps(itypi,itypj)
1025 c eneps_temp(ij)=eneps_temp(ij)
1026 c & +(evdwij+e_augm)/eps(itypi,itypj)
1028 c sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1029 c epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1030 c write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1031 c & restyp(itypi),i,restyp(itypj),j,
1032 c & epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1033 c & chi1,chi2,chip1,chip2,
1034 c & eps1,eps2rt**2,eps3rt**2,
1035 c & om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1039 C Calculate gradient components.
1040 e1=e1*eps1*eps2rt**2*eps3rt**2
1041 fac=-expon*(e1+evdwij)*rij_shift
1043 fac=rij*fac-2*expon*rrij*e_augm
1044 C Calculate the radial part of the gradient
1048 C Calculate angular part of the gradient.
1056 C-----------------------------------------------------------------------------
1057 subroutine sc_angular
1058 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1059 C om12. Called by ebp, egb, and egbv.
1061 include 'COMMON.CALC'
1065 om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1066 om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1067 om12=dxi*dxj+dyi*dyj+dzi*dzj
1069 C Calculate eps1(om12) and its derivative in om12
1070 faceps1=1.0D0-om12*chiom12
1071 faceps1_inv=1.0D0/faceps1
1072 eps1=dsqrt(faceps1_inv)
1073 C Following variable is eps1*deps1/dom12
1074 eps1_om12=faceps1_inv*chiom12
1075 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1080 facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1081 sigsq=1.0D0-facsig*faceps1_inv
1082 sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1083 sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1084 sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1085 C Calculate eps2 and its derivatives in om1, om2, and om12.
1088 chipom12=chip12*om12
1089 facp=1.0D0-om12*chipom12
1091 facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1092 C Following variable is the square root of eps2
1093 eps2rt=1.0D0-facp1*facp_inv
1094 C Following three variables are the derivatives of the square root of eps
1095 C in om1, om2, and om12.
1096 eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1097 eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1098 eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2
1099 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1100 eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12
1101 C Calculate whole angle-dependent part of epsilon and contributions
1102 C to its derivatives
1105 C----------------------------------------------------------------------------
1107 implicit real*8 (a-h,o-z)
1108 include 'DIMENSIONS'
1109 include 'DIMENSIONS.ZSCOPT'
1110 include 'COMMON.CHAIN'
1111 include 'COMMON.DERIV'
1112 include 'COMMON.CALC'
1113 double precision dcosom1(3),dcosom2(3)
1114 eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
1115 eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
1116 eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
1117 & -2.0D0*alf12*eps3der+sigder*sigsq_om12
1119 dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
1120 dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
1123 gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
1126 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1127 & +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
1128 & +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
1129 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1130 & +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
1131 & +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
1134 C Calculate the components of the gradient in DC and X
1138 gvdwc(l,k)=gvdwc(l,k)+gg(l)
1143 c------------------------------------------------------------------------------
1144 subroutine vec_and_deriv
1145 implicit real*8 (a-h,o-z)
1146 include 'DIMENSIONS'
1147 include 'DIMENSIONS.ZSCOPT'
1148 include 'COMMON.IOUNITS'
1149 include 'COMMON.GEO'
1150 include 'COMMON.VAR'
1151 include 'COMMON.LOCAL'
1152 include 'COMMON.CHAIN'
1153 include 'COMMON.VECTORS'
1154 include 'COMMON.DERIV'
1155 include 'COMMON.INTERACT'
1156 dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
1157 C Compute the local reference systems. For reference system (i), the
1158 C X-axis points from CA(i) to CA(i+1), the Y axis is in the
1159 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
1161 c if (i.eq.nres-1 .or. itel(i+1).eq.0) then
1162 if (i.eq.nres-1) then
1163 C Case of the last full residue
1164 C Compute the Z-axis
1165 call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
1166 costh=dcos(pi-theta(nres))
1167 fac=1.0d0/dsqrt(1.0d0-costh*costh)
1172 C Compute the derivatives of uz
1174 uzder(2,1,1)=-dc_norm(3,i-1)
1175 uzder(3,1,1)= dc_norm(2,i-1)
1176 uzder(1,2,1)= dc_norm(3,i-1)
1178 uzder(3,2,1)=-dc_norm(1,i-1)
1179 uzder(1,3,1)=-dc_norm(2,i-1)
1180 uzder(2,3,1)= dc_norm(1,i-1)
1183 uzder(2,1,2)= dc_norm(3,i)
1184 uzder(3,1,2)=-dc_norm(2,i)
1185 uzder(1,2,2)=-dc_norm(3,i)
1187 uzder(3,2,2)= dc_norm(1,i)
1188 uzder(1,3,2)= dc_norm(2,i)
1189 uzder(2,3,2)=-dc_norm(1,i)
1192 C Compute the Y-axis
1195 uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
1198 C Compute the derivatives of uy
1201 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
1202 & -dc_norm(k,i)*dc_norm(j,i-1)
1203 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1205 uyder(j,j,1)=uyder(j,j,1)-costh
1206 uyder(j,j,2)=1.0d0+uyder(j,j,2)
1211 uygrad(l,k,j,i)=uyder(l,k,j)
1212 uzgrad(l,k,j,i)=uzder(l,k,j)
1216 call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1217 call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1218 call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1219 call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1223 C Compute the Z-axis
1224 call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
1225 costh=dcos(pi-theta(i+2))
1226 fac=1.0d0/dsqrt(1.0d0-costh*costh)
1231 C Compute the derivatives of uz
1233 uzder(2,1,1)=-dc_norm(3,i+1)
1234 uzder(3,1,1)= dc_norm(2,i+1)
1235 uzder(1,2,1)= dc_norm(3,i+1)
1237 uzder(3,2,1)=-dc_norm(1,i+1)
1238 uzder(1,3,1)=-dc_norm(2,i+1)
1239 uzder(2,3,1)= dc_norm(1,i+1)
1242 uzder(2,1,2)= dc_norm(3,i)
1243 uzder(3,1,2)=-dc_norm(2,i)
1244 uzder(1,2,2)=-dc_norm(3,i)
1246 uzder(3,2,2)= dc_norm(1,i)
1247 uzder(1,3,2)= dc_norm(2,i)
1248 uzder(2,3,2)=-dc_norm(1,i)
1251 C Compute the Y-axis
1254 uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1257 C Compute the derivatives of uy
1260 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
1261 & -dc_norm(k,i)*dc_norm(j,i+1)
1262 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1264 uyder(j,j,1)=uyder(j,j,1)-costh
1265 uyder(j,j,2)=1.0d0+uyder(j,j,2)
1270 uygrad(l,k,j,i)=uyder(l,k,j)
1271 uzgrad(l,k,j,i)=uzder(l,k,j)
1275 call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1276 call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1277 call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1278 call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1284 vbld_inv_temp(1)=vbld_inv(i+1)
1285 if (i.lt.nres-1) then
1286 vbld_inv_temp(2)=vbld_inv(i+2)
1288 vbld_inv_temp(2)=vbld_inv(i)
1293 uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
1294 uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
1302 C-----------------------------------------------------------------------------
1303 subroutine vec_and_deriv_test
1304 implicit real*8 (a-h,o-z)
1305 include 'DIMENSIONS'
1306 include 'DIMENSIONS.ZSCOPT'
1307 include 'COMMON.IOUNITS'
1308 include 'COMMON.GEO'
1309 include 'COMMON.VAR'
1310 include 'COMMON.LOCAL'
1311 include 'COMMON.CHAIN'
1312 include 'COMMON.VECTORS'
1313 dimension uyder(3,3,2),uzder(3,3,2)
1314 C Compute the local reference systems. For reference system (i), the
1315 C X-axis points from CA(i) to CA(i+1), the Y axis is in the
1316 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
1318 if (i.eq.nres-1) then
1319 C Case of the last full residue
1320 C Compute the Z-axis
1321 call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
1322 costh=dcos(pi-theta(nres))
1323 fac=1.0d0/dsqrt(1.0d0-costh*costh)
1324 c write (iout,*) 'fac',fac,
1325 c & 1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1326 fac=1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1330 C Compute the derivatives of uz
1332 uzder(2,1,1)=-dc_norm(3,i-1)
1333 uzder(3,1,1)= dc_norm(2,i-1)
1334 uzder(1,2,1)= dc_norm(3,i-1)
1336 uzder(3,2,1)=-dc_norm(1,i-1)
1337 uzder(1,3,1)=-dc_norm(2,i-1)
1338 uzder(2,3,1)= dc_norm(1,i-1)
1341 uzder(2,1,2)= dc_norm(3,i)
1342 uzder(3,1,2)=-dc_norm(2,i)
1343 uzder(1,2,2)=-dc_norm(3,i)
1345 uzder(3,2,2)= dc_norm(1,i)
1346 uzder(1,3,2)= dc_norm(2,i)
1347 uzder(2,3,2)=-dc_norm(1,i)
1349 C Compute the Y-axis
1351 uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
1354 facy=1.0d0/dsqrt(scalar(dc_norm(1,i),dc_norm(1,i))*
1355 & (scalar(dc_norm(1,i-1),dc_norm(1,i-1))**2-
1356 & scalar(dc_norm(1,i),dc_norm(1,i-1))**2))
1358 c uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1361 & dc_norm(k,i-1)*scalar(dc_norm(1,i),dc_norm(1,i))
1362 & -scalar(dc_norm(1,i),dc_norm(1,i-1))*dc_norm(k,i)
1365 c write (iout,*) 'facy',facy,
1366 c & 1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1367 facy=1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1369 uy(k,i)=facy*uy(k,i)
1371 C Compute the derivatives of uy
1374 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
1375 & -dc_norm(k,i)*dc_norm(j,i-1)
1376 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1378 c uyder(j,j,1)=uyder(j,j,1)-costh
1379 c uyder(j,j,2)=1.0d0+uyder(j,j,2)
1380 uyder(j,j,1)=uyder(j,j,1)
1381 & -scalar(dc_norm(1,i),dc_norm(1,i-1))
1382 uyder(j,j,2)=scalar(dc_norm(1,i),dc_norm(1,i))
1388 uygrad(l,k,j,i)=uyder(l,k,j)
1389 uzgrad(l,k,j,i)=uzder(l,k,j)
1393 call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1394 call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1395 call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1396 call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1399 C Compute the Z-axis
1400 call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
1401 costh=dcos(pi-theta(i+2))
1402 fac=1.0d0/dsqrt(1.0d0-costh*costh)
1403 fac=1.0d0/dsqrt(scalar(uz(1,i),uz(1,i)))
1407 C Compute the derivatives of uz
1409 uzder(2,1,1)=-dc_norm(3,i+1)
1410 uzder(3,1,1)= dc_norm(2,i+1)
1411 uzder(1,2,1)= dc_norm(3,i+1)
1413 uzder(3,2,1)=-dc_norm(1,i+1)
1414 uzder(1,3,1)=-dc_norm(2,i+1)
1415 uzder(2,3,1)= dc_norm(1,i+1)
1418 uzder(2,1,2)= dc_norm(3,i)
1419 uzder(3,1,2)=-dc_norm(2,i)
1420 uzder(1,2,2)=-dc_norm(3,i)
1422 uzder(3,2,2)= dc_norm(1,i)
1423 uzder(1,3,2)= dc_norm(2,i)
1424 uzder(2,3,2)=-dc_norm(1,i)
1426 C Compute the Y-axis
1428 facy=1.0d0/dsqrt(scalar(dc_norm(1,i),dc_norm(1,i))*
1429 & (scalar(dc_norm(1,i+1),dc_norm(1,i+1))**2-
1430 & scalar(dc_norm(1,i),dc_norm(1,i+1))**2))
1432 c uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
1435 & dc_norm(k,i+1)*scalar(dc_norm(1,i),dc_norm(1,i))
1436 & -scalar(dc_norm(1,i),dc_norm(1,i+1))*dc_norm(k,i)
1439 c write (iout,*) 'facy',facy,
1440 c & 1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1441 facy=1.0d0/dsqrt(scalar(uy(1,i),uy(1,i)))
1443 uy(k,i)=facy*uy(k,i)
1445 C Compute the derivatives of uy
1448 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
1449 & -dc_norm(k,i)*dc_norm(j,i+1)
1450 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
1452 c uyder(j,j,1)=uyder(j,j,1)-costh
1453 c uyder(j,j,2)=1.0d0+uyder(j,j,2)
1454 uyder(j,j,1)=uyder(j,j,1)
1455 & -scalar(dc_norm(1,i),dc_norm(1,i+1))
1456 uyder(j,j,2)=scalar(dc_norm(1,i),dc_norm(1,i))
1462 uygrad(l,k,j,i)=uyder(l,k,j)
1463 uzgrad(l,k,j,i)=uzder(l,k,j)
1467 call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
1468 call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
1469 call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
1470 call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
1477 uygrad(l,k,j,i)=vblinv*uygrad(l,k,j,i)
1478 uzgrad(l,k,j,i)=vblinv*uzgrad(l,k,j,i)
1485 C-----------------------------------------------------------------------------
1486 subroutine check_vecgrad
1487 implicit real*8 (a-h,o-z)
1488 include 'DIMENSIONS'
1489 include 'DIMENSIONS.ZSCOPT'
1490 include 'COMMON.IOUNITS'
1491 include 'COMMON.GEO'
1492 include 'COMMON.VAR'
1493 include 'COMMON.LOCAL'
1494 include 'COMMON.CHAIN'
1495 include 'COMMON.VECTORS'
1496 dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
1497 dimension uyt(3,maxres),uzt(3,maxres)
1498 dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
1499 double precision delta /1.0d-7/
1502 crc write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
1503 crc write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
1504 crc write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
1505 cd write(iout,'(2i5,2(3f10.5,5x))') i,1,
1506 cd & (dc_norm(if90,i),if90=1,3)
1507 cd write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
1508 cd write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
1509 cd write(iout,'(a)')
1515 uygradt(l,k,j,i)=uygrad(l,k,j,i)
1516 uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
1529 cd write (iout,*) 'i=',i
1531 erij(k)=dc_norm(k,i)
1535 dc_norm(k,i)=erij(k)
1537 dc_norm(j,i)=dc_norm(j,i)+delta
1538 c fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
1540 c dc_norm(k,i)=dc_norm(k,i)/fac
1542 c write (iout,*) (dc_norm(k,i),k=1,3)
1543 c write (iout,*) (erij(k),k=1,3)
1546 uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
1547 uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
1548 uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
1549 uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
1551 c write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)')
1552 c & j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
1553 c & (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
1556 dc_norm(k,i)=erij(k)
1559 cd write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)')
1560 cd & k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
1561 cd & (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
1562 cd write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)')
1563 cd & k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
1564 cd & (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
1565 cd write (iout,'(a)')
1570 C--------------------------------------------------------------------------
1571 subroutine set_matrices
1572 implicit real*8 (a-h,o-z)
1573 include 'DIMENSIONS'
1574 include 'DIMENSIONS.ZSCOPT'
1575 include 'COMMON.IOUNITS'
1576 include 'COMMON.GEO'
1577 include 'COMMON.VAR'
1578 include 'COMMON.LOCAL'
1579 include 'COMMON.CHAIN'
1580 include 'COMMON.DERIV'
1581 include 'COMMON.INTERACT'
1582 include 'COMMON.CONTACTS'
1583 include 'COMMON.TORSION'
1584 include 'COMMON.VECTORS'
1585 include 'COMMON.FFIELD'
1586 double precision auxvec(2),auxmat(2,2)
1588 C Compute the virtual-bond-torsional-angle dependent quantities needed
1589 C to calculate the el-loc multibody terms of various order.
1592 if (i .lt. nres+1) then
1629 if (i .gt. 3 .and. i .lt. nres+1) then
1630 obrot_der(1,i-2)=-sin1
1631 obrot_der(2,i-2)= cos1
1632 Ugder(1,1,i-2)= sin1
1633 Ugder(1,2,i-2)=-cos1
1634 Ugder(2,1,i-2)=-cos1
1635 Ugder(2,2,i-2)=-sin1
1638 obrot2_der(1,i-2)=-dwasin2
1639 obrot2_der(2,i-2)= dwacos2
1640 Ug2der(1,1,i-2)= dwasin2
1641 Ug2der(1,2,i-2)=-dwacos2
1642 Ug2der(2,1,i-2)=-dwacos2
1643 Ug2der(2,2,i-2)=-dwasin2
1645 obrot_der(1,i-2)=0.0d0
1646 obrot_der(2,i-2)=0.0d0
1647 Ugder(1,1,i-2)=0.0d0
1648 Ugder(1,2,i-2)=0.0d0
1649 Ugder(2,1,i-2)=0.0d0
1650 Ugder(2,2,i-2)=0.0d0
1651 obrot2_der(1,i-2)=0.0d0
1652 obrot2_der(2,i-2)=0.0d0
1653 Ug2der(1,1,i-2)=0.0d0
1654 Ug2der(1,2,i-2)=0.0d0
1655 Ug2der(2,1,i-2)=0.0d0
1656 Ug2der(2,2,i-2)=0.0d0
1658 if (i.gt. nnt+2 .and. i.lt.nct+2) then
1659 if (itype(i-2).le.ntyp) then
1660 iti = itortyp(itype(i-2))
1667 if (i.gt. nnt+1 .and. i.lt.nct+1) then
1668 if (itype(i-1).le.ntyp) then
1669 iti1 = itortyp(itype(i-1))
1676 cd write (iout,*) '*******i',i,' iti1',iti
1677 cd write (iout,*) 'b1',b1(:,iti)
1678 cd write (iout,*) 'b2',b2(:,iti)
1679 cd write (iout,*) 'Ug',Ug(:,:,i-2)
1680 c print *,"itilde1 i iti iti1",i,iti,iti1
1681 if (i .gt. iatel_s+2) then
1682 call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
1683 call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
1684 call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
1685 call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
1686 call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
1687 call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
1688 call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
1698 DtUg2(l,k,i-2)=0.0d0
1702 c print *,"itilde2 i iti iti1",i,iti,iti1
1703 call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
1704 call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
1705 call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
1706 call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
1707 call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
1708 call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
1709 call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
1710 c print *,"itilde3 i iti iti1",i,iti,iti1
1712 muder(k,i-2)=Ub2der(k,i-2)
1714 if (i.gt. nnt+1 .and. i.lt.nct+1) then
1715 if (itype(i-1).le.ntyp) then
1716 iti1 = itortyp(itype(i-1))
1724 mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
1726 C Vectors and matrices dependent on a single virtual-bond dihedral.
1727 call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
1728 call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2))
1729 call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2))
1730 call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
1731 call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
1732 call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
1733 call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
1734 call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
1735 call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
1736 cd write (iout,*) 'i',i,' mu ',(mu(k,i-2),k=1,2),
1737 cd & ' mu1',(b1(k,i-2),k=1,2),' mu2',(Ub2(k,i-2),k=1,2)
1739 C Matrices dependent on two consecutive virtual-bond dihedrals.
1740 C The order of matrices is from left to right.
1742 call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
1743 call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
1744 call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
1745 call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
1746 call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
1747 call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
1748 call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
1749 call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
1752 cd iti = itortyp(itype(i))
1755 cd write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)')
1756 cd & (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
1761 C--------------------------------------------------------------------------
1762 subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
1764 C This subroutine calculates the average interaction energy and its gradient
1765 C in the virtual-bond vectors between non-adjacent peptide groups, based on
1766 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715.
1767 C The potential depends both on the distance of peptide-group centers and on
1768 C the orientation of the CA-CA virtual bonds.
1770 implicit real*8 (a-h,o-z)
1771 include 'DIMENSIONS'
1772 include 'DIMENSIONS.ZSCOPT'
1773 include 'COMMON.CONTROL'
1774 include 'COMMON.IOUNITS'
1775 include 'COMMON.GEO'
1776 include 'COMMON.VAR'
1777 include 'COMMON.LOCAL'
1778 include 'COMMON.CHAIN'
1779 include 'COMMON.DERIV'
1780 include 'COMMON.INTERACT'
1781 include 'COMMON.CONTACTS'
1782 include 'COMMON.TORSION'
1783 include 'COMMON.VECTORS'
1784 include 'COMMON.FFIELD'
1785 dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
1786 & erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
1787 double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
1788 & aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
1789 common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1
1790 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
1791 double precision scal_el /0.5d0/
1793 C 13-go grudnia roku pamietnego...
1794 double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
1795 & 0.0d0,1.0d0,0.0d0,
1796 & 0.0d0,0.0d0,1.0d0/
1797 cd write(iout,*) 'In EELEC'
1799 cd write(iout,*) 'Type',i
1800 cd write(iout,*) 'B1',B1(:,i)
1801 cd write(iout,*) 'B2',B2(:,i)
1802 cd write(iout,*) 'CC',CC(:,:,i)
1803 cd write(iout,*) 'DD',DD(:,:,i)
1804 cd write(iout,*) 'EE',EE(:,:,i)
1806 cd call check_vecgrad
1808 if (icheckgrad.eq.1) then
1810 fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
1812 dc_norm(k,i)=dc(k,i)*fac
1814 c write (iout,*) 'i',i,' fac',fac
1817 if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
1818 & .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or.
1819 & wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
1820 cd if (wel_loc.gt.0.0d0) then
1821 if (icheckgrad.eq.1) then
1822 call vec_and_deriv_test
1829 cd write (iout,*) 'i=',i
1831 cd write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
1834 cd write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)')
1835 cd & uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
1848 cd print '(a)','Enter EELEC'
1849 cd write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
1851 gel_loc_loc(i)=0.0d0
1854 do i=iatel_s,iatel_e
1855 if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle
1856 if (itel(i).eq.0) goto 1215
1860 dx_normi=dc_norm(1,i)
1861 dy_normi=dc_norm(2,i)
1862 dz_normi=dc_norm(3,i)
1863 xmedi=c(1,i)+0.5d0*dxi
1864 ymedi=c(2,i)+0.5d0*dyi
1865 zmedi=c(3,i)+0.5d0*dzi
1867 c write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
1868 do j=ielstart(i),ielend(i)
1869 if (itype(j).eq.21 .or. itype(j+1).eq.21) cycle
1870 if (itel(j).eq.0) goto 1216
1874 if (j.eq.i+2 .and. itelj.eq.2) iteli=2
1875 aaa=app(iteli,itelj)
1876 bbb=bpp(iteli,itelj)
1877 C Diagnostics only!!!
1883 ael6i=ael6(iteli,itelj)
1884 ael3i=ael3(iteli,itelj)
1888 dx_normj=dc_norm(1,j)
1889 dy_normj=dc_norm(2,j)
1890 dz_normj=dc_norm(3,j)
1891 xj=c(1,j)+0.5D0*dxj-xmedi
1892 yj=c(2,j)+0.5D0*dyj-ymedi
1893 zj=c(3,j)+0.5D0*dzj-zmedi
1894 rij=xj*xj+yj*yj+zj*zj
1900 cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
1901 cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
1902 cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
1903 fac=cosa-3.0D0*cosb*cosg
1905 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
1906 if (j.eq.i+2) ev1=scal_el*ev1
1911 el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
1914 c write (iout,*) "i",i,iteli," j",j,itelj," eesij",eesij
1915 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
1916 ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
1919 cd write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
1920 cd & iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
1921 cd & 1.0D0/dsqrt(rrmij),evdwij,eesij,
1922 cd & xmedi,ymedi,zmedi,xj,yj,zj
1924 C Calculate contributions to the Cartesian gradient.
1927 facvdw=-6*rrmij*(ev1+evdwij)
1928 facel=-3*rrmij*(el1+eesij)
1935 * Radial derivatives. First process both termini of the fragment (i,j)
1942 gelc(k,i)=gelc(k,i)+ghalf
1943 gelc(k,j)=gelc(k,j)+ghalf
1946 * Loop over residues i+1 thru j-1.
1950 gelc(l,k)=gelc(l,k)+ggg(l)
1958 gvdwpp(k,i)=gvdwpp(k,i)+ghalf
1959 gvdwpp(k,j)=gvdwpp(k,j)+ghalf
1962 * Loop over residues i+1 thru j-1.
1966 gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
1973 fac=-3*rrmij*(facvdw+facvdw+facel)
1979 * Radial derivatives. First process both termini of the fragment (i,j)
1986 gelc(k,i)=gelc(k,i)+ghalf
1987 gelc(k,j)=gelc(k,j)+ghalf
1990 * Loop over residues i+1 thru j-1.
1994 gelc(l,k)=gelc(l,k)+ggg(l)
2001 ecosa=2.0D0*fac3*fac1+fac4
2004 ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
2005 ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
2007 dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
2008 dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
2010 cd print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
2011 cd & (dcosg(k),k=1,3)
2013 ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k)
2017 gelc(k,i)=gelc(k,i)+ghalf
2018 & +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
2019 & + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2020 gelc(k,j)=gelc(k,j)+ghalf
2021 & +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
2022 & + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2026 gelc(l,k)=gelc(l,k)+ggg(l)
2031 IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
2032 & .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0
2033 & .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
2035 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction
2036 C energy of a peptide unit is assumed in the form of a second-order
2037 C Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
2038 C Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
2039 C are computed for EVERY pair of non-contiguous peptide groups.
2041 if (j.lt.nres-1) then
2052 muij(kkk)=mu(k,i)*mu(l,j)
2055 cd write (iout,*) 'EELEC: i',i,' j',j
2056 cd write (iout,*) 'j',j,' j1',j1,' j2',j2
2057 cd write(iout,*) 'muij',muij
2058 ury=scalar(uy(1,i),erij)
2059 urz=scalar(uz(1,i),erij)
2060 vry=scalar(uy(1,j),erij)
2061 vrz=scalar(uz(1,j),erij)
2062 a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
2063 a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
2064 a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
2065 a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
2066 C For diagnostics only
2071 fac=dsqrt(-ael6i)*r3ij
2072 cd write (2,*) 'fac=',fac
2073 C For diagnostics only
2079 cd write (iout,'(4i5,4f10.5)')
2080 cd & i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
2081 cd write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
2082 cd write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') (uy(k,i),k=1,3),
2083 cd & (uz(k,i),k=1,3),(uy(k,j),k=1,3),(uz(k,j),k=1,3)
2084 cd write (iout,'(4f10.5)')
2085 cd & scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
2086 cd & scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
2087 cd write (iout,'(4f10.5)') ury,urz,vry,vrz
2088 cd write (iout,'(2i3,9f10.5/)') i,j,
2089 cd & fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
2091 C Derivatives of the elements of A in virtual-bond vectors
2092 call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
2099 uryg(k,1)=scalar(erder(1,k),uy(1,i))
2100 uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
2101 uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
2102 urzg(k,1)=scalar(erder(1,k),uz(1,i))
2103 urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
2104 urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
2105 vryg(k,1)=scalar(erder(1,k),uy(1,j))
2106 vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
2107 vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
2108 vrzg(k,1)=scalar(erder(1,k),uz(1,j))
2109 vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
2110 vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
2120 C Compute radial contributions to the gradient
2142 C Add the contributions coming from er
2145 agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
2146 agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
2147 agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
2148 agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
2151 C Derivatives in DC(i)
2152 ghalf1=0.5d0*agg(k,1)
2153 ghalf2=0.5d0*agg(k,2)
2154 ghalf3=0.5d0*agg(k,3)
2155 ghalf4=0.5d0*agg(k,4)
2156 aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
2157 & -3.0d0*uryg(k,2)*vry)+ghalf1
2158 aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
2159 & -3.0d0*uryg(k,2)*vrz)+ghalf2
2160 aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
2161 & -3.0d0*urzg(k,2)*vry)+ghalf3
2162 aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
2163 & -3.0d0*urzg(k,2)*vrz)+ghalf4
2164 C Derivatives in DC(i+1)
2165 aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
2166 & -3.0d0*uryg(k,3)*vry)+agg(k,1)
2167 aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
2168 & -3.0d0*uryg(k,3)*vrz)+agg(k,2)
2169 aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
2170 & -3.0d0*urzg(k,3)*vry)+agg(k,3)
2171 aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
2172 & -3.0d0*urzg(k,3)*vrz)+agg(k,4)
2173 C Derivatives in DC(j)
2174 aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
2175 & -3.0d0*vryg(k,2)*ury)+ghalf1
2176 aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
2177 & -3.0d0*vrzg(k,2)*ury)+ghalf2
2178 aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
2179 & -3.0d0*vryg(k,2)*urz)+ghalf3
2180 aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i))
2181 & -3.0d0*vrzg(k,2)*urz)+ghalf4
2182 C Derivatives in DC(j+1) or DC(nres-1)
2183 aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
2184 & -3.0d0*vryg(k,3)*ury)
2185 aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
2186 & -3.0d0*vrzg(k,3)*ury)
2187 aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
2188 & -3.0d0*vryg(k,3)*urz)
2189 aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i))
2190 & -3.0d0*vrzg(k,3)*urz)
2195 C Derivatives in DC(i+1)
2196 cd aggi1(k,1)=agg(k,1)
2197 cd aggi1(k,2)=agg(k,2)
2198 cd aggi1(k,3)=agg(k,3)
2199 cd aggi1(k,4)=agg(k,4)
2200 C Derivatives in DC(j)
2205 C Derivatives in DC(j+1)
2210 if (j.eq.nres-1 .and. i.lt.j-2) then
2212 aggj1(k,l)=aggj1(k,l)+agg(k,l)
2213 cd aggj1(k,l)=agg(k,l)
2219 C Check the loc-el terms by numerical integration
2229 aggi(k,l)=-aggi(k,l)
2230 aggi1(k,l)=-aggi1(k,l)
2231 aggj(k,l)=-aggj(k,l)
2232 aggj1(k,l)=-aggj1(k,l)
2235 if (j.lt.nres-1) then
2241 aggi(k,l)=-aggi(k,l)
2242 aggi1(k,l)=-aggi1(k,l)
2243 aggj(k,l)=-aggj(k,l)
2244 aggj1(k,l)=-aggj1(k,l)
2255 aggi(k,l)=-aggi(k,l)
2256 aggi1(k,l)=-aggi1(k,l)
2257 aggj(k,l)=-aggj(k,l)
2258 aggj1(k,l)=-aggj1(k,l)
2264 IF (wel_loc.gt.0.0d0) THEN
2265 C Contribution to the local-electrostatic energy coming from the i-j pair
2266 eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
2268 cd write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
2269 cd write (iout,*) a22,muij(1),a23,muij(2),a32,muij(3)
2270 eel_loc=eel_loc+eel_loc_ij
2271 C Partial derivatives in virtual-bond dihedral angles gamma
2274 & gel_loc_loc(i-1)=gel_loc_loc(i-1)+
2275 & a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
2276 & +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
2277 gel_loc_loc(j-1)=gel_loc_loc(j-1)+
2278 & a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
2279 & +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
2280 cd call checkint3(i,j,mu1,mu2,a22,a23,a32,a33,acipa,eel_loc_ij)
2281 cd write(iout,*) 'agg ',agg
2282 cd write(iout,*) 'aggi ',aggi
2283 cd write(iout,*) 'aggi1',aggi1
2284 cd write(iout,*) 'aggj ',aggj
2285 cd write(iout,*) 'aggj1',aggj1
2287 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
2289 ggg(l)=agg(l,1)*muij(1)+
2290 & agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
2294 gel_loc(l,k)=gel_loc(l,k)+ggg(l)
2297 C Remaining derivatives of eello
2299 gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
2300 & aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
2301 gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
2302 & aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
2303 gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
2304 & aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
2305 gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
2306 & aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
2310 if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
2311 C Contributions from turns
2316 call eturn34(i,j,eello_turn3,eello_turn4)
2318 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
2319 if (j.gt.i+1 .and. num_conti.le.maxconts) then
2321 C Calculate the contact function. The ith column of the array JCONT will
2322 C contain the numbers of atoms that make contacts with the atom I (of numbers
2323 C greater than I). The arrays FACONT and GACONT will contain the values of
2324 C the contact function and its derivative.
2325 c r0ij=1.02D0*rpp(iteli,itelj)
2326 c r0ij=1.11D0*rpp(iteli,itelj)
2327 r0ij=2.20D0*rpp(iteli,itelj)
2328 c r0ij=1.55D0*rpp(iteli,itelj)
2329 call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
2330 if (fcont.gt.0.0D0) then
2331 num_conti=num_conti+1
2332 if (num_conti.gt.maxconts) then
2333 write (iout,*) 'WARNING - max. # of contacts exceeded;',
2334 & ' will skip next contacts for this conf.'
2336 jcont_hb(num_conti,i)=j
2337 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.
2338 & wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
2339 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
2341 d_cont(num_conti,i)=rij
2342 cd write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
2343 C --- Electrostatic-interaction matrix ---
2344 a_chuj(1,1,num_conti,i)=a22
2345 a_chuj(1,2,num_conti,i)=a23
2346 a_chuj(2,1,num_conti,i)=a32
2347 a_chuj(2,2,num_conti,i)=a33
2348 C --- Gradient of rij
2350 grij_hb_cont(kkk,num_conti,i)=erij(kkk)
2353 c a_chuj(1,1,num_conti,i)=-0.61d0
2354 c a_chuj(1,2,num_conti,i)= 0.4d0
2355 c a_chuj(2,1,num_conti,i)= 0.65d0
2356 c a_chuj(2,2,num_conti,i)= 0.50d0
2357 c else if (i.eq.2) then
2358 c a_chuj(1,1,num_conti,i)= 0.0d0
2359 c a_chuj(1,2,num_conti,i)= 0.0d0
2360 c a_chuj(2,1,num_conti,i)= 0.0d0
2361 c a_chuj(2,2,num_conti,i)= 0.0d0
2363 C --- and its gradients
2364 cd write (iout,*) 'i',i,' j',j
2366 cd write (iout,*) 'iii 1 kkk',kkk
2367 cd write (iout,*) agg(kkk,:)
2370 cd write (iout,*) 'iii 2 kkk',kkk
2371 cd write (iout,*) aggi(kkk,:)
2374 cd write (iout,*) 'iii 3 kkk',kkk
2375 cd write (iout,*) aggi1(kkk,:)
2378 cd write (iout,*) 'iii 4 kkk',kkk
2379 cd write (iout,*) aggj(kkk,:)
2382 cd write (iout,*) 'iii 5 kkk',kkk
2383 cd write (iout,*) aggj1(kkk,:)
2390 a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
2391 a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
2392 a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
2393 a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
2394 a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
2396 c a_chuj_der(k,l,m,mm,num_conti,i)=0.0d0
2402 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
2403 C Calculate contact energies
2405 wij=cosa-3.0D0*cosb*cosg
2408 c fac3=dsqrt(-ael6i)/r0ij**3
2409 fac3=dsqrt(-ael6i)*r3ij
2410 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
2411 ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
2413 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
2414 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
2415 C Diagnostics. Comment out or remove after debugging!
2416 c ees0p(num_conti,i)=0.5D0*fac3*ees0pij
2417 c ees0m(num_conti,i)=0.5D0*fac3*ees0mij
2418 c ees0m(num_conti,i)=0.0D0
2420 c write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
2421 c & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
2422 facont_hb(num_conti,i)=fcont
2424 C Angular derivatives of the contact function
2425 ees0pij1=fac3/ees0pij
2426 ees0mij1=fac3/ees0mij
2427 fac3p=-3.0D0*fac3*rrmij
2428 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
2429 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
2431 ecosa1= ees0pij1*( 1.0D0+0.5D0*wij)
2432 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
2433 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
2434 ecosa2= ees0mij1*(-1.0D0+0.5D0*wij)
2435 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2)
2436 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
2437 ecosap=ecosa1+ecosa2
2438 ecosbp=ecosb1+ecosb2
2439 ecosgp=ecosg1+ecosg2
2440 ecosam=ecosa1-ecosa2
2441 ecosbm=ecosb1-ecosb2
2442 ecosgm=ecosg1-ecosg2
2451 fprimcont=fprimcont/rij
2452 cd facont_hb(num_conti,i)=1.0D0
2453 C Following line is for diagnostics.
2456 dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
2457 dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
2460 gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
2461 gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
2463 gggp(1)=gggp(1)+ees0pijp*xj
2464 gggp(2)=gggp(2)+ees0pijp*yj
2465 gggp(3)=gggp(3)+ees0pijp*zj
2466 gggm(1)=gggm(1)+ees0mijp*xj
2467 gggm(2)=gggm(2)+ees0mijp*yj
2468 gggm(3)=gggm(3)+ees0mijp*zj
2469 C Derivatives due to the contact function
2470 gacont_hbr(1,num_conti,i)=fprimcont*xj
2471 gacont_hbr(2,num_conti,i)=fprimcont*yj
2472 gacont_hbr(3,num_conti,i)=fprimcont*zj
2474 ghalfp=0.5D0*gggp(k)
2475 ghalfm=0.5D0*gggm(k)
2476 gacontp_hb1(k,num_conti,i)=ghalfp
2477 & +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
2478 & + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2479 gacontp_hb2(k,num_conti,i)=ghalfp
2480 & +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
2481 & + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2482 gacontp_hb3(k,num_conti,i)=gggp(k)
2483 gacontm_hb1(k,num_conti,i)=ghalfm
2484 & +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
2485 & + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
2486 gacontm_hb2(k,num_conti,i)=ghalfm
2487 & +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
2488 & + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
2489 gacontm_hb3(k,num_conti,i)=gggm(k)
2492 C Diagnostics. Comment out or remove after debugging!
2494 cdiag gacontp_hb1(k,num_conti,i)=0.0D0
2495 cdiag gacontp_hb2(k,num_conti,i)=0.0D0
2496 cdiag gacontp_hb3(k,num_conti,i)=0.0D0
2497 cdiag gacontm_hb1(k,num_conti,i)=0.0D0
2498 cdiag gacontm_hb2(k,num_conti,i)=0.0D0
2499 cdiag gacontm_hb3(k,num_conti,i)=0.0D0
2502 endif ! num_conti.le.maxconts
2507 num_cont_hb(i)=num_conti
2511 cd write (iout,'(i3,3f10.5,5x,3f10.5)')
2512 cd & i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
2514 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
2515 ccc eel_loc=eel_loc+eello_turn3
2518 C-----------------------------------------------------------------------------
2519 subroutine eturn34(i,j,eello_turn3,eello_turn4)
2520 C Third- and fourth-order contributions from turns
2521 implicit real*8 (a-h,o-z)
2522 include 'DIMENSIONS'
2523 include 'DIMENSIONS.ZSCOPT'
2524 include 'COMMON.IOUNITS'
2525 include 'COMMON.GEO'
2526 include 'COMMON.VAR'
2527 include 'COMMON.LOCAL'
2528 include 'COMMON.CHAIN'
2529 include 'COMMON.DERIV'
2530 include 'COMMON.INTERACT'
2531 include 'COMMON.CONTACTS'
2532 include 'COMMON.TORSION'
2533 include 'COMMON.VECTORS'
2534 include 'COMMON.FFIELD'
2536 double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
2537 & e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
2538 & e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
2539 double precision agg(3,4),aggi(3,4),aggi1(3,4),
2540 & aggj(3,4),aggj1(3,4),a_temp(2,2)
2541 common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,j1,j2
2543 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2545 C Third-order contributions
2552 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2553 cd call checkint_turn3(i,a_temp,eello_turn3_num)
2554 call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
2555 call transpose2(auxmat(1,1),auxmat1(1,1))
2556 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2557 eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
2558 cd write (2,*) 'i,',i,' j',j,'eello_turn3',
2559 cd & 0.5d0*(pizda(1,1)+pizda(2,2)),
2560 cd & ' eello_turn3_num',4*eello_turn3_num
2562 C Derivatives in gamma(i)
2563 call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
2564 call transpose2(auxmat2(1,1),pizda(1,1))
2565 call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
2566 gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
2567 C Derivatives in gamma(i+1)
2568 call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
2569 call transpose2(auxmat2(1,1),pizda(1,1))
2570 call matmat2(a_temp(1,1),pizda(1,1),pizda(1,1))
2571 gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
2572 & +0.5d0*(pizda(1,1)+pizda(2,2))
2573 C Cartesian derivatives
2575 a_temp(1,1)=aggi(l,1)
2576 a_temp(1,2)=aggi(l,2)
2577 a_temp(2,1)=aggi(l,3)
2578 a_temp(2,2)=aggi(l,4)
2579 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2580 gcorr3_turn(l,i)=gcorr3_turn(l,i)
2581 & +0.5d0*(pizda(1,1)+pizda(2,2))
2582 a_temp(1,1)=aggi1(l,1)
2583 a_temp(1,2)=aggi1(l,2)
2584 a_temp(2,1)=aggi1(l,3)
2585 a_temp(2,2)=aggi1(l,4)
2586 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2587 gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
2588 & +0.5d0*(pizda(1,1)+pizda(2,2))
2589 a_temp(1,1)=aggj(l,1)
2590 a_temp(1,2)=aggj(l,2)
2591 a_temp(2,1)=aggj(l,3)
2592 a_temp(2,2)=aggj(l,4)
2593 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2594 gcorr3_turn(l,j)=gcorr3_turn(l,j)
2595 & +0.5d0*(pizda(1,1)+pizda(2,2))
2596 a_temp(1,1)=aggj1(l,1)
2597 a_temp(1,2)=aggj1(l,2)
2598 a_temp(2,1)=aggj1(l,3)
2599 a_temp(2,2)=aggj1(l,4)
2600 call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
2601 gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
2602 & +0.5d0*(pizda(1,1)+pizda(2,2))
2605 else if (j.eq.i+3 .and. itype(i+2).ne.21) then
2606 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2608 C Fourth-order contributions
2616 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2617 cd call checkint_turn4(i,a_temp,eello_turn4_num)
2618 iti1=itortyp(itype(i+1))
2619 iti2=itortyp(itype(i+2))
2620 iti3=itortyp(itype(i+3))
2621 call transpose2(EUg(1,1,i+1),e1t(1,1))
2622 call transpose2(Eug(1,1,i+2),e2t(1,1))
2623 call transpose2(Eug(1,1,i+3),e3t(1,1))
2624 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2625 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2626 s1=scalar2(b1(1,iti2),auxvec(1))
2627 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2628 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2629 s2=scalar2(b1(1,iti1),auxvec(1))
2630 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2631 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2632 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2633 eello_turn4=eello_turn4-(s1+s2+s3)
2634 cd write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
2635 cd & ' eello_turn4_num',8*eello_turn4_num
2636 C Derivatives in gamma(i)
2638 call transpose2(EUgder(1,1,i+1),e1tder(1,1))
2639 call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
2640 call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
2641 s1=scalar2(b1(1,iti2),auxvec(1))
2642 call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
2643 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2644 gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
2645 C Derivatives in gamma(i+1)
2646 call transpose2(EUgder(1,1,i+2),e2tder(1,1))
2647 call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1))
2648 s2=scalar2(b1(1,iti1),auxvec(1))
2649 call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
2650 call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
2651 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2652 gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
2653 C Derivatives in gamma(i+2)
2654 call transpose2(EUgder(1,1,i+3),e3tder(1,1))
2655 call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
2656 s1=scalar2(b1(1,iti2),auxvec(1))
2657 call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
2658 call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1))
2659 s2=scalar2(b1(1,iti1),auxvec(1))
2660 call matmat2(auxmat(1,1),e2t(1,1),auxmat(1,1))
2661 call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
2662 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2663 gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
2664 C Cartesian derivatives
2665 C Derivatives of this turn contributions in DC(i+2)
2666 if (j.lt.nres-1) then
2668 a_temp(1,1)=agg(l,1)
2669 a_temp(1,2)=agg(l,2)
2670 a_temp(2,1)=agg(l,3)
2671 a_temp(2,2)=agg(l,4)
2672 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2673 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2674 s1=scalar2(b1(1,iti2),auxvec(1))
2675 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2676 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2677 s2=scalar2(b1(1,iti1),auxvec(1))
2678 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2679 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2680 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2682 gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
2685 C Remaining derivatives of this turn contribution
2687 a_temp(1,1)=aggi(l,1)
2688 a_temp(1,2)=aggi(l,2)
2689 a_temp(2,1)=aggi(l,3)
2690 a_temp(2,2)=aggi(l,4)
2691 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2692 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2693 s1=scalar2(b1(1,iti2),auxvec(1))
2694 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2695 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2696 s2=scalar2(b1(1,iti1),auxvec(1))
2697 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2698 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2699 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2700 gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
2701 a_temp(1,1)=aggi1(l,1)
2702 a_temp(1,2)=aggi1(l,2)
2703 a_temp(2,1)=aggi1(l,3)
2704 a_temp(2,2)=aggi1(l,4)
2705 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2706 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2707 s1=scalar2(b1(1,iti2),auxvec(1))
2708 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2709 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2710 s2=scalar2(b1(1,iti1),auxvec(1))
2711 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2712 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2713 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2714 gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
2715 a_temp(1,1)=aggj(l,1)
2716 a_temp(1,2)=aggj(l,2)
2717 a_temp(2,1)=aggj(l,3)
2718 a_temp(2,2)=aggj(l,4)
2719 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2720 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2721 s1=scalar2(b1(1,iti2),auxvec(1))
2722 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2723 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2724 s2=scalar2(b1(1,iti1),auxvec(1))
2725 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2726 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2727 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2728 gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
2729 a_temp(1,1)=aggj1(l,1)
2730 a_temp(1,2)=aggj1(l,2)
2731 a_temp(2,1)=aggj1(l,3)
2732 a_temp(2,2)=aggj1(l,4)
2733 call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
2734 call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
2735 s1=scalar2(b1(1,iti2),auxvec(1))
2736 call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
2737 call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1))
2738 s2=scalar2(b1(1,iti1),auxvec(1))
2739 call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
2740 call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
2741 s3=0.5d0*(pizda(1,1)+pizda(2,2))
2742 gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
2748 C-----------------------------------------------------------------------------
2749 subroutine vecpr(u,v,w)
2750 implicit real*8(a-h,o-z)
2751 dimension u(3),v(3),w(3)
2752 w(1)=u(2)*v(3)-u(3)*v(2)
2753 w(2)=-u(1)*v(3)+u(3)*v(1)
2754 w(3)=u(1)*v(2)-u(2)*v(1)
2757 C-----------------------------------------------------------------------------
2758 subroutine unormderiv(u,ugrad,unorm,ungrad)
2759 C This subroutine computes the derivatives of a normalized vector u, given
2760 C the derivatives computed without normalization conditions, ugrad. Returns
2763 double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
2764 double precision vec(3)
2765 double precision scalar
2767 c write (2,*) 'ugrad',ugrad
2770 vec(i)=scalar(ugrad(1,i),u(1))
2772 c write (2,*) 'vec',vec
2775 ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
2778 c write (2,*) 'ungrad',ungrad
2781 C-----------------------------------------------------------------------------
2782 subroutine escp(evdw2,evdw2_14)
2784 C This subroutine calculates the excluded-volume interaction energy between
2785 C peptide-group centers and side chains and its gradient in virtual-bond and
2786 C side-chain vectors.
2788 implicit real*8 (a-h,o-z)
2789 include 'DIMENSIONS'
2790 include 'DIMENSIONS.ZSCOPT'
2791 include 'COMMON.GEO'
2792 include 'COMMON.VAR'
2793 include 'COMMON.LOCAL'
2794 include 'COMMON.CHAIN'
2795 include 'COMMON.DERIV'
2796 include 'COMMON.INTERACT'
2797 include 'COMMON.FFIELD'
2798 include 'COMMON.IOUNITS'
2802 cd print '(a)','Enter ESCP'
2803 c write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e,
2804 c & ' scal14',scal14
2805 do i=iatscp_s,iatscp_e
2806 if (itype(i).eq.21 .or. itype(i+1).eq.21) cycle
2808 c write (iout,*) "i",i," iteli",iteli," nscp_gr",nscp_gr(i),
2809 c & " iscp",(iscpstart(i,j),iscpend(i,j),j=1,nscp_gr(i))
2810 if (iteli.eq.0) goto 1225
2811 xi=0.5D0*(c(1,i)+c(1,i+1))
2812 yi=0.5D0*(c(2,i)+c(2,i+1))
2813 zi=0.5D0*(c(3,i)+c(3,i+1))
2815 do iint=1,nscp_gr(i)
2817 do j=iscpstart(i,iint),iscpend(i,iint)
2819 if (itypj.eq.21) cycle
2820 C Uncomment following three lines for SC-p interactions
2824 C Uncomment following three lines for Ca-p interactions
2828 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
2830 e1=fac*fac*aad(itypj,iteli)
2831 e2=fac*bad(itypj,iteli)
2832 if (iabs(j-i) .le. 2) then
2835 evdw2_14=evdw2_14+e1+e2
2838 c write (iout,*) i,j,evdwij
2842 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
2844 fac=-(evdwij+e1)*rrij
2849 cd write (iout,*) 'j<i'
2850 C Uncomment following three lines for SC-p interactions
2852 c gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
2855 cd write (iout,*) 'j>i'
2858 C Uncomment following line for SC-p interactions
2859 c gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
2863 gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
2867 cd write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
2868 cd write (iout,*) ggg(1),ggg(2),ggg(3)
2871 gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
2881 gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
2882 gradx_scp(j,i)=expon*gradx_scp(j,i)
2885 C******************************************************************************
2889 C To save time the factor EXPON has been extracted from ALL components
2890 C of GVDWC and GRADX. Remember to multiply them by this factor before further
2893 C******************************************************************************
2896 C--------------------------------------------------------------------------
2897 subroutine edis(ehpb)
2899 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
2901 implicit real*8 (a-h,o-z)
2902 include 'DIMENSIONS'
2903 include 'DIMENSIONS.ZSCOPT'
2904 include 'COMMON.SBRIDGE'
2905 include 'COMMON.CHAIN'
2906 include 'COMMON.DERIV'
2907 include 'COMMON.VAR'
2908 include 'COMMON.INTERACT'
2911 cd print *,'edis: nhpb=',nhpb,' fbr=',fbr
2912 cd print *,'link_start=',link_start,' link_end=',link_end
2913 if (link_end.eq.0) return
2914 do i=link_start,link_end
2915 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
2916 C CA-CA distance used in regularization of structure.
2919 C iii and jjj point to the residues for which the distance is assigned.
2920 if (ii.gt.nres) then
2927 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
2928 C distance and angle dependent SS bond potential.
2929 if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
2930 call ssbond_ene(iii,jjj,eij)
2933 C Calculate the distance between the two points and its difference from the
2937 C Get the force constant corresponding to this distance.
2939 C Calculate the contribution to energy.
2940 ehpb=ehpb+waga*rdis*rdis
2942 C Evaluate gradient.
2945 cd print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
2946 cd & ' waga=',waga,' fac=',fac
2948 ggg(j)=fac*(c(j,jj)-c(j,ii))
2950 cd print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
2951 C If this is a SC-SC distance, we need to calculate the contributions to the
2952 C Cartesian gradient in the SC vectors (ghpbx).
2955 ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
2956 ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
2961 ghpbc(k,j)=ghpbc(k,j)+ggg(k)
2969 C--------------------------------------------------------------------------
2970 subroutine ssbond_ene(i,j,eij)
2972 C Calculate the distance and angle dependent SS-bond potential energy
2973 C using a free-energy function derived based on RHF/6-31G** ab initio
2974 C calculations of diethyl disulfide.
2976 C A. Liwo and U. Kozlowska, 11/24/03
2978 implicit real*8 (a-h,o-z)
2979 include 'DIMENSIONS'
2980 include 'DIMENSIONS.ZSCOPT'
2981 include 'COMMON.SBRIDGE'
2982 include 'COMMON.CHAIN'
2983 include 'COMMON.DERIV'
2984 include 'COMMON.LOCAL'
2985 include 'COMMON.INTERACT'
2986 include 'COMMON.VAR'
2987 include 'COMMON.IOUNITS'
2988 double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
2993 dxi=dc_norm(1,nres+i)
2994 dyi=dc_norm(2,nres+i)
2995 dzi=dc_norm(3,nres+i)
2996 dsci_inv=dsc_inv(itypi)
2998 dscj_inv=dsc_inv(itypj)
3002 dxj=dc_norm(1,nres+j)
3003 dyj=dc_norm(2,nres+j)
3004 dzj=dc_norm(3,nres+j)
3005 rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
3010 om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
3011 om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
3012 om12=dxi*dxj+dyi*dyj+dzi*dzj
3014 dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
3015 dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
3021 deltat12=om2-om1+2.0d0
3023 eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
3024 & +akct*deltad*deltat12
3025 & +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
3026 c write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
3027 c & " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
3028 c & " deltat12",deltat12," eij",eij
3029 ed=2*akcm*deltad+akct*deltat12
3031 pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
3032 eom1=-2*akth*deltat1-pom1-om2*pom2
3033 eom2= 2*akth*deltat2+pom1-om1*pom2
3036 gg(k)=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
3039 ghpbx(k,i)=ghpbx(k,i)-gg(k)
3040 & +(eom12*dc_norm(k,nres+j)+eom1*erij(k))*dsci_inv
3041 ghpbx(k,j)=ghpbx(k,j)+gg(k)
3042 & +(eom12*dc_norm(k,nres+i)+eom2*erij(k))*dscj_inv
3045 C Calculate the components of the gradient in DC and X
3049 ghpbc(l,k)=ghpbc(l,k)+gg(l)
3054 C--------------------------------------------------------------------------
3055 subroutine ebond(estr)
3057 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
3059 implicit real*8 (a-h,o-z)
3060 include 'DIMENSIONS'
3061 include 'DIMENSIONS.ZSCOPT'
3062 include 'COMMON.LOCAL'
3063 include 'COMMON.GEO'
3064 include 'COMMON.INTERACT'
3065 include 'COMMON.DERIV'
3066 include 'COMMON.VAR'
3067 include 'COMMON.CHAIN'
3068 include 'COMMON.IOUNITS'
3069 include 'COMMON.NAMES'
3070 include 'COMMON.FFIELD'
3071 include 'COMMON.CONTROL'
3072 logical energy_dec /.false./
3073 double precision u(3),ud(3)
3075 C write (iout,*) "distchainmax",distchainmax
3077 c write (iout,*) "distchainmax",distchainmax
3079 if (itype(i-1).eq.21 .or. itype(i).eq.21) then
3080 estr1=estr1+gnmr1(vbld(i),-1.0d0,distchainmax)
3082 gradb(j,i-1)=gnmr1prim(vbld(i),-1.0d0,distchainmax)
3083 & *dc(j,i-1)/vbld(i)
3085 if (energy_dec) write(iout,*)
3086 & "estr1",i,vbld(i),distchainmax,
3087 & gnmr1(vbld(i),-1.0d0,distchainmax)
3089 diff = vbld(i)-vbldp0
3090 c write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
3093 gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
3098 estr=0.5d0*AKP*estr+estr1
3100 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
3104 if (iti.ne.10 .and. iti.ne.21) then
3107 diff=vbld(i+nres)-vbldsc0(1,iti)
3108 c write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
3109 c & AKSC(1,iti),AKSC(1,iti)*diff*diff
3110 estr=estr+0.5d0*AKSC(1,iti)*diff*diff
3112 gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
3116 diff=vbld(i+nres)-vbldsc0(j,iti)
3117 ud(j)=aksc(j,iti)*diff
3118 u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
3132 uprod2=uprod2*u(k)*u(k)
3136 usumsqder=usumsqder+ud(j)*uprod2
3138 c write (iout,*) i,iti,vbld(i+nres),(vbldsc0(j,iti),
3139 c & AKSC(j,iti),abond0(j,iti),u(j),j=1,nbi)
3140 estr=estr+uprod/usum
3142 gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
3150 C--------------------------------------------------------------------------
3151 subroutine ebend(etheta)
3153 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
3154 C angles gamma and its derivatives in consecutive thetas and gammas.
3156 implicit real*8 (a-h,o-z)
3157 include 'DIMENSIONS'
3158 include 'DIMENSIONS.ZSCOPT'
3159 include 'COMMON.LOCAL'
3160 include 'COMMON.GEO'
3161 include 'COMMON.INTERACT'
3162 include 'COMMON.DERIV'
3163 include 'COMMON.VAR'
3164 include 'COMMON.CHAIN'
3165 include 'COMMON.IOUNITS'
3166 include 'COMMON.NAMES'
3167 include 'COMMON.FFIELD'
3168 common /calcthet/ term1,term2,termm,diffak,ratak,
3169 & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3170 & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3171 double precision y(2),z(2)
3173 time11=dexp(-2*time)
3176 c write (iout,*) "nres",nres
3177 c write (*,'(a,i2)') 'EBEND ICG=',icg
3178 c write (iout,*) ithet_start,ithet_end
3179 do i=ithet_start,ithet_end
3180 if (itype(i-1).eq.21) cycle
3181 C Zero the energy function and its derivative at 0 or pi.
3182 call splinthet(theta(i),0.5d0*delta,ss,ssd)
3184 if (i.gt.3 .and. itype(i-2).ne.21) then
3188 call proc_proc(phii,icrc)
3189 if (icrc.eq.1) phii=150.0
3199 if (i.lt.nres .and. itype(i).ne.21) then
3203 call proc_proc(phii1,icrc)
3204 if (icrc.eq.1) phii1=150.0
3216 C Calculate the "mean" value of theta from the part of the distribution
3217 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
3218 C In following comments this theta will be referred to as t_c.
3219 thet_pred_mean=0.0d0
3223 thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
3225 c write (iout,*) "thet_pred_mean",thet_pred_mean
3226 dthett=thet_pred_mean*ssd
3227 thet_pred_mean=thet_pred_mean*ss+a0thet(it)
3228 c write (iout,*) "thet_pred_mean",thet_pred_mean
3229 C Derivatives of the "mean" values in gamma1 and gamma2.
3230 dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
3231 dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
3232 if (theta(i).gt.pi-delta) then
3233 call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
3235 call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
3236 call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
3237 call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
3239 call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
3241 else if (theta(i).lt.delta) then
3242 call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
3243 call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
3244 call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
3246 call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
3247 call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
3250 call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
3253 etheta=etheta+ethetai
3254 c write (iout,'(2i3,3f8.3,f10.5)') i,it,rad2deg*theta(i),
3255 c & rad2deg*phii,rad2deg*phii1,ethetai
3256 if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
3257 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
3258 gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)
3261 C Ufff.... We've done all this!!!
3264 C---------------------------------------------------------------------------
3265 subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
3267 implicit real*8 (a-h,o-z)
3268 include 'DIMENSIONS'
3269 include 'COMMON.LOCAL'
3270 include 'COMMON.IOUNITS'
3271 common /calcthet/ term1,term2,termm,diffak,ratak,
3272 & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3273 & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3274 C Calculate the contributions to both Gaussian lobes.
3275 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
3276 C The "polynomial part" of the "standard deviation" of this part of
3280 sig=sig*thet_pred_mean+polthet(j,it)
3282 C Derivative of the "interior part" of the "standard deviation of the"
3283 C gamma-dependent Gaussian lobe in t_c.
3284 sigtc=3*polthet(3,it)
3286 sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
3289 C Set the parameters of both Gaussian lobes of the distribution.
3290 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
3291 fac=sig*sig+sigc0(it)
3294 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
3295 sigsqtc=-4.0D0*sigcsq*sigtc
3296 c print *,i,sig,sigtc,sigsqtc
3297 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
3298 sigtc=-sigtc/(fac*fac)
3299 C Following variable is sigma(t_c)**(-2)
3300 sigcsq=sigcsq*sigcsq
3302 sig0inv=1.0D0/sig0i**2
3303 delthec=thetai-thet_pred_mean
3304 delthe0=thetai-theta0i
3305 term1=-0.5D0*sigcsq*delthec*delthec
3306 term2=-0.5D0*sig0inv*delthe0*delthe0
3307 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
3308 C NaNs in taking the logarithm. We extract the largest exponent which is added
3309 C to the energy (this being the log of the distribution) at the end of energy
3310 C term evaluation for this virtual-bond angle.
3311 if (term1.gt.term2) then
3313 term2=dexp(term2-termm)
3317 term1=dexp(term1-termm)
3320 C The ratio between the gamma-independent and gamma-dependent lobes of
3321 C the distribution is a Gaussian function of thet_pred_mean too.
3322 diffak=gthet(2,it)-thet_pred_mean
3323 ratak=diffak/gthet(3,it)**2
3324 ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
3325 C Let's differentiate it in thet_pred_mean NOW.
3327 C Now put together the distribution terms to make complete distribution.
3328 termexp=term1+ak*term2
3329 termpre=sigc+ak*sig0i
3330 C Contribution of the bending energy from this theta is just the -log of
3331 C the sum of the contributions from the two lobes and the pre-exponential
3332 C factor. Simple enough, isn't it?
3333 ethetai=(-dlog(termexp)-termm+dlog(termpre))
3334 C NOW the derivatives!!!
3335 C 6/6/97 Take into account the deformation.
3336 E_theta=(delthec*sigcsq*term1
3337 & +ak*delthe0*sig0inv*term2)/termexp
3338 E_tc=((sigtc+aktc*sig0i)/termpre
3339 & -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
3340 & aktc*term2)/termexp)
3343 c-----------------------------------------------------------------------------
3344 subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
3345 implicit real*8 (a-h,o-z)
3346 include 'DIMENSIONS'
3347 include 'COMMON.LOCAL'
3348 include 'COMMON.IOUNITS'
3349 common /calcthet/ term1,term2,termm,diffak,ratak,
3350 & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
3351 & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
3352 delthec=thetai-thet_pred_mean
3353 delthe0=thetai-theta0i
3354 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
3355 t3 = thetai-thet_pred_mean
3359 t14 = t12+t6*sigsqtc
3361 t21 = thetai-theta0i
3367 E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
3368 & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
3369 & *(-t12*t9-ak*sig0inv*t27)
3373 C--------------------------------------------------------------------------
3374 subroutine ebend(etheta)
3376 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
3377 C angles gamma and its derivatives in consecutive thetas and gammas.
3378 C ab initio-derived potentials from
3379 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
3381 implicit real*8 (a-h,o-z)
3382 include 'DIMENSIONS'
3383 include 'DIMENSIONS.ZSCOPT'
3384 include 'COMMON.LOCAL'
3385 include 'COMMON.GEO'
3386 include 'COMMON.INTERACT'
3387 include 'COMMON.DERIV'
3388 include 'COMMON.VAR'
3389 include 'COMMON.CHAIN'
3390 include 'COMMON.IOUNITS'
3391 include 'COMMON.NAMES'
3392 include 'COMMON.FFIELD'
3393 include 'COMMON.CONTROL'
3394 double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
3395 & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
3396 & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
3397 & sinph1ph2(maxdouble,maxdouble)
3398 logical lprn /.false./, lprn1 /.false./
3400 c write (iout,*) "ithetyp",(ithetyp(i),i=1,ntyp1)
3401 do i=ithet_start,ithet_end
3402 if (itype(i-1).eq.21) cycle
3406 theti2=0.5d0*theta(i)
3407 ityp2=ithetyp(itype(i-1))
3409 coskt(k)=dcos(k*theti2)
3410 sinkt(k)=dsin(k*theti2)
3412 if (i.gt.3 .and. itype(i-2).ne.21) then
3415 if (phii.ne.phii) phii=150.0
3419 ityp1=ithetyp(itype(i-2))
3421 cosph1(k)=dcos(k*phii)
3422 sinph1(k)=dsin(k*phii)
3432 if (i.lt.nres .and. itype(i).ne.21) then
3435 if (phii1.ne.phii1) phii1=150.0
3440 ityp3=ithetyp(itype(i))
3442 cosph2(k)=dcos(k*phii1)
3443 sinph2(k)=dsin(k*phii1)
3453 c write (iout,*) "i",i," ityp1",itype(i-2),ityp1,
3454 c & " ityp2",itype(i-1),ityp2," ityp3",itype(i),ityp3
3456 ethetai=aa0thet(ityp1,ityp2,ityp3)
3459 ccl=cosph1(l)*cosph2(k-l)
3460 ssl=sinph1(l)*sinph2(k-l)
3461 scl=sinph1(l)*cosph2(k-l)
3462 csl=cosph1(l)*sinph2(k-l)
3463 cosph1ph2(l,k)=ccl-ssl
3464 cosph1ph2(k,l)=ccl+ssl
3465 sinph1ph2(l,k)=scl+csl
3466 sinph1ph2(k,l)=scl-csl
3470 write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
3471 & " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
3472 write (iout,*) "coskt and sinkt"
3474 write (iout,*) k,coskt(k),sinkt(k)
3478 ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
3479 dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
3482 & write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
3483 & " ethetai",ethetai
3486 write (iout,*) "cosph and sinph"
3488 write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
3490 write (iout,*) "cosph1ph2 and sinph2ph2"
3493 write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
3494 & sinph1ph2(l,k),sinph1ph2(k,l)
3497 write(iout,*) "ethetai",ethetai
3501 aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
3502 & +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
3503 & +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
3504 & +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
3505 ethetai=ethetai+sinkt(m)*aux
3506 dethetai=dethetai+0.5d0*m*aux*coskt(m)
3507 dephii=dephii+k*sinkt(m)*(
3508 & ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
3509 & bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
3510 dephii1=dephii1+k*sinkt(m)*(
3511 & eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
3512 & ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
3514 & write (iout,*) "m",m," k",k," bbthet",
3515 & bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
3516 & ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
3517 & ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
3518 & eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
3522 & write(iout,*) "ethetai",ethetai
3526 aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
3527 & ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
3528 & ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
3529 & ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
3530 ethetai=ethetai+sinkt(m)*aux
3531 dethetai=dethetai+0.5d0*m*coskt(m)*aux
3532 dephii=dephii+l*sinkt(m)*(
3533 & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
3534 & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
3535 & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
3536 & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
3537 dephii1=dephii1+(k-l)*sinkt(m)*(
3538 & -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
3539 & ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
3540 & ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
3541 & ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
3543 write (iout,*) "m",m," k",k," l",l," ffthet",
3544 & ffthet(l,k,m,ityp1,ityp2,ityp3),
3545 & ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
3546 & ggthet(l,k,m,ityp1,ityp2,ityp3),
3547 & ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
3548 write (iout,*) cosph1ph2(l,k)*sinkt(m),
3549 & cosph1ph2(k,l)*sinkt(m),
3550 & sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
3556 if (lprn1) write (iout,'(i2,3f8.1,9h ethetai ,f10.5)')
3557 & i,theta(i)*rad2deg,phii*rad2deg,
3558 & phii1*rad2deg,ethetai
3559 etheta=etheta+ethetai
3560 if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
3561 if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
3562 gloc(nphi+i-2,icg)=wang*dethetai
3568 c-----------------------------------------------------------------------------
3569 subroutine esc(escloc)
3570 C Calculate the local energy of a side chain and its derivatives in the
3571 C corresponding virtual-bond valence angles THETA and the spherical angles
3573 implicit real*8 (a-h,o-z)
3574 include 'DIMENSIONS'
3575 include 'DIMENSIONS.ZSCOPT'
3576 include 'COMMON.GEO'
3577 include 'COMMON.LOCAL'
3578 include 'COMMON.VAR'
3579 include 'COMMON.INTERACT'
3580 include 'COMMON.DERIV'
3581 include 'COMMON.CHAIN'
3582 include 'COMMON.IOUNITS'
3583 include 'COMMON.NAMES'
3584 include 'COMMON.FFIELD'
3585 double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
3586 & ddersc0(3),ddummy(3),xtemp(3),temp(3)
3587 common /sccalc/ time11,time12,time112,theti,it,nlobit
3590 c write (iout,'(a)') 'ESC'
3591 do i=loc_start,loc_end
3594 if (it.eq.10) goto 1
3596 c print *,'i=',i,' it=',it,' nlobit=',nlobit
3597 c write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
3598 theti=theta(i+1)-pipol
3602 c write (iout,*) "i",i," x",x(1),x(2),x(3)
3604 if (x(2).gt.pi-delta) then
3608 call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
3610 call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
3611 call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
3613 call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
3614 & ddersc0(1),dersc(1))
3615 call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
3616 & ddersc0(3),dersc(3))
3618 call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
3620 call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
3621 call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
3622 & dersc0(2),esclocbi,dersc02)
3623 call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
3625 call splinthet(x(2),0.5d0*delta,ss,ssd)
3630 dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
3632 dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
3633 c write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
3635 escloci=ss*escloci+(1.0d0-ss)*esclocbi
3637 c write (iout,*) escloci
3638 else if (x(2).lt.delta) then
3642 call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
3644 call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
3645 call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
3647 call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
3648 & ddersc0(1),dersc(1))
3649 call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
3650 & ddersc0(3),dersc(3))
3652 call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
3654 call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
3655 call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
3656 & dersc0(2),esclocbi,dersc02)
3657 call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
3662 call splinthet(x(2),0.5d0*delta,ss,ssd)
3664 dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
3666 dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
3667 c write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
3669 escloci=ss*escloci+(1.0d0-ss)*esclocbi
3670 c write (iout,*) escloci
3672 call enesc(x,escloci,dersc,ddummy,.false.)
3675 escloc=escloc+escloci
3676 c write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
3678 gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
3680 gloc(ialph(i,1),icg)=wscloc*dersc(2)
3681 gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
3686 C---------------------------------------------------------------------------
3687 subroutine enesc(x,escloci,dersc,ddersc,mixed)
3688 implicit real*8 (a-h,o-z)
3689 include 'DIMENSIONS'
3690 include 'COMMON.GEO'
3691 include 'COMMON.LOCAL'
3692 include 'COMMON.IOUNITS'
3693 common /sccalc/ time11,time12,time112,theti,it,nlobit
3694 double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
3695 double precision contr(maxlob,-1:1)
3697 c write (iout,*) 'it=',it,' nlobit=',nlobit
3701 if (mixed) ddersc(j)=0.0d0
3705 C Because of periodicity of the dependence of the SC energy in omega we have
3706 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
3707 C To avoid underflows, first compute & store the exponents.
3715 z(k)=x(k)-censc(k,j,it)
3720 Axk=Axk+gaussc(l,k,j,it)*z(l)
3726 expfac=expfac+Ax(k,j,iii)*z(k)
3734 C As in the case of ebend, we want to avoid underflows in exponentiation and
3735 C subsequent NaNs and INFs in energy calculation.
3736 C Find the largest exponent
3740 if (emin.gt.contr(j,iii)) emin=contr(j,iii)
3744 cd print *,'it=',it,' emin=',emin
3746 C Compute the contribution to SC energy and derivatives
3750 expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
3751 cd print *,'j=',j,' expfac=',expfac
3752 escloc_i=escloc_i+expfac
3754 dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
3758 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
3759 & +gaussc(k,2,j,it))*expfac
3766 dersc(1)=dersc(1)/cos(theti)**2
3767 ddersc(1)=ddersc(1)/cos(theti)**2
3770 escloci=-(dlog(escloc_i)-emin)
3772 dersc(j)=dersc(j)/escloc_i
3776 ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
3781 C------------------------------------------------------------------------------
3782 subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
3783 implicit real*8 (a-h,o-z)
3784 include 'DIMENSIONS'
3785 include 'COMMON.GEO'
3786 include 'COMMON.LOCAL'
3787 include 'COMMON.IOUNITS'
3788 common /sccalc/ time11,time12,time112,theti,it,nlobit
3789 double precision x(3),z(3),Ax(3,maxlob),dersc(3)
3790 double precision contr(maxlob)
3801 z(k)=x(k)-censc(k,j,it)
3807 Axk=Axk+gaussc(l,k,j,it)*z(l)
3813 expfac=expfac+Ax(k,j)*z(k)
3818 C As in the case of ebend, we want to avoid underflows in exponentiation and
3819 C subsequent NaNs and INFs in energy calculation.
3820 C Find the largest exponent
3823 if (emin.gt.contr(j)) emin=contr(j)
3827 C Compute the contribution to SC energy and derivatives
3831 expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
3832 escloc_i=escloc_i+expfac
3834 dersc(k)=dersc(k)+Ax(k,j)*expfac
3836 if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
3837 & +gaussc(1,2,j,it))*expfac
3841 dersc(1)=dersc(1)/cos(theti)**2
3842 dersc12=dersc12/cos(theti)**2
3843 escloci=-(dlog(escloc_i)-emin)
3845 dersc(j)=dersc(j)/escloc_i
3847 if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
3851 c----------------------------------------------------------------------------------
3852 subroutine esc(escloc)
3853 C Calculate the local energy of a side chain and its derivatives in the
3854 C corresponding virtual-bond valence angles THETA and the spherical angles
3855 C ALPHA and OMEGA derived from AM1 all-atom calculations.
3856 C added by Urszula Kozlowska. 07/11/2007
3858 implicit real*8 (a-h,o-z)
3859 include 'DIMENSIONS'
3860 include 'DIMENSIONS.ZSCOPT'
3861 include 'COMMON.GEO'
3862 include 'COMMON.LOCAL'
3863 include 'COMMON.VAR'
3864 include 'COMMON.SCROT'
3865 include 'COMMON.INTERACT'
3866 include 'COMMON.DERIV'
3867 include 'COMMON.CHAIN'
3868 include 'COMMON.IOUNITS'
3869 include 'COMMON.NAMES'
3870 include 'COMMON.FFIELD'
3871 include 'COMMON.CONTROL'
3872 include 'COMMON.VECTORS'
3873 double precision x_prime(3),y_prime(3),z_prime(3)
3874 & , sumene,dsc_i,dp2_i,x(65),
3875 & xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
3876 & de_dxx,de_dyy,de_dzz,de_dt
3877 double precision s1_t,s1_6_t,s2_t,s2_6_t
3879 & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
3880 & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
3881 & dt_dCi(3),dt_dCi1(3)
3882 common /sccalc/ time11,time12,time112,theti,it,nlobit
3885 do i=loc_start,loc_end
3886 if (itype(i).eq.21) cycle
3887 costtab(i+1) =dcos(theta(i+1))
3888 sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
3889 cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
3890 sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
3891 cosfac2=0.5d0/(1.0d0+costtab(i+1))
3892 cosfac=dsqrt(cosfac2)
3893 sinfac2=0.5d0/(1.0d0-costtab(i+1))
3894 sinfac=dsqrt(sinfac2)
3896 if (it.eq.10) goto 1
3898 C Compute the axes of tghe local cartesian coordinates system; store in
3899 c x_prime, y_prime and z_prime
3906 C write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
3907 C & dc_norm(3,i+nres)
3909 x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
3910 y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
3913 z_prime(j) = -uz(j,i-1)
3916 c write (2,*) "x_prime",(x_prime(j),j=1,3)
3917 c write (2,*) "y_prime",(y_prime(j),j=1,3)
3918 c write (2,*) "z_prime",(z_prime(j),j=1,3)
3919 c write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
3920 c & " xy",scalar(x_prime(1),y_prime(1)),
3921 c & " xz",scalar(x_prime(1),z_prime(1)),
3922 c & " yy",scalar(y_prime(1),y_prime(1)),
3923 c & " yz",scalar(y_prime(1),z_prime(1)),
3924 c & " zz",scalar(z_prime(1),z_prime(1))
3926 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
3927 C to local coordinate system. Store in xx, yy, zz.
3933 xx = xx + x_prime(j)*dc_norm(j,i+nres)
3934 yy = yy + y_prime(j)*dc_norm(j,i+nres)
3935 zz = zz + z_prime(j)*dc_norm(j,i+nres)
3942 C Compute the energy of the ith side cbain
3944 c write (2,*) "xx",xx," yy",yy," zz",zz
3947 x(j) = sc_parmin(j,it)
3950 Cc diagnostics - remove later
3952 yy1 = dsin(alph(2))*dcos(omeg(2))
3953 zz1 = -dsin(alph(2))*dsin(omeg(2))
3954 write(2,'(3f8.1,3f9.3,1x,3f9.3)')
3955 & alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
3957 C," --- ", xx_w,yy_w,zz_w
3960 sumene1= x(1)+ x(2)*xx+ x(3)*yy+ x(4)*zz+ x(5)*xx**2
3961 & + x(6)*yy**2+ x(7)*zz**2+ x(8)*xx*zz+ x(9)*xx*yy
3963 sumene2= x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
3964 & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
3966 sumene3= x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
3967 & +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
3968 & +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
3969 & +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
3970 & +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
3972 sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
3973 & +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
3974 & +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
3975 & +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
3976 & +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
3978 dsc_i = 0.743d0+x(61)
3980 dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
3981 & *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
3982 dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
3983 & *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
3984 s1=(1+x(63))/(0.1d0 + dscp1)
3985 s1_6=(1+x(64))/(0.1d0 + dscp1**6)
3986 s2=(1+x(65))/(0.1d0 + dscp2)
3987 s2_6=(1+x(65))/(0.1d0 + dscp2**6)
3988 sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
3989 & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
3990 c write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
3992 c & dscp1,dscp2,sumene
3993 c sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
3994 escloc = escloc + sumene
3995 c write (2,*) "escloc",escloc
3996 if (.not. calc_grad) goto 1
3999 C This section to check the numerical derivatives of the energy of ith side
4000 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
4001 C #define DEBUG in the code to turn it on.
4003 write (2,*) "sumene =",sumene
4007 write (2,*) xx,yy,zz
4008 sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4009 de_dxx_num=(sumenep-sumene)/aincr
4011 write (2,*) "xx+ sumene from enesc=",sumenep
4014 write (2,*) xx,yy,zz
4015 sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4016 de_dyy_num=(sumenep-sumene)/aincr
4018 write (2,*) "yy+ sumene from enesc=",sumenep
4021 write (2,*) xx,yy,zz
4022 sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4023 de_dzz_num=(sumenep-sumene)/aincr
4025 write (2,*) "zz+ sumene from enesc=",sumenep
4026 costsave=cost2tab(i+1)
4027 sintsave=sint2tab(i+1)
4028 cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
4029 sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
4030 sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
4031 de_dt_num=(sumenep-sumene)/aincr
4032 write (2,*) " t+ sumene from enesc=",sumenep
4033 cost2tab(i+1)=costsave
4034 sint2tab(i+1)=sintsave
4035 C End of diagnostics section.
4038 C Compute the gradient of esc
4040 pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
4041 pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
4042 pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
4043 pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
4044 pom_dx=dsc_i*dp2_i*cost2tab(i+1)
4045 pom_dy=dsc_i*dp2_i*sint2tab(i+1)
4046 pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
4047 pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
4048 pom1=(sumene3*sint2tab(i+1)+sumene1)
4049 & *(pom_s1/dscp1+pom_s16*dscp1**4)
4050 pom2=(sumene4*cost2tab(i+1)+sumene2)
4051 & *(pom_s2/dscp2+pom_s26*dscp2**4)
4052 sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
4053 sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
4054 & +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
4056 sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
4057 sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
4058 & +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
4060 de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
4061 & +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
4062 & +(pom1+pom2)*pom_dx
4064 write(2,*), "de_dxx = ", de_dxx,de_dxx_num
4067 sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
4068 sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
4069 & +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
4071 sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
4072 sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
4073 & +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
4074 & +x(59)*zz**2 +x(60)*xx*zz
4075 de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
4076 & +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
4077 & +(pom1-pom2)*pom_dy
4079 write(2,*), "de_dyy = ", de_dyy,de_dyy_num
4082 de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
4083 & +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx
4084 & +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6)
4085 & +(x(4) + 2*x(7)*zz+ x(8)*xx + x(10)*yy)*(s1+s1_6)
4086 & +(x(44)+2*x(47)*zz +x(48)*xx +x(50)*yy +3*x(53)*zz**2
4087 & +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy
4088 & +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
4089 & + ( x(14) + 2*x(17)*zz+ x(18)*xx + x(20)*yy)*(s2+s2_6)
4091 write(2,*), "de_dzz = ", de_dzz,de_dzz_num
4094 de_dt = 0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6)
4095 & -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
4096 & +pom1*pom_dt1+pom2*pom_dt2
4098 write(2,*), "de_dt = ", de_dt,de_dt_num
4102 cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
4103 cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
4104 cosfac2xx=cosfac2*xx
4105 sinfac2yy=sinfac2*yy
4107 dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
4109 dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
4111 pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
4112 pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
4113 c write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
4114 c & " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
4115 c write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
4116 c & (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
4117 dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
4118 dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
4119 dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
4120 dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
4124 dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
4125 dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
4128 dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
4129 dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
4130 dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
4132 dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
4133 dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
4137 dXX_Ctab(k,i)=dXX_Ci(k)
4138 dXX_C1tab(k,i)=dXX_Ci1(k)
4139 dYY_Ctab(k,i)=dYY_Ci(k)
4140 dYY_C1tab(k,i)=dYY_Ci1(k)
4141 dZZ_Ctab(k,i)=dZZ_Ci(k)
4142 dZZ_C1tab(k,i)=dZZ_Ci1(k)
4143 dXX_XYZtab(k,i)=dXX_XYZ(k)
4144 dYY_XYZtab(k,i)=dYY_XYZ(k)
4145 dZZ_XYZtab(k,i)=dZZ_XYZ(k)
4149 c write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
4150 c & dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
4151 c write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
4152 c & dyy_ci(k)," dzz_ci",dzz_ci(k)
4153 c write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
4155 c write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
4156 c & dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k)
4157 gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
4158 & +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
4159 gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
4160 & +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
4161 gsclocx(k,i)= de_dxx*dxx_XYZ(k)
4162 & +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
4164 c write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
4165 c & (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)
4167 C to check gradient call subroutine check_grad
4174 c------------------------------------------------------------------------------
4175 subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
4177 C This procedure calculates two-body contact function g(rij) and its derivative:
4180 C g(rij) = esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5) ! -1 =< x =< 1
4183 C where x=(rij-r0ij)/delta
4185 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
4188 double precision rij,r0ij,eps0ij,fcont,fprimcont
4189 double precision x,x2,x4,delta
4193 if (x.lt.-1.0D0) then
4196 else if (x.le.1.0D0) then
4199 fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
4200 fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
4207 c------------------------------------------------------------------------------
4208 subroutine splinthet(theti,delta,ss,ssder)
4209 implicit real*8 (a-h,o-z)
4210 include 'DIMENSIONS'
4211 include 'DIMENSIONS.ZSCOPT'
4212 include 'COMMON.VAR'
4213 include 'COMMON.GEO'
4216 if (theti.gt.pipol) then
4217 call gcont(theti,thetup,1.0d0,delta,ss,ssder)
4219 call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
4224 c------------------------------------------------------------------------------
4225 subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
4227 double precision x,x0,delta,f0,f1,fprim0,f,fprim
4228 double precision ksi,ksi2,ksi3,a1,a2,a3
4229 a1=fprim0*delta/(f1-f0)
4235 f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
4236 fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
4239 c------------------------------------------------------------------------------
4240 subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
4242 double precision x,x0,delta,f0x,f1x,fprim0x,fx
4243 double precision ksi,ksi2,ksi3,a1,a2,a3
4248 a2=3*(f1x-f0x)-2*fprim0x*delta
4249 a3=fprim0x*delta-2*(f1x-f0x)
4250 fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
4253 C-----------------------------------------------------------------------------
4255 C-----------------------------------------------------------------------------
4256 subroutine etor(etors,edihcnstr,fact)
4257 implicit real*8 (a-h,o-z)
4258 include 'DIMENSIONS'
4259 include 'DIMENSIONS.ZSCOPT'
4260 include 'COMMON.VAR'
4261 include 'COMMON.GEO'
4262 include 'COMMON.LOCAL'
4263 include 'COMMON.TORSION'
4264 include 'COMMON.INTERACT'
4265 include 'COMMON.DERIV'
4266 include 'COMMON.CHAIN'
4267 include 'COMMON.NAMES'
4268 include 'COMMON.IOUNITS'
4269 include 'COMMON.FFIELD'
4270 include 'COMMON.TORCNSTR'
4272 C Set lprn=.true. for debugging
4276 do i=iphi_start,iphi_end
4277 if (itype(i-2).eq.21 .or. itype(i-1).eq.21
4278 & .or. itype(i).eq.21) cycle
4279 itori=itortyp(itype(i-2))
4280 itori1=itortyp(itype(i-1))
4283 C Proline-Proline pair is a special case...
4284 if (itori.eq.3 .and. itori1.eq.3) then
4285 if (phii.gt.-dwapi3) then
4287 fac=1.0D0/(1.0D0-cosphi)
4288 etorsi=v1(1,3,3)*fac
4289 etorsi=etorsi+etorsi
4290 etors=etors+etorsi-v1(1,3,3)
4291 gloci=gloci-3*fac*etorsi*dsin(3*phii)
4294 v1ij=v1(j+1,itori,itori1)
4295 v2ij=v2(j+1,itori,itori1)
4298 etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
4299 gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4303 v1ij=v1(j,itori,itori1)
4304 v2ij=v2(j,itori,itori1)
4307 etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
4308 gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4312 & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
4313 & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
4314 & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
4315 gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
4316 c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
4318 ! 6/20/98 - dihedral angle constraints
4321 itori=idih_constr(i)
4324 if (difi.gt.drange(i)) then
4326 edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4327 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4328 else if (difi.lt.-drange(i)) then
4330 edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4331 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4333 ! write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
4334 ! & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
4336 ! write (iout,*) 'edihcnstr',edihcnstr
4339 c------------------------------------------------------------------------------
4341 subroutine etor(etors,edihcnstr,fact)
4342 implicit real*8 (a-h,o-z)
4343 include 'DIMENSIONS'
4344 include 'DIMENSIONS.ZSCOPT'
4345 include 'COMMON.VAR'
4346 include 'COMMON.GEO'
4347 include 'COMMON.LOCAL'
4348 include 'COMMON.TORSION'
4349 include 'COMMON.INTERACT'
4350 include 'COMMON.DERIV'
4351 include 'COMMON.CHAIN'
4352 include 'COMMON.NAMES'
4353 include 'COMMON.IOUNITS'
4354 include 'COMMON.FFIELD'
4355 include 'COMMON.TORCNSTR'
4357 C Set lprn=.true. for debugging
4361 do i=iphi_start,iphi_end
4362 if (itype(i-2).eq.21 .or. itype(i-1).eq.21
4363 & .or. itype(i).eq.21
4364 & .or. itype(i-3).eq.ntyp1) cycle
4365 if (itel(i-2).eq.0 .or. itel(i-1).eq.0) goto 1215
4366 itori=itortyp(itype(i-2))
4367 itori1=itortyp(itype(i-1))
4370 C Regular cosine and sine terms
4371 do j=1,nterm(itori,itori1)
4372 v1ij=v1(j,itori,itori1)
4373 v2ij=v2(j,itori,itori1)
4376 etors=etors+v1ij*cosphi+v2ij*sinphi
4377 gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4381 C E = SUM ----------------------------------- - v1
4382 C [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
4384 cosphi=dcos(0.5d0*phii)
4385 sinphi=dsin(0.5d0*phii)
4386 do j=1,nlor(itori,itori1)
4387 vl1ij=vlor1(j,itori,itori1)
4388 vl2ij=vlor2(j,itori,itori1)
4389 vl3ij=vlor3(j,itori,itori1)
4390 pom=vl2ij*cosphi+vl3ij*sinphi
4391 pom1=1.0d0/(pom*pom+1.0d0)
4392 etors=etors+vl1ij*pom1
4394 gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
4396 C Subtract the constant term
4397 etors=etors-v0(itori,itori1)
4399 & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
4400 & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
4401 & (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
4402 gloc(i-3,icg)=gloc(i-3,icg)+wtor*fact*gloci
4403 c write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
4406 ! 6/20/98 - dihedral angle constraints
4409 itori=idih_constr(i)
4411 difi=pinorm(phii-phi0(i))
4413 if (difi.gt.drange(i)) then
4415 edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4416 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4417 edihi=0.25d0*ftors*difi**4
4418 else if (difi.lt.-drange(i)) then
4420 edihcnstr=edihcnstr+0.25d0*ftors*difi**4
4421 gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
4422 edihi=0.25d0*ftors*difi**4
4426 c write (iout,'(2i5,4f10.5,e15.5)') i,itori,phii,phi0(i),difi,
4428 ! write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
4429 ! & rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
4431 ! write (iout,*) 'edihcnstr',edihcnstr
4434 c----------------------------------------------------------------------------
4435 subroutine etor_d(etors_d,fact2)
4436 C 6/23/01 Compute double torsional energy
4437 implicit real*8 (a-h,o-z)
4438 include 'DIMENSIONS'
4439 include 'DIMENSIONS.ZSCOPT'
4440 include 'COMMON.VAR'
4441 include 'COMMON.GEO'
4442 include 'COMMON.LOCAL'
4443 include 'COMMON.TORSION'
4444 include 'COMMON.INTERACT'
4445 include 'COMMON.DERIV'
4446 include 'COMMON.CHAIN'
4447 include 'COMMON.NAMES'
4448 include 'COMMON.IOUNITS'
4449 include 'COMMON.FFIELD'
4450 include 'COMMON.TORCNSTR'
4452 C Set lprn=.true. for debugging
4456 do i=iphi_start,iphi_end-1
4457 if (itype(i-2).eq.21 .or. itype(i-1).eq.21
4458 & .or. itype(i).eq.21 .or. itype(i+1).eq.21
4459 & .or. itype(i-3).eq.ntyp1) cycle
4460 if (itel(i-2).eq.0 .or. itel(i-1).eq.0 .or. itel(i).eq.0)
4462 itori=itortyp(itype(i-2))
4463 itori1=itortyp(itype(i-1))
4464 itori2=itortyp(itype(i))
4469 C Regular cosine and sine terms
4470 do j=1,ntermd_1(itori,itori1,itori2)
4471 v1cij=v1c(1,j,itori,itori1,itori2)
4472 v1sij=v1s(1,j,itori,itori1,itori2)
4473 v2cij=v1c(2,j,itori,itori1,itori2)
4474 v2sij=v1s(2,j,itori,itori1,itori2)
4475 cosphi1=dcos(j*phii)
4476 sinphi1=dsin(j*phii)
4477 cosphi2=dcos(j*phii1)
4478 sinphi2=dsin(j*phii1)
4479 etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
4480 & v2cij*cosphi2+v2sij*sinphi2
4481 gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
4482 gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
4484 do k=2,ntermd_2(itori,itori1,itori2)
4486 v1cdij = v2c(k,l,itori,itori1,itori2)
4487 v2cdij = v2c(l,k,itori,itori1,itori2)
4488 v1sdij = v2s(k,l,itori,itori1,itori2)
4489 v2sdij = v2s(l,k,itori,itori1,itori2)
4490 cosphi1p2=dcos(l*phii+(k-l)*phii1)
4491 cosphi1m2=dcos(l*phii-(k-l)*phii1)
4492 sinphi1p2=dsin(l*phii+(k-l)*phii1)
4493 sinphi1m2=dsin(l*phii-(k-l)*phii1)
4494 etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
4495 & v1sdij*sinphi1p2+v2sdij*sinphi1m2
4496 gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
4497 & -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
4498 gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
4499 & -v1cdij*sinphi1p2+v2cdij*sinphi1m2)
4502 gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*fact2*gloci1
4503 gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*fact2*gloci2
4509 c------------------------------------------------------------------------------
4510 subroutine eback_sc_corr(esccor)
4511 c 7/21/2007 Correlations between the backbone-local and side-chain-local
4512 c conformational states; temporarily implemented as differences
4513 c between UNRES torsional potentials (dependent on three types of
4514 c residues) and the torsional potentials dependent on all 20 types
4515 c of residues computed from AM1 energy surfaces of terminally-blocked
4516 c amino-acid residues.
4517 implicit real*8 (a-h,o-z)
4518 include 'DIMENSIONS'
4519 include 'DIMENSIONS.ZSCOPT'
4520 include 'COMMON.VAR'
4521 include 'COMMON.GEO'
4522 include 'COMMON.LOCAL'
4523 include 'COMMON.TORSION'
4524 include 'COMMON.SCCOR'
4525 include 'COMMON.INTERACT'
4526 include 'COMMON.DERIV'
4527 include 'COMMON.CHAIN'
4528 include 'COMMON.NAMES'
4529 include 'COMMON.IOUNITS'
4530 include 'COMMON.FFIELD'
4531 include 'COMMON.CONTROL'
4533 C Set lprn=.true. for debugging
4536 c write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
4538 do i=itau_start,itau_end
4539 if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
4541 isccori=isccortyp(itype(i-2))
4542 isccori1=isccortyp(itype(i-1))
4544 do intertyp=1,3 !intertyp
4545 cc Added 09 May 2012 (Adasko)
4546 cc Intertyp means interaction type of backbone mainchain correlation:
4547 c 1 = SC...Ca...Ca...Ca
4548 c 2 = Ca...Ca...Ca...SC
4549 c 3 = SC...Ca...Ca...SCi
4551 if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
4552 & (itype(i-1).eq.10).or.(itype(i-2).eq.ntyp1).or.
4553 & (itype(i-1).eq.ntyp1)))
4554 & .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
4555 & .or.(itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)
4556 & .or.(itype(i).eq.ntyp1)))
4557 & .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
4558 & (itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4559 & (itype(i-3).eq.ntyp1)))) cycle
4560 if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.ntyp1)) cycle
4561 if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.ntyp1))
4563 do j=1,nterm_sccor(isccori,isccori1)
4564 v1ij=v1sccor(j,intertyp,isccori,isccori1)
4565 v2ij=v2sccor(j,intertyp,isccori,isccori1)
4566 cosphi=dcos(j*tauangle(intertyp,i))
4567 sinphi=dsin(j*tauangle(intertyp,i))
4568 esccor=esccor+v1ij*cosphi+v2ij*sinphi
4569 gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
4571 c write (iout,*) "EBACK_SC_COR",i,v1ij*cosphi+v2ij*sinphi,intertyp,
4572 c & nterm_sccor(isccori,isccori1),isccori,isccori1
4573 c gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
4575 & write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
4576 & restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
4577 & (v1sccor(j,1,itori,itori1),j=1,6)
4578 & ,(v2sccor(j,1,itori,itori1),j=1,6)
4579 c gsccor_loc(i-3)=gloci
4584 c------------------------------------------------------------------------------
4585 subroutine multibody(ecorr)
4586 C This subroutine calculates multi-body contributions to energy following
4587 C the idea of Skolnick et al. If side chains I and J make a contact and
4588 C at the same time side chains I+1 and J+1 make a contact, an extra
4589 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
4590 implicit real*8 (a-h,o-z)
4591 include 'DIMENSIONS'
4592 include 'COMMON.IOUNITS'
4593 include 'COMMON.DERIV'
4594 include 'COMMON.INTERACT'
4595 include 'COMMON.CONTACTS'
4596 double precision gx(3),gx1(3)
4599 C Set lprn=.true. for debugging
4603 write (iout,'(a)') 'Contact function values:'
4605 write (iout,'(i2,20(1x,i2,f10.5))')
4606 & i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
4621 num_conti=num_cont(i)
4622 num_conti1=num_cont(i1)
4627 if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
4628 cd write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
4629 cd & ' ishift=',ishift
4630 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously.
4631 C The system gains extra energy.
4632 ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
4633 endif ! j1==j+-ishift
4642 c------------------------------------------------------------------------------
4643 double precision function esccorr(i,j,k,l,jj,kk)
4644 implicit real*8 (a-h,o-z)
4645 include 'DIMENSIONS'
4646 include 'COMMON.IOUNITS'
4647 include 'COMMON.DERIV'
4648 include 'COMMON.INTERACT'
4649 include 'COMMON.CONTACTS'
4650 double precision gx(3),gx1(3)
4655 cd write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
4656 C Calculate the multi-body contribution to energy.
4657 C Calculate multi-body contributions to the gradient.
4658 cd write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
4659 cd & k,l,(gacont(m,kk,k),m=1,3)
4661 gx(m) =ekl*gacont(m,jj,i)
4662 gx1(m)=eij*gacont(m,kk,k)
4663 gradxorr(m,i)=gradxorr(m,i)-gx(m)
4664 gradxorr(m,j)=gradxorr(m,j)+gx(m)
4665 gradxorr(m,k)=gradxorr(m,k)-gx1(m)
4666 gradxorr(m,l)=gradxorr(m,l)+gx1(m)
4670 gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
4675 gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
4681 c------------------------------------------------------------------------------
4683 subroutine pack_buffer(dimen1,dimen2,atom,indx,buffer)
4684 implicit real*8 (a-h,o-z)
4685 include 'DIMENSIONS'
4686 integer dimen1,dimen2,atom,indx
4687 double precision buffer(dimen1,dimen2)
4688 double precision zapas
4689 common /contacts_hb/ zapas(3,20,maxres,7),
4690 & facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres),
4691 & num_cont_hb(maxres),jcont_hb(20,maxres)
4692 num_kont=num_cont_hb(atom)
4696 buffer(i,indx+(k-1)*3+j)=zapas(j,i,atom,k)
4699 buffer(i,indx+22)=facont_hb(i,atom)
4700 buffer(i,indx+23)=ees0p(i,atom)
4701 buffer(i,indx+24)=ees0m(i,atom)
4702 buffer(i,indx+25)=dfloat(jcont_hb(i,atom))
4704 buffer(1,indx+26)=dfloat(num_kont)
4707 c------------------------------------------------------------------------------
4708 subroutine unpack_buffer(dimen1,dimen2,atom,indx,buffer)
4709 implicit real*8 (a-h,o-z)
4710 include 'DIMENSIONS'
4711 integer dimen1,dimen2,atom,indx
4712 double precision buffer(dimen1,dimen2)
4713 double precision zapas
4714 common /contacts_hb/ zapas(3,20,maxres,7),
4715 & facont_hb(20,maxres),ees0p(20,maxres),ees0m(20,maxres),
4716 & num_cont_hb(maxres),jcont_hb(20,maxres)
4717 num_kont=buffer(1,indx+26)
4718 num_kont_old=num_cont_hb(atom)
4719 num_cont_hb(atom)=num_kont+num_kont_old
4724 zapas(j,ii,atom,k)=buffer(i,indx+(k-1)*3+j)
4727 facont_hb(ii,atom)=buffer(i,indx+22)
4728 ees0p(ii,atom)=buffer(i,indx+23)
4729 ees0m(ii,atom)=buffer(i,indx+24)
4730 jcont_hb(ii,atom)=buffer(i,indx+25)
4734 c------------------------------------------------------------------------------
4736 subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
4737 C This subroutine calculates multi-body contributions to hydrogen-bonding
4738 implicit real*8 (a-h,o-z)
4739 include 'DIMENSIONS'
4740 include 'DIMENSIONS.ZSCOPT'
4741 include 'COMMON.IOUNITS'
4743 include 'COMMON.INFO'
4745 include 'COMMON.FFIELD'
4746 include 'COMMON.DERIV'
4747 include 'COMMON.INTERACT'
4748 include 'COMMON.CONTACTS'
4750 parameter (max_cont=maxconts)
4751 parameter (max_dim=2*(8*3+2))
4752 parameter (msglen1=max_cont*max_dim*4)
4753 parameter (msglen2=2*msglen1)
4754 integer source,CorrelType,CorrelID,Error
4755 double precision buffer(max_cont,max_dim)
4757 double precision gx(3),gx1(3)
4760 C Set lprn=.true. for debugging
4765 if (fgProcs.le.1) goto 30
4767 write (iout,'(a)') 'Contact function values:'
4769 write (iout,'(2i3,50(1x,i2,f5.2))')
4770 & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
4771 & j=1,num_cont_hb(i))
4774 C Caution! Following code assumes that electrostatic interactions concerning
4775 C a given atom are split among at most two processors!
4785 cd write (iout,*) 'MyRank',MyRank,' mm',mm
4788 cd write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone
4789 if (MyRank.gt.0) then
4790 C Send correlation contributions to the preceding processor
4792 nn=num_cont_hb(iatel_s)
4793 call pack_buffer(max_cont,max_dim,iatel_s,0,buffer)
4794 cd write (iout,*) 'The BUFFER array:'
4796 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26)
4798 if (ielstart(iatel_s).gt.iatel_s+ispp) then
4800 call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer)
4801 C Clear the contacts of the atom passed to the neighboring processor
4802 nn=num_cont_hb(iatel_s+1)
4804 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26)
4806 num_cont_hb(iatel_s)=0
4808 cd write (iout,*) 'Processor ',MyID,MyRank,
4809 cd & ' is sending correlation contribution to processor',MyID-1,
4810 cd & ' msglen=',msglen
4811 cd write (*,*) 'Processor ',MyID,MyRank,
4812 cd & ' is sending correlation contribution to processor',MyID-1,
4813 cd & ' msglen=',msglen,' CorrelType=',CorrelType
4814 call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID)
4815 cd write (iout,*) 'Processor ',MyID,
4816 cd & ' has sent correlation contribution to processor',MyID-1,
4817 cd & ' msglen=',msglen,' CorrelID=',CorrelID
4818 cd write (*,*) 'Processor ',MyID,
4819 cd & ' has sent correlation contribution to processor',MyID-1,
4820 cd & ' msglen=',msglen,' CorrelID=',CorrelID
4822 endif ! (MyRank.gt.0)
4826 cd write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone
4827 if (MyRank.lt.fgProcs-1) then
4828 C Receive correlation contributions from the next processor
4830 if (ielend(iatel_e).lt.nct-1) msglen=msglen2
4831 cd write (iout,*) 'Processor',MyID,
4832 cd & ' is receiving correlation contribution from processor',MyID+1,
4833 cd & ' msglen=',msglen,' CorrelType=',CorrelType
4834 cd write (*,*) 'Processor',MyID,
4835 cd & ' is receiving correlation contribution from processor',MyID+1,
4836 cd & ' msglen=',msglen,' CorrelType=',CorrelType
4838 do while (nbytes.le.0)
4839 call mp_probe(MyID+1,CorrelType,nbytes)
4841 cd print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes
4842 call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes)
4843 cd write (iout,*) 'Processor',MyID,
4844 cd & ' has received correlation contribution from processor',MyID+1,
4845 cd & ' msglen=',msglen,' nbytes=',nbytes
4846 cd write (iout,*) 'The received BUFFER array:'
4848 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52)
4850 if (msglen.eq.msglen1) then
4851 call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer)
4852 else if (msglen.eq.msglen2) then
4853 call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer)
4854 call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer)
4857 & 'ERROR!!!! message length changed while processing correlations.'
4859 & 'ERROR!!!! message length changed while processing correlations.'
4860 call mp_stopall(Error)
4861 endif ! msglen.eq.msglen1
4862 endif ! MyRank.lt.fgProcs-1
4869 write (iout,'(a)') 'Contact function values:'
4871 write (iout,'(2i3,50(1x,i2,f5.2))')
4872 & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
4873 & j=1,num_cont_hb(i))
4877 C Remove the loop below after debugging !!!
4884 C Calculate the local-electrostatic correlation terms
4885 do i=iatel_s,iatel_e+1
4887 num_conti=num_cont_hb(i)
4888 num_conti1=num_cont_hb(i+1)
4893 c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
4894 c & ' jj=',jj,' kk=',kk
4895 if (j1.eq.j+1 .or. j1.eq.j-1) then
4896 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously.
4897 C The system gains extra energy.
4898 ecorr=ecorr+ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
4900 else if (j1.eq.j) then
4901 C Contacts I-J and I-(J+1) occur simultaneously.
4902 C The system loses extra energy.
4903 c ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0)
4908 c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
4909 c & ' jj=',jj,' kk=',kk
4911 C Contacts I-J and (I+1)-J occur simultaneously.
4912 C The system loses extra energy.
4913 c ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
4920 c------------------------------------------------------------------------------
4921 subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
4923 C This subroutine calculates multi-body contributions to hydrogen-bonding
4924 implicit real*8 (a-h,o-z)
4925 include 'DIMENSIONS'
4926 include 'DIMENSIONS.ZSCOPT'
4927 include 'COMMON.IOUNITS'
4929 include 'COMMON.INFO'
4931 include 'COMMON.FFIELD'
4932 include 'COMMON.DERIV'
4933 include 'COMMON.INTERACT'
4934 include 'COMMON.CONTACTS'
4936 parameter (max_cont=maxconts)
4937 parameter (max_dim=2*(8*3+2))
4938 parameter (msglen1=max_cont*max_dim*4)
4939 parameter (msglen2=2*msglen1)
4940 integer source,CorrelType,CorrelID,Error
4941 double precision buffer(max_cont,max_dim)
4943 double precision gx(3),gx1(3)
4946 C Set lprn=.true. for debugging
4952 if (fgProcs.le.1) goto 30
4954 write (iout,'(a)') 'Contact function values:'
4956 write (iout,'(2i3,50(1x,i2,f5.2))')
4957 & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
4958 & j=1,num_cont_hb(i))
4961 C Caution! Following code assumes that electrostatic interactions concerning
4962 C a given atom are split among at most two processors!
4972 cd write (iout,*) 'MyRank',MyRank,' mm',mm
4975 cd write (iout,*) 'Sending: MyRank',MyRank,' mm',mm,' ldone',ldone
4976 if (MyRank.gt.0) then
4977 C Send correlation contributions to the preceding processor
4979 nn=num_cont_hb(iatel_s)
4980 call pack_buffer(max_cont,max_dim,iatel_s,0,buffer)
4981 cd write (iout,*) 'The BUFFER array:'
4983 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,26)
4985 if (ielstart(iatel_s).gt.iatel_s+ispp) then
4987 call pack_buffer(max_cont,max_dim,iatel_s+1,26,buffer)
4988 C Clear the contacts of the atom passed to the neighboring processor
4989 nn=num_cont_hb(iatel_s+1)
4991 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j+26),j=1,26)
4993 num_cont_hb(iatel_s)=0
4995 cd write (iout,*) 'Processor ',MyID,MyRank,
4996 cd & ' is sending correlation contribution to processor',MyID-1,
4997 cd & ' msglen=',msglen
4998 cd write (*,*) 'Processor ',MyID,MyRank,
4999 cd & ' is sending correlation contribution to processor',MyID-1,
5000 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5001 call mp_bsend(buffer,msglen,MyID-1,CorrelType,CorrelID)
5002 cd write (iout,*) 'Processor ',MyID,
5003 cd & ' has sent correlation contribution to processor',MyID-1,
5004 cd & ' msglen=',msglen,' CorrelID=',CorrelID
5005 cd write (*,*) 'Processor ',MyID,
5006 cd & ' has sent correlation contribution to processor',MyID-1,
5007 cd & ' msglen=',msglen,' CorrelID=',CorrelID
5009 endif ! (MyRank.gt.0)
5013 cd write (iout,*) 'Receiving: MyRank',MyRank,' mm',mm,' ldone',ldone
5014 if (MyRank.lt.fgProcs-1) then
5015 C Receive correlation contributions from the next processor
5017 if (ielend(iatel_e).lt.nct-1) msglen=msglen2
5018 cd write (iout,*) 'Processor',MyID,
5019 cd & ' is receiving correlation contribution from processor',MyID+1,
5020 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5021 cd write (*,*) 'Processor',MyID,
5022 cd & ' is receiving correlation contribution from processor',MyID+1,
5023 cd & ' msglen=',msglen,' CorrelType=',CorrelType
5025 do while (nbytes.le.0)
5026 call mp_probe(MyID+1,CorrelType,nbytes)
5028 cd print *,'Processor',MyID,' msglen',msglen,' nbytes',nbytes
5029 call mp_brecv(buffer,msglen,MyID+1,CorrelType,nbytes)
5030 cd write (iout,*) 'Processor',MyID,
5031 cd & ' has received correlation contribution from processor',MyID+1,
5032 cd & ' msglen=',msglen,' nbytes=',nbytes
5033 cd write (iout,*) 'The received BUFFER array:'
5035 cd write (iout,'(i2,9(3f8.3,2x))') i,(buffer(i,j),j=1,52)
5037 if (msglen.eq.msglen1) then
5038 call unpack_buffer(max_cont,max_dim,iatel_e+1,0,buffer)
5039 else if (msglen.eq.msglen2) then
5040 call unpack_buffer(max_cont,max_dim,iatel_e,0,buffer)
5041 call unpack_buffer(max_cont,max_dim,iatel_e+1,26,buffer)
5044 & 'ERROR!!!! message length changed while processing correlations.'
5046 & 'ERROR!!!! message length changed while processing correlations.'
5047 call mp_stopall(Error)
5048 endif ! msglen.eq.msglen1
5049 endif ! MyRank.lt.fgProcs-1
5056 write (iout,'(a)') 'Contact function values:'
5058 write (iout,'(2i3,50(1x,i2,f5.2))')
5059 & i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
5060 & j=1,num_cont_hb(i))
5066 C Remove the loop below after debugging !!!
5073 C Calculate the dipole-dipole interaction energies
5074 if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
5075 do i=iatel_s,iatel_e+1
5076 num_conti=num_cont_hb(i)
5083 C Calculate the local-electrostatic correlation terms
5084 do i=iatel_s,iatel_e+1
5086 num_conti=num_cont_hb(i)
5087 num_conti1=num_cont_hb(i+1)
5092 c write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5093 c & ' jj=',jj,' kk=',kk
5094 if (j1.eq.j+1 .or. j1.eq.j-1) then
5095 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously.
5096 C The system gains extra energy.
5098 sqd1=dsqrt(d_cont(jj,i))
5099 sqd2=dsqrt(d_cont(kk,i1))
5100 sred_geom = sqd1*sqd2
5101 IF (sred_geom.lt.cutoff_corr) THEN
5102 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
5104 c write (*,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5105 c & ' jj=',jj,' kk=',kk
5106 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
5107 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
5109 g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
5110 g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
5113 cd write (iout,*) 'sred_geom=',sred_geom,
5114 cd & ' ekont=',ekont,' fprim=',fprimcont
5115 call calc_eello(i,j,i+1,j1,jj,kk)
5116 if (wcorr4.gt.0.0d0)
5117 & ecorr=ecorr+eello4(i,j,i+1,j1,jj,kk)
5118 if (wcorr5.gt.0.0d0)
5119 & ecorr5=ecorr5+eello5(i,j,i+1,j1,jj,kk)
5120 c print *,"wcorr5",ecorr5
5121 cd write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
5122 cd write(2,*)'ijkl',i,j,i+1,j1
5123 if (wcorr6.gt.0.0d0 .and. (j.ne.i+4 .or. j1.ne.i+3
5124 & .or. wturn6.eq.0.0d0))then
5125 cd write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
5126 ecorr6=ecorr6+eello6(i,j,i+1,j1,jj,kk)
5127 cd write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
5128 cd & 'ecorr6=',ecorr6
5129 cd write (iout,'(4e15.5)') sred_geom,
5130 cd & dabs(eello4(i,j,i+1,j1,jj,kk)),
5131 cd & dabs(eello5(i,j,i+1,j1,jj,kk)),
5132 cd & dabs(eello6(i,j,i+1,j1,jj,kk))
5133 else if (wturn6.gt.0.0d0
5134 & .and. (j.eq.i+4 .and. j1.eq.i+3)) then
5135 cd write (iout,*) '******eturn6: i,j,i+1,j1',i,j,i+1,j1
5136 eturn6=eturn6+eello_turn6(i,jj,kk)
5137 cd write (2,*) 'multibody_eello:eturn6',eturn6
5141 else if (j1.eq.j) then
5142 C Contacts I-J and I-(J+1) occur simultaneously.
5143 C The system loses extra energy.
5144 c ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0)
5149 c write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
5150 c & ' jj=',jj,' kk=',kk
5152 C Contacts I-J and (I+1)-J occur simultaneously.
5153 C The system loses extra energy.
5154 c ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
5161 c------------------------------------------------------------------------------
5162 double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
5163 implicit real*8 (a-h,o-z)
5164 include 'DIMENSIONS'
5165 include 'COMMON.IOUNITS'
5166 include 'COMMON.DERIV'
5167 include 'COMMON.INTERACT'
5168 include 'COMMON.CONTACTS'
5169 double precision gx(3),gx1(3)
5179 ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
5180 cd ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
5181 C Following 4 lines for diagnostics.
5186 c write (iout,*)'Contacts have occurred for peptide groups',i,j,
5188 c write (iout,*)'Contacts have occurred for peptide groups',
5189 c & i,j,' fcont:',eij,' eij',' eesij',ees0pij,ees0mij,' and ',k,l
5190 c & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' ees=',ees
5191 C Calculate the multi-body contribution to energy.
5192 ecorr=ecorr+ekont*ees
5194 C Calculate multi-body contributions to the gradient.
5196 ghalf=0.5D0*ees*ekl*gacont_hbr(ll,jj,i)
5197 gradcorr(ll,i)=gradcorr(ll,i)+ghalf
5198 & -ekont*(coeffp*ees0pkl*gacontp_hb1(ll,jj,i)+
5199 & coeffm*ees0mkl*gacontm_hb1(ll,jj,i))
5200 gradcorr(ll,j)=gradcorr(ll,j)+ghalf
5201 & -ekont*(coeffp*ees0pkl*gacontp_hb2(ll,jj,i)+
5202 & coeffm*ees0mkl*gacontm_hb2(ll,jj,i))
5203 ghalf=0.5D0*ees*eij*gacont_hbr(ll,kk,k)
5204 gradcorr(ll,k)=gradcorr(ll,k)+ghalf
5205 & -ekont*(coeffp*ees0pij*gacontp_hb1(ll,kk,k)+
5206 & coeffm*ees0mij*gacontm_hb1(ll,kk,k))
5207 gradcorr(ll,l)=gradcorr(ll,l)+ghalf
5208 & -ekont*(coeffp*ees0pij*gacontp_hb2(ll,kk,k)+
5209 & coeffm*ees0mij*gacontm_hb2(ll,kk,k))
5213 gradcorr(ll,m)=gradcorr(ll,m)+
5214 & ees*ekl*gacont_hbr(ll,jj,i)-
5215 & ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
5216 & coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
5221 gradcorr(ll,m)=gradcorr(ll,m)+
5222 & ees*eij*gacont_hbr(ll,kk,k)-
5223 & ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
5224 & coeffm*ees0mij*gacontm_hb3(ll,kk,k))
5231 C---------------------------------------------------------------------------
5232 subroutine dipole(i,j,jj)
5233 implicit real*8 (a-h,o-z)
5234 include 'DIMENSIONS'
5235 include 'DIMENSIONS.ZSCOPT'
5236 include 'COMMON.IOUNITS'
5237 include 'COMMON.CHAIN'
5238 include 'COMMON.FFIELD'
5239 include 'COMMON.DERIV'
5240 include 'COMMON.INTERACT'
5241 include 'COMMON.CONTACTS'
5242 include 'COMMON.TORSION'
5243 include 'COMMON.VAR'
5244 include 'COMMON.GEO'
5245 dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
5247 iti1 = itortyp(itype(i+1))
5248 if (j.lt.nres-1) then
5249 if (itype(j).le.ntyp) then
5250 itj1 = itortyp(itype(j+1))
5258 dipi(iii,1)=Ub2(iii,i)
5259 dipderi(iii)=Ub2der(iii,i)
5260 dipi(iii,2)=b1(iii,iti1)
5261 dipj(iii,1)=Ub2(iii,j)
5262 dipderj(iii)=Ub2der(iii,j)
5263 dipj(iii,2)=b1(iii,itj1)
5267 call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1))
5270 dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
5273 if (.not.calc_grad) return
5278 call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
5282 dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
5287 call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
5288 call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
5290 dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
5292 call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
5294 dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
5298 C---------------------------------------------------------------------------
5299 subroutine calc_eello(i,j,k,l,jj,kk)
5301 C This subroutine computes matrices and vectors needed to calculate
5302 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
5304 implicit real*8 (a-h,o-z)
5305 include 'DIMENSIONS'
5306 include 'DIMENSIONS.ZSCOPT'
5307 include 'COMMON.IOUNITS'
5308 include 'COMMON.CHAIN'
5309 include 'COMMON.DERIV'
5310 include 'COMMON.INTERACT'
5311 include 'COMMON.CONTACTS'
5312 include 'COMMON.TORSION'
5313 include 'COMMON.VAR'
5314 include 'COMMON.GEO'
5315 include 'COMMON.FFIELD'
5316 double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
5317 & aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
5320 cd write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
5321 cd & ' jj=',jj,' kk=',kk
5322 cd if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
5325 aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
5326 aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
5329 call transpose2(aa1(1,1),aa1t(1,1))
5330 call transpose2(aa2(1,1),aa2t(1,1))
5333 call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
5334 & aa1tder(1,1,lll,kkk))
5335 call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
5336 & aa2tder(1,1,lll,kkk))
5340 C parallel orientation of the two CA-CA-CA frames.
5341 if (i.gt.1 .and. itype(i).le.ntyp) then
5342 iti=itortyp(itype(i))
5346 itk1=itortyp(itype(k+1))
5347 itj=itortyp(itype(j))
5348 if (l.lt.nres-1 .and. itype(l+1).le.ntyp) then
5349 itl1=itortyp(itype(l+1))
5353 C A1 kernel(j+1) A2T
5355 cd write (iout,'(3f10.5,5x,3f10.5)')
5356 cd & (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
5358 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5359 & aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
5360 & AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
5361 C Following matrices are needed only for 6-th order cumulants
5362 IF (wcorr6.gt.0.0d0) THEN
5363 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5364 & aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
5365 & AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
5366 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5367 & aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
5368 & Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
5369 & ADtEAderx(1,1,1,1,1,1))
5371 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5372 & aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
5373 & DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
5374 & ADtEA1derx(1,1,1,1,1,1))
5376 C End 6-th order cumulants
5379 cd write (2,*) 'In calc_eello6'
5381 cd write (2,*) 'iii=',iii
5383 cd write (2,*) 'kkk=',kkk
5385 cd write (2,'(3(2f10.5),5x)')
5386 cd & ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
5391 call transpose2(EUgder(1,1,k),auxmat(1,1))
5392 call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
5393 call transpose2(EUg(1,1,k),auxmat(1,1))
5394 call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
5395 call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
5399 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
5400 & EAEAderx(1,1,lll,kkk,iii,1))
5404 C A1T kernel(i+1) A2
5405 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
5406 & a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
5407 & AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
5408 C Following matrices are needed only for 6-th order cumulants
5409 IF (wcorr6.gt.0.0d0) THEN
5410 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
5411 & a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
5412 & AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
5413 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
5414 & a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
5415 & Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
5416 & ADtEAderx(1,1,1,1,1,2))
5417 call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
5418 & a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
5419 & DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
5420 & ADtEA1derx(1,1,1,1,1,2))
5422 C End 6-th order cumulants
5423 call transpose2(EUgder(1,1,l),auxmat(1,1))
5424 call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
5425 call transpose2(EUg(1,1,l),auxmat(1,1))
5426 call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
5427 call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
5431 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
5432 & EAEAderx(1,1,lll,kkk,iii,2))
5437 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
5438 C They are needed only when the fifth- or the sixth-order cumulants are
5440 IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
5441 call transpose2(AEA(1,1,1),auxmat(1,1))
5442 call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
5443 call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
5444 call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
5445 call transpose2(AEAderg(1,1,1),auxmat(1,1))
5446 call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
5447 call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
5448 call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
5449 call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
5450 call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
5451 call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
5452 call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
5453 call transpose2(AEA(1,1,2),auxmat(1,1))
5454 call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
5455 call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
5456 call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
5457 call transpose2(AEAderg(1,1,2),auxmat(1,1))
5458 call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
5459 call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
5460 call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
5461 call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
5462 call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
5463 call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
5464 call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
5465 C Calculate the Cartesian derivatives of the vectors.
5469 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
5470 call matvec2(auxmat(1,1),b1(1,iti),
5471 & AEAb1derx(1,lll,kkk,iii,1,1))
5472 call matvec2(auxmat(1,1),Ub2(1,i),
5473 & AEAb2derx(1,lll,kkk,iii,1,1))
5474 call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
5475 & AEAb1derx(1,lll,kkk,iii,2,1))
5476 call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
5477 & AEAb2derx(1,lll,kkk,iii,2,1))
5478 call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
5479 call matvec2(auxmat(1,1),b1(1,itj),
5480 & AEAb1derx(1,lll,kkk,iii,1,2))
5481 call matvec2(auxmat(1,1),Ub2(1,j),
5482 & AEAb2derx(1,lll,kkk,iii,1,2))
5483 call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
5484 & AEAb1derx(1,lll,kkk,iii,2,2))
5485 call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
5486 & AEAb2derx(1,lll,kkk,iii,2,2))
5493 C Antiparallel orientation of the two CA-CA-CA frames.
5494 if (i.gt.1 .and. itype(i).le.ntyp) then
5495 iti=itortyp(itype(i))
5499 itk1=itortyp(itype(k+1))
5500 itl=itortyp(itype(l))
5501 itj=itortyp(itype(j))
5502 if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then
5503 itj1=itortyp(itype(j+1))
5507 C A2 kernel(j-1)T A1T
5508 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5509 & aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
5510 & AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
5511 C Following matrices are needed only for 6-th order cumulants
5512 IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
5513 & j.eq.i+4 .and. l.eq.i+3)) THEN
5514 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5515 & aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
5516 & AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
5517 call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5518 & aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
5519 & Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
5520 & ADtEAderx(1,1,1,1,1,1))
5521 call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
5522 & aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
5523 & DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
5524 & ADtEA1derx(1,1,1,1,1,1))
5526 C End 6-th order cumulants
5527 call transpose2(EUgder(1,1,k),auxmat(1,1))
5528 call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
5529 call transpose2(EUg(1,1,k),auxmat(1,1))
5530 call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
5531 call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
5535 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
5536 & EAEAderx(1,1,lll,kkk,iii,1))
5540 C A2T kernel(i+1)T A1
5541 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
5542 & a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
5543 & AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
5544 C Following matrices are needed only for 6-th order cumulants
5545 IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
5546 & j.eq.i+4 .and. l.eq.i+3)) THEN
5547 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
5548 & a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
5549 & AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
5550 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
5551 & a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
5552 & Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
5553 & ADtEAderx(1,1,1,1,1,2))
5554 call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
5555 & a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
5556 & DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
5557 & ADtEA1derx(1,1,1,1,1,2))
5559 C End 6-th order cumulants
5560 call transpose2(EUgder(1,1,j),auxmat(1,1))
5561 call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
5562 call transpose2(EUg(1,1,j),auxmat(1,1))
5563 call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
5564 call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
5568 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
5569 & EAEAderx(1,1,lll,kkk,iii,2))
5574 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
5575 C They are needed only when the fifth- or the sixth-order cumulants are
5577 IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
5578 & (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
5579 call transpose2(AEA(1,1,1),auxmat(1,1))
5580 call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
5581 call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
5582 call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
5583 call transpose2(AEAderg(1,1,1),auxmat(1,1))
5584 call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
5585 call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
5586 call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
5587 call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
5588 call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
5589 call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
5590 call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
5591 call transpose2(AEA(1,1,2),auxmat(1,1))
5592 call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
5593 call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
5594 call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
5595 call transpose2(AEAderg(1,1,2),auxmat(1,1))
5596 call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
5597 call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
5598 call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
5599 call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
5600 call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
5601 call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
5602 call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
5603 C Calculate the Cartesian derivatives of the vectors.
5607 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
5608 call matvec2(auxmat(1,1),b1(1,iti),
5609 & AEAb1derx(1,lll,kkk,iii,1,1))
5610 call matvec2(auxmat(1,1),Ub2(1,i),
5611 & AEAb2derx(1,lll,kkk,iii,1,1))
5612 call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
5613 & AEAb1derx(1,lll,kkk,iii,2,1))
5614 call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
5615 & AEAb2derx(1,lll,kkk,iii,2,1))
5616 call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
5617 call matvec2(auxmat(1,1),b1(1,itl),
5618 & AEAb1derx(1,lll,kkk,iii,1,2))
5619 call matvec2(auxmat(1,1),Ub2(1,l),
5620 & AEAb2derx(1,lll,kkk,iii,1,2))
5621 call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
5622 & AEAb1derx(1,lll,kkk,iii,2,2))
5623 call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
5624 & AEAb2derx(1,lll,kkk,iii,2,2))
5633 C---------------------------------------------------------------------------
5634 subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
5635 & KK,KKderg,AKA,AKAderg,AKAderx)
5639 double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
5640 & aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
5641 & AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
5646 call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
5648 call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
5651 cd if (lprn) write (2,*) 'In kernel'
5653 cd if (lprn) write (2,*) 'kkk=',kkk
5655 call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
5656 & KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
5658 cd write (2,*) 'lll=',lll
5659 cd write (2,*) 'iii=1'
5661 cd write (2,'(3(2f10.5),5x)')
5662 cd & (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
5665 call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
5666 & KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
5668 cd write (2,*) 'lll=',lll
5669 cd write (2,*) 'iii=2'
5671 cd write (2,'(3(2f10.5),5x)')
5672 cd & (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
5679 C---------------------------------------------------------------------------
5680 double precision function eello4(i,j,k,l,jj,kk)
5681 implicit real*8 (a-h,o-z)
5682 include 'DIMENSIONS'
5683 include 'DIMENSIONS.ZSCOPT'
5684 include 'COMMON.IOUNITS'
5685 include 'COMMON.CHAIN'
5686 include 'COMMON.DERIV'
5687 include 'COMMON.INTERACT'
5688 include 'COMMON.CONTACTS'
5689 include 'COMMON.TORSION'
5690 include 'COMMON.VAR'
5691 include 'COMMON.GEO'
5692 double precision pizda(2,2),ggg1(3),ggg2(3)
5693 cd if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
5697 cd print *,'eello4:',i,j,k,l,jj,kk
5698 cd write (2,*) 'i',i,' j',j,' k',k,' l',l
5699 cd call checkint4(i,j,k,l,jj,kk,eel4_num)
5700 cold eij=facont_hb(jj,i)
5701 cold ekl=facont_hb(kk,k)
5703 eel4=-EAEA(1,1,1)-EAEA(2,2,1)
5705 cd eel41=-EAEA(1,1,2)-EAEA(2,2,2)
5706 gcorr_loc(k-1)=gcorr_loc(k-1)
5707 & -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
5709 gcorr_loc(l-1)=gcorr_loc(l-1)
5710 & -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
5712 gcorr_loc(j-1)=gcorr_loc(j-1)
5713 & -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
5718 derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
5719 & -EAEAderx(2,2,lll,kkk,iii,1)
5720 cd derx(lll,kkk,iii)=0.0d0
5724 cd gcorr_loc(l-1)=0.0d0
5725 cd gcorr_loc(j-1)=0.0d0
5726 cd gcorr_loc(k-1)=0.0d0
5728 cd write (iout,*)'Contacts have occurred for peptide groups',
5729 cd & i,j,' fcont:',eij,' eij',' and ',k,l,
5730 cd & ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
5731 if (j.lt.nres-1) then
5738 if (l.lt.nres-1) then
5746 cold ghalf=0.5d0*eel4*ekl*gacont_hbr(ll,jj,i)
5747 ggg1(ll)=eel4*g_contij(ll,1)
5748 ggg2(ll)=eel4*g_contij(ll,2)
5749 ghalf=0.5d0*ggg1(ll)
5751 gradcorr(ll,i)=gradcorr(ll,i)+ghalf+ekont*derx(ll,2,1)
5752 gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
5753 gradcorr(ll,j)=gradcorr(ll,j)+ghalf+ekont*derx(ll,4,1)
5754 gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
5755 cold ghalf=0.5d0*eel4*eij*gacont_hbr(ll,kk,k)
5756 ghalf=0.5d0*ggg2(ll)
5758 gradcorr(ll,k)=gradcorr(ll,k)+ghalf+ekont*derx(ll,2,2)
5759 gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
5760 gradcorr(ll,l)=gradcorr(ll,l)+ghalf+ekont*derx(ll,4,2)
5761 gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
5766 cold gradcorr(ll,m)=gradcorr(ll,m)+eel4*ekl*gacont_hbr(ll,jj,i)
5767 gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
5772 cold gradcorr(ll,m)=gradcorr(ll,m)+eel4*eij*gacont_hbr(ll,kk,k)
5773 gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
5779 gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
5784 gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
5788 cd write (2,*) iii,gcorr_loc(iii)
5792 cd write (2,*) 'ekont',ekont
5793 cd write (iout,*) 'eello4',ekont*eel4
5796 C---------------------------------------------------------------------------
5797 double precision function eello5(i,j,k,l,jj,kk)
5798 implicit real*8 (a-h,o-z)
5799 include 'DIMENSIONS'
5800 include 'DIMENSIONS.ZSCOPT'
5801 include 'COMMON.IOUNITS'
5802 include 'COMMON.CHAIN'
5803 include 'COMMON.DERIV'
5804 include 'COMMON.INTERACT'
5805 include 'COMMON.CONTACTS'
5806 include 'COMMON.TORSION'
5807 include 'COMMON.VAR'
5808 include 'COMMON.GEO'
5809 double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
5810 double precision ggg1(3),ggg2(3)
5811 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
5816 C /l\ / \ \ / \ / \ / C
5817 C / \ / \ \ / \ / \ / C
5818 C j| o |l1 | o | o| o | | o |o C
5819 C \ |/k\| |/ \| / |/ \| |/ \| C
5820 C \i/ \ / \ / / \ / \ C
5822 C (I) (II) (III) (IV) C
5824 C eello5_1 eello5_2 eello5_3 eello5_4 C
5826 C Antiparallel chains C
5829 C /j\ / \ \ / \ / \ / C
5830 C / \ / \ \ / \ / \ / C
5831 C j1| o |l | o | o| o | | o |o C
5832 C \ |/k\| |/ \| / |/ \| |/ \| C
5833 C \i/ \ / \ / / \ / \ C
5835 C (I) (II) (III) (IV) C
5837 C eello5_1 eello5_2 eello5_3 eello5_4 C
5839 C o denotes a local interaction, vertical lines an electrostatic interaction. C
5841 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
5842 cd if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
5847 cd & 'EELLO5: Contacts have occurred for peptide groups',i,j,
5849 itk=itortyp(itype(k))
5850 itl=itortyp(itype(l))
5851 itj=itortyp(itype(j))
5856 cd call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
5857 cd & eel5_3_num,eel5_4_num)
5861 derx(lll,kkk,iii)=0.0d0
5865 cd eij=facont_hb(jj,i)
5866 cd ekl=facont_hb(kk,k)
5868 cd write (iout,*)'Contacts have occurred for peptide groups',
5869 cd & i,j,' fcont:',eij,' eij',' and ',k,l
5871 C Contribution from the graph I.
5872 cd write (2,*) 'AEA ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
5873 cd write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
5874 call transpose2(EUg(1,1,k),auxmat(1,1))
5875 call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
5876 vv(1)=pizda(1,1)-pizda(2,2)
5877 vv(2)=pizda(1,2)+pizda(2,1)
5878 eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
5879 & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
5881 C Explicit gradient in virtual-dihedral angles.
5882 if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
5883 & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
5884 & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
5885 call transpose2(EUgder(1,1,k),auxmat1(1,1))
5886 call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
5887 vv(1)=pizda(1,1)-pizda(2,2)
5888 vv(2)=pizda(1,2)+pizda(2,1)
5889 g_corr5_loc(k-1)=g_corr5_loc(k-1)
5890 & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
5891 & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
5892 call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
5893 vv(1)=pizda(1,1)-pizda(2,2)
5894 vv(2)=pizda(1,2)+pizda(2,1)
5896 if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
5897 & +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
5898 & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
5900 if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
5901 & +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
5902 & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
5904 C Cartesian gradient
5908 call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
5910 vv(1)=pizda(1,1)-pizda(2,2)
5911 vv(2)=pizda(1,2)+pizda(2,1)
5912 derx(lll,kkk,iii)=derx(lll,kkk,iii)
5913 & +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
5914 & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
5921 C Contribution from graph II
5922 call transpose2(EE(1,1,itk),auxmat(1,1))
5923 call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
5924 vv(1)=pizda(1,1)+pizda(2,2)
5925 vv(2)=pizda(2,1)-pizda(1,2)
5926 eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
5927 & -0.5d0*scalar2(vv(1),Ctobr(1,k))
5929 C Explicit gradient in virtual-dihedral angles.
5930 g_corr5_loc(k-1)=g_corr5_loc(k-1)
5931 & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
5932 call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
5933 vv(1)=pizda(1,1)+pizda(2,2)
5934 vv(2)=pizda(2,1)-pizda(1,2)
5936 g_corr5_loc(l-1)=g_corr5_loc(l-1)
5937 & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
5938 & -0.5d0*scalar2(vv(1),Ctobr(1,k)))
5940 g_corr5_loc(j-1)=g_corr5_loc(j-1)
5941 & +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
5942 & -0.5d0*scalar2(vv(1),Ctobr(1,k)))
5944 C Cartesian gradient
5948 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
5950 vv(1)=pizda(1,1)+pizda(2,2)
5951 vv(2)=pizda(2,1)-pizda(1,2)
5952 derx(lll,kkk,iii)=derx(lll,kkk,iii)
5953 & +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
5954 & -0.5d0*scalar2(vv(1),Ctobr(1,k))
5963 C Parallel orientation
5964 C Contribution from graph III
5965 call transpose2(EUg(1,1,l),auxmat(1,1))
5966 call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
5967 vv(1)=pizda(1,1)-pizda(2,2)
5968 vv(2)=pizda(1,2)+pizda(2,1)
5969 eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
5970 & +0.5d0*scalar2(vv(1),Dtobr2(1,j))
5972 C Explicit gradient in virtual-dihedral angles.
5973 g_corr5_loc(j-1)=g_corr5_loc(j-1)
5974 & +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
5975 & +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
5976 call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
5977 vv(1)=pizda(1,1)-pizda(2,2)
5978 vv(2)=pizda(1,2)+pizda(2,1)
5979 g_corr5_loc(k-1)=g_corr5_loc(k-1)
5980 & +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
5981 & +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
5982 call transpose2(EUgder(1,1,l),auxmat1(1,1))
5983 call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
5984 vv(1)=pizda(1,1)-pizda(2,2)
5985 vv(2)=pizda(1,2)+pizda(2,1)
5986 g_corr5_loc(l-1)=g_corr5_loc(l-1)
5987 & +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
5988 & +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
5989 C Cartesian gradient
5993 call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
5995 vv(1)=pizda(1,1)-pizda(2,2)
5996 vv(2)=pizda(1,2)+pizda(2,1)
5997 derx(lll,kkk,iii)=derx(lll,kkk,iii)
5998 & +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
5999 & +0.5d0*scalar2(vv(1),Dtobr2(1,j))
6005 C Contribution from graph IV
6007 call transpose2(EE(1,1,itl),auxmat(1,1))
6008 call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
6009 vv(1)=pizda(1,1)+pizda(2,2)
6010 vv(2)=pizda(2,1)-pizda(1,2)
6011 eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
6012 & -0.5d0*scalar2(vv(1),Ctobr(1,l))
6014 C Explicit gradient in virtual-dihedral angles.
6015 g_corr5_loc(l-1)=g_corr5_loc(l-1)
6016 & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
6017 call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
6018 vv(1)=pizda(1,1)+pizda(2,2)
6019 vv(2)=pizda(2,1)-pizda(1,2)
6020 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6021 & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
6022 & -0.5d0*scalar2(vv(1),Ctobr(1,l)))
6023 C Cartesian gradient
6027 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6029 vv(1)=pizda(1,1)+pizda(2,2)
6030 vv(2)=pizda(2,1)-pizda(1,2)
6031 derx(lll,kkk,iii)=derx(lll,kkk,iii)
6032 & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
6033 & -0.5d0*scalar2(vv(1),Ctobr(1,l))
6039 C Antiparallel orientation
6040 C Contribution from graph III
6042 call transpose2(EUg(1,1,j),auxmat(1,1))
6043 call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
6044 vv(1)=pizda(1,1)-pizda(2,2)
6045 vv(2)=pizda(1,2)+pizda(2,1)
6046 eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
6047 & +0.5d0*scalar2(vv(1),Dtobr2(1,l))
6049 C Explicit gradient in virtual-dihedral angles.
6050 g_corr5_loc(l-1)=g_corr5_loc(l-1)
6051 & +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
6052 & +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
6053 call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
6054 vv(1)=pizda(1,1)-pizda(2,2)
6055 vv(2)=pizda(1,2)+pizda(2,1)
6056 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6057 & +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
6058 & +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
6059 call transpose2(EUgder(1,1,j),auxmat1(1,1))
6060 call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
6061 vv(1)=pizda(1,1)-pizda(2,2)
6062 vv(2)=pizda(1,2)+pizda(2,1)
6063 g_corr5_loc(j-1)=g_corr5_loc(j-1)
6064 & +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
6065 & +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
6066 C Cartesian gradient
6070 call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
6072 vv(1)=pizda(1,1)-pizda(2,2)
6073 vv(2)=pizda(1,2)+pizda(2,1)
6074 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
6075 & +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
6076 & +0.5d0*scalar2(vv(1),Dtobr2(1,l))
6082 C Contribution from graph IV
6084 call transpose2(EE(1,1,itj),auxmat(1,1))
6085 call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
6086 vv(1)=pizda(1,1)+pizda(2,2)
6087 vv(2)=pizda(2,1)-pizda(1,2)
6088 eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
6089 & -0.5d0*scalar2(vv(1),Ctobr(1,j))
6091 C Explicit gradient in virtual-dihedral angles.
6092 g_corr5_loc(j-1)=g_corr5_loc(j-1)
6093 & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
6094 call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
6095 vv(1)=pizda(1,1)+pizda(2,2)
6096 vv(2)=pizda(2,1)-pizda(1,2)
6097 g_corr5_loc(k-1)=g_corr5_loc(k-1)
6098 & +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
6099 & -0.5d0*scalar2(vv(1),Ctobr(1,j)))
6100 C Cartesian gradient
6104 call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
6106 vv(1)=pizda(1,1)+pizda(2,2)
6107 vv(2)=pizda(2,1)-pizda(1,2)
6108 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
6109 & +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
6110 & -0.5d0*scalar2(vv(1),Ctobr(1,j))
6117 eel5=eello5_1+eello5_2+eello5_3+eello5_4
6118 cd if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
6119 cd write (2,*) 'ijkl',i,j,k,l
6120 cd write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
6121 cd & ' eello5_3',eello5_3,' eello5_4',eello5_4
6123 cd write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
6124 cd write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
6125 cd write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
6126 cd write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
6128 if (j.lt.nres-1) then
6135 if (l.lt.nres-1) then
6145 cd write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
6147 ggg1(ll)=eel5*g_contij(ll,1)
6148 ggg2(ll)=eel5*g_contij(ll,2)
6149 cold ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
6150 ghalf=0.5d0*ggg1(ll)
6152 gradcorr5(ll,i)=gradcorr5(ll,i)+ghalf+ekont*derx(ll,2,1)
6153 gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
6154 gradcorr5(ll,j)=gradcorr5(ll,j)+ghalf+ekont*derx(ll,4,1)
6155 gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
6156 cold ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
6157 ghalf=0.5d0*ggg2(ll)
6159 gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
6160 gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
6161 gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
6162 gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
6167 cold gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
6168 gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
6173 cold gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
6174 gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
6180 gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
6185 gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
6189 cd write (2,*) iii,g_corr5_loc(iii)
6193 cd write (2,*) 'ekont',ekont
6194 cd write (iout,*) 'eello5',ekont*eel5
6197 c--------------------------------------------------------------------------
6198 double precision function eello6(i,j,k,l,jj,kk)
6199 implicit real*8 (a-h,o-z)
6200 include 'DIMENSIONS'
6201 include 'DIMENSIONS.ZSCOPT'
6202 include 'COMMON.IOUNITS'
6203 include 'COMMON.CHAIN'
6204 include 'COMMON.DERIV'
6205 include 'COMMON.INTERACT'
6206 include 'COMMON.CONTACTS'
6207 include 'COMMON.TORSION'
6208 include 'COMMON.VAR'
6209 include 'COMMON.GEO'
6210 include 'COMMON.FFIELD'
6211 double precision ggg1(3),ggg2(3)
6212 cd if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
6217 cd & 'EELLO6: Contacts have occurred for peptide groups',i,j,
6225 cd call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
6226 cd & eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
6230 derx(lll,kkk,iii)=0.0d0
6234 cd eij=facont_hb(jj,i)
6235 cd ekl=facont_hb(kk,k)
6241 eello6_1=eello6_graph1(i,j,k,l,1,.false.)
6242 eello6_2=eello6_graph1(j,i,l,k,2,.false.)
6243 eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
6244 eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
6245 eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
6246 eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
6248 eello6_1=eello6_graph1(i,j,k,l,1,.false.)
6249 eello6_2=eello6_graph1(l,k,j,i,2,.true.)
6250 eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
6251 eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
6252 if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
6253 eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
6257 eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
6259 C If turn contributions are considered, they will be handled separately.
6260 eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
6261 cd write(iout,*) 'eello6_1',eello6_1,' eel6_1_num',16*eel6_1_num
6262 cd write(iout,*) 'eello6_2',eello6_2,' eel6_2_num',16*eel6_2_num
6263 cd write(iout,*) 'eello6_3',eello6_3,' eel6_3_num',16*eel6_3_num
6264 cd write(iout,*) 'eello6_4',eello6_4,' eel6_4_num',16*eel6_4_num
6265 cd write(iout,*) 'eello6_5',eello6_5,' eel6_5_num',16*eel6_5_num
6266 cd write(iout,*) 'eello6_6',eello6_6,' eel6_6_num',16*eel6_6_num
6269 if (j.lt.nres-1) then
6276 if (l.lt.nres-1) then
6284 ggg1(ll)=eel6*g_contij(ll,1)
6285 ggg2(ll)=eel6*g_contij(ll,2)
6286 cold ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
6287 ghalf=0.5d0*ggg1(ll)
6289 gradcorr6(ll,i)=gradcorr6(ll,i)+ghalf+ekont*derx(ll,2,1)
6290 gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
6291 gradcorr6(ll,j)=gradcorr6(ll,j)+ghalf+ekont*derx(ll,4,1)
6292 gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
6293 ghalf=0.5d0*ggg2(ll)
6294 cold ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
6296 gradcorr6(ll,k)=gradcorr6(ll,k)+ghalf+ekont*derx(ll,2,2)
6297 gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
6298 gradcorr6(ll,l)=gradcorr6(ll,l)+ghalf+ekont*derx(ll,4,2)
6299 gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
6304 cold gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
6305 gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
6310 cold gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
6311 gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
6317 gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
6322 gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
6326 cd write (2,*) iii,g_corr6_loc(iii)
6330 cd write (2,*) 'ekont',ekont
6331 cd write (iout,*) 'eello6',ekont*eel6
6334 c--------------------------------------------------------------------------
6335 double precision function eello6_graph1(i,j,k,l,imat,swap)
6336 implicit real*8 (a-h,o-z)
6337 include 'DIMENSIONS'
6338 include 'DIMENSIONS.ZSCOPT'
6339 include 'COMMON.IOUNITS'
6340 include 'COMMON.CHAIN'
6341 include 'COMMON.DERIV'
6342 include 'COMMON.INTERACT'
6343 include 'COMMON.CONTACTS'
6344 include 'COMMON.TORSION'
6345 include 'COMMON.VAR'
6346 include 'COMMON.GEO'
6347 double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
6351 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6353 C Parallel Antiparallel C
6359 C \ j|/k\| / \ |/k\|l / C
6364 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6365 itk=itortyp(itype(k))
6366 s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
6367 s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
6368 s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
6369 call transpose2(EUgC(1,1,k),auxmat(1,1))
6370 call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
6371 vv1(1)=pizda1(1,1)-pizda1(2,2)
6372 vv1(2)=pizda1(1,2)+pizda1(2,1)
6373 s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
6374 vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
6375 vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
6376 s5=scalar2(vv(1),Dtobr2(1,i))
6377 cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
6378 eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
6379 if (.not. calc_grad) return
6380 if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
6381 & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
6382 & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
6383 & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
6384 & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
6385 & +scalar2(vv(1),Dtobr2der(1,i)))
6386 call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
6387 vv1(1)=pizda1(1,1)-pizda1(2,2)
6388 vv1(2)=pizda1(1,2)+pizda1(2,1)
6389 vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
6390 vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
6392 g_corr6_loc(l-1)=g_corr6_loc(l-1)
6393 & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
6394 & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
6395 & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
6396 & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
6398 g_corr6_loc(j-1)=g_corr6_loc(j-1)
6399 & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
6400 & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
6401 & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
6402 & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
6404 call transpose2(EUgCder(1,1,k),auxmat(1,1))
6405 call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
6406 vv1(1)=pizda1(1,1)-pizda1(2,2)
6407 vv1(2)=pizda1(1,2)+pizda1(2,1)
6408 if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
6409 & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
6410 & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
6411 & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
6420 s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
6421 s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
6422 s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
6423 call transpose2(EUgC(1,1,k),auxmat(1,1))
6424 call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
6426 vv1(1)=pizda1(1,1)-pizda1(2,2)
6427 vv1(2)=pizda1(1,2)+pizda1(2,1)
6428 s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
6429 vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
6430 & -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
6431 vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
6432 & +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
6433 s5=scalar2(vv(1),Dtobr2(1,i))
6434 derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
6440 c----------------------------------------------------------------------------
6441 double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
6442 implicit real*8 (a-h,o-z)
6443 include 'DIMENSIONS'
6444 include 'DIMENSIONS.ZSCOPT'
6445 include 'COMMON.IOUNITS'
6446 include 'COMMON.CHAIN'
6447 include 'COMMON.DERIV'
6448 include 'COMMON.INTERACT'
6449 include 'COMMON.CONTACTS'
6450 include 'COMMON.TORSION'
6451 include 'COMMON.VAR'
6452 include 'COMMON.GEO'
6454 double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
6455 & auxvec1(2),auxvec2(2),auxmat1(2,2)
6458 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6460 C Parallel Antiparallel C
6466 C \ j|/k\| \ |/k\|l C
6471 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6472 cd write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
6473 C AL 7/4/01 s1 would occur in the sixth-order moment,
6474 C but not in a cluster cumulant
6476 s1=dip(1,jj,i)*dip(1,kk,k)
6478 call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
6479 s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
6480 call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
6481 s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
6482 call transpose2(EUg(1,1,k),auxmat(1,1))
6483 call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
6484 vv(1)=pizda(1,1)-pizda(2,2)
6485 vv(2)=pizda(1,2)+pizda(2,1)
6486 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6487 cd write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
6489 eello6_graph2=-(s1+s2+s3+s4)
6491 eello6_graph2=-(s2+s3+s4)
6494 if (.not. calc_grad) return
6495 C Derivatives in gamma(i-1)
6498 s1=dipderg(1,jj,i)*dip(1,kk,k)
6500 s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
6501 call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
6502 s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
6503 s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
6505 g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
6507 g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
6509 c g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
6511 C Derivatives in gamma(k-1)
6513 s1=dip(1,jj,i)*dipderg(1,kk,k)
6515 call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
6516 s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
6517 call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
6518 s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
6519 call transpose2(EUgder(1,1,k),auxmat1(1,1))
6520 call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
6521 vv(1)=pizda(1,1)-pizda(2,2)
6522 vv(2)=pizda(1,2)+pizda(2,1)
6523 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6525 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
6527 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
6529 c g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
6530 C Derivatives in gamma(j-1) or gamma(l-1)
6533 s1=dipderg(3,jj,i)*dip(1,kk,k)
6535 call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
6536 s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
6537 s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
6538 call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
6539 vv(1)=pizda(1,1)-pizda(2,2)
6540 vv(2)=pizda(1,2)+pizda(2,1)
6541 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6544 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
6546 g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
6549 g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
6550 c g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
6552 C Derivatives in gamma(l-1) or gamma(j-1)
6555 s1=dip(1,jj,i)*dipderg(3,kk,k)
6557 call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
6558 s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
6559 call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
6560 s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
6561 call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
6562 vv(1)=pizda(1,1)-pizda(2,2)
6563 vv(2)=pizda(1,2)+pizda(2,1)
6564 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6567 g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
6569 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
6572 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
6573 c g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
6575 C Cartesian derivatives.
6577 write (2,*) 'In eello6_graph2'
6579 write (2,*) 'iii=',iii
6581 write (2,*) 'kkk=',kkk
6583 write (2,'(3(2f10.5),5x)')
6584 & ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
6594 s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
6596 s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
6599 call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
6601 s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
6602 call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
6604 s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
6605 call transpose2(EUg(1,1,k),auxmat(1,1))
6606 call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
6608 vv(1)=pizda(1,1)-pizda(2,2)
6609 vv(2)=pizda(1,2)+pizda(2,1)
6610 s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
6611 cd write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
6613 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
6615 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
6618 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
6620 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
6627 c----------------------------------------------------------------------------
6628 double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
6629 implicit real*8 (a-h,o-z)
6630 include 'DIMENSIONS'
6631 include 'DIMENSIONS.ZSCOPT'
6632 include 'COMMON.IOUNITS'
6633 include 'COMMON.CHAIN'
6634 include 'COMMON.DERIV'
6635 include 'COMMON.INTERACT'
6636 include 'COMMON.CONTACTS'
6637 include 'COMMON.TORSION'
6638 include 'COMMON.VAR'
6639 include 'COMMON.GEO'
6640 double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
6642 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6644 C Parallel Antiparallel C
6650 C j|/k\| / |/k\|l / C
6655 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6657 C 4/7/01 AL Component s1 was removed, because it pertains to the respective
6658 C energy moment and not to the cluster cumulant.
6659 iti=itortyp(itype(i))
6660 if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then
6661 itj1=itortyp(itype(j+1))
6665 itk=itortyp(itype(k))
6666 itk1=itortyp(itype(k+1))
6667 if (l.lt.nres-1 .and. itype(l+1).le.ntyp) then
6668 itl1=itortyp(itype(l+1))
6673 s1=dip(4,jj,i)*dip(4,kk,k)
6675 call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
6676 s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
6677 call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
6678 s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
6679 call transpose2(EE(1,1,itk),auxmat(1,1))
6680 call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
6681 vv(1)=pizda(1,1)+pizda(2,2)
6682 vv(2)=pizda(2,1)-pizda(1,2)
6683 s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
6684 cd write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4
6686 eello6_graph3=-(s1+s2+s3+s4)
6688 eello6_graph3=-(s2+s3+s4)
6691 if (.not. calc_grad) return
6692 C Derivatives in gamma(k-1)
6693 call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
6694 s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
6695 s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
6696 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
6697 C Derivatives in gamma(l-1)
6698 call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
6699 s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
6700 call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
6701 vv(1)=pizda(1,1)+pizda(2,2)
6702 vv(2)=pizda(2,1)-pizda(1,2)
6703 s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
6704 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
6705 C Cartesian derivatives.
6711 s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
6713 s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
6716 call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
6718 s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
6719 call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
6721 s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
6722 call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
6724 vv(1)=pizda(1,1)+pizda(2,2)
6725 vv(2)=pizda(2,1)-pizda(1,2)
6726 s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
6728 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
6730 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
6733 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
6735 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
6737 c derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
6743 c----------------------------------------------------------------------------
6744 double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
6745 implicit real*8 (a-h,o-z)
6746 include 'DIMENSIONS'
6747 include 'DIMENSIONS.ZSCOPT'
6748 include 'COMMON.IOUNITS'
6749 include 'COMMON.CHAIN'
6750 include 'COMMON.DERIV'
6751 include 'COMMON.INTERACT'
6752 include 'COMMON.CONTACTS'
6753 include 'COMMON.TORSION'
6754 include 'COMMON.VAR'
6755 include 'COMMON.GEO'
6756 include 'COMMON.FFIELD'
6757 double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
6758 & auxvec1(2),auxmat1(2,2)
6760 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6762 C Parallel Antiparallel C
6768 C \ j|/k\| \ |/k\|l C
6773 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
6775 C 4/7/01 AL Component s1 was removed, because it pertains to the respective
6776 C energy moment and not to the cluster cumulant.
6777 cd write (2,*) 'eello_graph4: wturn6',wturn6
6778 iti=itortyp(itype(i))
6779 itj=itortyp(itype(j))
6780 if (j.lt.nres-1 .and. itype(j+1).le.ntyp) then
6781 itj1=itortyp(itype(j+1))
6785 itk=itortyp(itype(k))
6786 if (k.lt.nres-1 .and. itype(k+1).le.ntyp) then
6787 itk1=itortyp(itype(k+1))
6791 itl=itortyp(itype(l))
6792 if (l.lt.nres-1) then
6793 itl1=itortyp(itype(l+1))
6797 cd write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
6798 cd write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
6799 cd & ' itl',itl,' itl1',itl1
6802 s1=dip(3,jj,i)*dip(3,kk,k)
6804 s1=dip(2,jj,j)*dip(2,kk,l)
6807 call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
6808 s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
6810 call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
6811 s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
6813 call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
6814 s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
6816 call transpose2(EUg(1,1,k),auxmat(1,1))
6817 call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
6818 vv(1)=pizda(1,1)-pizda(2,2)
6819 vv(2)=pizda(2,1)+pizda(1,2)
6820 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6821 cd write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
6823 eello6_graph4=-(s1+s2+s3+s4)
6825 eello6_graph4=-(s2+s3+s4)
6827 if (.not. calc_grad) return
6828 C Derivatives in gamma(i-1)
6832 s1=dipderg(2,jj,i)*dip(3,kk,k)
6834 s1=dipderg(4,jj,j)*dip(2,kk,l)
6837 s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
6839 call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
6840 s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
6842 call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
6843 s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
6845 s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
6846 if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
6847 cd write (2,*) 'turn6 derivatives'
6849 gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
6851 gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
6855 g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
6857 g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
6861 C Derivatives in gamma(k-1)
6864 s1=dip(3,jj,i)*dipderg(2,kk,k)
6866 s1=dip(2,jj,j)*dipderg(4,kk,l)
6869 call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
6870 s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
6872 call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
6873 s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
6875 call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
6876 s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
6878 call transpose2(EUgder(1,1,k),auxmat1(1,1))
6879 call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
6880 vv(1)=pizda(1,1)-pizda(2,2)
6881 vv(2)=pizda(2,1)+pizda(1,2)
6882 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6883 if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
6885 gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
6887 gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
6891 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
6893 g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
6896 C Derivatives in gamma(j-1) or gamma(l-1)
6897 if (l.eq.j+1 .and. l.gt.1) then
6898 call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
6899 s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
6900 call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
6901 vv(1)=pizda(1,1)-pizda(2,2)
6902 vv(2)=pizda(2,1)+pizda(1,2)
6903 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6904 g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
6905 else if (j.gt.1) then
6906 call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
6907 s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
6908 call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
6909 vv(1)=pizda(1,1)-pizda(2,2)
6910 vv(2)=pizda(2,1)+pizda(1,2)
6911 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6912 if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
6913 gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
6915 g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
6918 C Cartesian derivatives.
6925 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
6927 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
6931 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
6933 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
6937 call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
6939 s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
6941 call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
6942 & b1(1,itj1),auxvec(1))
6943 s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
6945 call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
6946 & b1(1,itl1),auxvec(1))
6947 s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
6949 call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
6951 vv(1)=pizda(1,1)-pizda(2,2)
6952 vv(2)=pizda(2,1)+pizda(1,2)
6953 s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
6955 if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
6957 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
6960 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
6963 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
6966 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
6968 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
6970 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
6974 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
6976 derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
6979 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
6981 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
6989 c----------------------------------------------------------------------------
6990 double precision function eello_turn6(i,jj,kk)
6991 implicit real*8 (a-h,o-z)
6992 include 'DIMENSIONS'
6993 include 'DIMENSIONS.ZSCOPT'
6994 include 'COMMON.IOUNITS'
6995 include 'COMMON.CHAIN'
6996 include 'COMMON.DERIV'
6997 include 'COMMON.INTERACT'
6998 include 'COMMON.CONTACTS'
6999 include 'COMMON.TORSION'
7000 include 'COMMON.VAR'
7001 include 'COMMON.GEO'
7002 double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
7003 & atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
7005 double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
7006 & atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
7007 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
7008 C the respective energy moment and not to the cluster cumulant.
7013 iti=itortyp(itype(i))
7014 itk=itortyp(itype(k))
7015 itk1=itortyp(itype(k+1))
7016 itl=itortyp(itype(l))
7017 itj=itortyp(itype(j))
7018 cd write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
7019 cd write (2,*) 'i',i,' k',k,' j',j,' l',l
7020 cd if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
7025 cd & 'EELLO6: Contacts have occurred for peptide groups',i,j,
7027 cd call checkint_turn6(i,jj,kk,eel_turn6_num)
7031 derx_turn(lll,kkk,iii)=0.0d0
7038 eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
7040 cd write (2,*) 'eello6_5',eello6_5
7042 call transpose2(AEA(1,1,1),auxmat(1,1))
7043 call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
7044 ss1=scalar2(Ub2(1,i+2),b1(1,itl))
7045 s1 = (auxmat(1,1)+auxmat(2,2))*ss1
7049 call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
7050 call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
7051 s2 = scalar2(b1(1,itk),vtemp1(1))
7053 call transpose2(AEA(1,1,2),atemp(1,1))
7054 call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
7055 call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
7056 s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7060 call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
7061 call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
7062 s12 = scalar2(Ub2(1,i+2),vtemp3(1))
7064 call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
7065 call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
7066 call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1))
7067 call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1))
7068 ss13 = scalar2(b1(1,itk),vtemp4(1))
7069 s13 = (gtemp(1,1)+gtemp(2,2))*ss13
7073 c write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
7079 eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
7081 C Derivatives in gamma(i+2)
7083 call transpose2(AEA(1,1,1),auxmatd(1,1))
7084 call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7085 s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7086 call transpose2(AEAderg(1,1,2),atempd(1,1))
7087 call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
7088 s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7092 call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
7093 call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7094 s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7100 gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
7101 C Derivatives in gamma(i+3)
7103 call transpose2(AEA(1,1,1),auxmatd(1,1))
7104 call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7105 ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
7106 s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
7110 call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
7111 call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
7112 s2d = scalar2(b1(1,itk),vtemp1d(1))
7114 call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
7115 s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
7117 s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
7119 call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
7120 call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1))
7121 s13d = (gtempd(1,1)+gtempd(2,2))*ss13
7131 gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
7132 & -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
7134 gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
7135 & -0.5d0*ekont*(s2d+s12d)
7137 C Derivatives in gamma(i+4)
7138 call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
7139 call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7140 s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7142 call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
7143 call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1))
7144 s13d = (gtempd(1,1)+gtempd(2,2))*ss13
7154 gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
7156 gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
7158 C Derivatives in gamma(i+5)
7160 call transpose2(AEAderg(1,1,1),auxmatd(1,1))
7161 call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7162 s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7166 call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
7167 call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
7168 s2d = scalar2(b1(1,itk),vtemp1d(1))
7170 call transpose2(AEA(1,1,2),atempd(1,1))
7171 call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
7172 s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
7176 call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
7177 s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7179 call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1))
7180 ss13d = scalar2(b1(1,itk),vtemp4d(1))
7181 s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
7191 gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
7192 & -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
7194 gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
7195 & -0.5d0*ekont*(s2d+s12d)
7197 C Cartesian derivatives
7202 call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
7203 call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
7204 s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
7208 call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
7209 call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
7211 s2d = scalar2(b1(1,itk),vtemp1d(1))
7213 call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
7214 call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
7215 s8d = -(atempd(1,1)+atempd(2,2))*
7216 & scalar2(cc(1,1,itl),vtemp2(1))
7220 call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
7222 call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
7223 s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
7230 derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii)
7233 derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii)
7237 derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii)
7238 & - 0.5d0*(s8d+s12d)
7240 derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii)
7249 call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
7251 call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
7252 call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1))
7253 s13d=(gtempd(1,1)+gtempd(2,2))*ss13
7254 derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
7255 call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
7257 ss13d = scalar2(b1(1,itk),vtemp4d(1))
7258 s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
7259 derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
7263 cd write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
7264 cd & 16*eel_turn6_num
7266 if (j.lt.nres-1) then
7273 if (l.lt.nres-1) then
7281 ggg1(ll)=eel_turn6*g_contij(ll,1)
7282 ggg2(ll)=eel_turn6*g_contij(ll,2)
7283 ghalf=0.5d0*ggg1(ll)
7285 gcorr6_turn(ll,i)=gcorr6_turn(ll,i)+ghalf
7286 & +ekont*derx_turn(ll,2,1)
7287 gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
7288 gcorr6_turn(ll,j)=gcorr6_turn(ll,j)+ghalf
7289 & +ekont*derx_turn(ll,4,1)
7290 gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
7291 ghalf=0.5d0*ggg2(ll)
7293 gcorr6_turn(ll,k)=gcorr6_turn(ll,k)+ghalf
7294 & +ekont*derx_turn(ll,2,2)
7295 gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
7296 gcorr6_turn(ll,l)=gcorr6_turn(ll,l)+ghalf
7297 & +ekont*derx_turn(ll,4,2)
7298 gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
7303 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
7308 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
7314 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
7319 gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
7323 cd write (2,*) iii,g_corr6_loc(iii)
7326 eello_turn6=ekont*eel_turn6
7327 cd write (2,*) 'ekont',ekont
7328 cd write (2,*) 'eel_turn6',ekont*eel_turn6
7331 crc-------------------------------------------------
7332 SUBROUTINE MATVEC2(A1,V1,V2)
7333 implicit real*8 (a-h,o-z)
7334 include 'DIMENSIONS'
7335 DIMENSION A1(2,2),V1(2),V2(2)
7339 c 3 VI=VI+A1(I,K)*V1(K)
7343 vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
7344 vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
7349 C---------------------------------------
7350 SUBROUTINE MATMAT2(A1,A2,A3)
7351 implicit real*8 (a-h,o-z)
7352 include 'DIMENSIONS'
7353 DIMENSION A1(2,2),A2(2,2),A3(2,2)
7354 c DIMENSION AI3(2,2)
7358 c A3IJ=A3IJ+A1(I,K)*A2(K,J)
7364 ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
7365 ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
7366 ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
7367 ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
7375 c-------------------------------------------------------------------------
7376 double precision function scalar2(u,v)
7378 double precision u(2),v(2)
7381 scalar2=u(1)*v(1)+u(2)*v(2)
7385 C-----------------------------------------------------------------------------
7387 subroutine transpose2(a,at)
7389 double precision a(2,2),at(2,2)
7396 c--------------------------------------------------------------------------
7397 subroutine transpose(n,a,at)
7400 double precision a(n,n),at(n,n)
7408 C---------------------------------------------------------------------------
7409 subroutine prodmat3(a1,a2,kk,transp,prod)
7412 double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
7414 crc double precision auxmat(2,2),prod_(2,2)
7417 crc call transpose2(kk(1,1),auxmat(1,1))
7418 crc call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
7419 crc call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
7421 prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
7422 & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
7423 prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
7424 & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
7425 prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
7426 & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
7427 prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
7428 & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
7431 crc call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
7432 crc call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
7434 prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
7435 & +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
7436 prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
7437 & +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
7438 prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
7439 & +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
7440 prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
7441 & +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
7444 c call transpose2(a2(1,1),a2t(1,1))
7447 crc print *,((prod_(i,j),i=1,2),j=1,2)
7448 crc print *,((prod(i,j),i=1,2),j=1,2)
7452 C-----------------------------------------------------------------------------
7453 double precision function scalar(u,v)
7455 double precision u(3),v(3)