2 c--------------------------------------------------------------
3 c This subroutine converts the energy derivatives from internal
4 c coordinates to cartesian coordinates
5 c-------------------------------------------------------------
6 implicit real*8 (a-h,o-z)
10 include 'COMMON.DERIV'
12 include 'COMMON.LOCAL'
13 include 'COMMON.INTERACT'
15 include 'COMMON.IOUNITS'
16 include 'COMMON.SCCOR'
18 if (nres.lt.3) go to 18
20 gcart(j,1)=gcart(j,1)+gloc(1,icg)*dphi(j,1,4)
21 & +gloc(nres-2,icg)*dtheta(j,1,3)
22 if(itype(2).ne.10) then
23 gcart(j,1)=gcart(j,1)+gloc(ialph(2,1),icg)*dalpha(j,1,2)+
24 & gloc(ialph(2,1)+nside,icg)*domega(j,1,2)
27 c Calculating the remainder of dE/ddc2
29 gcart(j,2)=gcart(j,2)+gloc(1,icg)*dphi(j,2,4)+
30 & gloc(nres-2,icg)*dtheta(j,2,3)+gloc(nres-1,icg)*dtheta(j,1,4)
31 if(itype(2).ne.10) then
32 gcart(j,2)=gcart(j,2)+gloc(ialph(2,1),icg)*dalpha(j,2,2)+
33 & gloc(ialph(2,1)+nside,icg)*domega(j,2,2)
35 if(itype(3).ne.10) then
36 gcart(j,2)=gcart(j,2)+gloc(ialph(3,1),icg)*dalpha(j,1,3)+
37 & gloc(ialph(3,1)+nside,icg)*domega(j,1,3)
40 gcart(j,2)=gcart(j,2)+gloc(2,icg)*dphi(j,1,5)
43 c If there are only five residues
46 gcart(j,3)=gcart(j,3)+gloc(1,icg)*dphi(j,3,4)+gloc(2,icg)*
47 & dphi(j,2,5)+gloc(nres-1,icg)*dtheta(j,2,4)+gloc(nres,icg)*
49 if(itype(3).ne.10) then
50 gcart(j,3)=gcart(j,3)+gloc(ialph(3,1),icg)*
51 & dalpha(j,2,3)+gloc(ialph(3,1)+nside,icg)*domega(j,2,3)
53 if(itype(4).ne.10) then
54 gcart(j,3)=gcart(j,3)+gloc(ialph(4,1),icg)*
55 & dalpha(j,1,4)+gloc(ialph(4,1)+nside,icg)*domega(j,1,4)
59 c If there are more than five residues
63 gcart(j,i)=gcart(j,i)+gloc(i-2,icg)*dphi(j,3,i+1)
64 & +gloc(i-1,icg)*dphi(j,2,i+2)+
65 & gloc(i,icg)*dphi(j,1,i+3)+gloc(nres+i-4,icg)*dtheta(j,2,i+1)+
66 & gloc(nres+i-3,icg)*dtheta(j,1,i+2)
67 if(itype(i).ne.10) then
68 gcart(j,i)=gcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,2,i)+
69 & gloc(ialph(i,1)+nside,icg)*domega(j,2,i)
71 if(itype(i+1).ne.10) then
72 gcart(j,i)=gcart(j,i)+gloc(ialph(i+1,1),icg)*dalpha(j,1,i+1)
73 & +gloc(ialph(i+1,1)+nside,icg)*domega(j,1,i+1)
81 gcart(j,nres-2)=gcart(j,nres-2)+gloc(nres-4,icg)*
82 & dphi(j,3,nres-1)+gloc(nres-3,icg)*dphi(j,2,nres)
83 & +gloc(2*nres-6,icg)*
84 & dtheta(j,2,nres-1)+gloc(2*nres-5,icg)*dtheta(j,1,nres)
85 if(itype(nres-2).ne.10) then
86 gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-2,1),icg)*
87 & dalpha(j,2,nres-2)+gloc(ialph(nres-2,1)+nside,icg)*
90 if(itype(nres-1).ne.10) then
91 gcart(j,nres-2)=gcart(j,nres-2)+gloc(ialph(nres-1,1),icg)*
92 & dalpha(j,1,nres-1)+gloc(ialph(nres-1,1)+nside,icg)*
99 gcart(j,nres-1)=gcart(j,nres-1)+gloc(nres-3,icg)*dphi(j,3,nres)+
100 & gloc(2*nres-5,icg)*dtheta(j,2,nres)
101 if(itype(nres-1).ne.10) then
102 gcart(j,nres-1)=gcart(j,nres-1)+gloc(ialph(nres-1,1),icg)*
103 & dalpha(j,2,nres-1)+gloc(ialph(nres-1,1)+nside,icg)*
107 c The side-chain vector derivatives
109 if(itype(i).ne.10) then
111 gxcart(j,i)=gxcart(j,i)+gloc(ialph(i,1),icg)*dalpha(j,3,i)
112 & +gloc(ialph(i,1)+nside,icg)*domega(j,3,i)
116 c----------------------------------------------------------------------
117 C INTERTYP=1 SC...Ca...Ca...Ca
118 C INTERTYP=2 Ca...Ca...Ca...SC
119 C INTERTYP=3 SC...Ca...Ca...SC
120 c calculating dE/ddc1
124 c write (iout,*) "poczotkoawy",i,gloc_sc(1,i,icg)
126 if (nres.lt.2) return
127 if ((nres.lt.3).and.(itype(1).eq.10)) return
128 if ((itype(1).ne.10).and.(itype(1).ne.ntyp1)) then
130 cc Derviative was calculated for oposite vector of side chain therefore
131 c there is "-" sign before gloc_sc
132 gxcart(j,1)=gxcart(j,1)-gloc_sc(1,0,icg)*
134 gcart(j,1)=gcart(j,1)+gloc_sc(1,0,icg)*
136 if ((itype(2).ne.10).and.(itype(2).ne.ntyp1)) then
137 gxcart(j,1)= gxcart(j,1)
138 & -gloc_sc(3,0,icg)*dtauangle(j,3,1,3)
139 gcart(j,1)=gcart(j,1)+gloc_sc(3,0,icg)*
144 if ((nres.ge.3).and.(itype(3).ne.10).and.(itype(3).ne.ntyp1))
147 gcart(j,1)=gcart(j,1)+gloc_sc(2,1,icg)*dtauangle(j,2,1,4)
150 c As potetnial DO NOT depend on omicron anlge their derivative is
152 c & +gloc_sc(intertyp,nres-2,icg)*dtheta(j,1,3)
154 c Calculating the remainder of dE/ddc2
156 if((itype(2).ne.10).and.(itype(2).ne.ntyp1)) then
157 if (itype(1).ne.10) gxcart(j,2)=gxcart(j,2)+
158 & gloc_sc(3,0,icg)*dtauangle(j,3,3,3)
159 if ((itype(3).ne.10).and.(nres.ge.3).and.(itype(3).ne.ntyp1))
161 gxcart(j,2)=gxcart(j,2)-gloc_sc(3,1,icg)*dtauangle(j,3,1,4)
162 cc the - above is due to different vector direction
163 gcart(j,2)=gcart(j,2)+gloc_sc(3,1,icg)*dtauangle(j,3,2,4)
166 gxcart(j,2)=gxcart(j,2)-gloc_sc(1,1,icg)*dtauangle(j,1,1,4)
167 cc the - above is due to different vector direction
168 gcart(j,2)=gcart(j,2)+gloc_sc(1,1,icg)*dtauangle(j,1,2,4)
169 c write(iout,*) gloc_sc(1,1,icg),dtauangle(j,1,2,4),"gcart"
170 c write(iout,*) gloc_sc(1,1,icg),dtauangle(j,1,1,4),"gx"
173 if ((itype(1).ne.10).and.(itype(1).ne.ntyp1)) then
174 gcart(j,2)=gcart(j,2)+gloc_sc(1,0,icg)*dtauangle(j,1,3,3)
175 c write(iout,*) gloc_sc(1,0,icg),dtauangle(j,1,3,3)
177 if ((itype(3).ne.10).and.(nres.ge.3)) then
178 gcart(j,2)=gcart(j,2)+gloc_sc(2,1,icg)*dtauangle(j,2,2,4)
179 c write(iout,*) gloc_sc(2,1,icg),dtauangle(j,2,2,4)
181 if ((itype(4).ne.10).and.(nres.ge.4)) then
182 gcart(j,2)=gcart(j,2)+gloc_sc(2,2,icg)*dtauangle(j,2,1,5)
183 c write(iout,*) gloc_sc(2,2,icg),dtauangle(j,2,1,5)
186 c write(iout,*) gcart(j,2),itype(2),itype(1),itype(3), "gcart2"
188 c If there are more than five residues
192 c write(iout,*) "before", gcart(j,i)
193 if ((itype(i).ne.10).and.(itype(i).ne.ntyp1)) then
194 gxcart(j,i)=gxcart(j,i)+gloc_sc(2,i-2,icg)
195 & *dtauangle(j,2,3,i+1)
196 & -gloc_sc(1,i-1,icg)*dtauangle(j,1,1,i+2)
197 gcart(j,i)=gcart(j,i)+gloc_sc(1,i-1,icg)
198 & *dtauangle(j,1,2,i+2)
199 c write(iout,*) "new",j,i,
200 c & gcart(j,i),gloc_sc(1,i-1,icg),dtauangle(j,1,2,i+2)
201 if (itype(i-1).ne.10) then
202 gxcart(j,i)=gxcart(j,i)+gloc_sc(3,i-2,icg)
203 &*dtauangle(j,3,3,i+1)
205 if (itype(i+1).ne.10) then
206 gxcart(j,i)=gxcart(j,i)-gloc_sc(3,i-1,icg)
207 &*dtauangle(j,3,1,i+2)
208 gcart(j,i)=gcart(j,i)+gloc_sc(3,i-1,icg)
209 &*dtauangle(j,3,2,i+2)
212 if (itype(i-1).ne.10) then
213 gcart(j,i)=gcart(j,i)+gloc_sc(1,i-2,icg)*
214 & dtauangle(j,1,3,i+1)
216 if (itype(i+1).ne.10) then
217 gcart(j,i)=gcart(j,i)+gloc_sc(2,i-1,icg)*
218 & dtauangle(j,2,2,i+2)
219 c write(iout,*) "numer",i,gloc_sc(2,i-1,icg),
220 c & dtauangle(j,2,2,i+2)
222 if (itype(i+2).ne.10) then
223 gcart(j,i)=gcart(j,i)+gloc_sc(2,i,icg)*
224 & dtauangle(j,2,1,i+3)
229 c Setting dE/ddnres-1
232 if ((itype(nres-1).ne.10).and.(itype(nres-1).ne.ntyp1)) then
233 gxcart(j,nres-1)=gxcart(j,nres-1)+gloc_sc(2,nres-3,icg)
234 & *dtauangle(j,2,3,nres)
235 c write (iout,*) "gxcart(nres-1)", gloc_sc(2,nres-3,icg),
236 c & dtauangle(j,2,3,nres), gxcart(j,nres-1)
237 if (itype(nres-2).ne.10) then
238 gxcart(j,nres-1)=gxcart(j,nres-1)+gloc_sc(3,nres-3,icg)
239 & *dtauangle(j,3,3,nres)
241 if ((itype(nres).ne.10).and.(itype(nres).ne.ntyp1)) then
242 gxcart(j,nres-1)=gxcart(j,nres-1)-gloc_sc(3,nres-2,icg)
243 & *dtauangle(j,3,1,nres+1)
244 gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(3,nres-2,icg)
245 & *dtauangle(j,3,2,nres+1)
248 if ((itype(nres-2).ne.10).and.(itype(nres-2).ne.ntyp1)) then
249 gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(1,nres-3,icg)*
250 & dtauangle(j,1,3,nres)
252 if ((itype(nres).ne.10).and.(itype(nres).ne.ntyp1)) then
253 gcart(j,nres-1)=gcart(j,nres-1)+gloc_sc(2,nres-2,icg)*
254 & dtauangle(j,2,2,nres+1)
255 c write (iout,*) "gcart(nres-1)", gloc_sc(2,nres-2,icg),
256 c & dtauangle(j,2,2,nres+1), itype(nres-1),itype(nres)
261 if ((nres.ge.3).and.(itype(nres).ne.10).and.
262 & (itype(nres).ne.ntyp1))then
264 gxcart(j,nres)=gxcart(j,nres)+gloc_sc(3,nres-2,icg)
265 & *dtauangle(j,3,3,nres+1)+gloc_sc(2,nres-2,icg)
266 & *dtauangle(j,2,3,nres+1)
269 c The side-chain vector derivatives