xdrf2pdb-M.F: corrected order of reading
[unres.git] / source / unres / src_MD / src / energy_split-sep.F
1       subroutine etotal_long(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 c
5 c Compute the long-range slow-varying contributions to the energy
6 c
7 #ifndef ISNAN
8       external proc_proc
9 #ifdef WINPGI
10 cMS$ATTRIBUTES C ::  proc_proc
11 #endif
12 #endif
13 #ifdef MPI
14       include "mpif.h"
15       double precision weights_(n_ene)
16 #endif
17       include 'COMMON.SETUP'
18       include 'COMMON.IOUNITS'
19       double precision energia(0:n_ene)
20       include 'COMMON.FFIELD'
21       include 'COMMON.DERIV'
22       include 'COMMON.INTERACT'
23       include 'COMMON.SBRIDGE'
24       include 'COMMON.CHAIN'
25       include 'COMMON.VAR'
26       include 'COMMON.LOCAL'
27       include 'COMMON.MD'
28 c      write(iout,'(a,i2)')'Calling etotal_long ipot=',ipot
29       if (modecalc.eq.12.or.modecalc.eq.14) then
30 #ifdef MPI
31 c        if (fg_rank.eq.0) call int_from_cart1(.false.)
32 #else
33         call int_from_cart1(.false.)
34 #endif
35       endif
36 #ifdef MPI      
37 c      write(iout,*) "ETOTAL_LONG Processor",fg_rank,
38 c     & " absolute rank",myrank," nfgtasks",nfgtasks
39       call flush(iout)
40       if (nfgtasks.gt.1) then
41         time00=MPI_Wtime()
42 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
43         if (fg_rank.eq.0) then
44           call MPI_Bcast(3,1,MPI_INTEGER,king,FG_COMM,IERROR)
45 c          write (iout,*) "Processor",myrank," BROADCAST iorder"
46 c          call flush(iout)
47 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
48 C FG slaves as WEIGHTS array.
49           weights_(1)=wsc
50           weights_(2)=wscp
51           weights_(3)=welec
52           weights_(4)=wcorr
53           weights_(5)=wcorr5
54           weights_(6)=wcorr6
55           weights_(7)=wel_loc
56           weights_(8)=wturn3
57           weights_(9)=wturn4
58           weights_(10)=wturn6
59           weights_(11)=wang
60           weights_(12)=wscloc
61           weights_(13)=wtor
62           weights_(14)=wtor_d
63           weights_(15)=wstrain
64           weights_(16)=wvdwpp
65           weights_(17)=wbond
66           weights_(18)=scal14
67           weights_(21)=wsccor
68 C FG Master broadcasts the WEIGHTS_ array
69           call MPI_Bcast(weights_(1),n_ene,
70      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
71         else
72 C FG slaves receive the WEIGHTS array
73           call MPI_Bcast(weights(1),n_ene,
74      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
75           wsc=weights(1)
76           wscp=weights(2)
77           welec=weights(3)
78           wcorr=weights(4)
79           wcorr5=weights(5)
80           wcorr6=weights(6)
81           wel_loc=weights(7)
82           wturn3=weights(8)
83           wturn4=weights(9)
84           wturn6=weights(10)
85           wang=weights(11)
86           wscloc=weights(12)
87           wtor=weights(13)
88           wtor_d=weights(14)
89           wstrain=weights(15)
90           wvdwpp=weights(16)
91           wbond=weights(17)
92           scal14=weights(18)
93           wsccor=weights(21)
94         endif
95         call MPI_Bcast(dc(1,1),6*nres,MPI_DOUBLE_PRECISION,
96      &    king,FG_COMM,IERR)
97          time_Bcast=time_Bcast+MPI_Wtime()-time00
98          time_Bcastw=time_Bcastw+MPI_Wtime()-time00
99 c        call chainbuild_cart
100 c        call int_from_cart1(.false.)
101       endif
102 c      write (iout,*) 'Processor',myrank,
103 c     &  ' calling etotal_short ipot=',ipot
104 c      call flush(iout)
105 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
106 #endif     
107 cd    print *,'nnt=',nnt,' nct=',nct
108 C
109 C Compute the side-chain and electrostatic interaction energy
110 C
111       goto (101,102,103,104,105,106) ipot
112 C Lennard-Jones potential.
113   101 call elj_long(evdw)
114 cd    print '(a)','Exit ELJ'
115       goto 107
116 C Lennard-Jones-Kihara potential (shifted).
117   102 call eljk_long(evdw)
118       goto 107
119 C Berne-Pechukas potential (dilated LJ, angular dependence).
120   103 call ebp_long(evdw)
121       goto 107
122 C Gay-Berne potential (shifted LJ, angular dependence).
123   104 call egb_long(evdw,evdw_p,evdw_m)
124       goto 107
125 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
126   105 call egbv_long(evdw)
127       goto 107
128 C Soft-sphere potential
129   106 call e_softsphere(evdw)
130 C
131 C Calculate electrostatic (H-bonding) energy of the main chain.
132 C
133   107 continue
134       call vec_and_deriv
135       if (ipot.lt.6) then
136 #ifdef SPLITELE
137          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
138      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
139      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
140      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
141 #else
142          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
143      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
144      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
145      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
146 #endif
147            call eelec_scale(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
148          else
149             ees=0
150             evdw1=0
151             eel_loc=0
152             eello_turn3=0
153             eello_turn4=0
154          endif
155       else
156 c        write (iout,*) "Soft-spheer ELEC potential"
157         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
158      &   eello_turn4)
159       endif
160 C
161 C Calculate excluded-volume interaction energy between peptide groups
162 C and side chains.
163 C
164       if (ipot.lt.6) then
165        if(wscp.gt.0d0) then
166         call escp_long(evdw2,evdw2_14)
167        else
168         evdw2=0
169         evdw2_14=0
170        endif
171       else
172         call escp_soft_sphere(evdw2,evdw2_14)
173       endif
174
175 C 12/1/95 Multi-body terms
176 C
177       n_corr=0
178       n_corr1=0
179       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
180      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
181          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
182 c         write (2,*) 'n_corr=',n_corr,' n_corr1=',n_corr1,
183 c     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
184       else
185          ecorr=0.0d0
186          ecorr5=0.0d0
187          ecorr6=0.0d0
188          eturn6=0.0d0
189       endif
190       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
191          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
192       endif
193
194 C If performing constraint dynamics, call the constraint energy
195 C  after the equilibration time
196       if(usampl.and.totT.gt.eq_time) then
197          call EconstrQ   
198          call Econstr_back
199       else
200          Uconst=0.0d0
201          Uconst_back=0.0d0
202       endif
203
204 C Sum the energies
205 C
206       do i=1,n_ene
207         energia(i)=0.0d0
208       enddo
209       energia(1)=evdw
210 #ifdef SCP14
211       energia(2)=evdw2-evdw2_14
212       energia(18)=evdw2_14
213 #else
214       energia(2)=evdw2
215       energia(18)=0.0d0
216 #endif
217 #ifdef SPLITELE
218       energia(3)=ees
219       energia(16)=evdw1
220 #else
221       energia(3)=ees+evdw1
222       energia(16)=0.0d0
223 #endif
224       energia(4)=ecorr
225       energia(5)=ecorr5
226       energia(6)=ecorr6
227       energia(7)=eel_loc
228       energia(8)=eello_turn3
229       energia(9)=eello_turn4
230       energia(10)=eturn6
231       energia(20)=Uconst+Uconst_back
232       energia(22)=evdw_p
233       energia(23)=evdw_m
234       call sum_energy(energia,.true.)
235 c      write (iout,*) "Exit ETOTAL_LONG"
236       call flush(iout)
237       return
238       end
239 c------------------------------------------------------------------------------
240       subroutine etotal_short(energia)
241       implicit real*8 (a-h,o-z)
242       include 'DIMENSIONS'
243 c
244 c Compute the short-range fast-varying contributions to the energy
245 c
246 #ifndef ISNAN
247       external proc_proc
248 #ifdef WINPGI
249 cMS$ATTRIBUTES C ::  proc_proc
250 #endif
251 #endif
252 #ifdef MPI
253       include "mpif.h"
254       double precision weights_(n_ene)
255 #endif
256       include 'COMMON.SETUP'
257       include 'COMMON.IOUNITS'
258       double precision energia(0:n_ene)
259       include 'COMMON.FFIELD'
260       include 'COMMON.DERIV'
261       include 'COMMON.INTERACT'
262       include 'COMMON.SBRIDGE'
263       include 'COMMON.CHAIN'
264       include 'COMMON.VAR'
265       include 'COMMON.LOCAL'
266
267 c      write(iout,'(a,i2)')'Calling etotal_short ipot=',ipot
268 c      call flush(iout)
269       if (modecalc.eq.12.or.modecalc.eq.14) then
270 #ifdef MPI
271         if (fg_rank.eq.0) call int_from_cart1(.false.)
272 #else
273         call int_from_cart1(.false.)
274 #endif
275       endif
276 #ifdef MPI      
277 c      write(iout,*) "ETOTAL_SHORT Processor",fg_rank,
278 c     & " absolute rank",myrank," nfgtasks",nfgtasks
279 c      call flush(iout)
280       if (nfgtasks.gt.1) then
281         time00=MPI_Wtime()
282 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
283         if (fg_rank.eq.0) then
284           call MPI_Bcast(2,1,MPI_INTEGER,king,FG_COMM,IERROR)
285 c          write (iout,*) "Processor",myrank," BROADCAST iorder"
286 c          call flush(iout)
287 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
288 C FG slaves as WEIGHTS array.
289           weights_(1)=wsc
290           weights_(2)=wscp
291           weights_(3)=welec
292           weights_(4)=wcorr
293           weights_(5)=wcorr5
294           weights_(6)=wcorr6
295           weights_(7)=wel_loc
296           weights_(8)=wturn3
297           weights_(9)=wturn4
298           weights_(10)=wturn6
299           weights_(11)=wang
300           weights_(12)=wscloc
301           weights_(13)=wtor
302           weights_(14)=wtor_d
303           weights_(15)=wstrain
304           weights_(16)=wvdwpp
305           weights_(17)=wbond
306           weights_(18)=scal14
307           weights_(21)=wsccor
308 C FG Master broadcasts the WEIGHTS_ array
309           call MPI_Bcast(weights_(1),n_ene,
310      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
311         else
312 C FG slaves receive the WEIGHTS array
313           call MPI_Bcast(weights(1),n_ene,
314      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
315           wsc=weights(1)
316           wscp=weights(2)
317           welec=weights(3)
318           wcorr=weights(4)
319           wcorr5=weights(5)
320           wcorr6=weights(6)
321           wel_loc=weights(7)
322           wturn3=weights(8)
323           wturn4=weights(9)
324           wturn6=weights(10)
325           wang=weights(11)
326           wscloc=weights(12)
327           wtor=weights(13)
328           wtor_d=weights(14)
329           wstrain=weights(15)
330           wvdwpp=weights(16)
331           wbond=weights(17)
332           scal14=weights(18)
333           wsccor=weights(21)
334         endif
335 c        write (iout,*),"Processor",myrank," BROADCAST weights"
336         call MPI_Bcast(c(1,1),maxres6,MPI_DOUBLE_PRECISION,
337      &    king,FG_COMM,IERR)
338 c        write (iout,*) "Processor",myrank," BROADCAST c"
339         call MPI_Bcast(dc(1,1),maxres6,MPI_DOUBLE_PRECISION,
340      &    king,FG_COMM,IERR)
341 c        write (iout,*) "Processor",myrank," BROADCAST dc"
342         call MPI_Bcast(dc_norm(1,1),maxres6,MPI_DOUBLE_PRECISION,
343      &    king,FG_COMM,IERR)
344 c        write (iout,*) "Processor",myrank," BROADCAST dc_norm"
345         call MPI_Bcast(theta(1),nres,MPI_DOUBLE_PRECISION,
346      &    king,FG_COMM,IERR)
347 c        write (iout,*) "Processor",myrank," BROADCAST theta"
348         call MPI_Bcast(phi(1),nres,MPI_DOUBLE_PRECISION,
349      &    king,FG_COMM,IERR)
350 c        write (iout,*) "Processor",myrank," BROADCAST phi"
351         call MPI_Bcast(alph(1),nres,MPI_DOUBLE_PRECISION,
352      &    king,FG_COMM,IERR)
353 c        write (iout,*) "Processor",myrank," BROADCAST alph"
354         call MPI_Bcast(omeg(1),nres,MPI_DOUBLE_PRECISION,
355      &    king,FG_COMM,IERR)
356 c        write (iout,*) "Processor",myrank," BROADCAST omeg"
357         call MPI_Bcast(vbld(1),2*nres,MPI_DOUBLE_PRECISION,
358      &    king,FG_COMM,IERR)
359 c        write (iout,*) "Processor",myrank," BROADCAST vbld"
360         call MPI_Bcast(vbld_inv(1),2*nres,MPI_DOUBLE_PRECISION,
361      &    king,FG_COMM,IERR)
362          time_Bcast=time_Bcast+MPI_Wtime()-time00
363 c        write (iout,*) "Processor",myrank," BROADCAST vbld_inv"
364       endif
365 c      write (iout,*) 'Processor',myrank,
366 c     &  ' calling etotal_short ipot=',ipot
367 c      call flush(iout)
368 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
369 #endif     
370 c      call int_from_cart1(.false.)
371 C
372 C Compute the side-chain and electrostatic interaction energy
373 C
374       goto (101,102,103,104,105,106) ipot
375 C Lennard-Jones potential.
376   101 call elj_short(evdw)
377 cd    print '(a)','Exit ELJ'
378       goto 107
379 C Lennard-Jones-Kihara potential (shifted).
380   102 call eljk_short(evdw)
381       goto 107
382 C Berne-Pechukas potential (dilated LJ, angular dependence).
383   103 call ebp_short(evdw)
384       goto 107
385 C Gay-Berne potential (shifted LJ, angular dependence).
386   104 call egb_short(evdw,evdw_p,evdw_m)
387       goto 107
388 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
389   105 call egbv_short(evdw)
390       goto 107
391 C Soft-sphere potential - already dealt with in the long-range part
392   106 evdw=0.0d0
393 c  106 call e_softsphere_short(evdw)
394 C
395 C Calculate electrostatic (H-bonding) energy of the main chain.
396 C
397   107 continue
398 c
399 c Calculate the short-range part of Evdwpp
400 c
401       call evdwpp_short(evdw1)
402 c
403 c Calculate the short-range part of ESCp
404 c
405       if (ipot.lt.6) then
406         call escp_short(evdw2,evdw2_14)
407       endif
408 c
409 c Calculate the bond-stretching energy
410 c
411       call ebond(estr)
412
413 C Calculate the disulfide-bridge and other energy and the contributions
414 C from other distance constraints.
415       call edis(ehpb)
416 C
417 C Calculate the virtual-bond-angle energy.
418 C
419       call ebend(ebe)
420 C
421 C Calculate the SC local energy.
422 C
423       call vec_and_deriv
424       call esc(escloc)
425 C
426 C Calculate the virtual-bond torsional energy.
427 C
428       call etor(etors,edihcnstr)
429 C
430 C 6/23/01 Calculate double-torsional energy
431 C
432       call etor_d(etors_d)
433 C
434 C 21/5/07 Calculate local sicdechain correlation energy
435 C
436       if (wsccor.gt.0.0d0) then
437         call eback_sc_corr(esccor)
438       else
439         esccor=0.0d0
440       endif
441 C
442 C Put energy components into an array
443 C
444       do i=1,n_ene
445         energia(i)=0.0d0
446       enddo
447       energia(1)=evdw
448 #ifdef SCP14
449       energia(2)=evdw2-evdw2_14
450       energia(18)=evdw2_14
451 #else
452       energia(2)=evdw2
453       energia(18)=0.0d0
454 #endif
455 #ifdef SPLITELE
456       energia(16)=evdw1
457 #else
458       energia(3)=evdw1
459 #endif
460       energia(11)=ebe
461       energia(12)=escloc
462       energia(13)=etors
463       energia(14)=etors_d
464       energia(15)=ehpb
465       energia(17)=estr
466       energia(19)=edihcnstr
467       energia(21)=esccor
468       energia(22)=evdw_p
469       energia(23)=evdw_m
470 c      write (iout,*) "ETOTAL_SHORT before SUM_ENERGY"
471       call flush(iout)
472       call sum_energy(energia,.true.)
473 c      write (iout,*) "Exit ETOTAL_SHORT"
474       call flush(iout)
475       return
476       end