Merge branch 'homology' of mmka.chem.univ.gda.pl:unres into homology
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       call flush(iout)
31       if (nfgtasks.gt.1) then
32 #ifdef MPI
33         time00=MPI_Wtime()
34 #else
35         time00=tcpu()
36 #endif
37 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
38         if (fg_rank.eq.0) then
39           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
40 c          print *,"Processor",myrank," BROADCAST iorder"
41 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
42 C FG slaves as WEIGHTS array.
43           weights_(1)=wsc
44           weights_(2)=wscp
45           weights_(3)=welec
46           weights_(4)=wcorr
47           weights_(5)=wcorr5
48           weights_(6)=wcorr6
49           weights_(7)=wel_loc
50           weights_(8)=wturn3
51           weights_(9)=wturn4
52           weights_(10)=wturn6
53           weights_(11)=wang
54           weights_(12)=wscloc
55           weights_(13)=wtor
56           weights_(14)=wtor_d
57           weights_(15)=wstrain
58           weights_(16)=wvdwpp
59           weights_(17)=wbond
60           weights_(18)=scal14
61           weights_(21)=wsccor
62           weights_(22)=wsct
63 C FG Master broadcasts the WEIGHTS_ array
64           call MPI_Bcast(weights_(1),n_ene,
65      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
66         else
67 C FG slaves receive the WEIGHTS array
68           call MPI_Bcast(weights(1),n_ene,
69      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
70           wsc=weights(1)
71           wscp=weights(2)
72           welec=weights(3)
73           wcorr=weights(4)
74           wcorr5=weights(5)
75           wcorr6=weights(6)
76           wel_loc=weights(7)
77           wturn3=weights(8)
78           wturn4=weights(9)
79           wturn6=weights(10)
80           wang=weights(11)
81           wscloc=weights(12)
82           wtor=weights(13)
83           wtor_d=weights(14)
84           wstrain=weights(15)
85           wvdwpp=weights(16)
86           wbond=weights(17)
87           scal14=weights(18)
88           wsccor=weights(21)
89           wsct=weights(22)
90         endif
91         time_Bcast=time_Bcast+MPI_Wtime()-time00
92         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
93 c        call chainbuild_cart
94       endif
95 c      write(iout,*) 'Processor',myrank,' calling etotal ipot=',ipot
96 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
97 #else
98 c      if (modecalc.eq.12.or.modecalc.eq.14) then
99 c        call int_from_cart1(.false.)
100 c      endif
101 #endif     
102 #ifdef TIMING
103 #ifdef MPI
104       time00=MPI_Wtime()
105 #else
106       time00=tcpu()
107 #endif
108 #endif
109
110 C Compute the side-chain and electrostatic interaction energy
111 C
112       goto (101,102,103,104,105,106) ipot
113 C Lennard-Jones potential.
114   101 call elj(evdw,evdw_p,evdw_m)
115 cd    print '(a)','Exit ELJ'
116       goto 107
117 C Lennard-Jones-Kihara potential (shifted).
118   102 call eljk(evdw,evdw_p,evdw_m)
119       goto 107
120 C Berne-Pechukas potential (dilated LJ, angular dependence).
121   103 call ebp(evdw,evdw_p,evdw_m)
122       goto 107
123 C Gay-Berne potential (shifted LJ, angular dependence).
124   104 call egb(evdw,evdw_p,evdw_m)
125       goto 107
126 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
127   105 call egbv(evdw,evdw_p,evdw_m)
128       goto 107
129 C Soft-sphere potential
130   106 call e_softsphere(evdw)
131 C
132 C Calculate electrostatic (H-bonding) energy of the main chain.
133 C
134   107 continue
135 C     BARTEK for dfa test!
136       if (wdfa_dist.gt.0) then 
137         call edfad(edfadis)
138       else
139         edfadis=0
140       endif
141 c      print*, 'edfad is finished!', edfadis
142       if (wdfa_tor.gt.0) then
143         call edfat(edfator)
144       else
145         edfator=0
146       endif
147 c      print*, 'edfat is finished!', edfator
148       if (wdfa_nei.gt.0) then
149         call edfan(edfanei)
150       else
151         edfanei=0
152       endif    
153 c      print*, 'edfan is finished!', edfanei
154       if (wdfa_beta.gt.0) then 
155         call edfab(edfabet)
156       else
157         edfabet=0
158       endif
159 c      print*, 'edfab is finished!', edfabet
160 cmc
161 cmc Sep-06: egb takes care of dynamic ss bonds too
162 cmc
163 c      if (dyn_ss) call dyn_set_nss
164
165 c      print *,"Processor",myrank," computed USCSC"
166 #ifdef TIMING
167 #ifdef MPI
168       time01=MPI_Wtime() 
169 #else
170       time00=tcpu()
171 #endif
172 #endif
173       call vec_and_deriv
174 #ifdef TIMING
175 #ifdef MPI
176       time_vec=time_vec+MPI_Wtime()-time01
177 #else
178       time_vec=time_vec+tcpu()-time01
179 #endif
180 #endif
181 c      print *,"Processor",myrank," left VEC_AND_DERIV"
182       if (ipot.lt.6) then
183 #ifdef SPLITELE
184          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
185      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
186      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
187      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
188 #else
189          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
190      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
191      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
192      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
193 #endif
194             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
195          else
196             ees=0.0d0
197             evdw1=0.0d0
198             eel_loc=0.0d0
199             eello_turn3=0.0d0
200             eello_turn4=0.0d0
201          endif
202       else
203 c        write (iout,*) "Soft-spheer ELEC potential"
204         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
205      &   eello_turn4)
206       endif
207 c      print *,"Processor",myrank," computed UELEC"
208 C
209 C Calculate excluded-volume interaction energy between peptide groups
210 C and side chains.
211 C
212       if (ipot.lt.6) then
213        if(wscp.gt.0d0) then
214         call escp(evdw2,evdw2_14)
215        else
216         evdw2=0
217         evdw2_14=0
218        endif
219       else
220 c        write (iout,*) "Soft-sphere SCP potential"
221         call escp_soft_sphere(evdw2,evdw2_14)
222       endif
223 c
224 c Calculate the bond-stretching energy
225 c
226       call ebond(estr)
227
228 C Calculate the disulfide-bridge and other energy and the contributions
229 C from other distance constraints.
230 cd    print *,'Calling EHPB'
231       call edis(ehpb)
232 cd    print *,'EHPB exitted succesfully.'
233 C
234 C Calculate the virtual-bond-angle energy.
235 C
236       if (wang.gt.0d0) then
237         call ebend(ebe)
238       else
239         ebe=0
240       endif
241 c      print *,"Processor",myrank," computed UB"
242 C
243 C Calculate the SC local energy.
244 C
245       call esc(escloc)
246 c      print *,"Processor",myrank," computed USC"
247 C
248 C Calculate the virtual-bond torsional energy.
249 C
250 cd    print *,'nterm=',nterm
251       if (wtor.gt.0) then
252        call etor(etors,edihcnstr)
253       else
254        etors=0
255        edihcnstr=0
256       endif
257
258       if (constr_homology.ge.1) then
259         call e_modeller(ehomology_constr)
260         print *,'iset=',iset,'me=',me,ehomology_constr,
261      &  'Processor',fg_rank,' CG group',kolor,
262      &  ' absolute rank',MyRank
263       else
264         ehomology_constr=0.0d0
265       endif
266
267
268 c      write(iout,*) ehomology_constr
269 c      print *,"Processor",myrank," computed Utor"
270 C
271 C 6/23/01 Calculate double-torsional energy
272 C
273       if (wtor_d.gt.0) then
274        call etor_d(etors_d)
275       else
276        etors_d=0
277       endif
278 c      print *,"Processor",myrank," computed Utord"
279 C
280 C 21/5/07 Calculate local sicdechain correlation energy
281 C
282       if (wsccor.gt.0.0d0) then
283         call eback_sc_corr(esccor)
284       else
285         esccor=0.0d0
286       endif
287 c      print *,"Processor",myrank," computed Usccorr"
288
289 C 12/1/95 Multi-body terms
290 C
291       n_corr=0
292       n_corr1=0
293       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
294      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
295          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
296 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
297 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
298       else
299          ecorr=0.0d0
300          ecorr5=0.0d0
301          ecorr6=0.0d0
302          eturn6=0.0d0
303       endif
304       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
305          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
306 cd         write (iout,*) "multibody_hb ecorr",ecorr
307       endif
308 c      print *,"Processor",myrank," computed Ucorr"
309
310 C If performing constraint dynamics, call the constraint energy
311 C  after the equilibration time
312       if(usampl.and.totT.gt.eq_time) then
313 c         write (iout,*) "CALL TO ECONSTR_BACK"
314          call EconstrQ   
315          call Econstr_back
316       else
317          Uconst=0.0d0
318          Uconst_back=0.0d0
319       endif
320 #ifdef TIMING
321 #ifdef MPI
322       time_enecalc=time_enecalc+MPI_Wtime()-time00
323 #else
324       time_enecalc=time_enecalc+tcpu()-time00
325 #endif
326 #endif
327 c      print *,"Processor",myrank," computed Uconstr"
328 #ifdef TIMING
329 #ifdef MPI
330       time00=MPI_Wtime()
331 #else
332       time00=tcpu()
333 #endif
334 #endif
335 c
336 C Sum the energies
337 C
338       energia(1)=evdw
339 #ifdef SCP14
340       energia(2)=evdw2-evdw2_14
341       energia(18)=evdw2_14
342 #else
343       energia(2)=evdw2
344       energia(18)=0.0d0
345 #endif
346 #ifdef SPLITELE
347       energia(3)=ees
348       energia(16)=evdw1
349 #else
350       energia(3)=ees+evdw1
351       energia(16)=0.0d0
352 #endif
353       energia(4)=ecorr
354       energia(5)=ecorr5
355       energia(6)=ecorr6
356       energia(7)=eel_loc
357       energia(8)=eello_turn3
358       energia(9)=eello_turn4
359       energia(10)=eturn6
360       energia(11)=ebe
361       energia(12)=escloc
362       energia(13)=etors
363       energia(14)=etors_d
364       energia(15)=ehpb
365       energia(19)=edihcnstr
366       energia(17)=estr
367       energia(20)=Uconst+Uconst_back
368       energia(21)=esccor
369       energia(22)=evdw_p
370       energia(23)=evdw_m
371       energia(24)=ehomology_constr
372       energia(25)=edfadis
373       energia(26)=edfator
374       energia(27)=edfanei
375       energia(28)=edfabet
376 c      print *," Processor",myrank," calls SUM_ENERGY"
377       call sum_energy(energia,.true.)
378       if (dyn_ss) call dyn_set_nss
379 c      print *," Processor",myrank," left SUM_ENERGY"
380 #ifdef TIMING
381 #ifdef MPI
382       time_sumene=time_sumene+MPI_Wtime()-time00
383 #else
384       time_sumene=time_sumene+tcpu()-time00
385 #endif
386 #endif
387       return
388       end
389 c-------------------------------------------------------------------------------
390       subroutine sum_energy(energia,reduce)
391       implicit real*8 (a-h,o-z)
392       include 'DIMENSIONS'
393 #ifndef ISNAN
394       external proc_proc
395 #ifdef WINPGI
396 cMS$ATTRIBUTES C ::  proc_proc
397 #endif
398 #endif
399 #ifdef MPI
400       include "mpif.h"
401 #endif
402       include 'COMMON.SETUP'
403       include 'COMMON.IOUNITS'
404       double precision energia(0:n_ene),enebuff(0:n_ene+1)
405       include 'COMMON.FFIELD'
406       include 'COMMON.DERIV'
407       include 'COMMON.INTERACT'
408       include 'COMMON.SBRIDGE'
409       include 'COMMON.CHAIN'
410       include 'COMMON.VAR'
411       include 'COMMON.CONTROL'
412       include 'COMMON.TIME1'
413       logical reduce
414 #ifdef MPI
415       if (nfgtasks.gt.1 .and. reduce) then
416 #ifdef DEBUG
417         write (iout,*) "energies before REDUCE"
418         call enerprint(energia)
419         call flush(iout)
420 #endif
421         do i=0,n_ene
422           enebuff(i)=energia(i)
423         enddo
424         time00=MPI_Wtime()
425         call MPI_Barrier(FG_COMM,IERR)
426         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
427         time00=MPI_Wtime()
428         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
429      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
430 #ifdef DEBUG
431         write (iout,*) "energies after REDUCE"
432         call enerprint(energia)
433         call flush(iout)
434 #endif
435         time_Reduce=time_Reduce+MPI_Wtime()-time00
436       endif
437       if (fg_rank.eq.0) then
438 #endif
439 #ifdef TSCSC
440       evdw=energia(22)+wsct*energia(23)
441 #else
442       evdw=energia(1)
443 #endif
444 #ifdef SCP14
445       evdw2=energia(2)+energia(18)
446       evdw2_14=energia(18)
447 #else
448       evdw2=energia(2)
449 #endif
450 #ifdef SPLITELE
451       ees=energia(3)
452       evdw1=energia(16)
453 #else
454       ees=energia(3)
455       evdw1=0.0d0
456 #endif
457       ecorr=energia(4)
458       ecorr5=energia(5)
459       ecorr6=energia(6)
460       eel_loc=energia(7)
461       eello_turn3=energia(8)
462       eello_turn4=energia(9)
463       eturn6=energia(10)
464       ebe=energia(11)
465       escloc=energia(12)
466       etors=energia(13)
467       etors_d=energia(14)
468       ehpb=energia(15)
469       edihcnstr=energia(19)
470       estr=energia(17)
471       Uconst=energia(20)
472       esccor=energia(21)
473       ehomology_constr=energia(24)
474       edfadis=energia(25)
475       edfator=energia(26)
476       edfanei=energia(27)
477       edfabet=energia(28)
478 #ifdef SPLITELE
479       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
480      & +wang*ebe+wtor*etors+wscloc*escloc
481      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
482      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
483      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
484      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
485      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
486      & +wdfa_beta*edfabet    
487 #else
488       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
489      & +wang*ebe+wtor*etors+wscloc*escloc
490      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
491      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
492      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
493      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
494      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
495      & +wdfa_beta*edfabet    
496 #endif
497       energia(0)=etot
498 c detecting NaNQ
499 #ifdef ISNAN
500 #ifdef AIX
501       if (isnan(etot).ne.0) energia(0)=1.0d+99
502 #else
503       if (isnan(etot)) energia(0)=1.0d+99
504 #endif
505 #else
506       i=0
507 #ifdef WINPGI
508       idumm=proc_proc(etot,i)
509 #else
510       call proc_proc(etot,i)
511 #endif
512       if(i.eq.1)energia(0)=1.0d+99
513 #endif
514 #ifdef MPI
515       endif
516 #endif
517       return
518       end
519 c-------------------------------------------------------------------------------
520       subroutine sum_gradient
521       implicit real*8 (a-h,o-z)
522       include 'DIMENSIONS'
523 #ifndef ISNAN
524       external proc_proc
525 #ifdef WINPGI
526 cMS$ATTRIBUTES C ::  proc_proc
527 #endif
528 #endif
529 #ifdef MPI
530       include 'mpif.h'
531 #endif
532       double precision gradbufc(3,maxres),gradbufx(3,maxres),
533      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
534       include 'COMMON.SETUP'
535       include 'COMMON.IOUNITS'
536       include 'COMMON.FFIELD'
537       include 'COMMON.DERIV'
538       include 'COMMON.INTERACT'
539       include 'COMMON.SBRIDGE'
540       include 'COMMON.CHAIN'
541       include 'COMMON.VAR'
542       include 'COMMON.CONTROL'
543       include 'COMMON.TIME1'
544       include 'COMMON.MAXGRAD'
545       include 'COMMON.SCCOR'
546 #ifdef TIMING
547 #ifdef MPI
548       time01=MPI_Wtime()
549 #else
550       time01=tcpu()
551 #endif
552 #endif
553 #ifdef DEBUG
554       write (iout,*) "sum_gradient gvdwc, gvdwx"
555       do i=1,nres
556         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
557      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
558      &   (gvdwcT(j,i),j=1,3)
559       enddo
560       call flush(iout)
561 #endif
562 #ifdef MPI
563 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
564         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
565      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
566 #endif
567 C
568 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
569 C            in virtual-bond-vector coordinates
570 C
571 #ifdef DEBUG
572 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
573 c      do i=1,nres-1
574 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
575 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
576 c      enddo
577 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
578 c      do i=1,nres-1
579 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
580 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
581 c      enddo
582       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
583       do i=1,nres
584         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
585      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
586      &   g_corr5_loc(i)
587       enddo
588       call flush(iout)
589 #endif
590 #ifdef SPLITELE
591 #ifdef TSCSC
592       do i=1,nct
593         do j=1,3
594           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
595      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
596      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
597      &                wel_loc*gel_loc_long(j,i)+
598      &                wcorr*gradcorr_long(j,i)+
599      &                wcorr5*gradcorr5_long(j,i)+
600      &                wcorr6*gradcorr6_long(j,i)+
601      &                wturn6*gcorr6_turn_long(j,i)+
602      &                wstrain*ghpbc(j,i)+
603      &                wdfa_dist*gdfad(j,i)+
604      &                wdfa_tor*gdfat(j,i)+
605      &                wdfa_nei*gdfan(j,i)+
606      &                wdfa_beta*gdfab(j,i)
607         enddo
608       enddo 
609 #else
610       do i=1,nct
611         do j=1,3
612           gradbufc(j,i)=wsc*gvdwc(j,i)+
613      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
614      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
615      &                wel_loc*gel_loc_long(j,i)+
616      &                wcorr*gradcorr_long(j,i)+
617      &                wcorr5*gradcorr5_long(j,i)+
618      &                wcorr6*gradcorr6_long(j,i)+
619      &                wturn6*gcorr6_turn_long(j,i)+
620      &                wstrain*ghpbc(j,i)+
621      &                wdfa_dist*gdfad(j,i)+
622      &                wdfa_tor*gdfat(j,i)+
623      &                wdfa_nei*gdfan(j,i)+
624      &                wdfa_beta*gdfab(j,i)
625         enddo
626       enddo 
627 #endif
628 #else
629       do i=1,nct
630         do j=1,3
631           gradbufc(j,i)=wsc*gvdwc(j,i)+
632      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
633      &                welec*gelc_long(j,i)+
634      &                wbond*gradb(j,i)+
635      &                wel_loc*gel_loc_long(j,i)+
636      &                wcorr*gradcorr_long(j,i)+
637      &                wcorr5*gradcorr5_long(j,i)+
638      &                wcorr6*gradcorr6_long(j,i)+
639      &                wturn6*gcorr6_turn_long(j,i)+
640      &                wstrain*ghpbc(j,i)+
641      &                wdfa_dist*gdfad(j,i)+
642      &                wdfa_tor*gdfat(j,i)+
643      &                wdfa_nei*gdfan(j,i)+
644      &                wdfa_beta*gdfab(j,i)
645         enddo
646       enddo 
647 #endif
648 #ifdef MPI
649       if (nfgtasks.gt.1) then
650       time00=MPI_Wtime()
651 #ifdef DEBUG
652       write (iout,*) "gradbufc before allreduce"
653       do i=1,nres
654         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
655       enddo
656       call flush(iout)
657 #endif
658       do i=1,nres
659         do j=1,3
660           gradbufc_sum(j,i)=gradbufc(j,i)
661         enddo
662       enddo
663 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
664 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
665 c      time_reduce=time_reduce+MPI_Wtime()-time00
666 #ifdef DEBUG
667 c      write (iout,*) "gradbufc_sum after allreduce"
668 c      do i=1,nres
669 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
670 c      enddo
671 c      call flush(iout)
672 #endif
673 #ifdef TIMING
674 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
675 #endif
676       do i=nnt,nres
677         do k=1,3
678           gradbufc(k,i)=0.0d0
679         enddo
680       enddo
681 #ifdef DEBUG
682       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
683       write (iout,*) (i," jgrad_start",jgrad_start(i),
684      &                  " jgrad_end  ",jgrad_end(i),
685      &                  i=igrad_start,igrad_end)
686 #endif
687 c
688 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
689 c do not parallelize this part.
690 c
691 c      do i=igrad_start,igrad_end
692 c        do j=jgrad_start(i),jgrad_end(i)
693 c          do k=1,3
694 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
695 c          enddo
696 c        enddo
697 c      enddo
698       do j=1,3
699         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
700       enddo
701       do i=nres-2,nnt,-1
702         do j=1,3
703           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
704         enddo
705       enddo
706 #ifdef DEBUG
707       write (iout,*) "gradbufc after summing"
708       do i=1,nres
709         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
710       enddo
711       call flush(iout)
712 #endif
713       else
714 #endif
715 #ifdef DEBUG
716       write (iout,*) "gradbufc"
717       do i=1,nres
718         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
719       enddo
720       call flush(iout)
721 #endif
722       do i=1,nres
723         do j=1,3
724           gradbufc_sum(j,i)=gradbufc(j,i)
725           gradbufc(j,i)=0.0d0
726         enddo
727       enddo
728       do j=1,3
729         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
730       enddo
731       do i=nres-2,nnt,-1
732         do j=1,3
733           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
734         enddo
735       enddo
736 c      do i=nnt,nres-1
737 c        do k=1,3
738 c          gradbufc(k,i)=0.0d0
739 c        enddo
740 c        do j=i+1,nres
741 c          do k=1,3
742 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
743 c          enddo
744 c        enddo
745 c      enddo
746 #ifdef DEBUG
747       write (iout,*) "gradbufc after summing"
748       do i=1,nres
749         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
750       enddo
751       call flush(iout)
752 #endif
753 #ifdef MPI
754       endif
755 #endif
756       do k=1,3
757         gradbufc(k,nres)=0.0d0
758       enddo
759       do i=1,nct
760         do j=1,3
761 #ifdef SPLITELE
762           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
763      &                wel_loc*gel_loc(j,i)+
764      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
765      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
766      &                wel_loc*gel_loc_long(j,i)+
767      &                wcorr*gradcorr_long(j,i)+
768      &                wcorr5*gradcorr5_long(j,i)+
769      &                wcorr6*gradcorr6_long(j,i)+
770      &                wturn6*gcorr6_turn_long(j,i))+
771      &                wbond*gradb(j,i)+
772      &                wcorr*gradcorr(j,i)+
773      &                wturn3*gcorr3_turn(j,i)+
774      &                wturn4*gcorr4_turn(j,i)+
775      &                wcorr5*gradcorr5(j,i)+
776      &                wcorr6*gradcorr6(j,i)+
777      &                wturn6*gcorr6_turn(j,i)+
778      &                wsccor*gsccorc(j,i)
779      &               +wscloc*gscloc(j,i)
780 #else
781           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
782      &                wel_loc*gel_loc(j,i)+
783      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
784      &                welec*gelc_long(j,i)+
785      &                wel_loc*gel_loc_long(j,i)+
786      &                wcorr*gcorr_long(j,i)+
787      &                wcorr5*gradcorr5_long(j,i)+
788      &                wcorr6*gradcorr6_long(j,i)+
789      &                wturn6*gcorr6_turn_long(j,i))+
790      &                wbond*gradb(j,i)+
791      &                wcorr*gradcorr(j,i)+
792      &                wturn3*gcorr3_turn(j,i)+
793      &                wturn4*gcorr4_turn(j,i)+
794      &                wcorr5*gradcorr5(j,i)+
795      &                wcorr6*gradcorr6(j,i)+
796      &                wturn6*gcorr6_turn(j,i)+
797      &                wsccor*gsccorc(j,i)
798      &               +wscloc*gscloc(j,i)
799 #endif
800 #ifdef TSCSC
801           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
802      &                  wscp*gradx_scp(j,i)+
803      &                  wbond*gradbx(j,i)+
804      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
805      &                  wsccor*gsccorx(j,i)
806      &                 +wscloc*gsclocx(j,i)
807 #else
808           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
809      &                  wbond*gradbx(j,i)+
810      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
811      &                  wsccor*gsccorx(j,i)
812      &                 +wscloc*gsclocx(j,i)
813 #endif
814         enddo
815       enddo 
816 #ifdef DEBUG
817       write (iout,*) "gloc before adding corr"
818       do i=1,4*nres
819         write (iout,*) i,gloc(i,icg)
820       enddo
821 #endif
822       do i=1,nres-3
823         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
824      &   +wcorr5*g_corr5_loc(i)
825      &   +wcorr6*g_corr6_loc(i)
826      &   +wturn4*gel_loc_turn4(i)
827      &   +wturn3*gel_loc_turn3(i)
828      &   +wturn6*gel_loc_turn6(i)
829      &   +wel_loc*gel_loc_loc(i)
830       enddo
831 #ifdef DEBUG
832       write (iout,*) "gloc after adding corr"
833       do i=1,4*nres
834         write (iout,*) i,gloc(i,icg)
835       enddo
836 #endif
837 #ifdef MPI
838       if (nfgtasks.gt.1) then
839         do j=1,3
840           do i=1,nres
841             gradbufc(j,i)=gradc(j,i,icg)
842             gradbufx(j,i)=gradx(j,i,icg)
843           enddo
844         enddo
845         do i=1,4*nres
846           glocbuf(i)=gloc(i,icg)
847         enddo
848 #ifdef DEBUG
849       write (iout,*) "gloc_sc before reduce"
850       do i=1,nres
851        do j=1,3
852         write (iout,*) i,j,gloc_sc(j,i,icg)
853        enddo
854       enddo
855 #endif
856         do i=1,nres
857          do j=1,3
858           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
859          enddo
860         enddo
861         time00=MPI_Wtime()
862         call MPI_Barrier(FG_COMM,IERR)
863         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
864         time00=MPI_Wtime()
865         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
866      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
867         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
868      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
869         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
870      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
871         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
872      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
873         time_reduce=time_reduce+MPI_Wtime()-time00
874 #ifdef DEBUG
875       write (iout,*) "gloc_sc after reduce"
876       do i=1,nres
877        do j=1,3
878         write (iout,*) i,j,gloc_sc(j,i,icg)
879        enddo
880       enddo
881 #endif
882 #ifdef DEBUG
883       write (iout,*) "gloc after reduce"
884       do i=1,4*nres
885         write (iout,*) i,gloc(i,icg)
886       enddo
887 #endif
888       endif
889 #endif
890       if (gnorm_check) then
891 c
892 c Compute the maximum elements of the gradient
893 c
894       gvdwc_max=0.0d0
895       gvdwc_scp_max=0.0d0
896       gelc_max=0.0d0
897       gvdwpp_max=0.0d0
898       gradb_max=0.0d0
899       ghpbc_max=0.0d0
900       gradcorr_max=0.0d0
901       gel_loc_max=0.0d0
902       gcorr3_turn_max=0.0d0
903       gcorr4_turn_max=0.0d0
904       gradcorr5_max=0.0d0
905       gradcorr6_max=0.0d0
906       gcorr6_turn_max=0.0d0
907       gsccorc_max=0.0d0
908       gscloc_max=0.0d0
909       gvdwx_max=0.0d0
910       gradx_scp_max=0.0d0
911       ghpbx_max=0.0d0
912       gradxorr_max=0.0d0
913       gsccorx_max=0.0d0
914       gsclocx_max=0.0d0
915       do i=1,nct
916         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
917         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
918 #ifdef TSCSC
919         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
920         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
921 #endif
922         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
923         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
924      &   gvdwc_scp_max=gvdwc_scp_norm
925         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
926         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
927         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
928         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
929         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
930         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
931         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
932         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
933         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
934         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
935         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
936         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
937         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
938      &    gcorr3_turn(1,i)))
939         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
940      &    gcorr3_turn_max=gcorr3_turn_norm
941         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
942      &    gcorr4_turn(1,i)))
943         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
944      &    gcorr4_turn_max=gcorr4_turn_norm
945         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
946         if (gradcorr5_norm.gt.gradcorr5_max) 
947      &    gradcorr5_max=gradcorr5_norm
948         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
949         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
950         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
951      &    gcorr6_turn(1,i)))
952         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
953      &    gcorr6_turn_max=gcorr6_turn_norm
954         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
955         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
956         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
957         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
958         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
959         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
960 #ifdef TSCSC
961         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
962         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
963 #endif
964         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
965         if (gradx_scp_norm.gt.gradx_scp_max) 
966      &    gradx_scp_max=gradx_scp_norm
967         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
968         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
969         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
970         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
971         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
972         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
973         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
974         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
975       enddo 
976       if (gradout) then
977 #ifdef AIX
978         open(istat,file=statname,position="append")
979 #else
980         open(istat,file=statname,access="append")
981 #endif
982         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
983      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
984      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
985      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
986      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
987      &     gsccorx_max,gsclocx_max
988         close(istat)
989         if (gvdwc_max.gt.1.0d4) then
990           write (iout,*) "gvdwc gvdwx gradb gradbx"
991           do i=nnt,nct
992             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
993      &        gradb(j,i),gradbx(j,i),j=1,3)
994           enddo
995           call pdbout(0.0d0,'cipiszcze',iout)
996           call flush(iout)
997         endif
998       endif
999       endif
1000 #ifdef DEBUG
1001       write (iout,*) "gradc gradx gloc"
1002       do i=1,nres
1003         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
1004      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
1005       enddo 
1006 #endif
1007 #ifdef TIMING
1008 #ifdef MPI
1009       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
1010 #else
1011       time_sumgradient=time_sumgradient+tcpu()-time01
1012 #endif
1013 #endif
1014       return
1015       end
1016 c-------------------------------------------------------------------------------
1017       subroutine rescale_weights(t_bath)
1018       implicit real*8 (a-h,o-z)
1019       include 'DIMENSIONS'
1020       include 'COMMON.IOUNITS'
1021       include 'COMMON.FFIELD'
1022       include 'COMMON.SBRIDGE'
1023       double precision kfac /2.4d0/
1024       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
1025 c      facT=temp0/t_bath
1026 c      facT=2*temp0/(t_bath+temp0)
1027       if (rescale_mode.eq.0) then
1028         facT=1.0d0
1029         facT2=1.0d0
1030         facT3=1.0d0
1031         facT4=1.0d0
1032         facT5=1.0d0
1033       else if (rescale_mode.eq.1) then
1034         facT=kfac/(kfac-1.0d0+t_bath/temp0)
1035         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
1036         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
1037         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
1038         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
1039       else if (rescale_mode.eq.2) then
1040         x=t_bath/temp0
1041         x2=x*x
1042         x3=x2*x
1043         x4=x3*x
1044         x5=x4*x
1045         facT=licznik/dlog(dexp(x)+dexp(-x))
1046         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
1047         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
1048         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
1049         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
1050       else
1051         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
1052         write (*,*) "Wrong RESCALE_MODE",rescale_mode
1053 #ifdef MPI
1054        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
1055 #endif
1056        stop 555
1057       endif
1058       welec=weights(3)*fact
1059       wcorr=weights(4)*fact3
1060       wcorr5=weights(5)*fact4
1061       wcorr6=weights(6)*fact5
1062       wel_loc=weights(7)*fact2
1063       wturn3=weights(8)*fact2
1064       wturn4=weights(9)*fact3
1065       wturn6=weights(10)*fact5
1066       wtor=weights(13)*fact
1067       wtor_d=weights(14)*fact2
1068       wsccor=weights(21)*fact
1069 #ifdef TSCSC
1070 c      wsct=t_bath/temp0
1071       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1072 #endif
1073       return
1074       end
1075 C------------------------------------------------------------------------
1076       subroutine enerprint(energia)
1077       implicit real*8 (a-h,o-z)
1078       include 'DIMENSIONS'
1079       include 'COMMON.IOUNITS'
1080       include 'COMMON.FFIELD'
1081       include 'COMMON.SBRIDGE'
1082       include 'COMMON.MD'
1083       double precision energia(0:n_ene)
1084       etot=energia(0)
1085 #ifdef TSCSC
1086       evdw=energia(22)+wsct*energia(23)
1087 #else
1088       evdw=energia(1)
1089 #endif
1090       evdw2=energia(2)
1091 #ifdef SCP14
1092       evdw2=energia(2)+energia(18)
1093 #else
1094       evdw2=energia(2)
1095 #endif
1096       ees=energia(3)
1097 #ifdef SPLITELE
1098       evdw1=energia(16)
1099 #endif
1100       ecorr=energia(4)
1101       ecorr5=energia(5)
1102       ecorr6=energia(6)
1103       eel_loc=energia(7)
1104       eello_turn3=energia(8)
1105       eello_turn4=energia(9)
1106       eello_turn6=energia(10)
1107       ebe=energia(11)
1108       escloc=energia(12)
1109       etors=energia(13)
1110       etors_d=energia(14)
1111       ehpb=energia(15)
1112       edihcnstr=energia(19)
1113       estr=energia(17)
1114       Uconst=energia(20)
1115       esccor=energia(21)
1116       ehomology_constr=energia(24)
1117 C     Bartek
1118       edfadis = energia(25)
1119       edfator = energia(26)
1120       edfanei = energia(27)
1121       edfabet = energia(28)
1122
1123 #ifdef SPLITELE
1124       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1125      &  estr,wbond,ebe,wang,
1126      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1127      &  ecorr,wcorr,
1128      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1129      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1130      &  edihcnstr,ehomology_constr, ebr*nss,
1131      &  Uconst,edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,
1132      &  edfabet,wdfa_beta,etot
1133    10 format (/'Virtual-chain energies:'//
1134      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1135      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1136      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1137      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1138      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1139      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1140      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1141      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1142      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1143      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1144      & ' (SS bridges & dist. cnstr.)'/
1145      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1146      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1147      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1148      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1149      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1150      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1151      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1152      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1153      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1154      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1155      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1156      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1157      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA distance energy)'/ 
1158      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA torsion energy)'/ 
1159      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA NCa energy)'/ 
1160      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA Beta energy)'/ 
1161      & 'ETOT=  ',1pE16.6,' (total)')
1162 #else
1163       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1164      &  estr,wbond,ebe,wang,
1165      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1166      &  ecorr,wcorr,
1167      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1168      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1169      &  ehomology_constr,ebr*nss,Uconst,edfadis,wdfa_dist,edfator,
1170      &  wdfa_tor,edfanei,wdfa_nei,edfabet,wdfa_beta,
1171      &  etot
1172    10 format (/'Virtual-chain energies:'//
1173      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1174      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1175      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1176      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1177      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1178      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1179      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1180      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1181      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1182      & ' (SS bridges & dist. cnstr.)'/
1183      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1184      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1185      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1186      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1187      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1188      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1189      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1190      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1191      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1192      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1193      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1194      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1195      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/ 
1196      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/ 
1197      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/ 
1198      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/ 
1199      & 'ETOT=  ',1pE16.6,' (total)')
1200 #endif
1201       return
1202       end
1203 C-----------------------------------------------------------------------
1204       subroutine elj(evdw,evdw_p,evdw_m)
1205 C
1206 C This subroutine calculates the interaction energy of nonbonded side chains
1207 C assuming the LJ potential of interaction.
1208 C
1209       implicit real*8 (a-h,o-z)
1210       include 'DIMENSIONS'
1211       parameter (accur=1.0d-10)
1212       include 'COMMON.GEO'
1213       include 'COMMON.VAR'
1214       include 'COMMON.LOCAL'
1215       include 'COMMON.CHAIN'
1216       include 'COMMON.DERIV'
1217       include 'COMMON.INTERACT'
1218       include 'COMMON.TORSION'
1219       include 'COMMON.SBRIDGE'
1220       include 'COMMON.NAMES'
1221       include 'COMMON.IOUNITS'
1222       include 'COMMON.CONTACTS'
1223       dimension gg(3)
1224 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1225       evdw=0.0D0
1226       do i=iatsc_s,iatsc_e
1227         itypi=itype(i)
1228         itypi1=itype(i+1)
1229         xi=c(1,nres+i)
1230         yi=c(2,nres+i)
1231         zi=c(3,nres+i)
1232 C Change 12/1/95
1233         num_conti=0
1234 C
1235 C Calculate SC interaction energy.
1236 C
1237         do iint=1,nint_gr(i)
1238 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1239 cd   &                  'iend=',iend(i,iint)
1240           do j=istart(i,iint),iend(i,iint)
1241             itypj=itype(j)
1242             xj=c(1,nres+j)-xi
1243             yj=c(2,nres+j)-yi
1244             zj=c(3,nres+j)-zi
1245 C Change 12/1/95 to calculate four-body interactions
1246             rij=xj*xj+yj*yj+zj*zj
1247             rrij=1.0D0/rij
1248 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1249             eps0ij=eps(itypi,itypj)
1250             fac=rrij**expon2
1251             e1=fac*fac*aa(itypi,itypj)
1252             e2=fac*bb(itypi,itypj)
1253             evdwij=e1+e2
1254 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1255 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1256 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1257 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1258 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1259 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1260 #ifdef TSCSC
1261             if (bb(itypi,itypj).gt.0) then
1262                evdw_p=evdw_p+evdwij
1263             else
1264                evdw_m=evdw_m+evdwij
1265             endif
1266 #else
1267             evdw=evdw+evdwij
1268 #endif
1269
1270 C Calculate the components of the gradient in DC and X
1271 C
1272             fac=-rrij*(e1+evdwij)
1273             gg(1)=xj*fac
1274             gg(2)=yj*fac
1275             gg(3)=zj*fac
1276 #ifdef TSCSC
1277             if (bb(itypi,itypj).gt.0.0d0) then
1278               do k=1,3
1279                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1280                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1281                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1282                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1283               enddo
1284             else
1285               do k=1,3
1286                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1287                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1288                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1289                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1290               enddo
1291             endif
1292 #else
1293             do k=1,3
1294               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1295               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1296               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1297               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1298             enddo
1299 #endif
1300 cgrad            do k=i,j-1
1301 cgrad              do l=1,3
1302 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1303 cgrad              enddo
1304 cgrad            enddo
1305 C
1306 C 12/1/95, revised on 5/20/97
1307 C
1308 C Calculate the contact function. The ith column of the array JCONT will 
1309 C contain the numbers of atoms that make contacts with the atom I (of numbers
1310 C greater than I). The arrays FACONT and GACONT will contain the values of
1311 C the contact function and its derivative.
1312 C
1313 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1314 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1315 C Uncomment next line, if the correlation interactions are contact function only
1316             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1317               rij=dsqrt(rij)
1318               sigij=sigma(itypi,itypj)
1319               r0ij=rs0(itypi,itypj)
1320 C
1321 C Check whether the SC's are not too far to make a contact.
1322 C
1323               rcut=1.5d0*r0ij
1324               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1325 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1326 C
1327               if (fcont.gt.0.0D0) then
1328 C If the SC-SC distance if close to sigma, apply spline.
1329 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1330 cAdam &             fcont1,fprimcont1)
1331 cAdam           fcont1=1.0d0-fcont1
1332 cAdam           if (fcont1.gt.0.0d0) then
1333 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1334 cAdam             fcont=fcont*fcont1
1335 cAdam           endif
1336 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1337 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1338 cga             do k=1,3
1339 cga               gg(k)=gg(k)*eps0ij
1340 cga             enddo
1341 cga             eps0ij=-evdwij*eps0ij
1342 C Uncomment for AL's type of SC correlation interactions.
1343 cadam           eps0ij=-evdwij
1344                 num_conti=num_conti+1
1345                 jcont(num_conti,i)=j
1346                 facont(num_conti,i)=fcont*eps0ij
1347                 fprimcont=eps0ij*fprimcont/rij
1348                 fcont=expon*fcont
1349 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1350 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1351 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1352 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1353                 gacont(1,num_conti,i)=-fprimcont*xj
1354                 gacont(2,num_conti,i)=-fprimcont*yj
1355                 gacont(3,num_conti,i)=-fprimcont*zj
1356 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1357 cd              write (iout,'(2i3,3f10.5)') 
1358 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1359               endif
1360             endif
1361           enddo      ! j
1362         enddo        ! iint
1363 C Change 12/1/95
1364         num_cont(i)=num_conti
1365       enddo          ! i
1366       do i=1,nct
1367         do j=1,3
1368           gvdwc(j,i)=expon*gvdwc(j,i)
1369           gvdwx(j,i)=expon*gvdwx(j,i)
1370         enddo
1371       enddo
1372 C******************************************************************************
1373 C
1374 C                              N O T E !!!
1375 C
1376 C To save time, the factor of EXPON has been extracted from ALL components
1377 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1378 C use!
1379 C
1380 C******************************************************************************
1381       return
1382       end
1383 C-----------------------------------------------------------------------------
1384       subroutine eljk(evdw,evdw_p,evdw_m)
1385 C
1386 C This subroutine calculates the interaction energy of nonbonded side chains
1387 C assuming the LJK potential of interaction.
1388 C
1389       implicit real*8 (a-h,o-z)
1390       include 'DIMENSIONS'
1391       include 'COMMON.GEO'
1392       include 'COMMON.VAR'
1393       include 'COMMON.LOCAL'
1394       include 'COMMON.CHAIN'
1395       include 'COMMON.DERIV'
1396       include 'COMMON.INTERACT'
1397       include 'COMMON.IOUNITS'
1398       include 'COMMON.NAMES'
1399       dimension gg(3)
1400       logical scheck
1401 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1402       evdw=0.0D0
1403       do i=iatsc_s,iatsc_e
1404         itypi=itype(i)
1405         itypi1=itype(i+1)
1406         xi=c(1,nres+i)
1407         yi=c(2,nres+i)
1408         zi=c(3,nres+i)
1409 C
1410 C Calculate SC interaction energy.
1411 C
1412         do iint=1,nint_gr(i)
1413           do j=istart(i,iint),iend(i,iint)
1414             itypj=itype(j)
1415             xj=c(1,nres+j)-xi
1416             yj=c(2,nres+j)-yi
1417             zj=c(3,nres+j)-zi
1418             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1419             fac_augm=rrij**expon
1420             e_augm=augm(itypi,itypj)*fac_augm
1421             r_inv_ij=dsqrt(rrij)
1422             rij=1.0D0/r_inv_ij 
1423             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1424             fac=r_shift_inv**expon
1425             e1=fac*fac*aa(itypi,itypj)
1426             e2=fac*bb(itypi,itypj)
1427             evdwij=e_augm+e1+e2
1428 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1429 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1430 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1431 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1432 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1433 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1434 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1435 #ifdef TSCSC
1436             if (bb(itypi,itypj).gt.0) then
1437                evdw_p=evdw_p+evdwij
1438             else
1439                evdw_m=evdw_m+evdwij
1440             endif
1441 #else
1442             evdw=evdw+evdwij
1443 #endif
1444
1445 C Calculate the components of the gradient in DC and X
1446 C
1447             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1448             gg(1)=xj*fac
1449             gg(2)=yj*fac
1450             gg(3)=zj*fac
1451 #ifdef TSCSC
1452             if (bb(itypi,itypj).gt.0.0d0) then
1453               do k=1,3
1454                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1455                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1456                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1457                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1458               enddo
1459             else
1460               do k=1,3
1461                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1462                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1463                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1464                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1465               enddo
1466             endif
1467 #else
1468             do k=1,3
1469               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1470               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1471               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1472               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1473             enddo
1474 #endif
1475 cgrad            do k=i,j-1
1476 cgrad              do l=1,3
1477 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1478 cgrad              enddo
1479 cgrad            enddo
1480           enddo      ! j
1481         enddo        ! iint
1482       enddo          ! i
1483       do i=1,nct
1484         do j=1,3
1485           gvdwc(j,i)=expon*gvdwc(j,i)
1486           gvdwx(j,i)=expon*gvdwx(j,i)
1487         enddo
1488       enddo
1489       return
1490       end
1491 C-----------------------------------------------------------------------------
1492       subroutine ebp(evdw,evdw_p,evdw_m)
1493 C
1494 C This subroutine calculates the interaction energy of nonbonded side chains
1495 C assuming the Berne-Pechukas potential of interaction.
1496 C
1497       implicit real*8 (a-h,o-z)
1498       include 'DIMENSIONS'
1499       include 'COMMON.GEO'
1500       include 'COMMON.VAR'
1501       include 'COMMON.LOCAL'
1502       include 'COMMON.CHAIN'
1503       include 'COMMON.DERIV'
1504       include 'COMMON.NAMES'
1505       include 'COMMON.INTERACT'
1506       include 'COMMON.IOUNITS'
1507       include 'COMMON.CALC'
1508       common /srutu/ icall
1509 c     double precision rrsave(maxdim)
1510       logical lprn
1511       evdw=0.0D0
1512 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1513       evdw=0.0D0
1514 c     if (icall.eq.0) then
1515 c       lprn=.true.
1516 c     else
1517         lprn=.false.
1518 c     endif
1519       ind=0
1520       do i=iatsc_s,iatsc_e
1521         itypi=itype(i)
1522         itypi1=itype(i+1)
1523         xi=c(1,nres+i)
1524         yi=c(2,nres+i)
1525         zi=c(3,nres+i)
1526         dxi=dc_norm(1,nres+i)
1527         dyi=dc_norm(2,nres+i)
1528         dzi=dc_norm(3,nres+i)
1529 c        dsci_inv=dsc_inv(itypi)
1530         dsci_inv=vbld_inv(i+nres)
1531 C
1532 C Calculate SC interaction energy.
1533 C
1534         do iint=1,nint_gr(i)
1535           do j=istart(i,iint),iend(i,iint)
1536             ind=ind+1
1537             itypj=itype(j)
1538 c            dscj_inv=dsc_inv(itypj)
1539             dscj_inv=vbld_inv(j+nres)
1540             chi1=chi(itypi,itypj)
1541             chi2=chi(itypj,itypi)
1542             chi12=chi1*chi2
1543             chip1=chip(itypi)
1544             chip2=chip(itypj)
1545             chip12=chip1*chip2
1546             alf1=alp(itypi)
1547             alf2=alp(itypj)
1548             alf12=0.5D0*(alf1+alf2)
1549 C For diagnostics only!!!
1550 c           chi1=0.0D0
1551 c           chi2=0.0D0
1552 c           chi12=0.0D0
1553 c           chip1=0.0D0
1554 c           chip2=0.0D0
1555 c           chip12=0.0D0
1556 c           alf1=0.0D0
1557 c           alf2=0.0D0
1558 c           alf12=0.0D0
1559             xj=c(1,nres+j)-xi
1560             yj=c(2,nres+j)-yi
1561             zj=c(3,nres+j)-zi
1562             dxj=dc_norm(1,nres+j)
1563             dyj=dc_norm(2,nres+j)
1564             dzj=dc_norm(3,nres+j)
1565             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1566 cd          if (icall.eq.0) then
1567 cd            rrsave(ind)=rrij
1568 cd          else
1569 cd            rrij=rrsave(ind)
1570 cd          endif
1571             rij=dsqrt(rrij)
1572 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1573             call sc_angular
1574 C Calculate whole angle-dependent part of epsilon and contributions
1575 C to its derivatives
1576             fac=(rrij*sigsq)**expon2
1577             e1=fac*fac*aa(itypi,itypj)
1578             e2=fac*bb(itypi,itypj)
1579             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1580             eps2der=evdwij*eps3rt
1581             eps3der=evdwij*eps2rt
1582             evdwij=evdwij*eps2rt*eps3rt
1583 #ifdef TSCSC
1584             if (bb(itypi,itypj).gt.0) then
1585                evdw_p=evdw_p+evdwij
1586             else
1587                evdw_m=evdw_m+evdwij
1588             endif
1589 #else
1590             evdw=evdw+evdwij
1591 #endif
1592             if (lprn) then
1593             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1594             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1595 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1596 cd     &        restyp(itypi),i,restyp(itypj),j,
1597 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1598 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1599 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1600 cd     &        evdwij
1601             endif
1602 C Calculate gradient components.
1603             e1=e1*eps1*eps2rt**2*eps3rt**2
1604             fac=-expon*(e1+evdwij)
1605             sigder=fac/sigsq
1606             fac=rrij*fac
1607 C Calculate radial part of the gradient
1608             gg(1)=xj*fac
1609             gg(2)=yj*fac
1610             gg(3)=zj*fac
1611 C Calculate the angular part of the gradient and sum add the contributions
1612 C to the appropriate components of the Cartesian gradient.
1613 #ifdef TSCSC
1614             if (bb(itypi,itypj).gt.0) then
1615                call sc_grad
1616             else
1617                call sc_grad_T
1618             endif
1619 #else
1620             call sc_grad
1621 #endif
1622           enddo      ! j
1623         enddo        ! iint
1624       enddo          ! i
1625 c     stop
1626       return
1627       end
1628 C-----------------------------------------------------------------------------
1629       subroutine egb(evdw,evdw_p,evdw_m)
1630 C
1631 C This subroutine calculates the interaction energy of nonbonded side chains
1632 C assuming the Gay-Berne potential of interaction.
1633 C
1634       implicit real*8 (a-h,o-z)
1635       include 'DIMENSIONS'
1636       include 'COMMON.GEO'
1637       include 'COMMON.VAR'
1638       include 'COMMON.LOCAL'
1639       include 'COMMON.CHAIN'
1640       include 'COMMON.DERIV'
1641       include 'COMMON.NAMES'
1642       include 'COMMON.INTERACT'
1643       include 'COMMON.IOUNITS'
1644       include 'COMMON.CALC'
1645       include 'COMMON.CONTROL'
1646       include 'COMMON.SBRIDGE'
1647       logical lprn
1648       evdw=0.0D0
1649 ccccc      energy_dec=.false.
1650 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1651       evdw=0.0D0
1652       evdw_p=0.0D0
1653       evdw_m=0.0D0
1654       lprn=.false.
1655 c     if (icall.eq.0) lprn=.false.
1656       ind=0
1657       do i=iatsc_s,iatsc_e
1658         itypi=itype(i)
1659         itypi1=itype(i+1)
1660         xi=c(1,nres+i)
1661         yi=c(2,nres+i)
1662         zi=c(3,nres+i)
1663         dxi=dc_norm(1,nres+i)
1664         dyi=dc_norm(2,nres+i)
1665         dzi=dc_norm(3,nres+i)
1666 c        dsci_inv=dsc_inv(itypi)
1667         dsci_inv=vbld_inv(i+nres)
1668 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1669 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1670 C
1671 C Calculate SC interaction energy.
1672 C
1673         do iint=1,nint_gr(i)
1674           do j=istart(i,iint),iend(i,iint)
1675             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1676               call dyn_ssbond_ene(i,j,evdwij)
1677               evdw=evdw+evdwij
1678               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1679      &                        'evdw',i,j,evdwij,' ss'
1680             ELSE
1681             ind=ind+1
1682             itypj=itype(j)
1683 c            dscj_inv=dsc_inv(itypj)
1684             dscj_inv=vbld_inv(j+nres)
1685 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1686 c     &       1.0d0/vbld(j+nres)
1687 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1688             sig0ij=sigma(itypi,itypj)
1689             chi1=chi(itypi,itypj)
1690             chi2=chi(itypj,itypi)
1691             chi12=chi1*chi2
1692             chip1=chip(itypi)
1693             chip2=chip(itypj)
1694             chip12=chip1*chip2
1695             alf1=alp(itypi)
1696             alf2=alp(itypj)
1697             alf12=0.5D0*(alf1+alf2)
1698 C For diagnostics only!!!
1699 c           chi1=0.0D0
1700 c           chi2=0.0D0
1701 c           chi12=0.0D0
1702 c           chip1=0.0D0
1703 c           chip2=0.0D0
1704 c           chip12=0.0D0
1705 c           alf1=0.0D0
1706 c           alf2=0.0D0
1707 c           alf12=0.0D0
1708             xj=c(1,nres+j)-xi
1709             yj=c(2,nres+j)-yi
1710             zj=c(3,nres+j)-zi
1711             dxj=dc_norm(1,nres+j)
1712             dyj=dc_norm(2,nres+j)
1713             dzj=dc_norm(3,nres+j)
1714 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1715 c            write (iout,*) "j",j," dc_norm",
1716 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1717             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1718             rij=dsqrt(rrij)
1719 C Calculate angle-dependent terms of energy and contributions to their
1720 C derivatives.
1721             call sc_angular
1722             sigsq=1.0D0/sigsq
1723             sig=sig0ij*dsqrt(sigsq)
1724             rij_shift=1.0D0/rij-sig+sig0ij
1725 c for diagnostics; uncomment
1726 c            rij_shift=1.2*sig0ij
1727 C I hate to put IF's in the loops, but here don't have another choice!!!!
1728             if (rij_shift.le.0.0D0) then
1729               evdw=1.0D20
1730 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1731 cd     &        restyp(itypi),i,restyp(itypj),j,
1732 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1733               return
1734             endif
1735             sigder=-sig*sigsq
1736 c---------------------------------------------------------------
1737             rij_shift=1.0D0/rij_shift 
1738             fac=rij_shift**expon
1739             e1=fac*fac*aa(itypi,itypj)
1740             e2=fac*bb(itypi,itypj)
1741             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1742             eps2der=evdwij*eps3rt
1743             eps3der=evdwij*eps2rt
1744 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1745 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1746             evdwij=evdwij*eps2rt*eps3rt
1747 #ifdef TSCSC
1748             if (bb(itypi,itypj).gt.0) then
1749                evdw_p=evdw_p+evdwij
1750             else
1751                evdw_m=evdw_m+evdwij
1752             endif
1753 #else
1754             evdw=evdw+evdwij
1755 #endif
1756             if (lprn) then
1757             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1758             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1759             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1760      &        restyp(itypi),i,restyp(itypj),j,
1761      &        epsi,sigm,chi1,chi2,chip1,chip2,
1762      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1763      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1764      &        evdwij
1765             endif
1766
1767             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1768      &                        'evdw',i,j,evdwij
1769
1770 C Calculate gradient components.
1771             e1=e1*eps1*eps2rt**2*eps3rt**2
1772             fac=-expon*(e1+evdwij)*rij_shift
1773             sigder=fac*sigder
1774             fac=rij*fac
1775 c            fac=0.0d0
1776 C Calculate the radial part of the gradient
1777             gg(1)=xj*fac
1778             gg(2)=yj*fac
1779             gg(3)=zj*fac
1780 C Calculate angular part of the gradient.
1781 #ifdef TSCSC
1782             if (bb(itypi,itypj).gt.0) then
1783                call sc_grad
1784             else
1785                call sc_grad_T
1786             endif
1787 #else
1788             call sc_grad
1789 #endif
1790             ENDIF    ! dyn_ss            
1791           enddo      ! j
1792         enddo        ! iint
1793       enddo          ! i
1794 c      write (iout,*) "Number of loop steps in EGB:",ind
1795 cccc      energy_dec=.false.
1796       return
1797       end
1798 C-----------------------------------------------------------------------------
1799       subroutine egbv(evdw,evdw_p,evdw_m)
1800 C
1801 C This subroutine calculates the interaction energy of nonbonded side chains
1802 C assuming the Gay-Berne-Vorobjev potential of interaction.
1803 C
1804       implicit real*8 (a-h,o-z)
1805       include 'DIMENSIONS'
1806       include 'COMMON.GEO'
1807       include 'COMMON.VAR'
1808       include 'COMMON.LOCAL'
1809       include 'COMMON.CHAIN'
1810       include 'COMMON.DERIV'
1811       include 'COMMON.NAMES'
1812       include 'COMMON.INTERACT'
1813       include 'COMMON.IOUNITS'
1814       include 'COMMON.CALC'
1815       common /srutu/ icall
1816       logical lprn
1817       evdw=0.0D0
1818 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1819       evdw=0.0D0
1820       lprn=.false.
1821 c     if (icall.eq.0) lprn=.true.
1822       ind=0
1823       do i=iatsc_s,iatsc_e
1824         itypi=itype(i)
1825         itypi1=itype(i+1)
1826         xi=c(1,nres+i)
1827         yi=c(2,nres+i)
1828         zi=c(3,nres+i)
1829         dxi=dc_norm(1,nres+i)
1830         dyi=dc_norm(2,nres+i)
1831         dzi=dc_norm(3,nres+i)
1832 c        dsci_inv=dsc_inv(itypi)
1833         dsci_inv=vbld_inv(i+nres)
1834 C
1835 C Calculate SC interaction energy.
1836 C
1837         do iint=1,nint_gr(i)
1838           do j=istart(i,iint),iend(i,iint)
1839             ind=ind+1
1840             itypj=itype(j)
1841 c            dscj_inv=dsc_inv(itypj)
1842             dscj_inv=vbld_inv(j+nres)
1843             sig0ij=sigma(itypi,itypj)
1844             r0ij=r0(itypi,itypj)
1845             chi1=chi(itypi,itypj)
1846             chi2=chi(itypj,itypi)
1847             chi12=chi1*chi2
1848             chip1=chip(itypi)
1849             chip2=chip(itypj)
1850             chip12=chip1*chip2
1851             alf1=alp(itypi)
1852             alf2=alp(itypj)
1853             alf12=0.5D0*(alf1+alf2)
1854 C For diagnostics only!!!
1855 c           chi1=0.0D0
1856 c           chi2=0.0D0
1857 c           chi12=0.0D0
1858 c           chip1=0.0D0
1859 c           chip2=0.0D0
1860 c           chip12=0.0D0
1861 c           alf1=0.0D0
1862 c           alf2=0.0D0
1863 c           alf12=0.0D0
1864             xj=c(1,nres+j)-xi
1865             yj=c(2,nres+j)-yi
1866             zj=c(3,nres+j)-zi
1867             dxj=dc_norm(1,nres+j)
1868             dyj=dc_norm(2,nres+j)
1869             dzj=dc_norm(3,nres+j)
1870             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1871             rij=dsqrt(rrij)
1872 C Calculate angle-dependent terms of energy and contributions to their
1873 C derivatives.
1874             call sc_angular
1875             sigsq=1.0D0/sigsq
1876             sig=sig0ij*dsqrt(sigsq)
1877             rij_shift=1.0D0/rij-sig+r0ij
1878 C I hate to put IF's in the loops, but here don't have another choice!!!!
1879             if (rij_shift.le.0.0D0) then
1880               evdw=1.0D20
1881               return
1882             endif
1883             sigder=-sig*sigsq
1884 c---------------------------------------------------------------
1885             rij_shift=1.0D0/rij_shift 
1886             fac=rij_shift**expon
1887             e1=fac*fac*aa(itypi,itypj)
1888             e2=fac*bb(itypi,itypj)
1889             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1890             eps2der=evdwij*eps3rt
1891             eps3der=evdwij*eps2rt
1892             fac_augm=rrij**expon
1893             e_augm=augm(itypi,itypj)*fac_augm
1894             evdwij=evdwij*eps2rt*eps3rt
1895 #ifdef TSCSC
1896             if (bb(itypi,itypj).gt.0) then
1897                evdw_p=evdw_p+evdwij+e_augm
1898             else
1899                evdw_m=evdw_m+evdwij+e_augm
1900             endif
1901 #else
1902             evdw=evdw+evdwij+e_augm
1903 #endif
1904             if (lprn) then
1905             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1906             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1907             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1908      &        restyp(itypi),i,restyp(itypj),j,
1909      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1910      &        chi1,chi2,chip1,chip2,
1911      &        eps1,eps2rt**2,eps3rt**2,
1912      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1913      &        evdwij+e_augm
1914             endif
1915 C Calculate gradient components.
1916             e1=e1*eps1*eps2rt**2*eps3rt**2
1917             fac=-expon*(e1+evdwij)*rij_shift
1918             sigder=fac*sigder
1919             fac=rij*fac-2*expon*rrij*e_augm
1920 C Calculate the radial part of the gradient
1921             gg(1)=xj*fac
1922             gg(2)=yj*fac
1923             gg(3)=zj*fac
1924 C Calculate angular part of the gradient.
1925 #ifdef TSCSC
1926             if (bb(itypi,itypj).gt.0) then
1927                call sc_grad
1928             else
1929                call sc_grad_T
1930             endif
1931 #else
1932             call sc_grad
1933 #endif
1934           enddo      ! j
1935         enddo        ! iint
1936       enddo          ! i
1937       end
1938 C-----------------------------------------------------------------------------
1939       subroutine sc_angular
1940 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1941 C om12. Called by ebp, egb, and egbv.
1942       implicit none
1943       include 'COMMON.CALC'
1944       include 'COMMON.IOUNITS'
1945       erij(1)=xj*rij
1946       erij(2)=yj*rij
1947       erij(3)=zj*rij
1948       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1949       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1950       om12=dxi*dxj+dyi*dyj+dzi*dzj
1951       chiom12=chi12*om12
1952 C Calculate eps1(om12) and its derivative in om12
1953       faceps1=1.0D0-om12*chiom12
1954       faceps1_inv=1.0D0/faceps1
1955       eps1=dsqrt(faceps1_inv)
1956 C Following variable is eps1*deps1/dom12
1957       eps1_om12=faceps1_inv*chiom12
1958 c diagnostics only
1959 c      faceps1_inv=om12
1960 c      eps1=om12
1961 c      eps1_om12=1.0d0
1962 c      write (iout,*) "om12",om12," eps1",eps1
1963 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1964 C and om12.
1965       om1om2=om1*om2
1966       chiom1=chi1*om1
1967       chiom2=chi2*om2
1968       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1969       sigsq=1.0D0-facsig*faceps1_inv
1970       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1971       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1972       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1973 c diagnostics only
1974 c      sigsq=1.0d0
1975 c      sigsq_om1=0.0d0
1976 c      sigsq_om2=0.0d0
1977 c      sigsq_om12=0.0d0
1978 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1979 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1980 c     &    " eps1",eps1
1981 C Calculate eps2 and its derivatives in om1, om2, and om12.
1982       chipom1=chip1*om1
1983       chipom2=chip2*om2
1984       chipom12=chip12*om12
1985       facp=1.0D0-om12*chipom12
1986       facp_inv=1.0D0/facp
1987       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
1988 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
1989 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
1990 C Following variable is the square root of eps2
1991       eps2rt=1.0D0-facp1*facp_inv
1992 C Following three variables are the derivatives of the square root of eps
1993 C in om1, om2, and om12.
1994       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
1995       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
1996       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
1997 C Evaluate the "asymmetric" factor in the VDW constant, eps3
1998       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
1999 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
2000 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
2001 c     &  " eps2rt_om12",eps2rt_om12
2002 C Calculate whole angle-dependent part of epsilon and contributions
2003 C to its derivatives
2004       return
2005       end
2006
2007 C----------------------------------------------------------------------------
2008       subroutine sc_grad_T
2009       implicit real*8 (a-h,o-z)
2010       include 'DIMENSIONS'
2011       include 'COMMON.CHAIN'
2012       include 'COMMON.DERIV'
2013       include 'COMMON.CALC'
2014       include 'COMMON.IOUNITS'
2015       double precision dcosom1(3),dcosom2(3)
2016       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2017       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2018       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2019      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2020 c diagnostics only
2021 c      eom1=0.0d0
2022 c      eom2=0.0d0
2023 c      eom12=evdwij*eps1_om12
2024 c end diagnostics
2025 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2026 c     &  " sigder",sigder
2027 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2028 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2029       do k=1,3
2030         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2031         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2032       enddo
2033       do k=1,3
2034         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2035       enddo 
2036 c      write (iout,*) "gg",(gg(k),k=1,3)
2037       do k=1,3
2038         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
2039      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2040      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2041         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
2042      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2043      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2044 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2045 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2046 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2047 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2048       enddo
2049
2050 C Calculate the components of the gradient in DC and X
2051 C
2052 cgrad      do k=i,j-1
2053 cgrad        do l=1,3
2054 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2055 cgrad        enddo
2056 cgrad      enddo
2057       do l=1,3
2058         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
2059         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
2060       enddo
2061       return
2062       end
2063
2064 C----------------------------------------------------------------------------
2065       subroutine sc_grad
2066       implicit real*8 (a-h,o-z)
2067       include 'DIMENSIONS'
2068       include 'COMMON.CHAIN'
2069       include 'COMMON.DERIV'
2070       include 'COMMON.CALC'
2071       include 'COMMON.IOUNITS'
2072       double precision dcosom1(3),dcosom2(3)
2073       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2074       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2075       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2076      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2077 c diagnostics only
2078 c      eom1=0.0d0
2079 c      eom2=0.0d0
2080 c      eom12=evdwij*eps1_om12
2081 c end diagnostics
2082 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2083 c     &  " sigder",sigder
2084 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2085 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2086       do k=1,3
2087         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2088         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2089       enddo
2090       do k=1,3
2091         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2092       enddo 
2093 c      write (iout,*) "gg",(gg(k),k=1,3)
2094       do k=1,3
2095         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2096      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2097      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2098         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2099      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2100      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2101 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2102 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2103 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2104 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2105       enddo
2106
2107 C Calculate the components of the gradient in DC and X
2108 C
2109 cgrad      do k=i,j-1
2110 cgrad        do l=1,3
2111 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2112 cgrad        enddo
2113 cgrad      enddo
2114       do l=1,3
2115         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2116         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2117       enddo
2118       return
2119       end
2120 C-----------------------------------------------------------------------
2121       subroutine e_softsphere(evdw)
2122 C
2123 C This subroutine calculates the interaction energy of nonbonded side chains
2124 C assuming the LJ potential of interaction.
2125 C
2126       implicit real*8 (a-h,o-z)
2127       include 'DIMENSIONS'
2128       parameter (accur=1.0d-10)
2129       include 'COMMON.GEO'
2130       include 'COMMON.VAR'
2131       include 'COMMON.LOCAL'
2132       include 'COMMON.CHAIN'
2133       include 'COMMON.DERIV'
2134       include 'COMMON.INTERACT'
2135       include 'COMMON.TORSION'
2136       include 'COMMON.SBRIDGE'
2137       include 'COMMON.NAMES'
2138       include 'COMMON.IOUNITS'
2139       include 'COMMON.CONTACTS'
2140       dimension gg(3)
2141 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2142       evdw=0.0D0
2143       do i=iatsc_s,iatsc_e
2144         itypi=itype(i)
2145         itypi1=itype(i+1)
2146         xi=c(1,nres+i)
2147         yi=c(2,nres+i)
2148         zi=c(3,nres+i)
2149 C
2150 C Calculate SC interaction energy.
2151 C
2152         do iint=1,nint_gr(i)
2153 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2154 cd   &                  'iend=',iend(i,iint)
2155           do j=istart(i,iint),iend(i,iint)
2156             itypj=itype(j)
2157             xj=c(1,nres+j)-xi
2158             yj=c(2,nres+j)-yi
2159             zj=c(3,nres+j)-zi
2160             rij=xj*xj+yj*yj+zj*zj
2161 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2162             r0ij=r0(itypi,itypj)
2163             r0ijsq=r0ij*r0ij
2164 c            print *,i,j,r0ij,dsqrt(rij)
2165             if (rij.lt.r0ijsq) then
2166               evdwij=0.25d0*(rij-r0ijsq)**2
2167               fac=rij-r0ijsq
2168             else
2169               evdwij=0.0d0
2170               fac=0.0d0
2171             endif
2172             evdw=evdw+evdwij
2173
2174 C Calculate the components of the gradient in DC and X
2175 C
2176             gg(1)=xj*fac
2177             gg(2)=yj*fac
2178             gg(3)=zj*fac
2179             do k=1,3
2180               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2181               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2182               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2183               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2184             enddo
2185 cgrad            do k=i,j-1
2186 cgrad              do l=1,3
2187 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2188 cgrad              enddo
2189 cgrad            enddo
2190           enddo ! j
2191         enddo ! iint
2192       enddo ! i
2193       return
2194       end
2195 C--------------------------------------------------------------------------
2196       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2197      &              eello_turn4)
2198 C
2199 C Soft-sphere potential of p-p interaction
2200
2201       implicit real*8 (a-h,o-z)
2202       include 'DIMENSIONS'
2203       include 'COMMON.CONTROL'
2204       include 'COMMON.IOUNITS'
2205       include 'COMMON.GEO'
2206       include 'COMMON.VAR'
2207       include 'COMMON.LOCAL'
2208       include 'COMMON.CHAIN'
2209       include 'COMMON.DERIV'
2210       include 'COMMON.INTERACT'
2211       include 'COMMON.CONTACTS'
2212       include 'COMMON.TORSION'
2213       include 'COMMON.VECTORS'
2214       include 'COMMON.FFIELD'
2215       dimension ggg(3)
2216 cd      write(iout,*) 'In EELEC_soft_sphere'
2217       ees=0.0D0
2218       evdw1=0.0D0
2219       eel_loc=0.0d0 
2220       eello_turn3=0.0d0
2221       eello_turn4=0.0d0
2222       ind=0
2223       do i=iatel_s,iatel_e
2224         dxi=dc(1,i)
2225         dyi=dc(2,i)
2226         dzi=dc(3,i)
2227         xmedi=c(1,i)+0.5d0*dxi
2228         ymedi=c(2,i)+0.5d0*dyi
2229         zmedi=c(3,i)+0.5d0*dzi
2230         num_conti=0
2231 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2232         do j=ielstart(i),ielend(i)
2233           ind=ind+1
2234           iteli=itel(i)
2235           itelj=itel(j)
2236           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2237           r0ij=rpp(iteli,itelj)
2238           r0ijsq=r0ij*r0ij 
2239           dxj=dc(1,j)
2240           dyj=dc(2,j)
2241           dzj=dc(3,j)
2242           xj=c(1,j)+0.5D0*dxj-xmedi
2243           yj=c(2,j)+0.5D0*dyj-ymedi
2244           zj=c(3,j)+0.5D0*dzj-zmedi
2245           rij=xj*xj+yj*yj+zj*zj
2246           if (rij.lt.r0ijsq) then
2247             evdw1ij=0.25d0*(rij-r0ijsq)**2
2248             fac=rij-r0ijsq
2249           else
2250             evdw1ij=0.0d0
2251             fac=0.0d0
2252           endif
2253           evdw1=evdw1+evdw1ij
2254 C
2255 C Calculate contributions to the Cartesian gradient.
2256 C
2257           ggg(1)=fac*xj
2258           ggg(2)=fac*yj
2259           ggg(3)=fac*zj
2260           do k=1,3
2261             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2262             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2263           enddo
2264 *
2265 * Loop over residues i+1 thru j-1.
2266 *
2267 cgrad          do k=i+1,j-1
2268 cgrad            do l=1,3
2269 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2270 cgrad            enddo
2271 cgrad          enddo
2272         enddo ! j
2273       enddo   ! i
2274 cgrad      do i=nnt,nct-1
2275 cgrad        do k=1,3
2276 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2277 cgrad        enddo
2278 cgrad        do j=i+1,nct-1
2279 cgrad          do k=1,3
2280 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2281 cgrad          enddo
2282 cgrad        enddo
2283 cgrad      enddo
2284       return
2285       end
2286 c------------------------------------------------------------------------------
2287       subroutine vec_and_deriv
2288       implicit real*8 (a-h,o-z)
2289       include 'DIMENSIONS'
2290 #ifdef MPI
2291       include 'mpif.h'
2292 #endif
2293       include 'COMMON.IOUNITS'
2294       include 'COMMON.GEO'
2295       include 'COMMON.VAR'
2296       include 'COMMON.LOCAL'
2297       include 'COMMON.CHAIN'
2298       include 'COMMON.VECTORS'
2299       include 'COMMON.SETUP'
2300       include 'COMMON.TIME1'
2301       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2302 C Compute the local reference systems. For reference system (i), the
2303 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2304 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2305 #ifdef PARVEC
2306       do i=ivec_start,ivec_end
2307 #else
2308       do i=1,nres-1
2309 #endif
2310           if (i.eq.nres-1) then
2311 C Case of the last full residue
2312 C Compute the Z-axis
2313             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2314             costh=dcos(pi-theta(nres))
2315             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2316             do k=1,3
2317               uz(k,i)=fac*uz(k,i)
2318             enddo
2319 C Compute the derivatives of uz
2320             uzder(1,1,1)= 0.0d0
2321             uzder(2,1,1)=-dc_norm(3,i-1)
2322             uzder(3,1,1)= dc_norm(2,i-1) 
2323             uzder(1,2,1)= dc_norm(3,i-1)
2324             uzder(2,2,1)= 0.0d0
2325             uzder(3,2,1)=-dc_norm(1,i-1)
2326             uzder(1,3,1)=-dc_norm(2,i-1)
2327             uzder(2,3,1)= dc_norm(1,i-1)
2328             uzder(3,3,1)= 0.0d0
2329             uzder(1,1,2)= 0.0d0
2330             uzder(2,1,2)= dc_norm(3,i)
2331             uzder(3,1,2)=-dc_norm(2,i) 
2332             uzder(1,2,2)=-dc_norm(3,i)
2333             uzder(2,2,2)= 0.0d0
2334             uzder(3,2,2)= dc_norm(1,i)
2335             uzder(1,3,2)= dc_norm(2,i)
2336             uzder(2,3,2)=-dc_norm(1,i)
2337             uzder(3,3,2)= 0.0d0
2338 C Compute the Y-axis
2339             facy=fac
2340             do k=1,3
2341               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2342             enddo
2343 C Compute the derivatives of uy
2344             do j=1,3
2345               do k=1,3
2346                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2347      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2348                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2349               enddo
2350               uyder(j,j,1)=uyder(j,j,1)-costh
2351               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2352             enddo
2353             do j=1,2
2354               do k=1,3
2355                 do l=1,3
2356                   uygrad(l,k,j,i)=uyder(l,k,j)
2357                   uzgrad(l,k,j,i)=uzder(l,k,j)
2358                 enddo
2359               enddo
2360             enddo 
2361             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2362             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2363             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2364             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2365           else
2366 C Other residues
2367 C Compute the Z-axis
2368             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2369             costh=dcos(pi-theta(i+2))
2370             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2371             do k=1,3
2372               uz(k,i)=fac*uz(k,i)
2373             enddo
2374 C Compute the derivatives of uz
2375             uzder(1,1,1)= 0.0d0
2376             uzder(2,1,1)=-dc_norm(3,i+1)
2377             uzder(3,1,1)= dc_norm(2,i+1) 
2378             uzder(1,2,1)= dc_norm(3,i+1)
2379             uzder(2,2,1)= 0.0d0
2380             uzder(3,2,1)=-dc_norm(1,i+1)
2381             uzder(1,3,1)=-dc_norm(2,i+1)
2382             uzder(2,3,1)= dc_norm(1,i+1)
2383             uzder(3,3,1)= 0.0d0
2384             uzder(1,1,2)= 0.0d0
2385             uzder(2,1,2)= dc_norm(3,i)
2386             uzder(3,1,2)=-dc_norm(2,i) 
2387             uzder(1,2,2)=-dc_norm(3,i)
2388             uzder(2,2,2)= 0.0d0
2389             uzder(3,2,2)= dc_norm(1,i)
2390             uzder(1,3,2)= dc_norm(2,i)
2391             uzder(2,3,2)=-dc_norm(1,i)
2392             uzder(3,3,2)= 0.0d0
2393 C Compute the Y-axis
2394             facy=fac
2395             do k=1,3
2396               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2397             enddo
2398 C Compute the derivatives of uy
2399             do j=1,3
2400               do k=1,3
2401                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2402      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2403                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2404               enddo
2405               uyder(j,j,1)=uyder(j,j,1)-costh
2406               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2407             enddo
2408             do j=1,2
2409               do k=1,3
2410                 do l=1,3
2411                   uygrad(l,k,j,i)=uyder(l,k,j)
2412                   uzgrad(l,k,j,i)=uzder(l,k,j)
2413                 enddo
2414               enddo
2415             enddo 
2416             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2417             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2418             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2419             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2420           endif
2421       enddo
2422       do i=1,nres-1
2423         vbld_inv_temp(1)=vbld_inv(i+1)
2424         if (i.lt.nres-1) then
2425           vbld_inv_temp(2)=vbld_inv(i+2)
2426           else
2427           vbld_inv_temp(2)=vbld_inv(i)
2428           endif
2429         do j=1,2
2430           do k=1,3
2431             do l=1,3
2432               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2433               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2434             enddo
2435           enddo
2436         enddo
2437       enddo
2438 #if defined(PARVEC) && defined(MPI)
2439       if (nfgtasks1.gt.1) then
2440         time00=MPI_Wtime()
2441 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2442 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2443 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2444         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2445      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2446      &   FG_COMM1,IERR)
2447         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2448      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2449      &   FG_COMM1,IERR)
2450         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2451      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2452      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2453         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2454      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2455      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2456         time_gather=time_gather+MPI_Wtime()-time00
2457       endif
2458 c      if (fg_rank.eq.0) then
2459 c        write (iout,*) "Arrays UY and UZ"
2460 c        do i=1,nres-1
2461 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2462 c     &     (uz(k,i),k=1,3)
2463 c        enddo
2464 c      endif
2465 #endif
2466       return
2467       end
2468 C-----------------------------------------------------------------------------
2469       subroutine check_vecgrad
2470       implicit real*8 (a-h,o-z)
2471       include 'DIMENSIONS'
2472       include 'COMMON.IOUNITS'
2473       include 'COMMON.GEO'
2474       include 'COMMON.VAR'
2475       include 'COMMON.LOCAL'
2476       include 'COMMON.CHAIN'
2477       include 'COMMON.VECTORS'
2478       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2479       dimension uyt(3,maxres),uzt(3,maxres)
2480       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2481       double precision delta /1.0d-7/
2482       call vec_and_deriv
2483 cd      do i=1,nres
2484 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2485 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2486 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2487 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2488 cd     &     (dc_norm(if90,i),if90=1,3)
2489 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2490 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2491 cd          write(iout,'(a)')
2492 cd      enddo
2493       do i=1,nres
2494         do j=1,2
2495           do k=1,3
2496             do l=1,3
2497               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2498               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2499             enddo
2500           enddo
2501         enddo
2502       enddo
2503       call vec_and_deriv
2504       do i=1,nres
2505         do j=1,3
2506           uyt(j,i)=uy(j,i)
2507           uzt(j,i)=uz(j,i)
2508         enddo
2509       enddo
2510       do i=1,nres
2511 cd        write (iout,*) 'i=',i
2512         do k=1,3
2513           erij(k)=dc_norm(k,i)
2514         enddo
2515         do j=1,3
2516           do k=1,3
2517             dc_norm(k,i)=erij(k)
2518           enddo
2519           dc_norm(j,i)=dc_norm(j,i)+delta
2520 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2521 c          do k=1,3
2522 c            dc_norm(k,i)=dc_norm(k,i)/fac
2523 c          enddo
2524 c          write (iout,*) (dc_norm(k,i),k=1,3)
2525 c          write (iout,*) (erij(k),k=1,3)
2526           call vec_and_deriv
2527           do k=1,3
2528             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2529             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2530             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2531             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2532           enddo 
2533 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2534 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2535 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2536         enddo
2537         do k=1,3
2538           dc_norm(k,i)=erij(k)
2539         enddo
2540 cd        do k=1,3
2541 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2542 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2543 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2544 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2545 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2546 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2547 cd          write (iout,'(a)')
2548 cd        enddo
2549       enddo
2550       return
2551       end
2552 C--------------------------------------------------------------------------
2553       subroutine set_matrices
2554       implicit real*8 (a-h,o-z)
2555       include 'DIMENSIONS'
2556 #ifdef MPI
2557       include "mpif.h"
2558       include "COMMON.SETUP"
2559       integer IERR
2560       integer status(MPI_STATUS_SIZE)
2561 #endif
2562       include 'COMMON.IOUNITS'
2563       include 'COMMON.GEO'
2564       include 'COMMON.VAR'
2565       include 'COMMON.LOCAL'
2566       include 'COMMON.CHAIN'
2567       include 'COMMON.DERIV'
2568       include 'COMMON.INTERACT'
2569       include 'COMMON.CONTACTS'
2570       include 'COMMON.TORSION'
2571       include 'COMMON.VECTORS'
2572       include 'COMMON.FFIELD'
2573       double precision auxvec(2),auxmat(2,2)
2574 C
2575 C Compute the virtual-bond-torsional-angle dependent quantities needed
2576 C to calculate the el-loc multibody terms of various order.
2577 C
2578 #ifdef PARMAT
2579       do i=ivec_start+2,ivec_end+2
2580 #else
2581       do i=3,nres+1
2582 #endif
2583         if (i .lt. nres+1) then
2584           sin1=dsin(phi(i))
2585           cos1=dcos(phi(i))
2586           sintab(i-2)=sin1
2587           costab(i-2)=cos1
2588           obrot(1,i-2)=cos1
2589           obrot(2,i-2)=sin1
2590           sin2=dsin(2*phi(i))
2591           cos2=dcos(2*phi(i))
2592           sintab2(i-2)=sin2
2593           costab2(i-2)=cos2
2594           obrot2(1,i-2)=cos2
2595           obrot2(2,i-2)=sin2
2596           Ug(1,1,i-2)=-cos1
2597           Ug(1,2,i-2)=-sin1
2598           Ug(2,1,i-2)=-sin1
2599           Ug(2,2,i-2)= cos1
2600           Ug2(1,1,i-2)=-cos2
2601           Ug2(1,2,i-2)=-sin2
2602           Ug2(2,1,i-2)=-sin2
2603           Ug2(2,2,i-2)= cos2
2604         else
2605           costab(i-2)=1.0d0
2606           sintab(i-2)=0.0d0
2607           obrot(1,i-2)=1.0d0
2608           obrot(2,i-2)=0.0d0
2609           obrot2(1,i-2)=0.0d0
2610           obrot2(2,i-2)=0.0d0
2611           Ug(1,1,i-2)=1.0d0
2612           Ug(1,2,i-2)=0.0d0
2613           Ug(2,1,i-2)=0.0d0
2614           Ug(2,2,i-2)=1.0d0
2615           Ug2(1,1,i-2)=0.0d0
2616           Ug2(1,2,i-2)=0.0d0
2617           Ug2(2,1,i-2)=0.0d0
2618           Ug2(2,2,i-2)=0.0d0
2619         endif
2620         if (i .gt. 3 .and. i .lt. nres+1) then
2621           obrot_der(1,i-2)=-sin1
2622           obrot_der(2,i-2)= cos1
2623           Ugder(1,1,i-2)= sin1
2624           Ugder(1,2,i-2)=-cos1
2625           Ugder(2,1,i-2)=-cos1
2626           Ugder(2,2,i-2)=-sin1
2627           dwacos2=cos2+cos2
2628           dwasin2=sin2+sin2
2629           obrot2_der(1,i-2)=-dwasin2
2630           obrot2_der(2,i-2)= dwacos2
2631           Ug2der(1,1,i-2)= dwasin2
2632           Ug2der(1,2,i-2)=-dwacos2
2633           Ug2der(2,1,i-2)=-dwacos2
2634           Ug2der(2,2,i-2)=-dwasin2
2635         else
2636           obrot_der(1,i-2)=0.0d0
2637           obrot_der(2,i-2)=0.0d0
2638           Ugder(1,1,i-2)=0.0d0
2639           Ugder(1,2,i-2)=0.0d0
2640           Ugder(2,1,i-2)=0.0d0
2641           Ugder(2,2,i-2)=0.0d0
2642           obrot2_der(1,i-2)=0.0d0
2643           obrot2_der(2,i-2)=0.0d0
2644           Ug2der(1,1,i-2)=0.0d0
2645           Ug2der(1,2,i-2)=0.0d0
2646           Ug2der(2,1,i-2)=0.0d0
2647           Ug2der(2,2,i-2)=0.0d0
2648         endif
2649 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2650         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2651           iti = itortyp(itype(i-2))
2652         else
2653           iti=ntortyp+1
2654         endif
2655 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2656         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2657           iti1 = itortyp(itype(i-1))
2658         else
2659           iti1=ntortyp+1
2660         endif
2661 cd        write (iout,*) '*******i',i,' iti1',iti
2662 cd        write (iout,*) 'b1',b1(:,iti)
2663 cd        write (iout,*) 'b2',b2(:,iti)
2664 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2665 c        if (i .gt. iatel_s+2) then
2666         if (i .gt. nnt+2) then
2667           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2668           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2669           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2670      &    then
2671           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2672           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2673           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2674           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2675           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2676           endif
2677         else
2678           do k=1,2
2679             Ub2(k,i-2)=0.0d0
2680             Ctobr(k,i-2)=0.0d0 
2681             Dtobr2(k,i-2)=0.0d0
2682             do l=1,2
2683               EUg(l,k,i-2)=0.0d0
2684               CUg(l,k,i-2)=0.0d0
2685               DUg(l,k,i-2)=0.0d0
2686               DtUg2(l,k,i-2)=0.0d0
2687             enddo
2688           enddo
2689         endif
2690         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2691         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2692         do k=1,2
2693           muder(k,i-2)=Ub2der(k,i-2)
2694         enddo
2695 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2696         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2697           iti1 = itortyp(itype(i-1))
2698         else
2699           iti1=ntortyp+1
2700         endif
2701         do k=1,2
2702           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2703         enddo
2704 cd        write (iout,*) 'mu ',mu(:,i-2)
2705 cd        write (iout,*) 'mu1',mu1(:,i-2)
2706 cd        write (iout,*) 'mu2',mu2(:,i-2)
2707         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2708      &  then  
2709         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2710         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2711         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2712         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2713         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2714 C Vectors and matrices dependent on a single virtual-bond dihedral.
2715         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2716         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2717         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2718         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2719         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2720         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2721         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2722         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2723         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2724         endif
2725       enddo
2726 C Matrices dependent on two consecutive virtual-bond dihedrals.
2727 C The order of matrices is from left to right.
2728       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2729      &then
2730 c      do i=max0(ivec_start,2),ivec_end
2731       do i=2,nres-1
2732         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2733         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2734         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2735         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2736         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2737         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2738         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2739         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2740       enddo
2741       endif
2742 #if defined(MPI) && defined(PARMAT)
2743 #ifdef DEBUG
2744 c      if (fg_rank.eq.0) then
2745         write (iout,*) "Arrays UG and UGDER before GATHER"
2746         do i=1,nres-1
2747           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2748      &     ((ug(l,k,i),l=1,2),k=1,2),
2749      &     ((ugder(l,k,i),l=1,2),k=1,2)
2750         enddo
2751         write (iout,*) "Arrays UG2 and UG2DER"
2752         do i=1,nres-1
2753           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2754      &     ((ug2(l,k,i),l=1,2),k=1,2),
2755      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2756         enddo
2757         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2758         do i=1,nres-1
2759           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2760      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2761      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2762         enddo
2763         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2764         do i=1,nres-1
2765           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2766      &     costab(i),sintab(i),costab2(i),sintab2(i)
2767         enddo
2768         write (iout,*) "Array MUDER"
2769         do i=1,nres-1
2770           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2771         enddo
2772 c      endif
2773 #endif
2774       if (nfgtasks.gt.1) then
2775         time00=MPI_Wtime()
2776 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2777 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2778 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2779 #ifdef MATGATHER
2780         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2781      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2782      &   FG_COMM1,IERR)
2783         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2784      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2785      &   FG_COMM1,IERR)
2786         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2787      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2788      &   FG_COMM1,IERR)
2789         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2790      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2791      &   FG_COMM1,IERR)
2792         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2793      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2794      &   FG_COMM1,IERR)
2795         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2796      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2797      &   FG_COMM1,IERR)
2798         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2799      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2800      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2801         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2802      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2803      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2804         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2805      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2806      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2807         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2808      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2809      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2810         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2811      &  then
2812         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2813      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2814      &   FG_COMM1,IERR)
2815         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2816      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2817      &   FG_COMM1,IERR)
2818         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2819      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2820      &   FG_COMM1,IERR)
2821        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2822      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2823      &   FG_COMM1,IERR)
2824         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2825      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2826      &   FG_COMM1,IERR)
2827         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2828      &   ivec_count(fg_rank1),
2829      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2830      &   FG_COMM1,IERR)
2831         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2832      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2833      &   FG_COMM1,IERR)
2834         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2835      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2836      &   FG_COMM1,IERR)
2837         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2838      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2839      &   FG_COMM1,IERR)
2840         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2841      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2842      &   FG_COMM1,IERR)
2843         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2844      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2845      &   FG_COMM1,IERR)
2846         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2847      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2848      &   FG_COMM1,IERR)
2849         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2850      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2851      &   FG_COMM1,IERR)
2852         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2853      &   ivec_count(fg_rank1),
2854      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2855      &   FG_COMM1,IERR)
2856         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2857      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2858      &   FG_COMM1,IERR)
2859        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2860      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2861      &   FG_COMM1,IERR)
2862         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2863      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2864      &   FG_COMM1,IERR)
2865        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2866      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2867      &   FG_COMM1,IERR)
2868         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2869      &   ivec_count(fg_rank1),
2870      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2871      &   FG_COMM1,IERR)
2872         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2873      &   ivec_count(fg_rank1),
2874      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2875      &   FG_COMM1,IERR)
2876         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2877      &   ivec_count(fg_rank1),
2878      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2879      &   MPI_MAT2,FG_COMM1,IERR)
2880         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2881      &   ivec_count(fg_rank1),
2882      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2883      &   MPI_MAT2,FG_COMM1,IERR)
2884         endif
2885 #else
2886 c Passes matrix info through the ring
2887       isend=fg_rank1
2888       irecv=fg_rank1-1
2889       if (irecv.lt.0) irecv=nfgtasks1-1 
2890       iprev=irecv
2891       inext=fg_rank1+1
2892       if (inext.ge.nfgtasks1) inext=0
2893       do i=1,nfgtasks1-1
2894 c        write (iout,*) "isend",isend," irecv",irecv
2895 c        call flush(iout)
2896         lensend=lentyp(isend)
2897         lenrecv=lentyp(irecv)
2898 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2899 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2900 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2901 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2902 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2903 c        write (iout,*) "Gather ROTAT1"
2904 c        call flush(iout)
2905 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2906 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2907 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2908 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2909 c        write (iout,*) "Gather ROTAT2"
2910 c        call flush(iout)
2911         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2912      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2913      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2914      &   iprev,4400+irecv,FG_COMM,status,IERR)
2915 c        write (iout,*) "Gather ROTAT_OLD"
2916 c        call flush(iout)
2917         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2918      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2919      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2920      &   iprev,5500+irecv,FG_COMM,status,IERR)
2921 c        write (iout,*) "Gather PRECOMP11"
2922 c        call flush(iout)
2923         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2924      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2925      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2926      &   iprev,6600+irecv,FG_COMM,status,IERR)
2927 c        write (iout,*) "Gather PRECOMP12"
2928 c        call flush(iout)
2929         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2930      &  then
2931         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2932      &   MPI_ROTAT2(lensend),inext,7700+isend,
2933      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2934      &   iprev,7700+irecv,FG_COMM,status,IERR)
2935 c        write (iout,*) "Gather PRECOMP21"
2936 c        call flush(iout)
2937         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2938      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2939      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2940      &   iprev,8800+irecv,FG_COMM,status,IERR)
2941 c        write (iout,*) "Gather PRECOMP22"
2942 c        call flush(iout)
2943         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2944      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2945      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2946      &   MPI_PRECOMP23(lenrecv),
2947      &   iprev,9900+irecv,FG_COMM,status,IERR)
2948 c        write (iout,*) "Gather PRECOMP23"
2949 c        call flush(iout)
2950         endif
2951         isend=irecv
2952         irecv=irecv-1
2953         if (irecv.lt.0) irecv=nfgtasks1-1
2954       enddo
2955 #endif
2956         time_gather=time_gather+MPI_Wtime()-time00
2957       endif
2958 #ifdef DEBUG
2959 c      if (fg_rank.eq.0) then
2960         write (iout,*) "Arrays UG and UGDER"
2961         do i=1,nres-1
2962           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2963      &     ((ug(l,k,i),l=1,2),k=1,2),
2964      &     ((ugder(l,k,i),l=1,2),k=1,2)
2965         enddo
2966         write (iout,*) "Arrays UG2 and UG2DER"
2967         do i=1,nres-1
2968           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2969      &     ((ug2(l,k,i),l=1,2),k=1,2),
2970      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2971         enddo
2972         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2973         do i=1,nres-1
2974           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2975      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2976      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2977         enddo
2978         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2979         do i=1,nres-1
2980           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2981      &     costab(i),sintab(i),costab2(i),sintab2(i)
2982         enddo
2983         write (iout,*) "Array MUDER"
2984         do i=1,nres-1
2985           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2986         enddo
2987 c      endif
2988 #endif
2989 #endif
2990 cd      do i=1,nres
2991 cd        iti = itortyp(itype(i))
2992 cd        write (iout,*) i
2993 cd        do j=1,2
2994 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
2995 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
2996 cd        enddo
2997 cd      enddo
2998       return
2999       end
3000 C--------------------------------------------------------------------------
3001       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
3002 C
3003 C This subroutine calculates the average interaction energy and its gradient
3004 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
3005 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
3006 C The potential depends both on the distance of peptide-group centers and on 
3007 C the orientation of the CA-CA virtual bonds.
3008
3009       implicit real*8 (a-h,o-z)
3010 #ifdef MPI
3011       include 'mpif.h'
3012 #endif
3013       include 'DIMENSIONS'
3014       include 'COMMON.CONTROL'
3015       include 'COMMON.SETUP'
3016       include 'COMMON.IOUNITS'
3017       include 'COMMON.GEO'
3018       include 'COMMON.VAR'
3019       include 'COMMON.LOCAL'
3020       include 'COMMON.CHAIN'
3021       include 'COMMON.DERIV'
3022       include 'COMMON.INTERACT'
3023       include 'COMMON.CONTACTS'
3024       include 'COMMON.TORSION'
3025       include 'COMMON.VECTORS'
3026       include 'COMMON.FFIELD'
3027       include 'COMMON.TIME1'
3028       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3029      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3030       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3031      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3032       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3033      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3034      &    num_conti,j1,j2
3035 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3036 #ifdef MOMENT
3037       double precision scal_el /1.0d0/
3038 #else
3039       double precision scal_el /0.5d0/
3040 #endif
3041 C 12/13/98 
3042 C 13-go grudnia roku pamietnego... 
3043       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3044      &                   0.0d0,1.0d0,0.0d0,
3045      &                   0.0d0,0.0d0,1.0d0/
3046 cd      write(iout,*) 'In EELEC'
3047 cd      do i=1,nloctyp
3048 cd        write(iout,*) 'Type',i
3049 cd        write(iout,*) 'B1',B1(:,i)
3050 cd        write(iout,*) 'B2',B2(:,i)
3051 cd        write(iout,*) 'CC',CC(:,:,i)
3052 cd        write(iout,*) 'DD',DD(:,:,i)
3053 cd        write(iout,*) 'EE',EE(:,:,i)
3054 cd      enddo
3055 cd      call check_vecgrad
3056 cd      stop
3057       if (icheckgrad.eq.1) then
3058         do i=1,nres-1
3059           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
3060           do k=1,3
3061             dc_norm(k,i)=dc(k,i)*fac
3062           enddo
3063 c          write (iout,*) 'i',i,' fac',fac
3064         enddo
3065       endif
3066       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
3067      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
3068      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
3069 c        call vec_and_deriv
3070 #ifdef TIMING
3071         time01=MPI_Wtime()
3072 #endif
3073         call set_matrices
3074 #ifdef TIMING
3075         time_mat=time_mat+MPI_Wtime()-time01
3076 #endif
3077       endif
3078 cd      do i=1,nres-1
3079 cd        write (iout,*) 'i=',i
3080 cd        do k=1,3
3081 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
3082 cd        enddo
3083 cd        do k=1,3
3084 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3085 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3086 cd        enddo
3087 cd      enddo
3088       t_eelecij=0.0d0
3089       ees=0.0D0
3090       evdw1=0.0D0
3091       eel_loc=0.0d0 
3092       eello_turn3=0.0d0
3093       eello_turn4=0.0d0
3094       ind=0
3095       do i=1,nres
3096         num_cont_hb(i)=0
3097       enddo
3098 cd      print '(a)','Enter EELEC'
3099 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3100       do i=1,nres
3101         gel_loc_loc(i)=0.0d0
3102         gcorr_loc(i)=0.0d0
3103       enddo
3104 c
3105 c
3106 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3107 C
3108 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3109 C
3110       do i=iturn3_start,iturn3_end
3111         dxi=dc(1,i)
3112         dyi=dc(2,i)
3113         dzi=dc(3,i)
3114         dx_normi=dc_norm(1,i)
3115         dy_normi=dc_norm(2,i)
3116         dz_normi=dc_norm(3,i)
3117         xmedi=c(1,i)+0.5d0*dxi
3118         ymedi=c(2,i)+0.5d0*dyi
3119         zmedi=c(3,i)+0.5d0*dzi
3120         num_conti=0
3121         call eelecij(i,i+2,ees,evdw1,eel_loc)
3122         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3123         num_cont_hb(i)=num_conti
3124       enddo
3125       do i=iturn4_start,iturn4_end
3126         dxi=dc(1,i)
3127         dyi=dc(2,i)
3128         dzi=dc(3,i)
3129         dx_normi=dc_norm(1,i)
3130         dy_normi=dc_norm(2,i)
3131         dz_normi=dc_norm(3,i)
3132         xmedi=c(1,i)+0.5d0*dxi
3133         ymedi=c(2,i)+0.5d0*dyi
3134         zmedi=c(3,i)+0.5d0*dzi
3135         num_conti=num_cont_hb(i)
3136         call eelecij(i,i+3,ees,evdw1,eel_loc)
3137         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3138         num_cont_hb(i)=num_conti
3139       enddo   ! i
3140 c
3141 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3142 c
3143       do i=iatel_s,iatel_e
3144         dxi=dc(1,i)
3145         dyi=dc(2,i)
3146         dzi=dc(3,i)
3147         dx_normi=dc_norm(1,i)
3148         dy_normi=dc_norm(2,i)
3149         dz_normi=dc_norm(3,i)
3150         xmedi=c(1,i)+0.5d0*dxi
3151         ymedi=c(2,i)+0.5d0*dyi
3152         zmedi=c(3,i)+0.5d0*dzi
3153 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3154         num_conti=num_cont_hb(i)
3155         do j=ielstart(i),ielend(i)
3156           call eelecij(i,j,ees,evdw1,eel_loc)
3157         enddo ! j
3158         num_cont_hb(i)=num_conti
3159       enddo   ! i
3160 c      write (iout,*) "Number of loop steps in EELEC:",ind
3161 cd      do i=1,nres
3162 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3163 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3164 cd      enddo
3165 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3166 ccc      eel_loc=eel_loc+eello_turn3
3167 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3168       return
3169       end
3170 C-------------------------------------------------------------------------------
3171       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3172       implicit real*8 (a-h,o-z)
3173       include 'DIMENSIONS'
3174 #ifdef MPI
3175       include "mpif.h"
3176 #endif
3177       include 'COMMON.CONTROL'
3178       include 'COMMON.IOUNITS'
3179       include 'COMMON.GEO'
3180       include 'COMMON.VAR'
3181       include 'COMMON.LOCAL'
3182       include 'COMMON.CHAIN'
3183       include 'COMMON.DERIV'
3184       include 'COMMON.INTERACT'
3185       include 'COMMON.CONTACTS'
3186       include 'COMMON.TORSION'
3187       include 'COMMON.VECTORS'
3188       include 'COMMON.FFIELD'
3189       include 'COMMON.TIME1'
3190       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3191      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3192       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3193      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3194       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3195      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3196      &    num_conti,j1,j2
3197 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3198 #ifdef MOMENT
3199       double precision scal_el /1.0d0/
3200 #else
3201       double precision scal_el /0.5d0/
3202 #endif
3203 C 12/13/98 
3204 C 13-go grudnia roku pamietnego... 
3205       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3206      &                   0.0d0,1.0d0,0.0d0,
3207      &                   0.0d0,0.0d0,1.0d0/
3208 c          time00=MPI_Wtime()
3209 cd      write (iout,*) "eelecij",i,j
3210 c          ind=ind+1
3211           iteli=itel(i)
3212           itelj=itel(j)
3213           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3214           aaa=app(iteli,itelj)
3215           bbb=bpp(iteli,itelj)
3216           ael6i=ael6(iteli,itelj)
3217           ael3i=ael3(iteli,itelj) 
3218           dxj=dc(1,j)
3219           dyj=dc(2,j)
3220           dzj=dc(3,j)
3221           dx_normj=dc_norm(1,j)
3222           dy_normj=dc_norm(2,j)
3223           dz_normj=dc_norm(3,j)
3224           xj=c(1,j)+0.5D0*dxj-xmedi
3225           yj=c(2,j)+0.5D0*dyj-ymedi
3226           zj=c(3,j)+0.5D0*dzj-zmedi
3227           rij=xj*xj+yj*yj+zj*zj
3228           rrmij=1.0D0/rij
3229           rij=dsqrt(rij)
3230           rmij=1.0D0/rij
3231           r3ij=rrmij*rmij
3232           r6ij=r3ij*r3ij  
3233           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3234           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3235           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3236           fac=cosa-3.0D0*cosb*cosg
3237           ev1=aaa*r6ij*r6ij
3238 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3239           if (j.eq.i+2) ev1=scal_el*ev1
3240           ev2=bbb*r6ij
3241           fac3=ael6i*r6ij
3242           fac4=ael3i*r3ij
3243           evdwij=ev1+ev2
3244           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3245           el2=fac4*fac       
3246           eesij=el1+el2
3247 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3248           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3249           ees=ees+eesij
3250           evdw1=evdw1+evdwij
3251 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3252 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3253 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3254 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3255
3256           if (energy_dec) then 
3257               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3258               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3259           endif
3260
3261 C
3262 C Calculate contributions to the Cartesian gradient.
3263 C
3264 #ifdef SPLITELE
3265           facvdw=-6*rrmij*(ev1+evdwij)
3266           facel=-3*rrmij*(el1+eesij)
3267           fac1=fac
3268           erij(1)=xj*rmij
3269           erij(2)=yj*rmij
3270           erij(3)=zj*rmij
3271 *
3272 * Radial derivatives. First process both termini of the fragment (i,j)
3273 *
3274           ggg(1)=facel*xj
3275           ggg(2)=facel*yj
3276           ggg(3)=facel*zj
3277 c          do k=1,3
3278 c            ghalf=0.5D0*ggg(k)
3279 c            gelc(k,i)=gelc(k,i)+ghalf
3280 c            gelc(k,j)=gelc(k,j)+ghalf
3281 c          enddo
3282 c 9/28/08 AL Gradient compotents will be summed only at the end
3283           do k=1,3
3284             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3285             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3286           enddo
3287 *
3288 * Loop over residues i+1 thru j-1.
3289 *
3290 cgrad          do k=i+1,j-1
3291 cgrad            do l=1,3
3292 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3293 cgrad            enddo
3294 cgrad          enddo
3295           ggg(1)=facvdw*xj
3296           ggg(2)=facvdw*yj
3297           ggg(3)=facvdw*zj
3298 c          do k=1,3
3299 c            ghalf=0.5D0*ggg(k)
3300 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3301 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3302 c          enddo
3303 c 9/28/08 AL Gradient compotents will be summed only at the end
3304           do k=1,3
3305             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3306             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3307           enddo
3308 *
3309 * Loop over residues i+1 thru j-1.
3310 *
3311 cgrad          do k=i+1,j-1
3312 cgrad            do l=1,3
3313 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3314 cgrad            enddo
3315 cgrad          enddo
3316 #else
3317           facvdw=ev1+evdwij 
3318           facel=el1+eesij  
3319           fac1=fac
3320           fac=-3*rrmij*(facvdw+facvdw+facel)
3321           erij(1)=xj*rmij
3322           erij(2)=yj*rmij
3323           erij(3)=zj*rmij
3324 *
3325 * Radial derivatives. First process both termini of the fragment (i,j)
3326
3327           ggg(1)=fac*xj
3328           ggg(2)=fac*yj
3329           ggg(3)=fac*zj
3330 c          do k=1,3
3331 c            ghalf=0.5D0*ggg(k)
3332 c            gelc(k,i)=gelc(k,i)+ghalf
3333 c            gelc(k,j)=gelc(k,j)+ghalf
3334 c          enddo
3335 c 9/28/08 AL Gradient compotents will be summed only at the end
3336           do k=1,3
3337             gelc_long(k,j)=gelc(k,j)+ggg(k)
3338             gelc_long(k,i)=gelc(k,i)-ggg(k)
3339           enddo
3340 *
3341 * Loop over residues i+1 thru j-1.
3342 *
3343 cgrad          do k=i+1,j-1
3344 cgrad            do l=1,3
3345 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3346 cgrad            enddo
3347 cgrad          enddo
3348 c 9/28/08 AL Gradient compotents will be summed only at the end
3349           ggg(1)=facvdw*xj
3350           ggg(2)=facvdw*yj
3351           ggg(3)=facvdw*zj
3352           do k=1,3
3353             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3354             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3355           enddo
3356 #endif
3357 *
3358 * Angular part
3359 *          
3360           ecosa=2.0D0*fac3*fac1+fac4
3361           fac4=-3.0D0*fac4
3362           fac3=-6.0D0*fac3
3363           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3364           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3365           do k=1,3
3366             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3367             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3368           enddo
3369 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3370 cd   &          (dcosg(k),k=1,3)
3371           do k=1,3
3372             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3373           enddo
3374 c          do k=1,3
3375 c            ghalf=0.5D0*ggg(k)
3376 c            gelc(k,i)=gelc(k,i)+ghalf
3377 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3378 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3379 c            gelc(k,j)=gelc(k,j)+ghalf
3380 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3381 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3382 c          enddo
3383 cgrad          do k=i+1,j-1
3384 cgrad            do l=1,3
3385 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3386 cgrad            enddo
3387 cgrad          enddo
3388           do k=1,3
3389             gelc(k,i)=gelc(k,i)
3390      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3391      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3392             gelc(k,j)=gelc(k,j)
3393      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3394      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3395             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3396             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3397           enddo
3398           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3399      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3400      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3401 C
3402 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3403 C   energy of a peptide unit is assumed in the form of a second-order 
3404 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3405 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3406 C   are computed for EVERY pair of non-contiguous peptide groups.
3407 C
3408           if (j.lt.nres-1) then
3409             j1=j+1
3410             j2=j-1
3411           else
3412             j1=j-1
3413             j2=j-2
3414           endif
3415           kkk=0
3416           do k=1,2
3417             do l=1,2
3418               kkk=kkk+1
3419               muij(kkk)=mu(k,i)*mu(l,j)
3420             enddo
3421           enddo  
3422 cd         write (iout,*) 'EELEC: i',i,' j',j
3423 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3424 cd          write(iout,*) 'muij',muij
3425           ury=scalar(uy(1,i),erij)
3426           urz=scalar(uz(1,i),erij)
3427           vry=scalar(uy(1,j),erij)
3428           vrz=scalar(uz(1,j),erij)
3429           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3430           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3431           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3432           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3433           fac=dsqrt(-ael6i)*r3ij
3434           a22=a22*fac
3435           a23=a23*fac
3436           a32=a32*fac
3437           a33=a33*fac
3438 cd          write (iout,'(4i5,4f10.5)')
3439 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3440 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3441 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3442 cd     &      uy(:,j),uz(:,j)
3443 cd          write (iout,'(4f10.5)') 
3444 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3445 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3446 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3447 cd           write (iout,'(9f10.5/)') 
3448 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3449 C Derivatives of the elements of A in virtual-bond vectors
3450           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3451           do k=1,3
3452             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3453             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3454             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3455             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3456             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3457             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3458             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3459             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3460             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3461             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3462             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3463             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3464           enddo
3465 C Compute radial contributions to the gradient
3466           facr=-3.0d0*rrmij
3467           a22der=a22*facr
3468           a23der=a23*facr
3469           a32der=a32*facr
3470           a33der=a33*facr
3471           agg(1,1)=a22der*xj
3472           agg(2,1)=a22der*yj
3473           agg(3,1)=a22der*zj
3474           agg(1,2)=a23der*xj
3475           agg(2,2)=a23der*yj
3476           agg(3,2)=a23der*zj
3477           agg(1,3)=a32der*xj
3478           agg(2,3)=a32der*yj
3479           agg(3,3)=a32der*zj
3480           agg(1,4)=a33der*xj
3481           agg(2,4)=a33der*yj
3482           agg(3,4)=a33der*zj
3483 C Add the contributions coming from er
3484           fac3=-3.0d0*fac
3485           do k=1,3
3486             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3487             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3488             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3489             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3490           enddo
3491           do k=1,3
3492 C Derivatives in DC(i) 
3493 cgrad            ghalf1=0.5d0*agg(k,1)
3494 cgrad            ghalf2=0.5d0*agg(k,2)
3495 cgrad            ghalf3=0.5d0*agg(k,3)
3496 cgrad            ghalf4=0.5d0*agg(k,4)
3497             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3498      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3499             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3500      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3501             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3502      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3503             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3504      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3505 C Derivatives in DC(i+1)
3506             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3507      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3508             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3509      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3510             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3511      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3512             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3513      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3514 C Derivatives in DC(j)
3515             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3516      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3517             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3518      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3519             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3520      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3521             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3522      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3523 C Derivatives in DC(j+1) or DC(nres-1)
3524             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3525      &      -3.0d0*vryg(k,3)*ury)
3526             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3527      &      -3.0d0*vrzg(k,3)*ury)
3528             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3529      &      -3.0d0*vryg(k,3)*urz)
3530             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3531      &      -3.0d0*vrzg(k,3)*urz)
3532 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3533 cgrad              do l=1,4
3534 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3535 cgrad              enddo
3536 cgrad            endif
3537           enddo
3538           acipa(1,1)=a22
3539           acipa(1,2)=a23
3540           acipa(2,1)=a32
3541           acipa(2,2)=a33
3542           a22=-a22
3543           a23=-a23
3544           do l=1,2
3545             do k=1,3
3546               agg(k,l)=-agg(k,l)
3547               aggi(k,l)=-aggi(k,l)
3548               aggi1(k,l)=-aggi1(k,l)
3549               aggj(k,l)=-aggj(k,l)
3550               aggj1(k,l)=-aggj1(k,l)
3551             enddo
3552           enddo
3553           if (j.lt.nres-1) then
3554             a22=-a22
3555             a32=-a32
3556             do l=1,3,2
3557               do k=1,3
3558                 agg(k,l)=-agg(k,l)
3559                 aggi(k,l)=-aggi(k,l)
3560                 aggi1(k,l)=-aggi1(k,l)
3561                 aggj(k,l)=-aggj(k,l)
3562                 aggj1(k,l)=-aggj1(k,l)
3563               enddo
3564             enddo
3565           else
3566             a22=-a22
3567             a23=-a23
3568             a32=-a32
3569             a33=-a33
3570             do l=1,4
3571               do k=1,3
3572                 agg(k,l)=-agg(k,l)
3573                 aggi(k,l)=-aggi(k,l)
3574                 aggi1(k,l)=-aggi1(k,l)
3575                 aggj(k,l)=-aggj(k,l)
3576                 aggj1(k,l)=-aggj1(k,l)
3577               enddo
3578             enddo 
3579           endif    
3580           ENDIF ! WCORR
3581           IF (wel_loc.gt.0.0d0) THEN
3582 C Contribution to the local-electrostatic energy coming from the i-j pair
3583           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3584      &     +a33*muij(4)
3585 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3586
3587           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3588      &            'eelloc',i,j,eel_loc_ij
3589
3590           eel_loc=eel_loc+eel_loc_ij
3591 C Partial derivatives in virtual-bond dihedral angles gamma
3592           if (i.gt.1)
3593      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3594      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3595      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3596           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3597      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3598      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3599 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3600           do l=1,3
3601             ggg(l)=agg(l,1)*muij(1)+
3602      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3603             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3604             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3605 cgrad            ghalf=0.5d0*ggg(l)
3606 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3607 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3608           enddo
3609 cgrad          do k=i+1,j2
3610 cgrad            do l=1,3
3611 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3612 cgrad            enddo
3613 cgrad          enddo
3614 C Remaining derivatives of eello
3615           do l=1,3
3616             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3617      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3618             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3619      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3620             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3621      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3622             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3623      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3624           enddo
3625           ENDIF
3626 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3627 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3628           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3629      &       .and. num_conti.le.maxconts) then
3630 c            write (iout,*) i,j," entered corr"
3631 C
3632 C Calculate the contact function. The ith column of the array JCONT will 
3633 C contain the numbers of atoms that make contacts with the atom I (of numbers
3634 C greater than I). The arrays FACONT and GACONT will contain the values of
3635 C the contact function and its derivative.
3636 c           r0ij=1.02D0*rpp(iteli,itelj)
3637 c           r0ij=1.11D0*rpp(iteli,itelj)
3638             r0ij=2.20D0*rpp(iteli,itelj)
3639 c           r0ij=1.55D0*rpp(iteli,itelj)
3640             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3641             if (fcont.gt.0.0D0) then
3642               num_conti=num_conti+1
3643               if (num_conti.gt.maxconts) then
3644                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3645      &                         ' will skip next contacts for this conf.'
3646               else
3647                 jcont_hb(num_conti,i)=j
3648 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3649 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3650                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3651      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3652 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3653 C  terms.
3654                 d_cont(num_conti,i)=rij
3655 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3656 C     --- Electrostatic-interaction matrix --- 
3657                 a_chuj(1,1,num_conti,i)=a22
3658                 a_chuj(1,2,num_conti,i)=a23
3659                 a_chuj(2,1,num_conti,i)=a32
3660                 a_chuj(2,2,num_conti,i)=a33
3661 C     --- Gradient of rij
3662                 do kkk=1,3
3663                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3664                 enddo
3665                 kkll=0
3666                 do k=1,2
3667                   do l=1,2
3668                     kkll=kkll+1
3669                     do m=1,3
3670                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3671                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3672                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3673                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3674                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3675                     enddo
3676                   enddo
3677                 enddo
3678                 ENDIF
3679                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3680 C Calculate contact energies
3681                 cosa4=4.0D0*cosa
3682                 wij=cosa-3.0D0*cosb*cosg
3683                 cosbg1=cosb+cosg
3684                 cosbg2=cosb-cosg
3685 c               fac3=dsqrt(-ael6i)/r0ij**3     
3686                 fac3=dsqrt(-ael6i)*r3ij
3687 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3688                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3689                 if (ees0tmp.gt.0) then
3690                   ees0pij=dsqrt(ees0tmp)
3691                 else
3692                   ees0pij=0
3693                 endif
3694 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3695                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3696                 if (ees0tmp.gt.0) then
3697                   ees0mij=dsqrt(ees0tmp)
3698                 else
3699                   ees0mij=0
3700                 endif
3701 c               ees0mij=0.0D0
3702                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3703                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3704 C Diagnostics. Comment out or remove after debugging!
3705 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3706 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3707 c               ees0m(num_conti,i)=0.0D0
3708 C End diagnostics.
3709 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3710 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3711 C Angular derivatives of the contact function
3712                 ees0pij1=fac3/ees0pij 
3713                 ees0mij1=fac3/ees0mij
3714                 fac3p=-3.0D0*fac3*rrmij
3715                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3716                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3717 c               ees0mij1=0.0D0
3718                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3719                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3720                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3721                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3722                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3723                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3724                 ecosap=ecosa1+ecosa2
3725                 ecosbp=ecosb1+ecosb2
3726                 ecosgp=ecosg1+ecosg2
3727                 ecosam=ecosa1-ecosa2
3728                 ecosbm=ecosb1-ecosb2
3729                 ecosgm=ecosg1-ecosg2
3730 C Diagnostics
3731 c               ecosap=ecosa1
3732 c               ecosbp=ecosb1
3733 c               ecosgp=ecosg1
3734 c               ecosam=0.0D0
3735 c               ecosbm=0.0D0
3736 c               ecosgm=0.0D0
3737 C End diagnostics
3738                 facont_hb(num_conti,i)=fcont
3739                 fprimcont=fprimcont/rij
3740 cd              facont_hb(num_conti,i)=1.0D0
3741 C Following line is for diagnostics.
3742 cd              fprimcont=0.0D0
3743                 do k=1,3
3744                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3745                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3746                 enddo
3747                 do k=1,3
3748                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3749                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3750                 enddo
3751                 gggp(1)=gggp(1)+ees0pijp*xj
3752                 gggp(2)=gggp(2)+ees0pijp*yj
3753                 gggp(3)=gggp(3)+ees0pijp*zj
3754                 gggm(1)=gggm(1)+ees0mijp*xj
3755                 gggm(2)=gggm(2)+ees0mijp*yj
3756                 gggm(3)=gggm(3)+ees0mijp*zj
3757 C Derivatives due to the contact function
3758                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3759                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3760                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3761                 do k=1,3
3762 c
3763 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3764 c          following the change of gradient-summation algorithm.
3765 c
3766 cgrad                  ghalfp=0.5D0*gggp(k)
3767 cgrad                  ghalfm=0.5D0*gggm(k)
3768                   gacontp_hb1(k,num_conti,i)=!ghalfp
3769      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3770      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3771                   gacontp_hb2(k,num_conti,i)=!ghalfp
3772      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3773      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3774                   gacontp_hb3(k,num_conti,i)=gggp(k)
3775                   gacontm_hb1(k,num_conti,i)=!ghalfm
3776      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3777      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3778                   gacontm_hb2(k,num_conti,i)=!ghalfm
3779      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3780      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3781                   gacontm_hb3(k,num_conti,i)=gggm(k)
3782                 enddo
3783 C Diagnostics. Comment out or remove after debugging!
3784 cdiag           do k=1,3
3785 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3786 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3787 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3788 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3789 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3790 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3791 cdiag           enddo
3792               ENDIF ! wcorr
3793               endif  ! num_conti.le.maxconts
3794             endif  ! fcont.gt.0
3795           endif    ! j.gt.i+1
3796           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3797             do k=1,4
3798               do l=1,3
3799                 ghalf=0.5d0*agg(l,k)
3800                 aggi(l,k)=aggi(l,k)+ghalf
3801                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3802                 aggj(l,k)=aggj(l,k)+ghalf
3803               enddo
3804             enddo
3805             if (j.eq.nres-1 .and. i.lt.j-2) then
3806               do k=1,4
3807                 do l=1,3
3808                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3809                 enddo
3810               enddo
3811             endif
3812           endif
3813 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3814       return
3815       end
3816 C-----------------------------------------------------------------------------
3817       subroutine eturn3(i,eello_turn3)
3818 C Third- and fourth-order contributions from turns
3819       implicit real*8 (a-h,o-z)
3820       include 'DIMENSIONS'
3821       include 'COMMON.IOUNITS'
3822       include 'COMMON.GEO'
3823       include 'COMMON.VAR'
3824       include 'COMMON.LOCAL'
3825       include 'COMMON.CHAIN'
3826       include 'COMMON.DERIV'
3827       include 'COMMON.INTERACT'
3828       include 'COMMON.CONTACTS'
3829       include 'COMMON.TORSION'
3830       include 'COMMON.VECTORS'
3831       include 'COMMON.FFIELD'
3832       include 'COMMON.CONTROL'
3833       dimension ggg(3)
3834       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3835      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3836      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3837       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3838      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3839       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3840      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3841      &    num_conti,j1,j2
3842       j=i+2
3843 c      write (iout,*) "eturn3",i,j,j1,j2
3844       a_temp(1,1)=a22
3845       a_temp(1,2)=a23
3846       a_temp(2,1)=a32
3847       a_temp(2,2)=a33
3848 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3849 C
3850 C               Third-order contributions
3851 C        
3852 C                 (i+2)o----(i+3)
3853 C                      | |
3854 C                      | |
3855 C                 (i+1)o----i
3856 C
3857 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3858 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3859         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3860         call transpose2(auxmat(1,1),auxmat1(1,1))
3861         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3862         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3863         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3864      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3865 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3866 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3867 cd     &    ' eello_turn3_num',4*eello_turn3_num
3868 C Derivatives in gamma(i)
3869         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3870         call transpose2(auxmat2(1,1),auxmat3(1,1))
3871         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3872         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3873 C Derivatives in gamma(i+1)
3874         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3875         call transpose2(auxmat2(1,1),auxmat3(1,1))
3876         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3877         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3878      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3879 C Cartesian derivatives
3880         do l=1,3
3881 c            ghalf1=0.5d0*agg(l,1)
3882 c            ghalf2=0.5d0*agg(l,2)
3883 c            ghalf3=0.5d0*agg(l,3)
3884 c            ghalf4=0.5d0*agg(l,4)
3885           a_temp(1,1)=aggi(l,1)!+ghalf1
3886           a_temp(1,2)=aggi(l,2)!+ghalf2
3887           a_temp(2,1)=aggi(l,3)!+ghalf3
3888           a_temp(2,2)=aggi(l,4)!+ghalf4
3889           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3890           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3891      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3892           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3893           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3894           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3895           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3896           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3897           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3898      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3899           a_temp(1,1)=aggj(l,1)!+ghalf1
3900           a_temp(1,2)=aggj(l,2)!+ghalf2
3901           a_temp(2,1)=aggj(l,3)!+ghalf3
3902           a_temp(2,2)=aggj(l,4)!+ghalf4
3903           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3904           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3905      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3906           a_temp(1,1)=aggj1(l,1)
3907           a_temp(1,2)=aggj1(l,2)
3908           a_temp(2,1)=aggj1(l,3)
3909           a_temp(2,2)=aggj1(l,4)
3910           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3911           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3912      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3913         enddo
3914       return
3915       end
3916 C-------------------------------------------------------------------------------
3917       subroutine eturn4(i,eello_turn4)
3918 C Third- and fourth-order contributions from turns
3919       implicit real*8 (a-h,o-z)
3920       include 'DIMENSIONS'
3921       include 'COMMON.IOUNITS'
3922       include 'COMMON.GEO'
3923       include 'COMMON.VAR'
3924       include 'COMMON.LOCAL'
3925       include 'COMMON.CHAIN'
3926       include 'COMMON.DERIV'
3927       include 'COMMON.INTERACT'
3928       include 'COMMON.CONTACTS'
3929       include 'COMMON.TORSION'
3930       include 'COMMON.VECTORS'
3931       include 'COMMON.FFIELD'
3932       include 'COMMON.CONTROL'
3933       dimension ggg(3)
3934       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3935      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3936      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3937       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3938      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3939       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3940      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3941      &    num_conti,j1,j2
3942       j=i+3
3943 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3944 C
3945 C               Fourth-order contributions
3946 C        
3947 C                 (i+3)o----(i+4)
3948 C                     /  |
3949 C               (i+2)o   |
3950 C                     \  |
3951 C                 (i+1)o----i
3952 C
3953 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3954 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3955 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3956         a_temp(1,1)=a22
3957         a_temp(1,2)=a23
3958         a_temp(2,1)=a32
3959         a_temp(2,2)=a33
3960         iti1=itortyp(itype(i+1))
3961         iti2=itortyp(itype(i+2))
3962         iti3=itortyp(itype(i+3))
3963 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3964         call transpose2(EUg(1,1,i+1),e1t(1,1))
3965         call transpose2(Eug(1,1,i+2),e2t(1,1))
3966         call transpose2(Eug(1,1,i+3),e3t(1,1))
3967         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3968         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3969         s1=scalar2(b1(1,iti2),auxvec(1))
3970         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3971         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3972         s2=scalar2(b1(1,iti1),auxvec(1))
3973         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3974         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3975         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3976         eello_turn4=eello_turn4-(s1+s2+s3)
3977         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3978      &      'eturn4',i,j,-(s1+s2+s3)
3979 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3980 cd     &    ' eello_turn4_num',8*eello_turn4_num
3981 C Derivatives in gamma(i)
3982         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
3983         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
3984         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
3985         s1=scalar2(b1(1,iti2),auxvec(1))
3986         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
3987         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3988         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
3989 C Derivatives in gamma(i+1)
3990         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
3991         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
3992         s2=scalar2(b1(1,iti1),auxvec(1))
3993         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
3994         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
3995         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3996         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
3997 C Derivatives in gamma(i+2)
3998         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
3999         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
4000         s1=scalar2(b1(1,iti2),auxvec(1))
4001         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
4002         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
4003         s2=scalar2(b1(1,iti1),auxvec(1))
4004         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
4005         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
4006         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4007         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
4008 C Cartesian derivatives
4009 C Derivatives of this turn contributions in DC(i+2)
4010         if (j.lt.nres-1) then
4011           do l=1,3
4012             a_temp(1,1)=agg(l,1)
4013             a_temp(1,2)=agg(l,2)
4014             a_temp(2,1)=agg(l,3)
4015             a_temp(2,2)=agg(l,4)
4016             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4017             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4018             s1=scalar2(b1(1,iti2),auxvec(1))
4019             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4020             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4021             s2=scalar2(b1(1,iti1),auxvec(1))
4022             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4023             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4024             s3=0.5d0*(pizda(1,1)+pizda(2,2))
4025             ggg(l)=-(s1+s2+s3)
4026             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
4027           enddo
4028         endif
4029 C Remaining derivatives of this turn contribution
4030         do l=1,3
4031           a_temp(1,1)=aggi(l,1)
4032           a_temp(1,2)=aggi(l,2)
4033           a_temp(2,1)=aggi(l,3)
4034           a_temp(2,2)=aggi(l,4)
4035           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4036           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4037           s1=scalar2(b1(1,iti2),auxvec(1))
4038           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4039           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4040           s2=scalar2(b1(1,iti1),auxvec(1))
4041           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4042           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4043           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4044           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
4045           a_temp(1,1)=aggi1(l,1)
4046           a_temp(1,2)=aggi1(l,2)
4047           a_temp(2,1)=aggi1(l,3)
4048           a_temp(2,2)=aggi1(l,4)
4049           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4050           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4051           s1=scalar2(b1(1,iti2),auxvec(1))
4052           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4053           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4054           s2=scalar2(b1(1,iti1),auxvec(1))
4055           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4056           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4057           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4058           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
4059           a_temp(1,1)=aggj(l,1)
4060           a_temp(1,2)=aggj(l,2)
4061           a_temp(2,1)=aggj(l,3)
4062           a_temp(2,2)=aggj(l,4)
4063           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4064           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4065           s1=scalar2(b1(1,iti2),auxvec(1))
4066           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4067           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4068           s2=scalar2(b1(1,iti1),auxvec(1))
4069           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4070           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4071           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4072           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
4073           a_temp(1,1)=aggj1(l,1)
4074           a_temp(1,2)=aggj1(l,2)
4075           a_temp(2,1)=aggj1(l,3)
4076           a_temp(2,2)=aggj1(l,4)
4077           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4078           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4079           s1=scalar2(b1(1,iti2),auxvec(1))
4080           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4081           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4082           s2=scalar2(b1(1,iti1),auxvec(1))
4083           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4084           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4085           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4086 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4087           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4088         enddo
4089       return
4090       end
4091 C-----------------------------------------------------------------------------
4092       subroutine vecpr(u,v,w)
4093       implicit real*8(a-h,o-z)
4094       dimension u(3),v(3),w(3)
4095       w(1)=u(2)*v(3)-u(3)*v(2)
4096       w(2)=-u(1)*v(3)+u(3)*v(1)
4097       w(3)=u(1)*v(2)-u(2)*v(1)
4098       return
4099       end
4100 C-----------------------------------------------------------------------------
4101       subroutine unormderiv(u,ugrad,unorm,ungrad)
4102 C This subroutine computes the derivatives of a normalized vector u, given
4103 C the derivatives computed without normalization conditions, ugrad. Returns
4104 C ungrad.
4105       implicit none
4106       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4107       double precision vec(3)
4108       double precision scalar
4109       integer i,j
4110 c      write (2,*) 'ugrad',ugrad
4111 c      write (2,*) 'u',u
4112       do i=1,3
4113         vec(i)=scalar(ugrad(1,i),u(1))
4114       enddo
4115 c      write (2,*) 'vec',vec
4116       do i=1,3
4117         do j=1,3
4118           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4119         enddo
4120       enddo
4121 c      write (2,*) 'ungrad',ungrad
4122       return
4123       end
4124 C-----------------------------------------------------------------------------
4125       subroutine escp_soft_sphere(evdw2,evdw2_14)
4126 C
4127 C This subroutine calculates the excluded-volume interaction energy between
4128 C peptide-group centers and side chains and its gradient in virtual-bond and
4129 C side-chain vectors.
4130 C
4131       implicit real*8 (a-h,o-z)
4132       include 'DIMENSIONS'
4133       include 'COMMON.GEO'
4134       include 'COMMON.VAR'
4135       include 'COMMON.LOCAL'
4136       include 'COMMON.CHAIN'
4137       include 'COMMON.DERIV'
4138       include 'COMMON.INTERACT'
4139       include 'COMMON.FFIELD'
4140       include 'COMMON.IOUNITS'
4141       include 'COMMON.CONTROL'
4142       dimension ggg(3)
4143       evdw2=0.0D0
4144       evdw2_14=0.0d0
4145       r0_scp=4.5d0
4146 cd    print '(a)','Enter ESCP'
4147 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4148       do i=iatscp_s,iatscp_e
4149         iteli=itel(i)
4150         xi=0.5D0*(c(1,i)+c(1,i+1))
4151         yi=0.5D0*(c(2,i)+c(2,i+1))
4152         zi=0.5D0*(c(3,i)+c(3,i+1))
4153
4154         do iint=1,nscp_gr(i)
4155
4156         do j=iscpstart(i,iint),iscpend(i,iint)
4157           itypj=itype(j)
4158 C Uncomment following three lines for SC-p interactions
4159 c         xj=c(1,nres+j)-xi
4160 c         yj=c(2,nres+j)-yi
4161 c         zj=c(3,nres+j)-zi
4162 C Uncomment following three lines for Ca-p interactions
4163           xj=c(1,j)-xi
4164           yj=c(2,j)-yi
4165           zj=c(3,j)-zi
4166           rij=xj*xj+yj*yj+zj*zj
4167           r0ij=r0_scp
4168           r0ijsq=r0ij*r0ij
4169           if (rij.lt.r0ijsq) then
4170             evdwij=0.25d0*(rij-r0ijsq)**2
4171             fac=rij-r0ijsq
4172           else
4173             evdwij=0.0d0
4174             fac=0.0d0
4175           endif 
4176           evdw2=evdw2+evdwij
4177 C
4178 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4179 C
4180           ggg(1)=xj*fac
4181           ggg(2)=yj*fac
4182           ggg(3)=zj*fac
4183 cgrad          if (j.lt.i) then
4184 cd          write (iout,*) 'j<i'
4185 C Uncomment following three lines for SC-p interactions
4186 c           do k=1,3
4187 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4188 c           enddo
4189 cgrad          else
4190 cd          write (iout,*) 'j>i'
4191 cgrad            do k=1,3
4192 cgrad              ggg(k)=-ggg(k)
4193 C Uncomment following line for SC-p interactions
4194 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4195 cgrad            enddo
4196 cgrad          endif
4197 cgrad          do k=1,3
4198 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4199 cgrad          enddo
4200 cgrad          kstart=min0(i+1,j)
4201 cgrad          kend=max0(i-1,j-1)
4202 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4203 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4204 cgrad          do k=kstart,kend
4205 cgrad            do l=1,3
4206 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4207 cgrad            enddo
4208 cgrad          enddo
4209           do k=1,3
4210             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4211             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4212           enddo
4213         enddo
4214
4215         enddo ! iint
4216       enddo ! i
4217       return
4218       end
4219 C-----------------------------------------------------------------------------
4220       subroutine escp(evdw2,evdw2_14)
4221 C
4222 C This subroutine calculates the excluded-volume interaction energy between
4223 C peptide-group centers and side chains and its gradient in virtual-bond and
4224 C side-chain vectors.
4225 C
4226       implicit real*8 (a-h,o-z)
4227       include 'DIMENSIONS'
4228       include 'COMMON.GEO'
4229       include 'COMMON.VAR'
4230       include 'COMMON.LOCAL'
4231       include 'COMMON.CHAIN'
4232       include 'COMMON.DERIV'
4233       include 'COMMON.INTERACT'
4234       include 'COMMON.FFIELD'
4235       include 'COMMON.IOUNITS'
4236       include 'COMMON.CONTROL'
4237       dimension ggg(3)
4238       evdw2=0.0D0
4239       evdw2_14=0.0d0
4240 cd    print '(a)','Enter ESCP'
4241 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4242       do i=iatscp_s,iatscp_e
4243         iteli=itel(i)
4244         xi=0.5D0*(c(1,i)+c(1,i+1))
4245         yi=0.5D0*(c(2,i)+c(2,i+1))
4246         zi=0.5D0*(c(3,i)+c(3,i+1))
4247
4248         do iint=1,nscp_gr(i)
4249
4250         do j=iscpstart(i,iint),iscpend(i,iint)
4251           itypj=itype(j)
4252 C Uncomment following three lines for SC-p interactions
4253 c         xj=c(1,nres+j)-xi
4254 c         yj=c(2,nres+j)-yi
4255 c         zj=c(3,nres+j)-zi
4256 C Uncomment following three lines for Ca-p interactions
4257           xj=c(1,j)-xi
4258           yj=c(2,j)-yi
4259           zj=c(3,j)-zi
4260           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4261           fac=rrij**expon2
4262           e1=fac*fac*aad(itypj,iteli)
4263           e2=fac*bad(itypj,iteli)
4264           if (iabs(j-i) .le. 2) then
4265             e1=scal14*e1
4266             e2=scal14*e2
4267             evdw2_14=evdw2_14+e1+e2
4268           endif
4269           evdwij=e1+e2
4270           evdw2=evdw2+evdwij
4271           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4272      &        'evdw2',i,j,evdwij
4273 C
4274 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4275 C
4276           fac=-(evdwij+e1)*rrij
4277           ggg(1)=xj*fac
4278           ggg(2)=yj*fac
4279           ggg(3)=zj*fac
4280 cgrad          if (j.lt.i) then
4281 cd          write (iout,*) 'j<i'
4282 C Uncomment following three lines for SC-p interactions
4283 c           do k=1,3
4284 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4285 c           enddo
4286 cgrad          else
4287 cd          write (iout,*) 'j>i'
4288 cgrad            do k=1,3
4289 cgrad              ggg(k)=-ggg(k)
4290 C Uncomment following line for SC-p interactions
4291 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4292 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4293 cgrad            enddo
4294 cgrad          endif
4295 cgrad          do k=1,3
4296 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4297 cgrad          enddo
4298 cgrad          kstart=min0(i+1,j)
4299 cgrad          kend=max0(i-1,j-1)
4300 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4301 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4302 cgrad          do k=kstart,kend
4303 cgrad            do l=1,3
4304 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4305 cgrad            enddo
4306 cgrad          enddo
4307           do k=1,3
4308             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4309             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4310           enddo
4311         enddo
4312
4313         enddo ! iint
4314       enddo ! i
4315       do i=1,nct
4316         do j=1,3
4317           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4318           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4319           gradx_scp(j,i)=expon*gradx_scp(j,i)
4320         enddo
4321       enddo
4322 C******************************************************************************
4323 C
4324 C                              N O T E !!!
4325 C
4326 C To save time the factor EXPON has been extracted from ALL components
4327 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4328 C use!
4329 C
4330 C******************************************************************************
4331       return
4332       end
4333 C--------------------------------------------------------------------------
4334       subroutine edis(ehpb)
4335
4336 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4337 C
4338       implicit real*8 (a-h,o-z)
4339       include 'DIMENSIONS'
4340       include 'COMMON.SBRIDGE'
4341       include 'COMMON.CHAIN'
4342       include 'COMMON.DERIV'
4343       include 'COMMON.VAR'
4344       include 'COMMON.INTERACT'
4345       include 'COMMON.IOUNITS'
4346       dimension ggg(3)
4347       ehpb=0.0D0
4348 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4349 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4350       if (link_end.eq.0) return
4351       do i=link_start,link_end
4352 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4353 C CA-CA distance used in regularization of structure.
4354         ii=ihpb(i)
4355         jj=jhpb(i)
4356 C iii and jjj point to the residues for which the distance is assigned.
4357         if (ii.gt.nres) then
4358           iii=ii-nres
4359           jjj=jj-nres 
4360         else
4361           iii=ii
4362           jjj=jj
4363         endif
4364 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4365 c     &    dhpb(i),dhpb1(i),forcon(i)
4366 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4367 C    distance and angle dependent SS bond potential.
4368 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4369 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4370         if (.not.dyn_ss .and. i.le.nss) then
4371 C 15/02/13 CC dynamic SSbond - additional check
4372          if (ii.gt.nres 
4373      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4374           call ssbond_ene(iii,jjj,eij)
4375           ehpb=ehpb+2*eij
4376          endif
4377 cd          write (iout,*) "eij",eij
4378         else if (ii.gt.nres .and. jj.gt.nres) then
4379 c Restraints from contact prediction
4380           dd=dist(ii,jj)
4381           if (dhpb1(i).gt.0.0d0) then
4382             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4383             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4384 c            write (iout,*) "beta nmr",
4385 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4386           else
4387             dd=dist(ii,jj)
4388             rdis=dd-dhpb(i)
4389 C Get the force constant corresponding to this distance.
4390             waga=forcon(i)
4391 C Calculate the contribution to energy.
4392             ehpb=ehpb+waga*rdis*rdis
4393 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4394 C
4395 C Evaluate gradient.
4396 C
4397             fac=waga*rdis/dd
4398           endif  
4399           do j=1,3
4400             ggg(j)=fac*(c(j,jj)-c(j,ii))
4401           enddo
4402           do j=1,3
4403             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4404             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4405           enddo
4406           do k=1,3
4407             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4408             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4409           enddo
4410         else
4411 C Calculate the distance between the two points and its difference from the
4412 C target distance.
4413           dd=dist(ii,jj)
4414           if (dhpb1(i).gt.0.0d0) then
4415             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4416             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4417 c            write (iout,*) "alph nmr",
4418 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4419           else
4420             rdis=dd-dhpb(i)
4421 C Get the force constant corresponding to this distance.
4422             waga=forcon(i)
4423 C Calculate the contribution to energy.
4424             ehpb=ehpb+waga*rdis*rdis
4425 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4426 C
4427 C Evaluate gradient.
4428 C
4429             fac=waga*rdis/dd
4430           endif
4431 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4432 cd   &   ' waga=',waga,' fac=',fac
4433             do j=1,3
4434               ggg(j)=fac*(c(j,jj)-c(j,ii))
4435             enddo
4436 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4437 C If this is a SC-SC distance, we need to calculate the contributions to the
4438 C Cartesian gradient in the SC vectors (ghpbx).
4439           if (iii.lt.ii) then
4440           do j=1,3
4441             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4442             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4443           enddo
4444           endif
4445 cgrad        do j=iii,jjj-1
4446 cgrad          do k=1,3
4447 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4448 cgrad          enddo
4449 cgrad        enddo
4450           do k=1,3
4451             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4452             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4453           enddo
4454         endif
4455       enddo
4456       ehpb=0.5D0*ehpb
4457       return
4458       end
4459 C--------------------------------------------------------------------------
4460       subroutine ssbond_ene(i,j,eij)
4461
4462 C Calculate the distance and angle dependent SS-bond potential energy
4463 C using a free-energy function derived based on RHF/6-31G** ab initio
4464 C calculations of diethyl disulfide.
4465 C
4466 C A. Liwo and U. Kozlowska, 11/24/03
4467 C
4468       implicit real*8 (a-h,o-z)
4469       include 'DIMENSIONS'
4470       include 'COMMON.SBRIDGE'
4471       include 'COMMON.CHAIN'
4472       include 'COMMON.DERIV'
4473       include 'COMMON.LOCAL'
4474       include 'COMMON.INTERACT'
4475       include 'COMMON.VAR'
4476       include 'COMMON.IOUNITS'
4477       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4478       itypi=itype(i)
4479       xi=c(1,nres+i)
4480       yi=c(2,nres+i)
4481       zi=c(3,nres+i)
4482       dxi=dc_norm(1,nres+i)
4483       dyi=dc_norm(2,nres+i)
4484       dzi=dc_norm(3,nres+i)
4485 c      dsci_inv=dsc_inv(itypi)
4486       dsci_inv=vbld_inv(nres+i)
4487       itypj=itype(j)
4488 c      dscj_inv=dsc_inv(itypj)
4489       dscj_inv=vbld_inv(nres+j)
4490       xj=c(1,nres+j)-xi
4491       yj=c(2,nres+j)-yi
4492       zj=c(3,nres+j)-zi
4493       dxj=dc_norm(1,nres+j)
4494       dyj=dc_norm(2,nres+j)
4495       dzj=dc_norm(3,nres+j)
4496       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4497       rij=dsqrt(rrij)
4498       erij(1)=xj*rij
4499       erij(2)=yj*rij
4500       erij(3)=zj*rij
4501       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4502       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4503       om12=dxi*dxj+dyi*dyj+dzi*dzj
4504       do k=1,3
4505         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4506         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4507       enddo
4508       rij=1.0d0/rij
4509       deltad=rij-d0cm
4510       deltat1=1.0d0-om1
4511       deltat2=1.0d0+om2
4512       deltat12=om2-om1+2.0d0
4513       cosphi=om12-om1*om2
4514       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4515      &  +akct*deltad*deltat12+ebr
4516      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4517 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4518 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4519 c     &  " deltat12",deltat12," eij",eij 
4520       ed=2*akcm*deltad+akct*deltat12
4521       pom1=akct*deltad
4522       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4523       eom1=-2*akth*deltat1-pom1-om2*pom2
4524       eom2= 2*akth*deltat2+pom1-om1*pom2
4525       eom12=pom2
4526       do k=1,3
4527         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4528         ghpbx(k,i)=ghpbx(k,i)-ggk
4529      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4530      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4531         ghpbx(k,j)=ghpbx(k,j)+ggk
4532      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4533      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4534         ghpbc(k,i)=ghpbc(k,i)-ggk
4535         ghpbc(k,j)=ghpbc(k,j)+ggk
4536       enddo
4537 C
4538 C Calculate the components of the gradient in DC and X
4539 C
4540 cgrad      do k=i,j-1
4541 cgrad        do l=1,3
4542 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4543 cgrad        enddo
4544 cgrad      enddo
4545       return
4546       end
4547 C--------------------------------------------------------------------------
4548       subroutine ebond(estr)
4549 c
4550 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4551 c
4552       implicit real*8 (a-h,o-z)
4553       include 'DIMENSIONS'
4554       include 'COMMON.LOCAL'
4555       include 'COMMON.GEO'
4556       include 'COMMON.INTERACT'
4557       include 'COMMON.DERIV'
4558       include 'COMMON.VAR'
4559       include 'COMMON.CHAIN'
4560       include 'COMMON.IOUNITS'
4561       include 'COMMON.NAMES'
4562       include 'COMMON.FFIELD'
4563       include 'COMMON.CONTROL'
4564       include 'COMMON.SETUP'
4565       double precision u(3),ud(3)
4566       estr=0.0d0
4567       do i=ibondp_start,ibondp_end
4568         diff = vbld(i)-vbldp0
4569 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4570         estr=estr+diff*diff
4571         do j=1,3
4572           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4573         enddo
4574 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4575       enddo
4576       estr=0.5d0*AKP*estr
4577 c
4578 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4579 c
4580       do i=ibond_start,ibond_end
4581         iti=itype(i)
4582         if (iti.ne.10) then
4583           nbi=nbondterm(iti)
4584           if (nbi.eq.1) then
4585             diff=vbld(i+nres)-vbldsc0(1,iti)
4586 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4587 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4588             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4589             do j=1,3
4590               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4591             enddo
4592           else
4593             do j=1,nbi
4594               diff=vbld(i+nres)-vbldsc0(j,iti) 
4595               ud(j)=aksc(j,iti)*diff
4596               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4597             enddo
4598             uprod=u(1)
4599             do j=2,nbi
4600               uprod=uprod*u(j)
4601             enddo
4602             usum=0.0d0
4603             usumsqder=0.0d0
4604             do j=1,nbi
4605               uprod1=1.0d0
4606               uprod2=1.0d0
4607               do k=1,nbi
4608                 if (k.ne.j) then
4609                   uprod1=uprod1*u(k)
4610                   uprod2=uprod2*u(k)*u(k)
4611                 endif
4612               enddo
4613               usum=usum+uprod1
4614               usumsqder=usumsqder+ud(j)*uprod2   
4615             enddo
4616             estr=estr+uprod/usum
4617             do j=1,3
4618              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4619             enddo
4620           endif
4621         endif
4622       enddo
4623       return
4624       end 
4625 #ifdef CRYST_THETA
4626 C--------------------------------------------------------------------------
4627       subroutine ebend(etheta)
4628 C
4629 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4630 C angles gamma and its derivatives in consecutive thetas and gammas.
4631 C
4632       implicit real*8 (a-h,o-z)
4633       include 'DIMENSIONS'
4634       include 'COMMON.LOCAL'
4635       include 'COMMON.GEO'
4636       include 'COMMON.INTERACT'
4637       include 'COMMON.DERIV'
4638       include 'COMMON.VAR'
4639       include 'COMMON.CHAIN'
4640       include 'COMMON.IOUNITS'
4641       include 'COMMON.NAMES'
4642       include 'COMMON.FFIELD'
4643       include 'COMMON.CONTROL'
4644       common /calcthet/ term1,term2,termm,diffak,ratak,
4645      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4646      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4647       double precision y(2),z(2)
4648       delta=0.02d0*pi
4649 c      time11=dexp(-2*time)
4650 c      time12=1.0d0
4651       etheta=0.0D0
4652 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4653       do i=ithet_start,ithet_end
4654 C Zero the energy function and its derivative at 0 or pi.
4655         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4656         it=itype(i-1)
4657         if (i.gt.3) then
4658 #ifdef OSF
4659           phii=phi(i)
4660           if (phii.ne.phii) phii=150.0
4661 #else
4662           phii=phi(i)
4663 #endif
4664           y(1)=dcos(phii)
4665           y(2)=dsin(phii)
4666         else 
4667           y(1)=0.0D0
4668           y(2)=0.0D0
4669         endif
4670         if (i.lt.nres) then
4671 #ifdef OSF
4672           phii1=phi(i+1)
4673           if (phii1.ne.phii1) phii1=150.0
4674           phii1=pinorm(phii1)
4675           z(1)=cos(phii1)
4676 #else
4677           phii1=phi(i+1)
4678           z(1)=dcos(phii1)
4679 #endif
4680           z(2)=dsin(phii1)
4681         else
4682           z(1)=0.0D0
4683           z(2)=0.0D0
4684         endif  
4685 C Calculate the "mean" value of theta from the part of the distribution
4686 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4687 C In following comments this theta will be referred to as t_c.
4688         thet_pred_mean=0.0d0
4689         do k=1,2
4690           athetk=athet(k,it)
4691           bthetk=bthet(k,it)
4692           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4693         enddo
4694         dthett=thet_pred_mean*ssd
4695         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4696 C Derivatives of the "mean" values in gamma1 and gamma2.
4697         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4698         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4699         if (theta(i).gt.pi-delta) then
4700           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4701      &         E_tc0)
4702           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4703           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4704           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4705      &        E_theta)
4706           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4707      &        E_tc)
4708         else if (theta(i).lt.delta) then
4709           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4710           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4711           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4712      &        E_theta)
4713           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4714           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4715      &        E_tc)
4716         else
4717           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4718      &        E_theta,E_tc)
4719         endif
4720         etheta=etheta+ethetai
4721         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4722      &      'ebend',i,ethetai
4723         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4724         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4725         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg)
4726       enddo
4727 C Ufff.... We've done all this!!! 
4728       return
4729       end
4730 C---------------------------------------------------------------------------
4731       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4732      &     E_tc)
4733       implicit real*8 (a-h,o-z)
4734       include 'DIMENSIONS'
4735       include 'COMMON.LOCAL'
4736       include 'COMMON.IOUNITS'
4737       common /calcthet/ term1,term2,termm,diffak,ratak,
4738      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4739      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4740 C Calculate the contributions to both Gaussian lobes.
4741 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4742 C The "polynomial part" of the "standard deviation" of this part of 
4743 C the distribution.
4744         sig=polthet(3,it)
4745         do j=2,0,-1
4746           sig=sig*thet_pred_mean+polthet(j,it)
4747         enddo
4748 C Derivative of the "interior part" of the "standard deviation of the" 
4749 C gamma-dependent Gaussian lobe in t_c.
4750         sigtc=3*polthet(3,it)
4751         do j=2,1,-1
4752           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4753         enddo
4754         sigtc=sig*sigtc
4755 C Set the parameters of both Gaussian lobes of the distribution.
4756 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4757         fac=sig*sig+sigc0(it)
4758         sigcsq=fac+fac
4759         sigc=1.0D0/sigcsq
4760 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4761         sigsqtc=-4.0D0*sigcsq*sigtc
4762 c       print *,i,sig,sigtc,sigsqtc
4763 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4764         sigtc=-sigtc/(fac*fac)
4765 C Following variable is sigma(t_c)**(-2)
4766         sigcsq=sigcsq*sigcsq
4767         sig0i=sig0(it)
4768         sig0inv=1.0D0/sig0i**2
4769         delthec=thetai-thet_pred_mean
4770         delthe0=thetai-theta0i
4771         term1=-0.5D0*sigcsq*delthec*delthec
4772         term2=-0.5D0*sig0inv*delthe0*delthe0
4773 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4774 C NaNs in taking the logarithm. We extract the largest exponent which is added
4775 C to the energy (this being the log of the distribution) at the end of energy
4776 C term evaluation for this virtual-bond angle.
4777         if (term1.gt.term2) then
4778           termm=term1
4779           term2=dexp(term2-termm)
4780           term1=1.0d0
4781         else
4782           termm=term2
4783           term1=dexp(term1-termm)
4784           term2=1.0d0
4785         endif
4786 C The ratio between the gamma-independent and gamma-dependent lobes of
4787 C the distribution is a Gaussian function of thet_pred_mean too.
4788         diffak=gthet(2,it)-thet_pred_mean
4789         ratak=diffak/gthet(3,it)**2
4790         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4791 C Let's differentiate it in thet_pred_mean NOW.
4792         aktc=ak*ratak
4793 C Now put together the distribution terms to make complete distribution.
4794         termexp=term1+ak*term2
4795         termpre=sigc+ak*sig0i
4796 C Contribution of the bending energy from this theta is just the -log of
4797 C the sum of the contributions from the two lobes and the pre-exponential
4798 C factor. Simple enough, isn't it?
4799         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4800 C NOW the derivatives!!!
4801 C 6/6/97 Take into account the deformation.
4802         E_theta=(delthec*sigcsq*term1
4803      &       +ak*delthe0*sig0inv*term2)/termexp
4804         E_tc=((sigtc+aktc*sig0i)/termpre
4805      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4806      &       aktc*term2)/termexp)
4807       return
4808       end
4809 c-----------------------------------------------------------------------------
4810       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4811       implicit real*8 (a-h,o-z)
4812       include 'DIMENSIONS'
4813       include 'COMMON.LOCAL'
4814       include 'COMMON.IOUNITS'
4815       common /calcthet/ term1,term2,termm,diffak,ratak,
4816      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4817      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4818       delthec=thetai-thet_pred_mean
4819       delthe0=thetai-theta0i
4820 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4821       t3 = thetai-thet_pred_mean
4822       t6 = t3**2
4823       t9 = term1
4824       t12 = t3*sigcsq
4825       t14 = t12+t6*sigsqtc
4826       t16 = 1.0d0
4827       t21 = thetai-theta0i
4828       t23 = t21**2
4829       t26 = term2
4830       t27 = t21*t26
4831       t32 = termexp
4832       t40 = t32**2
4833       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4834      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4835      & *(-t12*t9-ak*sig0inv*t27)
4836       return
4837       end
4838 #else
4839 C--------------------------------------------------------------------------
4840       subroutine ebend(etheta)
4841 C
4842 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4843 C angles gamma and its derivatives in consecutive thetas and gammas.
4844 C ab initio-derived potentials from 
4845 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4846 C
4847       implicit real*8 (a-h,o-z)
4848       include 'DIMENSIONS'
4849       include 'COMMON.LOCAL'
4850       include 'COMMON.GEO'
4851       include 'COMMON.INTERACT'
4852       include 'COMMON.DERIV'
4853       include 'COMMON.VAR'
4854       include 'COMMON.CHAIN'
4855       include 'COMMON.IOUNITS'
4856       include 'COMMON.NAMES'
4857       include 'COMMON.FFIELD'
4858       include 'COMMON.CONTROL'
4859       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4860      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4861      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4862      & sinph1ph2(maxdouble,maxdouble)
4863       logical lprn /.false./, lprn1 /.false./
4864       etheta=0.0D0
4865       do i=ithet_start,ithet_end
4866         dethetai=0.0d0
4867         dephii=0.0d0
4868         dephii1=0.0d0
4869         theti2=0.5d0*theta(i)
4870         ityp2=ithetyp(itype(i-1))
4871         do k=1,nntheterm
4872           coskt(k)=dcos(k*theti2)
4873           sinkt(k)=dsin(k*theti2)
4874         enddo
4875         if (i.gt.3) then
4876 #ifdef OSF
4877           phii=phi(i)
4878           if (phii.ne.phii) phii=150.0
4879 #else
4880           phii=phi(i)
4881 #endif
4882           ityp1=ithetyp(itype(i-2))
4883           do k=1,nsingle
4884             cosph1(k)=dcos(k*phii)
4885             sinph1(k)=dsin(k*phii)
4886           enddo
4887         else
4888           phii=0.0d0
4889           ityp1=nthetyp+1
4890           do k=1,nsingle
4891             cosph1(k)=0.0d0
4892             sinph1(k)=0.0d0
4893           enddo 
4894         endif
4895         if (i.lt.nres) then
4896 #ifdef OSF
4897           phii1=phi(i+1)
4898           if (phii1.ne.phii1) phii1=150.0
4899           phii1=pinorm(phii1)
4900 #else
4901           phii1=phi(i+1)
4902 #endif
4903           ityp3=ithetyp(itype(i))
4904           do k=1,nsingle
4905             cosph2(k)=dcos(k*phii1)
4906             sinph2(k)=dsin(k*phii1)
4907           enddo
4908         else
4909           phii1=0.0d0
4910           ityp3=nthetyp+1
4911           do k=1,nsingle
4912             cosph2(k)=0.0d0
4913             sinph2(k)=0.0d0
4914           enddo
4915         endif  
4916         ethetai=aa0thet(ityp1,ityp2,ityp3)
4917         do k=1,ndouble
4918           do l=1,k-1
4919             ccl=cosph1(l)*cosph2(k-l)
4920             ssl=sinph1(l)*sinph2(k-l)
4921             scl=sinph1(l)*cosph2(k-l)
4922             csl=cosph1(l)*sinph2(k-l)
4923             cosph1ph2(l,k)=ccl-ssl
4924             cosph1ph2(k,l)=ccl+ssl
4925             sinph1ph2(l,k)=scl+csl
4926             sinph1ph2(k,l)=scl-csl
4927           enddo
4928         enddo
4929         if (lprn) then
4930         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4931      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4932         write (iout,*) "coskt and sinkt"
4933         do k=1,nntheterm
4934           write (iout,*) k,coskt(k),sinkt(k)
4935         enddo
4936         endif
4937         do k=1,ntheterm
4938           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4939           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4940      &      *coskt(k)
4941           if (lprn)
4942      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4943      &     " ethetai",ethetai
4944         enddo
4945         if (lprn) then
4946         write (iout,*) "cosph and sinph"
4947         do k=1,nsingle
4948           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4949         enddo
4950         write (iout,*) "cosph1ph2 and sinph2ph2"
4951         do k=2,ndouble
4952           do l=1,k-1
4953             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4954      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4955           enddo
4956         enddo
4957         write(iout,*) "ethetai",ethetai
4958         endif
4959         do m=1,ntheterm2
4960           do k=1,nsingle
4961             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4962      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4963      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4964      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4965             ethetai=ethetai+sinkt(m)*aux
4966             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4967             dephii=dephii+k*sinkt(m)*(
4968      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4969      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4970             dephii1=dephii1+k*sinkt(m)*(
4971      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4972      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4973             if (lprn)
4974      &      write (iout,*) "m",m," k",k," bbthet",
4975      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4976      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4977      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
4978      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
4979           enddo
4980         enddo
4981         if (lprn)
4982      &  write(iout,*) "ethetai",ethetai
4983         do m=1,ntheterm3
4984           do k=2,ndouble
4985             do l=1,k-1
4986               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4987      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
4988      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4989      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
4990               ethetai=ethetai+sinkt(m)*aux
4991               dethetai=dethetai+0.5d0*m*coskt(m)*aux
4992               dephii=dephii+l*sinkt(m)*(
4993      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
4994      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
4995      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
4996      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
4997               dephii1=dephii1+(k-l)*sinkt(m)*(
4998      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
4999      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
5000      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
5001      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5002               if (lprn) then
5003               write (iout,*) "m",m," k",k," l",l," ffthet",
5004      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
5005      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
5006      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
5007      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
5008               write (iout,*) cosph1ph2(l,k)*sinkt(m),
5009      &            cosph1ph2(k,l)*sinkt(m),
5010      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
5011               endif
5012             enddo
5013           enddo
5014         enddo
5015 10      continue
5016 c        lprn1=.true.
5017         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
5018      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
5019      &   phii1*rad2deg,ethetai
5020 c        lprn1=.false.
5021         etheta=etheta+ethetai
5022         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
5023         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
5024         gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai
5025       enddo
5026       return
5027       end
5028 #endif
5029 #ifdef CRYST_SC
5030 c-----------------------------------------------------------------------------
5031       subroutine esc(escloc)
5032 C Calculate the local energy of a side chain and its derivatives in the
5033 C corresponding virtual-bond valence angles THETA and the spherical angles 
5034 C ALPHA and OMEGA.
5035       implicit real*8 (a-h,o-z)
5036       include 'DIMENSIONS'
5037       include 'COMMON.GEO'
5038       include 'COMMON.LOCAL'
5039       include 'COMMON.VAR'
5040       include 'COMMON.INTERACT'
5041       include 'COMMON.DERIV'
5042       include 'COMMON.CHAIN'
5043       include 'COMMON.IOUNITS'
5044       include 'COMMON.NAMES'
5045       include 'COMMON.FFIELD'
5046       include 'COMMON.CONTROL'
5047       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
5048      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
5049       common /sccalc/ time11,time12,time112,theti,it,nlobit
5050       delta=0.02d0*pi
5051       escloc=0.0D0
5052 c     write (iout,'(a)') 'ESC'
5053       do i=loc_start,loc_end
5054         it=itype(i)
5055         if (it.eq.10) goto 1
5056         nlobit=nlob(it)
5057 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
5058 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
5059         theti=theta(i+1)-pipol
5060         x(1)=dtan(theti)
5061         x(2)=alph(i)
5062         x(3)=omeg(i)
5063
5064         if (x(2).gt.pi-delta) then
5065           xtemp(1)=x(1)
5066           xtemp(2)=pi-delta
5067           xtemp(3)=x(3)
5068           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5069           xtemp(2)=pi
5070           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5071           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
5072      &        escloci,dersc(2))
5073           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5074      &        ddersc0(1),dersc(1))
5075           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5076      &        ddersc0(3),dersc(3))
5077           xtemp(2)=pi-delta
5078           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5079           xtemp(2)=pi
5080           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5081           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5082      &            dersc0(2),esclocbi,dersc02)
5083           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5084      &            dersc12,dersc01)
5085           call splinthet(x(2),0.5d0*delta,ss,ssd)
5086           dersc0(1)=dersc01
5087           dersc0(2)=dersc02
5088           dersc0(3)=0.0d0
5089           do k=1,3
5090             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5091           enddo
5092           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5093 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5094 c    &             esclocbi,ss,ssd
5095           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5096 c         escloci=esclocbi
5097 c         write (iout,*) escloci
5098         else if (x(2).lt.delta) then
5099           xtemp(1)=x(1)
5100           xtemp(2)=delta
5101           xtemp(3)=x(3)
5102           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5103           xtemp(2)=0.0d0
5104           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5105           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5106      &        escloci,dersc(2))
5107           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5108      &        ddersc0(1),dersc(1))
5109           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5110      &        ddersc0(3),dersc(3))
5111           xtemp(2)=delta
5112           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5113           xtemp(2)=0.0d0
5114           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5115           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5116      &            dersc0(2),esclocbi,dersc02)
5117           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5118      &            dersc12,dersc01)
5119           dersc0(1)=dersc01
5120           dersc0(2)=dersc02
5121           dersc0(3)=0.0d0
5122           call splinthet(x(2),0.5d0*delta,ss,ssd)
5123           do k=1,3
5124             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5125           enddo
5126           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5127 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5128 c    &             esclocbi,ss,ssd
5129           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5130 c         write (iout,*) escloci
5131         else
5132           call enesc(x,escloci,dersc,ddummy,.false.)
5133         endif
5134
5135         escloc=escloc+escloci
5136         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5137      &     'escloc',i,escloci
5138 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5139
5140         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5141      &   wscloc*dersc(1)
5142         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5143         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5144     1   continue
5145       enddo
5146       return
5147       end
5148 C---------------------------------------------------------------------------
5149       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5150       implicit real*8 (a-h,o-z)
5151       include 'DIMENSIONS'
5152       include 'COMMON.GEO'
5153       include 'COMMON.LOCAL'
5154       include 'COMMON.IOUNITS'
5155       common /sccalc/ time11,time12,time112,theti,it,nlobit
5156       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5157       double precision contr(maxlob,-1:1)
5158       logical mixed
5159 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5160         escloc_i=0.0D0
5161         do j=1,3
5162           dersc(j)=0.0D0
5163           if (mixed) ddersc(j)=0.0d0
5164         enddo
5165         x3=x(3)
5166
5167 C Because of periodicity of the dependence of the SC energy in omega we have
5168 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5169 C To avoid underflows, first compute & store the exponents.
5170
5171         do iii=-1,1
5172
5173           x(3)=x3+iii*dwapi
5174  
5175           do j=1,nlobit
5176             do k=1,3
5177               z(k)=x(k)-censc(k,j,it)
5178             enddo
5179             do k=1,3
5180               Axk=0.0D0
5181               do l=1,3
5182                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5183               enddo
5184               Ax(k,j,iii)=Axk
5185             enddo 
5186             expfac=0.0D0 
5187             do k=1,3
5188               expfac=expfac+Ax(k,j,iii)*z(k)
5189             enddo
5190             contr(j,iii)=expfac
5191           enddo ! j
5192
5193         enddo ! iii
5194
5195         x(3)=x3
5196 C As in the case of ebend, we want to avoid underflows in exponentiation and
5197 C subsequent NaNs and INFs in energy calculation.
5198 C Find the largest exponent
5199         emin=contr(1,-1)
5200         do iii=-1,1
5201           do j=1,nlobit
5202             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5203           enddo 
5204         enddo
5205         emin=0.5D0*emin
5206 cd      print *,'it=',it,' emin=',emin
5207
5208 C Compute the contribution to SC energy and derivatives
5209         do iii=-1,1
5210
5211           do j=1,nlobit
5212 #ifdef OSF
5213             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5214             if(adexp.ne.adexp) adexp=1.0
5215             expfac=dexp(adexp)
5216 #else
5217             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5218 #endif
5219 cd          print *,'j=',j,' expfac=',expfac
5220             escloc_i=escloc_i+expfac
5221             do k=1,3
5222               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5223             enddo
5224             if (mixed) then
5225               do k=1,3,2
5226                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5227      &            +gaussc(k,2,j,it))*expfac
5228               enddo
5229             endif
5230           enddo
5231
5232         enddo ! iii
5233
5234         dersc(1)=dersc(1)/cos(theti)**2
5235         ddersc(1)=ddersc(1)/cos(theti)**2
5236         ddersc(3)=ddersc(3)
5237
5238         escloci=-(dlog(escloc_i)-emin)
5239         do j=1,3
5240           dersc(j)=dersc(j)/escloc_i
5241         enddo
5242         if (mixed) then
5243           do j=1,3,2
5244             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5245           enddo
5246         endif
5247       return
5248       end
5249 C------------------------------------------------------------------------------
5250       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5251       implicit real*8 (a-h,o-z)
5252       include 'DIMENSIONS'
5253       include 'COMMON.GEO'
5254       include 'COMMON.LOCAL'
5255       include 'COMMON.IOUNITS'
5256       common /sccalc/ time11,time12,time112,theti,it,nlobit
5257       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5258       double precision contr(maxlob)
5259       logical mixed
5260
5261       escloc_i=0.0D0
5262
5263       do j=1,3
5264         dersc(j)=0.0D0
5265       enddo
5266
5267       do j=1,nlobit
5268         do k=1,2
5269           z(k)=x(k)-censc(k,j,it)
5270         enddo
5271         z(3)=dwapi
5272         do k=1,3
5273           Axk=0.0D0
5274           do l=1,3
5275             Axk=Axk+gaussc(l,k,j,it)*z(l)
5276           enddo
5277           Ax(k,j)=Axk
5278         enddo 
5279         expfac=0.0D0 
5280         do k=1,3
5281           expfac=expfac+Ax(k,j)*z(k)
5282         enddo
5283         contr(j)=expfac
5284       enddo ! j
5285
5286 C As in the case of ebend, we want to avoid underflows in exponentiation and
5287 C subsequent NaNs and INFs in energy calculation.
5288 C Find the largest exponent
5289       emin=contr(1)
5290       do j=1,nlobit
5291         if (emin.gt.contr(j)) emin=contr(j)
5292       enddo 
5293       emin=0.5D0*emin
5294  
5295 C Compute the contribution to SC energy and derivatives
5296
5297       dersc12=0.0d0
5298       do j=1,nlobit
5299         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5300         escloc_i=escloc_i+expfac
5301         do k=1,2
5302           dersc(k)=dersc(k)+Ax(k,j)*expfac
5303         enddo
5304         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5305      &            +gaussc(1,2,j,it))*expfac
5306         dersc(3)=0.0d0
5307       enddo
5308
5309       dersc(1)=dersc(1)/cos(theti)**2
5310       dersc12=dersc12/cos(theti)**2
5311       escloci=-(dlog(escloc_i)-emin)
5312       do j=1,2
5313         dersc(j)=dersc(j)/escloc_i
5314       enddo
5315       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5316       return
5317       end
5318 #else
5319 c----------------------------------------------------------------------------------
5320       subroutine esc(escloc)
5321 C Calculate the local energy of a side chain and its derivatives in the
5322 C corresponding virtual-bond valence angles THETA and the spherical angles 
5323 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5324 C added by Urszula Kozlowska. 07/11/2007
5325 C
5326       implicit real*8 (a-h,o-z)
5327       include 'DIMENSIONS'
5328       include 'COMMON.GEO'
5329       include 'COMMON.LOCAL'
5330       include 'COMMON.VAR'
5331       include 'COMMON.SCROT'
5332       include 'COMMON.INTERACT'
5333       include 'COMMON.DERIV'
5334       include 'COMMON.CHAIN'
5335       include 'COMMON.IOUNITS'
5336       include 'COMMON.NAMES'
5337       include 'COMMON.FFIELD'
5338       include 'COMMON.CONTROL'
5339       include 'COMMON.VECTORS'
5340       double precision x_prime(3),y_prime(3),z_prime(3)
5341      &    , sumene,dsc_i,dp2_i,x(65),
5342      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5343      &    de_dxx,de_dyy,de_dzz,de_dt
5344       double precision s1_t,s1_6_t,s2_t,s2_6_t
5345       double precision 
5346      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5347      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5348      & dt_dCi(3),dt_dCi1(3)
5349       common /sccalc/ time11,time12,time112,theti,it,nlobit
5350       delta=0.02d0*pi
5351       escloc=0.0D0
5352 c      write(iout,*) "ESC: loc_start",loc_start," loc_end",loc_end
5353       do i=loc_start,loc_end
5354         costtab(i+1) =dcos(theta(i+1))
5355         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5356         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5357         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5358         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5359         cosfac=dsqrt(cosfac2)
5360         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5361         sinfac=dsqrt(sinfac2)
5362         it=itype(i)
5363         if (it.eq.10) goto 1
5364 c
5365 C  Compute the axes of tghe local cartesian coordinates system; store in
5366 c   x_prime, y_prime and z_prime 
5367 c
5368         do j=1,3
5369           x_prime(j) = 0.00
5370           y_prime(j) = 0.00
5371           z_prime(j) = 0.00
5372         enddo
5373 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5374 C     &   dc_norm(3,i+nres)
5375         do j = 1,3
5376           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5377           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5378         enddo
5379         do j = 1,3
5380           z_prime(j) = -uz(j,i-1)
5381         enddo     
5382 c       write (2,*) "i",i
5383 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5384 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5385 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5386 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5387 c      & " xy",scalar(x_prime(1),y_prime(1)),
5388 c      & " xz",scalar(x_prime(1),z_prime(1)),
5389 c      & " yy",scalar(y_prime(1),y_prime(1)),
5390 c      & " yz",scalar(y_prime(1),z_prime(1)),
5391 c      & " zz",scalar(z_prime(1),z_prime(1))
5392 c
5393 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5394 C to local coordinate system. Store in xx, yy, zz.
5395 c
5396         xx=0.0d0
5397         yy=0.0d0
5398         zz=0.0d0
5399         do j = 1,3
5400           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5401           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5402           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5403         enddo
5404
5405         xxtab(i)=xx
5406         yytab(i)=yy
5407         zztab(i)=zz
5408 C
5409 C Compute the energy of the ith side cbain
5410 C
5411 c        write (2,*) "xx",xx," yy",yy," zz",zz
5412         it=itype(i)
5413         do j = 1,65
5414           x(j) = sc_parmin(j,it) 
5415         enddo
5416 #ifdef CHECK_COORD
5417 Cc diagnostics - remove later
5418         xx1 = dcos(alph(2))
5419         yy1 = dsin(alph(2))*dcos(omeg(2))
5420         zz1 = -dsin(alph(2))*dsin(omeg(2))
5421         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5422      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5423      &    xx1,yy1,zz1
5424 C,"  --- ", xx_w,yy_w,zz_w
5425 c end diagnostics
5426 #endif
5427         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5428      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5429      &   + x(10)*yy*zz
5430         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5431      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5432      & + x(20)*yy*zz
5433         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5434      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5435      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5436      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5437      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5438      &  +x(40)*xx*yy*zz
5439         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5440      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5441      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5442      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5443      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5444      &  +x(60)*xx*yy*zz
5445         dsc_i   = 0.743d0+x(61)
5446         dp2_i   = 1.9d0+x(62)
5447         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5448      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5449         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5450      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5451         s1=(1+x(63))/(0.1d0 + dscp1)
5452         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5453         s2=(1+x(65))/(0.1d0 + dscp2)
5454         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5455         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5456      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5457 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5458 c     &   sumene4,
5459 c     &   dscp1,dscp2,sumene
5460 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5461         escloc = escloc + sumene
5462 c        write (2,*) "i",i," escloc",sumene,escloc
5463 #ifdef DEBUG
5464 C
5465 C This section to check the numerical derivatives of the energy of ith side
5466 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5467 C #define DEBUG in the code to turn it on.
5468 C
5469         write (2,*) "sumene               =",sumene
5470         aincr=1.0d-7
5471         xxsave=xx
5472         xx=xx+aincr
5473         write (2,*) xx,yy,zz
5474         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5475         de_dxx_num=(sumenep-sumene)/aincr
5476         xx=xxsave
5477         write (2,*) "xx+ sumene from enesc=",sumenep
5478         yysave=yy
5479         yy=yy+aincr
5480         write (2,*) xx,yy,zz
5481         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5482         de_dyy_num=(sumenep-sumene)/aincr
5483         yy=yysave
5484         write (2,*) "yy+ sumene from enesc=",sumenep
5485         zzsave=zz
5486         zz=zz+aincr
5487         write (2,*) xx,yy,zz
5488         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5489         de_dzz_num=(sumenep-sumene)/aincr
5490         zz=zzsave
5491         write (2,*) "zz+ sumene from enesc=",sumenep
5492         costsave=cost2tab(i+1)
5493         sintsave=sint2tab(i+1)
5494         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5495         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5496         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5497         de_dt_num=(sumenep-sumene)/aincr
5498         write (2,*) " t+ sumene from enesc=",sumenep
5499         cost2tab(i+1)=costsave
5500         sint2tab(i+1)=sintsave
5501 C End of diagnostics section.
5502 #endif
5503 C        
5504 C Compute the gradient of esc
5505 C
5506         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5507         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5508         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5509         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5510         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5511         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5512         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5513         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5514         pom1=(sumene3*sint2tab(i+1)+sumene1)
5515      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5516         pom2=(sumene4*cost2tab(i+1)+sumene2)
5517      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5518         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5519         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5520      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5521      &  +x(40)*yy*zz
5522         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5523         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5524      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5525      &  +x(60)*yy*zz
5526         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5527      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5528      &        +(pom1+pom2)*pom_dx
5529 #ifdef DEBUG
5530         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5531 #endif
5532 C
5533         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5534         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5535      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5536      &  +x(40)*xx*zz
5537         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5538         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5539      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5540      &  +x(59)*zz**2 +x(60)*xx*zz
5541         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5542      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5543      &        +(pom1-pom2)*pom_dy
5544 #ifdef DEBUG
5545         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5546 #endif
5547 C
5548         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5549      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5550      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5551      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5552      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5553      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5554      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5555      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5556 #ifdef DEBUG
5557         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5558 #endif
5559 C
5560         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5561      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5562      &  +pom1*pom_dt1+pom2*pom_dt2
5563 #ifdef DEBUG
5564         write(2,*), "de_dt = ", de_dt,de_dt_num
5565 #endif
5566
5567 C
5568        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5569        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5570        cosfac2xx=cosfac2*xx
5571        sinfac2yy=sinfac2*yy
5572        do k = 1,3
5573          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5574      &      vbld_inv(i+1)
5575          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5576      &      vbld_inv(i)
5577          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5578          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5579 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5580 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5581 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5582 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5583          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5584          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5585          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5586          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5587          dZZ_Ci1(k)=0.0d0
5588          dZZ_Ci(k)=0.0d0
5589          do j=1,3
5590            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5591            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5592          enddo
5593           
5594          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5595          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5596          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5597 c
5598          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5599          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5600        enddo
5601
5602        do k=1,3
5603          dXX_Ctab(k,i)=dXX_Ci(k)
5604          dXX_C1tab(k,i)=dXX_Ci1(k)
5605          dYY_Ctab(k,i)=dYY_Ci(k)
5606          dYY_C1tab(k,i)=dYY_Ci1(k)
5607          dZZ_Ctab(k,i)=dZZ_Ci(k)
5608          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5609          dXX_XYZtab(k,i)=dXX_XYZ(k)
5610          dYY_XYZtab(k,i)=dYY_XYZ(k)
5611          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5612        enddo
5613
5614        do k = 1,3
5615 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5616 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5617 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5618 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5619 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5620 c     &    dt_dci(k)
5621 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5622 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5623          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5624      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5625          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5626      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5627          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5628      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5629        enddo
5630 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5631 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5632
5633 C to check gradient call subroutine check_grad
5634
5635     1 continue
5636       enddo
5637       return
5638       end
5639 c------------------------------------------------------------------------------
5640       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5641       implicit none
5642       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5643      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5644       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5645      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5646      &   + x(10)*yy*zz
5647       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5648      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5649      & + x(20)*yy*zz
5650       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5651      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5652      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5653      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5654      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5655      &  +x(40)*xx*yy*zz
5656       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5657      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5658      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5659      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5660      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5661      &  +x(60)*xx*yy*zz
5662       dsc_i   = 0.743d0+x(61)
5663       dp2_i   = 1.9d0+x(62)
5664       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5665      &          *(xx*cost2+yy*sint2))
5666       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5667      &          *(xx*cost2-yy*sint2))
5668       s1=(1+x(63))/(0.1d0 + dscp1)
5669       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5670       s2=(1+x(65))/(0.1d0 + dscp2)
5671       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5672       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5673      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5674       enesc=sumene
5675       return
5676       end
5677 #endif
5678 c------------------------------------------------------------------------------
5679       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5680 C
5681 C This procedure calculates two-body contact function g(rij) and its derivative:
5682 C
5683 C           eps0ij                                     !       x < -1
5684 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5685 C            0                                         !       x > 1
5686 C
5687 C where x=(rij-r0ij)/delta
5688 C
5689 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5690 C
5691       implicit none
5692       double precision rij,r0ij,eps0ij,fcont,fprimcont
5693       double precision x,x2,x4,delta
5694 c     delta=0.02D0*r0ij
5695 c      delta=0.2D0*r0ij
5696       x=(rij-r0ij)/delta
5697       if (x.lt.-1.0D0) then
5698         fcont=eps0ij
5699         fprimcont=0.0D0
5700       else if (x.le.1.0D0) then  
5701         x2=x*x
5702         x4=x2*x2
5703         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5704         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5705       else
5706         fcont=0.0D0
5707         fprimcont=0.0D0
5708       endif
5709       return
5710       end
5711 c------------------------------------------------------------------------------
5712       subroutine splinthet(theti,delta,ss,ssder)
5713       implicit real*8 (a-h,o-z)
5714       include 'DIMENSIONS'
5715       include 'COMMON.VAR'
5716       include 'COMMON.GEO'
5717       thetup=pi-delta
5718       thetlow=delta
5719       if (theti.gt.pipol) then
5720         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5721       else
5722         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5723         ssder=-ssder
5724       endif
5725       return
5726       end
5727 c------------------------------------------------------------------------------
5728       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5729       implicit none
5730       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5731       double precision ksi,ksi2,ksi3,a1,a2,a3
5732       a1=fprim0*delta/(f1-f0)
5733       a2=3.0d0-2.0d0*a1
5734       a3=a1-2.0d0
5735       ksi=(x-x0)/delta
5736       ksi2=ksi*ksi
5737       ksi3=ksi2*ksi  
5738       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5739       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5740       return
5741       end
5742 c------------------------------------------------------------------------------
5743       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5744       implicit none
5745       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5746       double precision ksi,ksi2,ksi3,a1,a2,a3
5747       ksi=(x-x0)/delta  
5748       ksi2=ksi*ksi
5749       ksi3=ksi2*ksi
5750       a1=fprim0x*delta
5751       a2=3*(f1x-f0x)-2*fprim0x*delta
5752       a3=fprim0x*delta-2*(f1x-f0x)
5753       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5754       return
5755       end
5756 C-----------------------------------------------------------------------------
5757 #ifdef CRYST_TOR
5758 C-----------------------------------------------------------------------------
5759       subroutine etor(etors,edihcnstr)
5760       implicit real*8 (a-h,o-z)
5761       include 'DIMENSIONS'
5762       include 'COMMON.VAR'
5763       include 'COMMON.GEO'
5764       include 'COMMON.LOCAL'
5765       include 'COMMON.TORSION'
5766       include 'COMMON.INTERACT'
5767       include 'COMMON.DERIV'
5768       include 'COMMON.CHAIN'
5769       include 'COMMON.NAMES'
5770       include 'COMMON.IOUNITS'
5771       include 'COMMON.FFIELD'
5772       include 'COMMON.TORCNSTR'
5773       include 'COMMON.CONTROL'
5774       logical lprn
5775 C Set lprn=.true. for debugging
5776       lprn=.false.
5777 c      lprn=.true.
5778       etors=0.0D0
5779       do i=iphi_start,iphi_end
5780       etors_ii=0.0D0
5781         itori=itortyp(itype(i-2))
5782         itori1=itortyp(itype(i-1))
5783         phii=phi(i)
5784         gloci=0.0D0
5785 C Proline-Proline pair is a special case...
5786         if (itori.eq.3 .and. itori1.eq.3) then
5787           if (phii.gt.-dwapi3) then
5788             cosphi=dcos(3*phii)
5789             fac=1.0D0/(1.0D0-cosphi)
5790             etorsi=v1(1,3,3)*fac
5791             etorsi=etorsi+etorsi
5792             etors=etors+etorsi-v1(1,3,3)
5793             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5794             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5795           endif
5796           do j=1,3
5797             v1ij=v1(j+1,itori,itori1)
5798             v2ij=v2(j+1,itori,itori1)
5799             cosphi=dcos(j*phii)
5800             sinphi=dsin(j*phii)
5801             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5802             if (energy_dec) etors_ii=etors_ii+
5803      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5804             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5805           enddo
5806         else 
5807           do j=1,nterm_old
5808             v1ij=v1(j,itori,itori1)
5809             v2ij=v2(j,itori,itori1)
5810             cosphi=dcos(j*phii)
5811             sinphi=dsin(j*phii)
5812             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5813             if (energy_dec) etors_ii=etors_ii+
5814      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5815             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5816           enddo
5817         endif
5818         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5819      &        'etor',i,etors_ii
5820         if (lprn)
5821      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5822      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5823      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5824         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5825         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5826       enddo
5827 ! 6/20/98 - dihedral angle constraints
5828       edihcnstr=0.0d0
5829       do i=1,ndih_constr
5830         itori=idih_constr(i)
5831         phii=phi(itori)
5832         difi=phii-phi0(i)
5833         if (difi.gt.drange(i)) then
5834           difi=difi-drange(i)
5835           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5836           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5837         else if (difi.lt.-drange(i)) then
5838           difi=difi+drange(i)
5839           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5840           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5841         endif
5842 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5843 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5844       enddo
5845 !      write (iout,*) 'edihcnstr',edihcnstr
5846       return
5847       end
5848 c------------------------------------------------------------------------------
5849 c LICZENIE WIEZOW Z ROWNANIA ENERGII MODELLERA
5850       subroutine e_modeller(ehomology_constr)
5851       ehomology_constr=0.0
5852       write (iout,*) "!!!!!UWAGA, JESTEM W DZIWNEJ PETLI, TEST!!!!!"
5853       return
5854       end
5855 C !!!!!!!! NIE CZYTANE !!!!!!!!!!!
5856
5857 c------------------------------------------------------------------------------
5858       subroutine etor_d(etors_d)
5859       etors_d=0.0d0
5860       return
5861       end
5862 c----------------------------------------------------------------------------
5863 #else
5864       subroutine etor(etors,edihcnstr)
5865       implicit real*8 (a-h,o-z)
5866       include 'DIMENSIONS'
5867       include 'COMMON.VAR'
5868       include 'COMMON.GEO'
5869       include 'COMMON.LOCAL'
5870       include 'COMMON.TORSION'
5871       include 'COMMON.INTERACT'
5872       include 'COMMON.DERIV'
5873       include 'COMMON.CHAIN'
5874       include 'COMMON.NAMES'
5875       include 'COMMON.IOUNITS'
5876       include 'COMMON.FFIELD'
5877       include 'COMMON.TORCNSTR'
5878       include 'COMMON.CONTROL'
5879       logical lprn
5880 C Set lprn=.true. for debugging
5881       lprn=.false.
5882 c     lprn=.true.
5883       etors=0.0D0
5884       do i=iphi_start,iphi_end
5885       etors_ii=0.0D0
5886         itori=itortyp(itype(i-2))
5887         itori1=itortyp(itype(i-1))
5888         phii=phi(i)
5889         gloci=0.0D0
5890 C Regular cosine and sine terms
5891         do j=1,nterm(itori,itori1)
5892           v1ij=v1(j,itori,itori1)
5893           v2ij=v2(j,itori,itori1)
5894           cosphi=dcos(j*phii)
5895           sinphi=dsin(j*phii)
5896           etors=etors+v1ij*cosphi+v2ij*sinphi
5897           if (energy_dec) etors_ii=etors_ii+
5898      &                v1ij*cosphi+v2ij*sinphi
5899           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5900         enddo
5901 C Lorentz terms
5902 C                         v1
5903 C  E = SUM ----------------------------------- - v1
5904 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5905 C
5906         cosphi=dcos(0.5d0*phii)
5907         sinphi=dsin(0.5d0*phii)
5908         do j=1,nlor(itori,itori1)
5909           vl1ij=vlor1(j,itori,itori1)
5910           vl2ij=vlor2(j,itori,itori1)
5911           vl3ij=vlor3(j,itori,itori1)
5912           pom=vl2ij*cosphi+vl3ij*sinphi
5913           pom1=1.0d0/(pom*pom+1.0d0)
5914           etors=etors+vl1ij*pom1
5915           if (energy_dec) etors_ii=etors_ii+
5916      &                vl1ij*pom1
5917           pom=-pom*pom1*pom1
5918           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5919         enddo
5920 C Subtract the constant term
5921         etors=etors-v0(itori,itori1)
5922           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5923      &         'etor',i,etors_ii-v0(itori,itori1)
5924         if (lprn)
5925      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5926      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5927      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5928         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5929 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5930       enddo
5931 ! 6/20/98 - dihedral angle constraints
5932       edihcnstr=0.0d0
5933 c      do i=1,ndih_constr
5934       do i=idihconstr_start,idihconstr_end
5935         itori=idih_constr(i)
5936         phii=phi(itori)
5937         difi=pinorm(phii-phi0(i))
5938         if (difi.gt.drange(i)) then
5939           difi=difi-drange(i)
5940           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5941           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5942         else if (difi.lt.-drange(i)) then
5943           difi=difi+drange(i)
5944           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5945           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5946         else
5947           difi=0.0
5948         endif
5949 c        write (iout,*) "gloci", gloc(i-3,icg)
5950 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5951 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5952 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5953       enddo
5954 cd       write (iout,*) 'edihcnstr',edihcnstr
5955       return
5956       end
5957 c----------------------------------------------------------------------------
5958 c MODELLER restraint function
5959       subroutine e_modeller(ehomology_constr)
5960       implicit real*8 (a-h,o-z)
5961       include 'DIMENSIONS'
5962
5963       integer nnn, i, j, k, ki, irec, l
5964       integer katy, odleglosci, test7
5965       real*8 odleg, odleg2, odleg3, kat, kat2, kat3, gdih(max_template)
5966       real*8 Eval,Erot
5967       real*8 distance(max_template),distancek(max_template),
5968      &    min_odl,godl(max_template),dih_diff(max_template)
5969
5970 c
5971 c     FP - 30/10/2014 Temporary specifications for homology restraints
5972 c
5973       double precision utheta_i,gutheta_i,sum_gtheta,sum_sgtheta,
5974      &                 sgtheta      
5975       double precision, dimension (maxres) :: guscdiff,usc_diff
5976       double precision, dimension (max_template) ::  
5977      &           gtheta,dscdiff,uscdiffk,guscdiff2,guscdiff3,
5978      &           theta_diff
5979 c
5980
5981       include 'COMMON.SBRIDGE'
5982       include 'COMMON.CHAIN'
5983       include 'COMMON.GEO'
5984       include 'COMMON.DERIV'
5985       include 'COMMON.LOCAL'
5986       include 'COMMON.INTERACT'
5987       include 'COMMON.VAR'
5988       include 'COMMON.IOUNITS'
5989       include 'COMMON.MD'
5990       include 'COMMON.CONTROL'
5991 c
5992 c     From subroutine Econstr_back
5993 c
5994       include 'COMMON.NAMES'
5995       include 'COMMON.TIME1'
5996 c
5997
5998
5999       do i=1,19
6000         distancek(i)=9999999.9
6001       enddo
6002
6003
6004       odleg=0.0d0
6005
6006 c Pseudo-energy and gradient from homology restraints (MODELLER-like
6007 c function)
6008 C AL 5/2/14 - Introduce list of restraints
6009 c     write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d
6010 #ifdef DEBUG
6011       write(iout,*) "------- dist restrs start -------"
6012 #endif
6013       do ii = link_start_homo,link_end_homo
6014          i = ires_homo(ii)
6015          j = jres_homo(ii)
6016          dij=dist(i,j)
6017 c        write (iout,*) "dij(",i,j,") =",dij
6018          do k=1,constr_homology
6019            distance(k)=odl(k,ii)-dij
6020 c          write (iout,*) "distance(",k,") =",distance(k)
6021            distancek(k)=0.5d0*distance(k)**2*sigma_odl(k,ii) ! waga_dist rmvd from Gaussian argument
6022 c          write (iout,*) "sigma_odl(",k,ii,") =",sigma_odl(k,ii)
6023 c          write (iout,*) "distancek(",k,") =",distancek(k)
6024 c          distancek(k)=0.5d0*waga_dist*distance(k)**2*sigma_odl(k,ii)
6025          enddo
6026          
6027          min_odl=minval(distancek)
6028 c        write (iout,* )"min_odl",min_odl
6029 #ifdef DEBUG
6030          write (iout,*) "ij dij",i,j,dij
6031          write (iout,*) "distance",(distance(k),k=1,constr_homology)
6032          write (iout,*) "distancek",(distancek(k),k=1,constr_homology)
6033          write (iout,* )"min_odl",min_odl
6034 #endif
6035          odleg2=0.0d0
6036          do k=1,constr_homology
6037 c Nie wiem po co to liczycie jeszcze raz!
6038 c            odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/ 
6039 c     &              (2*(sigma_odl(i,j,k))**2))
6040             godl(k)=dexp(-distancek(k)+min_odl)
6041             odleg2=odleg2+godl(k)
6042
6043 ccc       write(iout,779) i,j,k, "odleg2=",odleg2, "odleg3=", odleg3,
6044 ccc     & "dEXP(odleg3)=", dEXP(odleg3),"distance(i,j,k)^2=",
6045 ccc     & distance(i,j,k)**2, "dist(i+1,j+1)=", dist(i+1,j+1),
6046 ccc     & "sigma_odl(i,j,k)=", sigma_odl(i,j,k)
6047
6048          enddo
6049 c        write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6050 c        write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6051 #ifdef DEBUG
6052          write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6053          write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6054 #endif
6055          odleg=odleg-dLOG(odleg2/constr_homology)+min_odl
6056 c        write (iout,*) "odleg",odleg ! sum of -ln-s
6057 c Gradient
6058          sum_godl=odleg2
6059          sum_sgodl=0.0d0
6060          do k=1,constr_homology
6061 c            godl=dexp(((-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6062 c     &           *waga_dist)+min_odl
6063 c          sgodl=-godl(k)*distance(k)*sigma_odl(k,ii)*waga_dist
6064            sgodl=-godl(k)*distance(k)*sigma_odl(k,ii) ! waga_dist rmvd
6065            sum_sgodl=sum_sgodl+sgodl
6066
6067 c            sgodl2=sgodl2+sgodl
6068 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE1"
6069 c      write(iout,*) "constr_homology=",constr_homology
6070 c      write(iout,*) i, j, k, "TEST K"
6071          enddo
6072
6073        if (homol_nset.gt.1)then
6074          grad_odl3=waga_dist1(iset)*sum_sgodl/(sum_godl*dij)
6075        else
6076          grad_odl3=waga_dist*sum_sgodl/(sum_godl*dij)
6077        endif
6078 c        grad_odl3=sum_sgodl/(sum_godl*dij)
6079
6080
6081 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE2"
6082 c      write(iout,*) (distance(i,j,k)**2), (2*(sigma_odl(i,j,k))**2),
6083 c     &              (-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6084
6085 ccc      write(iout,*) godl, sgodl, grad_odl3
6086
6087 c          grad_odl=grad_odl+grad_odl3
6088
6089          do jik=1,3
6090             ggodl=grad_odl3*(c(jik,i)-c(jik,j))
6091 ccc      write(iout,*) c(jik,i+1), c(jik,j+1), (c(jik,i+1)-c(jik,j+1))
6092 ccc      write(iout,746) "GRAD_ODL_1", i, j, jik, ggodl, 
6093 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6094             ghpbc(jik,i)=ghpbc(jik,i)+ggodl
6095             ghpbc(jik,j)=ghpbc(jik,j)-ggodl
6096 ccc      write(iout,746) "GRAD_ODL_2", i, j, jik, ggodl,
6097 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6098 c         if (i.eq.25.and.j.eq.27) then
6099 c         write(iout,*) "jik",jik,"i",i,"j",j
6100 c         write(iout,*) "sum_sgodl",sum_sgodl,"sgodl",sgodl
6101 c         write(iout,*) "grad_odl3",grad_odl3
6102 c         write(iout,*) "c(",jik,i,")",c(jik,i),"c(",jik,j,")",c(jik,j)
6103 c         write(iout,*) "ggodl",ggodl
6104 c         write(iout,*) "ghpbc(",jik,i,")",
6105 c     &                 ghpbc(jik,i),"ghpbc(",jik,j,")",
6106 c     &                 ghpbc(jik,j)   
6107 c         endif
6108          enddo
6109 ccc       write(iout,778)"TEST: odleg2=", odleg2, "DLOG(odleg2)=", 
6110 ccc     & dLOG(odleg2),"-odleg=", -odleg
6111
6112       enddo ! ii-loop for dist
6113 #ifdef DEBUG
6114       write(iout,*) "------- dist restrs end -------"
6115 c     if (waga_angle.eq.1.0d0 .or. waga_theta.eq.1.0d0 .or. 
6116 c    &     waga_d.eq.1.0d0) call sum_gradient
6117 #endif
6118 c Pseudo-energy and gradient from dihedral-angle restraints from
6119 c homology templates
6120 c      write (iout,*) "End of distance loop"
6121 c      call flush(iout)
6122       kat=0.0d0
6123 c      write (iout,*) idihconstr_start_homo,idihconstr_end_homo
6124 #ifdef DEBUG
6125       write(iout,*) "------- dih restrs start -------"
6126       do i=idihconstr_start_homo,idihconstr_end_homo
6127         write (iout,*) "gloc_init(",i,icg,")",gloc(i,icg)
6128       enddo
6129 #endif
6130       do i=idihconstr_start_homo,idihconstr_end_homo
6131         kat2=0.0d0
6132 c        betai=beta(i,i+1,i+2,i+3)
6133         betai = phi(i+3)
6134 c       write (iout,*) "betai =",betai
6135         do k=1,constr_homology
6136           dih_diff(k)=pinorm(dih(k,i)-betai)
6137 c         write (iout,*) "dih_diff(",k,") =",dih_diff(k)
6138 c          if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)=
6139 c     &                                   -(6.28318-dih_diff(i,k))
6140 c          if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)=
6141 c     &                                   6.28318+dih_diff(i,k)
6142
6143           kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument
6144 c         kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i)
6145           gdih(k)=dexp(kat3)
6146           kat2=kat2+gdih(k)
6147 c          write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3)
6148 c          write(*,*)""
6149         enddo
6150 c       write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps
6151 c       write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps
6152 #ifdef DEBUG
6153         write (iout,*) "i",i," betai",betai," kat2",kat2
6154         write (iout,*) "gdih",(gdih(k),k=1,constr_homology)
6155 #endif
6156         if (kat2.le.1.0d-14) cycle
6157         kat=kat-dLOG(kat2/constr_homology)
6158 c       write (iout,*) "kat",kat ! sum of -ln-s
6159
6160 ccc       write(iout,778)"TEST: kat2=", kat2, "DLOG(kat2)=",
6161 ccc     & dLOG(kat2), "-kat=", -kat
6162
6163 c ----------------------------------------------------------------------
6164 c Gradient
6165 c ----------------------------------------------------------------------
6166
6167         sum_gdih=kat2
6168         sum_sgdih=0.0d0
6169         do k=1,constr_homology
6170           sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)  ! waga_angle rmvd
6171 c         sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle
6172           sum_sgdih=sum_sgdih+sgdih
6173         enddo
6174 c       grad_dih3=sum_sgdih/sum_gdih
6175         if (homol_nset.gt.1)then
6176          grad_dih3=waga_angle1(iset)*sum_sgdih/sum_gdih
6177         else
6178          grad_dih3=waga_angle*sum_sgdih/sum_gdih
6179         endif
6180
6181 c      write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3
6182 ccc      write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3,
6183 ccc     & gloc(nphi+i-3,icg)
6184         gloc(i,icg)=gloc(i,icg)+grad_dih3
6185 c        if (i.eq.25) then
6186 c        write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg)
6187 c        endif
6188 ccc      write(iout,747) "GRAD_KAT_2", i, nphi, icg, grad_dih3,
6189 ccc     & gloc(nphi+i-3,icg)
6190
6191       enddo ! i-loop for dih
6192 #ifdef DEBUG
6193       write(iout,*) "------- dih restrs end -------"
6194 #endif
6195
6196 c Pseudo-energy and gradient for theta angle restraints from
6197 c homology templates
6198 c FP 01/15 - inserted from econstr_local_test.F, loop structure
6199 c adapted
6200
6201 c
6202 c     For constr_homology reference structures (FP)
6203 c     
6204 c     Uconst_back_tot=0.0d0
6205       Eval=0.0d0
6206       Erot=0.0d0
6207 c     Econstr_back legacy
6208       do i=1,nres
6209 c     do i=ithet_start,ithet_end
6210        dutheta(i)=0.0d0
6211 c     enddo
6212 c     do i=loc_start,loc_end
6213         do j=1,3
6214           duscdiff(j,i)=0.0d0
6215           duscdiffx(j,i)=0.0d0
6216         enddo
6217       enddo
6218 c
6219 c     do iref=1,nref
6220 c     write (iout,*) "ithet_start =",ithet_start,"ithet_end =",ithet_end
6221 c     write (iout,*) "waga_theta",waga_theta
6222       if (waga_theta.gt.0.0d0) then
6223 #ifdef DEBUG
6224       write (iout,*) "usampl",usampl
6225       write(iout,*) "------- theta restrs start -------"
6226 c     do i=ithet_start,ithet_end
6227 c       write (iout,*) "gloc_init(",nphi+i,icg,")",gloc(nphi+i,icg)
6228 c     enddo
6229 #endif
6230 c     write (iout,*) "maxres",maxres,"nres",nres
6231
6232       do i=ithet_start,ithet_end
6233 c
6234 c     do i=1,nfrag_back
6235 c       ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset)
6236 c
6237 c Deviation of theta angles wrt constr_homology ref structures
6238 c
6239         utheta_i=0.0d0 ! argument of Gaussian for single k
6240         gutheta_i=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6241 c       do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) ! original loop
6242 c       over residues in a fragment
6243 c       write (iout,*) "theta(",i,")=",theta(i)
6244         do k=1,constr_homology
6245 c
6246 c         dtheta_i=theta(j)-thetaref(j,iref)
6247 c         dtheta_i=thetaref(k,i)-theta(i) ! original form without indexing
6248           theta_diff(k)=thetatpl(k,i)-theta(i)
6249 c
6250           utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument
6251 c         utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta?
6252           gtheta(k)=dexp(utheta_i) ! + min_utheta_i?
6253           gutheta_i=gutheta_i+dexp(utheta_i)   ! Sum of Gaussians (pk)
6254 c         Gradient for single Gaussian restraint in subr Econstr_back
6255 c         dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1)
6256 c
6257         enddo
6258 c       write (iout,*) "gtheta",(gtheta(k),k=1,constr_homology) ! exps
6259 c       write (iout,*) "i",i," gutheta_i",gutheta_i ! sum of exps
6260
6261 c
6262 c         Gradient for multiple Gaussian restraint
6263         sum_gtheta=gutheta_i
6264         sum_sgtheta=0.0d0
6265         do k=1,constr_homology
6266 c        New generalized expr for multiple Gaussian from Econstr_back
6267          sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i) ! waga_theta rmvd
6268 c
6269 c        sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i)*waga_theta ! right functional form?
6270           sum_sgtheta=sum_sgtheta+sgtheta ! cum variable
6271         enddo
6272 c       grad_theta3=sum_sgtheta/sum_gtheta 1/*theta(i)? s. line below
6273 c       grad_theta3=sum_sgtheta/sum_gtheta
6274 c
6275 c       Final value of gradient using same var as in Econstr_back
6276         dutheta(i-2)=sum_sgtheta/sum_gtheta*waga_theta
6277 c       dutheta(i)=sum_sgtheta/sum_gtheta
6278 c
6279 c       Uconst_back=Uconst_back+waga_theta*utheta(i) ! waga_theta added as weight
6280         Eval=Eval-dLOG(gutheta_i/constr_homology)
6281 c       write (iout,*) "utheta(",i,")=",utheta(i) ! -ln of sum of exps
6282 c       write (iout,*) "Uconst_back",Uconst_back ! sum of -ln-s
6283 c       Uconst_back=Uconst_back+utheta(i)
6284       enddo ! (i-loop for theta)
6285 #ifdef DEBUG
6286       write(iout,*) "------- theta restrs end -------"
6287 #endif
6288       endif
6289 c
6290 c Deviation of local SC geometry
6291 c
6292 c Separation of two i-loops (instructed by AL - 11/3/2014)
6293 c
6294 c     write (iout,*) "loc_start =",loc_start,"loc_end =",loc_end
6295 c     write (iout,*) "waga_d",waga_d
6296
6297 #ifdef DEBUG
6298       write(iout,*) "------- SC restrs start -------"
6299       write (iout,*) "Initial duscdiff,duscdiffx"
6300       do i=loc_start,loc_end
6301         write (iout,*) i,(duscdiff(jik,i),jik=1,3),
6302      &                 (duscdiffx(jik,i),jik=1,3)
6303       enddo
6304 #endif
6305       do i=loc_start,loc_end
6306         usc_diff_i=0.0d0 ! argument of Gaussian for single k
6307         guscdiff(i)=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6308 c       do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 ! Econstr_back legacy
6309 c       write(iout,*) "xxtab, yytab, zztab"
6310 c       write(iout,'(i5,3f8.2)') i,xxtab(i),yytab(i),zztab(i)
6311         do k=1,constr_homology
6312 c
6313           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6314 c                                    Original sign inverted for calc of gradients (s. Econstr_back)
6315           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6316           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6317 c         write(iout,*) "dxx, dyy, dzz"
6318 c         write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6319 c
6320           usc_diff_i=-0.5d0*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i)  ! waga_d rmvd from Gaussian argument
6321 c         usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d?
6322 c         uscdiffk(k)=usc_diff(i)
6323           guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff
6324           guscdiff(i)=guscdiff(i)+dexp(usc_diff_i)   !Sum of Gaussians (pk)
6325 c          write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j),
6326 c     &      xxref(j),yyref(j),zzref(j)
6327         enddo
6328 c
6329 c       Gradient 
6330 c
6331 c       Generalized expression for multiple Gaussian acc to that for a single 
6332 c       Gaussian in Econstr_back as instructed by AL (FP - 03/11/2014)
6333 c
6334 c       Original implementation
6335 c       sum_guscdiff=guscdiff(i)
6336 c
6337 c       sum_sguscdiff=0.0d0
6338 c       do k=1,constr_homology
6339 c          sguscdiff=-guscdiff2(k)*dscdiff(k)*sigma_d(k,i)*waga_d !waga_d? 
6340 c          sguscdiff=-guscdiff3(k)*dscdiff(k)*sigma_d(k,i)*waga_d ! w min_uscdiff
6341 c          sum_sguscdiff=sum_sguscdiff+sguscdiff
6342 c       enddo
6343 c
6344 c       Implementation of new expressions for gradient (Jan. 2015)
6345 c
6346 c       grad_uscdiff=sum_sguscdiff/(sum_guscdiff*dtab) !?
6347         do k=1,constr_homology 
6348 c
6349 c       New calculation of dxx, dyy, and dzz corrected by AL (07/11), was missing and wrong
6350 c       before. Now the drivatives should be correct
6351 c
6352           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6353 c                                  Original sign inverted for calc of gradients (s. Econstr_back)
6354           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6355           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6356 c
6357 c         New implementation
6358 c
6359           sum_guscdiff=guscdiff2(k)*!(dsqrt(dxx*dxx+dyy*dyy+dzz*dzz))* -> wrong!
6360      &                 sigma_d(k,i) ! for the grad wrt r' 
6361 c         sum_sguscdiff=sum_sguscdiff+sum_guscdiff
6362 c
6363 c
6364 c        New implementation
6365          sum_guscdiff = waga_d*sum_guscdiff
6366          do jik=1,3
6367             duscdiff(jik,i-1)=duscdiff(jik,i-1)+
6368      &      sum_guscdiff*(dXX_C1tab(jik,i)*dxx+
6369      &      dYY_C1tab(jik,i)*dyy+dZZ_C1tab(jik,i)*dzz)/guscdiff(i)
6370             duscdiff(jik,i)=duscdiff(jik,i)+
6371      &      sum_guscdiff*(dXX_Ctab(jik,i)*dxx+
6372      &      dYY_Ctab(jik,i)*dyy+dZZ_Ctab(jik,i)*dzz)/guscdiff(i)
6373             duscdiffx(jik,i)=duscdiffx(jik,i)+
6374      &      sum_guscdiff*(dXX_XYZtab(jik,i)*dxx+
6375      &      dYY_XYZtab(jik,i)*dyy+dZZ_XYZtab(jik,i)*dzz)/guscdiff(i)
6376 c
6377 #ifdef DEBUG
6378              write(iout,*) "jik",jik,"i",i
6379              write(iout,*) "dxx, dyy, dzz"
6380              write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6381              write(iout,*) "guscdiff2(",k,")",guscdiff2(k)
6382 c            write(iout,*) "sum_sguscdiff",sum_sguscdiff
6383 cc           write(iout,*) "dXX_Ctab(",jik,i,")",dXX_Ctab(jik,i)
6384 c            write(iout,*) "dYY_Ctab(",jik,i,")",dYY_Ctab(jik,i)
6385 c            write(iout,*) "dZZ_Ctab(",jik,i,")",dZZ_Ctab(jik,i)
6386 c            write(iout,*) "dXX_C1tab(",jik,i,")",dXX_C1tab(jik,i)
6387 c            write(iout,*) "dYY_C1tab(",jik,i,")",dYY_C1tab(jik,i)
6388 c            write(iout,*) "dZZ_C1tab(",jik,i,")",dZZ_C1tab(jik,i)
6389 c            write(iout,*) "dXX_XYZtab(",jik,i,")",dXX_XYZtab(jik,i)
6390 c            write(iout,*) "dYY_XYZtab(",jik,i,")",dYY_XYZtab(jik,i)
6391 c            write(iout,*) "dZZ_XYZtab(",jik,i,")",dZZ_XYZtab(jik,i)
6392 c            write(iout,*) "duscdiff(",jik,i-1,")",duscdiff(jik,i-1)
6393 c            write(iout,*) "duscdiff(",jik,i,")",duscdiff(jik,i)
6394 c            write(iout,*) "duscdiffx(",jik,i,")",duscdiffx(jik,i)
6395 c            endif
6396 #endif
6397          enddo
6398         enddo
6399 c
6400 c       uscdiff(i)=-dLOG(guscdiff(i)/(ii-1))      ! Weighting by (ii-1) required?
6401 c        usc_diff(i)=-dLOG(guscdiff(i)/constr_homology) ! + min_uscdiff ?
6402 c
6403 c        write (iout,*) i," uscdiff",uscdiff(i)
6404 c
6405 c Put together deviations from local geometry
6406
6407 c       Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+
6408 c      &            wfrag_back(3,i,iset)*uscdiff(i)
6409         Erot=Erot-dLOG(guscdiff(i)/constr_homology)
6410 c       write (iout,*) "usc_diff(",i,")=",usc_diff(i) ! -ln of sum of exps
6411 c       write (iout,*) "Uconst_back",Uconst_back ! cum sum of -ln-s
6412 c       Uconst_back=Uconst_back+usc_diff(i)
6413 c
6414 c     Gradient of multiple Gaussian restraint (FP - 04/11/2014 - right?)
6415 c
6416 c     New implment: multiplied by sum_sguscdiff
6417 c
6418
6419       enddo ! (i-loop for dscdiff)
6420
6421 c      endif
6422
6423 #ifdef DEBUG
6424       write(iout,*) "------- SC restrs end -------"
6425         write (iout,*) "------ After SC loop in e_modeller ------"
6426         do i=loc_start,loc_end
6427          write (iout,*) "i",i," gradc",(gradc(j,i,icg),j=1,3)
6428          write (iout,*) "i",i," gradx",(gradx(j,i,icg),j=1,3)
6429         enddo
6430       if (waga_theta.eq.1.0d0) then
6431       write (iout,*) "in e_modeller after SC restr end: dutheta"
6432       do i=ithet_start,ithet_end
6433         write (iout,*) i,dutheta(i)
6434       enddo
6435       endif
6436       if (waga_d.eq.1.0d0) then
6437       write (iout,*) "e_modeller after SC loop: duscdiff/x"
6438       do i=1,nres
6439         write (iout,*) i,(duscdiff(j,i),j=1,3)
6440         write (iout,*) i,(duscdiffx(j,i),j=1,3)
6441       enddo
6442       endif
6443 #endif
6444
6445 c Total energy from homology restraints
6446 #ifdef DEBUG
6447       write (iout,*) "odleg",odleg," kat",kat
6448 #endif
6449 c
6450 c Addition of energy of theta angle and SC local geom over constr_homologs ref strs
6451 c
6452 c     ehomology_constr=odleg+kat
6453       if (homol_nset.gt.1)then
6454        ehomology_constr=waga_dist1(iset)*odleg+waga_angle1(iset)*kat+waga_theta*Eval
6455      &              +waga_d*Erot     
6456       else
6457        ehomology_constr=waga_dist*odleg+waga_angle*kat+waga_theta*Eval
6458      &              +waga_d*Erot
6459       endif
6460 c     write (iout,*) "odleg",odleg," kat",kat," Uconst_back",Uconst_back
6461 c     write (iout,*) "ehomology_constr",ehomology_constr
6462 c     ehomology_constr=odleg+kat+Uconst_back
6463       return
6464 c
6465 c FP 01/15 end
6466 c
6467   748 format(a8,f12.3,a6,f12.3,a7,f12.3)
6468   747 format(a12,i4,i4,i4,f8.3,f8.3)
6469   746 format(a12,i4,i4,i4,f8.3,f8.3,f8.3)
6470   778 format(a7,1X,f10.3,1X,a4,1X,f10.3,1X,a5,1X,f10.3)
6471   779 format(i3,1X,i3,1X,i2,1X,a7,1X,f7.3,1X,a7,1X,f7.3,1X,a13,1X,
6472      &       f7.3,1X,a17,1X,f9.3,1X,a10,1X,f8.3,1X,a10,1X,f8.3)
6473       end
6474
6475 c------------------------------------------------------------------------------
6476       subroutine etor_d(etors_d)
6477 C 6/23/01 Compute double torsional energy
6478       implicit real*8 (a-h,o-z)
6479       include 'DIMENSIONS'
6480       include 'COMMON.VAR'
6481       include 'COMMON.GEO'
6482       include 'COMMON.LOCAL'
6483       include 'COMMON.TORSION'
6484       include 'COMMON.INTERACT'
6485       include 'COMMON.DERIV'
6486       include 'COMMON.CHAIN'
6487       include 'COMMON.NAMES'
6488       include 'COMMON.IOUNITS'
6489       include 'COMMON.FFIELD'
6490       include 'COMMON.TORCNSTR'
6491       logical lprn
6492 C Set lprn=.true. for debugging
6493       lprn=.false.
6494 c     lprn=.true.
6495       etors_d=0.0D0
6496       do i=iphid_start,iphid_end
6497         itori=itortyp(itype(i-2))
6498         itori1=itortyp(itype(i-1))
6499         itori2=itortyp(itype(i))
6500         phii=phi(i)
6501         phii1=phi(i+1)
6502         gloci1=0.0D0
6503         gloci2=0.0D0
6504         do j=1,ntermd_1(itori,itori1,itori2)
6505           v1cij=v1c(1,j,itori,itori1,itori2)
6506           v1sij=v1s(1,j,itori,itori1,itori2)
6507           v2cij=v1c(2,j,itori,itori1,itori2)
6508           v2sij=v1s(2,j,itori,itori1,itori2)
6509           cosphi1=dcos(j*phii)
6510           sinphi1=dsin(j*phii)
6511           cosphi2=dcos(j*phii1)
6512           sinphi2=dsin(j*phii1)
6513           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
6514      &     v2cij*cosphi2+v2sij*sinphi2
6515           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
6516           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
6517         enddo
6518         do k=2,ntermd_2(itori,itori1,itori2)
6519           do l=1,k-1
6520             v1cdij = v2c(k,l,itori,itori1,itori2)
6521             v2cdij = v2c(l,k,itori,itori1,itori2)
6522             v1sdij = v2s(k,l,itori,itori1,itori2)
6523             v2sdij = v2s(l,k,itori,itori1,itori2)
6524             cosphi1p2=dcos(l*phii+(k-l)*phii1)
6525             cosphi1m2=dcos(l*phii-(k-l)*phii1)
6526             sinphi1p2=dsin(l*phii+(k-l)*phii1)
6527             sinphi1m2=dsin(l*phii-(k-l)*phii1)
6528             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
6529      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
6530             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
6531      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
6532             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
6533      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
6534           enddo
6535         enddo
6536         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
6537         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
6538 c        write (iout,*) "gloci", gloc(i-3,icg)
6539       enddo
6540       return
6541       end
6542 #endif
6543 c------------------------------------------------------------------------------
6544       subroutine eback_sc_corr(esccor)
6545 c 7/21/2007 Correlations between the backbone-local and side-chain-local
6546 c        conformational states; temporarily implemented as differences
6547 c        between UNRES torsional potentials (dependent on three types of
6548 c        residues) and the torsional potentials dependent on all 20 types
6549 c        of residues computed from AM1  energy surfaces of terminally-blocked
6550 c        amino-acid residues.
6551       implicit real*8 (a-h,o-z)
6552       include 'DIMENSIONS'
6553       include 'COMMON.VAR'
6554       include 'COMMON.GEO'
6555       include 'COMMON.LOCAL'
6556       include 'COMMON.TORSION'
6557       include 'COMMON.SCCOR'
6558       include 'COMMON.INTERACT'
6559       include 'COMMON.DERIV'
6560       include 'COMMON.CHAIN'
6561       include 'COMMON.NAMES'
6562       include 'COMMON.IOUNITS'
6563       include 'COMMON.FFIELD'
6564       include 'COMMON.CONTROL'
6565       logical lprn
6566 C Set lprn=.true. for debugging
6567       lprn=.false.
6568 c      lprn=.true.
6569 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
6570       esccor=0.0D0
6571       do i=itau_start,itau_end
6572         esccor_ii=0.0D0
6573         isccori=isccortyp(itype(i-2))
6574         isccori1=isccortyp(itype(i-1))
6575         phii=phi(i)
6576 cccc  Added 9 May 2012
6577 cc Tauangle is torsional engle depending on the value of first digit 
6578 c(see comment below)
6579 cc Omicron is flat angle depending on the value of first digit 
6580 c(see comment below)
6581
6582         
6583         do intertyp=1,3 !intertyp
6584 cc Added 09 May 2012 (Adasko)
6585 cc  Intertyp means interaction type of backbone mainchain correlation: 
6586 c   1 = SC...Ca...Ca...Ca
6587 c   2 = Ca...Ca...Ca...SC
6588 c   3 = SC...Ca...Ca...SCi
6589         gloci=0.0D0
6590         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
6591      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
6592      &      (itype(i-1).eq.21)))
6593      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
6594      &     .or.(itype(i-2).eq.21)))
6595      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
6596      &      (itype(i-1).eq.21)))) cycle  
6597         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
6598         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
6599      & cycle
6600         do j=1,nterm_sccor(isccori,isccori1)
6601           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6602           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6603           cosphi=dcos(j*tauangle(intertyp,i))
6604           sinphi=dsin(j*tauangle(intertyp,i))
6605           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6606           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6607         enddo
6608         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6609 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6610 c     &gloc_sc(intertyp,i-3,icg)
6611         if (lprn)
6612      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6613      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6614      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6615      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6616         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6617        enddo !intertyp
6618       enddo
6619 c        do i=1,nres
6620 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6621 c        enddo
6622       return
6623       end
6624 c----------------------------------------------------------------------------
6625       subroutine multibody(ecorr)
6626 C This subroutine calculates multi-body contributions to energy following
6627 C the idea of Skolnick et al. If side chains I and J make a contact and
6628 C at the same time side chains I+1 and J+1 make a contact, an extra 
6629 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6630       implicit real*8 (a-h,o-z)
6631       include 'DIMENSIONS'
6632       include 'COMMON.IOUNITS'
6633       include 'COMMON.DERIV'
6634       include 'COMMON.INTERACT'
6635       include 'COMMON.CONTACTS'
6636       double precision gx(3),gx1(3)
6637       logical lprn
6638
6639 C Set lprn=.true. for debugging
6640       lprn=.false.
6641
6642       if (lprn) then
6643         write (iout,'(a)') 'Contact function values:'
6644         do i=nnt,nct-2
6645           write (iout,'(i2,20(1x,i2,f10.5))') 
6646      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6647         enddo
6648       endif
6649       ecorr=0.0D0
6650       do i=nnt,nct
6651         do j=1,3
6652           gradcorr(j,i)=0.0D0
6653           gradxorr(j,i)=0.0D0
6654         enddo
6655       enddo
6656       do i=nnt,nct-2
6657
6658         DO ISHIFT = 3,4
6659
6660         i1=i+ishift
6661         num_conti=num_cont(i)
6662         num_conti1=num_cont(i1)
6663         do jj=1,num_conti
6664           j=jcont(jj,i)
6665           do kk=1,num_conti1
6666             j1=jcont(kk,i1)
6667             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6668 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6669 cd   &                   ' ishift=',ishift
6670 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6671 C The system gains extra energy.
6672               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6673             endif   ! j1==j+-ishift
6674           enddo     ! kk  
6675         enddo       ! jj
6676
6677         ENDDO ! ISHIFT
6678
6679       enddo         ! i
6680       return
6681       end
6682 c------------------------------------------------------------------------------
6683       double precision function esccorr(i,j,k,l,jj,kk)
6684       implicit real*8 (a-h,o-z)
6685       include 'DIMENSIONS'
6686       include 'COMMON.IOUNITS'
6687       include 'COMMON.DERIV'
6688       include 'COMMON.INTERACT'
6689       include 'COMMON.CONTACTS'
6690       double precision gx(3),gx1(3)
6691       logical lprn
6692       lprn=.false.
6693       eij=facont(jj,i)
6694       ekl=facont(kk,k)
6695 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6696 C Calculate the multi-body contribution to energy.
6697 C Calculate multi-body contributions to the gradient.
6698 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6699 cd   & k,l,(gacont(m,kk,k),m=1,3)
6700       do m=1,3
6701         gx(m) =ekl*gacont(m,jj,i)
6702         gx1(m)=eij*gacont(m,kk,k)
6703         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6704         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6705         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6706         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6707       enddo
6708       do m=i,j-1
6709         do ll=1,3
6710           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6711         enddo
6712       enddo
6713       do m=k,l-1
6714         do ll=1,3
6715           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6716         enddo
6717       enddo 
6718       esccorr=-eij*ekl
6719       return
6720       end
6721 c------------------------------------------------------------------------------
6722       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6723 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6724       implicit real*8 (a-h,o-z)
6725       include 'DIMENSIONS'
6726       include 'COMMON.IOUNITS'
6727 #ifdef MPI
6728       include "mpif.h"
6729       parameter (max_cont=maxconts)
6730       parameter (max_dim=26)
6731       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6732       double precision zapas(max_dim,maxconts,max_fg_procs),
6733      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6734       common /przechowalnia/ zapas
6735       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6736      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6737 #endif
6738       include 'COMMON.SETUP'
6739       include 'COMMON.FFIELD'
6740       include 'COMMON.DERIV'
6741       include 'COMMON.INTERACT'
6742       include 'COMMON.CONTACTS'
6743       include 'COMMON.CONTROL'
6744       include 'COMMON.LOCAL'
6745       double precision gx(3),gx1(3),time00
6746       logical lprn,ldone
6747
6748 C Set lprn=.true. for debugging
6749       lprn=.false.
6750 #ifdef MPI
6751       n_corr=0
6752       n_corr1=0
6753       if (nfgtasks.le.1) goto 30
6754       if (lprn) then
6755         write (iout,'(a)') 'Contact function values before RECEIVE:'
6756         do i=nnt,nct-2
6757           write (iout,'(2i3,50(1x,i2,f5.2))') 
6758      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6759      &    j=1,num_cont_hb(i))
6760         enddo
6761       endif
6762       call flush(iout)
6763       do i=1,ntask_cont_from
6764         ncont_recv(i)=0
6765       enddo
6766       do i=1,ntask_cont_to
6767         ncont_sent(i)=0
6768       enddo
6769 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6770 c     & ntask_cont_to
6771 C Make the list of contacts to send to send to other procesors
6772 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6773 c      call flush(iout)
6774       do i=iturn3_start,iturn3_end
6775 c        write (iout,*) "make contact list turn3",i," num_cont",
6776 c     &    num_cont_hb(i)
6777         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6778       enddo
6779       do i=iturn4_start,iturn4_end
6780 c        write (iout,*) "make contact list turn4",i," num_cont",
6781 c     &   num_cont_hb(i)
6782         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6783       enddo
6784       do ii=1,nat_sent
6785         i=iat_sent(ii)
6786 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6787 c     &    num_cont_hb(i)
6788         do j=1,num_cont_hb(i)
6789         do k=1,4
6790           jjc=jcont_hb(j,i)
6791           iproc=iint_sent_local(k,jjc,ii)
6792 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6793           if (iproc.gt.0) then
6794             ncont_sent(iproc)=ncont_sent(iproc)+1
6795             nn=ncont_sent(iproc)
6796             zapas(1,nn,iproc)=i
6797             zapas(2,nn,iproc)=jjc
6798             zapas(3,nn,iproc)=facont_hb(j,i)
6799             zapas(4,nn,iproc)=ees0p(j,i)
6800             zapas(5,nn,iproc)=ees0m(j,i)
6801             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6802             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6803             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6804             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6805             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6806             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6807             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6808             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6809             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6810             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6811             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6812             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6813             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6814             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6815             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6816             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6817             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6818             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6819             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6820             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6821             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6822           endif
6823         enddo
6824         enddo
6825       enddo
6826       if (lprn) then
6827       write (iout,*) 
6828      &  "Numbers of contacts to be sent to other processors",
6829      &  (ncont_sent(i),i=1,ntask_cont_to)
6830       write (iout,*) "Contacts sent"
6831       do ii=1,ntask_cont_to
6832         nn=ncont_sent(ii)
6833         iproc=itask_cont_to(ii)
6834         write (iout,*) nn," contacts to processor",iproc,
6835      &   " of CONT_TO_COMM group"
6836         do i=1,nn
6837           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6838         enddo
6839       enddo
6840       call flush(iout)
6841       endif
6842       CorrelType=477
6843       CorrelID=fg_rank+1
6844       CorrelType1=478
6845       CorrelID1=nfgtasks+fg_rank+1
6846       ireq=0
6847 C Receive the numbers of needed contacts from other processors 
6848       do ii=1,ntask_cont_from
6849         iproc=itask_cont_from(ii)
6850         ireq=ireq+1
6851         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6852      &    FG_COMM,req(ireq),IERR)
6853       enddo
6854 c      write (iout,*) "IRECV ended"
6855 c      call flush(iout)
6856 C Send the number of contacts needed by other processors
6857       do ii=1,ntask_cont_to
6858         iproc=itask_cont_to(ii)
6859         ireq=ireq+1
6860         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6861      &    FG_COMM,req(ireq),IERR)
6862       enddo
6863 c      write (iout,*) "ISEND ended"
6864 c      write (iout,*) "number of requests (nn)",ireq
6865       call flush(iout)
6866       if (ireq.gt.0) 
6867      &  call MPI_Waitall(ireq,req,status_array,ierr)
6868 c      write (iout,*) 
6869 c     &  "Numbers of contacts to be received from other processors",
6870 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6871 c      call flush(iout)
6872 C Receive contacts
6873       ireq=0
6874       do ii=1,ntask_cont_from
6875         iproc=itask_cont_from(ii)
6876         nn=ncont_recv(ii)
6877 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6878 c     &   " of CONT_TO_COMM group"
6879         call flush(iout)
6880         if (nn.gt.0) then
6881           ireq=ireq+1
6882           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6883      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6884 c          write (iout,*) "ireq,req",ireq,req(ireq)
6885         endif
6886       enddo
6887 C Send the contacts to processors that need them
6888       do ii=1,ntask_cont_to
6889         iproc=itask_cont_to(ii)
6890         nn=ncont_sent(ii)
6891 c        write (iout,*) nn," contacts to processor",iproc,
6892 c     &   " of CONT_TO_COMM group"
6893         if (nn.gt.0) then
6894           ireq=ireq+1 
6895           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
6896      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6897 c          write (iout,*) "ireq,req",ireq,req(ireq)
6898 c          do i=1,nn
6899 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6900 c          enddo
6901         endif  
6902       enddo
6903 c      write (iout,*) "number of requests (contacts)",ireq
6904 c      write (iout,*) "req",(req(i),i=1,4)
6905 c      call flush(iout)
6906       if (ireq.gt.0) 
6907      & call MPI_Waitall(ireq,req,status_array,ierr)
6908       do iii=1,ntask_cont_from
6909         iproc=itask_cont_from(iii)
6910         nn=ncont_recv(iii)
6911         if (lprn) then
6912         write (iout,*) "Received",nn," contacts from processor",iproc,
6913      &   " of CONT_FROM_COMM group"
6914         call flush(iout)
6915         do i=1,nn
6916           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
6917         enddo
6918         call flush(iout)
6919         endif
6920         do i=1,nn
6921           ii=zapas_recv(1,i,iii)
6922 c Flag the received contacts to prevent double-counting
6923           jj=-zapas_recv(2,i,iii)
6924 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
6925 c          call flush(iout)
6926           nnn=num_cont_hb(ii)+1
6927           num_cont_hb(ii)=nnn
6928           jcont_hb(nnn,ii)=jj
6929           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
6930           ees0p(nnn,ii)=zapas_recv(4,i,iii)
6931           ees0m(nnn,ii)=zapas_recv(5,i,iii)
6932           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
6933           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
6934           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
6935           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
6936           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
6937           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
6938           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
6939           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
6940           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
6941           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
6942           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
6943           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
6944           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
6945           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
6946           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
6947           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
6948           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
6949           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
6950           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
6951           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
6952           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
6953         enddo
6954       enddo
6955       call flush(iout)
6956       if (lprn) then
6957         write (iout,'(a)') 'Contact function values after receive:'
6958         do i=nnt,nct-2
6959           write (iout,'(2i3,50(1x,i3,f5.2))') 
6960      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6961      &    j=1,num_cont_hb(i))
6962         enddo
6963         call flush(iout)
6964       endif
6965    30 continue
6966 #endif
6967       if (lprn) then
6968         write (iout,'(a)') 'Contact function values:'
6969         do i=nnt,nct-2
6970           write (iout,'(2i3,50(1x,i3,f5.2))') 
6971      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6972      &    j=1,num_cont_hb(i))
6973         enddo
6974       endif
6975       ecorr=0.0D0
6976 C Remove the loop below after debugging !!!
6977       do i=nnt,nct
6978         do j=1,3
6979           gradcorr(j,i)=0.0D0
6980           gradxorr(j,i)=0.0D0
6981         enddo
6982       enddo
6983 C Calculate the local-electrostatic correlation terms
6984       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
6985         i1=i+1
6986         num_conti=num_cont_hb(i)
6987         num_conti1=num_cont_hb(i+1)
6988         do jj=1,num_conti
6989           j=jcont_hb(jj,i)
6990           jp=iabs(j)
6991           do kk=1,num_conti1
6992             j1=jcont_hb(kk,i1)
6993             jp1=iabs(j1)
6994 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6995 c     &         ' jj=',jj,' kk=',kk
6996             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
6997      &          .or. j.lt.0 .and. j1.gt.0) .and.
6998      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
6999 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7000 C The system gains extra energy.
7001               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
7002               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
7003      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
7004               n_corr=n_corr+1
7005             else if (j1.eq.j) then
7006 C Contacts I-J and I-(J+1) occur simultaneously. 
7007 C The system loses extra energy.
7008 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
7009             endif
7010           enddo ! kk
7011           do kk=1,num_conti
7012             j1=jcont_hb(kk,i)
7013 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7014 c    &         ' jj=',jj,' kk=',kk
7015             if (j1.eq.j+1) then
7016 C Contacts I-J and (I+1)-J occur simultaneously. 
7017 C The system loses extra energy.
7018 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
7019             endif ! j1==j+1
7020           enddo ! kk
7021         enddo ! jj
7022       enddo ! i
7023       return
7024       end
7025 c------------------------------------------------------------------------------
7026       subroutine add_hb_contact(ii,jj,itask)
7027       implicit real*8 (a-h,o-z)
7028       include "DIMENSIONS"
7029       include "COMMON.IOUNITS"
7030       integer max_cont
7031       integer max_dim
7032       parameter (max_cont=maxconts)
7033       parameter (max_dim=26)
7034       include "COMMON.CONTACTS"
7035       double precision zapas(max_dim,maxconts,max_fg_procs),
7036      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7037       common /przechowalnia/ zapas
7038       integer i,j,ii,jj,iproc,itask(4),nn
7039 c      write (iout,*) "itask",itask
7040       do i=1,2
7041         iproc=itask(i)
7042         if (iproc.gt.0) then
7043           do j=1,num_cont_hb(ii)
7044             jjc=jcont_hb(j,ii)
7045 c            write (iout,*) "i",ii," j",jj," jjc",jjc
7046             if (jjc.eq.jj) then
7047               ncont_sent(iproc)=ncont_sent(iproc)+1
7048               nn=ncont_sent(iproc)
7049               zapas(1,nn,iproc)=ii
7050               zapas(2,nn,iproc)=jjc
7051               zapas(3,nn,iproc)=facont_hb(j,ii)
7052               zapas(4,nn,iproc)=ees0p(j,ii)
7053               zapas(5,nn,iproc)=ees0m(j,ii)
7054               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
7055               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
7056               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
7057               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
7058               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
7059               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
7060               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
7061               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
7062               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
7063               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
7064               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
7065               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
7066               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
7067               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
7068               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
7069               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
7070               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
7071               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
7072               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
7073               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
7074               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
7075               exit
7076             endif
7077           enddo
7078         endif
7079       enddo
7080       return
7081       end
7082 c------------------------------------------------------------------------------
7083       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
7084      &  n_corr1)
7085 C This subroutine calculates multi-body contributions to hydrogen-bonding 
7086       implicit real*8 (a-h,o-z)
7087       include 'DIMENSIONS'
7088       include 'COMMON.IOUNITS'
7089 #ifdef MPI
7090       include "mpif.h"
7091       parameter (max_cont=maxconts)
7092       parameter (max_dim=70)
7093       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
7094       double precision zapas(max_dim,maxconts,max_fg_procs),
7095      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7096       common /przechowalnia/ zapas
7097       integer status(MPI_STATUS_SIZE),req(maxconts*2),
7098      &  status_array(MPI_STATUS_SIZE,maxconts*2)
7099 #endif
7100       include 'COMMON.SETUP'
7101       include 'COMMON.FFIELD'
7102       include 'COMMON.DERIV'
7103       include 'COMMON.LOCAL'
7104       include 'COMMON.INTERACT'
7105       include 'COMMON.CONTACTS'
7106       include 'COMMON.CHAIN'
7107       include 'COMMON.CONTROL'
7108       double precision gx(3),gx1(3)
7109       integer num_cont_hb_old(maxres)
7110       logical lprn,ldone
7111       double precision eello4,eello5,eelo6,eello_turn6
7112       external eello4,eello5,eello6,eello_turn6
7113 C Set lprn=.true. for debugging
7114       lprn=.false.
7115       eturn6=0.0d0
7116 #ifdef MPI
7117       do i=1,nres
7118         num_cont_hb_old(i)=num_cont_hb(i)
7119       enddo
7120       n_corr=0
7121       n_corr1=0
7122       if (nfgtasks.le.1) goto 30
7123       if (lprn) then
7124         write (iout,'(a)') 'Contact function values before RECEIVE:'
7125         do i=nnt,nct-2
7126           write (iout,'(2i3,50(1x,i2,f5.2))') 
7127      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7128      &    j=1,num_cont_hb(i))
7129         enddo
7130       endif
7131       call flush(iout)
7132       do i=1,ntask_cont_from
7133         ncont_recv(i)=0
7134       enddo
7135       do i=1,ntask_cont_to
7136         ncont_sent(i)=0
7137       enddo
7138 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
7139 c     & ntask_cont_to
7140 C Make the list of contacts to send to send to other procesors
7141       do i=iturn3_start,iturn3_end
7142 c        write (iout,*) "make contact list turn3",i," num_cont",
7143 c     &    num_cont_hb(i)
7144         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
7145       enddo
7146       do i=iturn4_start,iturn4_end
7147 c        write (iout,*) "make contact list turn4",i," num_cont",
7148 c     &   num_cont_hb(i)
7149         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
7150       enddo
7151       do ii=1,nat_sent
7152         i=iat_sent(ii)
7153 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
7154 c     &    num_cont_hb(i)
7155         do j=1,num_cont_hb(i)
7156         do k=1,4
7157           jjc=jcont_hb(j,i)
7158           iproc=iint_sent_local(k,jjc,ii)
7159 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
7160           if (iproc.ne.0) then
7161             ncont_sent(iproc)=ncont_sent(iproc)+1
7162             nn=ncont_sent(iproc)
7163             zapas(1,nn,iproc)=i
7164             zapas(2,nn,iproc)=jjc
7165             zapas(3,nn,iproc)=d_cont(j,i)
7166             ind=3
7167             do kk=1,3
7168               ind=ind+1
7169               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
7170             enddo
7171             do kk=1,2
7172               do ll=1,2
7173                 ind=ind+1
7174                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
7175               enddo
7176             enddo
7177             do jj=1,5
7178               do kk=1,3
7179                 do ll=1,2
7180                   do mm=1,2
7181                     ind=ind+1
7182                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
7183                   enddo
7184                 enddo
7185               enddo
7186             enddo
7187           endif
7188         enddo
7189         enddo
7190       enddo
7191       if (lprn) then
7192       write (iout,*) 
7193      &  "Numbers of contacts to be sent to other processors",
7194      &  (ncont_sent(i),i=1,ntask_cont_to)
7195       write (iout,*) "Contacts sent"
7196       do ii=1,ntask_cont_to
7197         nn=ncont_sent(ii)
7198         iproc=itask_cont_to(ii)
7199         write (iout,*) nn," contacts to processor",iproc,
7200      &   " of CONT_TO_COMM group"
7201         do i=1,nn
7202           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
7203         enddo
7204       enddo
7205       call flush(iout)
7206       endif
7207       CorrelType=477
7208       CorrelID=fg_rank+1
7209       CorrelType1=478
7210       CorrelID1=nfgtasks+fg_rank+1
7211       ireq=0
7212 C Receive the numbers of needed contacts from other processors 
7213       do ii=1,ntask_cont_from
7214         iproc=itask_cont_from(ii)
7215         ireq=ireq+1
7216         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
7217      &    FG_COMM,req(ireq),IERR)
7218       enddo
7219 c      write (iout,*) "IRECV ended"
7220 c      call flush(iout)
7221 C Send the number of contacts needed by other processors
7222       do ii=1,ntask_cont_to
7223         iproc=itask_cont_to(ii)
7224         ireq=ireq+1
7225         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
7226      &    FG_COMM,req(ireq),IERR)
7227       enddo
7228 c      write (iout,*) "ISEND ended"
7229 c      write (iout,*) "number of requests (nn)",ireq
7230       call flush(iout)
7231       if (ireq.gt.0) 
7232      &  call MPI_Waitall(ireq,req,status_array,ierr)
7233 c      write (iout,*) 
7234 c     &  "Numbers of contacts to be received from other processors",
7235 c     &  (ncont_recv(i),i=1,ntask_cont_from)
7236 c      call flush(iout)
7237 C Receive contacts
7238       ireq=0
7239       do ii=1,ntask_cont_from
7240         iproc=itask_cont_from(ii)
7241         nn=ncont_recv(ii)
7242 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
7243 c     &   " of CONT_TO_COMM group"
7244         call flush(iout)
7245         if (nn.gt.0) then
7246           ireq=ireq+1
7247           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
7248      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7249 c          write (iout,*) "ireq,req",ireq,req(ireq)
7250         endif
7251       enddo
7252 C Send the contacts to processors that need them
7253       do ii=1,ntask_cont_to
7254         iproc=itask_cont_to(ii)
7255         nn=ncont_sent(ii)
7256 c        write (iout,*) nn," contacts to processor",iproc,
7257 c     &   " of CONT_TO_COMM group"
7258         if (nn.gt.0) then
7259           ireq=ireq+1 
7260           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
7261      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7262 c          write (iout,*) "ireq,req",ireq,req(ireq)
7263 c          do i=1,nn
7264 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
7265 c          enddo
7266         endif  
7267       enddo
7268 c      write (iout,*) "number of requests (contacts)",ireq
7269 c      write (iout,*) "req",(req(i),i=1,4)
7270 c      call flush(iout)
7271       if (ireq.gt.0) 
7272      & call MPI_Waitall(ireq,req,status_array,ierr)
7273       do iii=1,ntask_cont_from
7274         iproc=itask_cont_from(iii)
7275         nn=ncont_recv(iii)
7276         if (lprn) then
7277         write (iout,*) "Received",nn," contacts from processor",iproc,
7278      &   " of CONT_FROM_COMM group"
7279         call flush(iout)
7280         do i=1,nn
7281           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
7282         enddo
7283         call flush(iout)
7284         endif
7285         do i=1,nn
7286           ii=zapas_recv(1,i,iii)
7287 c Flag the received contacts to prevent double-counting
7288           jj=-zapas_recv(2,i,iii)
7289 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
7290 c          call flush(iout)
7291           nnn=num_cont_hb(ii)+1
7292           num_cont_hb(ii)=nnn
7293           jcont_hb(nnn,ii)=jj
7294           d_cont(nnn,ii)=zapas_recv(3,i,iii)
7295           ind=3
7296           do kk=1,3
7297             ind=ind+1
7298             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
7299           enddo
7300           do kk=1,2
7301             do ll=1,2
7302               ind=ind+1
7303               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
7304             enddo
7305           enddo
7306           do jj=1,5
7307             do kk=1,3
7308               do ll=1,2
7309                 do mm=1,2
7310                   ind=ind+1
7311                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
7312                 enddo
7313               enddo
7314             enddo
7315           enddo
7316         enddo
7317       enddo
7318       call flush(iout)
7319       if (lprn) then
7320         write (iout,'(a)') 'Contact function values after receive:'
7321         do i=nnt,nct-2
7322           write (iout,'(2i3,50(1x,i3,5f6.3))') 
7323      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7324      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7325         enddo
7326         call flush(iout)
7327       endif
7328    30 continue
7329 #endif
7330       if (lprn) then
7331         write (iout,'(a)') 'Contact function values:'
7332         do i=nnt,nct-2
7333           write (iout,'(2i3,50(1x,i2,5f6.3))') 
7334      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7335      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7336         enddo
7337       endif
7338       ecorr=0.0D0
7339       ecorr5=0.0d0
7340       ecorr6=0.0d0
7341 C Remove the loop below after debugging !!!
7342       do i=nnt,nct
7343         do j=1,3
7344           gradcorr(j,i)=0.0D0
7345           gradxorr(j,i)=0.0D0
7346         enddo
7347       enddo
7348 C Calculate the dipole-dipole interaction energies
7349       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
7350       do i=iatel_s,iatel_e+1
7351         num_conti=num_cont_hb(i)
7352         do jj=1,num_conti
7353           j=jcont_hb(jj,i)
7354 #ifdef MOMENT
7355           call dipole(i,j,jj)
7356 #endif
7357         enddo
7358       enddo
7359       endif
7360 C Calculate the local-electrostatic correlation terms
7361 c                write (iout,*) "gradcorr5 in eello5 before loop"
7362 c                do iii=1,nres
7363 c                  write (iout,'(i5,3f10.5)') 
7364 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7365 c                enddo
7366       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
7367 c        write (iout,*) "corr loop i",i
7368         i1=i+1
7369         num_conti=num_cont_hb(i)
7370         num_conti1=num_cont_hb(i+1)
7371         do jj=1,num_conti
7372           j=jcont_hb(jj,i)
7373           jp=iabs(j)
7374           do kk=1,num_conti1
7375             j1=jcont_hb(kk,i1)
7376             jp1=iabs(j1)
7377 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7378 c     &         ' jj=',jj,' kk=',kk
7379 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
7380             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
7381      &          .or. j.lt.0 .and. j1.gt.0) .and.
7382      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
7383 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7384 C The system gains extra energy.
7385               n_corr=n_corr+1
7386               sqd1=dsqrt(d_cont(jj,i))
7387               sqd2=dsqrt(d_cont(kk,i1))
7388               sred_geom = sqd1*sqd2
7389               IF (sred_geom.lt.cutoff_corr) THEN
7390                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
7391      &            ekont,fprimcont)
7392 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
7393 cd     &         ' jj=',jj,' kk=',kk
7394                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
7395                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
7396                 do l=1,3
7397                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
7398                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
7399                 enddo
7400                 n_corr1=n_corr1+1
7401 cd               write (iout,*) 'sred_geom=',sred_geom,
7402 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
7403 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
7404 cd               write (iout,*) "g_contij",g_contij
7405 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
7406 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
7407                 call calc_eello(i,jp,i+1,jp1,jj,kk)
7408                 if (wcorr4.gt.0.0d0) 
7409      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
7410                   if (energy_dec.and.wcorr4.gt.0.0d0) 
7411      1                 write (iout,'(a6,4i5,0pf7.3)')
7412      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
7413 c                write (iout,*) "gradcorr5 before eello5"
7414 c                do iii=1,nres
7415 c                  write (iout,'(i5,3f10.5)') 
7416 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7417 c                enddo
7418                 if (wcorr5.gt.0.0d0)
7419      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
7420 c                write (iout,*) "gradcorr5 after eello5"
7421 c                do iii=1,nres
7422 c                  write (iout,'(i5,3f10.5)') 
7423 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7424 c                enddo
7425                   if (energy_dec.and.wcorr5.gt.0.0d0) 
7426      1                 write (iout,'(a6,4i5,0pf7.3)')
7427      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
7428 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
7429 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
7430                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
7431      &               .or. wturn6.eq.0.0d0))then
7432 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
7433                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
7434                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7435      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
7436 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
7437 cd     &            'ecorr6=',ecorr6
7438 cd                write (iout,'(4e15.5)') sred_geom,
7439 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
7440 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
7441 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
7442                 else if (wturn6.gt.0.0d0
7443      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
7444 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
7445                   eturn6=eturn6+eello_turn6(i,jj,kk)
7446                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7447      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
7448 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
7449                 endif
7450               ENDIF
7451 1111          continue
7452             endif
7453           enddo ! kk
7454         enddo ! jj
7455       enddo ! i
7456       do i=1,nres
7457         num_cont_hb(i)=num_cont_hb_old(i)
7458       enddo
7459 c                write (iout,*) "gradcorr5 in eello5"
7460 c                do iii=1,nres
7461 c                  write (iout,'(i5,3f10.5)') 
7462 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7463 c                enddo
7464       return
7465       end
7466 c------------------------------------------------------------------------------
7467       subroutine add_hb_contact_eello(ii,jj,itask)
7468       implicit real*8 (a-h,o-z)
7469       include "DIMENSIONS"
7470       include "COMMON.IOUNITS"
7471       integer max_cont
7472       integer max_dim
7473       parameter (max_cont=maxconts)
7474       parameter (max_dim=70)
7475       include "COMMON.CONTACTS"
7476       double precision zapas(max_dim,maxconts,max_fg_procs),
7477      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7478       common /przechowalnia/ zapas
7479       integer i,j,ii,jj,iproc,itask(4),nn
7480 c      write (iout,*) "itask",itask
7481       do i=1,2
7482         iproc=itask(i)
7483         if (iproc.gt.0) then
7484           do j=1,num_cont_hb(ii)
7485             jjc=jcont_hb(j,ii)
7486 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
7487             if (jjc.eq.jj) then
7488               ncont_sent(iproc)=ncont_sent(iproc)+1
7489               nn=ncont_sent(iproc)
7490               zapas(1,nn,iproc)=ii
7491               zapas(2,nn,iproc)=jjc
7492               zapas(3,nn,iproc)=d_cont(j,ii)
7493               ind=3
7494               do kk=1,3
7495                 ind=ind+1
7496                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
7497               enddo
7498               do kk=1,2
7499                 do ll=1,2
7500                   ind=ind+1
7501                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
7502                 enddo
7503               enddo
7504               do jj=1,5
7505                 do kk=1,3
7506                   do ll=1,2
7507                     do mm=1,2
7508                       ind=ind+1
7509                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
7510                     enddo
7511                   enddo
7512                 enddo
7513               enddo
7514               exit
7515             endif
7516           enddo
7517         endif
7518       enddo
7519       return
7520       end
7521 c------------------------------------------------------------------------------
7522       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
7523       implicit real*8 (a-h,o-z)
7524       include 'DIMENSIONS'
7525       include 'COMMON.IOUNITS'
7526       include 'COMMON.DERIV'
7527       include 'COMMON.INTERACT'
7528       include 'COMMON.CONTACTS'
7529       double precision gx(3),gx1(3)
7530       logical lprn
7531       lprn=.false.
7532       eij=facont_hb(jj,i)
7533       ekl=facont_hb(kk,k)
7534       ees0pij=ees0p(jj,i)
7535       ees0pkl=ees0p(kk,k)
7536       ees0mij=ees0m(jj,i)
7537       ees0mkl=ees0m(kk,k)
7538       ekont=eij*ekl
7539       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
7540 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
7541 C Following 4 lines for diagnostics.
7542 cd    ees0pkl=0.0D0
7543 cd    ees0pij=1.0D0
7544 cd    ees0mkl=0.0D0
7545 cd    ees0mij=1.0D0
7546 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
7547 c     & 'Contacts ',i,j,
7548 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
7549 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
7550 c     & 'gradcorr_long'
7551 C Calculate the multi-body contribution to energy.
7552 c      ecorr=ecorr+ekont*ees
7553 C Calculate multi-body contributions to the gradient.
7554       coeffpees0pij=coeffp*ees0pij
7555       coeffmees0mij=coeffm*ees0mij
7556       coeffpees0pkl=coeffp*ees0pkl
7557       coeffmees0mkl=coeffm*ees0mkl
7558       do ll=1,3
7559 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
7560         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
7561      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
7562      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
7563         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
7564      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
7565      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
7566 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
7567         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
7568      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
7569      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
7570         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
7571      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
7572      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
7573         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
7574      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
7575      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
7576         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
7577         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
7578         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
7579      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
7580      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
7581         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
7582         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
7583 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
7584       enddo
7585 c      write (iout,*)
7586 cgrad      do m=i+1,j-1
7587 cgrad        do ll=1,3
7588 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7589 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
7590 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
7591 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
7592 cgrad        enddo
7593 cgrad      enddo
7594 cgrad      do m=k+1,l-1
7595 cgrad        do ll=1,3
7596 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7597 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7598 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7599 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7600 cgrad        enddo
7601 cgrad      enddo 
7602 c      write (iout,*) "ehbcorr",ekont*ees
7603       ehbcorr=ekont*ees
7604       return
7605       end
7606 #ifdef MOMENT
7607 C---------------------------------------------------------------------------
7608       subroutine dipole(i,j,jj)
7609       implicit real*8 (a-h,o-z)
7610       include 'DIMENSIONS'
7611       include 'COMMON.IOUNITS'
7612       include 'COMMON.CHAIN'
7613       include 'COMMON.FFIELD'
7614       include 'COMMON.DERIV'
7615       include 'COMMON.INTERACT'
7616       include 'COMMON.CONTACTS'
7617       include 'COMMON.TORSION'
7618       include 'COMMON.VAR'
7619       include 'COMMON.GEO'
7620       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7621      &  auxmat(2,2)
7622       iti1 = itortyp(itype(i+1))
7623       if (j.lt.nres-1) then
7624         itj1 = itortyp(itype(j+1))
7625       else
7626         itj1=ntortyp+1
7627       endif
7628       do iii=1,2
7629         dipi(iii,1)=Ub2(iii,i)
7630         dipderi(iii)=Ub2der(iii,i)
7631         dipi(iii,2)=b1(iii,iti1)
7632         dipj(iii,1)=Ub2(iii,j)
7633         dipderj(iii)=Ub2der(iii,j)
7634         dipj(iii,2)=b1(iii,itj1)
7635       enddo
7636       kkk=0
7637       do iii=1,2
7638         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7639         do jjj=1,2
7640           kkk=kkk+1
7641           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7642         enddo
7643       enddo
7644       do kkk=1,5
7645         do lll=1,3
7646           mmm=0
7647           do iii=1,2
7648             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7649      &        auxvec(1))
7650             do jjj=1,2
7651               mmm=mmm+1
7652               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7653             enddo
7654           enddo
7655         enddo
7656       enddo
7657       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7658       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7659       do iii=1,2
7660         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7661       enddo
7662       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7663       do iii=1,2
7664         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7665       enddo
7666       return
7667       end
7668 #endif
7669 C---------------------------------------------------------------------------
7670       subroutine calc_eello(i,j,k,l,jj,kk)
7671
7672 C This subroutine computes matrices and vectors needed to calculate 
7673 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7674 C
7675       implicit real*8 (a-h,o-z)
7676       include 'DIMENSIONS'
7677       include 'COMMON.IOUNITS'
7678       include 'COMMON.CHAIN'
7679       include 'COMMON.DERIV'
7680       include 'COMMON.INTERACT'
7681       include 'COMMON.CONTACTS'
7682       include 'COMMON.TORSION'
7683       include 'COMMON.VAR'
7684       include 'COMMON.GEO'
7685       include 'COMMON.FFIELD'
7686       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7687      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7688       logical lprn
7689       common /kutas/ lprn
7690 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7691 cd     & ' jj=',jj,' kk=',kk
7692 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7693 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7694 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7695       do iii=1,2
7696         do jjj=1,2
7697           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7698           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7699         enddo
7700       enddo
7701       call transpose2(aa1(1,1),aa1t(1,1))
7702       call transpose2(aa2(1,1),aa2t(1,1))
7703       do kkk=1,5
7704         do lll=1,3
7705           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7706      &      aa1tder(1,1,lll,kkk))
7707           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7708      &      aa2tder(1,1,lll,kkk))
7709         enddo
7710       enddo 
7711       if (l.eq.j+1) then
7712 C parallel orientation of the two CA-CA-CA frames.
7713         if (i.gt.1) then
7714           iti=itortyp(itype(i))
7715         else
7716           iti=ntortyp+1
7717         endif
7718         itk1=itortyp(itype(k+1))
7719         itj=itortyp(itype(j))
7720         if (l.lt.nres-1) then
7721           itl1=itortyp(itype(l+1))
7722         else
7723           itl1=ntortyp+1
7724         endif
7725 C A1 kernel(j+1) A2T
7726 cd        do iii=1,2
7727 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7728 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7729 cd        enddo
7730         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7731      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7732      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7733 C Following matrices are needed only for 6-th order cumulants
7734         IF (wcorr6.gt.0.0d0) THEN
7735         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7736      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7737      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7738         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7739      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7740      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7741      &   ADtEAderx(1,1,1,1,1,1))
7742         lprn=.false.
7743         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7744      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7745      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7746      &   ADtEA1derx(1,1,1,1,1,1))
7747         ENDIF
7748 C End 6-th order cumulants
7749 cd        lprn=.false.
7750 cd        if (lprn) then
7751 cd        write (2,*) 'In calc_eello6'
7752 cd        do iii=1,2
7753 cd          write (2,*) 'iii=',iii
7754 cd          do kkk=1,5
7755 cd            write (2,*) 'kkk=',kkk
7756 cd            do jjj=1,2
7757 cd              write (2,'(3(2f10.5),5x)') 
7758 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7759 cd            enddo
7760 cd          enddo
7761 cd        enddo
7762 cd        endif
7763         call transpose2(EUgder(1,1,k),auxmat(1,1))
7764         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7765         call transpose2(EUg(1,1,k),auxmat(1,1))
7766         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7767         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7768         do iii=1,2
7769           do kkk=1,5
7770             do lll=1,3
7771               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7772      &          EAEAderx(1,1,lll,kkk,iii,1))
7773             enddo
7774           enddo
7775         enddo
7776 C A1T kernel(i+1) A2
7777         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7778      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7779      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7780 C Following matrices are needed only for 6-th order cumulants
7781         IF (wcorr6.gt.0.0d0) THEN
7782         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7783      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7784      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7785         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7786      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7787      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7788      &   ADtEAderx(1,1,1,1,1,2))
7789         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7790      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7791      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7792      &   ADtEA1derx(1,1,1,1,1,2))
7793         ENDIF
7794 C End 6-th order cumulants
7795         call transpose2(EUgder(1,1,l),auxmat(1,1))
7796         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7797         call transpose2(EUg(1,1,l),auxmat(1,1))
7798         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7799         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7800         do iii=1,2
7801           do kkk=1,5
7802             do lll=1,3
7803               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7804      &          EAEAderx(1,1,lll,kkk,iii,2))
7805             enddo
7806           enddo
7807         enddo
7808 C AEAb1 and AEAb2
7809 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7810 C They are needed only when the fifth- or the sixth-order cumulants are
7811 C indluded.
7812         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7813         call transpose2(AEA(1,1,1),auxmat(1,1))
7814         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7815         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7816         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7817         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7818         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7819         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7820         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7821         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7822         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7823         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7824         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7825         call transpose2(AEA(1,1,2),auxmat(1,1))
7826         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7827         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7828         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7829         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7830         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7831         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7832         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7833         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7834         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7835         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7836         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7837 C Calculate the Cartesian derivatives of the vectors.
7838         do iii=1,2
7839           do kkk=1,5
7840             do lll=1,3
7841               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7842               call matvec2(auxmat(1,1),b1(1,iti),
7843      &          AEAb1derx(1,lll,kkk,iii,1,1))
7844               call matvec2(auxmat(1,1),Ub2(1,i),
7845      &          AEAb2derx(1,lll,kkk,iii,1,1))
7846               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7847      &          AEAb1derx(1,lll,kkk,iii,2,1))
7848               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7849      &          AEAb2derx(1,lll,kkk,iii,2,1))
7850               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7851               call matvec2(auxmat(1,1),b1(1,itj),
7852      &          AEAb1derx(1,lll,kkk,iii,1,2))
7853               call matvec2(auxmat(1,1),Ub2(1,j),
7854      &          AEAb2derx(1,lll,kkk,iii,1,2))
7855               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7856      &          AEAb1derx(1,lll,kkk,iii,2,2))
7857               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7858      &          AEAb2derx(1,lll,kkk,iii,2,2))
7859             enddo
7860           enddo
7861         enddo
7862         ENDIF
7863 C End vectors
7864       else
7865 C Antiparallel orientation of the two CA-CA-CA frames.
7866         if (i.gt.1) then
7867           iti=itortyp(itype(i))
7868         else
7869           iti=ntortyp+1
7870         endif
7871         itk1=itortyp(itype(k+1))
7872         itl=itortyp(itype(l))
7873         itj=itortyp(itype(j))
7874         if (j.lt.nres-1) then
7875           itj1=itortyp(itype(j+1))
7876         else 
7877           itj1=ntortyp+1
7878         endif
7879 C A2 kernel(j-1)T A1T
7880         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7881      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7882      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7883 C Following matrices are needed only for 6-th order cumulants
7884         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7885      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7886         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7887      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7888      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7889         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7890      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7891      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7892      &   ADtEAderx(1,1,1,1,1,1))
7893         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7894      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
7895      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7896      &   ADtEA1derx(1,1,1,1,1,1))
7897         ENDIF
7898 C End 6-th order cumulants
7899         call transpose2(EUgder(1,1,k),auxmat(1,1))
7900         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7901         call transpose2(EUg(1,1,k),auxmat(1,1))
7902         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7903         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7904         do iii=1,2
7905           do kkk=1,5
7906             do lll=1,3
7907               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7908      &          EAEAderx(1,1,lll,kkk,iii,1))
7909             enddo
7910           enddo
7911         enddo
7912 C A2T kernel(i+1)T A1
7913         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7914      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
7915      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7916 C Following matrices are needed only for 6-th order cumulants
7917         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7918      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7919         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7920      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
7921      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7922         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7923      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
7924      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7925      &   ADtEAderx(1,1,1,1,1,2))
7926         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
7927      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
7928      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7929      &   ADtEA1derx(1,1,1,1,1,2))
7930         ENDIF
7931 C End 6-th order cumulants
7932         call transpose2(EUgder(1,1,j),auxmat(1,1))
7933         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
7934         call transpose2(EUg(1,1,j),auxmat(1,1))
7935         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7936         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7937         do iii=1,2
7938           do kkk=1,5
7939             do lll=1,3
7940               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7941      &          EAEAderx(1,1,lll,kkk,iii,2))
7942             enddo
7943           enddo
7944         enddo
7945 C AEAb1 and AEAb2
7946 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7947 C They are needed only when the fifth- or the sixth-order cumulants are
7948 C indluded.
7949         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
7950      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
7951         call transpose2(AEA(1,1,1),auxmat(1,1))
7952         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7953         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7954         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7955         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7956         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7957         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7958         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7959         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7960         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7961         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7962         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7963         call transpose2(AEA(1,1,2),auxmat(1,1))
7964         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
7965         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
7966         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
7967         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7968         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
7969         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
7970         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
7971         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
7972         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
7973         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
7974         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
7975 C Calculate the Cartesian derivatives of the vectors.
7976         do iii=1,2
7977           do kkk=1,5
7978             do lll=1,3
7979               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7980               call matvec2(auxmat(1,1),b1(1,iti),
7981      &          AEAb1derx(1,lll,kkk,iii,1,1))
7982               call matvec2(auxmat(1,1),Ub2(1,i),
7983      &          AEAb2derx(1,lll,kkk,iii,1,1))
7984               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7985      &          AEAb1derx(1,lll,kkk,iii,2,1))
7986               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7987      &          AEAb2derx(1,lll,kkk,iii,2,1))
7988               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7989               call matvec2(auxmat(1,1),b1(1,itl),
7990      &          AEAb1derx(1,lll,kkk,iii,1,2))
7991               call matvec2(auxmat(1,1),Ub2(1,l),
7992      &          AEAb2derx(1,lll,kkk,iii,1,2))
7993               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
7994      &          AEAb1derx(1,lll,kkk,iii,2,2))
7995               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
7996      &          AEAb2derx(1,lll,kkk,iii,2,2))
7997             enddo
7998           enddo
7999         enddo
8000         ENDIF
8001 C End vectors
8002       endif
8003       return
8004       end
8005 C---------------------------------------------------------------------------
8006       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
8007      &  KK,KKderg,AKA,AKAderg,AKAderx)
8008       implicit none
8009       integer nderg
8010       logical transp
8011       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
8012      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
8013      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
8014       integer iii,kkk,lll
8015       integer jjj,mmm
8016       logical lprn
8017       common /kutas/ lprn
8018       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
8019       do iii=1,nderg 
8020         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
8021      &    AKAderg(1,1,iii))
8022       enddo
8023 cd      if (lprn) write (2,*) 'In kernel'
8024       do kkk=1,5
8025 cd        if (lprn) write (2,*) 'kkk=',kkk
8026         do lll=1,3
8027           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
8028      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
8029 cd          if (lprn) then
8030 cd            write (2,*) 'lll=',lll
8031 cd            write (2,*) 'iii=1'
8032 cd            do jjj=1,2
8033 cd              write (2,'(3(2f10.5),5x)') 
8034 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
8035 cd            enddo
8036 cd          endif
8037           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
8038      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
8039 cd          if (lprn) then
8040 cd            write (2,*) 'lll=',lll
8041 cd            write (2,*) 'iii=2'
8042 cd            do jjj=1,2
8043 cd              write (2,'(3(2f10.5),5x)') 
8044 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
8045 cd            enddo
8046 cd          endif
8047         enddo
8048       enddo
8049       return
8050       end
8051 C---------------------------------------------------------------------------
8052       double precision function eello4(i,j,k,l,jj,kk)
8053       implicit real*8 (a-h,o-z)
8054       include 'DIMENSIONS'
8055       include 'COMMON.IOUNITS'
8056       include 'COMMON.CHAIN'
8057       include 'COMMON.DERIV'
8058       include 'COMMON.INTERACT'
8059       include 'COMMON.CONTACTS'
8060       include 'COMMON.TORSION'
8061       include 'COMMON.VAR'
8062       include 'COMMON.GEO'
8063       double precision pizda(2,2),ggg1(3),ggg2(3)
8064 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
8065 cd        eello4=0.0d0
8066 cd        return
8067 cd      endif
8068 cd      print *,'eello4:',i,j,k,l,jj,kk
8069 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
8070 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
8071 cold      eij=facont_hb(jj,i)
8072 cold      ekl=facont_hb(kk,k)
8073 cold      ekont=eij*ekl
8074       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
8075 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
8076       gcorr_loc(k-1)=gcorr_loc(k-1)
8077      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
8078       if (l.eq.j+1) then
8079         gcorr_loc(l-1)=gcorr_loc(l-1)
8080      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8081       else
8082         gcorr_loc(j-1)=gcorr_loc(j-1)
8083      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8084       endif
8085       do iii=1,2
8086         do kkk=1,5
8087           do lll=1,3
8088             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
8089      &                        -EAEAderx(2,2,lll,kkk,iii,1)
8090 cd            derx(lll,kkk,iii)=0.0d0
8091           enddo
8092         enddo
8093       enddo
8094 cd      gcorr_loc(l-1)=0.0d0
8095 cd      gcorr_loc(j-1)=0.0d0
8096 cd      gcorr_loc(k-1)=0.0d0
8097 cd      eel4=1.0d0
8098 cd      write (iout,*)'Contacts have occurred for peptide groups',
8099 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
8100 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
8101       if (j.lt.nres-1) then
8102         j1=j+1
8103         j2=j-1
8104       else
8105         j1=j-1
8106         j2=j-2
8107       endif
8108       if (l.lt.nres-1) then
8109         l1=l+1
8110         l2=l-1
8111       else
8112         l1=l-1
8113         l2=l-2
8114       endif
8115       do ll=1,3
8116 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
8117 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
8118         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
8119         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
8120 cgrad        ghalf=0.5d0*ggg1(ll)
8121         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
8122         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
8123         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
8124         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
8125         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
8126         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
8127 cgrad        ghalf=0.5d0*ggg2(ll)
8128         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
8129         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
8130         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
8131         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
8132         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
8133         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
8134       enddo
8135 cgrad      do m=i+1,j-1
8136 cgrad        do ll=1,3
8137 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
8138 cgrad        enddo
8139 cgrad      enddo
8140 cgrad      do m=k+1,l-1
8141 cgrad        do ll=1,3
8142 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
8143 cgrad        enddo
8144 cgrad      enddo
8145 cgrad      do m=i+2,j2
8146 cgrad        do ll=1,3
8147 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
8148 cgrad        enddo
8149 cgrad      enddo
8150 cgrad      do m=k+2,l2
8151 cgrad        do ll=1,3
8152 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
8153 cgrad        enddo
8154 cgrad      enddo 
8155 cd      do iii=1,nres-3
8156 cd        write (2,*) iii,gcorr_loc(iii)
8157 cd      enddo
8158       eello4=ekont*eel4
8159 cd      write (2,*) 'ekont',ekont
8160 cd      write (iout,*) 'eello4',ekont*eel4
8161       return
8162       end
8163 C---------------------------------------------------------------------------
8164       double precision function eello5(i,j,k,l,jj,kk)
8165       implicit real*8 (a-h,o-z)
8166       include 'DIMENSIONS'
8167       include 'COMMON.IOUNITS'
8168       include 'COMMON.CHAIN'
8169       include 'COMMON.DERIV'
8170       include 'COMMON.INTERACT'
8171       include 'COMMON.CONTACTS'
8172       include 'COMMON.TORSION'
8173       include 'COMMON.VAR'
8174       include 'COMMON.GEO'
8175       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
8176       double precision ggg1(3),ggg2(3)
8177 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8178 C                                                                              C
8179 C                            Parallel chains                                   C
8180 C                                                                              C
8181 C          o             o                   o             o                   C
8182 C         /l\           / \             \   / \           / \   /              C
8183 C        /   \         /   \             \ /   \         /   \ /               C
8184 C       j| o |l1       | o |              o| o |         | o |o                C
8185 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8186 C      \i/   \         /   \ /             /   \         /   \                 C
8187 C       o    k1             o                                                  C
8188 C         (I)          (II)                (III)          (IV)                 C
8189 C                                                                              C
8190 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8191 C                                                                              C
8192 C                            Antiparallel chains                               C
8193 C                                                                              C
8194 C          o             o                   o             o                   C
8195 C         /j\           / \             \   / \           / \   /              C
8196 C        /   \         /   \             \ /   \         /   \ /               C
8197 C      j1| o |l        | o |              o| o |         | o |o                C
8198 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8199 C      \i/   \         /   \ /             /   \         /   \                 C
8200 C       o     k1            o                                                  C
8201 C         (I)          (II)                (III)          (IV)                 C
8202 C                                                                              C
8203 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8204 C                                                                              C
8205 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
8206 C                                                                              C
8207 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8208 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
8209 cd        eello5=0.0d0
8210 cd        return
8211 cd      endif
8212 cd      write (iout,*)
8213 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
8214 cd     &   ' and',k,l
8215       itk=itortyp(itype(k))
8216       itl=itortyp(itype(l))
8217       itj=itortyp(itype(j))
8218       eello5_1=0.0d0
8219       eello5_2=0.0d0
8220       eello5_3=0.0d0
8221       eello5_4=0.0d0
8222 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
8223 cd     &   eel5_3_num,eel5_4_num)
8224       do iii=1,2
8225         do kkk=1,5
8226           do lll=1,3
8227             derx(lll,kkk,iii)=0.0d0
8228           enddo
8229         enddo
8230       enddo
8231 cd      eij=facont_hb(jj,i)
8232 cd      ekl=facont_hb(kk,k)
8233 cd      ekont=eij*ekl
8234 cd      write (iout,*)'Contacts have occurred for peptide groups',
8235 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
8236 cd      goto 1111
8237 C Contribution from the graph I.
8238 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
8239 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
8240       call transpose2(EUg(1,1,k),auxmat(1,1))
8241       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
8242       vv(1)=pizda(1,1)-pizda(2,2)
8243       vv(2)=pizda(1,2)+pizda(2,1)
8244       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
8245      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8246 C Explicit gradient in virtual-dihedral angles.
8247       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
8248      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
8249      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
8250       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8251       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
8252       vv(1)=pizda(1,1)-pizda(2,2)
8253       vv(2)=pizda(1,2)+pizda(2,1)
8254       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8255      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
8256      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8257       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
8258       vv(1)=pizda(1,1)-pizda(2,2)
8259       vv(2)=pizda(1,2)+pizda(2,1)
8260       if (l.eq.j+1) then
8261         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
8262      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8263      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8264       else
8265         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
8266      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8267      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8268       endif 
8269 C Cartesian gradient
8270       do iii=1,2
8271         do kkk=1,5
8272           do lll=1,3
8273             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
8274      &        pizda(1,1))
8275             vv(1)=pizda(1,1)-pizda(2,2)
8276             vv(2)=pizda(1,2)+pizda(2,1)
8277             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8278      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
8279      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8280           enddo
8281         enddo
8282       enddo
8283 c      goto 1112
8284 c1111  continue
8285 C Contribution from graph II 
8286       call transpose2(EE(1,1,itk),auxmat(1,1))
8287       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
8288       vv(1)=pizda(1,1)+pizda(2,2)
8289       vv(2)=pizda(2,1)-pizda(1,2)
8290       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
8291      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
8292 C Explicit gradient in virtual-dihedral angles.
8293       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8294      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
8295       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
8296       vv(1)=pizda(1,1)+pizda(2,2)
8297       vv(2)=pizda(2,1)-pizda(1,2)
8298       if (l.eq.j+1) then
8299         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8300      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8301      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8302       else
8303         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8304      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8305      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8306       endif
8307 C Cartesian gradient
8308       do iii=1,2
8309         do kkk=1,5
8310           do lll=1,3
8311             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
8312      &        pizda(1,1))
8313             vv(1)=pizda(1,1)+pizda(2,2)
8314             vv(2)=pizda(2,1)-pizda(1,2)
8315             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8316      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
8317      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
8318           enddo
8319         enddo
8320       enddo
8321 cd      goto 1112
8322 cd1111  continue
8323       if (l.eq.j+1) then
8324 cd        goto 1110
8325 C Parallel orientation
8326 C Contribution from graph III
8327         call transpose2(EUg(1,1,l),auxmat(1,1))
8328         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8329         vv(1)=pizda(1,1)-pizda(2,2)
8330         vv(2)=pizda(1,2)+pizda(2,1)
8331         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
8332      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8333 C Explicit gradient in virtual-dihedral angles.
8334         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8335      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
8336      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
8337         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8338         vv(1)=pizda(1,1)-pizda(2,2)
8339         vv(2)=pizda(1,2)+pizda(2,1)
8340         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8341      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
8342      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8343         call transpose2(EUgder(1,1,l),auxmat1(1,1))
8344         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8345         vv(1)=pizda(1,1)-pizda(2,2)
8346         vv(2)=pizda(1,2)+pizda(2,1)
8347         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8348      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
8349      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8350 C Cartesian gradient
8351         do iii=1,2
8352           do kkk=1,5
8353             do lll=1,3
8354               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8355      &          pizda(1,1))
8356               vv(1)=pizda(1,1)-pizda(2,2)
8357               vv(2)=pizda(1,2)+pizda(2,1)
8358               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8359      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
8360      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8361             enddo
8362           enddo
8363         enddo
8364 cd        goto 1112
8365 C Contribution from graph IV
8366 cd1110    continue
8367         call transpose2(EE(1,1,itl),auxmat(1,1))
8368         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8369         vv(1)=pizda(1,1)+pizda(2,2)
8370         vv(2)=pizda(2,1)-pizda(1,2)
8371         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
8372      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
8373 C Explicit gradient in virtual-dihedral angles.
8374         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8375      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
8376         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8377         vv(1)=pizda(1,1)+pizda(2,2)
8378         vv(2)=pizda(2,1)-pizda(1,2)
8379         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8380      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
8381      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
8382 C Cartesian gradient
8383         do iii=1,2
8384           do kkk=1,5
8385             do lll=1,3
8386               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8387      &          pizda(1,1))
8388               vv(1)=pizda(1,1)+pizda(2,2)
8389               vv(2)=pizda(2,1)-pizda(1,2)
8390               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8391      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
8392      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
8393             enddo
8394           enddo
8395         enddo
8396       else
8397 C Antiparallel orientation
8398 C Contribution from graph III
8399 c        goto 1110
8400         call transpose2(EUg(1,1,j),auxmat(1,1))
8401         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8402         vv(1)=pizda(1,1)-pizda(2,2)
8403         vv(2)=pizda(1,2)+pizda(2,1)
8404         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
8405      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8406 C Explicit gradient in virtual-dihedral angles.
8407         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8408      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
8409      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
8410         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8411         vv(1)=pizda(1,1)-pizda(2,2)
8412         vv(2)=pizda(1,2)+pizda(2,1)
8413         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8414      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
8415      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8416         call transpose2(EUgder(1,1,j),auxmat1(1,1))
8417         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8418         vv(1)=pizda(1,1)-pizda(2,2)
8419         vv(2)=pizda(1,2)+pizda(2,1)
8420         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8421      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
8422      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8423 C Cartesian gradient
8424         do iii=1,2
8425           do kkk=1,5
8426             do lll=1,3
8427               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8428      &          pizda(1,1))
8429               vv(1)=pizda(1,1)-pizda(2,2)
8430               vv(2)=pizda(1,2)+pizda(2,1)
8431               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8432      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
8433      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8434             enddo
8435           enddo
8436         enddo
8437 cd        goto 1112
8438 C Contribution from graph IV
8439 1110    continue
8440         call transpose2(EE(1,1,itj),auxmat(1,1))
8441         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8442         vv(1)=pizda(1,1)+pizda(2,2)
8443         vv(2)=pizda(2,1)-pizda(1,2)
8444         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
8445      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
8446 C Explicit gradient in virtual-dihedral angles.
8447         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8448      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
8449         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8450         vv(1)=pizda(1,1)+pizda(2,2)
8451         vv(2)=pizda(2,1)-pizda(1,2)
8452         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8453      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
8454      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
8455 C Cartesian gradient
8456         do iii=1,2
8457           do kkk=1,5
8458             do lll=1,3
8459               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8460      &          pizda(1,1))
8461               vv(1)=pizda(1,1)+pizda(2,2)
8462               vv(2)=pizda(2,1)-pizda(1,2)
8463               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8464      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
8465      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
8466             enddo
8467           enddo
8468         enddo
8469       endif
8470 1112  continue
8471       eel5=eello5_1+eello5_2+eello5_3+eello5_4
8472 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
8473 cd        write (2,*) 'ijkl',i,j,k,l
8474 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
8475 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
8476 cd      endif
8477 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
8478 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
8479 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
8480 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
8481       if (j.lt.nres-1) then
8482         j1=j+1
8483         j2=j-1
8484       else
8485         j1=j-1
8486         j2=j-2
8487       endif
8488       if (l.lt.nres-1) then
8489         l1=l+1
8490         l2=l-1
8491       else
8492         l1=l-1
8493         l2=l-2
8494       endif
8495 cd      eij=1.0d0
8496 cd      ekl=1.0d0
8497 cd      ekont=1.0d0
8498 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
8499 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
8500 C        summed up outside the subrouine as for the other subroutines 
8501 C        handling long-range interactions. The old code is commented out
8502 C        with "cgrad" to keep track of changes.
8503       do ll=1,3
8504 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
8505 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
8506         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
8507         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
8508 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
8509 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
8510 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
8511 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
8512 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
8513 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
8514 c     &   gradcorr5ij,
8515 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
8516 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
8517 cgrad        ghalf=0.5d0*ggg1(ll)
8518 cd        ghalf=0.0d0
8519         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
8520         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
8521         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
8522         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
8523         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
8524         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
8525 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
8526 cgrad        ghalf=0.5d0*ggg2(ll)
8527 cd        ghalf=0.0d0
8528         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
8529         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
8530         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
8531         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
8532         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
8533         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
8534       enddo
8535 cd      goto 1112
8536 cgrad      do m=i+1,j-1
8537 cgrad        do ll=1,3
8538 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
8539 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
8540 cgrad        enddo
8541 cgrad      enddo
8542 cgrad      do m=k+1,l-1
8543 cgrad        do ll=1,3
8544 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
8545 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
8546 cgrad        enddo
8547 cgrad      enddo
8548 c1112  continue
8549 cgrad      do m=i+2,j2
8550 cgrad        do ll=1,3
8551 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
8552 cgrad        enddo
8553 cgrad      enddo
8554 cgrad      do m=k+2,l2
8555 cgrad        do ll=1,3
8556 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
8557 cgrad        enddo
8558 cgrad      enddo 
8559 cd      do iii=1,nres-3
8560 cd        write (2,*) iii,g_corr5_loc(iii)
8561 cd      enddo
8562       eello5=ekont*eel5
8563 cd      write (2,*) 'ekont',ekont
8564 cd      write (iout,*) 'eello5',ekont*eel5
8565       return
8566       end
8567 c--------------------------------------------------------------------------
8568       double precision function eello6(i,j,k,l,jj,kk)
8569       implicit real*8 (a-h,o-z)
8570       include 'DIMENSIONS'
8571       include 'COMMON.IOUNITS'
8572       include 'COMMON.CHAIN'
8573       include 'COMMON.DERIV'
8574       include 'COMMON.INTERACT'
8575       include 'COMMON.CONTACTS'
8576       include 'COMMON.TORSION'
8577       include 'COMMON.VAR'
8578       include 'COMMON.GEO'
8579       include 'COMMON.FFIELD'
8580       double precision ggg1(3),ggg2(3)
8581 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8582 cd        eello6=0.0d0
8583 cd        return
8584 cd      endif
8585 cd      write (iout,*)
8586 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8587 cd     &   ' and',k,l
8588       eello6_1=0.0d0
8589       eello6_2=0.0d0
8590       eello6_3=0.0d0
8591       eello6_4=0.0d0
8592       eello6_5=0.0d0
8593       eello6_6=0.0d0
8594 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8595 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8596       do iii=1,2
8597         do kkk=1,5
8598           do lll=1,3
8599             derx(lll,kkk,iii)=0.0d0
8600           enddo
8601         enddo
8602       enddo
8603 cd      eij=facont_hb(jj,i)
8604 cd      ekl=facont_hb(kk,k)
8605 cd      ekont=eij*ekl
8606 cd      eij=1.0d0
8607 cd      ekl=1.0d0
8608 cd      ekont=1.0d0
8609       if (l.eq.j+1) then
8610         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8611         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8612         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8613         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8614         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8615         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8616       else
8617         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8618         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8619         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8620         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8621         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8622           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8623         else
8624           eello6_5=0.0d0
8625         endif
8626         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8627       endif
8628 C If turn contributions are considered, they will be handled separately.
8629       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8630 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8631 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8632 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8633 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8634 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8635 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8636 cd      goto 1112
8637       if (j.lt.nres-1) then
8638         j1=j+1
8639         j2=j-1
8640       else
8641         j1=j-1
8642         j2=j-2
8643       endif
8644       if (l.lt.nres-1) then
8645         l1=l+1
8646         l2=l-1
8647       else
8648         l1=l-1
8649         l2=l-2
8650       endif
8651       do ll=1,3
8652 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8653 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8654 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8655 cgrad        ghalf=0.5d0*ggg1(ll)
8656 cd        ghalf=0.0d0
8657         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8658         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8659         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8660         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8661         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8662         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8663         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8664         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8665 cgrad        ghalf=0.5d0*ggg2(ll)
8666 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8667 cd        ghalf=0.0d0
8668         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8669         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8670         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8671         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8672         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8673         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8674       enddo
8675 cd      goto 1112
8676 cgrad      do m=i+1,j-1
8677 cgrad        do ll=1,3
8678 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8679 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8680 cgrad        enddo
8681 cgrad      enddo
8682 cgrad      do m=k+1,l-1
8683 cgrad        do ll=1,3
8684 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8685 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8686 cgrad        enddo
8687 cgrad      enddo
8688 cgrad1112  continue
8689 cgrad      do m=i+2,j2
8690 cgrad        do ll=1,3
8691 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8692 cgrad        enddo
8693 cgrad      enddo
8694 cgrad      do m=k+2,l2
8695 cgrad        do ll=1,3
8696 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8697 cgrad        enddo
8698 cgrad      enddo 
8699 cd      do iii=1,nres-3
8700 cd        write (2,*) iii,g_corr6_loc(iii)
8701 cd      enddo
8702       eello6=ekont*eel6
8703 cd      write (2,*) 'ekont',ekont
8704 cd      write (iout,*) 'eello6',ekont*eel6
8705       return
8706       end
8707 c--------------------------------------------------------------------------
8708       double precision function eello6_graph1(i,j,k,l,imat,swap)
8709       implicit real*8 (a-h,o-z)
8710       include 'DIMENSIONS'
8711       include 'COMMON.IOUNITS'
8712       include 'COMMON.CHAIN'
8713       include 'COMMON.DERIV'
8714       include 'COMMON.INTERACT'
8715       include 'COMMON.CONTACTS'
8716       include 'COMMON.TORSION'
8717       include 'COMMON.VAR'
8718       include 'COMMON.GEO'
8719       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8720       logical swap
8721       logical lprn
8722       common /kutas/ lprn
8723 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8724 C                                              
8725 C      Parallel       Antiparallel
8726 C                                             
8727 C          o             o         
8728 C         /l\           /j\
8729 C        /   \         /   \
8730 C       /| o |         | o |\
8731 C     \ j|/k\|  /   \  |/k\|l /   
8732 C      \ /   \ /     \ /   \ /    
8733 C       o     o       o     o                
8734 C       i             i                     
8735 C
8736 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8737       itk=itortyp(itype(k))
8738       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8739       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8740       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8741       call transpose2(EUgC(1,1,k),auxmat(1,1))
8742       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8743       vv1(1)=pizda1(1,1)-pizda1(2,2)
8744       vv1(2)=pizda1(1,2)+pizda1(2,1)
8745       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8746       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8747       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8748       s5=scalar2(vv(1),Dtobr2(1,i))
8749 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8750       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8751       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8752      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8753      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8754      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8755      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8756      & +scalar2(vv(1),Dtobr2der(1,i)))
8757       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8758       vv1(1)=pizda1(1,1)-pizda1(2,2)
8759       vv1(2)=pizda1(1,2)+pizda1(2,1)
8760       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8761       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8762       if (l.eq.j+1) then
8763         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8764      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8765      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8766      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8767      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8768       else
8769         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8770      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8771      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8772      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8773      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8774       endif
8775       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8776       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8777       vv1(1)=pizda1(1,1)-pizda1(2,2)
8778       vv1(2)=pizda1(1,2)+pizda1(2,1)
8779       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8780      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8781      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8782      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8783       do iii=1,2
8784         if (swap) then
8785           ind=3-iii
8786         else
8787           ind=iii
8788         endif
8789         do kkk=1,5
8790           do lll=1,3
8791             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8792             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8793             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8794             call transpose2(EUgC(1,1,k),auxmat(1,1))
8795             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8796      &        pizda1(1,1))
8797             vv1(1)=pizda1(1,1)-pizda1(2,2)
8798             vv1(2)=pizda1(1,2)+pizda1(2,1)
8799             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8800             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8801      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8802             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8803      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8804             s5=scalar2(vv(1),Dtobr2(1,i))
8805             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8806           enddo
8807         enddo
8808       enddo
8809       return
8810       end
8811 c----------------------------------------------------------------------------
8812       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8813       implicit real*8 (a-h,o-z)
8814       include 'DIMENSIONS'
8815       include 'COMMON.IOUNITS'
8816       include 'COMMON.CHAIN'
8817       include 'COMMON.DERIV'
8818       include 'COMMON.INTERACT'
8819       include 'COMMON.CONTACTS'
8820       include 'COMMON.TORSION'
8821       include 'COMMON.VAR'
8822       include 'COMMON.GEO'
8823       logical swap
8824       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8825      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8826       logical lprn
8827       common /kutas/ lprn
8828 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8829 C                                                                              C
8830 C      Parallel       Antiparallel                                             C
8831 C                                                                              C
8832 C          o             o                                                     C
8833 C     \   /l\           /j\   /                                                C
8834 C      \ /   \         /   \ /                                                 C
8835 C       o| o |         | o |o                                                  C                
8836 C     \ j|/k\|      \  |/k\|l                                                  C
8837 C      \ /   \       \ /   \                                                   C
8838 C       o             o                                                        C
8839 C       i             i                                                        C 
8840 C                                                                              C           
8841 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8842 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8843 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8844 C           but not in a cluster cumulant
8845 #ifdef MOMENT
8846       s1=dip(1,jj,i)*dip(1,kk,k)
8847 #endif
8848       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8849       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8850       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8851       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8852       call transpose2(EUg(1,1,k),auxmat(1,1))
8853       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8854       vv(1)=pizda(1,1)-pizda(2,2)
8855       vv(2)=pizda(1,2)+pizda(2,1)
8856       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8857 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8858 #ifdef MOMENT
8859       eello6_graph2=-(s1+s2+s3+s4)
8860 #else
8861       eello6_graph2=-(s2+s3+s4)
8862 #endif
8863 c      eello6_graph2=-s3
8864 C Derivatives in gamma(i-1)
8865       if (i.gt.1) then
8866 #ifdef MOMENT
8867         s1=dipderg(1,jj,i)*dip(1,kk,k)
8868 #endif
8869         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8870         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8871         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8872         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8873 #ifdef MOMENT
8874         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8875 #else
8876         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8877 #endif
8878 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8879       endif
8880 C Derivatives in gamma(k-1)
8881 #ifdef MOMENT
8882       s1=dip(1,jj,i)*dipderg(1,kk,k)
8883 #endif
8884       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8885       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8886       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8887       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8888       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8889       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8890       vv(1)=pizda(1,1)-pizda(2,2)
8891       vv(2)=pizda(1,2)+pizda(2,1)
8892       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8893 #ifdef MOMENT
8894       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
8895 #else
8896       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
8897 #endif
8898 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
8899 C Derivatives in gamma(j-1) or gamma(l-1)
8900       if (j.gt.1) then
8901 #ifdef MOMENT
8902         s1=dipderg(3,jj,i)*dip(1,kk,k) 
8903 #endif
8904         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
8905         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8906         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
8907         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
8908         vv(1)=pizda(1,1)-pizda(2,2)
8909         vv(2)=pizda(1,2)+pizda(2,1)
8910         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8911 #ifdef MOMENT
8912         if (swap) then
8913           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8914         else
8915           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8916         endif
8917 #endif
8918         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
8919 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
8920       endif
8921 C Derivatives in gamma(l-1) or gamma(j-1)
8922       if (l.gt.1) then 
8923 #ifdef MOMENT
8924         s1=dip(1,jj,i)*dipderg(3,kk,k)
8925 #endif
8926         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
8927         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8928         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
8929         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8930         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
8931         vv(1)=pizda(1,1)-pizda(2,2)
8932         vv(2)=pizda(1,2)+pizda(2,1)
8933         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8934 #ifdef MOMENT
8935         if (swap) then
8936           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
8937         else
8938           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
8939         endif
8940 #endif
8941         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
8942 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
8943       endif
8944 C Cartesian derivatives.
8945       if (lprn) then
8946         write (2,*) 'In eello6_graph2'
8947         do iii=1,2
8948           write (2,*) 'iii=',iii
8949           do kkk=1,5
8950             write (2,*) 'kkk=',kkk
8951             do jjj=1,2
8952               write (2,'(3(2f10.5),5x)') 
8953      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
8954             enddo
8955           enddo
8956         enddo
8957       endif
8958       do iii=1,2
8959         do kkk=1,5
8960           do lll=1,3
8961 #ifdef MOMENT
8962             if (iii.eq.1) then
8963               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
8964             else
8965               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
8966             endif
8967 #endif
8968             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
8969      &        auxvec(1))
8970             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8971             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
8972      &        auxvec(1))
8973             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
8974             call transpose2(EUg(1,1,k),auxmat(1,1))
8975             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
8976      &        pizda(1,1))
8977             vv(1)=pizda(1,1)-pizda(2,2)
8978             vv(2)=pizda(1,2)+pizda(2,1)
8979             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8980 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
8981 #ifdef MOMENT
8982             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
8983 #else
8984             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
8985 #endif
8986             if (swap) then
8987               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
8988             else
8989               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
8990             endif
8991           enddo
8992         enddo
8993       enddo
8994       return
8995       end
8996 c----------------------------------------------------------------------------
8997       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
8998       implicit real*8 (a-h,o-z)
8999       include 'DIMENSIONS'
9000       include 'COMMON.IOUNITS'
9001       include 'COMMON.CHAIN'
9002       include 'COMMON.DERIV'
9003       include 'COMMON.INTERACT'
9004       include 'COMMON.CONTACTS'
9005       include 'COMMON.TORSION'
9006       include 'COMMON.VAR'
9007       include 'COMMON.GEO'
9008       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
9009       logical swap
9010 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9011 C                                                                              C 
9012 C      Parallel       Antiparallel                                             C
9013 C                                                                              C
9014 C          o             o                                                     C 
9015 C         /l\   /   \   /j\                                                    C 
9016 C        /   \ /     \ /   \                                                   C
9017 C       /| o |o       o| o |\                                                  C
9018 C       j|/k\|  /      |/k\|l /                                                C
9019 C        /   \ /       /   \ /                                                 C
9020 C       /     o       /     o                                                  C
9021 C       i             i                                                        C
9022 C                                                                              C
9023 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9024 C
9025 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9026 C           energy moment and not to the cluster cumulant.
9027       iti=itortyp(itype(i))
9028       if (j.lt.nres-1) then
9029         itj1=itortyp(itype(j+1))
9030       else
9031         itj1=ntortyp+1
9032       endif
9033       itk=itortyp(itype(k))
9034       itk1=itortyp(itype(k+1))
9035       if (l.lt.nres-1) then
9036         itl1=itortyp(itype(l+1))
9037       else
9038         itl1=ntortyp+1
9039       endif
9040 #ifdef MOMENT
9041       s1=dip(4,jj,i)*dip(4,kk,k)
9042 #endif
9043       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
9044       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9045       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
9046       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9047       call transpose2(EE(1,1,itk),auxmat(1,1))
9048       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
9049       vv(1)=pizda(1,1)+pizda(2,2)
9050       vv(2)=pizda(2,1)-pizda(1,2)
9051       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9052 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
9053 cd     & "sum",-(s2+s3+s4)
9054 #ifdef MOMENT
9055       eello6_graph3=-(s1+s2+s3+s4)
9056 #else
9057       eello6_graph3=-(s2+s3+s4)
9058 #endif
9059 c      eello6_graph3=-s4
9060 C Derivatives in gamma(k-1)
9061       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
9062       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9063       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
9064       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
9065 C Derivatives in gamma(l-1)
9066       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
9067       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9068       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
9069       vv(1)=pizda(1,1)+pizda(2,2)
9070       vv(2)=pizda(2,1)-pizda(1,2)
9071       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9072       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
9073 C Cartesian derivatives.
9074       do iii=1,2
9075         do kkk=1,5
9076           do lll=1,3
9077 #ifdef MOMENT
9078             if (iii.eq.1) then
9079               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
9080             else
9081               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
9082             endif
9083 #endif
9084             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
9085      &        auxvec(1))
9086             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9087             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
9088      &        auxvec(1))
9089             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9090             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
9091      &        pizda(1,1))
9092             vv(1)=pizda(1,1)+pizda(2,2)
9093             vv(2)=pizda(2,1)-pizda(1,2)
9094             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9095 #ifdef MOMENT
9096             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9097 #else
9098             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9099 #endif
9100             if (swap) then
9101               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9102             else
9103               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9104             endif
9105 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
9106           enddo
9107         enddo
9108       enddo
9109       return
9110       end
9111 c----------------------------------------------------------------------------
9112       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
9113       implicit real*8 (a-h,o-z)
9114       include 'DIMENSIONS'
9115       include 'COMMON.IOUNITS'
9116       include 'COMMON.CHAIN'
9117       include 'COMMON.DERIV'
9118       include 'COMMON.INTERACT'
9119       include 'COMMON.CONTACTS'
9120       include 'COMMON.TORSION'
9121       include 'COMMON.VAR'
9122       include 'COMMON.GEO'
9123       include 'COMMON.FFIELD'
9124       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
9125      & auxvec1(2),auxmat1(2,2)
9126       logical swap
9127 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9128 C                                                                              C                       
9129 C      Parallel       Antiparallel                                             C
9130 C                                                                              C
9131 C          o             o                                                     C
9132 C         /l\   /   \   /j\                                                    C
9133 C        /   \ /     \ /   \                                                   C
9134 C       /| o |o       o| o |\                                                  C
9135 C     \ j|/k\|      \  |/k\|l                                                  C
9136 C      \ /   \       \ /   \                                                   C 
9137 C       o     \       o     \                                                  C
9138 C       i             i                                                        C
9139 C                                                                              C 
9140 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9141 C
9142 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9143 C           energy moment and not to the cluster cumulant.
9144 cd      write (2,*) 'eello_graph4: wturn6',wturn6
9145       iti=itortyp(itype(i))
9146       itj=itortyp(itype(j))
9147       if (j.lt.nres-1) then
9148         itj1=itortyp(itype(j+1))
9149       else
9150         itj1=ntortyp+1
9151       endif
9152       itk=itortyp(itype(k))
9153       if (k.lt.nres-1) then
9154         itk1=itortyp(itype(k+1))
9155       else
9156         itk1=ntortyp+1
9157       endif
9158       itl=itortyp(itype(l))
9159       if (l.lt.nres-1) then
9160         itl1=itortyp(itype(l+1))
9161       else
9162         itl1=ntortyp+1
9163       endif
9164 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
9165 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
9166 cd     & ' itl',itl,' itl1',itl1
9167 #ifdef MOMENT
9168       if (imat.eq.1) then
9169         s1=dip(3,jj,i)*dip(3,kk,k)
9170       else
9171         s1=dip(2,jj,j)*dip(2,kk,l)
9172       endif
9173 #endif
9174       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
9175       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9176       if (j.eq.l+1) then
9177         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
9178         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9179       else
9180         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
9181         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9182       endif
9183       call transpose2(EUg(1,1,k),auxmat(1,1))
9184       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
9185       vv(1)=pizda(1,1)-pizda(2,2)
9186       vv(2)=pizda(2,1)+pizda(1,2)
9187       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9188 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
9189 #ifdef MOMENT
9190       eello6_graph4=-(s1+s2+s3+s4)
9191 #else
9192       eello6_graph4=-(s2+s3+s4)
9193 #endif
9194 C Derivatives in gamma(i-1)
9195       if (i.gt.1) then
9196 #ifdef MOMENT
9197         if (imat.eq.1) then
9198           s1=dipderg(2,jj,i)*dip(3,kk,k)
9199         else
9200           s1=dipderg(4,jj,j)*dip(2,kk,l)
9201         endif
9202 #endif
9203         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
9204         if (j.eq.l+1) then
9205           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
9206           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9207         else
9208           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
9209           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9210         endif
9211         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
9212         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9213 cd          write (2,*) 'turn6 derivatives'
9214 #ifdef MOMENT
9215           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
9216 #else
9217           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
9218 #endif
9219         else
9220 #ifdef MOMENT
9221           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
9222 #else
9223           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
9224 #endif
9225         endif
9226       endif
9227 C Derivatives in gamma(k-1)
9228 #ifdef MOMENT
9229       if (imat.eq.1) then
9230         s1=dip(3,jj,i)*dipderg(2,kk,k)
9231       else
9232         s1=dip(2,jj,j)*dipderg(4,kk,l)
9233       endif
9234 #endif
9235       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
9236       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
9237       if (j.eq.l+1) then
9238         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
9239         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9240       else
9241         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
9242         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9243       endif
9244       call transpose2(EUgder(1,1,k),auxmat1(1,1))
9245       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
9246       vv(1)=pizda(1,1)-pizda(2,2)
9247       vv(2)=pizda(2,1)+pizda(1,2)
9248       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9249       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9250 #ifdef MOMENT
9251         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
9252 #else
9253         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
9254 #endif
9255       else
9256 #ifdef MOMENT
9257         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
9258 #else
9259         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
9260 #endif
9261       endif
9262 C Derivatives in gamma(j-1) or gamma(l-1)
9263       if (l.eq.j+1 .and. l.gt.1) then
9264         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9265         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9266         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9267         vv(1)=pizda(1,1)-pizda(2,2)
9268         vv(2)=pizda(2,1)+pizda(1,2)
9269         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9270         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
9271       else if (j.gt.1) then
9272         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9273         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9274         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9275         vv(1)=pizda(1,1)-pizda(2,2)
9276         vv(2)=pizda(2,1)+pizda(1,2)
9277         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9278         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9279           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
9280         else
9281           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
9282         endif
9283       endif
9284 C Cartesian derivatives.
9285       do iii=1,2
9286         do kkk=1,5
9287           do lll=1,3
9288 #ifdef MOMENT
9289             if (iii.eq.1) then
9290               if (imat.eq.1) then
9291                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
9292               else
9293                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
9294               endif
9295             else
9296               if (imat.eq.1) then
9297                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
9298               else
9299                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
9300               endif
9301             endif
9302 #endif
9303             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
9304      &        auxvec(1))
9305             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9306             if (j.eq.l+1) then
9307               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9308      &          b1(1,itj1),auxvec(1))
9309               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
9310             else
9311               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9312      &          b1(1,itl1),auxvec(1))
9313               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
9314             endif
9315             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
9316      &        pizda(1,1))
9317             vv(1)=pizda(1,1)-pizda(2,2)
9318             vv(2)=pizda(2,1)+pizda(1,2)
9319             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9320             if (swap) then
9321               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9322 #ifdef MOMENT
9323                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9324      &             -(s1+s2+s4)
9325 #else
9326                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9327      &             -(s2+s4)
9328 #endif
9329                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
9330               else
9331 #ifdef MOMENT
9332                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
9333 #else
9334                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
9335 #endif
9336                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9337               endif
9338             else
9339 #ifdef MOMENT
9340               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9341 #else
9342               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9343 #endif
9344               if (l.eq.j+1) then
9345                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9346               else 
9347                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9348               endif
9349             endif 
9350           enddo
9351         enddo
9352       enddo
9353       return
9354       end
9355 c----------------------------------------------------------------------------
9356       double precision function eello_turn6(i,jj,kk)
9357       implicit real*8 (a-h,o-z)
9358       include 'DIMENSIONS'
9359       include 'COMMON.IOUNITS'
9360       include 'COMMON.CHAIN'
9361       include 'COMMON.DERIV'
9362       include 'COMMON.INTERACT'
9363       include 'COMMON.CONTACTS'
9364       include 'COMMON.TORSION'
9365       include 'COMMON.VAR'
9366       include 'COMMON.GEO'
9367       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
9368      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
9369      &  ggg1(3),ggg2(3)
9370       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
9371      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
9372 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
9373 C           the respective energy moment and not to the cluster cumulant.
9374       s1=0.0d0
9375       s8=0.0d0
9376       s13=0.0d0
9377 c
9378       eello_turn6=0.0d0
9379       j=i+4
9380       k=i+1
9381       l=i+3
9382       iti=itortyp(itype(i))
9383       itk=itortyp(itype(k))
9384       itk1=itortyp(itype(k+1))
9385       itl=itortyp(itype(l))
9386       itj=itortyp(itype(j))
9387 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
9388 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
9389 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
9390 cd        eello6=0.0d0
9391 cd        return
9392 cd      endif
9393 cd      write (iout,*)
9394 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
9395 cd     &   ' and',k,l
9396 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
9397       do iii=1,2
9398         do kkk=1,5
9399           do lll=1,3
9400             derx_turn(lll,kkk,iii)=0.0d0
9401           enddo
9402         enddo
9403       enddo
9404 cd      eij=1.0d0
9405 cd      ekl=1.0d0
9406 cd      ekont=1.0d0
9407       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
9408 cd      eello6_5=0.0d0
9409 cd      write (2,*) 'eello6_5',eello6_5
9410 #ifdef MOMENT
9411       call transpose2(AEA(1,1,1),auxmat(1,1))
9412       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
9413       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
9414       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
9415 #endif
9416       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9417       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
9418       s2 = scalar2(b1(1,itk),vtemp1(1))
9419 #ifdef MOMENT
9420       call transpose2(AEA(1,1,2),atemp(1,1))
9421       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
9422       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
9423       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9424 #endif
9425       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
9426       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
9427       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
9428 #ifdef MOMENT
9429       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
9430       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
9431       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
9432       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
9433       ss13 = scalar2(b1(1,itk),vtemp4(1))
9434       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
9435 #endif
9436 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
9437 c      s1=0.0d0
9438 c      s2=0.0d0
9439 c      s8=0.0d0
9440 c      s12=0.0d0
9441 c      s13=0.0d0
9442       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
9443 C Derivatives in gamma(i+2)
9444       s1d =0.0d0
9445       s8d =0.0d0
9446 #ifdef MOMENT
9447       call transpose2(AEA(1,1,1),auxmatd(1,1))
9448       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9449       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9450       call transpose2(AEAderg(1,1,2),atempd(1,1))
9451       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9452       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9453 #endif
9454       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
9455       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9456       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9457 c      s1d=0.0d0
9458 c      s2d=0.0d0
9459 c      s8d=0.0d0
9460 c      s12d=0.0d0
9461 c      s13d=0.0d0
9462       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
9463 C Derivatives in gamma(i+3)
9464 #ifdef MOMENT
9465       call transpose2(AEA(1,1,1),auxmatd(1,1))
9466       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9467       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
9468       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
9469 #endif
9470       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
9471       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
9472       s2d = scalar2(b1(1,itk),vtemp1d(1))
9473 #ifdef MOMENT
9474       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
9475       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
9476 #endif
9477       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
9478 #ifdef MOMENT
9479       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
9480       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9481       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9482 #endif
9483 c      s1d=0.0d0
9484 c      s2d=0.0d0
9485 c      s8d=0.0d0
9486 c      s12d=0.0d0
9487 c      s13d=0.0d0
9488 #ifdef MOMENT
9489       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9490      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9491 #else
9492       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9493      &               -0.5d0*ekont*(s2d+s12d)
9494 #endif
9495 C Derivatives in gamma(i+4)
9496       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
9497       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9498       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9499 #ifdef MOMENT
9500       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
9501       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
9502       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9503 #endif
9504 c      s1d=0.0d0
9505 c      s2d=0.0d0
9506 c      s8d=0.0d0
9507 C      s12d=0.0d0
9508 c      s13d=0.0d0
9509 #ifdef MOMENT
9510       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
9511 #else
9512       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
9513 #endif
9514 C Derivatives in gamma(i+5)
9515 #ifdef MOMENT
9516       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
9517       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9518       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9519 #endif
9520       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
9521       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
9522       s2d = scalar2(b1(1,itk),vtemp1d(1))
9523 #ifdef MOMENT
9524       call transpose2(AEA(1,1,2),atempd(1,1))
9525       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
9526       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9527 #endif
9528       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
9529       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9530 #ifdef MOMENT
9531       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
9532       ss13d = scalar2(b1(1,itk),vtemp4d(1))
9533       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9534 #endif
9535 c      s1d=0.0d0
9536 c      s2d=0.0d0
9537 c      s8d=0.0d0
9538 c      s12d=0.0d0
9539 c      s13d=0.0d0
9540 #ifdef MOMENT
9541       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9542      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9543 #else
9544       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9545      &               -0.5d0*ekont*(s2d+s12d)
9546 #endif
9547 C Cartesian derivatives
9548       do iii=1,2
9549         do kkk=1,5
9550           do lll=1,3
9551 #ifdef MOMENT
9552             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
9553             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9554             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9555 #endif
9556             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9557             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
9558      &          vtemp1d(1))
9559             s2d = scalar2(b1(1,itk),vtemp1d(1))
9560 #ifdef MOMENT
9561             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
9562             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9563             s8d = -(atempd(1,1)+atempd(2,2))*
9564      &           scalar2(cc(1,1,itl),vtemp2(1))
9565 #endif
9566             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
9567      &           auxmatd(1,1))
9568             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9569             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9570 c      s1d=0.0d0
9571 c      s2d=0.0d0
9572 c      s8d=0.0d0
9573 c      s12d=0.0d0
9574 c      s13d=0.0d0
9575 #ifdef MOMENT
9576             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9577      &        - 0.5d0*(s1d+s2d)
9578 #else
9579             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9580      &        - 0.5d0*s2d
9581 #endif
9582 #ifdef MOMENT
9583             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9584      &        - 0.5d0*(s8d+s12d)
9585 #else
9586             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9587      &        - 0.5d0*s12d
9588 #endif
9589           enddo
9590         enddo
9591       enddo
9592 #ifdef MOMENT
9593       do kkk=1,5
9594         do lll=1,3
9595           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9596      &      achuj_tempd(1,1))
9597           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9598           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9599           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9600           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9601           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9602      &      vtemp4d(1)) 
9603           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9604           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9605           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9606         enddo
9607       enddo
9608 #endif
9609 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9610 cd     &  16*eel_turn6_num
9611 cd      goto 1112
9612       if (j.lt.nres-1) then
9613         j1=j+1
9614         j2=j-1
9615       else
9616         j1=j-1
9617         j2=j-2
9618       endif
9619       if (l.lt.nres-1) then
9620         l1=l+1
9621         l2=l-1
9622       else
9623         l1=l-1
9624         l2=l-2
9625       endif
9626       do ll=1,3
9627 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9628 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9629 cgrad        ghalf=0.5d0*ggg1(ll)
9630 cd        ghalf=0.0d0
9631         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9632         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9633         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9634      &    +ekont*derx_turn(ll,2,1)
9635         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9636         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9637      &    +ekont*derx_turn(ll,4,1)
9638         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9639         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9640         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9641 cgrad        ghalf=0.5d0*ggg2(ll)
9642 cd        ghalf=0.0d0
9643         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9644      &    +ekont*derx_turn(ll,2,2)
9645         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9646         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9647      &    +ekont*derx_turn(ll,4,2)
9648         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9649         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9650         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9651       enddo
9652 cd      goto 1112
9653 cgrad      do m=i+1,j-1
9654 cgrad        do ll=1,3
9655 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9656 cgrad        enddo
9657 cgrad      enddo
9658 cgrad      do m=k+1,l-1
9659 cgrad        do ll=1,3
9660 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9661 cgrad        enddo
9662 cgrad      enddo
9663 cgrad1112  continue
9664 cgrad      do m=i+2,j2
9665 cgrad        do ll=1,3
9666 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9667 cgrad        enddo
9668 cgrad      enddo
9669 cgrad      do m=k+2,l2
9670 cgrad        do ll=1,3
9671 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9672 cgrad        enddo
9673 cgrad      enddo 
9674 cd      do iii=1,nres-3
9675 cd        write (2,*) iii,g_corr6_loc(iii)
9676 cd      enddo
9677       eello_turn6=ekont*eel_turn6
9678 cd      write (2,*) 'ekont',ekont
9679 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9680       return
9681       end
9682
9683 C-----------------------------------------------------------------------------
9684       double precision function scalar(u,v)
9685 !DIR$ INLINEALWAYS scalar
9686 #ifndef OSF
9687 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9688 #endif
9689       implicit none
9690       double precision u(3),v(3)
9691 cd      double precision sc
9692 cd      integer i
9693 cd      sc=0.0d0
9694 cd      do i=1,3
9695 cd        sc=sc+u(i)*v(i)
9696 cd      enddo
9697 cd      scalar=sc
9698
9699       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9700       return
9701       end
9702 crc-------------------------------------------------
9703       SUBROUTINE MATVEC2(A1,V1,V2)
9704 !DIR$ INLINEALWAYS MATVEC2
9705 #ifndef OSF
9706 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9707 #endif
9708       implicit real*8 (a-h,o-z)
9709       include 'DIMENSIONS'
9710       DIMENSION A1(2,2),V1(2),V2(2)
9711 c      DO 1 I=1,2
9712 c        VI=0.0
9713 c        DO 3 K=1,2
9714 c    3     VI=VI+A1(I,K)*V1(K)
9715 c        Vaux(I)=VI
9716 c    1 CONTINUE
9717
9718       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9719       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9720
9721       v2(1)=vaux1
9722       v2(2)=vaux2
9723       END
9724 C---------------------------------------
9725       SUBROUTINE MATMAT2(A1,A2,A3)
9726 #ifndef OSF
9727 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9728 #endif
9729       implicit real*8 (a-h,o-z)
9730       include 'DIMENSIONS'
9731       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9732 c      DIMENSION AI3(2,2)
9733 c        DO  J=1,2
9734 c          A3IJ=0.0
9735 c          DO K=1,2
9736 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9737 c          enddo
9738 c          A3(I,J)=A3IJ
9739 c       enddo
9740 c      enddo
9741
9742       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9743       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9744       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9745       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9746
9747       A3(1,1)=AI3_11
9748       A3(2,1)=AI3_21
9749       A3(1,2)=AI3_12
9750       A3(2,2)=AI3_22
9751       END
9752
9753 c-------------------------------------------------------------------------
9754       double precision function scalar2(u,v)
9755 !DIR$ INLINEALWAYS scalar2
9756       implicit none
9757       double precision u(2),v(2)
9758       double precision sc
9759       integer i
9760       scalar2=u(1)*v(1)+u(2)*v(2)
9761       return
9762       end
9763
9764 C-----------------------------------------------------------------------------
9765
9766       subroutine transpose2(a,at)
9767 !DIR$ INLINEALWAYS transpose2
9768 #ifndef OSF
9769 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9770 #endif
9771       implicit none
9772       double precision a(2,2),at(2,2)
9773       at(1,1)=a(1,1)
9774       at(1,2)=a(2,1)
9775       at(2,1)=a(1,2)
9776       at(2,2)=a(2,2)
9777       return
9778       end
9779 c--------------------------------------------------------------------------
9780       subroutine transpose(n,a,at)
9781       implicit none
9782       integer n,i,j
9783       double precision a(n,n),at(n,n)
9784       do i=1,n
9785         do j=1,n
9786           at(j,i)=a(i,j)
9787         enddo
9788       enddo
9789       return
9790       end
9791 C---------------------------------------------------------------------------
9792       subroutine prodmat3(a1,a2,kk,transp,prod)
9793 !DIR$ INLINEALWAYS prodmat3
9794 #ifndef OSF
9795 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9796 #endif
9797       implicit none
9798       integer i,j
9799       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9800       logical transp
9801 crc      double precision auxmat(2,2),prod_(2,2)
9802
9803       if (transp) then
9804 crc        call transpose2(kk(1,1),auxmat(1,1))
9805 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9806 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9807         
9808            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9809      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9810            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9811      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9812            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9813      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9814            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9815      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9816
9817       else
9818 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9819 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9820
9821            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9822      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9823            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9824      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9825            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9826      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9827            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9828      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9829
9830       endif
9831 c      call transpose2(a2(1,1),a2t(1,1))
9832
9833 crc      print *,transp
9834 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9835 crc      print *,((prod(i,j),i=1,2),j=1,2)
9836
9837       return
9838       end
9839