ENERGY_DEC printout works for ebend in E0LL2Y forcefield
[unres.git] / source / unres / src_MD / energy_p_new_barrier.F
1       subroutine etotal(energia)
2       implicit real*8 (a-h,o-z)
3       include 'DIMENSIONS'
4 #ifndef ISNAN
5       external proc_proc
6 #ifdef WINPGI
7 cMS$ATTRIBUTES C ::  proc_proc
8 #endif
9 #endif
10 #ifdef MPI
11       include "mpif.h"
12       double precision weights_(n_ene)
13 #endif
14       include 'COMMON.SETUP'
15       include 'COMMON.IOUNITS'
16       double precision energia(0:n_ene)
17       include 'COMMON.LOCAL'
18       include 'COMMON.FFIELD'
19       include 'COMMON.DERIV'
20       include 'COMMON.INTERACT'
21       include 'COMMON.SBRIDGE'
22       include 'COMMON.CHAIN'
23       include 'COMMON.VAR'
24       include 'COMMON.MD'
25       include 'COMMON.CONTROL'
26       include 'COMMON.TIME1'
27 #ifdef MPI      
28 c      print*,"ETOTAL Processor",fg_rank," absolute rank",myrank,
29 c     & " nfgtasks",nfgtasks
30       call flush(iout)
31       if (nfgtasks.gt.1) then
32 #ifdef MPI
33         time00=MPI_Wtime()
34 #else
35         time00=tcpu()
36 #endif
37 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
38         if (fg_rank.eq.0) then
39           call MPI_Bcast(0,1,MPI_INTEGER,king,FG_COMM,IERROR)
40 c          print *,"Processor",myrank," BROADCAST iorder"
41 C FG master sets up the WEIGHTS_ array which will be broadcast to the 
42 C FG slaves as WEIGHTS array.
43           weights_(1)=wsc
44           weights_(2)=wscp
45           weights_(3)=welec
46           weights_(4)=wcorr
47           weights_(5)=wcorr5
48           weights_(6)=wcorr6
49           weights_(7)=wel_loc
50           weights_(8)=wturn3
51           weights_(9)=wturn4
52           weights_(10)=wturn6
53           weights_(11)=wang
54           weights_(12)=wscloc
55           weights_(13)=wtor
56           weights_(14)=wtor_d
57           weights_(15)=wstrain
58           weights_(16)=wvdwpp
59           weights_(17)=wbond
60           weights_(18)=scal14
61           weights_(21)=wsccor
62           weights_(22)=wsct
63 C FG Master broadcasts the WEIGHTS_ array
64           call MPI_Bcast(weights_(1),n_ene,
65      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
66         else
67 C FG slaves receive the WEIGHTS array
68           call MPI_Bcast(weights(1),n_ene,
69      &        MPI_DOUBLE_PRECISION,king,FG_COMM,IERROR)
70           wsc=weights(1)
71           wscp=weights(2)
72           welec=weights(3)
73           wcorr=weights(4)
74           wcorr5=weights(5)
75           wcorr6=weights(6)
76           wel_loc=weights(7)
77           wturn3=weights(8)
78           wturn4=weights(9)
79           wturn6=weights(10)
80           wang=weights(11)
81           wscloc=weights(12)
82           wtor=weights(13)
83           wtor_d=weights(14)
84           wstrain=weights(15)
85           wvdwpp=weights(16)
86           wbond=weights(17)
87           scal14=weights(18)
88           wsccor=weights(21)
89           wsct=weights(22)
90         endif
91         time_Bcast=time_Bcast+MPI_Wtime()-time00
92         time_Bcastw=time_Bcastw+MPI_Wtime()-time00
93 c        call chainbuild_cart
94       endif
95 c      write(iout,*) 'Processor',myrank,' calling etotal ipot=',ipot
96 c      print *,'Processor',myrank,' nnt=',nnt,' nct=',nct
97 #else
98 c      if (modecalc.eq.12.or.modecalc.eq.14) then
99 c        call int_from_cart1(.false.)
100 c      endif
101 #endif     
102 #ifndef DFA
103       edfadis=0.0d0
104       edfator=0.0d0
105       edfanei=0.0d0
106       edfabet=0.0d0
107 #endif
108 #ifdef TIMING
109 #ifdef MPI
110       time00=MPI_Wtime()
111 #else
112       time00=tcpu()
113 #endif
114 #endif
115
116 C Compute the side-chain and electrostatic interaction energy
117 C
118       goto (101,102,103,104,105,106) ipot
119 C Lennard-Jones potential.
120   101 call elj(evdw,evdw_p,evdw_m)
121 cd    print '(a)','Exit ELJ'
122       goto 107
123 C Lennard-Jones-Kihara potential (shifted).
124   102 call eljk(evdw,evdw_p,evdw_m)
125       goto 107
126 C Berne-Pechukas potential (dilated LJ, angular dependence).
127   103 call ebp(evdw,evdw_p,evdw_m)
128       goto 107
129 C Gay-Berne potential (shifted LJ, angular dependence).
130   104 call egb(evdw,evdw_p,evdw_m)
131       goto 107
132 C Gay-Berne-Vorobjev potential (shifted LJ, angular dependence).
133   105 call egbv(evdw,evdw_p,evdw_m)
134       goto 107
135 C Soft-sphere potential
136   106 call e_softsphere(evdw)
137 C
138 C Calculate electrostatic (H-bonding) energy of the main chain.
139 C
140   107 continue
141 #ifdef DFA
142 C     BARTEK for dfa test!
143       if (wdfa_dist.gt.0) then 
144         call edfad(edfadis)
145       else
146         edfadis=0
147       endif
148 c      print*, 'edfad is finished!', edfadis
149       if (wdfa_tor.gt.0) then
150         call edfat(edfator)
151       else
152         edfator=0
153       endif
154 c      print*, 'edfat is finished!', edfator
155       if (wdfa_nei.gt.0) then
156         call edfan(edfanei)
157       else
158         edfanei=0
159       endif    
160 c      print*, 'edfan is finished!', edfanei
161       if (wdfa_beta.gt.0) then 
162         call edfab(edfabet)
163       else
164         edfabet=0
165       endif
166 #endif
167 c      print*, 'edfab is finished!', edfabet
168 cmc
169 cmc Sep-06: egb takes care of dynamic ss bonds too
170 cmc
171 c      if (dyn_ss) call dyn_set_nss
172
173 c      print *,"Processor",myrank," computed USCSC"
174 #ifdef TIMING
175 #ifdef MPI
176       time01=MPI_Wtime() 
177 #else
178       time00=tcpu()
179 #endif
180 #endif
181       call vec_and_deriv
182 #ifdef TIMING
183 #ifdef MPI
184       time_vec=time_vec+MPI_Wtime()-time01
185 #else
186       time_vec=time_vec+tcpu()-time01
187 #endif
188 #endif
189 c      print *,"Processor",myrank," left VEC_AND_DERIV"
190       if (ipot.lt.6) then
191 #ifdef SPLITELE
192          if (welec.gt.0d0.or.wvdwpp.gt.0d0.or.wel_loc.gt.0d0.or.
193      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
194      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0
195      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
196 #else
197          if (welec.gt.0d0.or.wel_loc.gt.0d0.or.
198      &       wturn3.gt.0d0.or.wturn4.gt.0d0 .or. wcorr.gt.0.0d0
199      &       .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.d0 
200      &       .or. wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0 ) then
201 #endif
202             call eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
203          else
204             ees=0.0d0
205             evdw1=0.0d0
206             eel_loc=0.0d0
207             eello_turn3=0.0d0
208             eello_turn4=0.0d0
209          endif
210       else
211 c        write (iout,*) "Soft-spheer ELEC potential"
212         call eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
213      &   eello_turn4)
214       endif
215 c      print *,"Processor",myrank," computed UELEC"
216 C
217 C Calculate excluded-volume interaction energy between peptide groups
218 C and side chains.
219 C
220       if (ipot.lt.6) then
221        if(wscp.gt.0d0) then
222         call escp(evdw2,evdw2_14)
223        else
224         evdw2=0
225         evdw2_14=0
226        endif
227       else
228 c        write (iout,*) "Soft-sphere SCP potential"
229         call escp_soft_sphere(evdw2,evdw2_14)
230       endif
231 c
232 c Calculate the bond-stretching energy
233 c
234       call ebond(estr)
235
236 C Calculate the disulfide-bridge and other energy and the contributions
237 C from other distance constraints.
238 cd    print *,'Calling EHPB'
239       call edis(ehpb)
240 cd    print *,'EHPB exitted succesfully.'
241 C
242 C Calculate the virtual-bond-angle energy.
243 C
244       if (wang.gt.0d0) then
245         call ebend(ebe)
246       else
247         ebe=0
248       endif
249 c      print *,"Processor",myrank," computed UB"
250 C
251 C Calculate the SC local energy.
252 C
253       call esc(escloc)
254 c      print *,"Processor",myrank," computed USC"
255 C
256 C Calculate the virtual-bond torsional energy.
257 C
258 cd    print *,'nterm=',nterm
259       if (wtor.gt.0) then
260        call etor(etors,edihcnstr)
261       else
262        etors=0
263        edihcnstr=0
264       endif
265
266       if (constr_homology.ge.1) then
267         call e_modeller(ehomology_constr)
268 c        print *,'iset=',iset,'me=',me,ehomology_constr,
269 c     &  'Processor',fg_rank,' CG group',kolor,
270 c     &  ' absolute rank',MyRank
271       else
272         ehomology_constr=0.0d0
273       endif
274
275
276 c      write(iout,*) ehomology_constr
277 c      print *,"Processor",myrank," computed Utor"
278 C
279 C 6/23/01 Calculate double-torsional energy
280 C
281       if (wtor_d.gt.0) then
282        call etor_d(etors_d)
283       else
284        etors_d=0
285       endif
286 c      print *,"Processor",myrank," computed Utord"
287 C
288 C 21/5/07 Calculate local sicdechain correlation energy
289 C
290       if (wsccor.gt.0.0d0) then
291         call eback_sc_corr(esccor)
292       else
293         esccor=0.0d0
294       endif
295 c      print *,"Processor",myrank," computed Usccorr"
296
297 C 12/1/95 Multi-body terms
298 C
299       n_corr=0
300       n_corr1=0
301       if ((wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 
302      &    .or. wturn6.gt.0.0d0) .and. ipot.lt.6) then
303          call multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,n_corr1)
304 cd         write(2,*)'multibody_eello n_corr=',n_corr,' n_corr1=',n_corr1,
305 cd     &" ecorr",ecorr," ecorr5",ecorr5," ecorr6",ecorr6," eturn6",eturn6
306       else
307          ecorr=0.0d0
308          ecorr5=0.0d0
309          ecorr6=0.0d0
310          eturn6=0.0d0
311       endif
312       if ((wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) .and. ipot.lt.6) then
313          call multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
314 cd         write (iout,*) "multibody_hb ecorr",ecorr
315       endif
316 c      print *,"Processor",myrank," computed Ucorr"
317
318 C If performing constraint dynamics, call the constraint energy
319 C  after the equilibration time
320       if(usampl.and.totT.gt.eq_time) then
321 c         write (iout,*) "CALL TO ECONSTR_BACK"
322          call EconstrQ   
323          call Econstr_back
324       else
325          Uconst=0.0d0
326          Uconst_back=0.0d0
327       endif
328 #ifdef TIMING
329 #ifdef MPI
330       time_enecalc=time_enecalc+MPI_Wtime()-time00
331 #else
332       time_enecalc=time_enecalc+tcpu()-time00
333 #endif
334 #endif
335 c      print *,"Processor",myrank," computed Uconstr"
336 #ifdef TIMING
337 #ifdef MPI
338       time00=MPI_Wtime()
339 #else
340       time00=tcpu()
341 #endif
342 #endif
343 c
344 C Sum the energies
345 C
346       energia(1)=evdw
347 #ifdef SCP14
348       energia(2)=evdw2-evdw2_14
349       energia(18)=evdw2_14
350 #else
351       energia(2)=evdw2
352       energia(18)=0.0d0
353 #endif
354 #ifdef SPLITELE
355       energia(3)=ees
356       energia(16)=evdw1
357 #else
358       energia(3)=ees+evdw1
359       energia(16)=0.0d0
360 #endif
361       energia(4)=ecorr
362       energia(5)=ecorr5
363       energia(6)=ecorr6
364       energia(7)=eel_loc
365       energia(8)=eello_turn3
366       energia(9)=eello_turn4
367       energia(10)=eturn6
368       energia(11)=ebe
369       energia(12)=escloc
370       energia(13)=etors
371       energia(14)=etors_d
372       energia(15)=ehpb
373       energia(19)=edihcnstr
374       energia(17)=estr
375       energia(20)=Uconst+Uconst_back
376       energia(21)=esccor
377       energia(22)=evdw_p
378       energia(23)=evdw_m
379       energia(24)=ehomology_constr
380       energia(25)=edfadis
381       energia(26)=edfator
382       energia(27)=edfanei
383       energia(28)=edfabet
384 c      print *," Processor",myrank," calls SUM_ENERGY"
385       call sum_energy(energia,.true.)
386       if (dyn_ss) call dyn_set_nss
387 c      print *," Processor",myrank," left SUM_ENERGY"
388 #ifdef TIMING
389 #ifdef MPI
390       time_sumene=time_sumene+MPI_Wtime()-time00
391 #else
392       time_sumene=time_sumene+tcpu()-time00
393 #endif
394 #endif
395       return
396       end
397 c-------------------------------------------------------------------------------
398       subroutine sum_energy(energia,reduce)
399       implicit real*8 (a-h,o-z)
400       include 'DIMENSIONS'
401 #ifndef ISNAN
402       external proc_proc
403 #ifdef WINPGI
404 cMS$ATTRIBUTES C ::  proc_proc
405 #endif
406 #endif
407 #ifdef MPI
408       include "mpif.h"
409 #endif
410       include 'COMMON.SETUP'
411       include 'COMMON.IOUNITS'
412       double precision energia(0:n_ene),enebuff(0:n_ene+1)
413       include 'COMMON.FFIELD'
414       include 'COMMON.DERIV'
415       include 'COMMON.INTERACT'
416       include 'COMMON.SBRIDGE'
417       include 'COMMON.CHAIN'
418       include 'COMMON.VAR'
419       include 'COMMON.CONTROL'
420       include 'COMMON.TIME1'
421       logical reduce
422 #ifdef MPI
423       if (nfgtasks.gt.1 .and. reduce) then
424 #ifdef DEBUG
425         write (iout,*) "energies before REDUCE"
426         call enerprint(energia)
427         call flush(iout)
428 #endif
429         do i=0,n_ene
430           enebuff(i)=energia(i)
431         enddo
432         time00=MPI_Wtime()
433         call MPI_Barrier(FG_COMM,IERR)
434         time_barrier_e=time_barrier_e+MPI_Wtime()-time00
435         time00=MPI_Wtime()
436         call MPI_Reduce(enebuff(0),energia(0),n_ene+1,
437      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
438 #ifdef DEBUG
439         write (iout,*) "energies after REDUCE"
440         call enerprint(energia)
441         call flush(iout)
442 #endif
443         time_Reduce=time_Reduce+MPI_Wtime()-time00
444       endif
445       if (fg_rank.eq.0) then
446 #endif
447 #ifdef TSCSC
448       evdw=energia(22)+wsct*energia(23)
449 #else
450       evdw=energia(1)
451 #endif
452 #ifdef SCP14
453       evdw2=energia(2)+energia(18)
454       evdw2_14=energia(18)
455 #else
456       evdw2=energia(2)
457 #endif
458 #ifdef SPLITELE
459       ees=energia(3)
460       evdw1=energia(16)
461 #else
462       ees=energia(3)
463       evdw1=0.0d0
464 #endif
465       ecorr=energia(4)
466       ecorr5=energia(5)
467       ecorr6=energia(6)
468       eel_loc=energia(7)
469       eello_turn3=energia(8)
470       eello_turn4=energia(9)
471       eturn6=energia(10)
472       ebe=energia(11)
473       escloc=energia(12)
474       etors=energia(13)
475       etors_d=energia(14)
476       ehpb=energia(15)
477       edihcnstr=energia(19)
478       estr=energia(17)
479       Uconst=energia(20)
480       esccor=energia(21)
481       ehomology_constr=energia(24)
482       edfadis=energia(25)
483       edfator=energia(26)
484       edfanei=energia(27)
485       edfabet=energia(28)
486 #ifdef SPLITELE
487       etot=wsc*evdw+wscp*evdw2+welec*ees+wvdwpp*evdw1
488      & +wang*ebe+wtor*etors+wscloc*escloc
489      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
490      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
491      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
492      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
493      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
494      & +wdfa_beta*edfabet    
495 #else
496       etot=wsc*evdw+wscp*evdw2+welec*(ees+evdw1)
497      & +wang*ebe+wtor*etors+wscloc*escloc
498      & +wstrain*ehpb+wcorr*ecorr+wcorr5*ecorr5
499      & +wcorr6*ecorr6+wturn4*eello_turn4+wturn3*eello_turn3
500      & +wturn6*eturn6+wel_loc*eel_loc+edihcnstr+wtor_d*etors_d
501      & +wbond*estr+Uconst+wsccor*esccor+ehomology_constr
502      & +wdfa_dist*edfadis+wdfa_tor*edfator+wdfa_nei*edfanei
503      & +wdfa_beta*edfabet    
504 #endif
505       energia(0)=etot
506 c detecting NaNQ
507 #ifdef ISNAN
508 #ifdef AIX
509       if (isnan(etot).ne.0) energia(0)=1.0d+99
510 #else
511       if (isnan(etot)) energia(0)=1.0d+99
512 #endif
513 #else
514       i=0
515 #ifdef WINPGI
516       idumm=proc_proc(etot,i)
517 #else
518       call proc_proc(etot,i)
519 #endif
520       if(i.eq.1)energia(0)=1.0d+99
521 #endif
522 #ifdef MPI
523       endif
524 #endif
525       return
526       end
527 c-------------------------------------------------------------------------------
528       subroutine sum_gradient
529       implicit real*8 (a-h,o-z)
530       include 'DIMENSIONS'
531 #ifndef ISNAN
532       external proc_proc
533 #ifdef WINPGI
534 cMS$ATTRIBUTES C ::  proc_proc
535 #endif
536 #endif
537 #ifdef MPI
538       include 'mpif.h'
539 #endif
540       double precision gradbufc(3,maxres),gradbufx(3,maxres),
541      &  glocbuf(4*maxres),gradbufc_sum(3,maxres),gloc_scbuf(3,maxres)
542       include 'COMMON.SETUP'
543       include 'COMMON.IOUNITS'
544       include 'COMMON.FFIELD'
545       include 'COMMON.DERIV'
546       include 'COMMON.INTERACT'
547       include 'COMMON.SBRIDGE'
548       include 'COMMON.CHAIN'
549       include 'COMMON.VAR'
550       include 'COMMON.CONTROL'
551       include 'COMMON.TIME1'
552       include 'COMMON.MAXGRAD'
553       include 'COMMON.SCCOR'
554       include 'COMMON.MD'
555 #ifdef TIMING
556 #ifdef MPI
557       time01=MPI_Wtime()
558 #else
559       time01=tcpu()
560 #endif
561 #endif
562 #ifdef DEBUG
563       write (iout,*) "sum_gradient gvdwc, gvdwx"
564       do i=1,nres
565         write (iout,'(i3,3f10.5,5x,3f10.5,5x,3f10.5,5x,3f10.5)') 
566      &   i,(gvdwx(j,i),j=1,3),(gvdwcT(j,i),j=1,3),(gvdwc(j,i),j=1,3),
567      &   (gvdwcT(j,i),j=1,3)
568       enddo
569       call flush(iout)
570 #endif
571 #ifdef MPI
572 C FG slaves call the following matching MPI_Bcast in ERGASTULUM
573         if (nfgtasks.gt.1 .and. fg_rank.eq.0) 
574      &    call MPI_Bcast(1,1,MPI_INTEGER,king,FG_COMM,IERROR)
575 #endif
576 C
577 C 9/29/08 AL Transform parts of gradients in site coordinates to the gradient
578 C            in virtual-bond-vector coordinates
579 C
580 #ifdef DEBUG
581 c      write (iout,*) "gel_loc gel_loc_long and gel_loc_loc"
582 c      do i=1,nres-1
583 c        write (iout,'(i5,3f10.5,2x,3f10.5,2x,f10.5)') 
584 c     &   i,(gel_loc(j,i),j=1,3),(gel_loc_long(j,i),j=1,3),gel_loc_loc(i)
585 c      enddo
586 c      write (iout,*) "gel_loc_tur3 gel_loc_turn4"
587 c      do i=1,nres-1
588 c        write (iout,'(i5,3f10.5,2x,f10.5)') 
589 c     &  i,(gcorr4_turn(j,i),j=1,3),gel_loc_turn4(i)
590 c      enddo
591       write (iout,*) "gradcorr5 gradcorr5_long gradcorr5_loc"
592       do i=1,nres
593         write (iout,'(i3,3f10.5,5x,3f10.5,5x,f10.5)') 
594      &   i,(gradcorr5(j,i),j=1,3),(gradcorr5_long(j,i),j=1,3),
595      &   g_corr5_loc(i)
596       enddo
597       call flush(iout)
598 #endif
599 #ifdef SPLITELE
600 #ifdef TSCSC
601       do i=1,nct
602         do j=1,3
603           gradbufc(j,i)=wsc*gvdwc(j,i)+wsc*wscT*gvdwcT(j,i)+
604      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
605      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
606      &                wel_loc*gel_loc_long(j,i)+
607      &                wcorr*gradcorr_long(j,i)+
608      &                wcorr5*gradcorr5_long(j,i)+
609      &                wcorr6*gradcorr6_long(j,i)+
610      &                wturn6*gcorr6_turn_long(j,i)+
611      &                wstrain*ghpbc(j,i)+
612      &                wdfa_dist*gdfad(j,i)+
613      &                wdfa_tor*gdfat(j,i)+
614      &                wdfa_nei*gdfan(j,i)+
615      &                wdfa_beta*gdfab(j,i)
616         enddo
617       enddo 
618 #else
619       do i=1,nct
620         do j=1,3
621           gradbufc(j,i)=wsc*gvdwc(j,i)+
622      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
623      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
624      &                wel_loc*gel_loc_long(j,i)+
625      &                wcorr*gradcorr_long(j,i)+
626      &                wcorr5*gradcorr5_long(j,i)+
627      &                wcorr6*gradcorr6_long(j,i)+
628      &                wturn6*gcorr6_turn_long(j,i)+
629      &                wstrain*ghpbc(j,i)+
630      &                wdfa_dist*gdfad(j,i)+
631      &                wdfa_tor*gdfat(j,i)+
632      &                wdfa_nei*gdfan(j,i)+
633      &                wdfa_beta*gdfab(j,i)
634         enddo
635       enddo 
636 #endif
637 #else
638       do i=1,nct
639         do j=1,3
640           gradbufc(j,i)=wsc*gvdwc(j,i)+
641      &                wscp*(gvdwc_scp(j,i)+gvdwc_scpp(j,i))+
642      &                welec*gelc_long(j,i)+
643      &                wbond*gradb(j,i)+
644      &                wel_loc*gel_loc_long(j,i)+
645      &                wcorr*gradcorr_long(j,i)+
646      &                wcorr5*gradcorr5_long(j,i)+
647      &                wcorr6*gradcorr6_long(j,i)+
648      &                wturn6*gcorr6_turn_long(j,i)+
649      &                wstrain*ghpbc(j,i)+
650      &                wdfa_dist*gdfad(j,i)+
651      &                wdfa_tor*gdfat(j,i)+
652      &                wdfa_nei*gdfan(j,i)+
653      &                wdfa_beta*gdfab(j,i)
654         enddo
655       enddo 
656 #endif
657 #ifdef MPI
658       if (nfgtasks.gt.1) then
659       time00=MPI_Wtime()
660 #ifdef DEBUG
661       write (iout,*) "gradbufc before allreduce"
662       do i=1,nres
663         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
664       enddo
665       call flush(iout)
666 #endif
667       do i=1,nres
668         do j=1,3
669           gradbufc_sum(j,i)=gradbufc(j,i)
670         enddo
671       enddo
672 c      call MPI_AllReduce(gradbufc(1,1),gradbufc_sum(1,1),3*nres,
673 c     &    MPI_DOUBLE_PRECISION,MPI_SUM,FG_COMM,IERR)
674 c      time_reduce=time_reduce+MPI_Wtime()-time00
675 #ifdef DEBUG
676 c      write (iout,*) "gradbufc_sum after allreduce"
677 c      do i=1,nres
678 c        write (iout,'(i3,3f10.5)') i,(gradbufc_sum(j,i),j=1,3)
679 c      enddo
680 c      call flush(iout)
681 #endif
682 #ifdef TIMING
683 c      time_allreduce=time_allreduce+MPI_Wtime()-time00
684 #endif
685       do i=nnt,nres
686         do k=1,3
687           gradbufc(k,i)=0.0d0
688         enddo
689       enddo
690 #ifdef DEBUG
691       write (iout,*) "igrad_start",igrad_start," igrad_end",igrad_end
692       write (iout,*) (i," jgrad_start",jgrad_start(i),
693      &                  " jgrad_end  ",jgrad_end(i),
694      &                  i=igrad_start,igrad_end)
695 #endif
696 c
697 c Obsolete and inefficient code; we can make the effort O(n) and, therefore,
698 c do not parallelize this part.
699 c
700 c      do i=igrad_start,igrad_end
701 c        do j=jgrad_start(i),jgrad_end(i)
702 c          do k=1,3
703 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc_sum(k,j)
704 c          enddo
705 c        enddo
706 c      enddo
707       do j=1,3
708         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
709       enddo
710       do i=nres-2,nnt,-1
711         do j=1,3
712           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
713         enddo
714       enddo
715 #ifdef DEBUG
716       write (iout,*) "gradbufc after summing"
717       do i=1,nres
718         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
719       enddo
720       call flush(iout)
721 #endif
722       else
723 #endif
724 #ifdef DEBUG
725       write (iout,*) "gradbufc"
726       do i=1,nres
727         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
728       enddo
729       call flush(iout)
730 #endif
731       do i=1,nres
732         do j=1,3
733           gradbufc_sum(j,i)=gradbufc(j,i)
734           gradbufc(j,i)=0.0d0
735         enddo
736       enddo
737       do j=1,3
738         gradbufc(j,nres-1)=gradbufc_sum(j,nres)
739       enddo
740       do i=nres-2,nnt,-1
741         do j=1,3
742           gradbufc(j,i)=gradbufc(j,i+1)+gradbufc_sum(j,i+1)
743         enddo
744       enddo
745 c      do i=nnt,nres-1
746 c        do k=1,3
747 c          gradbufc(k,i)=0.0d0
748 c        enddo
749 c        do j=i+1,nres
750 c          do k=1,3
751 c            gradbufc(k,i)=gradbufc(k,i)+gradbufc(k,j)
752 c          enddo
753 c        enddo
754 c      enddo
755 #ifdef DEBUG
756       write (iout,*) "gradbufc after summing"
757       do i=1,nres
758         write (iout,'(i3,3f10.5)') i,(gradbufc(j,i),j=1,3)
759       enddo
760       call flush(iout)
761 #endif
762 #ifdef MPI
763       endif
764 #endif
765       do k=1,3
766         gradbufc(k,nres)=0.0d0
767       enddo
768       do i=1,nct
769         do j=1,3
770 #ifdef SPLITELE
771           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
772      &                wel_loc*gel_loc(j,i)+
773      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
774      &                welec*gelc_long(j,i)+wvdwpp*gvdwpp(j,i)+
775      &                wel_loc*gel_loc_long(j,i)+
776      &                wcorr*gradcorr_long(j,i)+
777      &                wcorr5*gradcorr5_long(j,i)+
778      &                wcorr6*gradcorr6_long(j,i)+
779      &                wturn6*gcorr6_turn_long(j,i))+
780      &                wbond*gradb(j,i)+
781      &                wcorr*gradcorr(j,i)+
782      &                wturn3*gcorr3_turn(j,i)+
783      &                wturn4*gcorr4_turn(j,i)+
784      &                wcorr5*gradcorr5(j,i)+
785      &                wcorr6*gradcorr6(j,i)+
786      &                wturn6*gcorr6_turn(j,i)+
787      &                wsccor*gsccorc(j,i)
788      &               +wscloc*gscloc(j,i)
789 #else
790           gradc(j,i,icg)=gradbufc(j,i)+welec*gelc(j,i)+
791      &                wel_loc*gel_loc(j,i)+
792      &                0.5d0*(wscp*gvdwc_scpp(j,i)+
793      &                welec*gelc_long(j,i)+
794      &                wel_loc*gel_loc_long(j,i)+
795      &                wcorr*gcorr_long(j,i)+
796      &                wcorr5*gradcorr5_long(j,i)+
797      &                wcorr6*gradcorr6_long(j,i)+
798      &                wturn6*gcorr6_turn_long(j,i))+
799      &                wbond*gradb(j,i)+
800      &                wcorr*gradcorr(j,i)+
801      &                wturn3*gcorr3_turn(j,i)+
802      &                wturn4*gcorr4_turn(j,i)+
803      &                wcorr5*gradcorr5(j,i)+
804      &                wcorr6*gradcorr6(j,i)+
805      &                wturn6*gcorr6_turn(j,i)+
806      &                wsccor*gsccorc(j,i)
807      &               +wscloc*gscloc(j,i)
808 #endif
809 #ifdef TSCSC
810           gradx(j,i,icg)=wsc*gvdwx(j,i)+wsc*wscT*gvdwxT(j,i)+
811      &                  wscp*gradx_scp(j,i)+
812      &                  wbond*gradbx(j,i)+
813      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
814      &                  wsccor*gsccorx(j,i)
815      &                 +wscloc*gsclocx(j,i)
816 #else
817           gradx(j,i,icg)=wsc*gvdwx(j,i)+wscp*gradx_scp(j,i)+
818      &                  wbond*gradbx(j,i)+
819      &                  wstrain*ghpbx(j,i)+wcorr*gradxorr(j,i)+
820      &                  wsccor*gsccorx(j,i)
821      &                 +wscloc*gsclocx(j,i)
822 #endif
823         enddo
824       enddo 
825       if (constr_homology.gt.0) then
826         do i=1,nct
827           do j=1,3
828             gradc(j,i,icg)=gradc(j,i,icg)+duscdiff(j,i)
829             gradx(j,i,icg)=gradx(j,i,icg)+duscdiffx(j,i)
830           enddo
831         enddo
832       endif
833 #ifdef DEBUG
834       write (iout,*) "gloc before adding corr"
835       do i=1,4*nres
836         write (iout,*) i,gloc(i,icg)
837       enddo
838 #endif
839       do i=1,nres-3
840         gloc(i,icg)=gloc(i,icg)+wcorr*gcorr_loc(i)
841      &   +wcorr5*g_corr5_loc(i)
842      &   +wcorr6*g_corr6_loc(i)
843      &   +wturn4*gel_loc_turn4(i)
844      &   +wturn3*gel_loc_turn3(i)
845      &   +wturn6*gel_loc_turn6(i)
846      &   +wel_loc*gel_loc_loc(i)
847       enddo
848 #ifdef DEBUG
849       write (iout,*) "gloc after adding corr"
850       do i=1,4*nres
851         write (iout,*) i,gloc(i,icg)
852       enddo
853 #endif
854 #ifdef MPI
855       if (nfgtasks.gt.1) then
856         do j=1,3
857           do i=1,nres
858             gradbufc(j,i)=gradc(j,i,icg)
859             gradbufx(j,i)=gradx(j,i,icg)
860           enddo
861         enddo
862         do i=1,4*nres
863           glocbuf(i)=gloc(i,icg)
864         enddo
865 #ifdef DEBUG
866       write (iout,*) "gloc_sc before reduce"
867       do i=1,nres
868        do j=1,3
869         write (iout,*) i,j,gloc_sc(j,i,icg)
870        enddo
871       enddo
872 #endif
873         do i=1,nres
874          do j=1,3
875           gloc_scbuf(j,i)=gloc_sc(j,i,icg)
876          enddo
877         enddo
878         time00=MPI_Wtime()
879         call MPI_Barrier(FG_COMM,IERR)
880         time_barrier_g=time_barrier_g+MPI_Wtime()-time00
881         time00=MPI_Wtime()
882         call MPI_Reduce(gradbufc(1,1),gradc(1,1,icg),3*nres,
883      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
884         call MPI_Reduce(gradbufx(1,1),gradx(1,1,icg),3*nres,
885      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
886         call MPI_Reduce(glocbuf(1),gloc(1,icg),4*nres,
887      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
888         call MPI_Reduce(gloc_scbuf(1,1),gloc_sc(1,1,icg),3*nres,
889      &    MPI_DOUBLE_PRECISION,MPI_SUM,king,FG_COMM,IERR)
890         time_reduce=time_reduce+MPI_Wtime()-time00
891 #ifdef DEBUG
892       write (iout,*) "gloc_sc after reduce"
893       do i=1,nres
894        do j=1,3
895         write (iout,*) i,j,gloc_sc(j,i,icg)
896        enddo
897       enddo
898 #endif
899 #ifdef DEBUG
900       write (iout,*) "gloc after reduce"
901       do i=1,4*nres
902         write (iout,*) i,gloc(i,icg)
903       enddo
904 #endif
905       endif
906 #endif
907       if (gnorm_check) then
908 c
909 c Compute the maximum elements of the gradient
910 c
911       gvdwc_max=0.0d0
912       gvdwc_scp_max=0.0d0
913       gelc_max=0.0d0
914       gvdwpp_max=0.0d0
915       gradb_max=0.0d0
916       ghpbc_max=0.0d0
917       gradcorr_max=0.0d0
918       gel_loc_max=0.0d0
919       gcorr3_turn_max=0.0d0
920       gcorr4_turn_max=0.0d0
921       gradcorr5_max=0.0d0
922       gradcorr6_max=0.0d0
923       gcorr6_turn_max=0.0d0
924       gsccorc_max=0.0d0
925       gscloc_max=0.0d0
926       gvdwx_max=0.0d0
927       gradx_scp_max=0.0d0
928       ghpbx_max=0.0d0
929       gradxorr_max=0.0d0
930       gsccorx_max=0.0d0
931       gsclocx_max=0.0d0
932       do i=1,nct
933         gvdwc_norm=dsqrt(scalar(gvdwc(1,i),gvdwc(1,i)))
934         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm
935 #ifdef TSCSC
936         gvdwc_norm=dsqrt(scalar(gvdwcT(1,i),gvdwcT(1,i)))
937         if (gvdwc_norm.gt.gvdwc_max) gvdwc_max=gvdwc_norm          
938 #endif
939         gvdwc_scp_norm=dsqrt(scalar(gvdwc_scp(1,i),gvdwc_scp(1,i)))
940         if (gvdwc_scp_norm.gt.gvdwc_scp_max) 
941      &   gvdwc_scp_max=gvdwc_scp_norm
942         gelc_norm=dsqrt(scalar(gelc(1,i),gelc(1,i)))
943         if (gelc_norm.gt.gelc_max) gelc_max=gelc_norm
944         gvdwpp_norm=dsqrt(scalar(gvdwpp(1,i),gvdwpp(1,i)))
945         if (gvdwpp_norm.gt.gvdwpp_max) gvdwpp_max=gvdwpp_norm
946         gradb_norm=dsqrt(scalar(gradb(1,i),gradb(1,i)))
947         if (gradb_norm.gt.gradb_max) gradb_max=gradb_norm
948         ghpbc_norm=dsqrt(scalar(ghpbc(1,i),ghpbc(1,i)))
949         if (ghpbc_norm.gt.ghpbc_max) ghpbc_max=ghpbc_norm
950         gradcorr_norm=dsqrt(scalar(gradcorr(1,i),gradcorr(1,i)))
951         if (gradcorr_norm.gt.gradcorr_max) gradcorr_max=gradcorr_norm
952         gel_loc_norm=dsqrt(scalar(gel_loc(1,i),gel_loc(1,i)))
953         if (gel_loc_norm.gt.gel_loc_max) gel_loc_max=gel_loc_norm
954         gcorr3_turn_norm=dsqrt(scalar(gcorr3_turn(1,i),
955      &    gcorr3_turn(1,i)))
956         if (gcorr3_turn_norm.gt.gcorr3_turn_max) 
957      &    gcorr3_turn_max=gcorr3_turn_norm
958         gcorr4_turn_norm=dsqrt(scalar(gcorr4_turn(1,i),
959      &    gcorr4_turn(1,i)))
960         if (gcorr4_turn_norm.gt.gcorr4_turn_max) 
961      &    gcorr4_turn_max=gcorr4_turn_norm
962         gradcorr5_norm=dsqrt(scalar(gradcorr5(1,i),gradcorr5(1,i)))
963         if (gradcorr5_norm.gt.gradcorr5_max) 
964      &    gradcorr5_max=gradcorr5_norm
965         gradcorr6_norm=dsqrt(scalar(gradcorr6(1,i),gradcorr6(1,i)))
966         if (gradcorr6_norm.gt.gradcorr6_max) gcorr6_max=gradcorr6_norm
967         gcorr6_turn_norm=dsqrt(scalar(gcorr6_turn(1,i),
968      &    gcorr6_turn(1,i)))
969         if (gcorr6_turn_norm.gt.gcorr6_turn_max) 
970      &    gcorr6_turn_max=gcorr6_turn_norm
971         gsccorr_norm=dsqrt(scalar(gsccorc(1,i),gsccorc(1,i)))
972         if (gsccorr_norm.gt.gsccorr_max) gsccorr_max=gsccorr_norm
973         gscloc_norm=dsqrt(scalar(gscloc(1,i),gscloc(1,i)))
974         if (gscloc_norm.gt.gscloc_max) gscloc_max=gscloc_norm
975         gvdwx_norm=dsqrt(scalar(gvdwx(1,i),gvdwx(1,i)))
976         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
977 #ifdef TSCSC
978         gvdwx_norm=dsqrt(scalar(gvdwxT(1,i),gvdwxT(1,i)))
979         if (gvdwx_norm.gt.gvdwx_max) gvdwx_max=gvdwx_norm
980 #endif
981         gradx_scp_norm=dsqrt(scalar(gradx_scp(1,i),gradx_scp(1,i)))
982         if (gradx_scp_norm.gt.gradx_scp_max) 
983      &    gradx_scp_max=gradx_scp_norm
984         ghpbx_norm=dsqrt(scalar(ghpbx(1,i),ghpbx(1,i)))
985         if (ghpbx_norm.gt.ghpbx_max) ghpbx_max=ghpbx_norm
986         gradxorr_norm=dsqrt(scalar(gradxorr(1,i),gradxorr(1,i)))
987         if (gradxorr_norm.gt.gradxorr_max) gradxorr_max=gradxorr_norm
988         gsccorrx_norm=dsqrt(scalar(gsccorx(1,i),gsccorx(1,i)))
989         if (gsccorrx_norm.gt.gsccorrx_max) gsccorrx_max=gsccorrx_norm
990         gsclocx_norm=dsqrt(scalar(gsclocx(1,i),gsclocx(1,i)))
991         if (gsclocx_norm.gt.gsclocx_max) gsclocx_max=gsclocx_norm
992       enddo 
993       if (gradout) then
994 #ifdef AIX
995         open(istat,file=statname,position="append")
996 #else
997         open(istat,file=statname,access="append")
998 #endif
999         write (istat,'(1h#,21f10.2)') gvdwc_max,gvdwc_scp_max,
1000      &     gelc_max,gvdwpp_max,gradb_max,ghpbc_max,
1001      &     gradcorr_max,gel_loc_max,gcorr3_turn_max,gcorr4_turn_max,
1002      &     gradcorr5_max,gradcorr6_max,gcorr6_turn_max,gsccorc_max,
1003      &     gscloc_max,gvdwx_max,gradx_scp_max,ghpbx_max,gradxorr_max,
1004      &     gsccorx_max,gsclocx_max
1005         close(istat)
1006         if (gvdwc_max.gt.1.0d4) then
1007           write (iout,*) "gvdwc gvdwx gradb gradbx"
1008           do i=nnt,nct
1009             write(iout,'(i5,4(3f10.2,5x))') i,(gvdwc(j,i),gvdwx(j,i),
1010      &        gradb(j,i),gradbx(j,i),j=1,3)
1011           enddo
1012           call pdbout(0.0d0,'cipiszcze',iout)
1013           call flush(iout)
1014         endif
1015       endif
1016       endif
1017 #ifdef DEBUG
1018       write (iout,*) "gradc gradx gloc"
1019       do i=1,nres
1020         write (iout,'(i5,3f10.5,5x,3f10.5,5x,f10.5)') 
1021      &   i,(gradc(j,i,icg),j=1,3),(gradx(j,i,icg),j=1,3),gloc(i,icg)
1022       enddo 
1023 #endif
1024 #ifdef TIMING
1025 #ifdef MPI
1026       time_sumgradient=time_sumgradient+MPI_Wtime()-time01
1027 #else
1028       time_sumgradient=time_sumgradient+tcpu()-time01
1029 #endif
1030 #endif
1031       return
1032       end
1033 c-------------------------------------------------------------------------------
1034       subroutine rescale_weights(t_bath)
1035       implicit real*8 (a-h,o-z)
1036       include 'DIMENSIONS'
1037       include 'COMMON.IOUNITS'
1038       include 'COMMON.FFIELD'
1039       include 'COMMON.SBRIDGE'
1040       double precision kfac /2.4d0/
1041       double precision x,x2,x3,x4,x5,licznik /1.12692801104297249644/
1042 c      facT=temp0/t_bath
1043 c      facT=2*temp0/(t_bath+temp0)
1044       if (rescale_mode.eq.0) then
1045         facT=1.0d0
1046         facT2=1.0d0
1047         facT3=1.0d0
1048         facT4=1.0d0
1049         facT5=1.0d0
1050       else if (rescale_mode.eq.1) then
1051         facT=kfac/(kfac-1.0d0+t_bath/temp0)
1052         facT2=kfac**2/(kfac**2-1.0d0+(t_bath/temp0)**2)
1053         facT3=kfac**3/(kfac**3-1.0d0+(t_bath/temp0)**3)
1054         facT4=kfac**4/(kfac**4-1.0d0+(t_bath/temp0)**4)
1055         facT5=kfac**5/(kfac**5-1.0d0+(t_bath/temp0)**5)
1056       else if (rescale_mode.eq.2) then
1057         x=t_bath/temp0
1058         x2=x*x
1059         x3=x2*x
1060         x4=x3*x
1061         x5=x4*x
1062         facT=licznik/dlog(dexp(x)+dexp(-x))
1063         facT2=licznik/dlog(dexp(x2)+dexp(-x2))
1064         facT3=licznik/dlog(dexp(x3)+dexp(-x3))
1065         facT4=licznik/dlog(dexp(x4)+dexp(-x4))
1066         facT5=licznik/dlog(dexp(x5)+dexp(-x5))
1067       else
1068         write (iout,*) "Wrong RESCALE_MODE",rescale_mode
1069         write (*,*) "Wrong RESCALE_MODE",rescale_mode
1070 #ifdef MPI
1071        call MPI_Finalize(MPI_COMM_WORLD,IERROR)
1072 #endif
1073        stop 555
1074       endif
1075       welec=weights(3)*fact
1076       wcorr=weights(4)*fact3
1077       wcorr5=weights(5)*fact4
1078       wcorr6=weights(6)*fact5
1079       wel_loc=weights(7)*fact2
1080       wturn3=weights(8)*fact2
1081       wturn4=weights(9)*fact3
1082       wturn6=weights(10)*fact5
1083       wtor=weights(13)*fact
1084       wtor_d=weights(14)*fact2
1085       wsccor=weights(21)*fact
1086 #ifdef TSCSC
1087 c      wsct=t_bath/temp0
1088       wsct=(320.0+80.0*dtanh((t_bath-320.0)/80.0))/320.0
1089 #endif
1090       return
1091       end
1092 C------------------------------------------------------------------------
1093       subroutine enerprint(energia)
1094       implicit real*8 (a-h,o-z)
1095       include 'DIMENSIONS'
1096       include 'COMMON.IOUNITS'
1097       include 'COMMON.FFIELD'
1098       include 'COMMON.SBRIDGE'
1099       include 'COMMON.MD'
1100       double precision energia(0:n_ene)
1101       etot=energia(0)
1102 #ifdef TSCSC
1103       evdw=energia(22)+wsct*energia(23)
1104 #else
1105       evdw=energia(1)
1106 #endif
1107       evdw2=energia(2)
1108 #ifdef SCP14
1109       evdw2=energia(2)+energia(18)
1110 #else
1111       evdw2=energia(2)
1112 #endif
1113       ees=energia(3)
1114 #ifdef SPLITELE
1115       evdw1=energia(16)
1116 #endif
1117       ecorr=energia(4)
1118       ecorr5=energia(5)
1119       ecorr6=energia(6)
1120       eel_loc=energia(7)
1121       eello_turn3=energia(8)
1122       eello_turn4=energia(9)
1123       eello_turn6=energia(10)
1124       ebe=energia(11)
1125       escloc=energia(12)
1126       etors=energia(13)
1127       etors_d=energia(14)
1128       ehpb=energia(15)
1129       edihcnstr=energia(19)
1130       estr=energia(17)
1131       Uconst=energia(20)
1132       esccor=energia(21)
1133       ehomology_constr=energia(24)
1134 C     Bartek
1135       edfadis = energia(25)
1136       edfator = energia(26)
1137       edfanei = energia(27)
1138       edfabet = energia(28)
1139
1140 #ifdef SPLITELE
1141       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,evdw1,wvdwpp,
1142      &  estr,wbond,ebe,wang,
1143      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1144      &  ecorr,wcorr,
1145      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1146      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccor,
1147      &  edihcnstr,ehomology_constr, ebr*nss,
1148      &  Uconst,edfadis,wdfa_dist,edfator,wdfa_tor,edfanei,wdfa_nei,
1149      &  edfabet,wdfa_beta,etot
1150    10 format (/'Virtual-chain energies:'//
1151      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-SC)'/
1152      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pE16.6,' (SC-p)'/
1153      & 'EES=   ',1pE16.6,' WEIGHT=',1pE16.6,' (p-p)'/
1154      & 'EVDWPP=',1pE16.6,' WEIGHT=',1pE16.6,' (p-p VDW)'/
1155      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pE16.6,' (stretching)'/
1156      & 'EBE=   ',1pE16.6,' WEIGHT=',1pE16.6,' (bending)'/
1157      & 'ESC=   ',1pE16.6,' WEIGHT=',1pE16.6,' (SC local)'/
1158      & 'ETORS= ',1pE16.6,' WEIGHT=',1pE16.6,' (torsional)'/
1159      & 'ETORSD=',1pE16.6,' WEIGHT=',1pE16.6,' (double torsional)'/
1160      & 'EHPB=  ',1pE16.6,' WEIGHT=',1pE16.6,
1161      & ' (SS bridges & dist. cnstr.)'/
1162      & 'ECORR4=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1163      & 'ECORR5=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1164      & 'ECORR6=',1pE16.6,' WEIGHT=',1pE16.6,' (multi-body)'/
1165      & 'EELLO= ',1pE16.6,' WEIGHT=',1pE16.6,' (electrostatic-local)'/
1166      & 'ETURN3=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 3rd order)'/
1167      & 'ETURN4=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 4th order)'/
1168      & 'ETURN6=',1pE16.6,' WEIGHT=',1pE16.6,' (turns, 6th order)'/
1169      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pE16.6,' (backbone-rotamer corr)'/
1170      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1171      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1172      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1173      & 'UCONST= ',1pE16.6,' (Constraint energy)'/ 
1174      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA distance energy)'/ 
1175      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA torsion energy)'/ 
1176      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA NCa energy)'/ 
1177      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pE16.6,' (DFA Beta energy)'/ 
1178      & 'ETOT=  ',1pE16.6,' (total)')
1179 #else
1180       write (iout,10) evdw,wsc,evdw2,wscp,ees,welec,
1181      &  estr,wbond,ebe,wang,
1182      &  escloc,wscloc,etors,wtor,etors_d,wtor_d,ehpb,wstrain,
1183      &  ecorr,wcorr,
1184      &  ecorr5,wcorr5,ecorr6,wcorr6,eel_loc,wel_loc,eello_turn3,wturn3,
1185      &  eello_turn4,wturn4,eello_turn6,wturn6,esccor,wsccro,edihcnstr,
1186      &  ehomology_constr,ebr*nss,Uconst,edfadis,wdfa_dist,edfator,
1187      &  wdfa_tor,edfanei,wdfa_nei,edfabet,wdfa_beta,
1188      &  etot
1189    10 format (/'Virtual-chain energies:'//
1190      & 'EVDW=  ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-SC)'/
1191      & 'EVDW2= ',1pE16.6,' WEIGHT=',1pD16.6,' (SC-p)'/
1192      & 'EES=   ',1pE16.6,' WEIGHT=',1pD16.6,' (p-p)'/
1193      & 'ESTR=  ',1pE16.6,' WEIGHT=',1pD16.6,' (stretching)'/
1194      & 'EBE=   ',1pE16.6,' WEIGHT=',1pD16.6,' (bending)'/
1195      & 'ESC=   ',1pE16.6,' WEIGHT=',1pD16.6,' (SC local)'/
1196      & 'ETORS= ',1pE16.6,' WEIGHT=',1pD16.6,' (torsional)'/
1197      & 'ETORSD=',1pE16.6,' WEIGHT=',1pD16.6,' (double torsional)'/
1198      & 'EHBP=  ',1pE16.6,' WEIGHT=',1pD16.6,
1199      & ' (SS bridges & dist. cnstr.)'/
1200      & 'ECORR4=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1201      & 'ECORR5=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1202      & 'ECORR6=',1pE16.6,' WEIGHT=',1pD16.6,' (multi-body)'/
1203      & 'EELLO= ',1pE16.6,' WEIGHT=',1pD16.6,' (electrostatic-local)'/
1204      & 'ETURN3=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 3rd order)'/
1205      & 'ETURN4=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 4th order)'/
1206      & 'ETURN6=',1pE16.6,' WEIGHT=',1pD16.6,' (turns, 6th order)'/
1207      & 'ESCCOR=',1pE16.6,' WEIGHT=',1pD16.6,' (backbone-rotamer corr)'/
1208      & 'EDIHC= ',1pE16.6,' (dihedral angle constraints)'/
1209      & 'H_CONS=',1pE16.6,' (Homology model constraints energy)'/
1210      & 'ESS=   ',1pE16.6,' (disulfide-bridge intrinsic energy)'/
1211      & 'UCONST=',1pE16.6,' (Constraint energy)'/ 
1212      & 'EDFAD= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA distance energy)'/ 
1213      & 'EDFAT= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA torsion energy)'/ 
1214      & 'EDFAN= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA NCa energy)'/ 
1215      & 'EDFAB= ',1pE16.6,' WEIGHT=',1pD16.6,' (DFA Beta energy)'/ 
1216      & 'ETOT=  ',1pE16.6,' (total)')
1217 #endif
1218       return
1219       end
1220 C-----------------------------------------------------------------------
1221       subroutine elj(evdw,evdw_p,evdw_m)
1222 C
1223 C This subroutine calculates the interaction energy of nonbonded side chains
1224 C assuming the LJ potential of interaction.
1225 C
1226       implicit real*8 (a-h,o-z)
1227       include 'DIMENSIONS'
1228       parameter (accur=1.0d-10)
1229       include 'COMMON.GEO'
1230       include 'COMMON.VAR'
1231       include 'COMMON.LOCAL'
1232       include 'COMMON.CHAIN'
1233       include 'COMMON.DERIV'
1234       include 'COMMON.INTERACT'
1235       include 'COMMON.TORSION'
1236       include 'COMMON.SBRIDGE'
1237       include 'COMMON.NAMES'
1238       include 'COMMON.IOUNITS'
1239       include 'COMMON.CONTACTS'
1240       dimension gg(3)
1241 c      write(iout,*)'Entering ELJ nnt=',nnt,' nct=',nct,' expon=',expon
1242       evdw=0.0D0
1243       do i=iatsc_s,iatsc_e
1244         itypi=itype(i)
1245         itypi1=itype(i+1)
1246         xi=c(1,nres+i)
1247         yi=c(2,nres+i)
1248         zi=c(3,nres+i)
1249 C Change 12/1/95
1250         num_conti=0
1251 C
1252 C Calculate SC interaction energy.
1253 C
1254         do iint=1,nint_gr(i)
1255 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
1256 cd   &                  'iend=',iend(i,iint)
1257           do j=istart(i,iint),iend(i,iint)
1258             itypj=itype(j)
1259             xj=c(1,nres+j)-xi
1260             yj=c(2,nres+j)-yi
1261             zj=c(3,nres+j)-zi
1262 C Change 12/1/95 to calculate four-body interactions
1263             rij=xj*xj+yj*yj+zj*zj
1264             rrij=1.0D0/rij
1265 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
1266             eps0ij=eps(itypi,itypj)
1267             fac=rrij**expon2
1268             e1=fac*fac*aa(itypi,itypj)
1269             e2=fac*bb(itypi,itypj)
1270             evdwij=e1+e2
1271 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1272 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1273 cd          write (iout,'(2(a3,i3,2x),6(1pd12.4)/2(3(1pd12.4),5x)/)')
1274 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1275 cd   &        bb(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,epsi,sigm,
1276 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1277 #ifdef TSCSC
1278             if (bb(itypi,itypj).gt.0) then
1279                evdw_p=evdw_p+evdwij
1280             else
1281                evdw_m=evdw_m+evdwij
1282             endif
1283 #else
1284             evdw=evdw+evdwij
1285 #endif
1286
1287 C Calculate the components of the gradient in DC and X
1288 C
1289             fac=-rrij*(e1+evdwij)
1290             gg(1)=xj*fac
1291             gg(2)=yj*fac
1292             gg(3)=zj*fac
1293 #ifdef TSCSC
1294             if (bb(itypi,itypj).gt.0.0d0) then
1295               do k=1,3
1296                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1297                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1298                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1299                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1300               enddo
1301             else
1302               do k=1,3
1303                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1304                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1305                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1306                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1307               enddo
1308             endif
1309 #else
1310             do k=1,3
1311               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1312               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1313               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1314               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1315             enddo
1316 #endif
1317 cgrad            do k=i,j-1
1318 cgrad              do l=1,3
1319 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1320 cgrad              enddo
1321 cgrad            enddo
1322 C
1323 C 12/1/95, revised on 5/20/97
1324 C
1325 C Calculate the contact function. The ith column of the array JCONT will 
1326 C contain the numbers of atoms that make contacts with the atom I (of numbers
1327 C greater than I). The arrays FACONT and GACONT will contain the values of
1328 C the contact function and its derivative.
1329 C
1330 C Uncomment next line, if the correlation interactions include EVDW explicitly.
1331 c           if (j.gt.i+1 .and. evdwij.le.0.0D0) then
1332 C Uncomment next line, if the correlation interactions are contact function only
1333             if (j.gt.i+1.and. eps0ij.gt.0.0D0) then
1334               rij=dsqrt(rij)
1335               sigij=sigma(itypi,itypj)
1336               r0ij=rs0(itypi,itypj)
1337 C
1338 C Check whether the SC's are not too far to make a contact.
1339 C
1340               rcut=1.5d0*r0ij
1341               call gcont(rij,rcut,1.0d0,0.2d0*rcut,fcont,fprimcont)
1342 C Add a new contact, if the SC's are close enough, but not too close (r<sigma).
1343 C
1344               if (fcont.gt.0.0D0) then
1345 C If the SC-SC distance if close to sigma, apply spline.
1346 cAdam           call gcont(-rij,-1.03d0*sigij,2.0d0*sigij,1.0d0,
1347 cAdam &             fcont1,fprimcont1)
1348 cAdam           fcont1=1.0d0-fcont1
1349 cAdam           if (fcont1.gt.0.0d0) then
1350 cAdam             fprimcont=fprimcont*fcont1+fcont*fprimcont1
1351 cAdam             fcont=fcont*fcont1
1352 cAdam           endif
1353 C Uncomment following 4 lines to have the geometric average of the epsilon0's
1354 cga             eps0ij=1.0d0/dsqrt(eps0ij)
1355 cga             do k=1,3
1356 cga               gg(k)=gg(k)*eps0ij
1357 cga             enddo
1358 cga             eps0ij=-evdwij*eps0ij
1359 C Uncomment for AL's type of SC correlation interactions.
1360 cadam           eps0ij=-evdwij
1361                 num_conti=num_conti+1
1362                 jcont(num_conti,i)=j
1363                 facont(num_conti,i)=fcont*eps0ij
1364                 fprimcont=eps0ij*fprimcont/rij
1365                 fcont=expon*fcont
1366 cAdam           gacont(1,num_conti,i)=-fprimcont*xj+fcont*gg(1)
1367 cAdam           gacont(2,num_conti,i)=-fprimcont*yj+fcont*gg(2)
1368 cAdam           gacont(3,num_conti,i)=-fprimcont*zj+fcont*gg(3)
1369 C Uncomment following 3 lines for Skolnick's type of SC correlation.
1370                 gacont(1,num_conti,i)=-fprimcont*xj
1371                 gacont(2,num_conti,i)=-fprimcont*yj
1372                 gacont(3,num_conti,i)=-fprimcont*zj
1373 cd              write (iout,'(2i5,2f10.5)') i,j,rij,facont(num_conti,i)
1374 cd              write (iout,'(2i3,3f10.5)') 
1375 cd   &           i,j,(gacont(kk,num_conti,i),kk=1,3)
1376               endif
1377             endif
1378           enddo      ! j
1379         enddo        ! iint
1380 C Change 12/1/95
1381         num_cont(i)=num_conti
1382       enddo          ! i
1383       do i=1,nct
1384         do j=1,3
1385           gvdwc(j,i)=expon*gvdwc(j,i)
1386           gvdwx(j,i)=expon*gvdwx(j,i)
1387         enddo
1388       enddo
1389 C******************************************************************************
1390 C
1391 C                              N O T E !!!
1392 C
1393 C To save time, the factor of EXPON has been extracted from ALL components
1394 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
1395 C use!
1396 C
1397 C******************************************************************************
1398       return
1399       end
1400 C-----------------------------------------------------------------------------
1401       subroutine eljk(evdw,evdw_p,evdw_m)
1402 C
1403 C This subroutine calculates the interaction energy of nonbonded side chains
1404 C assuming the LJK potential of interaction.
1405 C
1406       implicit real*8 (a-h,o-z)
1407       include 'DIMENSIONS'
1408       include 'COMMON.GEO'
1409       include 'COMMON.VAR'
1410       include 'COMMON.LOCAL'
1411       include 'COMMON.CHAIN'
1412       include 'COMMON.DERIV'
1413       include 'COMMON.INTERACT'
1414       include 'COMMON.IOUNITS'
1415       include 'COMMON.NAMES'
1416       dimension gg(3)
1417       logical scheck
1418 c     print *,'Entering ELJK nnt=',nnt,' nct=',nct,' expon=',expon
1419       evdw=0.0D0
1420       do i=iatsc_s,iatsc_e
1421         itypi=itype(i)
1422         itypi1=itype(i+1)
1423         xi=c(1,nres+i)
1424         yi=c(2,nres+i)
1425         zi=c(3,nres+i)
1426 C
1427 C Calculate SC interaction energy.
1428 C
1429         do iint=1,nint_gr(i)
1430           do j=istart(i,iint),iend(i,iint)
1431             itypj=itype(j)
1432             xj=c(1,nres+j)-xi
1433             yj=c(2,nres+j)-yi
1434             zj=c(3,nres+j)-zi
1435             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1436             fac_augm=rrij**expon
1437             e_augm=augm(itypi,itypj)*fac_augm
1438             r_inv_ij=dsqrt(rrij)
1439             rij=1.0D0/r_inv_ij 
1440             r_shift_inv=1.0D0/(rij+r0(itypi,itypj)-sigma(itypi,itypj))
1441             fac=r_shift_inv**expon
1442             e1=fac*fac*aa(itypi,itypj)
1443             e2=fac*bb(itypi,itypj)
1444             evdwij=e_augm+e1+e2
1445 cd          sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1446 cd          epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1447 cd          write (iout,'(2(a3,i3,2x),8(1pd12.4)/2(3(1pd12.4),5x)/)')
1448 cd   &        restyp(itypi),i,restyp(itypj),j,aa(itypi,itypj),
1449 cd   &        bb(itypi,itypj),augm(itypi,itypj),epsi,sigm,
1450 cd   &        sigma(itypi,itypj),1.0D0/dsqrt(rrij),evdwij,
1451 cd   &        (c(k,i),k=1,3),(c(k,j),k=1,3)
1452 #ifdef TSCSC
1453             if (bb(itypi,itypj).gt.0) then
1454                evdw_p=evdw_p+evdwij
1455             else
1456                evdw_m=evdw_m+evdwij
1457             endif
1458 #else
1459             evdw=evdw+evdwij
1460 #endif
1461
1462 C Calculate the components of the gradient in DC and X
1463 C
1464             fac=-2.0D0*rrij*e_augm-r_inv_ij*r_shift_inv*(e1+e1+e2)
1465             gg(1)=xj*fac
1466             gg(2)=yj*fac
1467             gg(3)=zj*fac
1468 #ifdef TSCSC
1469             if (bb(itypi,itypj).gt.0.0d0) then
1470               do k=1,3
1471                 gvdwx(k,i)=gvdwx(k,i)-gg(k)
1472                 gvdwx(k,j)=gvdwx(k,j)+gg(k)
1473                 gvdwc(k,i)=gvdwc(k,i)-gg(k)
1474                 gvdwc(k,j)=gvdwc(k,j)+gg(k)
1475               enddo
1476             else
1477               do k=1,3
1478                 gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
1479                 gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
1480                 gvdwcT(k,i)=gvdwcT(k,i)-gg(k)
1481                 gvdwcT(k,j)=gvdwcT(k,j)+gg(k)
1482               enddo
1483             endif
1484 #else
1485             do k=1,3
1486               gvdwx(k,i)=gvdwx(k,i)-gg(k)
1487               gvdwx(k,j)=gvdwx(k,j)+gg(k)
1488               gvdwc(k,i)=gvdwc(k,i)-gg(k)
1489               gvdwc(k,j)=gvdwc(k,j)+gg(k)
1490             enddo
1491 #endif
1492 cgrad            do k=i,j-1
1493 cgrad              do l=1,3
1494 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
1495 cgrad              enddo
1496 cgrad            enddo
1497           enddo      ! j
1498         enddo        ! iint
1499       enddo          ! i
1500       do i=1,nct
1501         do j=1,3
1502           gvdwc(j,i)=expon*gvdwc(j,i)
1503           gvdwx(j,i)=expon*gvdwx(j,i)
1504         enddo
1505       enddo
1506       return
1507       end
1508 C-----------------------------------------------------------------------------
1509       subroutine ebp(evdw,evdw_p,evdw_m)
1510 C
1511 C This subroutine calculates the interaction energy of nonbonded side chains
1512 C assuming the Berne-Pechukas potential of interaction.
1513 C
1514       implicit real*8 (a-h,o-z)
1515       include 'DIMENSIONS'
1516       include 'COMMON.GEO'
1517       include 'COMMON.VAR'
1518       include 'COMMON.LOCAL'
1519       include 'COMMON.CHAIN'
1520       include 'COMMON.DERIV'
1521       include 'COMMON.NAMES'
1522       include 'COMMON.INTERACT'
1523       include 'COMMON.IOUNITS'
1524       include 'COMMON.CALC'
1525       common /srutu/ icall
1526 c     double precision rrsave(maxdim)
1527       logical lprn
1528       evdw=0.0D0
1529 c     print *,'Entering EBP nnt=',nnt,' nct=',nct,' expon=',expon
1530       evdw=0.0D0
1531 c     if (icall.eq.0) then
1532 c       lprn=.true.
1533 c     else
1534         lprn=.false.
1535 c     endif
1536       ind=0
1537       do i=iatsc_s,iatsc_e
1538         itypi=itype(i)
1539         itypi1=itype(i+1)
1540         xi=c(1,nres+i)
1541         yi=c(2,nres+i)
1542         zi=c(3,nres+i)
1543         dxi=dc_norm(1,nres+i)
1544         dyi=dc_norm(2,nres+i)
1545         dzi=dc_norm(3,nres+i)
1546 c        dsci_inv=dsc_inv(itypi)
1547         dsci_inv=vbld_inv(i+nres)
1548 C
1549 C Calculate SC interaction energy.
1550 C
1551         do iint=1,nint_gr(i)
1552           do j=istart(i,iint),iend(i,iint)
1553             ind=ind+1
1554             itypj=itype(j)
1555 c            dscj_inv=dsc_inv(itypj)
1556             dscj_inv=vbld_inv(j+nres)
1557             chi1=chi(itypi,itypj)
1558             chi2=chi(itypj,itypi)
1559             chi12=chi1*chi2
1560             chip1=chip(itypi)
1561             chip2=chip(itypj)
1562             chip12=chip1*chip2
1563             alf1=alp(itypi)
1564             alf2=alp(itypj)
1565             alf12=0.5D0*(alf1+alf2)
1566 C For diagnostics only!!!
1567 c           chi1=0.0D0
1568 c           chi2=0.0D0
1569 c           chi12=0.0D0
1570 c           chip1=0.0D0
1571 c           chip2=0.0D0
1572 c           chip12=0.0D0
1573 c           alf1=0.0D0
1574 c           alf2=0.0D0
1575 c           alf12=0.0D0
1576             xj=c(1,nres+j)-xi
1577             yj=c(2,nres+j)-yi
1578             zj=c(3,nres+j)-zi
1579             dxj=dc_norm(1,nres+j)
1580             dyj=dc_norm(2,nres+j)
1581             dzj=dc_norm(3,nres+j)
1582             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1583 cd          if (icall.eq.0) then
1584 cd            rrsave(ind)=rrij
1585 cd          else
1586 cd            rrij=rrsave(ind)
1587 cd          endif
1588             rij=dsqrt(rrij)
1589 C Calculate the angle-dependent terms of energy & contributions to derivatives.
1590             call sc_angular
1591 C Calculate whole angle-dependent part of epsilon and contributions
1592 C to its derivatives
1593             fac=(rrij*sigsq)**expon2
1594             e1=fac*fac*aa(itypi,itypj)
1595             e2=fac*bb(itypi,itypj)
1596             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1597             eps2der=evdwij*eps3rt
1598             eps3der=evdwij*eps2rt
1599             evdwij=evdwij*eps2rt*eps3rt
1600 #ifdef TSCSC
1601             if (bb(itypi,itypj).gt.0) then
1602                evdw_p=evdw_p+evdwij
1603             else
1604                evdw_m=evdw_m+evdwij
1605             endif
1606 #else
1607             evdw=evdw+evdwij
1608 #endif
1609             if (lprn) then
1610             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1611             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1612 cd            write (iout,'(2(a3,i3,2x),15(0pf7.3))')
1613 cd     &        restyp(itypi),i,restyp(itypj),j,
1614 cd     &        epsi,sigm,chi1,chi2,chip1,chip2,
1615 cd     &        eps1,eps2rt**2,eps3rt**2,1.0D0/dsqrt(sigsq),
1616 cd     &        om1,om2,om12,1.0D0/dsqrt(rrij),
1617 cd     &        evdwij
1618             endif
1619 C Calculate gradient components.
1620             e1=e1*eps1*eps2rt**2*eps3rt**2
1621             fac=-expon*(e1+evdwij)
1622             sigder=fac/sigsq
1623             fac=rrij*fac
1624 C Calculate radial part of the gradient
1625             gg(1)=xj*fac
1626             gg(2)=yj*fac
1627             gg(3)=zj*fac
1628 C Calculate the angular part of the gradient and sum add the contributions
1629 C to the appropriate components of the Cartesian gradient.
1630 #ifdef TSCSC
1631             if (bb(itypi,itypj).gt.0) then
1632                call sc_grad
1633             else
1634                call sc_grad_T
1635             endif
1636 #else
1637             call sc_grad
1638 #endif
1639           enddo      ! j
1640         enddo        ! iint
1641       enddo          ! i
1642 c     stop
1643       return
1644       end
1645 C-----------------------------------------------------------------------------
1646       subroutine egb(evdw,evdw_p,evdw_m)
1647 C
1648 C This subroutine calculates the interaction energy of nonbonded side chains
1649 C assuming the Gay-Berne potential of interaction.
1650 C
1651       implicit real*8 (a-h,o-z)
1652       include 'DIMENSIONS'
1653       include 'COMMON.GEO'
1654       include 'COMMON.VAR'
1655       include 'COMMON.LOCAL'
1656       include 'COMMON.CHAIN'
1657       include 'COMMON.DERIV'
1658       include 'COMMON.NAMES'
1659       include 'COMMON.INTERACT'
1660       include 'COMMON.IOUNITS'
1661       include 'COMMON.CALC'
1662       include 'COMMON.CONTROL'
1663       include 'COMMON.SBRIDGE'
1664       logical lprn
1665       evdw=0.0D0
1666 ccccc      energy_dec=.false.
1667 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1668       evdw=0.0D0
1669       evdw_p=0.0D0
1670       evdw_m=0.0D0
1671       lprn=.false.
1672 c     if (icall.eq.0) lprn=.false.
1673       ind=0
1674       do i=iatsc_s,iatsc_e
1675         itypi=itype(i)
1676         itypi1=itype(i+1)
1677         xi=c(1,nres+i)
1678         yi=c(2,nres+i)
1679         zi=c(3,nres+i)
1680         dxi=dc_norm(1,nres+i)
1681         dyi=dc_norm(2,nres+i)
1682         dzi=dc_norm(3,nres+i)
1683 c        dsci_inv=dsc_inv(itypi)
1684         dsci_inv=vbld_inv(i+nres)
1685 c        write (iout,*) "i",i,dsc_inv(itypi),dsci_inv,1.0d0/vbld(i+nres)
1686 c        write (iout,*) "dcnori",dxi*dxi+dyi*dyi+dzi*dzi
1687 C
1688 C Calculate SC interaction energy.
1689 C
1690         do iint=1,nint_gr(i)
1691           do j=istart(i,iint),iend(i,iint)
1692             IF (dyn_ss_mask(i).and.dyn_ss_mask(j)) THEN
1693               call dyn_ssbond_ene(i,j,evdwij)
1694               evdw=evdw+evdwij
1695               if (energy_dec) write (iout,'(a6,2i5,0pf7.3,a3)') 
1696      &                        'evdw',i,j,evdwij,' ss'
1697             ELSE
1698             ind=ind+1
1699             itypj=itype(j)
1700 c            dscj_inv=dsc_inv(itypj)
1701             dscj_inv=vbld_inv(j+nres)
1702 c            write (iout,*) "j",j,dsc_inv(itypj),dscj_inv,
1703 c     &       1.0d0/vbld(j+nres)
1704 c            write (iout,*) "i",i," j", j," itype",itype(i),itype(j)
1705             sig0ij=sigma(itypi,itypj)
1706             chi1=chi(itypi,itypj)
1707             chi2=chi(itypj,itypi)
1708             chi12=chi1*chi2
1709             chip1=chip(itypi)
1710             chip2=chip(itypj)
1711             chip12=chip1*chip2
1712             alf1=alp(itypi)
1713             alf2=alp(itypj)
1714             alf12=0.5D0*(alf1+alf2)
1715 C For diagnostics only!!!
1716 c           chi1=0.0D0
1717 c           chi2=0.0D0
1718 c           chi12=0.0D0
1719 c           chip1=0.0D0
1720 c           chip2=0.0D0
1721 c           chip12=0.0D0
1722 c           alf1=0.0D0
1723 c           alf2=0.0D0
1724 c           alf12=0.0D0
1725             xj=c(1,nres+j)-xi
1726             yj=c(2,nres+j)-yi
1727             zj=c(3,nres+j)-zi
1728             dxj=dc_norm(1,nres+j)
1729             dyj=dc_norm(2,nres+j)
1730             dzj=dc_norm(3,nres+j)
1731 c            write (iout,*) "dcnorj",dxi*dxi+dyi*dyi+dzi*dzi
1732 c            write (iout,*) "j",j," dc_norm",
1733 c     &       dc_norm(1,nres+j),dc_norm(2,nres+j),dc_norm(3,nres+j)
1734             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1735             rij=dsqrt(rrij)
1736 C Calculate angle-dependent terms of energy and contributions to their
1737 C derivatives.
1738             call sc_angular
1739             sigsq=1.0D0/sigsq
1740             sig=sig0ij*dsqrt(sigsq)
1741             rij_shift=1.0D0/rij-sig+sig0ij
1742 c for diagnostics; uncomment
1743 c            rij_shift=1.2*sig0ij
1744 C I hate to put IF's in the loops, but here don't have another choice!!!!
1745             if (rij_shift.le.0.0D0) then
1746               evdw=1.0D20
1747 cd              write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1748 cd     &        restyp(itypi),i,restyp(itypj),j,
1749 cd     &        rij_shift,1.0D0/rij,sig,sig0ij,sigsq,1-dsqrt(sigsq) 
1750               return
1751             endif
1752             sigder=-sig*sigsq
1753 c---------------------------------------------------------------
1754             rij_shift=1.0D0/rij_shift 
1755             fac=rij_shift**expon
1756             e1=fac*fac*aa(itypi,itypj)
1757             e2=fac*bb(itypi,itypj)
1758             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1759             eps2der=evdwij*eps3rt
1760             eps3der=evdwij*eps2rt
1761 c            write (iout,*) "sigsq",sigsq," sig",sig," eps2rt",eps2rt,
1762 c     &        " eps3rt",eps3rt," eps1",eps1," e1",e1," e2",e2
1763             evdwij=evdwij*eps2rt*eps3rt
1764 #ifdef TSCSC
1765             if (bb(itypi,itypj).gt.0) then
1766                evdw_p=evdw_p+evdwij
1767             else
1768                evdw_m=evdw_m+evdwij
1769             endif
1770 #else
1771             evdw=evdw+evdwij
1772 #endif
1773             if (lprn) then
1774             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1775             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1776             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1777      &        restyp(itypi),i,restyp(itypj),j,
1778      &        epsi,sigm,chi1,chi2,chip1,chip2,
1779      &        eps1,eps2rt**2,eps3rt**2,sig,sig0ij,
1780      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1781      &        evdwij
1782             endif
1783
1784             if (energy_dec) write (iout,'(a6,2i5,0pf7.3)') 
1785      &                        'evdw',i,j,evdwij
1786
1787 C Calculate gradient components.
1788             e1=e1*eps1*eps2rt**2*eps3rt**2
1789             fac=-expon*(e1+evdwij)*rij_shift
1790             sigder=fac*sigder
1791             fac=rij*fac
1792 c            fac=0.0d0
1793 C Calculate the radial part of the gradient
1794             gg(1)=xj*fac
1795             gg(2)=yj*fac
1796             gg(3)=zj*fac
1797 C Calculate angular part of the gradient.
1798 #ifdef TSCSC
1799             if (bb(itypi,itypj).gt.0) then
1800                call sc_grad
1801             else
1802                call sc_grad_T
1803             endif
1804 #else
1805             call sc_grad
1806 #endif
1807             ENDIF    ! dyn_ss            
1808           enddo      ! j
1809         enddo        ! iint
1810       enddo          ! i
1811 c      write (iout,*) "Number of loop steps in EGB:",ind
1812 cccc      energy_dec=.false.
1813       return
1814       end
1815 C-----------------------------------------------------------------------------
1816       subroutine egbv(evdw,evdw_p,evdw_m)
1817 C
1818 C This subroutine calculates the interaction energy of nonbonded side chains
1819 C assuming the Gay-Berne-Vorobjev potential of interaction.
1820 C
1821       implicit real*8 (a-h,o-z)
1822       include 'DIMENSIONS'
1823       include 'COMMON.GEO'
1824       include 'COMMON.VAR'
1825       include 'COMMON.LOCAL'
1826       include 'COMMON.CHAIN'
1827       include 'COMMON.DERIV'
1828       include 'COMMON.NAMES'
1829       include 'COMMON.INTERACT'
1830       include 'COMMON.IOUNITS'
1831       include 'COMMON.CALC'
1832       common /srutu/ icall
1833       logical lprn
1834       evdw=0.0D0
1835 c     print *,'Entering EGB nnt=',nnt,' nct=',nct,' expon=',expon
1836       evdw=0.0D0
1837       lprn=.false.
1838 c     if (icall.eq.0) lprn=.true.
1839       ind=0
1840       do i=iatsc_s,iatsc_e
1841         itypi=itype(i)
1842         itypi1=itype(i+1)
1843         xi=c(1,nres+i)
1844         yi=c(2,nres+i)
1845         zi=c(3,nres+i)
1846         dxi=dc_norm(1,nres+i)
1847         dyi=dc_norm(2,nres+i)
1848         dzi=dc_norm(3,nres+i)
1849 c        dsci_inv=dsc_inv(itypi)
1850         dsci_inv=vbld_inv(i+nres)
1851 C
1852 C Calculate SC interaction energy.
1853 C
1854         do iint=1,nint_gr(i)
1855           do j=istart(i,iint),iend(i,iint)
1856             ind=ind+1
1857             itypj=itype(j)
1858 c            dscj_inv=dsc_inv(itypj)
1859             dscj_inv=vbld_inv(j+nres)
1860             sig0ij=sigma(itypi,itypj)
1861             r0ij=r0(itypi,itypj)
1862             chi1=chi(itypi,itypj)
1863             chi2=chi(itypj,itypi)
1864             chi12=chi1*chi2
1865             chip1=chip(itypi)
1866             chip2=chip(itypj)
1867             chip12=chip1*chip2
1868             alf1=alp(itypi)
1869             alf2=alp(itypj)
1870             alf12=0.5D0*(alf1+alf2)
1871 C For diagnostics only!!!
1872 c           chi1=0.0D0
1873 c           chi2=0.0D0
1874 c           chi12=0.0D0
1875 c           chip1=0.0D0
1876 c           chip2=0.0D0
1877 c           chip12=0.0D0
1878 c           alf1=0.0D0
1879 c           alf2=0.0D0
1880 c           alf12=0.0D0
1881             xj=c(1,nres+j)-xi
1882             yj=c(2,nres+j)-yi
1883             zj=c(3,nres+j)-zi
1884             dxj=dc_norm(1,nres+j)
1885             dyj=dc_norm(2,nres+j)
1886             dzj=dc_norm(3,nres+j)
1887             rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
1888             rij=dsqrt(rrij)
1889 C Calculate angle-dependent terms of energy and contributions to their
1890 C derivatives.
1891             call sc_angular
1892             sigsq=1.0D0/sigsq
1893             sig=sig0ij*dsqrt(sigsq)
1894             rij_shift=1.0D0/rij-sig+r0ij
1895 C I hate to put IF's in the loops, but here don't have another choice!!!!
1896             if (rij_shift.le.0.0D0) then
1897               evdw=1.0D20
1898               return
1899             endif
1900             sigder=-sig*sigsq
1901 c---------------------------------------------------------------
1902             rij_shift=1.0D0/rij_shift 
1903             fac=rij_shift**expon
1904             e1=fac*fac*aa(itypi,itypj)
1905             e2=fac*bb(itypi,itypj)
1906             evdwij=eps1*eps2rt*eps3rt*(e1+e2)
1907             eps2der=evdwij*eps3rt
1908             eps3der=evdwij*eps2rt
1909             fac_augm=rrij**expon
1910             e_augm=augm(itypi,itypj)*fac_augm
1911             evdwij=evdwij*eps2rt*eps3rt
1912 #ifdef TSCSC
1913             if (bb(itypi,itypj).gt.0) then
1914                evdw_p=evdw_p+evdwij+e_augm
1915             else
1916                evdw_m=evdw_m+evdwij+e_augm
1917             endif
1918 #else
1919             evdw=evdw+evdwij+e_augm
1920 #endif
1921             if (lprn) then
1922             sigm=dabs(aa(itypi,itypj)/bb(itypi,itypj))**(1.0D0/6.0D0)
1923             epsi=bb(itypi,itypj)**2/aa(itypi,itypj)
1924             write (iout,'(2(a3,i3,2x),17(0pf7.3))')
1925      &        restyp(itypi),i,restyp(itypj),j,
1926      &        epsi,sigm,sig,(augm(itypi,itypj)/epsi)**(1.0D0/12.0D0),
1927      &        chi1,chi2,chip1,chip2,
1928      &        eps1,eps2rt**2,eps3rt**2,
1929      &        om1,om2,om12,1.0D0/rij,1.0D0/rij_shift,
1930      &        evdwij+e_augm
1931             endif
1932 C Calculate gradient components.
1933             e1=e1*eps1*eps2rt**2*eps3rt**2
1934             fac=-expon*(e1+evdwij)*rij_shift
1935             sigder=fac*sigder
1936             fac=rij*fac-2*expon*rrij*e_augm
1937 C Calculate the radial part of the gradient
1938             gg(1)=xj*fac
1939             gg(2)=yj*fac
1940             gg(3)=zj*fac
1941 C Calculate angular part of the gradient.
1942 #ifdef TSCSC
1943             if (bb(itypi,itypj).gt.0) then
1944                call sc_grad
1945             else
1946                call sc_grad_T
1947             endif
1948 #else
1949             call sc_grad
1950 #endif
1951           enddo      ! j
1952         enddo        ! iint
1953       enddo          ! i
1954       end
1955 C-----------------------------------------------------------------------------
1956       subroutine sc_angular
1957 C Calculate eps1,eps2,eps3,sigma, and parts of their derivatives in om1,om2,
1958 C om12. Called by ebp, egb, and egbv.
1959       implicit none
1960       include 'COMMON.CALC'
1961       include 'COMMON.IOUNITS'
1962       erij(1)=xj*rij
1963       erij(2)=yj*rij
1964       erij(3)=zj*rij
1965       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
1966       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
1967       om12=dxi*dxj+dyi*dyj+dzi*dzj
1968       chiom12=chi12*om12
1969 C Calculate eps1(om12) and its derivative in om12
1970       faceps1=1.0D0-om12*chiom12
1971       faceps1_inv=1.0D0/faceps1
1972       eps1=dsqrt(faceps1_inv)
1973 C Following variable is eps1*deps1/dom12
1974       eps1_om12=faceps1_inv*chiom12
1975 c diagnostics only
1976 c      faceps1_inv=om12
1977 c      eps1=om12
1978 c      eps1_om12=1.0d0
1979 c      write (iout,*) "om12",om12," eps1",eps1
1980 C Calculate sigma(om1,om2,om12) and the derivatives of sigma**2 in om1,om2,
1981 C and om12.
1982       om1om2=om1*om2
1983       chiom1=chi1*om1
1984       chiom2=chi2*om2
1985       facsig=om1*chiom1+om2*chiom2-2.0D0*om1om2*chiom12
1986       sigsq=1.0D0-facsig*faceps1_inv
1987       sigsq_om1=(chiom1-chiom12*om2)*faceps1_inv
1988       sigsq_om2=(chiom2-chiom12*om1)*faceps1_inv
1989       sigsq_om12=-chi12*(om1om2*faceps1-om12*facsig)*faceps1_inv**2
1990 c diagnostics only
1991 c      sigsq=1.0d0
1992 c      sigsq_om1=0.0d0
1993 c      sigsq_om2=0.0d0
1994 c      sigsq_om12=0.0d0
1995 c      write (iout,*) "chiom1",chiom1," chiom2",chiom2," chiom12",chiom12
1996 c      write (iout,*) "faceps1",faceps1," faceps1_inv",faceps1_inv,
1997 c     &    " eps1",eps1
1998 C Calculate eps2 and its derivatives in om1, om2, and om12.
1999       chipom1=chip1*om1
2000       chipom2=chip2*om2
2001       chipom12=chip12*om12
2002       facp=1.0D0-om12*chipom12
2003       facp_inv=1.0D0/facp
2004       facp1=om1*chipom1+om2*chipom2-2.0D0*om1om2*chipom12
2005 c      write (iout,*) "chipom1",chipom1," chipom2",chipom2,
2006 c     &  " chipom12",chipom12," facp",facp," facp_inv",facp_inv
2007 C Following variable is the square root of eps2
2008       eps2rt=1.0D0-facp1*facp_inv
2009 C Following three variables are the derivatives of the square root of eps
2010 C in om1, om2, and om12.
2011       eps2rt_om1=-4.0D0*(chipom1-chipom12*om2)*facp_inv
2012       eps2rt_om2=-4.0D0*(chipom2-chipom12*om1)*facp_inv
2013       eps2rt_om12=4.0D0*chip12*(om1om2*facp-om12*facp1)*facp_inv**2 
2014 C Evaluate the "asymmetric" factor in the VDW constant, eps3
2015       eps3rt=1.0D0-alf1*om1+alf2*om2-alf12*om12 
2016 c      write (iout,*) "eps2rt",eps2rt," eps3rt",eps3rt
2017 c      write (iout,*) "eps2rt_om1",eps2rt_om1," eps2rt_om2",eps2rt_om2,
2018 c     &  " eps2rt_om12",eps2rt_om12
2019 C Calculate whole angle-dependent part of epsilon and contributions
2020 C to its derivatives
2021       return
2022       end
2023
2024 C----------------------------------------------------------------------------
2025       subroutine sc_grad_T
2026       implicit real*8 (a-h,o-z)
2027       include 'DIMENSIONS'
2028       include 'COMMON.CHAIN'
2029       include 'COMMON.DERIV'
2030       include 'COMMON.CALC'
2031       include 'COMMON.IOUNITS'
2032       double precision dcosom1(3),dcosom2(3)
2033       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2034       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2035       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2036      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2037 c diagnostics only
2038 c      eom1=0.0d0
2039 c      eom2=0.0d0
2040 c      eom12=evdwij*eps1_om12
2041 c end diagnostics
2042 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2043 c     &  " sigder",sigder
2044 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2045 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2046       do k=1,3
2047         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2048         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2049       enddo
2050       do k=1,3
2051         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2052       enddo 
2053 c      write (iout,*) "gg",(gg(k),k=1,3)
2054       do k=1,3
2055         gvdwxT(k,i)=gvdwxT(k,i)-gg(k)
2056      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2057      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2058         gvdwxT(k,j)=gvdwxT(k,j)+gg(k)
2059      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2060      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2061 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2062 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2063 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2064 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2065       enddo
2066
2067 C Calculate the components of the gradient in DC and X
2068 C
2069 cgrad      do k=i,j-1
2070 cgrad        do l=1,3
2071 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2072 cgrad        enddo
2073 cgrad      enddo
2074       do l=1,3
2075         gvdwcT(l,i)=gvdwcT(l,i)-gg(l)
2076         gvdwcT(l,j)=gvdwcT(l,j)+gg(l)
2077       enddo
2078       return
2079       end
2080
2081 C----------------------------------------------------------------------------
2082       subroutine sc_grad
2083       implicit real*8 (a-h,o-z)
2084       include 'DIMENSIONS'
2085       include 'COMMON.CHAIN'
2086       include 'COMMON.DERIV'
2087       include 'COMMON.CALC'
2088       include 'COMMON.IOUNITS'
2089       double precision dcosom1(3),dcosom2(3)
2090       eom1=eps2der*eps2rt_om1-2.0D0*alf1*eps3der+sigder*sigsq_om1
2091       eom2=eps2der*eps2rt_om2+2.0D0*alf2*eps3der+sigder*sigsq_om2
2092       eom12=evdwij*eps1_om12+eps2der*eps2rt_om12
2093      &     -2.0D0*alf12*eps3der+sigder*sigsq_om12
2094 c diagnostics only
2095 c      eom1=0.0d0
2096 c      eom2=0.0d0
2097 c      eom12=evdwij*eps1_om12
2098 c end diagnostics
2099 c      write (iout,*) "eps2der",eps2der," eps3der",eps3der,
2100 c     &  " sigder",sigder
2101 c      write (iout,*) "eps1_om12",eps1_om12," eps2rt_om12",eps2rt_om12
2102 c      write (iout,*) "eom1",eom1," eom2",eom2," eom12",eom12
2103       do k=1,3
2104         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
2105         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
2106       enddo
2107       do k=1,3
2108         gg(k)=gg(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
2109       enddo 
2110 c      write (iout,*) "gg",(gg(k),k=1,3)
2111       do k=1,3
2112         gvdwx(k,i)=gvdwx(k,i)-gg(k)
2113      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2114      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2115         gvdwx(k,j)=gvdwx(k,j)+gg(k)
2116      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2117      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2118 c        write (iout,*)(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
2119 c     &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
2120 c        write (iout,*)(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
2121 c     &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
2122       enddo
2123
2124 C Calculate the components of the gradient in DC and X
2125 C
2126 cgrad      do k=i,j-1
2127 cgrad        do l=1,3
2128 cgrad          gvdwc(l,k)=gvdwc(l,k)+gg(l)
2129 cgrad        enddo
2130 cgrad      enddo
2131       do l=1,3
2132         gvdwc(l,i)=gvdwc(l,i)-gg(l)
2133         gvdwc(l,j)=gvdwc(l,j)+gg(l)
2134       enddo
2135       return
2136       end
2137 C-----------------------------------------------------------------------
2138       subroutine e_softsphere(evdw)
2139 C
2140 C This subroutine calculates the interaction energy of nonbonded side chains
2141 C assuming the LJ potential of interaction.
2142 C
2143       implicit real*8 (a-h,o-z)
2144       include 'DIMENSIONS'
2145       parameter (accur=1.0d-10)
2146       include 'COMMON.GEO'
2147       include 'COMMON.VAR'
2148       include 'COMMON.LOCAL'
2149       include 'COMMON.CHAIN'
2150       include 'COMMON.DERIV'
2151       include 'COMMON.INTERACT'
2152       include 'COMMON.TORSION'
2153       include 'COMMON.SBRIDGE'
2154       include 'COMMON.NAMES'
2155       include 'COMMON.IOUNITS'
2156       include 'COMMON.CONTACTS'
2157       dimension gg(3)
2158 cd    print *,'Entering Esoft_sphere nnt=',nnt,' nct=',nct
2159       evdw=0.0D0
2160       do i=iatsc_s,iatsc_e
2161         itypi=itype(i)
2162         itypi1=itype(i+1)
2163         xi=c(1,nres+i)
2164         yi=c(2,nres+i)
2165         zi=c(3,nres+i)
2166 C
2167 C Calculate SC interaction energy.
2168 C
2169         do iint=1,nint_gr(i)
2170 cd        write (iout,*) 'i=',i,' iint=',iint,' istart=',istart(i,iint),
2171 cd   &                  'iend=',iend(i,iint)
2172           do j=istart(i,iint),iend(i,iint)
2173             itypj=itype(j)
2174             xj=c(1,nres+j)-xi
2175             yj=c(2,nres+j)-yi
2176             zj=c(3,nres+j)-zi
2177             rij=xj*xj+yj*yj+zj*zj
2178 c           write (iout,*)'i=',i,' j=',j,' itypi=',itypi,' itypj=',itypj
2179             r0ij=r0(itypi,itypj)
2180             r0ijsq=r0ij*r0ij
2181 c            print *,i,j,r0ij,dsqrt(rij)
2182             if (rij.lt.r0ijsq) then
2183               evdwij=0.25d0*(rij-r0ijsq)**2
2184               fac=rij-r0ijsq
2185             else
2186               evdwij=0.0d0
2187               fac=0.0d0
2188             endif
2189             evdw=evdw+evdwij
2190
2191 C Calculate the components of the gradient in DC and X
2192 C
2193             gg(1)=xj*fac
2194             gg(2)=yj*fac
2195             gg(3)=zj*fac
2196             do k=1,3
2197               gvdwx(k,i)=gvdwx(k,i)-gg(k)
2198               gvdwx(k,j)=gvdwx(k,j)+gg(k)
2199               gvdwc(k,i)=gvdwc(k,i)-gg(k)
2200               gvdwc(k,j)=gvdwc(k,j)+gg(k)
2201             enddo
2202 cgrad            do k=i,j-1
2203 cgrad              do l=1,3
2204 cgrad                gvdwc(l,k)=gvdwc(l,k)+gg(l)
2205 cgrad              enddo
2206 cgrad            enddo
2207           enddo ! j
2208         enddo ! iint
2209       enddo ! i
2210       return
2211       end
2212 C--------------------------------------------------------------------------
2213       subroutine eelec_soft_sphere(ees,evdw1,eel_loc,eello_turn3,
2214      &              eello_turn4)
2215 C
2216 C Soft-sphere potential of p-p interaction
2217
2218       implicit real*8 (a-h,o-z)
2219       include 'DIMENSIONS'
2220       include 'COMMON.CONTROL'
2221       include 'COMMON.IOUNITS'
2222       include 'COMMON.GEO'
2223       include 'COMMON.VAR'
2224       include 'COMMON.LOCAL'
2225       include 'COMMON.CHAIN'
2226       include 'COMMON.DERIV'
2227       include 'COMMON.INTERACT'
2228       include 'COMMON.CONTACTS'
2229       include 'COMMON.TORSION'
2230       include 'COMMON.VECTORS'
2231       include 'COMMON.FFIELD'
2232       dimension ggg(3)
2233 cd      write(iout,*) 'In EELEC_soft_sphere'
2234       ees=0.0D0
2235       evdw1=0.0D0
2236       eel_loc=0.0d0 
2237       eello_turn3=0.0d0
2238       eello_turn4=0.0d0
2239       ind=0
2240       do i=iatel_s,iatel_e
2241         dxi=dc(1,i)
2242         dyi=dc(2,i)
2243         dzi=dc(3,i)
2244         xmedi=c(1,i)+0.5d0*dxi
2245         ymedi=c(2,i)+0.5d0*dyi
2246         zmedi=c(3,i)+0.5d0*dzi
2247         num_conti=0
2248 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
2249         do j=ielstart(i),ielend(i)
2250           ind=ind+1
2251           iteli=itel(i)
2252           itelj=itel(j)
2253           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
2254           r0ij=rpp(iteli,itelj)
2255           r0ijsq=r0ij*r0ij 
2256           dxj=dc(1,j)
2257           dyj=dc(2,j)
2258           dzj=dc(3,j)
2259           xj=c(1,j)+0.5D0*dxj-xmedi
2260           yj=c(2,j)+0.5D0*dyj-ymedi
2261           zj=c(3,j)+0.5D0*dzj-zmedi
2262           rij=xj*xj+yj*yj+zj*zj
2263           if (rij.lt.r0ijsq) then
2264             evdw1ij=0.25d0*(rij-r0ijsq)**2
2265             fac=rij-r0ijsq
2266           else
2267             evdw1ij=0.0d0
2268             fac=0.0d0
2269           endif
2270           evdw1=evdw1+evdw1ij
2271 C
2272 C Calculate contributions to the Cartesian gradient.
2273 C
2274           ggg(1)=fac*xj
2275           ggg(2)=fac*yj
2276           ggg(3)=fac*zj
2277           do k=1,3
2278             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
2279             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
2280           enddo
2281 *
2282 * Loop over residues i+1 thru j-1.
2283 *
2284 cgrad          do k=i+1,j-1
2285 cgrad            do l=1,3
2286 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
2287 cgrad            enddo
2288 cgrad          enddo
2289         enddo ! j
2290       enddo   ! i
2291 cgrad      do i=nnt,nct-1
2292 cgrad        do k=1,3
2293 cgrad          gelc(k,i)=gelc(k,i)+0.5d0*gelc(k,i)
2294 cgrad        enddo
2295 cgrad        do j=i+1,nct-1
2296 cgrad          do k=1,3
2297 cgrad            gelc(k,i)=gelc(k,i)+gelc(k,j)
2298 cgrad          enddo
2299 cgrad        enddo
2300 cgrad      enddo
2301       return
2302       end
2303 c------------------------------------------------------------------------------
2304       subroutine vec_and_deriv
2305       implicit real*8 (a-h,o-z)
2306       include 'DIMENSIONS'
2307 #ifdef MPI
2308       include 'mpif.h'
2309 #endif
2310       include 'COMMON.IOUNITS'
2311       include 'COMMON.GEO'
2312       include 'COMMON.VAR'
2313       include 'COMMON.LOCAL'
2314       include 'COMMON.CHAIN'
2315       include 'COMMON.VECTORS'
2316       include 'COMMON.SETUP'
2317       include 'COMMON.TIME1'
2318       dimension uyder(3,3,2),uzder(3,3,2),vbld_inv_temp(2)
2319 C Compute the local reference systems. For reference system (i), the
2320 C X-axis points from CA(i) to CA(i+1), the Y axis is in the 
2321 C CA(i)-CA(i+1)-CA(i+2) plane, and the Z axis is perpendicular to this plane.
2322 #ifdef PARVEC
2323       do i=ivec_start,ivec_end
2324 #else
2325       do i=1,nres-1
2326 #endif
2327           if (i.eq.nres-1) then
2328 C Case of the last full residue
2329 C Compute the Z-axis
2330             call vecpr(dc_norm(1,i),dc_norm(1,i-1),uz(1,i))
2331             costh=dcos(pi-theta(nres))
2332             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2333             do k=1,3
2334               uz(k,i)=fac*uz(k,i)
2335             enddo
2336 C Compute the derivatives of uz
2337             uzder(1,1,1)= 0.0d0
2338             uzder(2,1,1)=-dc_norm(3,i-1)
2339             uzder(3,1,1)= dc_norm(2,i-1) 
2340             uzder(1,2,1)= dc_norm(3,i-1)
2341             uzder(2,2,1)= 0.0d0
2342             uzder(3,2,1)=-dc_norm(1,i-1)
2343             uzder(1,3,1)=-dc_norm(2,i-1)
2344             uzder(2,3,1)= dc_norm(1,i-1)
2345             uzder(3,3,1)= 0.0d0
2346             uzder(1,1,2)= 0.0d0
2347             uzder(2,1,2)= dc_norm(3,i)
2348             uzder(3,1,2)=-dc_norm(2,i) 
2349             uzder(1,2,2)=-dc_norm(3,i)
2350             uzder(2,2,2)= 0.0d0
2351             uzder(3,2,2)= dc_norm(1,i)
2352             uzder(1,3,2)= dc_norm(2,i)
2353             uzder(2,3,2)=-dc_norm(1,i)
2354             uzder(3,3,2)= 0.0d0
2355 C Compute the Y-axis
2356             facy=fac
2357             do k=1,3
2358               uy(k,i)=fac*(dc_norm(k,i-1)-costh*dc_norm(k,i))
2359             enddo
2360 C Compute the derivatives of uy
2361             do j=1,3
2362               do k=1,3
2363                 uyder(k,j,1)=2*dc_norm(k,i-1)*dc_norm(j,i)
2364      &                        -dc_norm(k,i)*dc_norm(j,i-1)
2365                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2366               enddo
2367               uyder(j,j,1)=uyder(j,j,1)-costh
2368               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2369             enddo
2370             do j=1,2
2371               do k=1,3
2372                 do l=1,3
2373                   uygrad(l,k,j,i)=uyder(l,k,j)
2374                   uzgrad(l,k,j,i)=uzder(l,k,j)
2375                 enddo
2376               enddo
2377             enddo 
2378             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2379             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2380             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2381             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2382           else
2383 C Other residues
2384 C Compute the Z-axis
2385             call vecpr(dc_norm(1,i),dc_norm(1,i+1),uz(1,i))
2386             costh=dcos(pi-theta(i+2))
2387             fac=1.0d0/dsqrt(1.0d0-costh*costh)
2388             do k=1,3
2389               uz(k,i)=fac*uz(k,i)
2390             enddo
2391 C Compute the derivatives of uz
2392             uzder(1,1,1)= 0.0d0
2393             uzder(2,1,1)=-dc_norm(3,i+1)
2394             uzder(3,1,1)= dc_norm(2,i+1) 
2395             uzder(1,2,1)= dc_norm(3,i+1)
2396             uzder(2,2,1)= 0.0d0
2397             uzder(3,2,1)=-dc_norm(1,i+1)
2398             uzder(1,3,1)=-dc_norm(2,i+1)
2399             uzder(2,3,1)= dc_norm(1,i+1)
2400             uzder(3,3,1)= 0.0d0
2401             uzder(1,1,2)= 0.0d0
2402             uzder(2,1,2)= dc_norm(3,i)
2403             uzder(3,1,2)=-dc_norm(2,i) 
2404             uzder(1,2,2)=-dc_norm(3,i)
2405             uzder(2,2,2)= 0.0d0
2406             uzder(3,2,2)= dc_norm(1,i)
2407             uzder(1,3,2)= dc_norm(2,i)
2408             uzder(2,3,2)=-dc_norm(1,i)
2409             uzder(3,3,2)= 0.0d0
2410 C Compute the Y-axis
2411             facy=fac
2412             do k=1,3
2413               uy(k,i)=facy*(dc_norm(k,i+1)-costh*dc_norm(k,i))
2414             enddo
2415 C Compute the derivatives of uy
2416             do j=1,3
2417               do k=1,3
2418                 uyder(k,j,1)=2*dc_norm(k,i+1)*dc_norm(j,i)
2419      &                        -dc_norm(k,i)*dc_norm(j,i+1)
2420                 uyder(k,j,2)=-dc_norm(j,i)*dc_norm(k,i)
2421               enddo
2422               uyder(j,j,1)=uyder(j,j,1)-costh
2423               uyder(j,j,2)=1.0d0+uyder(j,j,2)
2424             enddo
2425             do j=1,2
2426               do k=1,3
2427                 do l=1,3
2428                   uygrad(l,k,j,i)=uyder(l,k,j)
2429                   uzgrad(l,k,j,i)=uzder(l,k,j)
2430                 enddo
2431               enddo
2432             enddo 
2433             call unormderiv(uy(1,i),uyder(1,1,1),facy,uygrad(1,1,1,i))
2434             call unormderiv(uy(1,i),uyder(1,1,2),facy,uygrad(1,1,2,i))
2435             call unormderiv(uz(1,i),uzder(1,1,1),fac,uzgrad(1,1,1,i))
2436             call unormderiv(uz(1,i),uzder(1,1,2),fac,uzgrad(1,1,2,i))
2437           endif
2438       enddo
2439       do i=1,nres-1
2440         vbld_inv_temp(1)=vbld_inv(i+1)
2441         if (i.lt.nres-1) then
2442           vbld_inv_temp(2)=vbld_inv(i+2)
2443           else
2444           vbld_inv_temp(2)=vbld_inv(i)
2445           endif
2446         do j=1,2
2447           do k=1,3
2448             do l=1,3
2449               uygrad(l,k,j,i)=vbld_inv_temp(j)*uygrad(l,k,j,i)
2450               uzgrad(l,k,j,i)=vbld_inv_temp(j)*uzgrad(l,k,j,i)
2451             enddo
2452           enddo
2453         enddo
2454       enddo
2455 #if defined(PARVEC) && defined(MPI)
2456       if (nfgtasks1.gt.1) then
2457         time00=MPI_Wtime()
2458 c        print *,"Processor",fg_rank1,kolor1," ivec_start",ivec_start,
2459 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks1-1),
2460 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks1-1)
2461         call MPI_Allgatherv(uy(1,ivec_start),ivec_count(fg_rank1),
2462      &   MPI_UYZ,uy(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2463      &   FG_COMM1,IERR)
2464         call MPI_Allgatherv(uz(1,ivec_start),ivec_count(fg_rank1),
2465      &   MPI_UYZ,uz(1,1),ivec_count(0),ivec_displ(0),MPI_UYZ,
2466      &   FG_COMM1,IERR)
2467         call MPI_Allgatherv(uygrad(1,1,1,ivec_start),
2468      &   ivec_count(fg_rank1),MPI_UYZGRAD,uygrad(1,1,1,1),ivec_count(0),
2469      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2470         call MPI_Allgatherv(uzgrad(1,1,1,ivec_start),
2471      &   ivec_count(fg_rank1),MPI_UYZGRAD,uzgrad(1,1,1,1),ivec_count(0),
2472      &   ivec_displ(0),MPI_UYZGRAD,FG_COMM1,IERR)
2473         time_gather=time_gather+MPI_Wtime()-time00
2474       endif
2475 c      if (fg_rank.eq.0) then
2476 c        write (iout,*) "Arrays UY and UZ"
2477 c        do i=1,nres-1
2478 c          write (iout,'(i5,3f10.5,5x,3f10.5)') i,(uy(k,i),k=1,3),
2479 c     &     (uz(k,i),k=1,3)
2480 c        enddo
2481 c      endif
2482 #endif
2483       return
2484       end
2485 C-----------------------------------------------------------------------------
2486       subroutine check_vecgrad
2487       implicit real*8 (a-h,o-z)
2488       include 'DIMENSIONS'
2489       include 'COMMON.IOUNITS'
2490       include 'COMMON.GEO'
2491       include 'COMMON.VAR'
2492       include 'COMMON.LOCAL'
2493       include 'COMMON.CHAIN'
2494       include 'COMMON.VECTORS'
2495       dimension uygradt(3,3,2,maxres),uzgradt(3,3,2,maxres)
2496       dimension uyt(3,maxres),uzt(3,maxres)
2497       dimension uygradn(3,3,2),uzgradn(3,3,2),erij(3)
2498       double precision delta /1.0d-7/
2499       call vec_and_deriv
2500 cd      do i=1,nres
2501 crc          write(iout,'(2i5,2(3f10.5,5x))') i,1,dc_norm(:,i)
2502 crc          write(iout,'(2i5,2(3f10.5,5x))') i,2,uy(:,i)
2503 crc          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,uz(:,i)
2504 cd          write(iout,'(2i5,2(3f10.5,5x))') i,1,
2505 cd     &     (dc_norm(if90,i),if90=1,3)
2506 cd          write(iout,'(2i5,2(3f10.5,5x))') i,2,(uy(if90,i),if90=1,3)
2507 cd          write(iout,'(2i5,2(3f10.5,5x)/)')i,3,(uz(if90,i),if90=1,3)
2508 cd          write(iout,'(a)')
2509 cd      enddo
2510       do i=1,nres
2511         do j=1,2
2512           do k=1,3
2513             do l=1,3
2514               uygradt(l,k,j,i)=uygrad(l,k,j,i)
2515               uzgradt(l,k,j,i)=uzgrad(l,k,j,i)
2516             enddo
2517           enddo
2518         enddo
2519       enddo
2520       call vec_and_deriv
2521       do i=1,nres
2522         do j=1,3
2523           uyt(j,i)=uy(j,i)
2524           uzt(j,i)=uz(j,i)
2525         enddo
2526       enddo
2527       do i=1,nres
2528 cd        write (iout,*) 'i=',i
2529         do k=1,3
2530           erij(k)=dc_norm(k,i)
2531         enddo
2532         do j=1,3
2533           do k=1,3
2534             dc_norm(k,i)=erij(k)
2535           enddo
2536           dc_norm(j,i)=dc_norm(j,i)+delta
2537 c          fac=dsqrt(scalar(dc_norm(1,i),dc_norm(1,i)))
2538 c          do k=1,3
2539 c            dc_norm(k,i)=dc_norm(k,i)/fac
2540 c          enddo
2541 c          write (iout,*) (dc_norm(k,i),k=1,3)
2542 c          write (iout,*) (erij(k),k=1,3)
2543           call vec_and_deriv
2544           do k=1,3
2545             uygradn(k,j,1)=(uy(k,i)-uyt(k,i))/delta
2546             uygradn(k,j,2)=(uy(k,i-1)-uyt(k,i-1))/delta
2547             uzgradn(k,j,1)=(uz(k,i)-uzt(k,i))/delta
2548             uzgradn(k,j,2)=(uz(k,i-1)-uzt(k,i-1))/delta
2549           enddo 
2550 c          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2551 c     &      j,(uzgradt(k,j,1,i),k=1,3),(uzgradn(k,j,1),k=1,3),
2552 c     &      (uzgradt(k,j,2,i-1),k=1,3),(uzgradn(k,j,2),k=1,3)
2553         enddo
2554         do k=1,3
2555           dc_norm(k,i)=erij(k)
2556         enddo
2557 cd        do k=1,3
2558 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2559 cd     &      k,(uygradt(k,l,1,i),l=1,3),(uygradn(k,l,1),l=1,3),
2560 cd     &      (uygradt(k,l,2,i-1),l=1,3),(uygradn(k,l,2),l=1,3)
2561 cd          write (iout,'(i5,3f8.5,3x,3f8.5,5x,3f8.5,3x,3f8.5)') 
2562 cd     &      k,(uzgradt(k,l,1,i),l=1,3),(uzgradn(k,l,1),l=1,3),
2563 cd     &      (uzgradt(k,l,2,i-1),l=1,3),(uzgradn(k,l,2),l=1,3)
2564 cd          write (iout,'(a)')
2565 cd        enddo
2566       enddo
2567       return
2568       end
2569 C--------------------------------------------------------------------------
2570       subroutine set_matrices
2571       implicit real*8 (a-h,o-z)
2572       include 'DIMENSIONS'
2573 #ifdef MPI
2574       include "mpif.h"
2575       include "COMMON.SETUP"
2576       integer IERR
2577       integer status(MPI_STATUS_SIZE)
2578 #endif
2579       include 'COMMON.IOUNITS'
2580       include 'COMMON.GEO'
2581       include 'COMMON.VAR'
2582       include 'COMMON.LOCAL'
2583       include 'COMMON.CHAIN'
2584       include 'COMMON.DERIV'
2585       include 'COMMON.INTERACT'
2586       include 'COMMON.CONTACTS'
2587       include 'COMMON.TORSION'
2588       include 'COMMON.VECTORS'
2589       include 'COMMON.FFIELD'
2590       double precision auxvec(2),auxmat(2,2)
2591 C
2592 C Compute the virtual-bond-torsional-angle dependent quantities needed
2593 C to calculate the el-loc multibody terms of various order.
2594 C
2595 #ifdef PARMAT
2596       do i=ivec_start+2,ivec_end+2
2597 #else
2598       do i=3,nres+1
2599 #endif
2600         if (i .lt. nres+1) then
2601           sin1=dsin(phi(i))
2602           cos1=dcos(phi(i))
2603           sintab(i-2)=sin1
2604           costab(i-2)=cos1
2605           obrot(1,i-2)=cos1
2606           obrot(2,i-2)=sin1
2607           sin2=dsin(2*phi(i))
2608           cos2=dcos(2*phi(i))
2609           sintab2(i-2)=sin2
2610           costab2(i-2)=cos2
2611           obrot2(1,i-2)=cos2
2612           obrot2(2,i-2)=sin2
2613           Ug(1,1,i-2)=-cos1
2614           Ug(1,2,i-2)=-sin1
2615           Ug(2,1,i-2)=-sin1
2616           Ug(2,2,i-2)= cos1
2617           Ug2(1,1,i-2)=-cos2
2618           Ug2(1,2,i-2)=-sin2
2619           Ug2(2,1,i-2)=-sin2
2620           Ug2(2,2,i-2)= cos2
2621         else
2622           costab(i-2)=1.0d0
2623           sintab(i-2)=0.0d0
2624           obrot(1,i-2)=1.0d0
2625           obrot(2,i-2)=0.0d0
2626           obrot2(1,i-2)=0.0d0
2627           obrot2(2,i-2)=0.0d0
2628           Ug(1,1,i-2)=1.0d0
2629           Ug(1,2,i-2)=0.0d0
2630           Ug(2,1,i-2)=0.0d0
2631           Ug(2,2,i-2)=1.0d0
2632           Ug2(1,1,i-2)=0.0d0
2633           Ug2(1,2,i-2)=0.0d0
2634           Ug2(2,1,i-2)=0.0d0
2635           Ug2(2,2,i-2)=0.0d0
2636         endif
2637         if (i .gt. 3 .and. i .lt. nres+1) then
2638           obrot_der(1,i-2)=-sin1
2639           obrot_der(2,i-2)= cos1
2640           Ugder(1,1,i-2)= sin1
2641           Ugder(1,2,i-2)=-cos1
2642           Ugder(2,1,i-2)=-cos1
2643           Ugder(2,2,i-2)=-sin1
2644           dwacos2=cos2+cos2
2645           dwasin2=sin2+sin2
2646           obrot2_der(1,i-2)=-dwasin2
2647           obrot2_der(2,i-2)= dwacos2
2648           Ug2der(1,1,i-2)= dwasin2
2649           Ug2der(1,2,i-2)=-dwacos2
2650           Ug2der(2,1,i-2)=-dwacos2
2651           Ug2der(2,2,i-2)=-dwasin2
2652         else
2653           obrot_der(1,i-2)=0.0d0
2654           obrot_der(2,i-2)=0.0d0
2655           Ugder(1,1,i-2)=0.0d0
2656           Ugder(1,2,i-2)=0.0d0
2657           Ugder(2,1,i-2)=0.0d0
2658           Ugder(2,2,i-2)=0.0d0
2659           obrot2_der(1,i-2)=0.0d0
2660           obrot2_der(2,i-2)=0.0d0
2661           Ug2der(1,1,i-2)=0.0d0
2662           Ug2der(1,2,i-2)=0.0d0
2663           Ug2der(2,1,i-2)=0.0d0
2664           Ug2der(2,2,i-2)=0.0d0
2665         endif
2666 c        if (i.gt. iatel_s+2 .and. i.lt.iatel_e+5) then
2667         if (i.gt. nnt+2 .and. i.lt.nct+2) then
2668           iti = itortyp(itype(i-2))
2669         else
2670           iti=ntortyp+1
2671         endif
2672 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2673         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2674           iti1 = itortyp(itype(i-1))
2675         else
2676           iti1=ntortyp+1
2677         endif
2678 cd        write (iout,*) '*******i',i,' iti1',iti
2679 cd        write (iout,*) 'b1',b1(:,iti)
2680 cd        write (iout,*) 'b2',b2(:,iti)
2681 cd        write (iout,*) 'Ug',Ug(:,:,i-2)
2682 c        if (i .gt. iatel_s+2) then
2683         if (i .gt. nnt+2) then
2684           call matvec2(Ug(1,1,i-2),b2(1,iti),Ub2(1,i-2))
2685           call matmat2(EE(1,1,iti),Ug(1,1,i-2),EUg(1,1,i-2))
2686           if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2687      &    then
2688           call matmat2(CC(1,1,iti),Ug(1,1,i-2),CUg(1,1,i-2))
2689           call matmat2(DD(1,1,iti),Ug(1,1,i-2),DUg(1,1,i-2))
2690           call matmat2(Dtilde(1,1,iti),Ug2(1,1,i-2),DtUg2(1,1,i-2))
2691           call matvec2(Ctilde(1,1,iti1),obrot(1,i-2),Ctobr(1,i-2))
2692           call matvec2(Dtilde(1,1,iti),obrot2(1,i-2),Dtobr2(1,i-2))
2693           endif
2694         else
2695           do k=1,2
2696             Ub2(k,i-2)=0.0d0
2697             Ctobr(k,i-2)=0.0d0 
2698             Dtobr2(k,i-2)=0.0d0
2699             do l=1,2
2700               EUg(l,k,i-2)=0.0d0
2701               CUg(l,k,i-2)=0.0d0
2702               DUg(l,k,i-2)=0.0d0
2703               DtUg2(l,k,i-2)=0.0d0
2704             enddo
2705           enddo
2706         endif
2707         call matvec2(Ugder(1,1,i-2),b2(1,iti),Ub2der(1,i-2))
2708         call matmat2(EE(1,1,iti),Ugder(1,1,i-2),EUgder(1,1,i-2))
2709         do k=1,2
2710           muder(k,i-2)=Ub2der(k,i-2)
2711         enddo
2712 c        if (i.gt. iatel_s+1 .and. i.lt.iatel_e+4) then
2713         if (i.gt. nnt+1 .and. i.lt.nct+1) then
2714           iti1 = itortyp(itype(i-1))
2715         else
2716           iti1=ntortyp+1
2717         endif
2718         do k=1,2
2719           mu(k,i-2)=Ub2(k,i-2)+b1(k,iti1)
2720         enddo
2721 cd        write (iout,*) 'mu ',mu(:,i-2)
2722 cd        write (iout,*) 'mu1',mu1(:,i-2)
2723 cd        write (iout,*) 'mu2',mu2(:,i-2)
2724         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2725      &  then  
2726         call matmat2(CC(1,1,iti1),Ugder(1,1,i-2),CUgder(1,1,i-2))
2727         call matmat2(DD(1,1,iti),Ugder(1,1,i-2),DUgder(1,1,i-2))
2728         call matmat2(Dtilde(1,1,iti),Ug2der(1,1,i-2),DtUg2der(1,1,i-2))
2729         call matvec2(Ctilde(1,1,iti1),obrot_der(1,i-2),Ctobrder(1,i-2))
2730         call matvec2(Dtilde(1,1,iti),obrot2_der(1,i-2),Dtobr2der(1,i-2))
2731 C Vectors and matrices dependent on a single virtual-bond dihedral.
2732         call matvec2(DD(1,1,iti),b1tilde(1,iti1),auxvec(1))
2733         call matvec2(Ug2(1,1,i-2),auxvec(1),Ug2Db1t(1,i-2)) 
2734         call matvec2(Ug2der(1,1,i-2),auxvec(1),Ug2Db1tder(1,i-2)) 
2735         call matvec2(CC(1,1,iti1),Ub2(1,i-2),CUgb2(1,i-2))
2736         call matvec2(CC(1,1,iti1),Ub2der(1,i-2),CUgb2der(1,i-2))
2737         call matmat2(EUg(1,1,i-2),CC(1,1,iti1),EUgC(1,1,i-2))
2738         call matmat2(EUgder(1,1,i-2),CC(1,1,iti1),EUgCder(1,1,i-2))
2739         call matmat2(EUg(1,1,i-2),DD(1,1,iti1),EUgD(1,1,i-2))
2740         call matmat2(EUgder(1,1,i-2),DD(1,1,iti1),EUgDder(1,1,i-2))
2741         endif
2742       enddo
2743 C Matrices dependent on two consecutive virtual-bond dihedrals.
2744 C The order of matrices is from left to right.
2745       if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or.wcorr6.gt.0.0d0)
2746      &then
2747 c      do i=max0(ivec_start,2),ivec_end
2748       do i=2,nres-1
2749         call matmat2(DtUg2(1,1,i-1),EUg(1,1,i),DtUg2EUg(1,1,i))
2750         call matmat2(DtUg2der(1,1,i-1),EUg(1,1,i),DtUg2EUgder(1,1,1,i))
2751         call matmat2(DtUg2(1,1,i-1),EUgder(1,1,i),DtUg2EUgder(1,1,2,i))
2752         call transpose2(DtUg2(1,1,i-1),auxmat(1,1))
2753         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUg(1,1,i))
2754         call matmat2(auxmat(1,1),EUgder(1,1,i),Ug2DtEUgder(1,1,2,i))
2755         call transpose2(DtUg2der(1,1,i-1),auxmat(1,1))
2756         call matmat2(auxmat(1,1),EUg(1,1,i),Ug2DtEUgder(1,1,1,i))
2757       enddo
2758       endif
2759 #if defined(MPI) && defined(PARMAT)
2760 #ifdef DEBUG
2761 c      if (fg_rank.eq.0) then
2762         write (iout,*) "Arrays UG and UGDER before GATHER"
2763         do i=1,nres-1
2764           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2765      &     ((ug(l,k,i),l=1,2),k=1,2),
2766      &     ((ugder(l,k,i),l=1,2),k=1,2)
2767         enddo
2768         write (iout,*) "Arrays UG2 and UG2DER"
2769         do i=1,nres-1
2770           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2771      &     ((ug2(l,k,i),l=1,2),k=1,2),
2772      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2773         enddo
2774         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2775         do i=1,nres-1
2776           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2777      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2778      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2779         enddo
2780         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2781         do i=1,nres-1
2782           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2783      &     costab(i),sintab(i),costab2(i),sintab2(i)
2784         enddo
2785         write (iout,*) "Array MUDER"
2786         do i=1,nres-1
2787           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
2788         enddo
2789 c      endif
2790 #endif
2791       if (nfgtasks.gt.1) then
2792         time00=MPI_Wtime()
2793 c        write(iout,*)"Processor",fg_rank,kolor," ivec_start",ivec_start,
2794 c     &   " ivec_displ",(ivec_displ(i),i=0,nfgtasks-1),
2795 c     &   " ivec_count",(ivec_count(i),i=0,nfgtasks-1)
2796 #ifdef MATGATHER
2797         call MPI_Allgatherv(Ub2(1,ivec_start),ivec_count(fg_rank1),
2798      &   MPI_MU,Ub2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2799      &   FG_COMM1,IERR)
2800         call MPI_Allgatherv(Ub2der(1,ivec_start),ivec_count(fg_rank1),
2801      &   MPI_MU,Ub2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2802      &   FG_COMM1,IERR)
2803         call MPI_Allgatherv(mu(1,ivec_start),ivec_count(fg_rank1),
2804      &   MPI_MU,mu(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2805      &   FG_COMM1,IERR)
2806         call MPI_Allgatherv(muder(1,ivec_start),ivec_count(fg_rank1),
2807      &   MPI_MU,muder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2808      &   FG_COMM1,IERR)
2809         call MPI_Allgatherv(Eug(1,1,ivec_start),ivec_count(fg_rank1),
2810      &   MPI_MAT1,Eug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2811      &   FG_COMM1,IERR)
2812         call MPI_Allgatherv(Eugder(1,1,ivec_start),ivec_count(fg_rank1),
2813      &   MPI_MAT1,Eugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2814      &   FG_COMM1,IERR)
2815         call MPI_Allgatherv(costab(ivec_start),ivec_count(fg_rank1),
2816      &   MPI_DOUBLE_PRECISION,costab(1),ivec_count(0),ivec_displ(0),
2817      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2818         call MPI_Allgatherv(sintab(ivec_start),ivec_count(fg_rank1),
2819      &   MPI_DOUBLE_PRECISION,sintab(1),ivec_count(0),ivec_displ(0),
2820      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2821         call MPI_Allgatherv(costab2(ivec_start),ivec_count(fg_rank1),
2822      &   MPI_DOUBLE_PRECISION,costab2(1),ivec_count(0),ivec_displ(0),
2823      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2824         call MPI_Allgatherv(sintab2(ivec_start),ivec_count(fg_rank1),
2825      &   MPI_DOUBLE_PRECISION,sintab2(1),ivec_count(0),ivec_displ(0),
2826      &   MPI_DOUBLE_PRECISION,FG_COMM1,IERR)
2827         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0)
2828      &  then
2829         call MPI_Allgatherv(Ctobr(1,ivec_start),ivec_count(fg_rank1),
2830      &   MPI_MU,Ctobr(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2831      &   FG_COMM1,IERR)
2832         call MPI_Allgatherv(Ctobrder(1,ivec_start),ivec_count(fg_rank1),
2833      &   MPI_MU,Ctobrder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2834      &   FG_COMM1,IERR)
2835         call MPI_Allgatherv(Dtobr2(1,ivec_start),ivec_count(fg_rank1),
2836      &   MPI_MU,Dtobr2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2837      &   FG_COMM1,IERR)
2838        call MPI_Allgatherv(Dtobr2der(1,ivec_start),ivec_count(fg_rank1),
2839      &   MPI_MU,Dtobr2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2840      &   FG_COMM1,IERR)
2841         call MPI_Allgatherv(Ug2Db1t(1,ivec_start),ivec_count(fg_rank1),
2842      &   MPI_MU,Ug2Db1t(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2843      &   FG_COMM1,IERR)
2844         call MPI_Allgatherv(Ug2Db1tder(1,ivec_start),
2845      &   ivec_count(fg_rank1),
2846      &   MPI_MU,Ug2Db1tder(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2847      &   FG_COMM1,IERR)
2848         call MPI_Allgatherv(CUgb2(1,ivec_start),ivec_count(fg_rank1),
2849      &   MPI_MU,CUgb2(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2850      &   FG_COMM1,IERR)
2851         call MPI_Allgatherv(CUgb2der(1,ivec_start),ivec_count(fg_rank1),
2852      &   MPI_MU,CUgb2der(1,1),ivec_count(0),ivec_displ(0),MPI_MU,
2853      &   FG_COMM1,IERR)
2854         call MPI_Allgatherv(Cug(1,1,ivec_start),ivec_count(fg_rank1),
2855      &   MPI_MAT1,Cug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2856      &   FG_COMM1,IERR)
2857         call MPI_Allgatherv(Cugder(1,1,ivec_start),ivec_count(fg_rank1),
2858      &   MPI_MAT1,Cugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2859      &   FG_COMM1,IERR)
2860         call MPI_Allgatherv(Dug(1,1,ivec_start),ivec_count(fg_rank1),
2861      &   MPI_MAT1,Dug(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2862      &   FG_COMM1,IERR)
2863         call MPI_Allgatherv(Dugder(1,1,ivec_start),ivec_count(fg_rank1),
2864      &   MPI_MAT1,Dugder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2865      &   FG_COMM1,IERR)
2866         call MPI_Allgatherv(Dtug2(1,1,ivec_start),ivec_count(fg_rank1),
2867      &   MPI_MAT1,Dtug2(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2868      &   FG_COMM1,IERR)
2869         call MPI_Allgatherv(Dtug2der(1,1,ivec_start),
2870      &   ivec_count(fg_rank1),
2871      &   MPI_MAT1,Dtug2der(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2872      &   FG_COMM1,IERR)
2873         call MPI_Allgatherv(EugC(1,1,ivec_start),ivec_count(fg_rank1),
2874      &   MPI_MAT1,EugC(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2875      &   FG_COMM1,IERR)
2876        call MPI_Allgatherv(EugCder(1,1,ivec_start),ivec_count(fg_rank1),
2877      &   MPI_MAT1,EugCder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2878      &   FG_COMM1,IERR)
2879         call MPI_Allgatherv(EugD(1,1,ivec_start),ivec_count(fg_rank1),
2880      &   MPI_MAT1,EugD(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2881      &   FG_COMM1,IERR)
2882        call MPI_Allgatherv(EugDder(1,1,ivec_start),ivec_count(fg_rank1),
2883      &   MPI_MAT1,EugDder(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2884      &   FG_COMM1,IERR)
2885         call MPI_Allgatherv(DtUg2EUg(1,1,ivec_start),
2886      &   ivec_count(fg_rank1),
2887      &   MPI_MAT1,DtUg2EUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2888      &   FG_COMM1,IERR)
2889         call MPI_Allgatherv(Ug2DtEUg(1,1,ivec_start),
2890      &   ivec_count(fg_rank1),
2891      &   MPI_MAT1,Ug2DtEUg(1,1,1),ivec_count(0),ivec_displ(0),MPI_MAT1,
2892      &   FG_COMM1,IERR)
2893         call MPI_Allgatherv(DtUg2EUgder(1,1,1,ivec_start),
2894      &   ivec_count(fg_rank1),
2895      &   MPI_MAT2,DtUg2EUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2896      &   MPI_MAT2,FG_COMM1,IERR)
2897         call MPI_Allgatherv(Ug2DtEUgder(1,1,1,ivec_start),
2898      &   ivec_count(fg_rank1),
2899      &   MPI_MAT2,Ug2DtEUgder(1,1,1,1),ivec_count(0),ivec_displ(0),
2900      &   MPI_MAT2,FG_COMM1,IERR)
2901         endif
2902 #else
2903 c Passes matrix info through the ring
2904       isend=fg_rank1
2905       irecv=fg_rank1-1
2906       if (irecv.lt.0) irecv=nfgtasks1-1 
2907       iprev=irecv
2908       inext=fg_rank1+1
2909       if (inext.ge.nfgtasks1) inext=0
2910       do i=1,nfgtasks1-1
2911 c        write (iout,*) "isend",isend," irecv",irecv
2912 c        call flush(iout)
2913         lensend=lentyp(isend)
2914         lenrecv=lentyp(irecv)
2915 c        write (iout,*) "lensend",lensend," lenrecv",lenrecv
2916 c        call MPI_SENDRECV(ug(1,1,ivec_displ(isend)+1),1,
2917 c     &   MPI_ROTAT1(lensend),inext,2200+isend,
2918 c     &   ug(1,1,ivec_displ(irecv)+1),1,MPI_ROTAT1(lenrecv),
2919 c     &   iprev,2200+irecv,FG_COMM,status,IERR)
2920 c        write (iout,*) "Gather ROTAT1"
2921 c        call flush(iout)
2922 c        call MPI_SENDRECV(obrot(1,ivec_displ(isend)+1),1,
2923 c     &   MPI_ROTAT2(lensend),inext,3300+isend,
2924 c     &   obrot(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2925 c     &   iprev,3300+irecv,FG_COMM,status,IERR)
2926 c        write (iout,*) "Gather ROTAT2"
2927 c        call flush(iout)
2928         call MPI_SENDRECV(costab(ivec_displ(isend)+1),1,
2929      &   MPI_ROTAT_OLD(lensend),inext,4400+isend,
2930      &   costab(ivec_displ(irecv)+1),1,MPI_ROTAT_OLD(lenrecv),
2931      &   iprev,4400+irecv,FG_COMM,status,IERR)
2932 c        write (iout,*) "Gather ROTAT_OLD"
2933 c        call flush(iout)
2934         call MPI_SENDRECV(mu(1,ivec_displ(isend)+1),1,
2935      &   MPI_PRECOMP11(lensend),inext,5500+isend,
2936      &   mu(1,ivec_displ(irecv)+1),1,MPI_PRECOMP11(lenrecv),
2937      &   iprev,5500+irecv,FG_COMM,status,IERR)
2938 c        write (iout,*) "Gather PRECOMP11"
2939 c        call flush(iout)
2940         call MPI_SENDRECV(Eug(1,1,ivec_displ(isend)+1),1,
2941      &   MPI_PRECOMP12(lensend),inext,6600+isend,
2942      &   Eug(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP12(lenrecv),
2943      &   iprev,6600+irecv,FG_COMM,status,IERR)
2944 c        write (iout,*) "Gather PRECOMP12"
2945 c        call flush(iout)
2946         if (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) 
2947      &  then
2948         call MPI_SENDRECV(ug2db1t(1,ivec_displ(isend)+1),1,
2949      &   MPI_ROTAT2(lensend),inext,7700+isend,
2950      &   ug2db1t(1,ivec_displ(irecv)+1),1,MPI_ROTAT2(lenrecv),
2951      &   iprev,7700+irecv,FG_COMM,status,IERR)
2952 c        write (iout,*) "Gather PRECOMP21"
2953 c        call flush(iout)
2954         call MPI_SENDRECV(EUgC(1,1,ivec_displ(isend)+1),1,
2955      &   MPI_PRECOMP22(lensend),inext,8800+isend,
2956      &   EUgC(1,1,ivec_displ(irecv)+1),1,MPI_PRECOMP22(lenrecv),
2957      &   iprev,8800+irecv,FG_COMM,status,IERR)
2958 c        write (iout,*) "Gather PRECOMP22"
2959 c        call flush(iout)
2960         call MPI_SENDRECV(Ug2DtEUgder(1,1,1,ivec_displ(isend)+1),1,
2961      &   MPI_PRECOMP23(lensend),inext,9900+isend,
2962      &   Ug2DtEUgder(1,1,1,ivec_displ(irecv)+1),1,
2963      &   MPI_PRECOMP23(lenrecv),
2964      &   iprev,9900+irecv,FG_COMM,status,IERR)
2965 c        write (iout,*) "Gather PRECOMP23"
2966 c        call flush(iout)
2967         endif
2968         isend=irecv
2969         irecv=irecv-1
2970         if (irecv.lt.0) irecv=nfgtasks1-1
2971       enddo
2972 #endif
2973         time_gather=time_gather+MPI_Wtime()-time00
2974       endif
2975 #ifdef DEBUG
2976 c      if (fg_rank.eq.0) then
2977         write (iout,*) "Arrays UG and UGDER"
2978         do i=1,nres-1
2979           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2980      &     ((ug(l,k,i),l=1,2),k=1,2),
2981      &     ((ugder(l,k,i),l=1,2),k=1,2)
2982         enddo
2983         write (iout,*) "Arrays UG2 and UG2DER"
2984         do i=1,nres-1
2985           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2986      &     ((ug2(l,k,i),l=1,2),k=1,2),
2987      &     ((ug2der(l,k,i),l=1,2),k=1,2)
2988         enddo
2989         write (iout,*) "Arrays OBROT OBROT2 OBROTDER and OBROT2DER"
2990         do i=1,nres-1
2991           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2992      &     (obrot(k,i),k=1,2),(obrot2(k,i),k=1,2),
2993      &     (obrot_der(k,i),k=1,2),(obrot2_der(k,i),k=1,2)
2994         enddo
2995         write (iout,*) "Arrays COSTAB SINTAB COSTAB2 and SINTAB2"
2996         do i=1,nres-1
2997           write (iout,'(i5,4f10.5,5x,4f10.5)') i,
2998      &     costab(i),sintab(i),costab2(i),sintab2(i)
2999         enddo
3000         write (iout,*) "Array MUDER"
3001         do i=1,nres-1
3002           write (iout,'(i5,2f10.5)') i,muder(1,i),muder(2,i)
3003         enddo
3004 c      endif
3005 #endif
3006 #endif
3007 cd      do i=1,nres
3008 cd        iti = itortyp(itype(i))
3009 cd        write (iout,*) i
3010 cd        do j=1,2
3011 cd        write (iout,'(2f10.5,5x,2f10.5,5x,2f10.5)') 
3012 cd     &  (EE(j,k,iti),k=1,2),(Ug(j,k,i),k=1,2),(EUg(j,k,i),k=1,2)
3013 cd        enddo
3014 cd      enddo
3015       return
3016       end
3017 C--------------------------------------------------------------------------
3018       subroutine eelec(ees,evdw1,eel_loc,eello_turn3,eello_turn4)
3019 C
3020 C This subroutine calculates the average interaction energy and its gradient
3021 C in the virtual-bond vectors between non-adjacent peptide groups, based on 
3022 C the potential described in Liwo et al., Protein Sci., 1993, 2, 1715. 
3023 C The potential depends both on the distance of peptide-group centers and on 
3024 C the orientation of the CA-CA virtual bonds.
3025
3026       implicit real*8 (a-h,o-z)
3027 #ifdef MPI
3028       include 'mpif.h'
3029 #endif
3030       include 'DIMENSIONS'
3031       include 'COMMON.CONTROL'
3032       include 'COMMON.SETUP'
3033       include 'COMMON.IOUNITS'
3034       include 'COMMON.GEO'
3035       include 'COMMON.VAR'
3036       include 'COMMON.LOCAL'
3037       include 'COMMON.CHAIN'
3038       include 'COMMON.DERIV'
3039       include 'COMMON.INTERACT'
3040       include 'COMMON.CONTACTS'
3041       include 'COMMON.TORSION'
3042       include 'COMMON.VECTORS'
3043       include 'COMMON.FFIELD'
3044       include 'COMMON.TIME1'
3045       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3046      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3047       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3048      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3049       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3050      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3051      &    num_conti,j1,j2
3052 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3053 #ifdef MOMENT
3054       double precision scal_el /1.0d0/
3055 #else
3056       double precision scal_el /0.5d0/
3057 #endif
3058 C 12/13/98 
3059 C 13-go grudnia roku pamietnego... 
3060       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3061      &                   0.0d0,1.0d0,0.0d0,
3062      &                   0.0d0,0.0d0,1.0d0/
3063 cd      write(iout,*) 'In EELEC'
3064 cd      do i=1,nloctyp
3065 cd        write(iout,*) 'Type',i
3066 cd        write(iout,*) 'B1',B1(:,i)
3067 cd        write(iout,*) 'B2',B2(:,i)
3068 cd        write(iout,*) 'CC',CC(:,:,i)
3069 cd        write(iout,*) 'DD',DD(:,:,i)
3070 cd        write(iout,*) 'EE',EE(:,:,i)
3071 cd      enddo
3072 cd      call check_vecgrad
3073 cd      stop
3074       if (icheckgrad.eq.1) then
3075         do i=1,nres-1
3076           fac=1.0d0/dsqrt(scalar(dc(1,i),dc(1,i)))
3077           do k=1,3
3078             dc_norm(k,i)=dc(k,i)*fac
3079           enddo
3080 c          write (iout,*) 'i',i,' fac',fac
3081         enddo
3082       endif
3083       if (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 
3084      &    .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 .or. 
3085      &    wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) then
3086 c        call vec_and_deriv
3087 #ifdef TIMING
3088         time01=MPI_Wtime()
3089 #endif
3090         call set_matrices
3091 #ifdef TIMING
3092         time_mat=time_mat+MPI_Wtime()-time01
3093 #endif
3094       endif
3095 cd      do i=1,nres-1
3096 cd        write (iout,*) 'i=',i
3097 cd        do k=1,3
3098 cd        write (iout,'(i5,2f10.5)') k,uy(k,i),uz(k,i)
3099 cd        enddo
3100 cd        do k=1,3
3101 cd          write (iout,'(f10.5,2x,3f10.5,2x,3f10.5)') 
3102 cd     &     uz(k,i),(uzgrad(k,l,1,i),l=1,3),(uzgrad(k,l,2,i),l=1,3)
3103 cd        enddo
3104 cd      enddo
3105       t_eelecij=0.0d0
3106       ees=0.0D0
3107       evdw1=0.0D0
3108       eel_loc=0.0d0 
3109       eello_turn3=0.0d0
3110       eello_turn4=0.0d0
3111       ind=0
3112       do i=1,nres
3113         num_cont_hb(i)=0
3114       enddo
3115 cd      print '(a)','Enter EELEC'
3116 cd      write (iout,*) 'iatel_s=',iatel_s,' iatel_e=',iatel_e
3117       do i=1,nres
3118         gel_loc_loc(i)=0.0d0
3119         gcorr_loc(i)=0.0d0
3120       enddo
3121 c
3122 c
3123 c 9/27/08 AL Split the interaction loop to ensure load balancing of turn terms
3124 C
3125 C Loop over i,i+2 and i,i+3 pairs of the peptide groups
3126 C
3127       do i=iturn3_start,iturn3_end
3128         dxi=dc(1,i)
3129         dyi=dc(2,i)
3130         dzi=dc(3,i)
3131         dx_normi=dc_norm(1,i)
3132         dy_normi=dc_norm(2,i)
3133         dz_normi=dc_norm(3,i)
3134         xmedi=c(1,i)+0.5d0*dxi
3135         ymedi=c(2,i)+0.5d0*dyi
3136         zmedi=c(3,i)+0.5d0*dzi
3137         num_conti=0
3138         call eelecij(i,i+2,ees,evdw1,eel_loc)
3139         if (wturn3.gt.0.0d0) call eturn3(i,eello_turn3)
3140         num_cont_hb(i)=num_conti
3141       enddo
3142       do i=iturn4_start,iturn4_end
3143         dxi=dc(1,i)
3144         dyi=dc(2,i)
3145         dzi=dc(3,i)
3146         dx_normi=dc_norm(1,i)
3147         dy_normi=dc_norm(2,i)
3148         dz_normi=dc_norm(3,i)
3149         xmedi=c(1,i)+0.5d0*dxi
3150         ymedi=c(2,i)+0.5d0*dyi
3151         zmedi=c(3,i)+0.5d0*dzi
3152         num_conti=num_cont_hb(i)
3153         call eelecij(i,i+3,ees,evdw1,eel_loc)
3154         if (wturn4.gt.0.0d0) call eturn4(i,eello_turn4)
3155         num_cont_hb(i)=num_conti
3156       enddo   ! i
3157 c
3158 c Loop over all pairs of interacting peptide groups except i,i+2 and i,i+3
3159 c
3160       do i=iatel_s,iatel_e
3161         dxi=dc(1,i)
3162         dyi=dc(2,i)
3163         dzi=dc(3,i)
3164         dx_normi=dc_norm(1,i)
3165         dy_normi=dc_norm(2,i)
3166         dz_normi=dc_norm(3,i)
3167         xmedi=c(1,i)+0.5d0*dxi
3168         ymedi=c(2,i)+0.5d0*dyi
3169         zmedi=c(3,i)+0.5d0*dzi
3170 c        write (iout,*) 'i',i,' ielstart',ielstart(i),' ielend',ielend(i)
3171         num_conti=num_cont_hb(i)
3172         do j=ielstart(i),ielend(i)
3173           call eelecij(i,j,ees,evdw1,eel_loc)
3174         enddo ! j
3175         num_cont_hb(i)=num_conti
3176       enddo   ! i
3177 c      write (iout,*) "Number of loop steps in EELEC:",ind
3178 cd      do i=1,nres
3179 cd        write (iout,'(i3,3f10.5,5x,3f10.5)') 
3180 cd     &     i,(gel_loc(k,i),k=1,3),gel_loc_loc(i)
3181 cd      enddo
3182 c 12/7/99 Adam eello_turn3 will be considered as a separate energy term
3183 ccc      eel_loc=eel_loc+eello_turn3
3184 cd      print *,"Processor",fg_rank," t_eelecij",t_eelecij
3185       return
3186       end
3187 C-------------------------------------------------------------------------------
3188       subroutine eelecij(i,j,ees,evdw1,eel_loc)
3189       implicit real*8 (a-h,o-z)
3190       include 'DIMENSIONS'
3191 #ifdef MPI
3192       include "mpif.h"
3193 #endif
3194       include 'COMMON.CONTROL'
3195       include 'COMMON.IOUNITS'
3196       include 'COMMON.GEO'
3197       include 'COMMON.VAR'
3198       include 'COMMON.LOCAL'
3199       include 'COMMON.CHAIN'
3200       include 'COMMON.DERIV'
3201       include 'COMMON.INTERACT'
3202       include 'COMMON.CONTACTS'
3203       include 'COMMON.TORSION'
3204       include 'COMMON.VECTORS'
3205       include 'COMMON.FFIELD'
3206       include 'COMMON.TIME1'
3207       dimension ggg(3),gggp(3),gggm(3),erij(3),dcosb(3),dcosg(3),
3208      &          erder(3,3),uryg(3,3),urzg(3,3),vryg(3,3),vrzg(3,3)
3209       double precision acipa(2,2),agg(3,4),aggi(3,4),aggi1(3,4),
3210      &    aggj(3,4),aggj1(3,4),a_temp(2,2),muij(4)
3211       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3212      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3213      &    num_conti,j1,j2
3214 c 4/26/02 - AL scaling factor for 1,4 repulsive VDW interactions
3215 #ifdef MOMENT
3216       double precision scal_el /1.0d0/
3217 #else
3218       double precision scal_el /0.5d0/
3219 #endif
3220 C 12/13/98 
3221 C 13-go grudnia roku pamietnego... 
3222       double precision unmat(3,3) /1.0d0,0.0d0,0.0d0,
3223      &                   0.0d0,1.0d0,0.0d0,
3224      &                   0.0d0,0.0d0,1.0d0/
3225 c          time00=MPI_Wtime()
3226 cd      write (iout,*) "eelecij",i,j
3227 c          ind=ind+1
3228           iteli=itel(i)
3229           itelj=itel(j)
3230           if (j.eq.i+2 .and. itelj.eq.2) iteli=2
3231           aaa=app(iteli,itelj)
3232           bbb=bpp(iteli,itelj)
3233           ael6i=ael6(iteli,itelj)
3234           ael3i=ael3(iteli,itelj) 
3235           dxj=dc(1,j)
3236           dyj=dc(2,j)
3237           dzj=dc(3,j)
3238           dx_normj=dc_norm(1,j)
3239           dy_normj=dc_norm(2,j)
3240           dz_normj=dc_norm(3,j)
3241           xj=c(1,j)+0.5D0*dxj-xmedi
3242           yj=c(2,j)+0.5D0*dyj-ymedi
3243           zj=c(3,j)+0.5D0*dzj-zmedi
3244           rij=xj*xj+yj*yj+zj*zj
3245           rrmij=1.0D0/rij
3246           rij=dsqrt(rij)
3247           rmij=1.0D0/rij
3248           r3ij=rrmij*rmij
3249           r6ij=r3ij*r3ij  
3250           cosa=dx_normi*dx_normj+dy_normi*dy_normj+dz_normi*dz_normj
3251           cosb=(xj*dx_normi+yj*dy_normi+zj*dz_normi)*rmij
3252           cosg=(xj*dx_normj+yj*dy_normj+zj*dz_normj)*rmij
3253           fac=cosa-3.0D0*cosb*cosg
3254           ev1=aaa*r6ij*r6ij
3255 c 4/26/02 - AL scaling down 1,4 repulsive VDW interactions
3256           if (j.eq.i+2) ev1=scal_el*ev1
3257           ev2=bbb*r6ij
3258           fac3=ael6i*r6ij
3259           fac4=ael3i*r3ij
3260           evdwij=ev1+ev2
3261           el1=fac3*(4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg))
3262           el2=fac4*fac       
3263           eesij=el1+el2
3264 C 12/26/95 - for the evaluation of multi-body H-bonding interactions
3265           ees0ij=4.0D0+fac*fac-3.0D0*(cosb*cosb+cosg*cosg)
3266           ees=ees+eesij
3267           evdw1=evdw1+evdwij
3268 cd          write(iout,'(2(2i3,2x),7(1pd12.4)/2(3(1pd12.4),5x)/)')
3269 cd     &      iteli,i,itelj,j,aaa,bbb,ael6i,ael3i,
3270 cd     &      1.0D0/dsqrt(rrmij),evdwij,eesij,
3271 cd     &      xmedi,ymedi,zmedi,xj,yj,zj
3272
3273           if (energy_dec) then 
3274               write (iout,'(a6,2i5,0pf7.3)') 'evdw1',i,j,evdwij
3275               write (iout,'(a6,2i5,0pf7.3)') 'ees',i,j,eesij
3276           endif
3277
3278 C
3279 C Calculate contributions to the Cartesian gradient.
3280 C
3281 #ifdef SPLITELE
3282           facvdw=-6*rrmij*(ev1+evdwij)
3283           facel=-3*rrmij*(el1+eesij)
3284           fac1=fac
3285           erij(1)=xj*rmij
3286           erij(2)=yj*rmij
3287           erij(3)=zj*rmij
3288 *
3289 * Radial derivatives. First process both termini of the fragment (i,j)
3290 *
3291           ggg(1)=facel*xj
3292           ggg(2)=facel*yj
3293           ggg(3)=facel*zj
3294 c          do k=1,3
3295 c            ghalf=0.5D0*ggg(k)
3296 c            gelc(k,i)=gelc(k,i)+ghalf
3297 c            gelc(k,j)=gelc(k,j)+ghalf
3298 c          enddo
3299 c 9/28/08 AL Gradient compotents will be summed only at the end
3300           do k=1,3
3301             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3302             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3303           enddo
3304 *
3305 * Loop over residues i+1 thru j-1.
3306 *
3307 cgrad          do k=i+1,j-1
3308 cgrad            do l=1,3
3309 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3310 cgrad            enddo
3311 cgrad          enddo
3312           ggg(1)=facvdw*xj
3313           ggg(2)=facvdw*yj
3314           ggg(3)=facvdw*zj
3315 c          do k=1,3
3316 c            ghalf=0.5D0*ggg(k)
3317 c            gvdwpp(k,i)=gvdwpp(k,i)+ghalf
3318 c            gvdwpp(k,j)=gvdwpp(k,j)+ghalf
3319 c          enddo
3320 c 9/28/08 AL Gradient compotents will be summed only at the end
3321           do k=1,3
3322             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3323             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3324           enddo
3325 *
3326 * Loop over residues i+1 thru j-1.
3327 *
3328 cgrad          do k=i+1,j-1
3329 cgrad            do l=1,3
3330 cgrad              gvdwpp(l,k)=gvdwpp(l,k)+ggg(l)
3331 cgrad            enddo
3332 cgrad          enddo
3333 #else
3334           facvdw=ev1+evdwij 
3335           facel=el1+eesij  
3336           fac1=fac
3337           fac=-3*rrmij*(facvdw+facvdw+facel)
3338           erij(1)=xj*rmij
3339           erij(2)=yj*rmij
3340           erij(3)=zj*rmij
3341 *
3342 * Radial derivatives. First process both termini of the fragment (i,j)
3343
3344           ggg(1)=fac*xj
3345           ggg(2)=fac*yj
3346           ggg(3)=fac*zj
3347 c          do k=1,3
3348 c            ghalf=0.5D0*ggg(k)
3349 c            gelc(k,i)=gelc(k,i)+ghalf
3350 c            gelc(k,j)=gelc(k,j)+ghalf
3351 c          enddo
3352 c 9/28/08 AL Gradient compotents will be summed only at the end
3353           do k=1,3
3354             gelc_long(k,j)=gelc(k,j)+ggg(k)
3355             gelc_long(k,i)=gelc(k,i)-ggg(k)
3356           enddo
3357 *
3358 * Loop over residues i+1 thru j-1.
3359 *
3360 cgrad          do k=i+1,j-1
3361 cgrad            do l=1,3
3362 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3363 cgrad            enddo
3364 cgrad          enddo
3365 c 9/28/08 AL Gradient compotents will be summed only at the end
3366           ggg(1)=facvdw*xj
3367           ggg(2)=facvdw*yj
3368           ggg(3)=facvdw*zj
3369           do k=1,3
3370             gvdwpp(k,j)=gvdwpp(k,j)+ggg(k)
3371             gvdwpp(k,i)=gvdwpp(k,i)-ggg(k)
3372           enddo
3373 #endif
3374 *
3375 * Angular part
3376 *          
3377           ecosa=2.0D0*fac3*fac1+fac4
3378           fac4=-3.0D0*fac4
3379           fac3=-6.0D0*fac3
3380           ecosb=(fac3*(fac1*cosg+cosb)+cosg*fac4)
3381           ecosg=(fac3*(fac1*cosb+cosg)+cosb*fac4)
3382           do k=1,3
3383             dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3384             dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3385           enddo
3386 cd        print '(2i3,2(3(1pd14.5),3x))',i,j,(dcosb(k),k=1,3),
3387 cd   &          (dcosg(k),k=1,3)
3388           do k=1,3
3389             ggg(k)=ecosb*dcosb(k)+ecosg*dcosg(k) 
3390           enddo
3391 c          do k=1,3
3392 c            ghalf=0.5D0*ggg(k)
3393 c            gelc(k,i)=gelc(k,i)+ghalf
3394 c     &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3395 c     &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3396 c            gelc(k,j)=gelc(k,j)+ghalf
3397 c     &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3398 c     &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3399 c          enddo
3400 cgrad          do k=i+1,j-1
3401 cgrad            do l=1,3
3402 cgrad              gelc(l,k)=gelc(l,k)+ggg(l)
3403 cgrad            enddo
3404 cgrad          enddo
3405           do k=1,3
3406             gelc(k,i)=gelc(k,i)
3407      &               +(ecosa*(dc_norm(k,j)-cosa*dc_norm(k,i))
3408      &               + ecosb*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3409             gelc(k,j)=gelc(k,j)
3410      &               +(ecosa*(dc_norm(k,i)-cosa*dc_norm(k,j))
3411      &               + ecosg*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3412             gelc_long(k,j)=gelc_long(k,j)+ggg(k)
3413             gelc_long(k,i)=gelc_long(k,i)-ggg(k)
3414           enddo
3415           IF (wel_loc.gt.0.0d0 .or. wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0
3416      &        .or. wcorr6.gt.0.0d0 .or. wturn3.gt.0.0d0 
3417      &        .or. wturn4.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3418 C
3419 C 9/25/99 Mixed third-order local-electrostatic terms. The local-interaction 
3420 C   energy of a peptide unit is assumed in the form of a second-order 
3421 C   Fourier series in the angles lambda1 and lambda2 (see Nishikawa et al.
3422 C   Macromolecules, 1974, 7, 797-806 for definition). This correlation terms
3423 C   are computed for EVERY pair of non-contiguous peptide groups.
3424 C
3425           if (j.lt.nres-1) then
3426             j1=j+1
3427             j2=j-1
3428           else
3429             j1=j-1
3430             j2=j-2
3431           endif
3432           kkk=0
3433           do k=1,2
3434             do l=1,2
3435               kkk=kkk+1
3436               muij(kkk)=mu(k,i)*mu(l,j)
3437             enddo
3438           enddo  
3439 cd         write (iout,*) 'EELEC: i',i,' j',j
3440 cd          write (iout,*) 'j',j,' j1',j1,' j2',j2
3441 cd          write(iout,*) 'muij',muij
3442           ury=scalar(uy(1,i),erij)
3443           urz=scalar(uz(1,i),erij)
3444           vry=scalar(uy(1,j),erij)
3445           vrz=scalar(uz(1,j),erij)
3446           a22=scalar(uy(1,i),uy(1,j))-3*ury*vry
3447           a23=scalar(uy(1,i),uz(1,j))-3*ury*vrz
3448           a32=scalar(uz(1,i),uy(1,j))-3*urz*vry
3449           a33=scalar(uz(1,i),uz(1,j))-3*urz*vrz
3450           fac=dsqrt(-ael6i)*r3ij
3451           a22=a22*fac
3452           a23=a23*fac
3453           a32=a32*fac
3454           a33=a33*fac
3455 cd          write (iout,'(4i5,4f10.5)')
3456 cd     &     i,itortyp(itype(i)),j,itortyp(itype(j)),a22,a23,a32,a33
3457 cd          write (iout,'(6f10.5)') (muij(k),k=1,4),fac,eel_loc_ij
3458 cd          write (iout,'(2(3f10.5,5x)/2(3f10.5,5x))') uy(:,i),uz(:,i),
3459 cd     &      uy(:,j),uz(:,j)
3460 cd          write (iout,'(4f10.5)') 
3461 cd     &      scalar(uy(1,i),uy(1,j)),scalar(uy(1,i),uz(1,j)),
3462 cd     &      scalar(uz(1,i),uy(1,j)),scalar(uz(1,i),uz(1,j))
3463 cd          write (iout,'(4f10.5)') ury,urz,vry,vrz
3464 cd           write (iout,'(9f10.5/)') 
3465 cd     &      fac22,a22,fac23,a23,fac32,a32,fac33,a33,eel_loc_ij
3466 C Derivatives of the elements of A in virtual-bond vectors
3467           call unormderiv(erij(1),unmat(1,1),rmij,erder(1,1))
3468           do k=1,3
3469             uryg(k,1)=scalar(erder(1,k),uy(1,i))
3470             uryg(k,2)=scalar(uygrad(1,k,1,i),erij(1))
3471             uryg(k,3)=scalar(uygrad(1,k,2,i),erij(1))
3472             urzg(k,1)=scalar(erder(1,k),uz(1,i))
3473             urzg(k,2)=scalar(uzgrad(1,k,1,i),erij(1))
3474             urzg(k,3)=scalar(uzgrad(1,k,2,i),erij(1))
3475             vryg(k,1)=scalar(erder(1,k),uy(1,j))
3476             vryg(k,2)=scalar(uygrad(1,k,1,j),erij(1))
3477             vryg(k,3)=scalar(uygrad(1,k,2,j),erij(1))
3478             vrzg(k,1)=scalar(erder(1,k),uz(1,j))
3479             vrzg(k,2)=scalar(uzgrad(1,k,1,j),erij(1))
3480             vrzg(k,3)=scalar(uzgrad(1,k,2,j),erij(1))
3481           enddo
3482 C Compute radial contributions to the gradient
3483           facr=-3.0d0*rrmij
3484           a22der=a22*facr
3485           a23der=a23*facr
3486           a32der=a32*facr
3487           a33der=a33*facr
3488           agg(1,1)=a22der*xj
3489           agg(2,1)=a22der*yj
3490           agg(3,1)=a22der*zj
3491           agg(1,2)=a23der*xj
3492           agg(2,2)=a23der*yj
3493           agg(3,2)=a23der*zj
3494           agg(1,3)=a32der*xj
3495           agg(2,3)=a32der*yj
3496           agg(3,3)=a32der*zj
3497           agg(1,4)=a33der*xj
3498           agg(2,4)=a33der*yj
3499           agg(3,4)=a33der*zj
3500 C Add the contributions coming from er
3501           fac3=-3.0d0*fac
3502           do k=1,3
3503             agg(k,1)=agg(k,1)+fac3*(uryg(k,1)*vry+vryg(k,1)*ury)
3504             agg(k,2)=agg(k,2)+fac3*(uryg(k,1)*vrz+vrzg(k,1)*ury)
3505             agg(k,3)=agg(k,3)+fac3*(urzg(k,1)*vry+vryg(k,1)*urz)
3506             agg(k,4)=agg(k,4)+fac3*(urzg(k,1)*vrz+vrzg(k,1)*urz)
3507           enddo
3508           do k=1,3
3509 C Derivatives in DC(i) 
3510 cgrad            ghalf1=0.5d0*agg(k,1)
3511 cgrad            ghalf2=0.5d0*agg(k,2)
3512 cgrad            ghalf3=0.5d0*agg(k,3)
3513 cgrad            ghalf4=0.5d0*agg(k,4)
3514             aggi(k,1)=fac*(scalar(uygrad(1,k,1,i),uy(1,j))
3515      &      -3.0d0*uryg(k,2)*vry)!+ghalf1
3516             aggi(k,2)=fac*(scalar(uygrad(1,k,1,i),uz(1,j))
3517      &      -3.0d0*uryg(k,2)*vrz)!+ghalf2
3518             aggi(k,3)=fac*(scalar(uzgrad(1,k,1,i),uy(1,j))
3519      &      -3.0d0*urzg(k,2)*vry)!+ghalf3
3520             aggi(k,4)=fac*(scalar(uzgrad(1,k,1,i),uz(1,j))
3521      &      -3.0d0*urzg(k,2)*vrz)!+ghalf4
3522 C Derivatives in DC(i+1)
3523             aggi1(k,1)=fac*(scalar(uygrad(1,k,2,i),uy(1,j))
3524      &      -3.0d0*uryg(k,3)*vry)!+agg(k,1)
3525             aggi1(k,2)=fac*(scalar(uygrad(1,k,2,i),uz(1,j))
3526      &      -3.0d0*uryg(k,3)*vrz)!+agg(k,2)
3527             aggi1(k,3)=fac*(scalar(uzgrad(1,k,2,i),uy(1,j))
3528      &      -3.0d0*urzg(k,3)*vry)!+agg(k,3)
3529             aggi1(k,4)=fac*(scalar(uzgrad(1,k,2,i),uz(1,j))
3530      &      -3.0d0*urzg(k,3)*vrz)!+agg(k,4)
3531 C Derivatives in DC(j)
3532             aggj(k,1)=fac*(scalar(uygrad(1,k,1,j),uy(1,i))
3533      &      -3.0d0*vryg(k,2)*ury)!+ghalf1
3534             aggj(k,2)=fac*(scalar(uzgrad(1,k,1,j),uy(1,i))
3535      &      -3.0d0*vrzg(k,2)*ury)!+ghalf2
3536             aggj(k,3)=fac*(scalar(uygrad(1,k,1,j),uz(1,i))
3537      &      -3.0d0*vryg(k,2)*urz)!+ghalf3
3538             aggj(k,4)=fac*(scalar(uzgrad(1,k,1,j),uz(1,i)) 
3539      &      -3.0d0*vrzg(k,2)*urz)!+ghalf4
3540 C Derivatives in DC(j+1) or DC(nres-1)
3541             aggj1(k,1)=fac*(scalar(uygrad(1,k,2,j),uy(1,i))
3542      &      -3.0d0*vryg(k,3)*ury)
3543             aggj1(k,2)=fac*(scalar(uzgrad(1,k,2,j),uy(1,i))
3544      &      -3.0d0*vrzg(k,3)*ury)
3545             aggj1(k,3)=fac*(scalar(uygrad(1,k,2,j),uz(1,i))
3546      &      -3.0d0*vryg(k,3)*urz)
3547             aggj1(k,4)=fac*(scalar(uzgrad(1,k,2,j),uz(1,i)) 
3548      &      -3.0d0*vrzg(k,3)*urz)
3549 cgrad            if (j.eq.nres-1 .and. i.lt.j-2) then
3550 cgrad              do l=1,4
3551 cgrad                aggj1(k,l)=aggj1(k,l)+agg(k,l)
3552 cgrad              enddo
3553 cgrad            endif
3554           enddo
3555           acipa(1,1)=a22
3556           acipa(1,2)=a23
3557           acipa(2,1)=a32
3558           acipa(2,2)=a33
3559           a22=-a22
3560           a23=-a23
3561           do l=1,2
3562             do k=1,3
3563               agg(k,l)=-agg(k,l)
3564               aggi(k,l)=-aggi(k,l)
3565               aggi1(k,l)=-aggi1(k,l)
3566               aggj(k,l)=-aggj(k,l)
3567               aggj1(k,l)=-aggj1(k,l)
3568             enddo
3569           enddo
3570           if (j.lt.nres-1) then
3571             a22=-a22
3572             a32=-a32
3573             do l=1,3,2
3574               do k=1,3
3575                 agg(k,l)=-agg(k,l)
3576                 aggi(k,l)=-aggi(k,l)
3577                 aggi1(k,l)=-aggi1(k,l)
3578                 aggj(k,l)=-aggj(k,l)
3579                 aggj1(k,l)=-aggj1(k,l)
3580               enddo
3581             enddo
3582           else
3583             a22=-a22
3584             a23=-a23
3585             a32=-a32
3586             a33=-a33
3587             do l=1,4
3588               do k=1,3
3589                 agg(k,l)=-agg(k,l)
3590                 aggi(k,l)=-aggi(k,l)
3591                 aggi1(k,l)=-aggi1(k,l)
3592                 aggj(k,l)=-aggj(k,l)
3593                 aggj1(k,l)=-aggj1(k,l)
3594               enddo
3595             enddo 
3596           endif    
3597           ENDIF ! WCORR
3598           IF (wel_loc.gt.0.0d0) THEN
3599 C Contribution to the local-electrostatic energy coming from the i-j pair
3600           eel_loc_ij=a22*muij(1)+a23*muij(2)+a32*muij(3)
3601      &     +a33*muij(4)
3602 cd          write (iout,*) 'i',i,' j',j,' eel_loc_ij',eel_loc_ij
3603
3604           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3605      &            'eelloc',i,j,eel_loc_ij
3606
3607           eel_loc=eel_loc+eel_loc_ij
3608 C Partial derivatives in virtual-bond dihedral angles gamma
3609           if (i.gt.1)
3610      &    gel_loc_loc(i-1)=gel_loc_loc(i-1)+ 
3611      &            a22*muder(1,i)*mu(1,j)+a23*muder(1,i)*mu(2,j)
3612      &           +a32*muder(2,i)*mu(1,j)+a33*muder(2,i)*mu(2,j)
3613           gel_loc_loc(j-1)=gel_loc_loc(j-1)+ 
3614      &            a22*mu(1,i)*muder(1,j)+a23*mu(1,i)*muder(2,j)
3615      &           +a32*mu(2,i)*muder(1,j)+a33*mu(2,i)*muder(2,j)
3616 C Derivatives of eello in DC(i+1) thru DC(j-1) or DC(nres-2)
3617           do l=1,3
3618             ggg(l)=agg(l,1)*muij(1)+
3619      &          agg(l,2)*muij(2)+agg(l,3)*muij(3)+agg(l,4)*muij(4)
3620             gel_loc_long(l,j)=gel_loc_long(l,j)+ggg(l)
3621             gel_loc_long(l,i)=gel_loc_long(l,i)-ggg(l)
3622 cgrad            ghalf=0.5d0*ggg(l)
3623 cgrad            gel_loc(l,i)=gel_loc(l,i)+ghalf
3624 cgrad            gel_loc(l,j)=gel_loc(l,j)+ghalf
3625           enddo
3626 cgrad          do k=i+1,j2
3627 cgrad            do l=1,3
3628 cgrad              gel_loc(l,k)=gel_loc(l,k)+ggg(l)
3629 cgrad            enddo
3630 cgrad          enddo
3631 C Remaining derivatives of eello
3632           do l=1,3
3633             gel_loc(l,i)=gel_loc(l,i)+aggi(l,1)*muij(1)+
3634      &          aggi(l,2)*muij(2)+aggi(l,3)*muij(3)+aggi(l,4)*muij(4)
3635             gel_loc(l,i+1)=gel_loc(l,i+1)+aggi1(l,1)*muij(1)+
3636      &          aggi1(l,2)*muij(2)+aggi1(l,3)*muij(3)+aggi1(l,4)*muij(4)
3637             gel_loc(l,j)=gel_loc(l,j)+aggj(l,1)*muij(1)+
3638      &          aggj(l,2)*muij(2)+aggj(l,3)*muij(3)+aggj(l,4)*muij(4)
3639             gel_loc(l,j1)=gel_loc(l,j1)+aggj1(l,1)*muij(1)+
3640      &          aggj1(l,2)*muij(2)+aggj1(l,3)*muij(3)+aggj1(l,4)*muij(4)
3641           enddo
3642           ENDIF
3643 C Change 12/26/95 to calculate four-body contributions to H-bonding energy
3644 c          if (j.gt.i+1 .and. num_conti.le.maxconts) then
3645           if (wcorr+wcorr4+wcorr5+wcorr6.gt.0.0d0
3646      &       .and. num_conti.le.maxconts) then
3647 c            write (iout,*) i,j," entered corr"
3648 C
3649 C Calculate the contact function. The ith column of the array JCONT will 
3650 C contain the numbers of atoms that make contacts with the atom I (of numbers
3651 C greater than I). The arrays FACONT and GACONT will contain the values of
3652 C the contact function and its derivative.
3653 c           r0ij=1.02D0*rpp(iteli,itelj)
3654 c           r0ij=1.11D0*rpp(iteli,itelj)
3655             r0ij=2.20D0*rpp(iteli,itelj)
3656 c           r0ij=1.55D0*rpp(iteli,itelj)
3657             call gcont(rij,r0ij,1.0D0,0.2d0*r0ij,fcont,fprimcont)
3658             if (fcont.gt.0.0D0) then
3659               num_conti=num_conti+1
3660               if (num_conti.gt.maxconts) then
3661                 write (iout,*) 'WARNING - max. # of contacts exceeded;',
3662      &                         ' will skip next contacts for this conf.'
3663               else
3664                 jcont_hb(num_conti,i)=j
3665 cd                write (iout,*) "i",i," j",j," num_conti",num_conti,
3666 cd     &           " jcont_hb",jcont_hb(num_conti,i)
3667                 IF (wcorr4.gt.0.0d0 .or. wcorr5.gt.0.0d0 .or. 
3668      &          wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) THEN
3669 C 9/30/99 (AL) - store components necessary to evaluate higher-order loc-el
3670 C  terms.
3671                 d_cont(num_conti,i)=rij
3672 cd                write (2,'(3e15.5)') rij,r0ij+0.2d0*r0ij,rij
3673 C     --- Electrostatic-interaction matrix --- 
3674                 a_chuj(1,1,num_conti,i)=a22
3675                 a_chuj(1,2,num_conti,i)=a23
3676                 a_chuj(2,1,num_conti,i)=a32
3677                 a_chuj(2,2,num_conti,i)=a33
3678 C     --- Gradient of rij
3679                 do kkk=1,3
3680                   grij_hb_cont(kkk,num_conti,i)=erij(kkk)
3681                 enddo
3682                 kkll=0
3683                 do k=1,2
3684                   do l=1,2
3685                     kkll=kkll+1
3686                     do m=1,3
3687                       a_chuj_der(k,l,m,1,num_conti,i)=agg(m,kkll)
3688                       a_chuj_der(k,l,m,2,num_conti,i)=aggi(m,kkll)
3689                       a_chuj_der(k,l,m,3,num_conti,i)=aggi1(m,kkll)
3690                       a_chuj_der(k,l,m,4,num_conti,i)=aggj(m,kkll)
3691                       a_chuj_der(k,l,m,5,num_conti,i)=aggj1(m,kkll)
3692                     enddo
3693                   enddo
3694                 enddo
3695                 ENDIF
3696                 IF (wcorr4.eq.0.0d0 .and. wcorr.gt.0.0d0) THEN
3697 C Calculate contact energies
3698                 cosa4=4.0D0*cosa
3699                 wij=cosa-3.0D0*cosb*cosg
3700                 cosbg1=cosb+cosg
3701                 cosbg2=cosb-cosg
3702 c               fac3=dsqrt(-ael6i)/r0ij**3     
3703                 fac3=dsqrt(-ael6i)*r3ij
3704 c                 ees0pij=dsqrt(4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1)
3705                 ees0tmp=4.0D0+cosa4+wij*wij-3.0D0*cosbg1*cosbg1
3706                 if (ees0tmp.gt.0) then
3707                   ees0pij=dsqrt(ees0tmp)
3708                 else
3709                   ees0pij=0
3710                 endif
3711 c                ees0mij=dsqrt(4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2)
3712                 ees0tmp=4.0D0-cosa4+wij*wij-3.0D0*cosbg2*cosbg2
3713                 if (ees0tmp.gt.0) then
3714                   ees0mij=dsqrt(ees0tmp)
3715                 else
3716                   ees0mij=0
3717                 endif
3718 c               ees0mij=0.0D0
3719                 ees0p(num_conti,i)=0.5D0*fac3*(ees0pij+ees0mij)
3720                 ees0m(num_conti,i)=0.5D0*fac3*(ees0pij-ees0mij)
3721 C Diagnostics. Comment out or remove after debugging!
3722 c               ees0p(num_conti,i)=0.5D0*fac3*ees0pij
3723 c               ees0m(num_conti,i)=0.5D0*fac3*ees0mij
3724 c               ees0m(num_conti,i)=0.0D0
3725 C End diagnostics.
3726 c               write (iout,*) 'i=',i,' j=',j,' rij=',rij,' r0ij=',r0ij,
3727 c    & ' ees0ij=',ees0p(num_conti,i),ees0m(num_conti,i),' fcont=',fcont
3728 C Angular derivatives of the contact function
3729                 ees0pij1=fac3/ees0pij 
3730                 ees0mij1=fac3/ees0mij
3731                 fac3p=-3.0D0*fac3*rrmij
3732                 ees0pijp=0.5D0*fac3p*(ees0pij+ees0mij)
3733                 ees0mijp=0.5D0*fac3p*(ees0pij-ees0mij)
3734 c               ees0mij1=0.0D0
3735                 ecosa1=       ees0pij1*( 1.0D0+0.5D0*wij)
3736                 ecosb1=-1.5D0*ees0pij1*(wij*cosg+cosbg1)
3737                 ecosg1=-1.5D0*ees0pij1*(wij*cosb+cosbg1)
3738                 ecosa2=       ees0mij1*(-1.0D0+0.5D0*wij)
3739                 ecosb2=-1.5D0*ees0mij1*(wij*cosg+cosbg2) 
3740                 ecosg2=-1.5D0*ees0mij1*(wij*cosb-cosbg2)
3741                 ecosap=ecosa1+ecosa2
3742                 ecosbp=ecosb1+ecosb2
3743                 ecosgp=ecosg1+ecosg2
3744                 ecosam=ecosa1-ecosa2
3745                 ecosbm=ecosb1-ecosb2
3746                 ecosgm=ecosg1-ecosg2
3747 C Diagnostics
3748 c               ecosap=ecosa1
3749 c               ecosbp=ecosb1
3750 c               ecosgp=ecosg1
3751 c               ecosam=0.0D0
3752 c               ecosbm=0.0D0
3753 c               ecosgm=0.0D0
3754 C End diagnostics
3755                 facont_hb(num_conti,i)=fcont
3756                 fprimcont=fprimcont/rij
3757 cd              facont_hb(num_conti,i)=1.0D0
3758 C Following line is for diagnostics.
3759 cd              fprimcont=0.0D0
3760                 do k=1,3
3761                   dcosb(k)=rmij*(dc_norm(k,i)-erij(k)*cosb)
3762                   dcosg(k)=rmij*(dc_norm(k,j)-erij(k)*cosg)
3763                 enddo
3764                 do k=1,3
3765                   gggp(k)=ecosbp*dcosb(k)+ecosgp*dcosg(k)
3766                   gggm(k)=ecosbm*dcosb(k)+ecosgm*dcosg(k)
3767                 enddo
3768                 gggp(1)=gggp(1)+ees0pijp*xj
3769                 gggp(2)=gggp(2)+ees0pijp*yj
3770                 gggp(3)=gggp(3)+ees0pijp*zj
3771                 gggm(1)=gggm(1)+ees0mijp*xj
3772                 gggm(2)=gggm(2)+ees0mijp*yj
3773                 gggm(3)=gggm(3)+ees0mijp*zj
3774 C Derivatives due to the contact function
3775                 gacont_hbr(1,num_conti,i)=fprimcont*xj
3776                 gacont_hbr(2,num_conti,i)=fprimcont*yj
3777                 gacont_hbr(3,num_conti,i)=fprimcont*zj
3778                 do k=1,3
3779 c
3780 c 10/24/08 cgrad and ! comments indicate the parts of the code removed 
3781 c          following the change of gradient-summation algorithm.
3782 c
3783 cgrad                  ghalfp=0.5D0*gggp(k)
3784 cgrad                  ghalfm=0.5D0*gggm(k)
3785                   gacontp_hb1(k,num_conti,i)=!ghalfp
3786      &              +(ecosap*(dc_norm(k,j)-cosa*dc_norm(k,i))
3787      &              + ecosbp*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3788                   gacontp_hb2(k,num_conti,i)=!ghalfp
3789      &              +(ecosap*(dc_norm(k,i)-cosa*dc_norm(k,j))
3790      &              + ecosgp*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3791                   gacontp_hb3(k,num_conti,i)=gggp(k)
3792                   gacontm_hb1(k,num_conti,i)=!ghalfm
3793      &              +(ecosam*(dc_norm(k,j)-cosa*dc_norm(k,i))
3794      &              + ecosbm*(erij(k)-cosb*dc_norm(k,i)))*vbld_inv(i+1)
3795                   gacontm_hb2(k,num_conti,i)=!ghalfm
3796      &              +(ecosam*(dc_norm(k,i)-cosa*dc_norm(k,j))
3797      &              + ecosgm*(erij(k)-cosg*dc_norm(k,j)))*vbld_inv(j+1)
3798                   gacontm_hb3(k,num_conti,i)=gggm(k)
3799                 enddo
3800 C Diagnostics. Comment out or remove after debugging!
3801 cdiag           do k=1,3
3802 cdiag             gacontp_hb1(k,num_conti,i)=0.0D0
3803 cdiag             gacontp_hb2(k,num_conti,i)=0.0D0
3804 cdiag             gacontp_hb3(k,num_conti,i)=0.0D0
3805 cdiag             gacontm_hb1(k,num_conti,i)=0.0D0
3806 cdiag             gacontm_hb2(k,num_conti,i)=0.0D0
3807 cdiag             gacontm_hb3(k,num_conti,i)=0.0D0
3808 cdiag           enddo
3809               ENDIF ! wcorr
3810               endif  ! num_conti.le.maxconts
3811             endif  ! fcont.gt.0
3812           endif    ! j.gt.i+1
3813           if (wturn3.gt.0.0d0 .or. wturn4.gt.0.0d0) then
3814             do k=1,4
3815               do l=1,3
3816                 ghalf=0.5d0*agg(l,k)
3817                 aggi(l,k)=aggi(l,k)+ghalf
3818                 aggi1(l,k)=aggi1(l,k)+agg(l,k)
3819                 aggj(l,k)=aggj(l,k)+ghalf
3820               enddo
3821             enddo
3822             if (j.eq.nres-1 .and. i.lt.j-2) then
3823               do k=1,4
3824                 do l=1,3
3825                   aggj1(l,k)=aggj1(l,k)+agg(l,k)
3826                 enddo
3827               enddo
3828             endif
3829           endif
3830 c          t_eelecij=t_eelecij+MPI_Wtime()-time00
3831       return
3832       end
3833 C-----------------------------------------------------------------------------
3834       subroutine eturn3(i,eello_turn3)
3835 C Third- and fourth-order contributions from turns
3836       implicit real*8 (a-h,o-z)
3837       include 'DIMENSIONS'
3838       include 'COMMON.IOUNITS'
3839       include 'COMMON.GEO'
3840       include 'COMMON.VAR'
3841       include 'COMMON.LOCAL'
3842       include 'COMMON.CHAIN'
3843       include 'COMMON.DERIV'
3844       include 'COMMON.INTERACT'
3845       include 'COMMON.CONTACTS'
3846       include 'COMMON.TORSION'
3847       include 'COMMON.VECTORS'
3848       include 'COMMON.FFIELD'
3849       include 'COMMON.CONTROL'
3850       dimension ggg(3)
3851       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3852      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3853      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3854       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3855      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3856       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3857      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3858      &    num_conti,j1,j2
3859       j=i+2
3860 c      write (iout,*) "eturn3",i,j,j1,j2
3861       a_temp(1,1)=a22
3862       a_temp(1,2)=a23
3863       a_temp(2,1)=a32
3864       a_temp(2,2)=a33
3865 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3866 C
3867 C               Third-order contributions
3868 C        
3869 C                 (i+2)o----(i+3)
3870 C                      | |
3871 C                      | |
3872 C                 (i+1)o----i
3873 C
3874 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3875 cd        call checkint_turn3(i,a_temp,eello_turn3_num)
3876         call matmat2(EUg(1,1,i+1),EUg(1,1,i+2),auxmat(1,1))
3877         call transpose2(auxmat(1,1),auxmat1(1,1))
3878         call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3879         eello_turn3=eello_turn3+0.5d0*(pizda(1,1)+pizda(2,2))
3880         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3881      &          'eturn3',i,j,0.5d0*(pizda(1,1)+pizda(2,2))
3882 cd        write (2,*) 'i,',i,' j',j,'eello_turn3',
3883 cd     &    0.5d0*(pizda(1,1)+pizda(2,2)),
3884 cd     &    ' eello_turn3_num',4*eello_turn3_num
3885 C Derivatives in gamma(i)
3886         call matmat2(EUgder(1,1,i+1),EUg(1,1,i+2),auxmat2(1,1))
3887         call transpose2(auxmat2(1,1),auxmat3(1,1))
3888         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3889         gel_loc_turn3(i)=gel_loc_turn3(i)+0.5d0*(pizda(1,1)+pizda(2,2))
3890 C Derivatives in gamma(i+1)
3891         call matmat2(EUg(1,1,i+1),EUgder(1,1,i+2),auxmat2(1,1))
3892         call transpose2(auxmat2(1,1),auxmat3(1,1))
3893         call matmat2(a_temp(1,1),auxmat3(1,1),pizda(1,1))
3894         gel_loc_turn3(i+1)=gel_loc_turn3(i+1)
3895      &    +0.5d0*(pizda(1,1)+pizda(2,2))
3896 C Cartesian derivatives
3897         do l=1,3
3898 c            ghalf1=0.5d0*agg(l,1)
3899 c            ghalf2=0.5d0*agg(l,2)
3900 c            ghalf3=0.5d0*agg(l,3)
3901 c            ghalf4=0.5d0*agg(l,4)
3902           a_temp(1,1)=aggi(l,1)!+ghalf1
3903           a_temp(1,2)=aggi(l,2)!+ghalf2
3904           a_temp(2,1)=aggi(l,3)!+ghalf3
3905           a_temp(2,2)=aggi(l,4)!+ghalf4
3906           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3907           gcorr3_turn(l,i)=gcorr3_turn(l,i)
3908      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3909           a_temp(1,1)=aggi1(l,1)!+agg(l,1)
3910           a_temp(1,2)=aggi1(l,2)!+agg(l,2)
3911           a_temp(2,1)=aggi1(l,3)!+agg(l,3)
3912           a_temp(2,2)=aggi1(l,4)!+agg(l,4)
3913           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3914           gcorr3_turn(l,i+1)=gcorr3_turn(l,i+1)
3915      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3916           a_temp(1,1)=aggj(l,1)!+ghalf1
3917           a_temp(1,2)=aggj(l,2)!+ghalf2
3918           a_temp(2,1)=aggj(l,3)!+ghalf3
3919           a_temp(2,2)=aggj(l,4)!+ghalf4
3920           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3921           gcorr3_turn(l,j)=gcorr3_turn(l,j)
3922      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3923           a_temp(1,1)=aggj1(l,1)
3924           a_temp(1,2)=aggj1(l,2)
3925           a_temp(2,1)=aggj1(l,3)
3926           a_temp(2,2)=aggj1(l,4)
3927           call matmat2(a_temp(1,1),auxmat1(1,1),pizda(1,1))
3928           gcorr3_turn(l,j1)=gcorr3_turn(l,j1)
3929      &      +0.5d0*(pizda(1,1)+pizda(2,2))
3930         enddo
3931       return
3932       end
3933 C-------------------------------------------------------------------------------
3934       subroutine eturn4(i,eello_turn4)
3935 C Third- and fourth-order contributions from turns
3936       implicit real*8 (a-h,o-z)
3937       include 'DIMENSIONS'
3938       include 'COMMON.IOUNITS'
3939       include 'COMMON.GEO'
3940       include 'COMMON.VAR'
3941       include 'COMMON.LOCAL'
3942       include 'COMMON.CHAIN'
3943       include 'COMMON.DERIV'
3944       include 'COMMON.INTERACT'
3945       include 'COMMON.CONTACTS'
3946       include 'COMMON.TORSION'
3947       include 'COMMON.VECTORS'
3948       include 'COMMON.FFIELD'
3949       include 'COMMON.CONTROL'
3950       dimension ggg(3)
3951       double precision auxmat(2,2),auxmat1(2,2),auxmat2(2,2),pizda(2,2),
3952      &  e1t(2,2),e2t(2,2),e3t(2,2),e1tder(2,2),e2tder(2,2),e3tder(2,2),
3953      &  e1a(2,2),ae3(2,2),ae3e2(2,2),auxvec(2),auxvec1(2)
3954       double precision agg(3,4),aggi(3,4),aggi1(3,4),
3955      &    aggj(3,4),aggj1(3,4),a_temp(2,2),auxmat3(2,2)
3956       common /locel/ a_temp,agg,aggi,aggi1,aggj,aggj1,a22,a23,a32,a33,
3957      &    dxi,dyi,dzi,dx_normi,dy_normi,dz_normi,xmedi,ymedi,zmedi,
3958      &    num_conti,j1,j2
3959       j=i+3
3960 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3961 C
3962 C               Fourth-order contributions
3963 C        
3964 C                 (i+3)o----(i+4)
3965 C                     /  |
3966 C               (i+2)o   |
3967 C                     \  |
3968 C                 (i+1)o----i
3969 C
3970 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC   
3971 cd        call checkint_turn4(i,a_temp,eello_turn4_num)
3972 c        write (iout,*) "eturn4 i",i," j",j," j1",j1," j2",j2
3973         a_temp(1,1)=a22
3974         a_temp(1,2)=a23
3975         a_temp(2,1)=a32
3976         a_temp(2,2)=a33
3977         iti1=itortyp(itype(i+1))
3978         iti2=itortyp(itype(i+2))
3979         iti3=itortyp(itype(i+3))
3980 c        write(iout,*) "iti1",iti1," iti2",iti2," iti3",iti3
3981         call transpose2(EUg(1,1,i+1),e1t(1,1))
3982         call transpose2(Eug(1,1,i+2),e2t(1,1))
3983         call transpose2(Eug(1,1,i+3),e3t(1,1))
3984         call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
3985         call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
3986         s1=scalar2(b1(1,iti2),auxvec(1))
3987         call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
3988         call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
3989         s2=scalar2(b1(1,iti1),auxvec(1))
3990         call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
3991         call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
3992         s3=0.5d0*(pizda(1,1)+pizda(2,2))
3993         eello_turn4=eello_turn4-(s1+s2+s3)
3994         if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
3995      &      'eturn4',i,j,-(s1+s2+s3)
3996 cd        write (2,*) 'i,',i,' j',j,'eello_turn4',-(s1+s2+s3),
3997 cd     &    ' eello_turn4_num',8*eello_turn4_num
3998 C Derivatives in gamma(i)
3999         call transpose2(EUgder(1,1,i+1),e1tder(1,1))
4000         call matmat2(e1tder(1,1),a_temp(1,1),auxmat(1,1))
4001         call matvec2(auxmat(1,1),Ub2(1,i+3),auxvec(1))
4002         s1=scalar2(b1(1,iti2),auxvec(1))
4003         call matmat2(ae3e2(1,1),e1tder(1,1),pizda(1,1))
4004         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4005         gel_loc_turn4(i)=gel_loc_turn4(i)-(s1+s3)
4006 C Derivatives in gamma(i+1)
4007         call transpose2(EUgder(1,1,i+2),e2tder(1,1))
4008         call matvec2(ae3(1,1),Ub2der(1,i+2),auxvec(1)) 
4009         s2=scalar2(b1(1,iti1),auxvec(1))
4010         call matmat2(ae3(1,1),e2tder(1,1),auxmat(1,1))
4011         call matmat2(auxmat(1,1),e1t(1,1),pizda(1,1))
4012         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4013         gel_loc_turn4(i+1)=gel_loc_turn4(i+1)-(s2+s3)
4014 C Derivatives in gamma(i+2)
4015         call transpose2(EUgder(1,1,i+3),e3tder(1,1))
4016         call matvec2(e1a(1,1),Ub2der(1,i+3),auxvec(1))
4017         s1=scalar2(b1(1,iti2),auxvec(1))
4018         call matmat2(a_temp(1,1),e3tder(1,1),auxmat(1,1))
4019         call matvec2(auxmat(1,1),Ub2(1,i+2),auxvec(1)) 
4020         s2=scalar2(b1(1,iti1),auxvec(1))
4021         call matmat2(auxmat(1,1),e2t(1,1),auxmat3(1,1))
4022         call matmat2(auxmat3(1,1),e1t(1,1),pizda(1,1))
4023         s3=0.5d0*(pizda(1,1)+pizda(2,2))
4024         gel_loc_turn4(i+2)=gel_loc_turn4(i+2)-(s1+s2+s3)
4025 C Cartesian derivatives
4026 C Derivatives of this turn contributions in DC(i+2)
4027         if (j.lt.nres-1) then
4028           do l=1,3
4029             a_temp(1,1)=agg(l,1)
4030             a_temp(1,2)=agg(l,2)
4031             a_temp(2,1)=agg(l,3)
4032             a_temp(2,2)=agg(l,4)
4033             call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4034             call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4035             s1=scalar2(b1(1,iti2),auxvec(1))
4036             call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4037             call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4038             s2=scalar2(b1(1,iti1),auxvec(1))
4039             call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4040             call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4041             s3=0.5d0*(pizda(1,1)+pizda(2,2))
4042             ggg(l)=-(s1+s2+s3)
4043             gcorr4_turn(l,i+2)=gcorr4_turn(l,i+2)-(s1+s2+s3)
4044           enddo
4045         endif
4046 C Remaining derivatives of this turn contribution
4047         do l=1,3
4048           a_temp(1,1)=aggi(l,1)
4049           a_temp(1,2)=aggi(l,2)
4050           a_temp(2,1)=aggi(l,3)
4051           a_temp(2,2)=aggi(l,4)
4052           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4053           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4054           s1=scalar2(b1(1,iti2),auxvec(1))
4055           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4056           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4057           s2=scalar2(b1(1,iti1),auxvec(1))
4058           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4059           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4060           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4061           gcorr4_turn(l,i)=gcorr4_turn(l,i)-(s1+s2+s3)
4062           a_temp(1,1)=aggi1(l,1)
4063           a_temp(1,2)=aggi1(l,2)
4064           a_temp(2,1)=aggi1(l,3)
4065           a_temp(2,2)=aggi1(l,4)
4066           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4067           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4068           s1=scalar2(b1(1,iti2),auxvec(1))
4069           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4070           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4071           s2=scalar2(b1(1,iti1),auxvec(1))
4072           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4073           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4074           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4075           gcorr4_turn(l,i+1)=gcorr4_turn(l,i+1)-(s1+s2+s3)
4076           a_temp(1,1)=aggj(l,1)
4077           a_temp(1,2)=aggj(l,2)
4078           a_temp(2,1)=aggj(l,3)
4079           a_temp(2,2)=aggj(l,4)
4080           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4081           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4082           s1=scalar2(b1(1,iti2),auxvec(1))
4083           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4084           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4085           s2=scalar2(b1(1,iti1),auxvec(1))
4086           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4087           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4088           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4089           gcorr4_turn(l,j)=gcorr4_turn(l,j)-(s1+s2+s3)
4090           a_temp(1,1)=aggj1(l,1)
4091           a_temp(1,2)=aggj1(l,2)
4092           a_temp(2,1)=aggj1(l,3)
4093           a_temp(2,2)=aggj1(l,4)
4094           call matmat2(e1t(1,1),a_temp(1,1),e1a(1,1))
4095           call matvec2(e1a(1,1),Ub2(1,i+3),auxvec(1))
4096           s1=scalar2(b1(1,iti2),auxvec(1))
4097           call matmat2(a_temp(1,1),e3t(1,1),ae3(1,1))
4098           call matvec2(ae3(1,1),Ub2(1,i+2),auxvec(1)) 
4099           s2=scalar2(b1(1,iti1),auxvec(1))
4100           call matmat2(ae3(1,1),e2t(1,1),ae3e2(1,1))
4101           call matmat2(ae3e2(1,1),e1t(1,1),pizda(1,1))
4102           s3=0.5d0*(pizda(1,1)+pizda(2,2))
4103 c          write (iout,*) "s1",s1," s2",s2," s3",s3," s1+s2+s3",s1+s2+s3
4104           gcorr4_turn(l,j1)=gcorr4_turn(l,j1)-(s1+s2+s3)
4105         enddo
4106       return
4107       end
4108 C-----------------------------------------------------------------------------
4109       subroutine vecpr(u,v,w)
4110       implicit real*8(a-h,o-z)
4111       dimension u(3),v(3),w(3)
4112       w(1)=u(2)*v(3)-u(3)*v(2)
4113       w(2)=-u(1)*v(3)+u(3)*v(1)
4114       w(3)=u(1)*v(2)-u(2)*v(1)
4115       return
4116       end
4117 C-----------------------------------------------------------------------------
4118       subroutine unormderiv(u,ugrad,unorm,ungrad)
4119 C This subroutine computes the derivatives of a normalized vector u, given
4120 C the derivatives computed without normalization conditions, ugrad. Returns
4121 C ungrad.
4122       implicit none
4123       double precision u(3),ugrad(3,3),unorm,ungrad(3,3)
4124       double precision vec(3)
4125       double precision scalar
4126       integer i,j
4127 c      write (2,*) 'ugrad',ugrad
4128 c      write (2,*) 'u',u
4129       do i=1,3
4130         vec(i)=scalar(ugrad(1,i),u(1))
4131       enddo
4132 c      write (2,*) 'vec',vec
4133       do i=1,3
4134         do j=1,3
4135           ungrad(j,i)=(ugrad(j,i)-u(j)*vec(i))*unorm
4136         enddo
4137       enddo
4138 c      write (2,*) 'ungrad',ungrad
4139       return
4140       end
4141 C-----------------------------------------------------------------------------
4142       subroutine escp_soft_sphere(evdw2,evdw2_14)
4143 C
4144 C This subroutine calculates the excluded-volume interaction energy between
4145 C peptide-group centers and side chains and its gradient in virtual-bond and
4146 C side-chain vectors.
4147 C
4148       implicit real*8 (a-h,o-z)
4149       include 'DIMENSIONS'
4150       include 'COMMON.GEO'
4151       include 'COMMON.VAR'
4152       include 'COMMON.LOCAL'
4153       include 'COMMON.CHAIN'
4154       include 'COMMON.DERIV'
4155       include 'COMMON.INTERACT'
4156       include 'COMMON.FFIELD'
4157       include 'COMMON.IOUNITS'
4158       include 'COMMON.CONTROL'
4159       dimension ggg(3)
4160       evdw2=0.0D0
4161       evdw2_14=0.0d0
4162       r0_scp=4.5d0
4163 cd    print '(a)','Enter ESCP'
4164 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4165       do i=iatscp_s,iatscp_e
4166         iteli=itel(i)
4167         xi=0.5D0*(c(1,i)+c(1,i+1))
4168         yi=0.5D0*(c(2,i)+c(2,i+1))
4169         zi=0.5D0*(c(3,i)+c(3,i+1))
4170
4171         do iint=1,nscp_gr(i)
4172
4173         do j=iscpstart(i,iint),iscpend(i,iint)
4174           itypj=itype(j)
4175 C Uncomment following three lines for SC-p interactions
4176 c         xj=c(1,nres+j)-xi
4177 c         yj=c(2,nres+j)-yi
4178 c         zj=c(3,nres+j)-zi
4179 C Uncomment following three lines for Ca-p interactions
4180           xj=c(1,j)-xi
4181           yj=c(2,j)-yi
4182           zj=c(3,j)-zi
4183           rij=xj*xj+yj*yj+zj*zj
4184           r0ij=r0_scp
4185           r0ijsq=r0ij*r0ij
4186           if (rij.lt.r0ijsq) then
4187             evdwij=0.25d0*(rij-r0ijsq)**2
4188             fac=rij-r0ijsq
4189           else
4190             evdwij=0.0d0
4191             fac=0.0d0
4192           endif 
4193           evdw2=evdw2+evdwij
4194 C
4195 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4196 C
4197           ggg(1)=xj*fac
4198           ggg(2)=yj*fac
4199           ggg(3)=zj*fac
4200 cgrad          if (j.lt.i) then
4201 cd          write (iout,*) 'j<i'
4202 C Uncomment following three lines for SC-p interactions
4203 c           do k=1,3
4204 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4205 c           enddo
4206 cgrad          else
4207 cd          write (iout,*) 'j>i'
4208 cgrad            do k=1,3
4209 cgrad              ggg(k)=-ggg(k)
4210 C Uncomment following line for SC-p interactions
4211 c             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4212 cgrad            enddo
4213 cgrad          endif
4214 cgrad          do k=1,3
4215 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4216 cgrad          enddo
4217 cgrad          kstart=min0(i+1,j)
4218 cgrad          kend=max0(i-1,j-1)
4219 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4220 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4221 cgrad          do k=kstart,kend
4222 cgrad            do l=1,3
4223 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4224 cgrad            enddo
4225 cgrad          enddo
4226           do k=1,3
4227             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4228             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4229           enddo
4230         enddo
4231
4232         enddo ! iint
4233       enddo ! i
4234       return
4235       end
4236 C-----------------------------------------------------------------------------
4237       subroutine escp(evdw2,evdw2_14)
4238 C
4239 C This subroutine calculates the excluded-volume interaction energy between
4240 C peptide-group centers and side chains and its gradient in virtual-bond and
4241 C side-chain vectors.
4242 C
4243       implicit real*8 (a-h,o-z)
4244       include 'DIMENSIONS'
4245       include 'COMMON.GEO'
4246       include 'COMMON.VAR'
4247       include 'COMMON.LOCAL'
4248       include 'COMMON.CHAIN'
4249       include 'COMMON.DERIV'
4250       include 'COMMON.INTERACT'
4251       include 'COMMON.FFIELD'
4252       include 'COMMON.IOUNITS'
4253       include 'COMMON.CONTROL'
4254       dimension ggg(3)
4255       evdw2=0.0D0
4256       evdw2_14=0.0d0
4257 cd    print '(a)','Enter ESCP'
4258 cd    write (iout,*) 'iatscp_s=',iatscp_s,' iatscp_e=',iatscp_e
4259       do i=iatscp_s,iatscp_e
4260         iteli=itel(i)
4261         xi=0.5D0*(c(1,i)+c(1,i+1))
4262         yi=0.5D0*(c(2,i)+c(2,i+1))
4263         zi=0.5D0*(c(3,i)+c(3,i+1))
4264
4265         do iint=1,nscp_gr(i)
4266
4267         do j=iscpstart(i,iint),iscpend(i,iint)
4268           itypj=itype(j)
4269 C Uncomment following three lines for SC-p interactions
4270 c         xj=c(1,nres+j)-xi
4271 c         yj=c(2,nres+j)-yi
4272 c         zj=c(3,nres+j)-zi
4273 C Uncomment following three lines for Ca-p interactions
4274           xj=c(1,j)-xi
4275           yj=c(2,j)-yi
4276           zj=c(3,j)-zi
4277           rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4278           fac=rrij**expon2
4279           e1=fac*fac*aad(itypj,iteli)
4280           e2=fac*bad(itypj,iteli)
4281           if (iabs(j-i) .le. 2) then
4282             e1=scal14*e1
4283             e2=scal14*e2
4284             evdw2_14=evdw2_14+e1+e2
4285           endif
4286           evdwij=e1+e2
4287           evdw2=evdw2+evdwij
4288           if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
4289      &        'evdw2',i,j,evdwij
4290 C
4291 C Calculate contributions to the gradient in the virtual-bond and SC vectors.
4292 C
4293           fac=-(evdwij+e1)*rrij
4294           ggg(1)=xj*fac
4295           ggg(2)=yj*fac
4296           ggg(3)=zj*fac
4297 cgrad          if (j.lt.i) then
4298 cd          write (iout,*) 'j<i'
4299 C Uncomment following three lines for SC-p interactions
4300 c           do k=1,3
4301 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4302 c           enddo
4303 cgrad          else
4304 cd          write (iout,*) 'j>i'
4305 cgrad            do k=1,3
4306 cgrad              ggg(k)=-ggg(k)
4307 C Uncomment following line for SC-p interactions
4308 ccgrad             gradx_scp(k,j)=gradx_scp(k,j)-ggg(k)
4309 c             gradx_scp(k,j)=gradx_scp(k,j)+ggg(k)
4310 cgrad            enddo
4311 cgrad          endif
4312 cgrad          do k=1,3
4313 cgrad            gvdwc_scp(k,i)=gvdwc_scp(k,i)-0.5D0*ggg(k)
4314 cgrad          enddo
4315 cgrad          kstart=min0(i+1,j)
4316 cgrad          kend=max0(i-1,j-1)
4317 cd        write (iout,*) 'i=',i,' j=',j,' kstart=',kstart,' kend=',kend
4318 cd        write (iout,*) ggg(1),ggg(2),ggg(3)
4319 cgrad          do k=kstart,kend
4320 cgrad            do l=1,3
4321 cgrad              gvdwc_scp(l,k)=gvdwc_scp(l,k)-ggg(l)
4322 cgrad            enddo
4323 cgrad          enddo
4324           do k=1,3
4325             gvdwc_scpp(k,i)=gvdwc_scpp(k,i)-ggg(k)
4326             gvdwc_scp(k,j)=gvdwc_scp(k,j)+ggg(k)
4327           enddo
4328         enddo
4329
4330         enddo ! iint
4331       enddo ! i
4332       do i=1,nct
4333         do j=1,3
4334           gvdwc_scp(j,i)=expon*gvdwc_scp(j,i)
4335           gvdwc_scpp(j,i)=expon*gvdwc_scpp(j,i)
4336           gradx_scp(j,i)=expon*gradx_scp(j,i)
4337         enddo
4338       enddo
4339 C******************************************************************************
4340 C
4341 C                              N O T E !!!
4342 C
4343 C To save time the factor EXPON has been extracted from ALL components
4344 C of GVDWC and GRADX. Remember to multiply them by this factor before further 
4345 C use!
4346 C
4347 C******************************************************************************
4348       return
4349       end
4350 C--------------------------------------------------------------------------
4351       subroutine edis(ehpb)
4352
4353 C Evaluate bridge-strain energy and its gradient in virtual-bond and SC vectors.
4354 C
4355       implicit real*8 (a-h,o-z)
4356       include 'DIMENSIONS'
4357       include 'COMMON.SBRIDGE'
4358       include 'COMMON.CHAIN'
4359       include 'COMMON.DERIV'
4360       include 'COMMON.VAR'
4361       include 'COMMON.INTERACT'
4362       include 'COMMON.IOUNITS'
4363       dimension ggg(3)
4364       ehpb=0.0D0
4365 cd      write(iout,*)'edis: nhpb=',nhpb,' fbr=',fbr
4366 cd      write(iout,*)'link_start=',link_start,' link_end=',link_end
4367       if (link_end.eq.0) return
4368       do i=link_start,link_end
4369 C If ihpb(i) and jhpb(i) > NRES, this is a SC-SC distance, otherwise a
4370 C CA-CA distance used in regularization of structure.
4371         ii=ihpb(i)
4372         jj=jhpb(i)
4373 C iii and jjj point to the residues for which the distance is assigned.
4374         if (ii.gt.nres) then
4375           iii=ii-nres
4376           jjj=jj-nres 
4377         else
4378           iii=ii
4379           jjj=jj
4380         endif
4381 c        write (iout,*) "i",i," ii",ii," iii",iii," jj",jj," jjj",jjj,
4382 c     &    dhpb(i),dhpb1(i),forcon(i)
4383 C 24/11/03 AL: SS bridges handled separately because of introducing a specific
4384 C    distance and angle dependent SS bond potential.
4385 cmc        if (ii.gt.nres .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then
4386 C 18/07/06 MC: Use the convention that the first nss pairs are SS bonds
4387         if (.not.dyn_ss .and. i.le.nss) then
4388 C 15/02/13 CC dynamic SSbond - additional check
4389          if (ii.gt.nres 
4390      &       .and. itype(iii).eq.1 .and. itype(jjj).eq.1) then 
4391           call ssbond_ene(iii,jjj,eij)
4392           ehpb=ehpb+2*eij
4393          endif
4394 cd          write (iout,*) "eij",eij
4395         else if (ii.gt.nres .and. jj.gt.nres) then
4396 c Restraints from contact prediction
4397           dd=dist(ii,jj)
4398           if (dhpb1(i).gt.0.0d0) then
4399             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4400             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4401 c            write (iout,*) "beta nmr",
4402 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4403           else
4404             dd=dist(ii,jj)
4405             rdis=dd-dhpb(i)
4406 C Get the force constant corresponding to this distance.
4407             waga=forcon(i)
4408 C Calculate the contribution to energy.
4409             ehpb=ehpb+waga*rdis*rdis
4410 c            write (iout,*) "beta reg",dd,waga*rdis*rdis
4411 C
4412 C Evaluate gradient.
4413 C
4414             fac=waga*rdis/dd
4415           endif  
4416           do j=1,3
4417             ggg(j)=fac*(c(j,jj)-c(j,ii))
4418           enddo
4419           do j=1,3
4420             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4421             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4422           enddo
4423           do k=1,3
4424             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4425             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4426           enddo
4427         else
4428 C Calculate the distance between the two points and its difference from the
4429 C target distance.
4430           dd=dist(ii,jj)
4431           if (dhpb1(i).gt.0.0d0) then
4432             ehpb=ehpb+2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4433             fac=forcon(i)*gnmr1prim(dd,dhpb(i),dhpb1(i))/dd
4434 c            write (iout,*) "alph nmr",
4435 c     &        dd,2*forcon(i)*gnmr1(dd,dhpb(i),dhpb1(i))
4436           else
4437             rdis=dd-dhpb(i)
4438 C Get the force constant corresponding to this distance.
4439             waga=forcon(i)
4440 C Calculate the contribution to energy.
4441             ehpb=ehpb+waga*rdis*rdis
4442 c            write (iout,*) "alpha reg",dd,waga*rdis*rdis
4443 C
4444 C Evaluate gradient.
4445 C
4446             fac=waga*rdis/dd
4447           endif
4448 cd      print *,'i=',i,' ii=',ii,' jj=',jj,' dhpb=',dhpb(i),' dd=',dd,
4449 cd   &   ' waga=',waga,' fac=',fac
4450             do j=1,3
4451               ggg(j)=fac*(c(j,jj)-c(j,ii))
4452             enddo
4453 cd      print '(i3,3(1pe14.5))',i,(ggg(j),j=1,3)
4454 C If this is a SC-SC distance, we need to calculate the contributions to the
4455 C Cartesian gradient in the SC vectors (ghpbx).
4456           if (iii.lt.ii) then
4457           do j=1,3
4458             ghpbx(j,iii)=ghpbx(j,iii)-ggg(j)
4459             ghpbx(j,jjj)=ghpbx(j,jjj)+ggg(j)
4460           enddo
4461           endif
4462 cgrad        do j=iii,jjj-1
4463 cgrad          do k=1,3
4464 cgrad            ghpbc(k,j)=ghpbc(k,j)+ggg(k)
4465 cgrad          enddo
4466 cgrad        enddo
4467           do k=1,3
4468             ghpbc(k,jjj)=ghpbc(k,jjj)+ggg(k)
4469             ghpbc(k,iii)=ghpbc(k,iii)-ggg(k)
4470           enddo
4471         endif
4472       enddo
4473       ehpb=0.5D0*ehpb
4474       return
4475       end
4476 C--------------------------------------------------------------------------
4477       subroutine ssbond_ene(i,j,eij)
4478
4479 C Calculate the distance and angle dependent SS-bond potential energy
4480 C using a free-energy function derived based on RHF/6-31G** ab initio
4481 C calculations of diethyl disulfide.
4482 C
4483 C A. Liwo and U. Kozlowska, 11/24/03
4484 C
4485       implicit real*8 (a-h,o-z)
4486       include 'DIMENSIONS'
4487       include 'COMMON.SBRIDGE'
4488       include 'COMMON.CHAIN'
4489       include 'COMMON.DERIV'
4490       include 'COMMON.LOCAL'
4491       include 'COMMON.INTERACT'
4492       include 'COMMON.VAR'
4493       include 'COMMON.IOUNITS'
4494       double precision erij(3),dcosom1(3),dcosom2(3),gg(3)
4495       itypi=itype(i)
4496       xi=c(1,nres+i)
4497       yi=c(2,nres+i)
4498       zi=c(3,nres+i)
4499       dxi=dc_norm(1,nres+i)
4500       dyi=dc_norm(2,nres+i)
4501       dzi=dc_norm(3,nres+i)
4502 c      dsci_inv=dsc_inv(itypi)
4503       dsci_inv=vbld_inv(nres+i)
4504       itypj=itype(j)
4505 c      dscj_inv=dsc_inv(itypj)
4506       dscj_inv=vbld_inv(nres+j)
4507       xj=c(1,nres+j)-xi
4508       yj=c(2,nres+j)-yi
4509       zj=c(3,nres+j)-zi
4510       dxj=dc_norm(1,nres+j)
4511       dyj=dc_norm(2,nres+j)
4512       dzj=dc_norm(3,nres+j)
4513       rrij=1.0D0/(xj*xj+yj*yj+zj*zj)
4514       rij=dsqrt(rrij)
4515       erij(1)=xj*rij
4516       erij(2)=yj*rij
4517       erij(3)=zj*rij
4518       om1=dxi*erij(1)+dyi*erij(2)+dzi*erij(3)
4519       om2=dxj*erij(1)+dyj*erij(2)+dzj*erij(3)
4520       om12=dxi*dxj+dyi*dyj+dzi*dzj
4521       do k=1,3
4522         dcosom1(k)=rij*(dc_norm(k,nres+i)-om1*erij(k))
4523         dcosom2(k)=rij*(dc_norm(k,nres+j)-om2*erij(k))
4524       enddo
4525       rij=1.0d0/rij
4526       deltad=rij-d0cm
4527       deltat1=1.0d0-om1
4528       deltat2=1.0d0+om2
4529       deltat12=om2-om1+2.0d0
4530       cosphi=om12-om1*om2
4531       eij=akcm*deltad*deltad+akth*(deltat1*deltat1+deltat2*deltat2)
4532      &  +akct*deltad*deltat12+ebr
4533      &  +v1ss*cosphi+v2ss*cosphi*cosphi+v3ss*cosphi*cosphi*cosphi
4534 c      write(iout,*) i,j,"rij",rij,"d0cm",d0cm," akcm",akcm," akth",akth,
4535 c     &  " akct",akct," deltad",deltad," deltat",deltat1,deltat2,
4536 c     &  " deltat12",deltat12," eij",eij 
4537       ed=2*akcm*deltad+akct*deltat12
4538       pom1=akct*deltad
4539       pom2=v1ss+2*v2ss*cosphi+3*v3ss*cosphi*cosphi
4540       eom1=-2*akth*deltat1-pom1-om2*pom2
4541       eom2= 2*akth*deltat2+pom1-om1*pom2
4542       eom12=pom2
4543       do k=1,3
4544         ggk=ed*erij(k)+eom1*dcosom1(k)+eom2*dcosom2(k)
4545         ghpbx(k,i)=ghpbx(k,i)-ggk
4546      &            +(eom12*(dc_norm(k,nres+j)-om12*dc_norm(k,nres+i))
4547      &            +eom1*(erij(k)-om1*dc_norm(k,nres+i)))*dsci_inv
4548         ghpbx(k,j)=ghpbx(k,j)+ggk
4549      &            +(eom12*(dc_norm(k,nres+i)-om12*dc_norm(k,nres+j))
4550      &            +eom2*(erij(k)-om2*dc_norm(k,nres+j)))*dscj_inv
4551         ghpbc(k,i)=ghpbc(k,i)-ggk
4552         ghpbc(k,j)=ghpbc(k,j)+ggk
4553       enddo
4554 C
4555 C Calculate the components of the gradient in DC and X
4556 C
4557 cgrad      do k=i,j-1
4558 cgrad        do l=1,3
4559 cgrad          ghpbc(l,k)=ghpbc(l,k)+gg(l)
4560 cgrad        enddo
4561 cgrad      enddo
4562       return
4563       end
4564 C--------------------------------------------------------------------------
4565       subroutine ebond(estr)
4566 c
4567 c Evaluate the energy of stretching of the CA-CA and CA-SC virtual bonds
4568 c
4569       implicit real*8 (a-h,o-z)
4570       include 'DIMENSIONS'
4571       include 'COMMON.LOCAL'
4572       include 'COMMON.GEO'
4573       include 'COMMON.INTERACT'
4574       include 'COMMON.DERIV'
4575       include 'COMMON.VAR'
4576       include 'COMMON.CHAIN'
4577       include 'COMMON.IOUNITS'
4578       include 'COMMON.NAMES'
4579       include 'COMMON.FFIELD'
4580       include 'COMMON.CONTROL'
4581       include 'COMMON.SETUP'
4582       double precision u(3),ud(3)
4583       estr=0.0d0
4584       do i=ibondp_start,ibondp_end
4585         diff = vbld(i)-vbldp0
4586 c        write (iout,*) i,vbld(i),vbldp0,diff,AKP*diff*diff
4587         estr=estr+diff*diff
4588         do j=1,3
4589           gradb(j,i-1)=AKP*diff*dc(j,i-1)/vbld(i)
4590         enddo
4591 c        write (iout,'(i5,3f10.5)') i,(gradb(j,i-1),j=1,3)
4592       enddo
4593       estr=0.5d0*AKP*estr
4594 c
4595 c 09/18/07 AL: multimodal bond potential based on AM1 CA-SC PMF's included
4596 c
4597       do i=ibond_start,ibond_end
4598         iti=itype(i)
4599         if (iti.ne.10) then
4600           nbi=nbondterm(iti)
4601           if (nbi.eq.1) then
4602             diff=vbld(i+nres)-vbldsc0(1,iti)
4603 c            write (iout,*) i,iti,vbld(i+nres),vbldsc0(1,iti),diff,
4604 c     &      AKSC(1,iti),AKSC(1,iti)*diff*diff
4605             estr=estr+0.5d0*AKSC(1,iti)*diff*diff
4606             do j=1,3
4607               gradbx(j,i)=AKSC(1,iti)*diff*dc(j,i+nres)/vbld(i+nres)
4608             enddo
4609           else
4610             do j=1,nbi
4611               diff=vbld(i+nres)-vbldsc0(j,iti) 
4612               ud(j)=aksc(j,iti)*diff
4613               u(j)=abond0(j,iti)+0.5d0*ud(j)*diff
4614             enddo
4615             uprod=u(1)
4616             do j=2,nbi
4617               uprod=uprod*u(j)
4618             enddo
4619             usum=0.0d0
4620             usumsqder=0.0d0
4621             do j=1,nbi
4622               uprod1=1.0d0
4623               uprod2=1.0d0
4624               do k=1,nbi
4625                 if (k.ne.j) then
4626                   uprod1=uprod1*u(k)
4627                   uprod2=uprod2*u(k)*u(k)
4628                 endif
4629               enddo
4630               usum=usum+uprod1
4631               usumsqder=usumsqder+ud(j)*uprod2   
4632             enddo
4633             estr=estr+uprod/usum
4634             do j=1,3
4635              gradbx(j,i)=usumsqder/(usum*usum)*dc(j,i+nres)/vbld(i+nres)
4636             enddo
4637           endif
4638         endif
4639       enddo
4640       return
4641       end 
4642 #ifdef CRYST_THETA
4643 C--------------------------------------------------------------------------
4644       subroutine ebend(etheta)
4645 C
4646 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4647 C angles gamma and its derivatives in consecutive thetas and gammas.
4648 C
4649       implicit real*8 (a-h,o-z)
4650       include 'DIMENSIONS'
4651       include 'COMMON.LOCAL'
4652       include 'COMMON.GEO'
4653       include 'COMMON.INTERACT'
4654       include 'COMMON.DERIV'
4655       include 'COMMON.VAR'
4656       include 'COMMON.CHAIN'
4657       include 'COMMON.IOUNITS'
4658       include 'COMMON.NAMES'
4659       include 'COMMON.FFIELD'
4660       include 'COMMON.CONTROL'
4661       common /calcthet/ term1,term2,termm,diffak,ratak,
4662      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4663      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4664       double precision y(2),z(2)
4665       delta=0.02d0*pi
4666 c      time11=dexp(-2*time)
4667 c      time12=1.0d0
4668       etheta=0.0D0
4669 c     write (*,'(a,i2)') 'EBEND ICG=',icg
4670       do i=ithet_start,ithet_end
4671 C Zero the energy function and its derivative at 0 or pi.
4672         call splinthet(theta(i),0.5d0*delta,ss,ssd)
4673         it=itype(i-1)
4674         if (i.gt.3) then
4675 #ifdef OSF
4676           phii=phi(i)
4677           if (phii.ne.phii) phii=150.0
4678 #else
4679           phii=phi(i)
4680 #endif
4681           y(1)=dcos(phii)
4682           y(2)=dsin(phii)
4683         else 
4684           y(1)=0.0D0
4685           y(2)=0.0D0
4686         endif
4687         if (i.lt.nres) then
4688 #ifdef OSF
4689           phii1=phi(i+1)
4690           if (phii1.ne.phii1) phii1=150.0
4691           phii1=pinorm(phii1)
4692           z(1)=cos(phii1)
4693 #else
4694           phii1=phi(i+1)
4695           z(1)=dcos(phii1)
4696 #endif
4697           z(2)=dsin(phii1)
4698         else
4699           z(1)=0.0D0
4700           z(2)=0.0D0
4701         endif  
4702 C Calculate the "mean" value of theta from the part of the distribution
4703 C dependent on the adjacent virtual-bond-valence angles (gamma1 & gamma2).
4704 C In following comments this theta will be referred to as t_c.
4705         thet_pred_mean=0.0d0
4706         do k=1,2
4707           athetk=athet(k,it)
4708           bthetk=bthet(k,it)
4709           thet_pred_mean=thet_pred_mean+athetk*y(k)+bthetk*z(k)
4710         enddo
4711         dthett=thet_pred_mean*ssd
4712         thet_pred_mean=thet_pred_mean*ss+a0thet(it)
4713 C Derivatives of the "mean" values in gamma1 and gamma2.
4714         dthetg1=(-athet(1,it)*y(2)+athet(2,it)*y(1))*ss
4715         dthetg2=(-bthet(1,it)*z(2)+bthet(2,it)*z(1))*ss
4716         if (theta(i).gt.pi-delta) then
4717           call theteng(pi-delta,thet_pred_mean,theta0(it),f0,fprim0,
4718      &         E_tc0)
4719           call mixder(pi-delta,thet_pred_mean,theta0(it),fprim_tc0)
4720           call theteng(pi,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4721           call spline1(theta(i),pi-delta,delta,f0,f1,fprim0,ethetai,
4722      &        E_theta)
4723           call spline2(theta(i),pi-delta,delta,E_tc0,E_tc1,fprim_tc0,
4724      &        E_tc)
4725         else if (theta(i).lt.delta) then
4726           call theteng(delta,thet_pred_mean,theta0(it),f0,fprim0,E_tc0)
4727           call theteng(0.0d0,thet_pred_mean,theta0(it),f1,fprim1,E_tc1)
4728           call spline1(theta(i),delta,-delta,f0,f1,fprim0,ethetai,
4729      &        E_theta)
4730           call mixder(delta,thet_pred_mean,theta0(it),fprim_tc0)
4731           call spline2(theta(i),delta,-delta,E_tc0,E_tc1,fprim_tc0,
4732      &        E_tc)
4733         else
4734           call theteng(theta(i),thet_pred_mean,theta0(it),ethetai,
4735      &        E_theta,E_tc)
4736         endif
4737         etheta=etheta+ethetai
4738         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
4739      &      'ebend',i,ethetai
4740         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*E_tc*dthetg1
4741         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*E_tc*dthetg2
4742         gloc(nphi+i-2,icg)=wang*(E_theta+E_tc*dthett)+gloc(nphi+i-2,icg)
4743       enddo
4744 C Ufff.... We've done all this!!! 
4745       return
4746       end
4747 C---------------------------------------------------------------------------
4748       subroutine theteng(thetai,thet_pred_mean,theta0i,ethetai,E_theta,
4749      &     E_tc)
4750       implicit real*8 (a-h,o-z)
4751       include 'DIMENSIONS'
4752       include 'COMMON.LOCAL'
4753       include 'COMMON.IOUNITS'
4754       common /calcthet/ term1,term2,termm,diffak,ratak,
4755      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4756      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4757 C Calculate the contributions to both Gaussian lobes.
4758 C 6/6/97 - Deform the Gaussians using the factor of 1/(1+time)
4759 C The "polynomial part" of the "standard deviation" of this part of 
4760 C the distribution.
4761         sig=polthet(3,it)
4762         do j=2,0,-1
4763           sig=sig*thet_pred_mean+polthet(j,it)
4764         enddo
4765 C Derivative of the "interior part" of the "standard deviation of the" 
4766 C gamma-dependent Gaussian lobe in t_c.
4767         sigtc=3*polthet(3,it)
4768         do j=2,1,-1
4769           sigtc=sigtc*thet_pred_mean+j*polthet(j,it)
4770         enddo
4771         sigtc=sig*sigtc
4772 C Set the parameters of both Gaussian lobes of the distribution.
4773 C "Standard deviation" of the gamma-dependent Gaussian lobe (sigtc)
4774         fac=sig*sig+sigc0(it)
4775         sigcsq=fac+fac
4776         sigc=1.0D0/sigcsq
4777 C Following variable (sigsqtc) is -(1/2)d[sigma(t_c)**(-2))]/dt_c
4778         sigsqtc=-4.0D0*sigcsq*sigtc
4779 c       print *,i,sig,sigtc,sigsqtc
4780 C Following variable (sigtc) is d[sigma(t_c)]/dt_c
4781         sigtc=-sigtc/(fac*fac)
4782 C Following variable is sigma(t_c)**(-2)
4783         sigcsq=sigcsq*sigcsq
4784         sig0i=sig0(it)
4785         sig0inv=1.0D0/sig0i**2
4786         delthec=thetai-thet_pred_mean
4787         delthe0=thetai-theta0i
4788         term1=-0.5D0*sigcsq*delthec*delthec
4789         term2=-0.5D0*sig0inv*delthe0*delthe0
4790 C Following fuzzy logic is to avoid underflows in dexp and subsequent INFs and
4791 C NaNs in taking the logarithm. We extract the largest exponent which is added
4792 C to the energy (this being the log of the distribution) at the end of energy
4793 C term evaluation for this virtual-bond angle.
4794         if (term1.gt.term2) then
4795           termm=term1
4796           term2=dexp(term2-termm)
4797           term1=1.0d0
4798         else
4799           termm=term2
4800           term1=dexp(term1-termm)
4801           term2=1.0d0
4802         endif
4803 C The ratio between the gamma-independent and gamma-dependent lobes of
4804 C the distribution is a Gaussian function of thet_pred_mean too.
4805         diffak=gthet(2,it)-thet_pred_mean
4806         ratak=diffak/gthet(3,it)**2
4807         ak=dexp(gthet(1,it)-0.5D0*diffak*ratak)
4808 C Let's differentiate it in thet_pred_mean NOW.
4809         aktc=ak*ratak
4810 C Now put together the distribution terms to make complete distribution.
4811         termexp=term1+ak*term2
4812         termpre=sigc+ak*sig0i
4813 C Contribution of the bending energy from this theta is just the -log of
4814 C the sum of the contributions from the two lobes and the pre-exponential
4815 C factor. Simple enough, isn't it?
4816         ethetai=(-dlog(termexp)-termm+dlog(termpre))
4817 C NOW the derivatives!!!
4818 C 6/6/97 Take into account the deformation.
4819         E_theta=(delthec*sigcsq*term1
4820      &       +ak*delthe0*sig0inv*term2)/termexp
4821         E_tc=((sigtc+aktc*sig0i)/termpre
4822      &      -((delthec*sigcsq+delthec*delthec*sigsqtc)*term1+
4823      &       aktc*term2)/termexp)
4824       return
4825       end
4826 c-----------------------------------------------------------------------------
4827       subroutine mixder(thetai,thet_pred_mean,theta0i,E_tc_t)
4828       implicit real*8 (a-h,o-z)
4829       include 'DIMENSIONS'
4830       include 'COMMON.LOCAL'
4831       include 'COMMON.IOUNITS'
4832       common /calcthet/ term1,term2,termm,diffak,ratak,
4833      & ak,aktc,termpre,termexp,sigc,sig0i,time11,time12,sigcsq,
4834      & delthe0,sig0inv,sigtc,sigsqtc,delthec,it
4835       delthec=thetai-thet_pred_mean
4836       delthe0=thetai-theta0i
4837 C "Thank you" to MAPLE (probably spared one day of hand-differentiation).
4838       t3 = thetai-thet_pred_mean
4839       t6 = t3**2
4840       t9 = term1
4841       t12 = t3*sigcsq
4842       t14 = t12+t6*sigsqtc
4843       t16 = 1.0d0
4844       t21 = thetai-theta0i
4845       t23 = t21**2
4846       t26 = term2
4847       t27 = t21*t26
4848       t32 = termexp
4849       t40 = t32**2
4850       E_tc_t = -((sigcsq+2.D0*t3*sigsqtc)*t9-t14*sigcsq*t3*t16*t9
4851      & -aktc*sig0inv*t27)/t32+(t14*t9+aktc*t26)/t40
4852      & *(-t12*t9-ak*sig0inv*t27)
4853       return
4854       end
4855 #else
4856 C--------------------------------------------------------------------------
4857       subroutine ebend(etheta)
4858 C
4859 C Evaluate the virtual-bond-angle energy given the virtual-bond dihedral
4860 C angles gamma and its derivatives in consecutive thetas and gammas.
4861 C ab initio-derived potentials from 
4862 c Kozlowska et al., J. Phys.: Condens. Matter 19 (2007) 285203
4863 C
4864       implicit real*8 (a-h,o-z)
4865       include 'DIMENSIONS'
4866       include 'COMMON.LOCAL'
4867       include 'COMMON.GEO'
4868       include 'COMMON.INTERACT'
4869       include 'COMMON.DERIV'
4870       include 'COMMON.VAR'
4871       include 'COMMON.CHAIN'
4872       include 'COMMON.IOUNITS'
4873       include 'COMMON.NAMES'
4874       include 'COMMON.FFIELD'
4875       include 'COMMON.CONTROL'
4876       double precision coskt(mmaxtheterm),sinkt(mmaxtheterm),
4877      & cosph1(maxsingle),sinph1(maxsingle),cosph2(maxsingle),
4878      & sinph2(maxsingle),cosph1ph2(maxdouble,maxdouble),
4879      & sinph1ph2(maxdouble,maxdouble)
4880       logical lprn /.false./, lprn1 /.false./
4881       etheta=0.0D0
4882 c      write (iout,*) "EBEND ithet_start",ithet_start,
4883 c     &     " ithet_end",ithet_end
4884       do i=ithet_start,ithet_end
4885         if ((itype(i-1).eq.ntyp1).or.(itype(i-2).eq.ntyp1).or.
4886      &(itype(i).eq.ntyp1)) cycle
4887         dethetai=0.0d0
4888         dephii=0.0d0
4889         dephii1=0.0d0
4890         theti2=0.5d0*theta(i)
4891         ityp2=ithetyp(itype(i-1))
4892         do k=1,nntheterm
4893           coskt(k)=dcos(k*theti2)
4894           sinkt(k)=dsin(k*theti2)
4895         enddo
4896 C        if (i.gt.3) then
4897          if (i.gt.3 .and. itype(i-3).ne.ntyp1) then
4898 #ifdef OSF
4899           phii=phi(i)
4900           if (phii.ne.phii) phii=150.0
4901 #else
4902           phii=phi(i)
4903 #endif
4904           ityp1=ithetyp(itype(i-2))
4905           do k=1,nsingle
4906             cosph1(k)=dcos(k*phii)
4907             sinph1(k)=dsin(k*phii)
4908           enddo
4909         else
4910           phii=0.0d0
4911           ityp1=ithetyp(itype(i-2))
4912           do k=1,nsingle
4913             cosph1(k)=0.0d0
4914             sinph1(k)=0.0d0
4915           enddo 
4916         endif
4917         if ((i.lt.nres).and. itype(i+1).ne.ntyp1) then
4918 #ifdef OSF
4919           phii1=phi(i+1)
4920           if (phii1.ne.phii1) phii1=150.0
4921           phii1=pinorm(phii1)
4922 #else
4923           phii1=phi(i+1)
4924 #endif
4925           ityp3=ithetyp(itype(i))
4926           do k=1,nsingle
4927             cosph2(k)=dcos(k*phii1)
4928             sinph2(k)=dsin(k*phii1)
4929           enddo
4930         else
4931           phii1=0.0d0
4932           ityp3=ithetyp(itype(i))
4933           do k=1,nsingle
4934             cosph2(k)=0.0d0
4935             sinph2(k)=0.0d0
4936           enddo
4937         endif  
4938         ethetai=aa0thet(ityp1,ityp2,ityp3)
4939         do k=1,ndouble
4940           do l=1,k-1
4941             ccl=cosph1(l)*cosph2(k-l)
4942             ssl=sinph1(l)*sinph2(k-l)
4943             scl=sinph1(l)*cosph2(k-l)
4944             csl=cosph1(l)*sinph2(k-l)
4945             cosph1ph2(l,k)=ccl-ssl
4946             cosph1ph2(k,l)=ccl+ssl
4947             sinph1ph2(l,k)=scl+csl
4948             sinph1ph2(k,l)=scl-csl
4949           enddo
4950         enddo
4951         if (lprn) then
4952         write (iout,*) "i",i," ityp1",ityp1," ityp2",ityp2,
4953      &    " ityp3",ityp3," theti2",theti2," phii",phii," phii1",phii1
4954         write (iout,*) "coskt and sinkt"
4955         do k=1,nntheterm
4956           write (iout,*) k,coskt(k),sinkt(k)
4957         enddo
4958         endif
4959         do k=1,ntheterm
4960           ethetai=ethetai+aathet(k,ityp1,ityp2,ityp3)*sinkt(k)
4961           dethetai=dethetai+0.5d0*k*aathet(k,ityp1,ityp2,ityp3)
4962      &      *coskt(k)
4963           if (lprn)
4964      &    write (iout,*) "k",k," aathet",aathet(k,ityp1,ityp2,ityp3),
4965      &     " ethetai",ethetai
4966         enddo
4967         if (lprn) then
4968         write (iout,*) "cosph and sinph"
4969         do k=1,nsingle
4970           write (iout,*) k,cosph1(k),sinph1(k),cosph2(k),sinph2(k)
4971         enddo
4972         write (iout,*) "cosph1ph2 and sinph2ph2"
4973         do k=2,ndouble
4974           do l=1,k-1
4975             write (iout,*) l,k,cosph1ph2(l,k),cosph1ph2(k,l),
4976      &         sinph1ph2(l,k),sinph1ph2(k,l) 
4977           enddo
4978         enddo
4979         write(iout,*) "ethetai",ethetai
4980         endif
4981         do m=1,ntheterm2
4982           do k=1,nsingle
4983             aux=bbthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)
4984      &         +ccthet(k,m,ityp1,ityp2,ityp3)*sinph1(k)
4985      &         +ddthet(k,m,ityp1,ityp2,ityp3)*cosph2(k)
4986      &         +eethet(k,m,ityp1,ityp2,ityp3)*sinph2(k)
4987             ethetai=ethetai+sinkt(m)*aux
4988             dethetai=dethetai+0.5d0*m*aux*coskt(m)
4989             dephii=dephii+k*sinkt(m)*(
4990      &          ccthet(k,m,ityp1,ityp2,ityp3)*cosph1(k)-
4991      &          bbthet(k,m,ityp1,ityp2,ityp3)*sinph1(k))
4992             dephii1=dephii1+k*sinkt(m)*(
4993      &          eethet(k,m,ityp1,ityp2,ityp3)*cosph2(k)-
4994      &          ddthet(k,m,ityp1,ityp2,ityp3)*sinph2(k))
4995             if (lprn)
4996      &      write (iout,*) "m",m," k",k," bbthet",
4997      &         bbthet(k,m,ityp1,ityp2,ityp3)," ccthet",
4998      &         ccthet(k,m,ityp1,ityp2,ityp3)," ddthet",
4999      &         ddthet(k,m,ityp1,ityp2,ityp3)," eethet",
5000      &         eethet(k,m,ityp1,ityp2,ityp3)," ethetai",ethetai
5001           enddo
5002         enddo
5003         if (lprn)
5004      &  write(iout,*) "ethetai",ethetai
5005         do m=1,ntheterm3
5006           do k=2,ndouble
5007             do l=1,k-1
5008               aux=ffthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
5009      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l)+
5010      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
5011      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)
5012               ethetai=ethetai+sinkt(m)*aux
5013               dethetai=dethetai+0.5d0*m*coskt(m)*aux
5014               dephii=dephii+l*sinkt(m)*(
5015      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)-
5016      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
5017      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)+
5018      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5019               dephii1=dephii1+(k-l)*sinkt(m)*(
5020      &           -ffthet(l,k,m,ityp1,ityp2,ityp3)*sinph1ph2(l,k)+
5021      &            ffthet(k,l,m,ityp1,ityp2,ityp3)*sinph1ph2(k,l)+
5022      &            ggthet(l,k,m,ityp1,ityp2,ityp3)*cosph1ph2(l,k)-
5023      &            ggthet(k,l,m,ityp1,ityp2,ityp3)*cosph1ph2(k,l))
5024               if (lprn) then
5025               write (iout,*) "m",m," k",k," l",l," ffthet",
5026      &            ffthet(l,k,m,ityp1,ityp2,ityp3),
5027      &            ffthet(k,l,m,ityp1,ityp2,ityp3)," ggthet",
5028      &            ggthet(l,k,m,ityp1,ityp2,ityp3),
5029      &            ggthet(k,l,m,ityp1,ityp2,ityp3)," ethetai",ethetai
5030               write (iout,*) cosph1ph2(l,k)*sinkt(m),
5031      &            cosph1ph2(k,l)*sinkt(m),
5032      &            sinph1ph2(l,k)*sinkt(m),sinph1ph2(k,l)*sinkt(m)
5033               endif
5034             enddo
5035           enddo
5036         enddo
5037 10      continue
5038 c        lprn1=.true.
5039         if (lprn1) write (iout,'(a4,i2,3f8.1,9h ethetai ,f10.5)') 
5040      &  'ebe', i,theta(i)*rad2deg,phii*rad2deg,
5041      &   phii1*rad2deg,ethetai
5042 c        lprn1=.false.
5043         etheta=etheta+ethetai
5044         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5045      &      'ebend',i,ethetai
5046         if (i.gt.3) gloc(i-3,icg)=gloc(i-3,icg)+wang*dephii
5047         if (i.lt.nres) gloc(i-2,icg)=gloc(i-2,icg)+wang*dephii1
5048         gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)+wang*dethetai
5049       enddo
5050       return
5051       end
5052 #endif
5053 #ifdef CRYST_SC
5054 c-----------------------------------------------------------------------------
5055       subroutine esc(escloc)
5056 C Calculate the local energy of a side chain and its derivatives in the
5057 C corresponding virtual-bond valence angles THETA and the spherical angles 
5058 C ALPHA and OMEGA.
5059       implicit real*8 (a-h,o-z)
5060       include 'DIMENSIONS'
5061       include 'COMMON.GEO'
5062       include 'COMMON.LOCAL'
5063       include 'COMMON.VAR'
5064       include 'COMMON.INTERACT'
5065       include 'COMMON.DERIV'
5066       include 'COMMON.CHAIN'
5067       include 'COMMON.IOUNITS'
5068       include 'COMMON.NAMES'
5069       include 'COMMON.FFIELD'
5070       include 'COMMON.CONTROL'
5071       double precision x(3),dersc(3),xemp(3),dersc0(3),dersc1(3),
5072      &     ddersc0(3),ddummy(3),xtemp(3),temp(3)
5073       common /sccalc/ time11,time12,time112,theti,it,nlobit
5074       delta=0.02d0*pi
5075       escloc=0.0D0
5076 c     write (iout,'(a)') 'ESC'
5077       do i=loc_start,loc_end
5078         it=itype(i)
5079         if (it.eq.10) goto 1
5080         nlobit=nlob(it)
5081 c       print *,'i=',i,' it=',it,' nlobit=',nlobit
5082 c       write (iout,*) 'i=',i,' ssa=',ssa,' ssad=',ssad
5083         theti=theta(i+1)-pipol
5084         x(1)=dtan(theti)
5085         x(2)=alph(i)
5086         x(3)=omeg(i)
5087
5088         if (x(2).gt.pi-delta) then
5089           xtemp(1)=x(1)
5090           xtemp(2)=pi-delta
5091           xtemp(3)=x(3)
5092           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5093           xtemp(2)=pi
5094           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5095           call spline1(x(2),pi-delta,delta,escloci0,escloci1,dersc0(2),
5096      &        escloci,dersc(2))
5097           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5098      &        ddersc0(1),dersc(1))
5099           call spline2(x(2),pi-delta,delta,dersc0(3),dersc1(3),
5100      &        ddersc0(3),dersc(3))
5101           xtemp(2)=pi-delta
5102           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5103           xtemp(2)=pi
5104           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5105           call spline1(x(2),pi-delta,delta,esclocbi0,esclocbi1,
5106      &            dersc0(2),esclocbi,dersc02)
5107           call spline2(x(2),pi-delta,delta,dersc0(1),dersc1(1),
5108      &            dersc12,dersc01)
5109           call splinthet(x(2),0.5d0*delta,ss,ssd)
5110           dersc0(1)=dersc01
5111           dersc0(2)=dersc02
5112           dersc0(3)=0.0d0
5113           do k=1,3
5114             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5115           enddo
5116           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5117 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5118 c    &             esclocbi,ss,ssd
5119           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5120 c         escloci=esclocbi
5121 c         write (iout,*) escloci
5122         else if (x(2).lt.delta) then
5123           xtemp(1)=x(1)
5124           xtemp(2)=delta
5125           xtemp(3)=x(3)
5126           call enesc(xtemp,escloci0,dersc0,ddersc0,.true.)
5127           xtemp(2)=0.0d0
5128           call enesc(xtemp,escloci1,dersc1,ddummy,.false.)
5129           call spline1(x(2),delta,-delta,escloci0,escloci1,dersc0(2),
5130      &        escloci,dersc(2))
5131           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5132      &        ddersc0(1),dersc(1))
5133           call spline2(x(2),delta,-delta,dersc0(3),dersc1(3),
5134      &        ddersc0(3),dersc(3))
5135           xtemp(2)=delta
5136           call enesc_bound(xtemp,esclocbi0,dersc0,dersc12,.true.)
5137           xtemp(2)=0.0d0
5138           call enesc_bound(xtemp,esclocbi1,dersc1,chuju,.false.)
5139           call spline1(x(2),delta,-delta,esclocbi0,esclocbi1,
5140      &            dersc0(2),esclocbi,dersc02)
5141           call spline2(x(2),delta,-delta,dersc0(1),dersc1(1),
5142      &            dersc12,dersc01)
5143           dersc0(1)=dersc01
5144           dersc0(2)=dersc02
5145           dersc0(3)=0.0d0
5146           call splinthet(x(2),0.5d0*delta,ss,ssd)
5147           do k=1,3
5148             dersc(k)=ss*dersc(k)+(1.0d0-ss)*dersc0(k)
5149           enddo
5150           dersc(2)=dersc(2)+ssd*(escloci-esclocbi)
5151 c         write (iout,*) 'i=',i,x(2)*rad2deg,escloci0,escloci,
5152 c    &             esclocbi,ss,ssd
5153           escloci=ss*escloci+(1.0d0-ss)*esclocbi
5154 c         write (iout,*) escloci
5155         else
5156           call enesc(x,escloci,dersc,ddummy,.false.)
5157         endif
5158
5159         escloc=escloc+escloci
5160         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5161      &     'escloc',i,escloci
5162 c       write (iout,*) 'i=',i,' escloci=',escloci,' dersc=',dersc
5163
5164         gloc(nphi+i-1,icg)=gloc(nphi+i-1,icg)+
5165      &   wscloc*dersc(1)
5166         gloc(ialph(i,1),icg)=wscloc*dersc(2)
5167         gloc(ialph(i,1)+nside,icg)=wscloc*dersc(3)
5168     1   continue
5169       enddo
5170       return
5171       end
5172 C---------------------------------------------------------------------------
5173       subroutine enesc(x,escloci,dersc,ddersc,mixed)
5174       implicit real*8 (a-h,o-z)
5175       include 'DIMENSIONS'
5176       include 'COMMON.GEO'
5177       include 'COMMON.LOCAL'
5178       include 'COMMON.IOUNITS'
5179       common /sccalc/ time11,time12,time112,theti,it,nlobit
5180       double precision x(3),z(3),Ax(3,maxlob,-1:1),dersc(3),ddersc(3)
5181       double precision contr(maxlob,-1:1)
5182       logical mixed
5183 c       write (iout,*) 'it=',it,' nlobit=',nlobit
5184         escloc_i=0.0D0
5185         do j=1,3
5186           dersc(j)=0.0D0
5187           if (mixed) ddersc(j)=0.0d0
5188         enddo
5189         x3=x(3)
5190
5191 C Because of periodicity of the dependence of the SC energy in omega we have
5192 C to add up the contributions from x(3)-2*pi, x(3), and x(3+2*pi).
5193 C To avoid underflows, first compute & store the exponents.
5194
5195         do iii=-1,1
5196
5197           x(3)=x3+iii*dwapi
5198  
5199           do j=1,nlobit
5200             do k=1,3
5201               z(k)=x(k)-censc(k,j,it)
5202             enddo
5203             do k=1,3
5204               Axk=0.0D0
5205               do l=1,3
5206                 Axk=Axk+gaussc(l,k,j,it)*z(l)
5207               enddo
5208               Ax(k,j,iii)=Axk
5209             enddo 
5210             expfac=0.0D0 
5211             do k=1,3
5212               expfac=expfac+Ax(k,j,iii)*z(k)
5213             enddo
5214             contr(j,iii)=expfac
5215           enddo ! j
5216
5217         enddo ! iii
5218
5219         x(3)=x3
5220 C As in the case of ebend, we want to avoid underflows in exponentiation and
5221 C subsequent NaNs and INFs in energy calculation.
5222 C Find the largest exponent
5223         emin=contr(1,-1)
5224         do iii=-1,1
5225           do j=1,nlobit
5226             if (emin.gt.contr(j,iii)) emin=contr(j,iii)
5227           enddo 
5228         enddo
5229         emin=0.5D0*emin
5230 cd      print *,'it=',it,' emin=',emin
5231
5232 C Compute the contribution to SC energy and derivatives
5233         do iii=-1,1
5234
5235           do j=1,nlobit
5236 #ifdef OSF
5237             adexp=bsc(j,it)-0.5D0*contr(j,iii)+emin
5238             if(adexp.ne.adexp) adexp=1.0
5239             expfac=dexp(adexp)
5240 #else
5241             expfac=dexp(bsc(j,it)-0.5D0*contr(j,iii)+emin)
5242 #endif
5243 cd          print *,'j=',j,' expfac=',expfac
5244             escloc_i=escloc_i+expfac
5245             do k=1,3
5246               dersc(k)=dersc(k)+Ax(k,j,iii)*expfac
5247             enddo
5248             if (mixed) then
5249               do k=1,3,2
5250                 ddersc(k)=ddersc(k)+(-Ax(2,j,iii)*Ax(k,j,iii)
5251      &            +gaussc(k,2,j,it))*expfac
5252               enddo
5253             endif
5254           enddo
5255
5256         enddo ! iii
5257
5258         dersc(1)=dersc(1)/cos(theti)**2
5259         ddersc(1)=ddersc(1)/cos(theti)**2
5260         ddersc(3)=ddersc(3)
5261
5262         escloci=-(dlog(escloc_i)-emin)
5263         do j=1,3
5264           dersc(j)=dersc(j)/escloc_i
5265         enddo
5266         if (mixed) then
5267           do j=1,3,2
5268             ddersc(j)=(ddersc(j)/escloc_i+dersc(2)*dersc(j))
5269           enddo
5270         endif
5271       return
5272       end
5273 C------------------------------------------------------------------------------
5274       subroutine enesc_bound(x,escloci,dersc,dersc12,mixed)
5275       implicit real*8 (a-h,o-z)
5276       include 'DIMENSIONS'
5277       include 'COMMON.GEO'
5278       include 'COMMON.LOCAL'
5279       include 'COMMON.IOUNITS'
5280       common /sccalc/ time11,time12,time112,theti,it,nlobit
5281       double precision x(3),z(3),Ax(3,maxlob),dersc(3)
5282       double precision contr(maxlob)
5283       logical mixed
5284
5285       escloc_i=0.0D0
5286
5287       do j=1,3
5288         dersc(j)=0.0D0
5289       enddo
5290
5291       do j=1,nlobit
5292         do k=1,2
5293           z(k)=x(k)-censc(k,j,it)
5294         enddo
5295         z(3)=dwapi
5296         do k=1,3
5297           Axk=0.0D0
5298           do l=1,3
5299             Axk=Axk+gaussc(l,k,j,it)*z(l)
5300           enddo
5301           Ax(k,j)=Axk
5302         enddo 
5303         expfac=0.0D0 
5304         do k=1,3
5305           expfac=expfac+Ax(k,j)*z(k)
5306         enddo
5307         contr(j)=expfac
5308       enddo ! j
5309
5310 C As in the case of ebend, we want to avoid underflows in exponentiation and
5311 C subsequent NaNs and INFs in energy calculation.
5312 C Find the largest exponent
5313       emin=contr(1)
5314       do j=1,nlobit
5315         if (emin.gt.contr(j)) emin=contr(j)
5316       enddo 
5317       emin=0.5D0*emin
5318  
5319 C Compute the contribution to SC energy and derivatives
5320
5321       dersc12=0.0d0
5322       do j=1,nlobit
5323         expfac=dexp(bsc(j,it)-0.5D0*contr(j)+emin)
5324         escloc_i=escloc_i+expfac
5325         do k=1,2
5326           dersc(k)=dersc(k)+Ax(k,j)*expfac
5327         enddo
5328         if (mixed) dersc12=dersc12+(-Ax(2,j)*Ax(1,j)
5329      &            +gaussc(1,2,j,it))*expfac
5330         dersc(3)=0.0d0
5331       enddo
5332
5333       dersc(1)=dersc(1)/cos(theti)**2
5334       dersc12=dersc12/cos(theti)**2
5335       escloci=-(dlog(escloc_i)-emin)
5336       do j=1,2
5337         dersc(j)=dersc(j)/escloc_i
5338       enddo
5339       if (mixed) dersc12=(dersc12/escloc_i+dersc(2)*dersc(1))
5340       return
5341       end
5342 #else
5343 c----------------------------------------------------------------------------------
5344       subroutine esc(escloc)
5345 C Calculate the local energy of a side chain and its derivatives in the
5346 C corresponding virtual-bond valence angles THETA and the spherical angles 
5347 C ALPHA and OMEGA derived from AM1 all-atom calculations.
5348 C added by Urszula Kozlowska. 07/11/2007
5349 C
5350       implicit real*8 (a-h,o-z)
5351       include 'DIMENSIONS'
5352       include 'COMMON.GEO'
5353       include 'COMMON.LOCAL'
5354       include 'COMMON.VAR'
5355       include 'COMMON.SCROT'
5356       include 'COMMON.INTERACT'
5357       include 'COMMON.DERIV'
5358       include 'COMMON.CHAIN'
5359       include 'COMMON.IOUNITS'
5360       include 'COMMON.NAMES'
5361       include 'COMMON.FFIELD'
5362       include 'COMMON.CONTROL'
5363       include 'COMMON.VECTORS'
5364       double precision x_prime(3),y_prime(3),z_prime(3)
5365      &    , sumene,dsc_i,dp2_i,x(65),
5366      &     xx,yy,zz,sumene1,sumene2,sumene3,sumene4,s1,s1_6,s2,s2_6,
5367      &    de_dxx,de_dyy,de_dzz,de_dt
5368       double precision s1_t,s1_6_t,s2_t,s2_6_t
5369       double precision 
5370      & dXX_Ci1(3),dYY_Ci1(3),dZZ_Ci1(3),dXX_Ci(3),
5371      & dYY_Ci(3),dZZ_Ci(3),dXX_XYZ(3),dYY_XYZ(3),dZZ_XYZ(3),
5372      & dt_dCi(3),dt_dCi1(3)
5373       common /sccalc/ time11,time12,time112,theti,it,nlobit
5374       delta=0.02d0*pi
5375       escloc=0.0D0
5376 c      write(iout,*) "ESC: loc_start",loc_start," loc_end",loc_end
5377       do i=loc_start,loc_end
5378         costtab(i+1) =dcos(theta(i+1))
5379         sinttab(i+1) =dsqrt(1-costtab(i+1)*costtab(i+1))
5380         cost2tab(i+1)=dsqrt(0.5d0*(1.0d0+costtab(i+1)))
5381         sint2tab(i+1)=dsqrt(0.5d0*(1.0d0-costtab(i+1)))
5382         cosfac2=0.5d0/(1.0d0+costtab(i+1))
5383         cosfac=dsqrt(cosfac2)
5384         sinfac2=0.5d0/(1.0d0-costtab(i+1))
5385         sinfac=dsqrt(sinfac2)
5386         it=itype(i)
5387         if (it.eq.10) goto 1
5388 c
5389 C  Compute the axes of tghe local cartesian coordinates system; store in
5390 c   x_prime, y_prime and z_prime 
5391 c
5392         do j=1,3
5393           x_prime(j) = 0.00
5394           y_prime(j) = 0.00
5395           z_prime(j) = 0.00
5396         enddo
5397 C        write(2,*) "dc_norm", dc_norm(1,i+nres),dc_norm(2,i+nres),
5398 C     &   dc_norm(3,i+nres)
5399         do j = 1,3
5400           x_prime(j) = (dc_norm(j,i) - dc_norm(j,i-1))*cosfac
5401           y_prime(j) = (dc_norm(j,i) + dc_norm(j,i-1))*sinfac
5402         enddo
5403         do j = 1,3
5404           z_prime(j) = -uz(j,i-1)
5405         enddo     
5406 c       write (2,*) "i",i
5407 c       write (2,*) "x_prime",(x_prime(j),j=1,3)
5408 c       write (2,*) "y_prime",(y_prime(j),j=1,3)
5409 c       write (2,*) "z_prime",(z_prime(j),j=1,3)
5410 c       write (2,*) "xx",scalar(x_prime(1),x_prime(1)),
5411 c      & " xy",scalar(x_prime(1),y_prime(1)),
5412 c      & " xz",scalar(x_prime(1),z_prime(1)),
5413 c      & " yy",scalar(y_prime(1),y_prime(1)),
5414 c      & " yz",scalar(y_prime(1),z_prime(1)),
5415 c      & " zz",scalar(z_prime(1),z_prime(1))
5416 c
5417 C Transform the unit vector of the ith side-chain centroid, dC_norm(*,i),
5418 C to local coordinate system. Store in xx, yy, zz.
5419 c
5420         xx=0.0d0
5421         yy=0.0d0
5422         zz=0.0d0
5423         do j = 1,3
5424           xx = xx + x_prime(j)*dc_norm(j,i+nres)
5425           yy = yy + y_prime(j)*dc_norm(j,i+nres)
5426           zz = zz + z_prime(j)*dc_norm(j,i+nres)
5427         enddo
5428
5429         xxtab(i)=xx
5430         yytab(i)=yy
5431         zztab(i)=zz
5432 C
5433 C Compute the energy of the ith side cbain
5434 C
5435 c        write (2,*) "xx",xx," yy",yy," zz",zz
5436         it=itype(i)
5437         do j = 1,65
5438           x(j) = sc_parmin(j,it) 
5439         enddo
5440 #ifdef CHECK_COORD
5441 Cc diagnostics - remove later
5442         xx1 = dcos(alph(2))
5443         yy1 = dsin(alph(2))*dcos(omeg(2))
5444         zz1 = -dsin(alph(2))*dsin(omeg(2))
5445         write(2,'(3f8.1,3f9.3,1x,3f9.3)') 
5446      &    alph(2)*rad2deg,omeg(2)*rad2deg,theta(3)*rad2deg,xx,yy,zz,
5447      &    xx1,yy1,zz1
5448 C,"  --- ", xx_w,yy_w,zz_w
5449 c end diagnostics
5450 #endif
5451         sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5452      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5453      &   + x(10)*yy*zz
5454         sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5455      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5456      & + x(20)*yy*zz
5457         sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5458      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5459      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5460      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5461      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5462      &  +x(40)*xx*yy*zz
5463         sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5464      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5465      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5466      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5467      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5468      &  +x(60)*xx*yy*zz
5469         dsc_i   = 0.743d0+x(61)
5470         dp2_i   = 1.9d0+x(62)
5471         dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5472      &          *(xx*cost2tab(i+1)+yy*sint2tab(i+1)))
5473         dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5474      &          *(xx*cost2tab(i+1)-yy*sint2tab(i+1)))
5475         s1=(1+x(63))/(0.1d0 + dscp1)
5476         s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5477         s2=(1+x(65))/(0.1d0 + dscp2)
5478         s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5479         sumene = ( sumene3*sint2tab(i+1) + sumene1)*(s1+s1_6)
5480      & + (sumene4*cost2tab(i+1) +sumene2)*(s2+s2_6)
5481 c        write(2,'(i2," sumene",7f9.3)') i,sumene1,sumene2,sumene3,
5482 c     &   sumene4,
5483 c     &   dscp1,dscp2,sumene
5484 c        sumene = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5485         escloc = escloc + sumene
5486 c        write (2,*) "i",i," escloc",sumene,escloc
5487 #ifdef DEBUG
5488 C
5489 C This section to check the numerical derivatives of the energy of ith side
5490 C chain in xx, yy, zz, and theta. Use the -DDEBUG compiler option or insert
5491 C #define DEBUG in the code to turn it on.
5492 C
5493         write (2,*) "sumene               =",sumene
5494         aincr=1.0d-7
5495         xxsave=xx
5496         xx=xx+aincr
5497         write (2,*) xx,yy,zz
5498         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5499         de_dxx_num=(sumenep-sumene)/aincr
5500         xx=xxsave
5501         write (2,*) "xx+ sumene from enesc=",sumenep
5502         yysave=yy
5503         yy=yy+aincr
5504         write (2,*) xx,yy,zz
5505         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5506         de_dyy_num=(sumenep-sumene)/aincr
5507         yy=yysave
5508         write (2,*) "yy+ sumene from enesc=",sumenep
5509         zzsave=zz
5510         zz=zz+aincr
5511         write (2,*) xx,yy,zz
5512         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5513         de_dzz_num=(sumenep-sumene)/aincr
5514         zz=zzsave
5515         write (2,*) "zz+ sumene from enesc=",sumenep
5516         costsave=cost2tab(i+1)
5517         sintsave=sint2tab(i+1)
5518         cost2tab(i+1)=dcos(0.5d0*(theta(i+1)+aincr))
5519         sint2tab(i+1)=dsin(0.5d0*(theta(i+1)+aincr))
5520         sumenep = enesc(x,xx,yy,zz,cost2tab(i+1),sint2tab(i+1))
5521         de_dt_num=(sumenep-sumene)/aincr
5522         write (2,*) " t+ sumene from enesc=",sumenep
5523         cost2tab(i+1)=costsave
5524         sint2tab(i+1)=sintsave
5525 C End of diagnostics section.
5526 #endif
5527 C        
5528 C Compute the gradient of esc
5529 C
5530         pom_s1=(1.0d0+x(63))/(0.1d0 + dscp1)**2
5531         pom_s16=6*(1.0d0+x(64))/(0.1d0 + dscp1**6)**2
5532         pom_s2=(1.0d0+x(65))/(0.1d0 + dscp2)**2
5533         pom_s26=6*(1.0d0+x(65))/(0.1d0 + dscp2**6)**2
5534         pom_dx=dsc_i*dp2_i*cost2tab(i+1)
5535         pom_dy=dsc_i*dp2_i*sint2tab(i+1)
5536         pom_dt1=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)-yy*cost2tab(i+1))
5537         pom_dt2=-0.5d0*dsc_i*dp2_i*(xx*sint2tab(i+1)+yy*cost2tab(i+1))
5538         pom1=(sumene3*sint2tab(i+1)+sumene1)
5539      &     *(pom_s1/dscp1+pom_s16*dscp1**4)
5540         pom2=(sumene4*cost2tab(i+1)+sumene2)
5541      &     *(pom_s2/dscp2+pom_s26*dscp2**4)
5542         sumene1x=x(2)+2*x(5)*xx+x(8)*zz+ x(9)*yy
5543         sumene3x=x(22)+2*x(25)*xx+x(28)*zz+x(29)*yy+3*x(31)*xx**2
5544      &  +2*x(34)*xx*yy +2*x(35)*xx*zz +x(36)*(yy**2) +x(38)*(zz**2)
5545      &  +x(40)*yy*zz
5546         sumene2x=x(12)+2*x(15)*xx+x(18)*zz+ x(19)*yy
5547         sumene4x=x(42)+2*x(45)*xx +x(48)*zz +x(49)*yy +3*x(51)*xx**2
5548      &  +2*x(54)*xx*yy+2*x(55)*xx*zz+x(56)*(yy**2)+x(58)*(zz**2)
5549      &  +x(60)*yy*zz
5550         de_dxx =(sumene1x+sumene3x*sint2tab(i+1))*(s1+s1_6)
5551      &        +(sumene2x+sumene4x*cost2tab(i+1))*(s2+s2_6)
5552      &        +(pom1+pom2)*pom_dx
5553 #ifdef DEBUG
5554         write(2,*), "de_dxx = ", de_dxx,de_dxx_num
5555 #endif
5556 C
5557         sumene1y=x(3) + 2*x(6)*yy + x(9)*xx + x(10)*zz
5558         sumene3y=x(23) +2*x(26)*yy +x(29)*xx +x(30)*zz +3*x(32)*yy**2
5559      &  +x(34)*(xx**2) +2*x(36)*yy*xx +2*x(37)*yy*zz +x(39)*(zz**2)
5560      &  +x(40)*xx*zz
5561         sumene2y=x(13) + 2*x(16)*yy + x(19)*xx + x(20)*zz
5562         sumene4y=x(43)+2*x(46)*yy+x(49)*xx +x(50)*zz
5563      &  +3*x(52)*yy**2+x(54)*xx**2+2*x(56)*yy*xx +2*x(57)*yy*zz
5564      &  +x(59)*zz**2 +x(60)*xx*zz
5565         de_dyy =(sumene1y+sumene3y*sint2tab(i+1))*(s1+s1_6)
5566      &        +(sumene2y+sumene4y*cost2tab(i+1))*(s2+s2_6)
5567      &        +(pom1-pom2)*pom_dy
5568 #ifdef DEBUG
5569         write(2,*), "de_dyy = ", de_dyy,de_dyy_num
5570 #endif
5571 C
5572         de_dzz =(x(24) +2*x(27)*zz +x(28)*xx +x(30)*yy
5573      &  +3*x(33)*zz**2 +x(35)*xx**2 +x(37)*yy**2 +2*x(38)*zz*xx 
5574      &  +2*x(39)*zz*yy +x(40)*xx*yy)*sint2tab(i+1)*(s1+s1_6) 
5575      &  +(x(4) + 2*x(7)*zz+  x(8)*xx + x(10)*yy)*(s1+s1_6) 
5576      &  +(x(44)+2*x(47)*zz +x(48)*xx   +x(50)*yy  +3*x(53)*zz**2   
5577      &  +x(55)*xx**2 +x(57)*(yy**2)+2*x(58)*zz*xx +2*x(59)*zz*yy  
5578      &  +x(60)*xx*yy)*cost2tab(i+1)*(s2+s2_6)
5579      &  + ( x(14) + 2*x(17)*zz+  x(18)*xx + x(20)*yy)*(s2+s2_6)
5580 #ifdef DEBUG
5581         write(2,*), "de_dzz = ", de_dzz,de_dzz_num
5582 #endif
5583 C
5584         de_dt =  0.5d0*sumene3*cost2tab(i+1)*(s1+s1_6) 
5585      &  -0.5d0*sumene4*sint2tab(i+1)*(s2+s2_6)
5586      &  +pom1*pom_dt1+pom2*pom_dt2
5587 #ifdef DEBUG
5588         write(2,*), "de_dt = ", de_dt,de_dt_num
5589 #endif
5590
5591 C
5592        cossc=scalar(dc_norm(1,i),dc_norm(1,i+nres))
5593        cossc1=scalar(dc_norm(1,i-1),dc_norm(1,i+nres))
5594        cosfac2xx=cosfac2*xx
5595        sinfac2yy=sinfac2*yy
5596        do k = 1,3
5597          dt_dCi(k) = -(dc_norm(k,i-1)+costtab(i+1)*dc_norm(k,i))*
5598      &      vbld_inv(i+1)
5599          dt_dCi1(k)= -(dc_norm(k,i)+costtab(i+1)*dc_norm(k,i-1))*
5600      &      vbld_inv(i)
5601          pom=(dC_norm(k,i+nres)-cossc*dC_norm(k,i))*vbld_inv(i+1)
5602          pom1=(dC_norm(k,i+nres)-cossc1*dC_norm(k,i-1))*vbld_inv(i)
5603 c         write (iout,*) "i",i," k",k," pom",pom," pom1",pom1,
5604 c     &    " dt_dCi",dt_dCi(k)," dt_dCi1",dt_dCi1(k)
5605 c         write (iout,*) "dC_norm",(dC_norm(j,i),j=1,3),
5606 c     &   (dC_norm(j,i-1),j=1,3)," vbld_inv",vbld_inv(i+1),vbld_inv(i)
5607          dXX_Ci(k)=pom*cosfac-dt_dCi(k)*cosfac2xx
5608          dXX_Ci1(k)=-pom1*cosfac-dt_dCi1(k)*cosfac2xx
5609          dYY_Ci(k)=pom*sinfac+dt_dCi(k)*sinfac2yy
5610          dYY_Ci1(k)=pom1*sinfac+dt_dCi1(k)*sinfac2yy
5611          dZZ_Ci1(k)=0.0d0
5612          dZZ_Ci(k)=0.0d0
5613          do j=1,3
5614            dZZ_Ci(k)=dZZ_Ci(k)-uzgrad(j,k,2,i-1)*dC_norm(j,i+nres)
5615            dZZ_Ci1(k)=dZZ_Ci1(k)-uzgrad(j,k,1,i-1)*dC_norm(j,i+nres)
5616          enddo
5617           
5618          dXX_XYZ(k)=vbld_inv(i+nres)*(x_prime(k)-xx*dC_norm(k,i+nres))
5619          dYY_XYZ(k)=vbld_inv(i+nres)*(y_prime(k)-yy*dC_norm(k,i+nres))
5620          dZZ_XYZ(k)=vbld_inv(i+nres)*(z_prime(k)-zz*dC_norm(k,i+nres))
5621 c
5622          dt_dCi(k) = -dt_dCi(k)/sinttab(i+1)
5623          dt_dCi1(k)= -dt_dCi1(k)/sinttab(i+1)
5624        enddo
5625
5626        do k=1,3
5627          dXX_Ctab(k,i)=dXX_Ci(k)
5628          dXX_C1tab(k,i)=dXX_Ci1(k)
5629          dYY_Ctab(k,i)=dYY_Ci(k)
5630          dYY_C1tab(k,i)=dYY_Ci1(k)
5631          dZZ_Ctab(k,i)=dZZ_Ci(k)
5632          dZZ_C1tab(k,i)=dZZ_Ci1(k)
5633          dXX_XYZtab(k,i)=dXX_XYZ(k)
5634          dYY_XYZtab(k,i)=dYY_XYZ(k)
5635          dZZ_XYZtab(k,i)=dZZ_XYZ(k)
5636        enddo
5637
5638        do k = 1,3
5639 c         write (iout,*) "k",k," dxx_ci1",dxx_ci1(k)," dyy_ci1",
5640 c     &    dyy_ci1(k)," dzz_ci1",dzz_ci1(k)
5641 c         write (iout,*) "k",k," dxx_ci",dxx_ci(k)," dyy_ci",
5642 c     &    dyy_ci(k)," dzz_ci",dzz_ci(k)
5643 c         write (iout,*) "k",k," dt_dci",dt_dci(k)," dt_dci",
5644 c     &    dt_dci(k)
5645 c         write (iout,*) "k",k," dxx_XYZ",dxx_XYZ(k)," dyy_XYZ",
5646 c     &    dyy_XYZ(k)," dzz_XYZ",dzz_XYZ(k) 
5647          gscloc(k,i-1)=gscloc(k,i-1)+de_dxx*dxx_ci1(k)
5648      &    +de_dyy*dyy_ci1(k)+de_dzz*dzz_ci1(k)+de_dt*dt_dCi1(k)
5649          gscloc(k,i)=gscloc(k,i)+de_dxx*dxx_Ci(k)
5650      &    +de_dyy*dyy_Ci(k)+de_dzz*dzz_Ci(k)+de_dt*dt_dCi(k)
5651          gsclocx(k,i)=                 de_dxx*dxx_XYZ(k)
5652      &    +de_dyy*dyy_XYZ(k)+de_dzz*dzz_XYZ(k)
5653        enddo
5654 c       write(iout,*) "ENERGY GRAD = ", (gscloc(k,i-1),k=1,3),
5655 c     &  (gscloc(k,i),k=1,3),(gsclocx(k,i),k=1,3)  
5656
5657 C to check gradient call subroutine check_grad
5658
5659     1 continue
5660       enddo
5661       return
5662       end
5663 c------------------------------------------------------------------------------
5664       double precision function enesc(x,xx,yy,zz,cost2,sint2)
5665       implicit none
5666       double precision x(65),xx,yy,zz,cost2,sint2,sumene1,sumene2,
5667      & sumene3,sumene4,sumene,dsc_i,dp2_i,dscp1,dscp2,s1,s1_6,s2,s2_6
5668       sumene1= x(1)+  x(2)*xx+  x(3)*yy+  x(4)*zz+  x(5)*xx**2
5669      &   + x(6)*yy**2+  x(7)*zz**2+  x(8)*xx*zz+  x(9)*xx*yy
5670      &   + x(10)*yy*zz
5671       sumene2=  x(11) + x(12)*xx + x(13)*yy + x(14)*zz + x(15)*xx**2
5672      & + x(16)*yy**2 + x(17)*zz**2 + x(18)*xx*zz + x(19)*xx*yy
5673      & + x(20)*yy*zz
5674       sumene3=  x(21) +x(22)*xx +x(23)*yy +x(24)*zz +x(25)*xx**2
5675      &  +x(26)*yy**2 +x(27)*zz**2 +x(28)*xx*zz +x(29)*xx*yy
5676      &  +x(30)*yy*zz +x(31)*xx**3 +x(32)*yy**3 +x(33)*zz**3
5677      &  +x(34)*(xx**2)*yy +x(35)*(xx**2)*zz +x(36)*(yy**2)*xx
5678      &  +x(37)*(yy**2)*zz +x(38)*(zz**2)*xx +x(39)*(zz**2)*yy
5679      &  +x(40)*xx*yy*zz
5680       sumene4= x(41) +x(42)*xx +x(43)*yy +x(44)*zz +x(45)*xx**2
5681      &  +x(46)*yy**2 +x(47)*zz**2 +x(48)*xx*zz +x(49)*xx*yy
5682      &  +x(50)*yy*zz +x(51)*xx**3 +x(52)*yy**3 +x(53)*zz**3
5683      &  +x(54)*(xx**2)*yy +x(55)*(xx**2)*zz +x(56)*(yy**2)*xx
5684      &  +x(57)*(yy**2)*zz +x(58)*(zz**2)*xx +x(59)*(zz**2)*yy
5685      &  +x(60)*xx*yy*zz
5686       dsc_i   = 0.743d0+x(61)
5687       dp2_i   = 1.9d0+x(62)
5688       dscp1=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5689      &          *(xx*cost2+yy*sint2))
5690       dscp2=dsqrt(dsc_i**2+dp2_i**2-2*dsc_i*dp2_i
5691      &          *(xx*cost2-yy*sint2))
5692       s1=(1+x(63))/(0.1d0 + dscp1)
5693       s1_6=(1+x(64))/(0.1d0 + dscp1**6)
5694       s2=(1+x(65))/(0.1d0 + dscp2)
5695       s2_6=(1+x(65))/(0.1d0 + dscp2**6)
5696       sumene = ( sumene3*sint2 + sumene1)*(s1+s1_6)
5697      & + (sumene4*cost2 +sumene2)*(s2+s2_6)
5698       enesc=sumene
5699       return
5700       end
5701 #endif
5702 c------------------------------------------------------------------------------
5703       subroutine gcont(rij,r0ij,eps0ij,delta,fcont,fprimcont)
5704 C
5705 C This procedure calculates two-body contact function g(rij) and its derivative:
5706 C
5707 C           eps0ij                                     !       x < -1
5708 C g(rij) =  esp0ij*(-0.9375*x+0.625*x**3-0.1875*x**5)  ! -1 =< x =< 1
5709 C            0                                         !       x > 1
5710 C
5711 C where x=(rij-r0ij)/delta
5712 C
5713 C rij - interbody distance, r0ij - contact distance, eps0ij - contact energy
5714 C
5715       implicit none
5716       double precision rij,r0ij,eps0ij,fcont,fprimcont
5717       double precision x,x2,x4,delta
5718 c     delta=0.02D0*r0ij
5719 c      delta=0.2D0*r0ij
5720       x=(rij-r0ij)/delta
5721       if (x.lt.-1.0D0) then
5722         fcont=eps0ij
5723         fprimcont=0.0D0
5724       else if (x.le.1.0D0) then  
5725         x2=x*x
5726         x4=x2*x2
5727         fcont=eps0ij*(x*(-0.9375D0+0.6250D0*x2-0.1875D0*x4)+0.5D0)
5728         fprimcont=eps0ij * (-0.9375D0+1.8750D0*x2-0.9375D0*x4)/delta
5729       else
5730         fcont=0.0D0
5731         fprimcont=0.0D0
5732       endif
5733       return
5734       end
5735 c------------------------------------------------------------------------------
5736       subroutine splinthet(theti,delta,ss,ssder)
5737       implicit real*8 (a-h,o-z)
5738       include 'DIMENSIONS'
5739       include 'COMMON.VAR'
5740       include 'COMMON.GEO'
5741       thetup=pi-delta
5742       thetlow=delta
5743       if (theti.gt.pipol) then
5744         call gcont(theti,thetup,1.0d0,delta,ss,ssder)
5745       else
5746         call gcont(-theti,-thetlow,1.0d0,delta,ss,ssder)
5747         ssder=-ssder
5748       endif
5749       return
5750       end
5751 c------------------------------------------------------------------------------
5752       subroutine spline1(x,x0,delta,f0,f1,fprim0,f,fprim)
5753       implicit none
5754       double precision x,x0,delta,f0,f1,fprim0,f,fprim
5755       double precision ksi,ksi2,ksi3,a1,a2,a3
5756       a1=fprim0*delta/(f1-f0)
5757       a2=3.0d0-2.0d0*a1
5758       a3=a1-2.0d0
5759       ksi=(x-x0)/delta
5760       ksi2=ksi*ksi
5761       ksi3=ksi2*ksi  
5762       f=f0+(f1-f0)*ksi*(a1+ksi*(a2+a3*ksi))
5763       fprim=(f1-f0)/delta*(a1+ksi*(2*a2+3*ksi*a3))
5764       return
5765       end
5766 c------------------------------------------------------------------------------
5767       subroutine spline2(x,x0,delta,f0x,f1x,fprim0x,fx)
5768       implicit none
5769       double precision x,x0,delta,f0x,f1x,fprim0x,fx
5770       double precision ksi,ksi2,ksi3,a1,a2,a3
5771       ksi=(x-x0)/delta  
5772       ksi2=ksi*ksi
5773       ksi3=ksi2*ksi
5774       a1=fprim0x*delta
5775       a2=3*(f1x-f0x)-2*fprim0x*delta
5776       a3=fprim0x*delta-2*(f1x-f0x)
5777       fx=f0x+a1*ksi+a2*ksi2+a3*ksi3
5778       return
5779       end
5780 C-----------------------------------------------------------------------------
5781 #ifdef CRYST_TOR
5782 C-----------------------------------------------------------------------------
5783       subroutine etor(etors,edihcnstr)
5784       implicit real*8 (a-h,o-z)
5785       include 'DIMENSIONS'
5786       include 'COMMON.VAR'
5787       include 'COMMON.GEO'
5788       include 'COMMON.LOCAL'
5789       include 'COMMON.TORSION'
5790       include 'COMMON.INTERACT'
5791       include 'COMMON.DERIV'
5792       include 'COMMON.CHAIN'
5793       include 'COMMON.NAMES'
5794       include 'COMMON.IOUNITS'
5795       include 'COMMON.FFIELD'
5796       include 'COMMON.TORCNSTR'
5797       include 'COMMON.CONTROL'
5798       logical lprn
5799 C Set lprn=.true. for debugging
5800       lprn=.false.
5801 c      lprn=.true.
5802       etors=0.0D0
5803       do i=iphi_start,iphi_end
5804       etors_ii=0.0D0
5805         itori=itortyp(itype(i-2))
5806         itori1=itortyp(itype(i-1))
5807         phii=phi(i)
5808         gloci=0.0D0
5809 C Proline-Proline pair is a special case...
5810         if (itori.eq.3 .and. itori1.eq.3) then
5811           if (phii.gt.-dwapi3) then
5812             cosphi=dcos(3*phii)
5813             fac=1.0D0/(1.0D0-cosphi)
5814             etorsi=v1(1,3,3)*fac
5815             etorsi=etorsi+etorsi
5816             etors=etors+etorsi-v1(1,3,3)
5817             if (energy_dec) etors_ii=etors_ii+etorsi-v1(1,3,3)      
5818             gloci=gloci-3*fac*etorsi*dsin(3*phii)
5819           endif
5820           do j=1,3
5821             v1ij=v1(j+1,itori,itori1)
5822             v2ij=v2(j+1,itori,itori1)
5823             cosphi=dcos(j*phii)
5824             sinphi=dsin(j*phii)
5825             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5826             if (energy_dec) etors_ii=etors_ii+
5827      &                              v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5828             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5829           enddo
5830         else 
5831           do j=1,nterm_old
5832             v1ij=v1(j,itori,itori1)
5833             v2ij=v2(j,itori,itori1)
5834             cosphi=dcos(j*phii)
5835             sinphi=dsin(j*phii)
5836             etors=etors+v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5837             if (energy_dec) etors_ii=etors_ii+
5838      &                  v1ij*cosphi+v2ij*sinphi+dabs(v1ij)+dabs(v2ij)
5839             gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5840           enddo
5841         endif
5842         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5843      &        'etor',i,etors_ii
5844         if (lprn)
5845      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5846      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5847      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5848         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5849         write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5850       enddo
5851 ! 6/20/98 - dihedral angle constraints
5852       edihcnstr=0.0d0
5853       do i=1,ndih_constr
5854         itori=idih_constr(i)
5855         phii=phi(itori)
5856         difi=phii-phi0(i)
5857         if (difi.gt.drange(i)) then
5858           difi=difi-drange(i)
5859           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5860           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5861         else if (difi.lt.-drange(i)) then
5862           difi=difi+drange(i)
5863           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5864           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5865         endif
5866 !        write (iout,'(2i5,2f8.3,2e14.5)') i,itori,rad2deg*phii,
5867 !     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5868       enddo
5869 !      write (iout,*) 'edihcnstr',edihcnstr
5870       return
5871       end
5872 c------------------------------------------------------------------------------
5873 c LICZENIE WIEZOW Z ROWNANIA ENERGII MODELLERA
5874       subroutine e_modeller(ehomology_constr)
5875       ehomology_constr=0.0d0
5876       write (iout,*) "!!!!!UWAGA, JESTEM W DZIWNEJ PETLI, TEST!!!!!"
5877       return
5878       end
5879 C !!!!!!!! NIE CZYTANE !!!!!!!!!!!
5880
5881 c------------------------------------------------------------------------------
5882       subroutine etor_d(etors_d)
5883       etors_d=0.0d0
5884       return
5885       end
5886 c----------------------------------------------------------------------------
5887 #else
5888       subroutine etor(etors,edihcnstr)
5889       implicit real*8 (a-h,o-z)
5890       include 'DIMENSIONS'
5891       include 'COMMON.VAR'
5892       include 'COMMON.GEO'
5893       include 'COMMON.LOCAL'
5894       include 'COMMON.TORSION'
5895       include 'COMMON.INTERACT'
5896       include 'COMMON.DERIV'
5897       include 'COMMON.CHAIN'
5898       include 'COMMON.NAMES'
5899       include 'COMMON.IOUNITS'
5900       include 'COMMON.FFIELD'
5901       include 'COMMON.TORCNSTR'
5902       include 'COMMON.CONTROL'
5903       logical lprn
5904 C Set lprn=.true. for debugging
5905       lprn=.false.
5906 c     lprn=.true.
5907       etors=0.0D0
5908       do i=iphi_start,iphi_end
5909       etors_ii=0.0D0
5910         itori=itortyp(itype(i-2))
5911         itori1=itortyp(itype(i-1))
5912         phii=phi(i)
5913         gloci=0.0D0
5914 C Regular cosine and sine terms
5915         do j=1,nterm(itori,itori1)
5916           v1ij=v1(j,itori,itori1)
5917           v2ij=v2(j,itori,itori1)
5918           cosphi=dcos(j*phii)
5919           sinphi=dsin(j*phii)
5920           etors=etors+v1ij*cosphi+v2ij*sinphi
5921           if (energy_dec) etors_ii=etors_ii+
5922      &                v1ij*cosphi+v2ij*sinphi
5923           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
5924         enddo
5925 C Lorentz terms
5926 C                         v1
5927 C  E = SUM ----------------------------------- - v1
5928 C          [v2 cos(phi/2)+v3 sin(phi/2)]^2 + 1
5929 C
5930         cosphi=dcos(0.5d0*phii)
5931         sinphi=dsin(0.5d0*phii)
5932         do j=1,nlor(itori,itori1)
5933           vl1ij=vlor1(j,itori,itori1)
5934           vl2ij=vlor2(j,itori,itori1)
5935           vl3ij=vlor3(j,itori,itori1)
5936           pom=vl2ij*cosphi+vl3ij*sinphi
5937           pom1=1.0d0/(pom*pom+1.0d0)
5938           etors=etors+vl1ij*pom1
5939           if (energy_dec) etors_ii=etors_ii+
5940      &                vl1ij*pom1
5941           pom=-pom*pom1*pom1
5942           gloci=gloci+vl1ij*(vl3ij*cosphi-vl2ij*sinphi)*pom
5943         enddo
5944 C Subtract the constant term
5945         etors=etors-v0(itori,itori1)
5946           if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
5947      &         'etor',i,etors_ii-v0(itori,itori1)
5948         if (lprn)
5949      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
5950      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
5951      &  (v1(j,itori,itori1),j=1,6),(v2(j,itori,itori1),j=1,6)
5952         gloc(i-3,icg)=gloc(i-3,icg)+wtor*gloci
5953 c       write (iout,*) 'i=',i,' gloc=',gloc(i-3,icg)
5954       enddo
5955 ! 6/20/98 - dihedral angle constraints
5956       edihcnstr=0.0d0
5957 c      do i=1,ndih_constr
5958       do i=idihconstr_start,idihconstr_end
5959         itori=idih_constr(i)
5960         phii=phi(itori)
5961         difi=pinorm(phii-phi0(i))
5962         if (difi.gt.drange(i)) then
5963           difi=difi-drange(i)
5964           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5965           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5966         else if (difi.lt.-drange(i)) then
5967           difi=difi+drange(i)
5968           edihcnstr=edihcnstr+0.25d0*ftors*difi**4
5969           gloc(itori-3,icg)=gloc(itori-3,icg)+ftors*difi**3
5970         else
5971           difi=0.0
5972         endif
5973 c        write (iout,*) "gloci", gloc(i-3,icg)
5974 cd        write (iout,'(2i5,4f8.3,2e14.5)') i,itori,rad2deg*phii,
5975 cd     &    rad2deg*phi0(i),  rad2deg*drange(i),
5976 cd     &    rad2deg*difi,0.25d0*ftors*difi**4,gloc(itori-3,icg)
5977       enddo
5978 cd       write (iout,*) 'edihcnstr',edihcnstr
5979       return
5980       end
5981 c----------------------------------------------------------------------------
5982 c MODELLER restraint function
5983       subroutine e_modeller(ehomology_constr)
5984       implicit real*8 (a-h,o-z)
5985       include 'DIMENSIONS'
5986
5987       integer nnn, i, j, k, ki, irec, l
5988       integer katy, odleglosci, test7
5989       real*8 odleg, odleg2, odleg3, kat, kat2, kat3, gdih(max_template)
5990       real*8 Eval,Erot
5991       real*8 distance(max_template),distancek(max_template),
5992      &    min_odl,godl(max_template),dih_diff(max_template)
5993
5994 c
5995 c     FP - 30/10/2014 Temporary specifications for homology restraints
5996 c
5997       double precision utheta_i,gutheta_i,sum_gtheta,sum_sgtheta,
5998      &                 sgtheta      
5999       double precision, dimension (maxres) :: guscdiff,usc_diff
6000       double precision, dimension (max_template) ::  
6001      &           gtheta,dscdiff,uscdiffk,guscdiff2,guscdiff3,
6002      &           theta_diff
6003 c
6004
6005       include 'COMMON.SBRIDGE'
6006       include 'COMMON.CHAIN'
6007       include 'COMMON.GEO'
6008       include 'COMMON.DERIV'
6009       include 'COMMON.LOCAL'
6010       include 'COMMON.INTERACT'
6011       include 'COMMON.VAR'
6012       include 'COMMON.IOUNITS'
6013       include 'COMMON.MD'
6014       include 'COMMON.CONTROL'
6015 c
6016 c     From subroutine Econstr_back
6017 c
6018       include 'COMMON.NAMES'
6019       include 'COMMON.TIME1'
6020 c
6021
6022
6023       do i=1,19
6024         distancek(i)=9999999.9
6025       enddo
6026
6027
6028       odleg=0.0d0
6029
6030 c Pseudo-energy and gradient from homology restraints (MODELLER-like
6031 c function)
6032 C AL 5/2/14 - Introduce list of restraints
6033 c     write(iout,*) "waga_theta",waga_theta,"waga_d",waga_d
6034 #ifdef DEBUG
6035       write(iout,*) "------- dist restrs start -------"
6036 #endif
6037       do ii = link_start_homo,link_end_homo
6038          i = ires_homo(ii)
6039          j = jres_homo(ii)
6040          dij=dist(i,j)
6041 c        write (iout,*) "dij(",i,j,") =",dij
6042          do k=1,constr_homology
6043 c           write(iout,*) ii,k,i,j,l_homo(k,ii),dij,odl(k,ii)
6044            if(.not.l_homo(k,ii)) cycle
6045            distance(k)=odl(k,ii)-dij
6046 c          write (iout,*) "distance(",k,") =",distance(k)
6047 c
6048 c          For Gaussian-type Urestr
6049 c
6050            distancek(k)=0.5d0*distance(k)**2*sigma_odl(k,ii) ! waga_dist rmvd from Gaussian argument
6051 c          write (iout,*) "sigma_odl(",k,ii,") =",sigma_odl(k,ii)
6052 c          write (iout,*) "distancek(",k,") =",distancek(k)
6053 c          distancek(k)=0.5d0*waga_dist*distance(k)**2*sigma_odl(k,ii)
6054 c
6055 c          For Lorentzian-type Urestr
6056 c
6057            if (waga_dist.lt.0.0d0) then
6058               sigma_odlir(k,ii)=dsqrt(1/sigma_odl(k,ii))
6059               distancek(k)=distance(k)**2/(sigma_odlir(k,ii)*
6060      &                     (distance(k)**2+sigma_odlir(k,ii)**2))
6061            endif
6062          enddo
6063          
6064          min_odl=minval(distancek)
6065 c        write (iout,* )"min_odl",min_odl
6066 #ifdef DEBUG
6067          write (iout,*) "ij dij",i,j,dij
6068          write (iout,*) "distance",(distance(k),k=1,constr_homology)
6069          write (iout,*) "distancek",(distancek(k),k=1,constr_homology)
6070          write (iout,* )"min_odl",min_odl
6071 #endif
6072          odleg2=0.0d0
6073          do k=1,constr_homology
6074 c Nie wiem po co to liczycie jeszcze raz!
6075 c            odleg3=-waga_dist(iset)*((distance(i,j,k)**2)/ 
6076 c     &              (2*(sigma_odl(i,j,k))**2))
6077            if(.not.l_homo(k,ii)) cycle
6078            if (waga_dist.ge.0.0d0) then
6079 c
6080 c          For Gaussian-type Urestr
6081 c
6082             godl(k)=dexp(-distancek(k)+min_odl)
6083             odleg2=odleg2+godl(k)
6084 c
6085 c          For Lorentzian-type Urestr
6086 c
6087            else
6088             odleg2=odleg2+distancek(k)
6089            endif
6090
6091 ccc       write(iout,779) i,j,k, "odleg2=",odleg2, "odleg3=", odleg3,
6092 ccc     & "dEXP(odleg3)=", dEXP(odleg3),"distance(i,j,k)^2=",
6093 ccc     & distance(i,j,k)**2, "dist(i+1,j+1)=", dist(i+1,j+1),
6094 ccc     & "sigma_odl(i,j,k)=", sigma_odl(i,j,k)
6095
6096          enddo
6097 c        write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6098 c        write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6099 #ifdef DEBUG
6100          write (iout,*) "godl",(godl(k),k=1,constr_homology) ! exponents
6101          write (iout,*) "ii i j",ii,i,j," odleg2",odleg2 ! sum of exps
6102 #endif
6103            if (waga_dist.ge.0.0d0) then
6104 c
6105 c          For Gaussian-type Urestr
6106 c
6107               odleg=odleg-dLOG(odleg2/constr_homology)+min_odl
6108 c
6109 c          For Lorentzian-type Urestr
6110 c
6111            else
6112               odleg=odleg+odleg2/constr_homology
6113            endif
6114 c
6115 c        write (iout,*) "odleg",odleg ! sum of -ln-s
6116 c Gradient
6117 c
6118 c          For Gaussian-type Urestr
6119 c
6120          if (waga_dist.ge.0.0d0) sum_godl=odleg2
6121          sum_sgodl=0.0d0
6122          do k=1,constr_homology
6123 c            godl=dexp(((-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6124 c     &           *waga_dist)+min_odl
6125 c          sgodl=-godl(k)*distance(k)*sigma_odl(k,ii)*waga_dist
6126 c
6127          if(.not.l_homo(k,ii)) cycle
6128          if (waga_dist.ge.0.0d0) then
6129 c          For Gaussian-type Urestr
6130 c
6131            sgodl=-godl(k)*distance(k)*sigma_odl(k,ii) ! waga_dist rmvd
6132 c
6133 c          For Lorentzian-type Urestr
6134 c
6135          else
6136            sgodl=-2*sigma_odlir(k,ii)*(distance(k)/(distance(k)**2+
6137      &           sigma_odlir(k,ii)**2)**2)
6138          endif
6139            sum_sgodl=sum_sgodl+sgodl
6140
6141 c            sgodl2=sgodl2+sgodl
6142 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE1"
6143 c      write(iout,*) "constr_homology=",constr_homology
6144 c      write(iout,*) i, j, k, "TEST K"
6145          enddo
6146          if (waga_dist.ge.0.0d0) then
6147 c
6148 c          For Gaussian-type Urestr
6149 c
6150             grad_odl3=waga_homology(iset)*waga_dist
6151      &                *sum_sgodl/(sum_godl*dij)
6152 c
6153 c          For Lorentzian-type Urestr
6154 c
6155          else
6156 c Original grad expr modified by analogy w Gaussian-type Urestr grad
6157 c           grad_odl3=-waga_homology(iset)*waga_dist*sum_sgodl
6158             grad_odl3=-waga_homology(iset)*waga_dist*
6159      &                sum_sgodl/(constr_homology*dij)
6160          endif
6161 c
6162 c        grad_odl3=sum_sgodl/(sum_godl*dij)
6163
6164
6165 c      write(iout,*) i, j, k, distance(i,j,k), "W GRADIENCIE2"
6166 c      write(iout,*) (distance(i,j,k)**2), (2*(sigma_odl(i,j,k))**2),
6167 c     &              (-(distance(i,j,k)**2)/(2*(sigma_odl(i,j,k))**2))
6168
6169 ccc      write(iout,*) godl, sgodl, grad_odl3
6170
6171 c          grad_odl=grad_odl+grad_odl3
6172
6173          do jik=1,3
6174             ggodl=grad_odl3*(c(jik,i)-c(jik,j))
6175 ccc      write(iout,*) c(jik,i+1), c(jik,j+1), (c(jik,i+1)-c(jik,j+1))
6176 ccc      write(iout,746) "GRAD_ODL_1", i, j, jik, ggodl, 
6177 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6178             ghpbc(jik,i)=ghpbc(jik,i)+ggodl
6179             ghpbc(jik,j)=ghpbc(jik,j)-ggodl
6180 ccc      write(iout,746) "GRAD_ODL_2", i, j, jik, ggodl,
6181 ccc     &              ghpbc(jik,i+1), ghpbc(jik,j+1)
6182 c         if (i.eq.25.and.j.eq.27) then
6183 c         write(iout,*) "jik",jik,"i",i,"j",j
6184 c         write(iout,*) "sum_sgodl",sum_sgodl,"sgodl",sgodl
6185 c         write(iout,*) "grad_odl3",grad_odl3
6186 c         write(iout,*) "c(",jik,i,")",c(jik,i),"c(",jik,j,")",c(jik,j)
6187 c         write(iout,*) "ggodl",ggodl
6188 c         write(iout,*) "ghpbc(",jik,i,")",
6189 c     &                 ghpbc(jik,i),"ghpbc(",jik,j,")",
6190 c     &                 ghpbc(jik,j)   
6191 c         endif
6192          enddo
6193 ccc       write(iout,778)"TEST: odleg2=", odleg2, "DLOG(odleg2)=", 
6194 ccc     & dLOG(odleg2),"-odleg=", -odleg
6195
6196       enddo ! ii-loop for dist
6197 #ifdef DEBUG
6198       write(iout,*) "------- dist restrs end -------"
6199 c     if (waga_angle.eq.1.0d0 .or. waga_theta.eq.1.0d0 .or. 
6200 c    &     waga_d.eq.1.0d0) call sum_gradient
6201 #endif
6202 c Pseudo-energy and gradient from dihedral-angle restraints from
6203 c homology templates
6204 c      write (iout,*) "End of distance loop"
6205 c      call flush(iout)
6206       kat=0.0d0
6207 c      write (iout,*) idihconstr_start_homo,idihconstr_end_homo
6208 #ifdef DEBUG
6209       write(iout,*) "------- dih restrs start -------"
6210       do i=idihconstr_start_homo,idihconstr_end_homo
6211         write (iout,*) "gloc_init(",i,icg,")",gloc(i,icg)
6212       enddo
6213 #endif
6214       do i=idihconstr_start_homo,idihconstr_end_homo
6215         kat2=0.0d0
6216 c        betai=beta(i,i+1,i+2,i+3)
6217         betai = phi(i+3)
6218 c       write (iout,*) "betai =",betai
6219         do k=1,constr_homology
6220           dih_diff(k)=pinorm(dih(k,i)-betai)
6221 c         write (iout,*) "dih_diff(",k,") =",dih_diff(k)
6222 c          if (dih_diff(i,k).gt.3.14159) dih_diff(i,k)=
6223 c     &                                   -(6.28318-dih_diff(i,k))
6224 c          if (dih_diff(i,k).lt.-3.14159) dih_diff(i,k)=
6225 c     &                                   6.28318+dih_diff(i,k)
6226
6227           kat3=-0.5d0*dih_diff(k)**2*sigma_dih(k,i) ! waga_angle rmvd from Gaussian argument
6228 c         kat3=-0.5d0*waga_angle*dih_diff(k)**2*sigma_dih(k,i)
6229           gdih(k)=dexp(kat3)
6230           kat2=kat2+gdih(k)
6231 c          write(iout,*) "kat2=", kat2, "exp(kat3)=", exp(kat3)
6232 c          write(*,*)""
6233         enddo
6234 c       write (iout,*) "gdih",(gdih(k),k=1,constr_homology) ! exps
6235 c       write (iout,*) "i",i," betai",betai," kat2",kat2 ! sum of exps
6236 #ifdef DEBUG
6237         write (iout,*) "i",i," betai",betai," kat2",kat2
6238         write (iout,*) "gdih",(gdih(k),k=1,constr_homology)
6239 #endif
6240         if (kat2.le.1.0d-14) cycle
6241         kat=kat-dLOG(kat2/constr_homology)
6242 c       write (iout,*) "kat",kat ! sum of -ln-s
6243
6244 ccc       write(iout,778)"TEST: kat2=", kat2, "DLOG(kat2)=",
6245 ccc     & dLOG(kat2), "-kat=", -kat
6246
6247 c ----------------------------------------------------------------------
6248 c Gradient
6249 c ----------------------------------------------------------------------
6250
6251         sum_gdih=kat2
6252         sum_sgdih=0.0d0
6253         do k=1,constr_homology
6254           sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)  ! waga_angle rmvd
6255 c         sgdih=-gdih(k)*dih_diff(k)*sigma_dih(k,i)*waga_angle
6256           sum_sgdih=sum_sgdih+sgdih
6257         enddo
6258 c       grad_dih3=sum_sgdih/sum_gdih
6259         grad_dih3=waga_homology(iset)*waga_angle*sum_sgdih/sum_gdih
6260
6261 c      write(iout,*)i,k,gdih,sgdih,beta(i+1,i+2,i+3,i+4),grad_dih3
6262 ccc      write(iout,747) "GRAD_KAT_1", i, nphi, icg, grad_dih3,
6263 ccc     & gloc(nphi+i-3,icg)
6264         gloc(i,icg)=gloc(i,icg)+grad_dih3
6265 c        if (i.eq.25) then
6266 c        write(iout,*) "i",i,"icg",icg,"gloc(",i,icg,")",gloc(i,icg)
6267 c        endif
6268 ccc      write(iout,747) "GRAD_KAT_2", i, nphi, icg, grad_dih3,
6269 ccc     & gloc(nphi+i-3,icg)
6270
6271       enddo ! i-loop for dih
6272 #ifdef DEBUG
6273       write(iout,*) "------- dih restrs end -------"
6274 #endif
6275
6276 c Pseudo-energy and gradient for theta angle restraints from
6277 c homology templates
6278 c FP 01/15 - inserted from econstr_local_test.F, loop structure
6279 c adapted
6280
6281 c
6282 c     For constr_homology reference structures (FP)
6283 c     
6284 c     Uconst_back_tot=0.0d0
6285       Eval=0.0d0
6286       Erot=0.0d0
6287 c     Econstr_back legacy
6288       do i=1,nres
6289 c     do i=ithet_start,ithet_end
6290        dutheta(i)=0.0d0
6291 c     enddo
6292 c     do i=loc_start,loc_end
6293         do j=1,3
6294           duscdiff(j,i)=0.0d0
6295           duscdiffx(j,i)=0.0d0
6296         enddo
6297       enddo
6298 c
6299 c     do iref=1,nref
6300 c     write (iout,*) "ithet_start =",ithet_start,"ithet_end =",ithet_end
6301 c     write (iout,*) "waga_theta",waga_theta
6302       if (waga_theta.gt.0.0d0) then
6303 #ifdef DEBUG
6304       write (iout,*) "usampl",usampl
6305       write(iout,*) "------- theta restrs start -------"
6306 c     do i=ithet_start,ithet_end
6307 c       write (iout,*) "gloc_init(",nphi+i,icg,")",gloc(nphi+i,icg)
6308 c     enddo
6309 #endif
6310 c     write (iout,*) "maxres",maxres,"nres",nres
6311
6312       do i=ithet_start,ithet_end
6313 c
6314 c     do i=1,nfrag_back
6315 c       ii = ifrag_back(2,i,iset)-ifrag_back(1,i,iset)
6316 c
6317 c Deviation of theta angles wrt constr_homology ref structures
6318 c
6319         utheta_i=0.0d0 ! argument of Gaussian for single k
6320         gutheta_i=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6321 c       do j=ifrag_back(1,i,iset)+2,ifrag_back(2,i,iset) ! original loop
6322 c       over residues in a fragment
6323 c       write (iout,*) "theta(",i,")=",theta(i)
6324         do k=1,constr_homology
6325 c
6326 c         dtheta_i=theta(j)-thetaref(j,iref)
6327 c         dtheta_i=thetaref(k,i)-theta(i) ! original form without indexing
6328           theta_diff(k)=thetatpl(k,i)-theta(i)
6329 c
6330           utheta_i=-0.5d0*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta rmvd from Gaussian argument
6331 c         utheta_i=-0.5d0*waga_theta*theta_diff(k)**2*sigma_theta(k,i) ! waga_theta?
6332           gtheta(k)=dexp(utheta_i) ! + min_utheta_i?
6333           gutheta_i=gutheta_i+dexp(utheta_i)   ! Sum of Gaussians (pk)
6334 c         Gradient for single Gaussian restraint in subr Econstr_back
6335 c         dutheta(j-2)=dutheta(j-2)+wfrag_back(1,i,iset)*dtheta_i/(ii-1)
6336 c
6337         enddo
6338 c       write (iout,*) "gtheta",(gtheta(k),k=1,constr_homology) ! exps
6339 c       write (iout,*) "i",i," gutheta_i",gutheta_i ! sum of exps
6340
6341 c
6342 c         Gradient for multiple Gaussian restraint
6343         sum_gtheta=gutheta_i
6344         sum_sgtheta=0.0d0
6345         do k=1,constr_homology
6346 c        New generalized expr for multiple Gaussian from Econstr_back
6347          sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i) ! waga_theta rmvd
6348 c
6349 c        sgtheta=-gtheta(k)*theta_diff(k)*sigma_theta(k,i)*waga_theta ! right functional form?
6350           sum_sgtheta=sum_sgtheta+sgtheta ! cum variable
6351         enddo
6352 c       Final value of gradient using same var as in Econstr_back
6353         gloc(nphi+i-2,icg)=gloc(nphi+i-2,icg)
6354      &      +sum_sgtheta/sum_gtheta*waga_theta
6355      &               *waga_homology(iset)
6356 c        dutheta(i-2)=sum_sgtheta/sum_gtheta*waga_theta
6357 c     &               *waga_homology(iset)
6358 c       dutheta(i)=sum_sgtheta/sum_gtheta
6359 c
6360 c       Uconst_back=Uconst_back+waga_theta*utheta(i) ! waga_theta added as weight
6361         Eval=Eval-dLOG(gutheta_i/constr_homology)
6362 c       write (iout,*) "utheta(",i,")=",utheta(i) ! -ln of sum of exps
6363 c       write (iout,*) "Uconst_back",Uconst_back ! sum of -ln-s
6364 c       Uconst_back=Uconst_back+utheta(i)
6365       enddo ! (i-loop for theta)
6366 #ifdef DEBUG
6367       write(iout,*) "------- theta restrs end -------"
6368 #endif
6369       endif
6370 c
6371 c Deviation of local SC geometry
6372 c
6373 c Separation of two i-loops (instructed by AL - 11/3/2014)
6374 c
6375 c     write (iout,*) "loc_start =",loc_start,"loc_end =",loc_end
6376 c     write (iout,*) "waga_d",waga_d
6377
6378 #ifdef DEBUG
6379       write(iout,*) "------- SC restrs start -------"
6380       write (iout,*) "Initial duscdiff,duscdiffx"
6381       do i=loc_start,loc_end
6382         write (iout,*) i,(duscdiff(jik,i),jik=1,3),
6383      &                 (duscdiffx(jik,i),jik=1,3)
6384       enddo
6385 #endif
6386       do i=loc_start,loc_end
6387         usc_diff_i=0.0d0 ! argument of Gaussian for single k
6388         guscdiff(i)=0.0d0 ! Sum of Gaussians over constr_homology ref structures
6389 c       do j=ifrag_back(1,i,iset)+1,ifrag_back(2,i,iset)-1 ! Econstr_back legacy
6390 c       write(iout,*) "xxtab, yytab, zztab"
6391 c       write(iout,'(i5,3f8.2)') i,xxtab(i),yytab(i),zztab(i)
6392         do k=1,constr_homology
6393 c
6394           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6395 c                                    Original sign inverted for calc of gradients (s. Econstr_back)
6396           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6397           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6398 c         write(iout,*) "dxx, dyy, dzz"
6399 c         write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6400 c
6401           usc_diff_i=-0.5d0*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i)  ! waga_d rmvd from Gaussian argument
6402 c         usc_diff(i)=-0.5d0*waga_d*(dxx**2+dyy**2+dzz**2)*sigma_d(k,i) ! waga_d?
6403 c         uscdiffk(k)=usc_diff(i)
6404           guscdiff2(k)=dexp(usc_diff_i) ! without min_scdiff
6405           guscdiff(i)=guscdiff(i)+dexp(usc_diff_i)   !Sum of Gaussians (pk)
6406 c          write (iout,'(i5,6f10.5)') j,xxtab(j),yytab(j),zztab(j),
6407 c     &      xxref(j),yyref(j),zzref(j)
6408         enddo
6409 c
6410 c       Gradient 
6411 c
6412 c       Generalized expression for multiple Gaussian acc to that for a single 
6413 c       Gaussian in Econstr_back as instructed by AL (FP - 03/11/2014)
6414 c
6415 c       Original implementation
6416 c       sum_guscdiff=guscdiff(i)
6417 c
6418 c       sum_sguscdiff=0.0d0
6419 c       do k=1,constr_homology
6420 c          sguscdiff=-guscdiff2(k)*dscdiff(k)*sigma_d(k,i)*waga_d !waga_d? 
6421 c          sguscdiff=-guscdiff3(k)*dscdiff(k)*sigma_d(k,i)*waga_d ! w min_uscdiff
6422 c          sum_sguscdiff=sum_sguscdiff+sguscdiff
6423 c       enddo
6424 c
6425 c       Implementation of new expressions for gradient (Jan. 2015)
6426 c
6427 c       grad_uscdiff=sum_sguscdiff/(sum_guscdiff*dtab) !?
6428         do k=1,constr_homology 
6429 c
6430 c       New calculation of dxx, dyy, and dzz corrected by AL (07/11), was missing and wrong
6431 c       before. Now the drivatives should be correct
6432 c
6433           dxx=-xxtpl(k,i)+xxtab(i) ! Diff b/w x component of ith SC vector in model and kth ref str?
6434 c                                  Original sign inverted for calc of gradients (s. Econstr_back)
6435           dyy=-yytpl(k,i)+yytab(i) ! ibid y
6436           dzz=-zztpl(k,i)+zztab(i) ! ibid z
6437 c
6438 c         New implementation
6439 c
6440           sum_guscdiff=guscdiff2(k)*!(dsqrt(dxx*dxx+dyy*dyy+dzz*dzz))* -> wrong!
6441      &                 sigma_d(k,i) ! for the grad wrt r' 
6442 c         sum_sguscdiff=sum_sguscdiff+sum_guscdiff
6443 c
6444 c
6445 c        New implementation
6446          sum_guscdiff = waga_homology(iset)*waga_d*sum_guscdiff
6447          do jik=1,3
6448             duscdiff(jik,i-1)=duscdiff(jik,i-1)+
6449      &      sum_guscdiff*(dXX_C1tab(jik,i)*dxx+
6450      &      dYY_C1tab(jik,i)*dyy+dZZ_C1tab(jik,i)*dzz)/guscdiff(i)
6451             duscdiff(jik,i)=duscdiff(jik,i)+
6452      &      sum_guscdiff*(dXX_Ctab(jik,i)*dxx+
6453      &      dYY_Ctab(jik,i)*dyy+dZZ_Ctab(jik,i)*dzz)/guscdiff(i)
6454             duscdiffx(jik,i)=duscdiffx(jik,i)+
6455      &      sum_guscdiff*(dXX_XYZtab(jik,i)*dxx+
6456      &      dYY_XYZtab(jik,i)*dyy+dZZ_XYZtab(jik,i)*dzz)/guscdiff(i)
6457 c
6458 #ifdef DEBUG
6459              write(iout,*) "jik",jik,"i",i
6460              write(iout,*) "dxx, dyy, dzz"
6461              write(iout,'(2i5,3f8.2)') k,i,dxx,dyy,dzz
6462              write(iout,*) "guscdiff2(",k,")",guscdiff2(k)
6463 c            write(iout,*) "sum_sguscdiff",sum_sguscdiff
6464 cc           write(iout,*) "dXX_Ctab(",jik,i,")",dXX_Ctab(jik,i)
6465 c            write(iout,*) "dYY_Ctab(",jik,i,")",dYY_Ctab(jik,i)
6466 c            write(iout,*) "dZZ_Ctab(",jik,i,")",dZZ_Ctab(jik,i)
6467 c            write(iout,*) "dXX_C1tab(",jik,i,")",dXX_C1tab(jik,i)
6468 c            write(iout,*) "dYY_C1tab(",jik,i,")",dYY_C1tab(jik,i)
6469 c            write(iout,*) "dZZ_C1tab(",jik,i,")",dZZ_C1tab(jik,i)
6470 c            write(iout,*) "dXX_XYZtab(",jik,i,")",dXX_XYZtab(jik,i)
6471 c            write(iout,*) "dYY_XYZtab(",jik,i,")",dYY_XYZtab(jik,i)
6472 c            write(iout,*) "dZZ_XYZtab(",jik,i,")",dZZ_XYZtab(jik,i)
6473 c            write(iout,*) "duscdiff(",jik,i-1,")",duscdiff(jik,i-1)
6474 c            write(iout,*) "duscdiff(",jik,i,")",duscdiff(jik,i)
6475 c            write(iout,*) "duscdiffx(",jik,i,")",duscdiffx(jik,i)
6476 c            endif
6477 #endif
6478          enddo
6479         enddo
6480 c
6481 c       uscdiff(i)=-dLOG(guscdiff(i)/(ii-1))      ! Weighting by (ii-1) required?
6482 c        usc_diff(i)=-dLOG(guscdiff(i)/constr_homology) ! + min_uscdiff ?
6483 c
6484 c        write (iout,*) i," uscdiff",uscdiff(i)
6485 c
6486 c Put together deviations from local geometry
6487
6488 c       Uconst_back=Uconst_back+wfrag_back(1,i,iset)*utheta(i)+
6489 c      &            wfrag_back(3,i,iset)*uscdiff(i)
6490         Erot=Erot-dLOG(guscdiff(i)/constr_homology)
6491 c       write (iout,*) "usc_diff(",i,")=",usc_diff(i) ! -ln of sum of exps
6492 c       write (iout,*) "Uconst_back",Uconst_back ! cum sum of -ln-s
6493 c       Uconst_back=Uconst_back+usc_diff(i)
6494 c
6495 c     Gradient of multiple Gaussian restraint (FP - 04/11/2014 - right?)
6496 c
6497 c     New implment: multiplied by sum_sguscdiff
6498 c
6499
6500       enddo ! (i-loop for dscdiff)
6501
6502 c      endif
6503
6504 #ifdef DEBUG
6505       write(iout,*) "------- SC restrs end -------"
6506         write (iout,*) "------ After SC loop in e_modeller ------"
6507         do i=loc_start,loc_end
6508          write (iout,*) "i",i," gradc",(gradc(j,i,icg),j=1,3)
6509          write (iout,*) "i",i," gradx",(gradx(j,i,icg),j=1,3)
6510         enddo
6511       if (waga_theta.eq.1.0d0) then
6512       write (iout,*) "in e_modeller after SC restr end: dutheta"
6513       do i=ithet_start,ithet_end
6514         write (iout,*) i,dutheta(i)
6515       enddo
6516       endif
6517       if (waga_d.eq.1.0d0) then
6518       write (iout,*) "e_modeller after SC loop: duscdiff/x"
6519       do i=1,nres
6520         write (iout,*) i,(duscdiff(j,i),j=1,3)
6521         write (iout,*) i,(duscdiffx(j,i),j=1,3)
6522       enddo
6523       endif
6524 #endif
6525
6526 c Total energy from homology restraints
6527 #ifdef DEBUG
6528       write (iout,*) "odleg",odleg," kat",kat
6529 #endif
6530 c
6531 c Addition of energy of theta angle and SC local geom over constr_homologs ref strs
6532 c
6533 c     ehomology_constr=odleg+kat
6534 c
6535 c     For Lorentzian-type Urestr
6536 c
6537
6538       if (waga_dist.ge.0.0d0) then
6539 c
6540 c          For Gaussian-type Urestr
6541 c
6542         ehomology_constr=(waga_dist*odleg+waga_angle*kat+
6543      &              waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
6544 c     write (iout,*) "ehomology_constr=",ehomology_constr
6545       else
6546 c
6547 c          For Lorentzian-type Urestr
6548 c  
6549         ehomology_constr=(-waga_dist*odleg+waga_angle*kat+
6550      &              waga_theta*Eval+waga_d*Erot)*waga_homology(iset)
6551 c     write (iout,*) "ehomology_constr=",ehomology_constr
6552       endif
6553 #ifdef DEBUG
6554       write (iout,*) "odleg",waga_dist,odleg," kat",waga_angle,kat,
6555      & "Eval",waga_theta,eval,
6556      &   "Erot",waga_d,Erot
6557       write (iout,*) "ehomology_constr",ehomology_constr
6558 #endif
6559       return
6560 c
6561 c FP 01/15 end
6562 c
6563   748 format(a8,f12.3,a6,f12.3,a7,f12.3)
6564   747 format(a12,i4,i4,i4,f8.3,f8.3)
6565   746 format(a12,i4,i4,i4,f8.3,f8.3,f8.3)
6566   778 format(a7,1X,f10.3,1X,a4,1X,f10.3,1X,a5,1X,f10.3)
6567   779 format(i3,1X,i3,1X,i2,1X,a7,1X,f7.3,1X,a7,1X,f7.3,1X,a13,1X,
6568      &       f7.3,1X,a17,1X,f9.3,1X,a10,1X,f8.3,1X,a10,1X,f8.3)
6569       end
6570
6571 c------------------------------------------------------------------------------
6572       subroutine etor_d(etors_d)
6573 C 6/23/01 Compute double torsional energy
6574       implicit real*8 (a-h,o-z)
6575       include 'DIMENSIONS'
6576       include 'COMMON.VAR'
6577       include 'COMMON.GEO'
6578       include 'COMMON.LOCAL'
6579       include 'COMMON.TORSION'
6580       include 'COMMON.INTERACT'
6581       include 'COMMON.DERIV'
6582       include 'COMMON.CHAIN'
6583       include 'COMMON.NAMES'
6584       include 'COMMON.IOUNITS'
6585       include 'COMMON.FFIELD'
6586       include 'COMMON.TORCNSTR'
6587       include 'COMMON.CONTROL'
6588       logical lprn
6589 C Set lprn=.true. for debugging
6590       lprn=.false.
6591 c     lprn=.true.
6592       etors_d=0.0D0
6593       do i=iphid_start,iphid_end
6594         etors_d_ii=0.0D0
6595         itori=itortyp(itype(i-2))
6596         itori1=itortyp(itype(i-1))
6597         itori2=itortyp(itype(i))
6598         phii=phi(i)
6599         phii1=phi(i+1)
6600         gloci1=0.0D0
6601         gloci2=0.0D0
6602         do j=1,ntermd_1(itori,itori1,itori2)
6603           v1cij=v1c(1,j,itori,itori1,itori2)
6604           v1sij=v1s(1,j,itori,itori1,itori2)
6605           v2cij=v1c(2,j,itori,itori1,itori2)
6606           v2sij=v1s(2,j,itori,itori1,itori2)
6607           cosphi1=dcos(j*phii)
6608           sinphi1=dsin(j*phii)
6609           cosphi2=dcos(j*phii1)
6610           sinphi2=dsin(j*phii1)
6611           etors_d=etors_d+v1cij*cosphi1+v1sij*sinphi1+
6612      &     v2cij*cosphi2+v2sij*sinphi2
6613           if (energy_dec) etors_d_ii=etors_d_ii+
6614      &     v1cij*cosphi1+v1sij*sinphi1+v2cij*cosphi2+v2sij*sinphi2
6615           gloci1=gloci1+j*(v1sij*cosphi1-v1cij*sinphi1)
6616           gloci2=gloci2+j*(v2sij*cosphi2-v2cij*sinphi2)
6617         enddo
6618         do k=2,ntermd_2(itori,itori1,itori2)
6619           do l=1,k-1
6620             v1cdij = v2c(k,l,itori,itori1,itori2)
6621             v2cdij = v2c(l,k,itori,itori1,itori2)
6622             v1sdij = v2s(k,l,itori,itori1,itori2)
6623             v2sdij = v2s(l,k,itori,itori1,itori2)
6624             cosphi1p2=dcos(l*phii+(k-l)*phii1)
6625             cosphi1m2=dcos(l*phii-(k-l)*phii1)
6626             sinphi1p2=dsin(l*phii+(k-l)*phii1)
6627             sinphi1m2=dsin(l*phii-(k-l)*phii1)
6628             etors_d=etors_d+v1cdij*cosphi1p2+v2cdij*cosphi1m2+
6629      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
6630             if (energy_dec) etors_d_ii=etors_d_ii+
6631      &        v1cdij*cosphi1p2+v2cdij*cosphi1m2+
6632      &        v1sdij*sinphi1p2+v2sdij*sinphi1m2
6633             gloci1=gloci1+l*(v1sdij*cosphi1p2+v2sdij*cosphi1m2
6634      &        -v1cdij*sinphi1p2-v2cdij*sinphi1m2)
6635             gloci2=gloci2+(k-l)*(v1sdij*cosphi1p2-v2sdij*cosphi1m2
6636      &        -v1cdij*sinphi1p2+v2cdij*sinphi1m2) 
6637           enddo
6638         enddo
6639         if (energy_dec) write (iout,'(a6,i5,0pf7.3)')
6640      &        'etor_d',i,etors_d_ii
6641         gloc(i-3,icg)=gloc(i-3,icg)+wtor_d*gloci1
6642         gloc(i-2,icg)=gloc(i-2,icg)+wtor_d*gloci2
6643 c        write (iout,*) "gloci", gloc(i-3,icg)
6644       enddo
6645       return
6646       end
6647 #endif
6648 c------------------------------------------------------------------------------
6649       subroutine eback_sc_corr(esccor)
6650 c 7/21/2007 Correlations between the backbone-local and side-chain-local
6651 c        conformational states; temporarily implemented as differences
6652 c        between UNRES torsional potentials (dependent on three types of
6653 c        residues) and the torsional potentials dependent on all 20 types
6654 c        of residues computed from AM1  energy surfaces of terminally-blocked
6655 c        amino-acid residues.
6656       implicit real*8 (a-h,o-z)
6657       include 'DIMENSIONS'
6658       include 'COMMON.VAR'
6659       include 'COMMON.GEO'
6660       include 'COMMON.LOCAL'
6661       include 'COMMON.TORSION'
6662       include 'COMMON.SCCOR'
6663       include 'COMMON.INTERACT'
6664       include 'COMMON.DERIV'
6665       include 'COMMON.CHAIN'
6666       include 'COMMON.NAMES'
6667       include 'COMMON.IOUNITS'
6668       include 'COMMON.FFIELD'
6669       include 'COMMON.CONTROL'
6670       logical lprn
6671 C Set lprn=.true. for debugging
6672       lprn=.false.
6673 c      lprn=.true.
6674 c      write (iout,*) "EBACK_SC_COR",iphi_start,iphi_end,nterm_sccor
6675       esccor=0.0D0
6676       do i=itau_start,itau_end
6677         esccor_ii=0.0D0
6678         if ((itype(i-2).eq.ntyp1).or.(itype(i-1).eq.ntyp1)) cycle
6679         isccori=isccortyp(itype(i-2))
6680         isccori1=isccortyp(itype(i-1))
6681         phii=phi(i)
6682 cccc  Added 9 May 2012
6683 cc Tauangle is torsional engle depending on the value of first digit 
6684 c(see comment below)
6685 cc Omicron is flat angle depending on the value of first digit 
6686 c(see comment below)
6687
6688         
6689         do intertyp=1,3 !intertyp
6690 cc Added 09 May 2012 (Adasko)
6691 cc  Intertyp means interaction type of backbone mainchain correlation: 
6692 c   1 = SC...Ca...Ca...Ca
6693 c   2 = Ca...Ca...Ca...SC
6694 c   3 = SC...Ca...Ca...SCi
6695         gloci=0.0D0
6696         if (((intertyp.eq.3).and.((itype(i-2).eq.10).or.
6697      &      (itype(i-1).eq.10).or.(itype(i-2).eq.21).or.
6698      &      (itype(i-1).eq.21)))
6699      &    .or. ((intertyp.eq.1).and.((itype(i-2).eq.10)
6700      &     .or.(itype(i-2).eq.21)))
6701      &    .or.((intertyp.eq.2).and.((itype(i-1).eq.10).or.
6702      &      (itype(i-1).eq.21)))) cycle  
6703         if ((intertyp.eq.2).and.(i.eq.4).and.(itype(1).eq.21)) cycle
6704         if ((intertyp.eq.1).and.(i.eq.nres).and.(itype(nres).eq.21))
6705      & cycle
6706         do j=1,nterm_sccor(isccori,isccori1)
6707           v1ij=v1sccor(j,intertyp,isccori,isccori1)
6708           v2ij=v2sccor(j,intertyp,isccori,isccori1)
6709           cosphi=dcos(j*tauangle(intertyp,i))
6710           sinphi=dsin(j*tauangle(intertyp,i))
6711           esccor=esccor+v1ij*cosphi+v2ij*sinphi
6712           gloci=gloci+j*(v2ij*cosphi-v1ij*sinphi)
6713         enddo
6714         gloc_sc(intertyp,i-3,icg)=gloc_sc(intertyp,i-3,icg)+wsccor*gloci
6715 c        write (iout,*) "WTF",intertyp,i,itype(i),v1ij*cosphi+v2ij*sinphi
6716 c     &gloc_sc(intertyp,i-3,icg)
6717         if (lprn)
6718      &  write (iout,'(2(a3,2x,i3,2x),2i3,6f8.3/26x,6f8.3/)')
6719      &  restyp(itype(i-2)),i-2,restyp(itype(i-1)),i-1,itori,itori1,
6720      &  (v1sccor(j,intertyp,itori,itori1),j=1,6)
6721      & ,(v2sccor(j,intertyp,itori,itori1),j=1,6)
6722         gsccor_loc(i-3)=gsccor_loc(i-3)+gloci
6723        enddo !intertyp
6724       enddo
6725 c        do i=1,nres
6726 c        write (iout,*) "W@T@F",  gloc_sc(1,i,icg),gloc(i,icg)
6727 c        enddo
6728       return
6729       end
6730 c----------------------------------------------------------------------------
6731       subroutine multibody(ecorr)
6732 C This subroutine calculates multi-body contributions to energy following
6733 C the idea of Skolnick et al. If side chains I and J make a contact and
6734 C at the same time side chains I+1 and J+1 make a contact, an extra 
6735 C contribution equal to sqrt(eps(i,j)*eps(i+1,j+1)) is added.
6736       implicit real*8 (a-h,o-z)
6737       include 'DIMENSIONS'
6738       include 'COMMON.IOUNITS'
6739       include 'COMMON.DERIV'
6740       include 'COMMON.INTERACT'
6741       include 'COMMON.CONTACTS'
6742       double precision gx(3),gx1(3)
6743       logical lprn
6744
6745 C Set lprn=.true. for debugging
6746       lprn=.false.
6747
6748       if (lprn) then
6749         write (iout,'(a)') 'Contact function values:'
6750         do i=nnt,nct-2
6751           write (iout,'(i2,20(1x,i2,f10.5))') 
6752      &        i,(jcont(j,i),facont(j,i),j=1,num_cont(i))
6753         enddo
6754       endif
6755       ecorr=0.0D0
6756       do i=nnt,nct
6757         do j=1,3
6758           gradcorr(j,i)=0.0D0
6759           gradxorr(j,i)=0.0D0
6760         enddo
6761       enddo
6762       do i=nnt,nct-2
6763
6764         DO ISHIFT = 3,4
6765
6766         i1=i+ishift
6767         num_conti=num_cont(i)
6768         num_conti1=num_cont(i1)
6769         do jj=1,num_conti
6770           j=jcont(jj,i)
6771           do kk=1,num_conti1
6772             j1=jcont(kk,i1)
6773             if (j1.eq.j+ishift .or. j1.eq.j-ishift) then
6774 cd          write(iout,*)'i=',i,' j=',j,' i1=',i1,' j1=',j1,
6775 cd   &                   ' ishift=',ishift
6776 C Contacts I--J and I+ISHIFT--J+-ISHIFT1 occur simultaneously. 
6777 C The system gains extra energy.
6778               ecorr=ecorr+esccorr(i,j,i1,j1,jj,kk)
6779             endif   ! j1==j+-ishift
6780           enddo     ! kk  
6781         enddo       ! jj
6782
6783         ENDDO ! ISHIFT
6784
6785       enddo         ! i
6786       return
6787       end
6788 c------------------------------------------------------------------------------
6789       double precision function esccorr(i,j,k,l,jj,kk)
6790       implicit real*8 (a-h,o-z)
6791       include 'DIMENSIONS'
6792       include 'COMMON.IOUNITS'
6793       include 'COMMON.DERIV'
6794       include 'COMMON.INTERACT'
6795       include 'COMMON.CONTACTS'
6796       double precision gx(3),gx1(3)
6797       logical lprn
6798       lprn=.false.
6799       eij=facont(jj,i)
6800       ekl=facont(kk,k)
6801 cd    write (iout,'(4i5,3f10.5)') i,j,k,l,eij,ekl,-eij*ekl
6802 C Calculate the multi-body contribution to energy.
6803 C Calculate multi-body contributions to the gradient.
6804 cd    write (iout,'(2(2i3,3f10.5))')i,j,(gacont(m,jj,i),m=1,3),
6805 cd   & k,l,(gacont(m,kk,k),m=1,3)
6806       do m=1,3
6807         gx(m) =ekl*gacont(m,jj,i)
6808         gx1(m)=eij*gacont(m,kk,k)
6809         gradxorr(m,i)=gradxorr(m,i)-gx(m)
6810         gradxorr(m,j)=gradxorr(m,j)+gx(m)
6811         gradxorr(m,k)=gradxorr(m,k)-gx1(m)
6812         gradxorr(m,l)=gradxorr(m,l)+gx1(m)
6813       enddo
6814       do m=i,j-1
6815         do ll=1,3
6816           gradcorr(ll,m)=gradcorr(ll,m)+gx(ll)
6817         enddo
6818       enddo
6819       do m=k,l-1
6820         do ll=1,3
6821           gradcorr(ll,m)=gradcorr(ll,m)+gx1(ll)
6822         enddo
6823       enddo 
6824       esccorr=-eij*ekl
6825       return
6826       end
6827 c------------------------------------------------------------------------------
6828       subroutine multibody_hb(ecorr,ecorr5,ecorr6,n_corr,n_corr1)
6829 C This subroutine calculates multi-body contributions to hydrogen-bonding 
6830       implicit real*8 (a-h,o-z)
6831       include 'DIMENSIONS'
6832       include 'COMMON.IOUNITS'
6833 #ifdef MPI
6834       include "mpif.h"
6835       parameter (max_cont=maxconts)
6836       parameter (max_dim=26)
6837       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
6838       double precision zapas(max_dim,maxconts,max_fg_procs),
6839      &  zapas_recv(max_dim,maxconts,max_fg_procs)
6840       common /przechowalnia/ zapas
6841       integer status(MPI_STATUS_SIZE),req(maxconts*2),
6842      &  status_array(MPI_STATUS_SIZE,maxconts*2)
6843 #endif
6844       include 'COMMON.SETUP'
6845       include 'COMMON.FFIELD'
6846       include 'COMMON.DERIV'
6847       include 'COMMON.INTERACT'
6848       include 'COMMON.CONTACTS'
6849       include 'COMMON.CONTROL'
6850       include 'COMMON.LOCAL'
6851       double precision gx(3),gx1(3),time00
6852       logical lprn,ldone
6853
6854 C Set lprn=.true. for debugging
6855       lprn=.false.
6856 #ifdef MPI
6857       n_corr=0
6858       n_corr1=0
6859       if (nfgtasks.le.1) goto 30
6860       if (lprn) then
6861         write (iout,'(a)') 'Contact function values before RECEIVE:'
6862         do i=nnt,nct-2
6863           write (iout,'(2i3,50(1x,i2,f5.2))') 
6864      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
6865      &    j=1,num_cont_hb(i))
6866         enddo
6867       endif
6868       call flush(iout)
6869       do i=1,ntask_cont_from
6870         ncont_recv(i)=0
6871       enddo
6872       do i=1,ntask_cont_to
6873         ncont_sent(i)=0
6874       enddo
6875 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
6876 c     & ntask_cont_to
6877 C Make the list of contacts to send to send to other procesors
6878 c      write (iout,*) "limits",max0(iturn4_end-1,iatel_s),iturn3_end
6879 c      call flush(iout)
6880       do i=iturn3_start,iturn3_end
6881 c        write (iout,*) "make contact list turn3",i," num_cont",
6882 c     &    num_cont_hb(i)
6883         call add_hb_contact(i,i+2,iturn3_sent_local(1,i))
6884       enddo
6885       do i=iturn4_start,iturn4_end
6886 c        write (iout,*) "make contact list turn4",i," num_cont",
6887 c     &   num_cont_hb(i)
6888         call add_hb_contact(i,i+3,iturn4_sent_local(1,i))
6889       enddo
6890       do ii=1,nat_sent
6891         i=iat_sent(ii)
6892 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
6893 c     &    num_cont_hb(i)
6894         do j=1,num_cont_hb(i)
6895         do k=1,4
6896           jjc=jcont_hb(j,i)
6897           iproc=iint_sent_local(k,jjc,ii)
6898 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
6899           if (iproc.gt.0) then
6900             ncont_sent(iproc)=ncont_sent(iproc)+1
6901             nn=ncont_sent(iproc)
6902             zapas(1,nn,iproc)=i
6903             zapas(2,nn,iproc)=jjc
6904             zapas(3,nn,iproc)=facont_hb(j,i)
6905             zapas(4,nn,iproc)=ees0p(j,i)
6906             zapas(5,nn,iproc)=ees0m(j,i)
6907             zapas(6,nn,iproc)=gacont_hbr(1,j,i)
6908             zapas(7,nn,iproc)=gacont_hbr(2,j,i)
6909             zapas(8,nn,iproc)=gacont_hbr(3,j,i)
6910             zapas(9,nn,iproc)=gacontm_hb1(1,j,i)
6911             zapas(10,nn,iproc)=gacontm_hb1(2,j,i)
6912             zapas(11,nn,iproc)=gacontm_hb1(3,j,i)
6913             zapas(12,nn,iproc)=gacontp_hb1(1,j,i)
6914             zapas(13,nn,iproc)=gacontp_hb1(2,j,i)
6915             zapas(14,nn,iproc)=gacontp_hb1(3,j,i)
6916             zapas(15,nn,iproc)=gacontm_hb2(1,j,i)
6917             zapas(16,nn,iproc)=gacontm_hb2(2,j,i)
6918             zapas(17,nn,iproc)=gacontm_hb2(3,j,i)
6919             zapas(18,nn,iproc)=gacontp_hb2(1,j,i)
6920             zapas(19,nn,iproc)=gacontp_hb2(2,j,i)
6921             zapas(20,nn,iproc)=gacontp_hb2(3,j,i)
6922             zapas(21,nn,iproc)=gacontm_hb3(1,j,i)
6923             zapas(22,nn,iproc)=gacontm_hb3(2,j,i)
6924             zapas(23,nn,iproc)=gacontm_hb3(3,j,i)
6925             zapas(24,nn,iproc)=gacontp_hb3(1,j,i)
6926             zapas(25,nn,iproc)=gacontp_hb3(2,j,i)
6927             zapas(26,nn,iproc)=gacontp_hb3(3,j,i)
6928           endif
6929         enddo
6930         enddo
6931       enddo
6932       if (lprn) then
6933       write (iout,*) 
6934      &  "Numbers of contacts to be sent to other processors",
6935      &  (ncont_sent(i),i=1,ntask_cont_to)
6936       write (iout,*) "Contacts sent"
6937       do ii=1,ntask_cont_to
6938         nn=ncont_sent(ii)
6939         iproc=itask_cont_to(ii)
6940         write (iout,*) nn," contacts to processor",iproc,
6941      &   " of CONT_TO_COMM group"
6942         do i=1,nn
6943           write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
6944         enddo
6945       enddo
6946       call flush(iout)
6947       endif
6948       CorrelType=477
6949       CorrelID=fg_rank+1
6950       CorrelType1=478
6951       CorrelID1=nfgtasks+fg_rank+1
6952       ireq=0
6953 C Receive the numbers of needed contacts from other processors 
6954       do ii=1,ntask_cont_from
6955         iproc=itask_cont_from(ii)
6956         ireq=ireq+1
6957         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
6958      &    FG_COMM,req(ireq),IERR)
6959       enddo
6960 c      write (iout,*) "IRECV ended"
6961 c      call flush(iout)
6962 C Send the number of contacts needed by other processors
6963       do ii=1,ntask_cont_to
6964         iproc=itask_cont_to(ii)
6965         ireq=ireq+1
6966         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
6967      &    FG_COMM,req(ireq),IERR)
6968       enddo
6969 c      write (iout,*) "ISEND ended"
6970 c      write (iout,*) "number of requests (nn)",ireq
6971       call flush(iout)
6972       if (ireq.gt.0) 
6973      &  call MPI_Waitall(ireq,req,status_array,ierr)
6974 c      write (iout,*) 
6975 c     &  "Numbers of contacts to be received from other processors",
6976 c     &  (ncont_recv(i),i=1,ntask_cont_from)
6977 c      call flush(iout)
6978 C Receive contacts
6979       ireq=0
6980       do ii=1,ntask_cont_from
6981         iproc=itask_cont_from(ii)
6982         nn=ncont_recv(ii)
6983 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
6984 c     &   " of CONT_TO_COMM group"
6985         call flush(iout)
6986         if (nn.gt.0) then
6987           ireq=ireq+1
6988           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
6989      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
6990 c          write (iout,*) "ireq,req",ireq,req(ireq)
6991         endif
6992       enddo
6993 C Send the contacts to processors that need them
6994       do ii=1,ntask_cont_to
6995         iproc=itask_cont_to(ii)
6996         nn=ncont_sent(ii)
6997 c        write (iout,*) nn," contacts to processor",iproc,
6998 c     &   " of CONT_TO_COMM group"
6999         if (nn.gt.0) then
7000           ireq=ireq+1 
7001           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
7002      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7003 c          write (iout,*) "ireq,req",ireq,req(ireq)
7004 c          do i=1,nn
7005 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
7006 c          enddo
7007         endif  
7008       enddo
7009 c      write (iout,*) "number of requests (contacts)",ireq
7010 c      write (iout,*) "req",(req(i),i=1,4)
7011 c      call flush(iout)
7012       if (ireq.gt.0) 
7013      & call MPI_Waitall(ireq,req,status_array,ierr)
7014       do iii=1,ntask_cont_from
7015         iproc=itask_cont_from(iii)
7016         nn=ncont_recv(iii)
7017         if (lprn) then
7018         write (iout,*) "Received",nn," contacts from processor",iproc,
7019      &   " of CONT_FROM_COMM group"
7020         call flush(iout)
7021         do i=1,nn
7022           write(iout,'(2f5.0,4f10.5)')(zapas_recv(j,i,iii),j=1,5)
7023         enddo
7024         call flush(iout)
7025         endif
7026         do i=1,nn
7027           ii=zapas_recv(1,i,iii)
7028 c Flag the received contacts to prevent double-counting
7029           jj=-zapas_recv(2,i,iii)
7030 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
7031 c          call flush(iout)
7032           nnn=num_cont_hb(ii)+1
7033           num_cont_hb(ii)=nnn
7034           jcont_hb(nnn,ii)=jj
7035           facont_hb(nnn,ii)=zapas_recv(3,i,iii)
7036           ees0p(nnn,ii)=zapas_recv(4,i,iii)
7037           ees0m(nnn,ii)=zapas_recv(5,i,iii)
7038           gacont_hbr(1,nnn,ii)=zapas_recv(6,i,iii)
7039           gacont_hbr(2,nnn,ii)=zapas_recv(7,i,iii)
7040           gacont_hbr(3,nnn,ii)=zapas_recv(8,i,iii)
7041           gacontm_hb1(1,nnn,ii)=zapas_recv(9,i,iii)
7042           gacontm_hb1(2,nnn,ii)=zapas_recv(10,i,iii)
7043           gacontm_hb1(3,nnn,ii)=zapas_recv(11,i,iii)
7044           gacontp_hb1(1,nnn,ii)=zapas_recv(12,i,iii)
7045           gacontp_hb1(2,nnn,ii)=zapas_recv(13,i,iii)
7046           gacontp_hb1(3,nnn,ii)=zapas_recv(14,i,iii)
7047           gacontm_hb2(1,nnn,ii)=zapas_recv(15,i,iii)
7048           gacontm_hb2(2,nnn,ii)=zapas_recv(16,i,iii)
7049           gacontm_hb2(3,nnn,ii)=zapas_recv(17,i,iii)
7050           gacontp_hb2(1,nnn,ii)=zapas_recv(18,i,iii)
7051           gacontp_hb2(2,nnn,ii)=zapas_recv(19,i,iii)
7052           gacontp_hb2(3,nnn,ii)=zapas_recv(20,i,iii)
7053           gacontm_hb3(1,nnn,ii)=zapas_recv(21,i,iii)
7054           gacontm_hb3(2,nnn,ii)=zapas_recv(22,i,iii)
7055           gacontm_hb3(3,nnn,ii)=zapas_recv(23,i,iii)
7056           gacontp_hb3(1,nnn,ii)=zapas_recv(24,i,iii)
7057           gacontp_hb3(2,nnn,ii)=zapas_recv(25,i,iii)
7058           gacontp_hb3(3,nnn,ii)=zapas_recv(26,i,iii)
7059         enddo
7060       enddo
7061       call flush(iout)
7062       if (lprn) then
7063         write (iout,'(a)') 'Contact function values after receive:'
7064         do i=nnt,nct-2
7065           write (iout,'(2i3,50(1x,i3,f5.2))') 
7066      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7067      &    j=1,num_cont_hb(i))
7068         enddo
7069         call flush(iout)
7070       endif
7071    30 continue
7072 #endif
7073       if (lprn) then
7074         write (iout,'(a)') 'Contact function values:'
7075         do i=nnt,nct-2
7076           write (iout,'(2i3,50(1x,i3,f5.2))') 
7077      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7078      &    j=1,num_cont_hb(i))
7079         enddo
7080       endif
7081       ecorr=0.0D0
7082 C Remove the loop below after debugging !!!
7083       do i=nnt,nct
7084         do j=1,3
7085           gradcorr(j,i)=0.0D0
7086           gradxorr(j,i)=0.0D0
7087         enddo
7088       enddo
7089 C Calculate the local-electrostatic correlation terms
7090       do i=min0(iatel_s,iturn4_start),max0(iatel_e,iturn3_end)
7091         i1=i+1
7092         num_conti=num_cont_hb(i)
7093         num_conti1=num_cont_hb(i+1)
7094         do jj=1,num_conti
7095           j=jcont_hb(jj,i)
7096           jp=iabs(j)
7097           do kk=1,num_conti1
7098             j1=jcont_hb(kk,i1)
7099             jp1=iabs(j1)
7100 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7101 c     &         ' jj=',jj,' kk=',kk
7102             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
7103      &          .or. j.lt.0 .and. j1.gt.0) .and.
7104      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
7105 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7106 C The system gains extra energy.
7107               ecorr=ecorr+ehbcorr(i,jp,i+1,jp1,jj,kk,0.72D0,0.32D0)
7108               if (energy_dec) write (iout,'(a6,2i5,0pf7.3)')
7109      &            'ecorrh',i,j,ehbcorr(i,j,i+1,j1,jj,kk,0.72D0,0.32D0)
7110               n_corr=n_corr+1
7111             else if (j1.eq.j) then
7112 C Contacts I-J and I-(J+1) occur simultaneously. 
7113 C The system loses extra energy.
7114 c             ecorr=ecorr+ehbcorr(i,j,i+1,j,jj,kk,0.60D0,-0.40D0) 
7115             endif
7116           enddo ! kk
7117           do kk=1,num_conti
7118             j1=jcont_hb(kk,i)
7119 c           write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7120 c    &         ' jj=',jj,' kk=',kk
7121             if (j1.eq.j+1) then
7122 C Contacts I-J and (I+1)-J occur simultaneously. 
7123 C The system loses extra energy.
7124 c             ecorr=ecorr+ehbcorr(i,j,i,j+1,jj,kk,0.60D0,-0.40D0)
7125             endif ! j1==j+1
7126           enddo ! kk
7127         enddo ! jj
7128       enddo ! i
7129       return
7130       end
7131 c------------------------------------------------------------------------------
7132       subroutine add_hb_contact(ii,jj,itask)
7133       implicit real*8 (a-h,o-z)
7134       include "DIMENSIONS"
7135       include "COMMON.IOUNITS"
7136       integer max_cont
7137       integer max_dim
7138       parameter (max_cont=maxconts)
7139       parameter (max_dim=26)
7140       include "COMMON.CONTACTS"
7141       double precision zapas(max_dim,maxconts,max_fg_procs),
7142      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7143       common /przechowalnia/ zapas
7144       integer i,j,ii,jj,iproc,itask(4),nn
7145 c      write (iout,*) "itask",itask
7146       do i=1,2
7147         iproc=itask(i)
7148         if (iproc.gt.0) then
7149           do j=1,num_cont_hb(ii)
7150             jjc=jcont_hb(j,ii)
7151 c            write (iout,*) "i",ii," j",jj," jjc",jjc
7152             if (jjc.eq.jj) then
7153               ncont_sent(iproc)=ncont_sent(iproc)+1
7154               nn=ncont_sent(iproc)
7155               zapas(1,nn,iproc)=ii
7156               zapas(2,nn,iproc)=jjc
7157               zapas(3,nn,iproc)=facont_hb(j,ii)
7158               zapas(4,nn,iproc)=ees0p(j,ii)
7159               zapas(5,nn,iproc)=ees0m(j,ii)
7160               zapas(6,nn,iproc)=gacont_hbr(1,j,ii)
7161               zapas(7,nn,iproc)=gacont_hbr(2,j,ii)
7162               zapas(8,nn,iproc)=gacont_hbr(3,j,ii)
7163               zapas(9,nn,iproc)=gacontm_hb1(1,j,ii)
7164               zapas(10,nn,iproc)=gacontm_hb1(2,j,ii)
7165               zapas(11,nn,iproc)=gacontm_hb1(3,j,ii)
7166               zapas(12,nn,iproc)=gacontp_hb1(1,j,ii)
7167               zapas(13,nn,iproc)=gacontp_hb1(2,j,ii)
7168               zapas(14,nn,iproc)=gacontp_hb1(3,j,ii)
7169               zapas(15,nn,iproc)=gacontm_hb2(1,j,ii)
7170               zapas(16,nn,iproc)=gacontm_hb2(2,j,ii)
7171               zapas(17,nn,iproc)=gacontm_hb2(3,j,ii)
7172               zapas(18,nn,iproc)=gacontp_hb2(1,j,ii)
7173               zapas(19,nn,iproc)=gacontp_hb2(2,j,ii)
7174               zapas(20,nn,iproc)=gacontp_hb2(3,j,ii)
7175               zapas(21,nn,iproc)=gacontm_hb3(1,j,ii)
7176               zapas(22,nn,iproc)=gacontm_hb3(2,j,ii)
7177               zapas(23,nn,iproc)=gacontm_hb3(3,j,ii)
7178               zapas(24,nn,iproc)=gacontp_hb3(1,j,ii)
7179               zapas(25,nn,iproc)=gacontp_hb3(2,j,ii)
7180               zapas(26,nn,iproc)=gacontp_hb3(3,j,ii)
7181               exit
7182             endif
7183           enddo
7184         endif
7185       enddo
7186       return
7187       end
7188 c------------------------------------------------------------------------------
7189       subroutine multibody_eello(ecorr,ecorr5,ecorr6,eturn6,n_corr,
7190      &  n_corr1)
7191 C This subroutine calculates multi-body contributions to hydrogen-bonding 
7192       implicit real*8 (a-h,o-z)
7193       include 'DIMENSIONS'
7194       include 'COMMON.IOUNITS'
7195 #ifdef MPI
7196       include "mpif.h"
7197       parameter (max_cont=maxconts)
7198       parameter (max_dim=70)
7199       integer source,CorrelType,CorrelID,CorrelType1,CorrelID1,Error
7200       double precision zapas(max_dim,maxconts,max_fg_procs),
7201      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7202       common /przechowalnia/ zapas
7203       integer status(MPI_STATUS_SIZE),req(maxconts*2),
7204      &  status_array(MPI_STATUS_SIZE,maxconts*2)
7205 #endif
7206       include 'COMMON.SETUP'
7207       include 'COMMON.FFIELD'
7208       include 'COMMON.DERIV'
7209       include 'COMMON.LOCAL'
7210       include 'COMMON.INTERACT'
7211       include 'COMMON.CONTACTS'
7212       include 'COMMON.CHAIN'
7213       include 'COMMON.CONTROL'
7214       double precision gx(3),gx1(3)
7215       integer num_cont_hb_old(maxres)
7216       logical lprn,ldone
7217       double precision eello4,eello5,eelo6,eello_turn6
7218       external eello4,eello5,eello6,eello_turn6
7219 C Set lprn=.true. for debugging
7220       lprn=.false.
7221       eturn6=0.0d0
7222 #ifdef MPI
7223       do i=1,nres
7224         num_cont_hb_old(i)=num_cont_hb(i)
7225       enddo
7226       n_corr=0
7227       n_corr1=0
7228       if (nfgtasks.le.1) goto 30
7229       if (lprn) then
7230         write (iout,'(a)') 'Contact function values before RECEIVE:'
7231         do i=nnt,nct-2
7232           write (iout,'(2i3,50(1x,i2,f5.2))') 
7233      &    i,num_cont_hb(i),(jcont_hb(j,i),facont_hb(j,i),
7234      &    j=1,num_cont_hb(i))
7235         enddo
7236       endif
7237       call flush(iout)
7238       do i=1,ntask_cont_from
7239         ncont_recv(i)=0
7240       enddo
7241       do i=1,ntask_cont_to
7242         ncont_sent(i)=0
7243       enddo
7244 c      write (iout,*) "ntask_cont_from",ntask_cont_from," ntask_cont_to",
7245 c     & ntask_cont_to
7246 C Make the list of contacts to send to send to other procesors
7247       do i=iturn3_start,iturn3_end
7248 c        write (iout,*) "make contact list turn3",i," num_cont",
7249 c     &    num_cont_hb(i)
7250         call add_hb_contact_eello(i,i+2,iturn3_sent_local(1,i))
7251       enddo
7252       do i=iturn4_start,iturn4_end
7253 c        write (iout,*) "make contact list turn4",i," num_cont",
7254 c     &   num_cont_hb(i)
7255         call add_hb_contact_eello(i,i+3,iturn4_sent_local(1,i))
7256       enddo
7257       do ii=1,nat_sent
7258         i=iat_sent(ii)
7259 c        write (iout,*) "make contact list longrange",i,ii," num_cont",
7260 c     &    num_cont_hb(i)
7261         do j=1,num_cont_hb(i)
7262         do k=1,4
7263           jjc=jcont_hb(j,i)
7264           iproc=iint_sent_local(k,jjc,ii)
7265 c          write (iout,*) "i",i," j",j," k",k," jjc",jjc," iproc",iproc
7266           if (iproc.ne.0) then
7267             ncont_sent(iproc)=ncont_sent(iproc)+1
7268             nn=ncont_sent(iproc)
7269             zapas(1,nn,iproc)=i
7270             zapas(2,nn,iproc)=jjc
7271             zapas(3,nn,iproc)=d_cont(j,i)
7272             ind=3
7273             do kk=1,3
7274               ind=ind+1
7275               zapas(ind,nn,iproc)=grij_hb_cont(kk,j,i)
7276             enddo
7277             do kk=1,2
7278               do ll=1,2
7279                 ind=ind+1
7280                 zapas(ind,nn,iproc)=a_chuj(ll,kk,j,i)
7281               enddo
7282             enddo
7283             do jj=1,5
7284               do kk=1,3
7285                 do ll=1,2
7286                   do mm=1,2
7287                     ind=ind+1
7288                     zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,i)
7289                   enddo
7290                 enddo
7291               enddo
7292             enddo
7293           endif
7294         enddo
7295         enddo
7296       enddo
7297       if (lprn) then
7298       write (iout,*) 
7299      &  "Numbers of contacts to be sent to other processors",
7300      &  (ncont_sent(i),i=1,ntask_cont_to)
7301       write (iout,*) "Contacts sent"
7302       do ii=1,ntask_cont_to
7303         nn=ncont_sent(ii)
7304         iproc=itask_cont_to(ii)
7305         write (iout,*) nn," contacts to processor",iproc,
7306      &   " of CONT_TO_COMM group"
7307         do i=1,nn
7308           write(iout,'(2f5.0,10f10.5)')(zapas(j,i,ii),j=1,10)
7309         enddo
7310       enddo
7311       call flush(iout)
7312       endif
7313       CorrelType=477
7314       CorrelID=fg_rank+1
7315       CorrelType1=478
7316       CorrelID1=nfgtasks+fg_rank+1
7317       ireq=0
7318 C Receive the numbers of needed contacts from other processors 
7319       do ii=1,ntask_cont_from
7320         iproc=itask_cont_from(ii)
7321         ireq=ireq+1
7322         call MPI_Irecv(ncont_recv(ii),1,MPI_INTEGER,iproc,CorrelType,
7323      &    FG_COMM,req(ireq),IERR)
7324       enddo
7325 c      write (iout,*) "IRECV ended"
7326 c      call flush(iout)
7327 C Send the number of contacts needed by other processors
7328       do ii=1,ntask_cont_to
7329         iproc=itask_cont_to(ii)
7330         ireq=ireq+1
7331         call MPI_Isend(ncont_sent(ii),1,MPI_INTEGER,iproc,CorrelType,
7332      &    FG_COMM,req(ireq),IERR)
7333       enddo
7334 c      write (iout,*) "ISEND ended"
7335 c      write (iout,*) "number of requests (nn)",ireq
7336       call flush(iout)
7337       if (ireq.gt.0) 
7338      &  call MPI_Waitall(ireq,req,status_array,ierr)
7339 c      write (iout,*) 
7340 c     &  "Numbers of contacts to be received from other processors",
7341 c     &  (ncont_recv(i),i=1,ntask_cont_from)
7342 c      call flush(iout)
7343 C Receive contacts
7344       ireq=0
7345       do ii=1,ntask_cont_from
7346         iproc=itask_cont_from(ii)
7347         nn=ncont_recv(ii)
7348 c        write (iout,*) "Receiving",nn," contacts from processor",iproc,
7349 c     &   " of CONT_TO_COMM group"
7350         call flush(iout)
7351         if (nn.gt.0) then
7352           ireq=ireq+1
7353           call MPI_Irecv(zapas_recv(1,1,ii),nn*max_dim,
7354      &    MPI_DOUBLE_PRECISION,iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7355 c          write (iout,*) "ireq,req",ireq,req(ireq)
7356         endif
7357       enddo
7358 C Send the contacts to processors that need them
7359       do ii=1,ntask_cont_to
7360         iproc=itask_cont_to(ii)
7361         nn=ncont_sent(ii)
7362 c        write (iout,*) nn," contacts to processor",iproc,
7363 c     &   " of CONT_TO_COMM group"
7364         if (nn.gt.0) then
7365           ireq=ireq+1 
7366           call MPI_Isend(zapas(1,1,ii),nn*max_dim,MPI_DOUBLE_PRECISION,
7367      &      iproc,CorrelType1,FG_COMM,req(ireq),IERR)
7368 c          write (iout,*) "ireq,req",ireq,req(ireq)
7369 c          do i=1,nn
7370 c            write(iout,'(2f5.0,4f10.5)')(zapas(j,i,ii),j=1,5)
7371 c          enddo
7372         endif  
7373       enddo
7374 c      write (iout,*) "number of requests (contacts)",ireq
7375 c      write (iout,*) "req",(req(i),i=1,4)
7376 c      call flush(iout)
7377       if (ireq.gt.0) 
7378      & call MPI_Waitall(ireq,req,status_array,ierr)
7379       do iii=1,ntask_cont_from
7380         iproc=itask_cont_from(iii)
7381         nn=ncont_recv(iii)
7382         if (lprn) then
7383         write (iout,*) "Received",nn," contacts from processor",iproc,
7384      &   " of CONT_FROM_COMM group"
7385         call flush(iout)
7386         do i=1,nn
7387           write(iout,'(2f5.0,10f10.5)')(zapas_recv(j,i,iii),j=1,10)
7388         enddo
7389         call flush(iout)
7390         endif
7391         do i=1,nn
7392           ii=zapas_recv(1,i,iii)
7393 c Flag the received contacts to prevent double-counting
7394           jj=-zapas_recv(2,i,iii)
7395 c          write (iout,*) "iii",iii," i",i," ii",ii," jj",jj
7396 c          call flush(iout)
7397           nnn=num_cont_hb(ii)+1
7398           num_cont_hb(ii)=nnn
7399           jcont_hb(nnn,ii)=jj
7400           d_cont(nnn,ii)=zapas_recv(3,i,iii)
7401           ind=3
7402           do kk=1,3
7403             ind=ind+1
7404             grij_hb_cont(kk,nnn,ii)=zapas_recv(ind,i,iii)
7405           enddo
7406           do kk=1,2
7407             do ll=1,2
7408               ind=ind+1
7409               a_chuj(ll,kk,nnn,ii)=zapas_recv(ind,i,iii)
7410             enddo
7411           enddo
7412           do jj=1,5
7413             do kk=1,3
7414               do ll=1,2
7415                 do mm=1,2
7416                   ind=ind+1
7417                   a_chuj_der(mm,ll,kk,jj,nnn,ii)=zapas_recv(ind,i,iii)
7418                 enddo
7419               enddo
7420             enddo
7421           enddo
7422         enddo
7423       enddo
7424       call flush(iout)
7425       if (lprn) then
7426         write (iout,'(a)') 'Contact function values after receive:'
7427         do i=nnt,nct-2
7428           write (iout,'(2i3,50(1x,i3,5f6.3))') 
7429      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7430      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7431         enddo
7432         call flush(iout)
7433       endif
7434    30 continue
7435 #endif
7436       if (lprn) then
7437         write (iout,'(a)') 'Contact function values:'
7438         do i=nnt,nct-2
7439           write (iout,'(2i3,50(1x,i2,5f6.3))') 
7440      &    i,num_cont_hb(i),(jcont_hb(j,i),d_cont(j,i),
7441      &    ((a_chuj(ll,kk,j,i),ll=1,2),kk=1,2),j=1,num_cont_hb(i))
7442         enddo
7443       endif
7444       ecorr=0.0D0
7445       ecorr5=0.0d0
7446       ecorr6=0.0d0
7447 C Remove the loop below after debugging !!!
7448       do i=nnt,nct
7449         do j=1,3
7450           gradcorr(j,i)=0.0D0
7451           gradxorr(j,i)=0.0D0
7452         enddo
7453       enddo
7454 C Calculate the dipole-dipole interaction energies
7455       if (wcorr6.gt.0.0d0 .or. wturn6.gt.0.0d0) then
7456       do i=iatel_s,iatel_e+1
7457         num_conti=num_cont_hb(i)
7458         do jj=1,num_conti
7459           j=jcont_hb(jj,i)
7460 #ifdef MOMENT
7461           call dipole(i,j,jj)
7462 #endif
7463         enddo
7464       enddo
7465       endif
7466 C Calculate the local-electrostatic correlation terms
7467 c                write (iout,*) "gradcorr5 in eello5 before loop"
7468 c                do iii=1,nres
7469 c                  write (iout,'(i5,3f10.5)') 
7470 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7471 c                enddo
7472       do i=min0(iatel_s,iturn4_start),max0(iatel_e+1,iturn3_end+1)
7473 c        write (iout,*) "corr loop i",i
7474         i1=i+1
7475         num_conti=num_cont_hb(i)
7476         num_conti1=num_cont_hb(i+1)
7477         do jj=1,num_conti
7478           j=jcont_hb(jj,i)
7479           jp=iabs(j)
7480           do kk=1,num_conti1
7481             j1=jcont_hb(kk,i1)
7482             jp1=iabs(j1)
7483 c            write (iout,*) 'i=',i,' j=',j,' i1=',i1,' j1=',j1,
7484 c     &         ' jj=',jj,' kk=',kk
7485 c            if (j1.eq.j+1 .or. j1.eq.j-1) then
7486             if ((j.gt.0 .and. j1.gt.0 .or. j.gt.0 .and. j1.lt.0 
7487      &          .or. j.lt.0 .and. j1.gt.0) .and.
7488      &         (jp1.eq.jp+1 .or. jp1.eq.jp-1)) then
7489 C Contacts I-J and (I+1)-(J+1) or (I+1)-(J-1) occur simultaneously. 
7490 C The system gains extra energy.
7491               n_corr=n_corr+1
7492               sqd1=dsqrt(d_cont(jj,i))
7493               sqd2=dsqrt(d_cont(kk,i1))
7494               sred_geom = sqd1*sqd2
7495               IF (sred_geom.lt.cutoff_corr) THEN
7496                 call gcont(sred_geom,r0_corr,1.0D0,delt_corr,
7497      &            ekont,fprimcont)
7498 cd               write (iout,*) 'i=',i,' j=',jp,' i1=',i1,' j1=',jp1,
7499 cd     &         ' jj=',jj,' kk=',kk
7500                 fac_prim1=0.5d0*sqd2/sqd1*fprimcont
7501                 fac_prim2=0.5d0*sqd1/sqd2*fprimcont
7502                 do l=1,3
7503                   g_contij(l,1)=fac_prim1*grij_hb_cont(l,jj,i)
7504                   g_contij(l,2)=fac_prim2*grij_hb_cont(l,kk,i1)
7505                 enddo
7506                 n_corr1=n_corr1+1
7507 cd               write (iout,*) 'sred_geom=',sred_geom,
7508 cd     &          ' ekont=',ekont,' fprim=',fprimcont,
7509 cd     &          ' fac_prim1',fac_prim1,' fac_prim2',fac_prim2
7510 cd               write (iout,*) "g_contij",g_contij
7511 cd               write (iout,*) "grij_hb_cont i",grij_hb_cont(:,jj,i)
7512 cd               write (iout,*) "grij_hb_cont i1",grij_hb_cont(:,jj,i1)
7513                 call calc_eello(i,jp,i+1,jp1,jj,kk)
7514                 if (wcorr4.gt.0.0d0) 
7515      &            ecorr=ecorr+eello4(i,jp,i+1,jp1,jj,kk)
7516                   if (energy_dec.and.wcorr4.gt.0.0d0) 
7517      1                 write (iout,'(a6,4i5,0pf7.3)')
7518      2                'ecorr4',i,j,i+1,j1,eello4(i,jp,i+1,jp1,jj,kk)
7519 c                write (iout,*) "gradcorr5 before eello5"
7520 c                do iii=1,nres
7521 c                  write (iout,'(i5,3f10.5)') 
7522 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7523 c                enddo
7524                 if (wcorr5.gt.0.0d0)
7525      &            ecorr5=ecorr5+eello5(i,jp,i+1,jp1,jj,kk)
7526 c                write (iout,*) "gradcorr5 after eello5"
7527 c                do iii=1,nres
7528 c                  write (iout,'(i5,3f10.5)') 
7529 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7530 c                enddo
7531                   if (energy_dec.and.wcorr5.gt.0.0d0) 
7532      1                 write (iout,'(a6,4i5,0pf7.3)')
7533      2                'ecorr5',i,j,i+1,j1,eello5(i,jp,i+1,jp1,jj,kk)
7534 cd                write(2,*)'wcorr6',wcorr6,' wturn6',wturn6
7535 cd                write(2,*)'ijkl',i,jp,i+1,jp1 
7536                 if (wcorr6.gt.0.0d0 .and. (jp.ne.i+4 .or. jp1.ne.i+3
7537      &               .or. wturn6.eq.0.0d0))then
7538 cd                  write (iout,*) '******ecorr6: i,j,i+1,j1',i,j,i+1,j1
7539                   ecorr6=ecorr6+eello6(i,jp,i+1,jp1,jj,kk)
7540                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7541      1                'ecorr6',i,j,i+1,j1,eello6(i,jp,i+1,jp1,jj,kk)
7542 cd                write (iout,*) 'ecorr',ecorr,' ecorr5=',ecorr5,
7543 cd     &            'ecorr6=',ecorr6
7544 cd                write (iout,'(4e15.5)') sred_geom,
7545 cd     &          dabs(eello4(i,jp,i+1,jp1,jj,kk)),
7546 cd     &          dabs(eello5(i,jp,i+1,jp1,jj,kk)),
7547 cd     &          dabs(eello6(i,jp,i+1,jp1,jj,kk))
7548                 else if (wturn6.gt.0.0d0
7549      &            .and. (jp.eq.i+4 .and. jp1.eq.i+3)) then
7550 cd                  write (iout,*) '******eturn6: i,j,i+1,j1',i,jip,i+1,jp1
7551                   eturn6=eturn6+eello_turn6(i,jj,kk)
7552                   if (energy_dec) write (iout,'(a6,4i5,0pf7.3)')
7553      1                 'eturn6',i,j,i+1,j1,eello_turn6(i,jj,kk)
7554 cd                  write (2,*) 'multibody_eello:eturn6',eturn6
7555                 endif
7556               ENDIF
7557 1111          continue
7558             endif
7559           enddo ! kk
7560         enddo ! jj
7561       enddo ! i
7562       do i=1,nres
7563         num_cont_hb(i)=num_cont_hb_old(i)
7564       enddo
7565 c                write (iout,*) "gradcorr5 in eello5"
7566 c                do iii=1,nres
7567 c                  write (iout,'(i5,3f10.5)') 
7568 c     &             iii,(gradcorr5(jjj,iii),jjj=1,3)
7569 c                enddo
7570       return
7571       end
7572 c------------------------------------------------------------------------------
7573       subroutine add_hb_contact_eello(ii,jj,itask)
7574       implicit real*8 (a-h,o-z)
7575       include "DIMENSIONS"
7576       include "COMMON.IOUNITS"
7577       integer max_cont
7578       integer max_dim
7579       parameter (max_cont=maxconts)
7580       parameter (max_dim=70)
7581       include "COMMON.CONTACTS"
7582       double precision zapas(max_dim,maxconts,max_fg_procs),
7583      &  zapas_recv(max_dim,maxconts,max_fg_procs)
7584       common /przechowalnia/ zapas
7585       integer i,j,ii,jj,iproc,itask(4),nn
7586 c      write (iout,*) "itask",itask
7587       do i=1,2
7588         iproc=itask(i)
7589         if (iproc.gt.0) then
7590           do j=1,num_cont_hb(ii)
7591             jjc=jcont_hb(j,ii)
7592 c            write (iout,*) "send turns i",ii," j",jj," jjc",jjc
7593             if (jjc.eq.jj) then
7594               ncont_sent(iproc)=ncont_sent(iproc)+1
7595               nn=ncont_sent(iproc)
7596               zapas(1,nn,iproc)=ii
7597               zapas(2,nn,iproc)=jjc
7598               zapas(3,nn,iproc)=d_cont(j,ii)
7599               ind=3
7600               do kk=1,3
7601                 ind=ind+1
7602                 zapas(ind,nn,iproc)=grij_hb_cont(kk,j,ii)
7603               enddo
7604               do kk=1,2
7605                 do ll=1,2
7606                   ind=ind+1
7607                   zapas(ind,nn,iproc)=a_chuj(ll,kk,j,ii)
7608                 enddo
7609               enddo
7610               do jj=1,5
7611                 do kk=1,3
7612                   do ll=1,2
7613                     do mm=1,2
7614                       ind=ind+1
7615                       zapas(ind,nn,iproc)=a_chuj_der(mm,ll,kk,jj,j,ii)
7616                     enddo
7617                   enddo
7618                 enddo
7619               enddo
7620               exit
7621             endif
7622           enddo
7623         endif
7624       enddo
7625       return
7626       end
7627 c------------------------------------------------------------------------------
7628       double precision function ehbcorr(i,j,k,l,jj,kk,coeffp,coeffm)
7629       implicit real*8 (a-h,o-z)
7630       include 'DIMENSIONS'
7631       include 'COMMON.IOUNITS'
7632       include 'COMMON.DERIV'
7633       include 'COMMON.INTERACT'
7634       include 'COMMON.CONTACTS'
7635       double precision gx(3),gx1(3)
7636       logical lprn
7637       lprn=.false.
7638       eij=facont_hb(jj,i)
7639       ekl=facont_hb(kk,k)
7640       ees0pij=ees0p(jj,i)
7641       ees0pkl=ees0p(kk,k)
7642       ees0mij=ees0m(jj,i)
7643       ees0mkl=ees0m(kk,k)
7644       ekont=eij*ekl
7645       ees=-(coeffp*ees0pij*ees0pkl+coeffm*ees0mij*ees0mkl)
7646 cd    ees=-(coeffp*ees0pkl+coeffm*ees0mkl)
7647 C Following 4 lines for diagnostics.
7648 cd    ees0pkl=0.0D0
7649 cd    ees0pij=1.0D0
7650 cd    ees0mkl=0.0D0
7651 cd    ees0mij=1.0D0
7652 c      write (iout,'(2(a,2i3,a,f10.5,a,2f10.5),a,f10.5,a,$)')
7653 c     & 'Contacts ',i,j,
7654 c     & ' eij',eij,' eesij',ees0pij,ees0mij,' and ',k,l
7655 c     & ,' fcont ',ekl,' eeskl',ees0pkl,ees0mkl,' energy=',ekont*ees,
7656 c     & 'gradcorr_long'
7657 C Calculate the multi-body contribution to energy.
7658 c      ecorr=ecorr+ekont*ees
7659 C Calculate multi-body contributions to the gradient.
7660       coeffpees0pij=coeffp*ees0pij
7661       coeffmees0mij=coeffm*ees0mij
7662       coeffpees0pkl=coeffp*ees0pkl
7663       coeffmees0mkl=coeffm*ees0mkl
7664       do ll=1,3
7665 cgrad        ghalfi=ees*ekl*gacont_hbr(ll,jj,i)
7666         gradcorr(ll,i)=gradcorr(ll,i)!+0.5d0*ghalfi
7667      &  -ekont*(coeffpees0pkl*gacontp_hb1(ll,jj,i)+
7668      &  coeffmees0mkl*gacontm_hb1(ll,jj,i))
7669         gradcorr(ll,j)=gradcorr(ll,j)!+0.5d0*ghalfi
7670      &  -ekont*(coeffpees0pkl*gacontp_hb2(ll,jj,i)+
7671      &  coeffmees0mkl*gacontm_hb2(ll,jj,i))
7672 cgrad        ghalfk=ees*eij*gacont_hbr(ll,kk,k)
7673         gradcorr(ll,k)=gradcorr(ll,k)!+0.5d0*ghalfk
7674      &  -ekont*(coeffpees0pij*gacontp_hb1(ll,kk,k)+
7675      &  coeffmees0mij*gacontm_hb1(ll,kk,k))
7676         gradcorr(ll,l)=gradcorr(ll,l)!+0.5d0*ghalfk
7677      &  -ekont*(coeffpees0pij*gacontp_hb2(ll,kk,k)+
7678      &  coeffmees0mij*gacontm_hb2(ll,kk,k))
7679         gradlongij=ees*ekl*gacont_hbr(ll,jj,i)-
7680      &     ekont*(coeffpees0pkl*gacontp_hb3(ll,jj,i)+
7681      &     coeffmees0mkl*gacontm_hb3(ll,jj,i))
7682         gradcorr_long(ll,j)=gradcorr_long(ll,j)+gradlongij
7683         gradcorr_long(ll,i)=gradcorr_long(ll,i)-gradlongij
7684         gradlongkl=ees*eij*gacont_hbr(ll,kk,k)-
7685      &     ekont*(coeffpees0pij*gacontp_hb3(ll,kk,k)+
7686      &     coeffmees0mij*gacontm_hb3(ll,kk,k))
7687         gradcorr_long(ll,l)=gradcorr_long(ll,l)+gradlongkl
7688         gradcorr_long(ll,k)=gradcorr_long(ll,k)-gradlongkl
7689 c        write (iout,'(2f10.5,2x,$)') gradlongij,gradlongkl
7690       enddo
7691 c      write (iout,*)
7692 cgrad      do m=i+1,j-1
7693 cgrad        do ll=1,3
7694 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7695 cgrad     &     ees*ekl*gacont_hbr(ll,jj,i)-
7696 cgrad     &     ekont*(coeffp*ees0pkl*gacontp_hb3(ll,jj,i)+
7697 cgrad     &     coeffm*ees0mkl*gacontm_hb3(ll,jj,i))
7698 cgrad        enddo
7699 cgrad      enddo
7700 cgrad      do m=k+1,l-1
7701 cgrad        do ll=1,3
7702 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+
7703 cgrad     &     ees*eij*gacont_hbr(ll,kk,k)-
7704 cgrad     &     ekont*(coeffp*ees0pij*gacontp_hb3(ll,kk,k)+
7705 cgrad     &     coeffm*ees0mij*gacontm_hb3(ll,kk,k))
7706 cgrad        enddo
7707 cgrad      enddo 
7708 c      write (iout,*) "ehbcorr",ekont*ees
7709       ehbcorr=ekont*ees
7710       return
7711       end
7712 #ifdef MOMENT
7713 C---------------------------------------------------------------------------
7714       subroutine dipole(i,j,jj)
7715       implicit real*8 (a-h,o-z)
7716       include 'DIMENSIONS'
7717       include 'COMMON.IOUNITS'
7718       include 'COMMON.CHAIN'
7719       include 'COMMON.FFIELD'
7720       include 'COMMON.DERIV'
7721       include 'COMMON.INTERACT'
7722       include 'COMMON.CONTACTS'
7723       include 'COMMON.TORSION'
7724       include 'COMMON.VAR'
7725       include 'COMMON.GEO'
7726       dimension dipi(2,2),dipj(2,2),dipderi(2),dipderj(2),auxvec(2),
7727      &  auxmat(2,2)
7728       iti1 = itortyp(itype(i+1))
7729       if (j.lt.nres-1) then
7730         itj1 = itortyp(itype(j+1))
7731       else
7732         itj1=ntortyp+1
7733       endif
7734       do iii=1,2
7735         dipi(iii,1)=Ub2(iii,i)
7736         dipderi(iii)=Ub2der(iii,i)
7737         dipi(iii,2)=b1(iii,iti1)
7738         dipj(iii,1)=Ub2(iii,j)
7739         dipderj(iii)=Ub2der(iii,j)
7740         dipj(iii,2)=b1(iii,itj1)
7741       enddo
7742       kkk=0
7743       do iii=1,2
7744         call matvec2(a_chuj(1,1,jj,i),dipj(1,iii),auxvec(1)) 
7745         do jjj=1,2
7746           kkk=kkk+1
7747           dip(kkk,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7748         enddo
7749       enddo
7750       do kkk=1,5
7751         do lll=1,3
7752           mmm=0
7753           do iii=1,2
7754             call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),dipj(1,iii),
7755      &        auxvec(1))
7756             do jjj=1,2
7757               mmm=mmm+1
7758               dipderx(lll,kkk,mmm,jj,i)=scalar2(dipi(1,jjj),auxvec(1))
7759             enddo
7760           enddo
7761         enddo
7762       enddo
7763       call transpose2(a_chuj(1,1,jj,i),auxmat(1,1))
7764       call matvec2(auxmat(1,1),dipderi(1),auxvec(1))
7765       do iii=1,2
7766         dipderg(iii,jj,i)=scalar2(auxvec(1),dipj(1,iii))
7767       enddo
7768       call matvec2(a_chuj(1,1,jj,i),dipderj(1),auxvec(1))
7769       do iii=1,2
7770         dipderg(iii+2,jj,i)=scalar2(auxvec(1),dipi(1,iii))
7771       enddo
7772       return
7773       end
7774 #endif
7775 C---------------------------------------------------------------------------
7776       subroutine calc_eello(i,j,k,l,jj,kk)
7777
7778 C This subroutine computes matrices and vectors needed to calculate 
7779 C the fourth-, fifth-, and sixth-order local-electrostatic terms.
7780 C
7781       implicit real*8 (a-h,o-z)
7782       include 'DIMENSIONS'
7783       include 'COMMON.IOUNITS'
7784       include 'COMMON.CHAIN'
7785       include 'COMMON.DERIV'
7786       include 'COMMON.INTERACT'
7787       include 'COMMON.CONTACTS'
7788       include 'COMMON.TORSION'
7789       include 'COMMON.VAR'
7790       include 'COMMON.GEO'
7791       include 'COMMON.FFIELD'
7792       double precision aa1(2,2),aa2(2,2),aa1t(2,2),aa2t(2,2),
7793      &  aa1tder(2,2,3,5),aa2tder(2,2,3,5),auxmat(2,2)
7794       logical lprn
7795       common /kutas/ lprn
7796 cd      write (iout,*) 'calc_eello: i=',i,' j=',j,' k=',k,' l=',l,
7797 cd     & ' jj=',jj,' kk=',kk
7798 cd      if (i.ne.2 .or. j.ne.4 .or. k.ne.3 .or. l.ne.5) return
7799 cd      write (iout,*) "a_chujij",((a_chuj(iii,jjj,jj,i),iii=1,2),jjj=1,2)
7800 cd      write (iout,*) "a_chujkl",((a_chuj(iii,jjj,kk,k),iii=1,2),jjj=1,2)
7801       do iii=1,2
7802         do jjj=1,2
7803           aa1(iii,jjj)=a_chuj(iii,jjj,jj,i)
7804           aa2(iii,jjj)=a_chuj(iii,jjj,kk,k)
7805         enddo
7806       enddo
7807       call transpose2(aa1(1,1),aa1t(1,1))
7808       call transpose2(aa2(1,1),aa2t(1,1))
7809       do kkk=1,5
7810         do lll=1,3
7811           call transpose2(a_chuj_der(1,1,lll,kkk,jj,i),
7812      &      aa1tder(1,1,lll,kkk))
7813           call transpose2(a_chuj_der(1,1,lll,kkk,kk,k),
7814      &      aa2tder(1,1,lll,kkk))
7815         enddo
7816       enddo 
7817       if (l.eq.j+1) then
7818 C parallel orientation of the two CA-CA-CA frames.
7819         if (i.gt.1) then
7820           iti=itortyp(itype(i))
7821         else
7822           iti=ntortyp+1
7823         endif
7824         itk1=itortyp(itype(k+1))
7825         itj=itortyp(itype(j))
7826         if (l.lt.nres-1) then
7827           itl1=itortyp(itype(l+1))
7828         else
7829           itl1=ntortyp+1
7830         endif
7831 C A1 kernel(j+1) A2T
7832 cd        do iii=1,2
7833 cd          write (iout,'(3f10.5,5x,3f10.5)') 
7834 cd     &     (EUg(iii,jjj,k),jjj=1,2),(EUg(iii,jjj,l),jjj=1,2)
7835 cd        enddo
7836         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7837      &   aa2tder(1,1,1,1),1,.false.,EUg(1,1,l),EUgder(1,1,l),
7838      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7839 C Following matrices are needed only for 6-th order cumulants
7840         IF (wcorr6.gt.0.0d0) THEN
7841         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7842      &   aa2tder(1,1,1,1),1,.false.,EUgC(1,1,l),EUgCder(1,1,l),
7843      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7844         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7845      &   aa2tder(1,1,1,1),2,.false.,Ug2DtEUg(1,1,l),
7846      &   Ug2DtEUgder(1,1,1,l),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7847      &   ADtEAderx(1,1,1,1,1,1))
7848         lprn=.false.
7849         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7850      &   aa2tder(1,1,1,1),2,.false.,DtUg2EUg(1,1,l),
7851      &   DtUg2EUgder(1,1,1,l),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
7852      &   ADtEA1derx(1,1,1,1,1,1))
7853         ENDIF
7854 C End 6-th order cumulants
7855 cd        lprn=.false.
7856 cd        if (lprn) then
7857 cd        write (2,*) 'In calc_eello6'
7858 cd        do iii=1,2
7859 cd          write (2,*) 'iii=',iii
7860 cd          do kkk=1,5
7861 cd            write (2,*) 'kkk=',kkk
7862 cd            do jjj=1,2
7863 cd              write (2,'(3(2f10.5),5x)') 
7864 cd     &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
7865 cd            enddo
7866 cd          enddo
7867 cd        enddo
7868 cd        endif
7869         call transpose2(EUgder(1,1,k),auxmat(1,1))
7870         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
7871         call transpose2(EUg(1,1,k),auxmat(1,1))
7872         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
7873         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
7874         do iii=1,2
7875           do kkk=1,5
7876             do lll=1,3
7877               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
7878      &          EAEAderx(1,1,lll,kkk,iii,1))
7879             enddo
7880           enddo
7881         enddo
7882 C A1T kernel(i+1) A2
7883         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7884      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUg(1,1,k),EUgder(1,1,k),
7885      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
7886 C Following matrices are needed only for 6-th order cumulants
7887         IF (wcorr6.gt.0.0d0) THEN
7888         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7889      &   a_chuj_der(1,1,1,1,kk,k),1,.false.,EUgC(1,1,k),EUgCder(1,1,k),
7890      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
7891         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7892      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,Ug2DtEUg(1,1,k),
7893      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
7894      &   ADtEAderx(1,1,1,1,1,2))
7895         call kernel(aa1t(1,1),aa2(1,1),aa1tder(1,1,1,1),
7896      &   a_chuj_der(1,1,1,1,kk,k),2,.false.,DtUg2EUg(1,1,k),
7897      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
7898      &   ADtEA1derx(1,1,1,1,1,2))
7899         ENDIF
7900 C End 6-th order cumulants
7901         call transpose2(EUgder(1,1,l),auxmat(1,1))
7902         call matmat2(auxmat(1,1),AEA(1,1,2),EAEAderg(1,1,1,2))
7903         call transpose2(EUg(1,1,l),auxmat(1,1))
7904         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
7905         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
7906         do iii=1,2
7907           do kkk=1,5
7908             do lll=1,3
7909               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
7910      &          EAEAderx(1,1,lll,kkk,iii,2))
7911             enddo
7912           enddo
7913         enddo
7914 C AEAb1 and AEAb2
7915 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
7916 C They are needed only when the fifth- or the sixth-order cumulants are
7917 C indluded.
7918         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0) THEN
7919         call transpose2(AEA(1,1,1),auxmat(1,1))
7920         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
7921         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
7922         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
7923         call transpose2(AEAderg(1,1,1),auxmat(1,1))
7924         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
7925         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
7926         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
7927         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
7928         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
7929         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
7930         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
7931         call transpose2(AEA(1,1,2),auxmat(1,1))
7932         call matvec2(auxmat(1,1),b1(1,itj),AEAb1(1,1,2))
7933         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2(1,1,2))
7934         call matvec2(auxmat(1,1),Ub2der(1,j),AEAb2derg(1,2,1,2))
7935         call transpose2(AEAderg(1,1,2),auxmat(1,1))
7936         call matvec2(auxmat(1,1),b1(1,itj),AEAb1derg(1,1,2))
7937         call matvec2(auxmat(1,1),Ub2(1,j),AEAb2derg(1,1,1,2))
7938         call matvec2(AEA(1,1,2),b1(1,itl1),AEAb1(1,2,2))
7939         call matvec2(AEAderg(1,1,2),b1(1,itl1),AEAb1derg(1,2,2))
7940         call matvec2(AEA(1,1,2),Ub2(1,l+1),AEAb2(1,2,2))
7941         call matvec2(AEAderg(1,1,2),Ub2(1,l+1),AEAb2derg(1,1,2,2))
7942         call matvec2(AEA(1,1,2),Ub2der(1,l+1),AEAb2derg(1,2,2,2))
7943 C Calculate the Cartesian derivatives of the vectors.
7944         do iii=1,2
7945           do kkk=1,5
7946             do lll=1,3
7947               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
7948               call matvec2(auxmat(1,1),b1(1,iti),
7949      &          AEAb1derx(1,lll,kkk,iii,1,1))
7950               call matvec2(auxmat(1,1),Ub2(1,i),
7951      &          AEAb2derx(1,lll,kkk,iii,1,1))
7952               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
7953      &          AEAb1derx(1,lll,kkk,iii,2,1))
7954               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
7955      &          AEAb2derx(1,lll,kkk,iii,2,1))
7956               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
7957               call matvec2(auxmat(1,1),b1(1,itj),
7958      &          AEAb1derx(1,lll,kkk,iii,1,2))
7959               call matvec2(auxmat(1,1),Ub2(1,j),
7960      &          AEAb2derx(1,lll,kkk,iii,1,2))
7961               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
7962      &          AEAb1derx(1,lll,kkk,iii,2,2))
7963               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,l+1),
7964      &          AEAb2derx(1,lll,kkk,iii,2,2))
7965             enddo
7966           enddo
7967         enddo
7968         ENDIF
7969 C End vectors
7970       else
7971 C Antiparallel orientation of the two CA-CA-CA frames.
7972         if (i.gt.1) then
7973           iti=itortyp(itype(i))
7974         else
7975           iti=ntortyp+1
7976         endif
7977         itk1=itortyp(itype(k+1))
7978         itl=itortyp(itype(l))
7979         itj=itortyp(itype(j))
7980         if (j.lt.nres-1) then
7981           itj1=itortyp(itype(j+1))
7982         else 
7983           itj1=ntortyp+1
7984         endif
7985 C A2 kernel(j-1)T A1T
7986         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7987      &   aa2tder(1,1,1,1),1,.true.,EUg(1,1,j),EUgder(1,1,j),
7988      &   AEA(1,1,1),AEAderg(1,1,1),AEAderx(1,1,1,1,1,1))
7989 C Following matrices are needed only for 6-th order cumulants
7990         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
7991      &     j.eq.i+4 .and. l.eq.i+3)) THEN
7992         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7993      &   aa2tder(1,1,1,1),1,.true.,EUgC(1,1,j),EUgCder(1,1,j),
7994      &   AECA(1,1,1),AECAderg(1,1,1),AECAderx(1,1,1,1,1,1))
7995         call kernel(aa2(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
7996      &   aa2tder(1,1,1,1),2,.true.,Ug2DtEUg(1,1,j),
7997      &   Ug2DtEUgder(1,1,1,j),ADtEA(1,1,1),ADtEAderg(1,1,1,1),
7998      &   ADtEAderx(1,1,1,1,1,1))
7999         call kernel(aa1(1,1),aa2t(1,1),a_chuj_der(1,1,1,1,jj,i),
8000      &   aa2tder(1,1,1,1),2,.true.,DtUg2EUg(1,1,j),
8001      &   DtUg2EUgder(1,1,1,j),ADtEA1(1,1,1),ADtEA1derg(1,1,1,1),
8002      &   ADtEA1derx(1,1,1,1,1,1))
8003         ENDIF
8004 C End 6-th order cumulants
8005         call transpose2(EUgder(1,1,k),auxmat(1,1))
8006         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,1,1))
8007         call transpose2(EUg(1,1,k),auxmat(1,1))
8008         call matmat2(auxmat(1,1),AEA(1,1,1),EAEA(1,1,1))
8009         call matmat2(auxmat(1,1),AEAderg(1,1,1),EAEAderg(1,1,2,1))
8010         do iii=1,2
8011           do kkk=1,5
8012             do lll=1,3
8013               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
8014      &          EAEAderx(1,1,lll,kkk,iii,1))
8015             enddo
8016           enddo
8017         enddo
8018 C A2T kernel(i+1)T A1
8019         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
8020      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUg(1,1,k),EUgder(1,1,k),
8021      &   AEA(1,1,2),AEAderg(1,1,2),AEAderx(1,1,1,1,1,2))
8022 C Following matrices are needed only for 6-th order cumulants
8023         IF (wcorr6.gt.0.0d0 .or. (wturn6.gt.0.0d0 .and.
8024      &     j.eq.i+4 .and. l.eq.i+3)) THEN
8025         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
8026      &   a_chuj_der(1,1,1,1,jj,i),1,.true.,EUgC(1,1,k),EUgCder(1,1,k),
8027      &   AECA(1,1,2),AECAderg(1,1,2),AECAderx(1,1,1,1,1,2))
8028         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
8029      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,Ug2DtEUg(1,1,k),
8030      &   Ug2DtEUgder(1,1,1,k),ADtEA(1,1,2),ADtEAderg(1,1,1,2),
8031      &   ADtEAderx(1,1,1,1,1,2))
8032         call kernel(aa2t(1,1),aa1(1,1),aa2tder(1,1,1,1),
8033      &   a_chuj_der(1,1,1,1,jj,i),2,.true.,DtUg2EUg(1,1,k),
8034      &   DtUg2EUgder(1,1,1,k),ADtEA1(1,1,2),ADtEA1derg(1,1,1,2),
8035      &   ADtEA1derx(1,1,1,1,1,2))
8036         ENDIF
8037 C End 6-th order cumulants
8038         call transpose2(EUgder(1,1,j),auxmat(1,1))
8039         call matmat2(auxmat(1,1),AEA(1,1,1),EAEAderg(1,1,2,2))
8040         call transpose2(EUg(1,1,j),auxmat(1,1))
8041         call matmat2(auxmat(1,1),AEA(1,1,2),EAEA(1,1,2))
8042         call matmat2(auxmat(1,1),AEAderg(1,1,2),EAEAderg(1,1,2,2))
8043         do iii=1,2
8044           do kkk=1,5
8045             do lll=1,3
8046               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8047      &          EAEAderx(1,1,lll,kkk,iii,2))
8048             enddo
8049           enddo
8050         enddo
8051 C AEAb1 and AEAb2
8052 C Calculate the vectors and their derivatives in virtual-bond dihedral angles.
8053 C They are needed only when the fifth- or the sixth-order cumulants are
8054 C indluded.
8055         IF (wcorr5.gt.0.0d0 .or. wcorr6.gt.0.0d0 .or.
8056      &    (wturn6.gt.0.0d0 .and. j.eq.i+4 .and. l.eq.i+3)) THEN
8057         call transpose2(AEA(1,1,1),auxmat(1,1))
8058         call matvec2(auxmat(1,1),b1(1,iti),AEAb1(1,1,1))
8059         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2(1,1,1))
8060         call matvec2(auxmat(1,1),Ub2der(1,i),AEAb2derg(1,2,1,1))
8061         call transpose2(AEAderg(1,1,1),auxmat(1,1))
8062         call matvec2(auxmat(1,1),b1(1,iti),AEAb1derg(1,1,1))
8063         call matvec2(auxmat(1,1),Ub2(1,i),AEAb2derg(1,1,1,1))
8064         call matvec2(AEA(1,1,1),b1(1,itk1),AEAb1(1,2,1))
8065         call matvec2(AEAderg(1,1,1),b1(1,itk1),AEAb1derg(1,2,1))
8066         call matvec2(AEA(1,1,1),Ub2(1,k+1),AEAb2(1,2,1))
8067         call matvec2(AEAderg(1,1,1),Ub2(1,k+1),AEAb2derg(1,1,2,1))
8068         call matvec2(AEA(1,1,1),Ub2der(1,k+1),AEAb2derg(1,2,2,1))
8069         call transpose2(AEA(1,1,2),auxmat(1,1))
8070         call matvec2(auxmat(1,1),b1(1,itj1),AEAb1(1,1,2))
8071         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2(1,1,2))
8072         call matvec2(auxmat(1,1),Ub2der(1,l),AEAb2derg(1,2,1,2))
8073         call transpose2(AEAderg(1,1,2),auxmat(1,1))
8074         call matvec2(auxmat(1,1),b1(1,itl),AEAb1(1,1,2))
8075         call matvec2(auxmat(1,1),Ub2(1,l),AEAb2derg(1,1,1,2))
8076         call matvec2(AEA(1,1,2),b1(1,itj1),AEAb1(1,2,2))
8077         call matvec2(AEAderg(1,1,2),b1(1,itj1),AEAb1derg(1,2,2))
8078         call matvec2(AEA(1,1,2),Ub2(1,j),AEAb2(1,2,2))
8079         call matvec2(AEAderg(1,1,2),Ub2(1,j),AEAb2derg(1,1,2,2))
8080         call matvec2(AEA(1,1,2),Ub2der(1,j),AEAb2derg(1,2,2,2))
8081 C Calculate the Cartesian derivatives of the vectors.
8082         do iii=1,2
8083           do kkk=1,5
8084             do lll=1,3
8085               call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1))
8086               call matvec2(auxmat(1,1),b1(1,iti),
8087      &          AEAb1derx(1,lll,kkk,iii,1,1))
8088               call matvec2(auxmat(1,1),Ub2(1,i),
8089      &          AEAb2derx(1,lll,kkk,iii,1,1))
8090               call matvec2(AEAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
8091      &          AEAb1derx(1,lll,kkk,iii,2,1))
8092               call matvec2(AEAderx(1,1,lll,kkk,iii,1),Ub2(1,k+1),
8093      &          AEAb2derx(1,lll,kkk,iii,2,1))
8094               call transpose2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1))
8095               call matvec2(auxmat(1,1),b1(1,itl),
8096      &          AEAb1derx(1,lll,kkk,iii,1,2))
8097               call matvec2(auxmat(1,1),Ub2(1,l),
8098      &          AEAb2derx(1,lll,kkk,iii,1,2))
8099               call matvec2(AEAderx(1,1,lll,kkk,iii,2),b1(1,itj1),
8100      &          AEAb1derx(1,lll,kkk,iii,2,2))
8101               call matvec2(AEAderx(1,1,lll,kkk,iii,2),Ub2(1,j),
8102      &          AEAb2derx(1,lll,kkk,iii,2,2))
8103             enddo
8104           enddo
8105         enddo
8106         ENDIF
8107 C End vectors
8108       endif
8109       return
8110       end
8111 C---------------------------------------------------------------------------
8112       subroutine kernel(aa1,aa2t,aa1derx,aa2tderx,nderg,transp,
8113      &  KK,KKderg,AKA,AKAderg,AKAderx)
8114       implicit none
8115       integer nderg
8116       logical transp
8117       double precision aa1(2,2),aa2t(2,2),aa1derx(2,2,3,5),
8118      &  aa2tderx(2,2,3,5),KK(2,2),KKderg(2,2,nderg),AKA(2,2),
8119      &  AKAderg(2,2,nderg),AKAderx(2,2,3,5,2)
8120       integer iii,kkk,lll
8121       integer jjj,mmm
8122       logical lprn
8123       common /kutas/ lprn
8124       call prodmat3(aa1(1,1),aa2t(1,1),KK(1,1),transp,AKA(1,1))
8125       do iii=1,nderg 
8126         call prodmat3(aa1(1,1),aa2t(1,1),KKderg(1,1,iii),transp,
8127      &    AKAderg(1,1,iii))
8128       enddo
8129 cd      if (lprn) write (2,*) 'In kernel'
8130       do kkk=1,5
8131 cd        if (lprn) write (2,*) 'kkk=',kkk
8132         do lll=1,3
8133           call prodmat3(aa1derx(1,1,lll,kkk),aa2t(1,1),
8134      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,1))
8135 cd          if (lprn) then
8136 cd            write (2,*) 'lll=',lll
8137 cd            write (2,*) 'iii=1'
8138 cd            do jjj=1,2
8139 cd              write (2,'(3(2f10.5),5x)') 
8140 cd     &        (AKAderx(jjj,mmm,lll,kkk,1),mmm=1,2)
8141 cd            enddo
8142 cd          endif
8143           call prodmat3(aa1(1,1),aa2tderx(1,1,lll,kkk),
8144      &      KK(1,1),transp,AKAderx(1,1,lll,kkk,2))
8145 cd          if (lprn) then
8146 cd            write (2,*) 'lll=',lll
8147 cd            write (2,*) 'iii=2'
8148 cd            do jjj=1,2
8149 cd              write (2,'(3(2f10.5),5x)') 
8150 cd     &        (AKAderx(jjj,mmm,lll,kkk,2),mmm=1,2)
8151 cd            enddo
8152 cd          endif
8153         enddo
8154       enddo
8155       return
8156       end
8157 C---------------------------------------------------------------------------
8158       double precision function eello4(i,j,k,l,jj,kk)
8159       implicit real*8 (a-h,o-z)
8160       include 'DIMENSIONS'
8161       include 'COMMON.IOUNITS'
8162       include 'COMMON.CHAIN'
8163       include 'COMMON.DERIV'
8164       include 'COMMON.INTERACT'
8165       include 'COMMON.CONTACTS'
8166       include 'COMMON.TORSION'
8167       include 'COMMON.VAR'
8168       include 'COMMON.GEO'
8169       double precision pizda(2,2),ggg1(3),ggg2(3)
8170 cd      if (i.ne.1 .or. j.ne.5 .or. k.ne.2 .or.l.ne.4) then
8171 cd        eello4=0.0d0
8172 cd        return
8173 cd      endif
8174 cd      print *,'eello4:',i,j,k,l,jj,kk
8175 cd      write (2,*) 'i',i,' j',j,' k',k,' l',l
8176 cd      call checkint4(i,j,k,l,jj,kk,eel4_num)
8177 cold      eij=facont_hb(jj,i)
8178 cold      ekl=facont_hb(kk,k)
8179 cold      ekont=eij*ekl
8180       eel4=-EAEA(1,1,1)-EAEA(2,2,1)
8181 cd      eel41=-EAEA(1,1,2)-EAEA(2,2,2)
8182       gcorr_loc(k-1)=gcorr_loc(k-1)
8183      &   -ekont*(EAEAderg(1,1,1,1)+EAEAderg(2,2,1,1))
8184       if (l.eq.j+1) then
8185         gcorr_loc(l-1)=gcorr_loc(l-1)
8186      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8187       else
8188         gcorr_loc(j-1)=gcorr_loc(j-1)
8189      &     -ekont*(EAEAderg(1,1,2,1)+EAEAderg(2,2,2,1))
8190       endif
8191       do iii=1,2
8192         do kkk=1,5
8193           do lll=1,3
8194             derx(lll,kkk,iii)=-EAEAderx(1,1,lll,kkk,iii,1)
8195      &                        -EAEAderx(2,2,lll,kkk,iii,1)
8196 cd            derx(lll,kkk,iii)=0.0d0
8197           enddo
8198         enddo
8199       enddo
8200 cd      gcorr_loc(l-1)=0.0d0
8201 cd      gcorr_loc(j-1)=0.0d0
8202 cd      gcorr_loc(k-1)=0.0d0
8203 cd      eel4=1.0d0
8204 cd      write (iout,*)'Contacts have occurred for peptide groups',
8205 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l,
8206 cd     &  ' fcont ',ekl,' eel4=',eel4,' eel4_num',16*eel4_num
8207       if (j.lt.nres-1) then
8208         j1=j+1
8209         j2=j-1
8210       else
8211         j1=j-1
8212         j2=j-2
8213       endif
8214       if (l.lt.nres-1) then
8215         l1=l+1
8216         l2=l-1
8217       else
8218         l1=l-1
8219         l2=l-2
8220       endif
8221       do ll=1,3
8222 cgrad        ggg1(ll)=eel4*g_contij(ll,1)
8223 cgrad        ggg2(ll)=eel4*g_contij(ll,2)
8224         glongij=eel4*g_contij(ll,1)+ekont*derx(ll,1,1)
8225         glongkl=eel4*g_contij(ll,2)+ekont*derx(ll,1,2)
8226 cgrad        ghalf=0.5d0*ggg1(ll)
8227         gradcorr(ll,i)=gradcorr(ll,i)+ekont*derx(ll,2,1)
8228         gradcorr(ll,i+1)=gradcorr(ll,i+1)+ekont*derx(ll,3,1)
8229         gradcorr(ll,j)=gradcorr(ll,j)+ekont*derx(ll,4,1)
8230         gradcorr(ll,j1)=gradcorr(ll,j1)+ekont*derx(ll,5,1)
8231         gradcorr_long(ll,j)=gradcorr_long(ll,j)+glongij
8232         gradcorr_long(ll,i)=gradcorr_long(ll,i)-glongij
8233 cgrad        ghalf=0.5d0*ggg2(ll)
8234         gradcorr(ll,k)=gradcorr(ll,k)+ekont*derx(ll,2,2)
8235         gradcorr(ll,k+1)=gradcorr(ll,k+1)+ekont*derx(ll,3,2)
8236         gradcorr(ll,l)=gradcorr(ll,l)+ekont*derx(ll,4,2)
8237         gradcorr(ll,l1)=gradcorr(ll,l1)+ekont*derx(ll,5,2)
8238         gradcorr_long(ll,l)=gradcorr_long(ll,l)+glongkl
8239         gradcorr_long(ll,k)=gradcorr_long(ll,k)-glongkl
8240       enddo
8241 cgrad      do m=i+1,j-1
8242 cgrad        do ll=1,3
8243 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg1(ll)
8244 cgrad        enddo
8245 cgrad      enddo
8246 cgrad      do m=k+1,l-1
8247 cgrad        do ll=1,3
8248 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ggg2(ll)
8249 cgrad        enddo
8250 cgrad      enddo
8251 cgrad      do m=i+2,j2
8252 cgrad        do ll=1,3
8253 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,1)
8254 cgrad        enddo
8255 cgrad      enddo
8256 cgrad      do m=k+2,l2
8257 cgrad        do ll=1,3
8258 cgrad          gradcorr(ll,m)=gradcorr(ll,m)+ekont*derx(ll,1,2)
8259 cgrad        enddo
8260 cgrad      enddo 
8261 cd      do iii=1,nres-3
8262 cd        write (2,*) iii,gcorr_loc(iii)
8263 cd      enddo
8264       eello4=ekont*eel4
8265 cd      write (2,*) 'ekont',ekont
8266 cd      write (iout,*) 'eello4',ekont*eel4
8267       return
8268       end
8269 C---------------------------------------------------------------------------
8270       double precision function eello5(i,j,k,l,jj,kk)
8271       implicit real*8 (a-h,o-z)
8272       include 'DIMENSIONS'
8273       include 'COMMON.IOUNITS'
8274       include 'COMMON.CHAIN'
8275       include 'COMMON.DERIV'
8276       include 'COMMON.INTERACT'
8277       include 'COMMON.CONTACTS'
8278       include 'COMMON.TORSION'
8279       include 'COMMON.VAR'
8280       include 'COMMON.GEO'
8281       double precision pizda(2,2),auxmat(2,2),auxmat1(2,2),vv(2)
8282       double precision ggg1(3),ggg2(3)
8283 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8284 C                                                                              C
8285 C                            Parallel chains                                   C
8286 C                                                                              C
8287 C          o             o                   o             o                   C
8288 C         /l\           / \             \   / \           / \   /              C
8289 C        /   \         /   \             \ /   \         /   \ /               C
8290 C       j| o |l1       | o |              o| o |         | o |o                C
8291 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8292 C      \i/   \         /   \ /             /   \         /   \                 C
8293 C       o    k1             o                                                  C
8294 C         (I)          (II)                (III)          (IV)                 C
8295 C                                                                              C
8296 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8297 C                                                                              C
8298 C                            Antiparallel chains                               C
8299 C                                                                              C
8300 C          o             o                   o             o                   C
8301 C         /j\           / \             \   / \           / \   /              C
8302 C        /   \         /   \             \ /   \         /   \ /               C
8303 C      j1| o |l        | o |              o| o |         | o |o                C
8304 C     \  |/k\|         |/ \|  /            |/ \|         |/ \|                 C
8305 C      \i/   \         /   \ /             /   \         /   \                 C
8306 C       o     k1            o                                                  C
8307 C         (I)          (II)                (III)          (IV)                 C
8308 C                                                                              C
8309 C      eello5_1        eello5_2            eello5_3       eello5_4             C
8310 C                                                                              C
8311 C o denotes a local interaction, vertical lines an electrostatic interaction.  C
8312 C                                                                              C
8313 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8314 cd      if (i.ne.2 .or. j.ne.6 .or. k.ne.3 .or. l.ne.5) then
8315 cd        eello5=0.0d0
8316 cd        return
8317 cd      endif
8318 cd      write (iout,*)
8319 cd     &   'EELLO5: Contacts have occurred for peptide groups',i,j,
8320 cd     &   ' and',k,l
8321       itk=itortyp(itype(k))
8322       itl=itortyp(itype(l))
8323       itj=itortyp(itype(j))
8324       eello5_1=0.0d0
8325       eello5_2=0.0d0
8326       eello5_3=0.0d0
8327       eello5_4=0.0d0
8328 cd      call checkint5(i,j,k,l,jj,kk,eel5_1_num,eel5_2_num,
8329 cd     &   eel5_3_num,eel5_4_num)
8330       do iii=1,2
8331         do kkk=1,5
8332           do lll=1,3
8333             derx(lll,kkk,iii)=0.0d0
8334           enddo
8335         enddo
8336       enddo
8337 cd      eij=facont_hb(jj,i)
8338 cd      ekl=facont_hb(kk,k)
8339 cd      ekont=eij*ekl
8340 cd      write (iout,*)'Contacts have occurred for peptide groups',
8341 cd     &  i,j,' fcont:',eij,' eij',' and ',k,l
8342 cd      goto 1111
8343 C Contribution from the graph I.
8344 cd      write (2,*) 'AEA  ',AEA(1,1,1),AEA(2,1,1),AEA(1,2,1),AEA(2,2,1)
8345 cd      write (2,*) 'AEAb2',AEAb2(1,1,1),AEAb2(2,1,1)
8346       call transpose2(EUg(1,1,k),auxmat(1,1))
8347       call matmat2(AEA(1,1,1),auxmat(1,1),pizda(1,1))
8348       vv(1)=pizda(1,1)-pizda(2,2)
8349       vv(2)=pizda(1,2)+pizda(2,1)
8350       eello5_1=scalar2(AEAb2(1,1,1),Ub2(1,k))
8351      & +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8352 C Explicit gradient in virtual-dihedral angles.
8353       if (i.gt.1) g_corr5_loc(i-1)=g_corr5_loc(i-1)
8354      & +ekont*(scalar2(AEAb2derg(1,2,1,1),Ub2(1,k))
8355      & +0.5d0*scalar2(vv(1),Dtobr2der(1,i)))
8356       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8357       call matmat2(AEA(1,1,1),auxmat1(1,1),pizda(1,1))
8358       vv(1)=pizda(1,1)-pizda(2,2)
8359       vv(2)=pizda(1,2)+pizda(2,1)
8360       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8361      & +ekont*(scalar2(AEAb2(1,1,1),Ub2der(1,k))
8362      & +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8363       call matmat2(AEAderg(1,1,1),auxmat(1,1),pizda(1,1))
8364       vv(1)=pizda(1,1)-pizda(2,2)
8365       vv(2)=pizda(1,2)+pizda(2,1)
8366       if (l.eq.j+1) then
8367         if (l.lt.nres-1) g_corr5_loc(l-1)=g_corr5_loc(l-1)
8368      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8369      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8370       else
8371         if (j.lt.nres-1) g_corr5_loc(j-1)=g_corr5_loc(j-1)
8372      &   +ekont*(scalar2(AEAb2derg(1,1,1,1),Ub2(1,k))
8373      &   +0.5d0*scalar2(vv(1),Dtobr2(1,i)))
8374       endif 
8375 C Cartesian gradient
8376       do iii=1,2
8377         do kkk=1,5
8378           do lll=1,3
8379             call matmat2(AEAderx(1,1,lll,kkk,iii,1),auxmat(1,1),
8380      &        pizda(1,1))
8381             vv(1)=pizda(1,1)-pizda(2,2)
8382             vv(2)=pizda(1,2)+pizda(2,1)
8383             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8384      &       +scalar2(AEAb2derx(1,lll,kkk,iii,1,1),Ub2(1,k))
8385      &       +0.5d0*scalar2(vv(1),Dtobr2(1,i))
8386           enddo
8387         enddo
8388       enddo
8389 c      goto 1112
8390 c1111  continue
8391 C Contribution from graph II 
8392       call transpose2(EE(1,1,itk),auxmat(1,1))
8393       call matmat2(auxmat(1,1),AEA(1,1,1),pizda(1,1))
8394       vv(1)=pizda(1,1)+pizda(2,2)
8395       vv(2)=pizda(2,1)-pizda(1,2)
8396       eello5_2=scalar2(AEAb1(1,2,1),b1(1,itk))
8397      & -0.5d0*scalar2(vv(1),Ctobr(1,k))
8398 C Explicit gradient in virtual-dihedral angles.
8399       g_corr5_loc(k-1)=g_corr5_loc(k-1)
8400      & -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,k))
8401       call matmat2(auxmat(1,1),AEAderg(1,1,1),pizda(1,1))
8402       vv(1)=pizda(1,1)+pizda(2,2)
8403       vv(2)=pizda(2,1)-pizda(1,2)
8404       if (l.eq.j+1) then
8405         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8406      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8407      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8408       else
8409         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8410      &   +ekont*(scalar2(AEAb1derg(1,2,1),b1(1,itk))
8411      &   -0.5d0*scalar2(vv(1),Ctobr(1,k)))
8412       endif
8413 C Cartesian gradient
8414       do iii=1,2
8415         do kkk=1,5
8416           do lll=1,3
8417             call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,1),
8418      &        pizda(1,1))
8419             vv(1)=pizda(1,1)+pizda(2,2)
8420             vv(2)=pizda(2,1)-pizda(1,2)
8421             derx(lll,kkk,iii)=derx(lll,kkk,iii)
8422      &       +scalar2(AEAb1derx(1,lll,kkk,iii,2,1),b1(1,itk))
8423      &       -0.5d0*scalar2(vv(1),Ctobr(1,k))
8424           enddo
8425         enddo
8426       enddo
8427 cd      goto 1112
8428 cd1111  continue
8429       if (l.eq.j+1) then
8430 cd        goto 1110
8431 C Parallel orientation
8432 C Contribution from graph III
8433         call transpose2(EUg(1,1,l),auxmat(1,1))
8434         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8435         vv(1)=pizda(1,1)-pizda(2,2)
8436         vv(2)=pizda(1,2)+pizda(2,1)
8437         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,l))
8438      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8439 C Explicit gradient in virtual-dihedral angles.
8440         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8441      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,l))
8442      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,j)))
8443         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8444         vv(1)=pizda(1,1)-pizda(2,2)
8445         vv(2)=pizda(1,2)+pizda(2,1)
8446         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8447      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,l))
8448      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8449         call transpose2(EUgder(1,1,l),auxmat1(1,1))
8450         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8451         vv(1)=pizda(1,1)-pizda(2,2)
8452         vv(2)=pizda(1,2)+pizda(2,1)
8453         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8454      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,l))
8455      &   +0.5d0*scalar2(vv(1),Dtobr2(1,j)))
8456 C Cartesian gradient
8457         do iii=1,2
8458           do kkk=1,5
8459             do lll=1,3
8460               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8461      &          pizda(1,1))
8462               vv(1)=pizda(1,1)-pizda(2,2)
8463               vv(2)=pizda(1,2)+pizda(2,1)
8464               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8465      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,l))
8466      &         +0.5d0*scalar2(vv(1),Dtobr2(1,j))
8467             enddo
8468           enddo
8469         enddo
8470 cd        goto 1112
8471 C Contribution from graph IV
8472 cd1110    continue
8473         call transpose2(EE(1,1,itl),auxmat(1,1))
8474         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8475         vv(1)=pizda(1,1)+pizda(2,2)
8476         vv(2)=pizda(2,1)-pizda(1,2)
8477         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itl))
8478      &   -0.5d0*scalar2(vv(1),Ctobr(1,l))
8479 C Explicit gradient in virtual-dihedral angles.
8480         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8481      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,l))
8482         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8483         vv(1)=pizda(1,1)+pizda(2,2)
8484         vv(2)=pizda(2,1)-pizda(1,2)
8485         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8486      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itl))
8487      &   -0.5d0*scalar2(vv(1),Ctobr(1,l)))
8488 C Cartesian gradient
8489         do iii=1,2
8490           do kkk=1,5
8491             do lll=1,3
8492               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8493      &          pizda(1,1))
8494               vv(1)=pizda(1,1)+pizda(2,2)
8495               vv(2)=pizda(2,1)-pizda(1,2)
8496               derx(lll,kkk,iii)=derx(lll,kkk,iii)
8497      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itl))
8498      &         -0.5d0*scalar2(vv(1),Ctobr(1,l))
8499             enddo
8500           enddo
8501         enddo
8502       else
8503 C Antiparallel orientation
8504 C Contribution from graph III
8505 c        goto 1110
8506         call transpose2(EUg(1,1,j),auxmat(1,1))
8507         call matmat2(AEA(1,1,2),auxmat(1,1),pizda(1,1))
8508         vv(1)=pizda(1,1)-pizda(2,2)
8509         vv(2)=pizda(1,2)+pizda(2,1)
8510         eello5_3=scalar2(AEAb2(1,1,2),Ub2(1,j))
8511      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8512 C Explicit gradient in virtual-dihedral angles.
8513         g_corr5_loc(l-1)=g_corr5_loc(l-1)
8514      &   +ekont*(scalar2(AEAb2derg(1,2,1,2),Ub2(1,j))
8515      &   +0.5d0*scalar2(vv(1),Dtobr2der(1,l)))
8516         call matmat2(AEAderg(1,1,2),auxmat(1,1),pizda(1,1))
8517         vv(1)=pizda(1,1)-pizda(2,2)
8518         vv(2)=pizda(1,2)+pizda(2,1)
8519         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8520      &   +ekont*(scalar2(AEAb2derg(1,1,1,2),Ub2(1,j))
8521      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8522         call transpose2(EUgder(1,1,j),auxmat1(1,1))
8523         call matmat2(AEA(1,1,2),auxmat1(1,1),pizda(1,1))
8524         vv(1)=pizda(1,1)-pizda(2,2)
8525         vv(2)=pizda(1,2)+pizda(2,1)
8526         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8527      &   +ekont*(scalar2(AEAb2(1,1,2),Ub2der(1,j))
8528      &   +0.5d0*scalar2(vv(1),Dtobr2(1,l)))
8529 C Cartesian gradient
8530         do iii=1,2
8531           do kkk=1,5
8532             do lll=1,3
8533               call matmat2(AEAderx(1,1,lll,kkk,iii,2),auxmat(1,1),
8534      &          pizda(1,1))
8535               vv(1)=pizda(1,1)-pizda(2,2)
8536               vv(2)=pizda(1,2)+pizda(2,1)
8537               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8538      &         +scalar2(AEAb2derx(1,lll,kkk,iii,1,2),Ub2(1,j))
8539      &         +0.5d0*scalar2(vv(1),Dtobr2(1,l))
8540             enddo
8541           enddo
8542         enddo
8543 cd        goto 1112
8544 C Contribution from graph IV
8545 1110    continue
8546         call transpose2(EE(1,1,itj),auxmat(1,1))
8547         call matmat2(auxmat(1,1),AEA(1,1,2),pizda(1,1))
8548         vv(1)=pizda(1,1)+pizda(2,2)
8549         vv(2)=pizda(2,1)-pizda(1,2)
8550         eello5_4=scalar2(AEAb1(1,2,2),b1(1,itj))
8551      &   -0.5d0*scalar2(vv(1),Ctobr(1,j))
8552 C Explicit gradient in virtual-dihedral angles.
8553         g_corr5_loc(j-1)=g_corr5_loc(j-1)
8554      &   -0.5d0*ekont*scalar2(vv(1),Ctobrder(1,j))
8555         call matmat2(auxmat(1,1),AEAderg(1,1,2),pizda(1,1))
8556         vv(1)=pizda(1,1)+pizda(2,2)
8557         vv(2)=pizda(2,1)-pizda(1,2)
8558         g_corr5_loc(k-1)=g_corr5_loc(k-1)
8559      &   +ekont*(scalar2(AEAb1derg(1,2,2),b1(1,itj))
8560      &   -0.5d0*scalar2(vv(1),Ctobr(1,j)))
8561 C Cartesian gradient
8562         do iii=1,2
8563           do kkk=1,5
8564             do lll=1,3
8565               call matmat2(auxmat(1,1),AEAderx(1,1,lll,kkk,iii,2),
8566      &          pizda(1,1))
8567               vv(1)=pizda(1,1)+pizda(2,2)
8568               vv(2)=pizda(2,1)-pizda(1,2)
8569               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)
8570      &         +scalar2(AEAb1derx(1,lll,kkk,iii,2,2),b1(1,itj))
8571      &         -0.5d0*scalar2(vv(1),Ctobr(1,j))
8572             enddo
8573           enddo
8574         enddo
8575       endif
8576 1112  continue
8577       eel5=eello5_1+eello5_2+eello5_3+eello5_4
8578 cd      if (i.eq.2 .and. j.eq.8 .and. k.eq.3 .and. l.eq.7) then
8579 cd        write (2,*) 'ijkl',i,j,k,l
8580 cd        write (2,*) 'eello5_1',eello5_1,' eello5_2',eello5_2,
8581 cd     &     ' eello5_3',eello5_3,' eello5_4',eello5_4
8582 cd      endif
8583 cd      write(iout,*) 'eello5_1',eello5_1,' eel5_1_num',16*eel5_1_num
8584 cd      write(iout,*) 'eello5_2',eello5_2,' eel5_2_num',16*eel5_2_num
8585 cd      write(iout,*) 'eello5_3',eello5_3,' eel5_3_num',16*eel5_3_num
8586 cd      write(iout,*) 'eello5_4',eello5_4,' eel5_4_num',16*eel5_4_num
8587       if (j.lt.nres-1) then
8588         j1=j+1
8589         j2=j-1
8590       else
8591         j1=j-1
8592         j2=j-2
8593       endif
8594       if (l.lt.nres-1) then
8595         l1=l+1
8596         l2=l-1
8597       else
8598         l1=l-1
8599         l2=l-2
8600       endif
8601 cd      eij=1.0d0
8602 cd      ekl=1.0d0
8603 cd      ekont=1.0d0
8604 cd      write (2,*) 'eij',eij,' ekl',ekl,' ekont',ekont
8605 C 2/11/08 AL Gradients over DC's connecting interacting sites will be
8606 C        summed up outside the subrouine as for the other subroutines 
8607 C        handling long-range interactions. The old code is commented out
8608 C        with "cgrad" to keep track of changes.
8609       do ll=1,3
8610 cgrad        ggg1(ll)=eel5*g_contij(ll,1)
8611 cgrad        ggg2(ll)=eel5*g_contij(ll,2)
8612         gradcorr5ij=eel5*g_contij(ll,1)+ekont*derx(ll,1,1)
8613         gradcorr5kl=eel5*g_contij(ll,2)+ekont*derx(ll,1,2)
8614 c        write (iout,'(a,3i3,a,5f8.3,2i3,a,5f8.3,a,f8.3)') 
8615 c     &   "ecorr5",ll,i,j," derx",derx(ll,2,1),derx(ll,3,1),derx(ll,4,1),
8616 c     &   derx(ll,5,1),k,l," derx",derx(ll,2,2),derx(ll,3,2),
8617 c     &   derx(ll,4,2),derx(ll,5,2)," ekont",ekont
8618 c        write (iout,'(a,3i3,a,3f8.3,2i3,a,3f8.3)') 
8619 c     &   "ecorr5",ll,i,j," gradcorr5",g_contij(ll,1),derx(ll,1,1),
8620 c     &   gradcorr5ij,
8621 c     &   k,l," gradcorr5",g_contij(ll,2),derx(ll,1,2),gradcorr5kl
8622 cold        ghalf=0.5d0*eel5*ekl*gacont_hbr(ll,jj,i)
8623 cgrad        ghalf=0.5d0*ggg1(ll)
8624 cd        ghalf=0.0d0
8625         gradcorr5(ll,i)=gradcorr5(ll,i)+ekont*derx(ll,2,1)
8626         gradcorr5(ll,i+1)=gradcorr5(ll,i+1)+ekont*derx(ll,3,1)
8627         gradcorr5(ll,j)=gradcorr5(ll,j)+ekont*derx(ll,4,1)
8628         gradcorr5(ll,j1)=gradcorr5(ll,j1)+ekont*derx(ll,5,1)
8629         gradcorr5_long(ll,j)=gradcorr5_long(ll,j)+gradcorr5ij
8630         gradcorr5_long(ll,i)=gradcorr5_long(ll,i)-gradcorr5ij
8631 cold        ghalf=0.5d0*eel5*eij*gacont_hbr(ll,kk,k)
8632 cgrad        ghalf=0.5d0*ggg2(ll)
8633 cd        ghalf=0.0d0
8634         gradcorr5(ll,k)=gradcorr5(ll,k)+ghalf+ekont*derx(ll,2,2)
8635         gradcorr5(ll,k+1)=gradcorr5(ll,k+1)+ekont*derx(ll,3,2)
8636         gradcorr5(ll,l)=gradcorr5(ll,l)+ghalf+ekont*derx(ll,4,2)
8637         gradcorr5(ll,l1)=gradcorr5(ll,l1)+ekont*derx(ll,5,2)
8638         gradcorr5_long(ll,l)=gradcorr5_long(ll,l)+gradcorr5kl
8639         gradcorr5_long(ll,k)=gradcorr5_long(ll,k)-gradcorr5kl
8640       enddo
8641 cd      goto 1112
8642 cgrad      do m=i+1,j-1
8643 cgrad        do ll=1,3
8644 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*ekl*gacont_hbr(ll,jj,i)
8645 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg1(ll)
8646 cgrad        enddo
8647 cgrad      enddo
8648 cgrad      do m=k+1,l-1
8649 cgrad        do ll=1,3
8650 cold          gradcorr5(ll,m)=gradcorr5(ll,m)+eel5*eij*gacont_hbr(ll,kk,k)
8651 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ggg2(ll)
8652 cgrad        enddo
8653 cgrad      enddo
8654 c1112  continue
8655 cgrad      do m=i+2,j2
8656 cgrad        do ll=1,3
8657 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,1)
8658 cgrad        enddo
8659 cgrad      enddo
8660 cgrad      do m=k+2,l2
8661 cgrad        do ll=1,3
8662 cgrad          gradcorr5(ll,m)=gradcorr5(ll,m)+ekont*derx(ll,1,2)
8663 cgrad        enddo
8664 cgrad      enddo 
8665 cd      do iii=1,nres-3
8666 cd        write (2,*) iii,g_corr5_loc(iii)
8667 cd      enddo
8668       eello5=ekont*eel5
8669 cd      write (2,*) 'ekont',ekont
8670 cd      write (iout,*) 'eello5',ekont*eel5
8671       return
8672       end
8673 c--------------------------------------------------------------------------
8674       double precision function eello6(i,j,k,l,jj,kk)
8675       implicit real*8 (a-h,o-z)
8676       include 'DIMENSIONS'
8677       include 'COMMON.IOUNITS'
8678       include 'COMMON.CHAIN'
8679       include 'COMMON.DERIV'
8680       include 'COMMON.INTERACT'
8681       include 'COMMON.CONTACTS'
8682       include 'COMMON.TORSION'
8683       include 'COMMON.VAR'
8684       include 'COMMON.GEO'
8685       include 'COMMON.FFIELD'
8686       double precision ggg1(3),ggg2(3)
8687 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
8688 cd        eello6=0.0d0
8689 cd        return
8690 cd      endif
8691 cd      write (iout,*)
8692 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
8693 cd     &   ' and',k,l
8694       eello6_1=0.0d0
8695       eello6_2=0.0d0
8696       eello6_3=0.0d0
8697       eello6_4=0.0d0
8698       eello6_5=0.0d0
8699       eello6_6=0.0d0
8700 cd      call checkint6(i,j,k,l,jj,kk,eel6_1_num,eel6_2_num,
8701 cd     &   eel6_3_num,eel6_4_num,eel6_5_num,eel6_6_num)
8702       do iii=1,2
8703         do kkk=1,5
8704           do lll=1,3
8705             derx(lll,kkk,iii)=0.0d0
8706           enddo
8707         enddo
8708       enddo
8709 cd      eij=facont_hb(jj,i)
8710 cd      ekl=facont_hb(kk,k)
8711 cd      ekont=eij*ekl
8712 cd      eij=1.0d0
8713 cd      ekl=1.0d0
8714 cd      ekont=1.0d0
8715       if (l.eq.j+1) then
8716         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8717         eello6_2=eello6_graph1(j,i,l,k,2,.false.)
8718         eello6_3=eello6_graph2(i,j,k,l,jj,kk,.false.)
8719         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8720         eello6_5=eello6_graph4(j,i,l,k,jj,kk,2,.false.)
8721         eello6_6=eello6_graph3(i,j,k,l,jj,kk,.false.)
8722       else
8723         eello6_1=eello6_graph1(i,j,k,l,1,.false.)
8724         eello6_2=eello6_graph1(l,k,j,i,2,.true.)
8725         eello6_3=eello6_graph2(i,l,k,j,jj,kk,.true.)
8726         eello6_4=eello6_graph4(i,j,k,l,jj,kk,1,.false.)
8727         if (wturn6.eq.0.0d0 .or. j.ne.i+4) then
8728           eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
8729         else
8730           eello6_5=0.0d0
8731         endif
8732         eello6_6=eello6_graph3(i,l,k,j,jj,kk,.true.)
8733       endif
8734 C If turn contributions are considered, they will be handled separately.
8735       eel6=eello6_1+eello6_2+eello6_3+eello6_4+eello6_5+eello6_6
8736 cd      write(iout,*) 'eello6_1',eello6_1!,' eel6_1_num',16*eel6_1_num
8737 cd      write(iout,*) 'eello6_2',eello6_2!,' eel6_2_num',16*eel6_2_num
8738 cd      write(iout,*) 'eello6_3',eello6_3!,' eel6_3_num',16*eel6_3_num
8739 cd      write(iout,*) 'eello6_4',eello6_4!,' eel6_4_num',16*eel6_4_num
8740 cd      write(iout,*) 'eello6_5',eello6_5!,' eel6_5_num',16*eel6_5_num
8741 cd      write(iout,*) 'eello6_6',eello6_6!,' eel6_6_num',16*eel6_6_num
8742 cd      goto 1112
8743       if (j.lt.nres-1) then
8744         j1=j+1
8745         j2=j-1
8746       else
8747         j1=j-1
8748         j2=j-2
8749       endif
8750       if (l.lt.nres-1) then
8751         l1=l+1
8752         l2=l-1
8753       else
8754         l1=l-1
8755         l2=l-2
8756       endif
8757       do ll=1,3
8758 cgrad        ggg1(ll)=eel6*g_contij(ll,1)
8759 cgrad        ggg2(ll)=eel6*g_contij(ll,2)
8760 cold        ghalf=0.5d0*eel6*ekl*gacont_hbr(ll,jj,i)
8761 cgrad        ghalf=0.5d0*ggg1(ll)
8762 cd        ghalf=0.0d0
8763         gradcorr6ij=eel6*g_contij(ll,1)+ekont*derx(ll,1,1)
8764         gradcorr6kl=eel6*g_contij(ll,2)+ekont*derx(ll,1,2)
8765         gradcorr6(ll,i)=gradcorr6(ll,i)+ekont*derx(ll,2,1)
8766         gradcorr6(ll,i+1)=gradcorr6(ll,i+1)+ekont*derx(ll,3,1)
8767         gradcorr6(ll,j)=gradcorr6(ll,j)+ekont*derx(ll,4,1)
8768         gradcorr6(ll,j1)=gradcorr6(ll,j1)+ekont*derx(ll,5,1)
8769         gradcorr6_long(ll,j)=gradcorr6_long(ll,j)+gradcorr6ij
8770         gradcorr6_long(ll,i)=gradcorr6_long(ll,i)-gradcorr6ij
8771 cgrad        ghalf=0.5d0*ggg2(ll)
8772 cold        ghalf=0.5d0*eel6*eij*gacont_hbr(ll,kk,k)
8773 cd        ghalf=0.0d0
8774         gradcorr6(ll,k)=gradcorr6(ll,k)+ekont*derx(ll,2,2)
8775         gradcorr6(ll,k+1)=gradcorr6(ll,k+1)+ekont*derx(ll,3,2)
8776         gradcorr6(ll,l)=gradcorr6(ll,l)+ekont*derx(ll,4,2)
8777         gradcorr6(ll,l1)=gradcorr6(ll,l1)+ekont*derx(ll,5,2)
8778         gradcorr6_long(ll,l)=gradcorr6_long(ll,l)+gradcorr6kl
8779         gradcorr6_long(ll,k)=gradcorr6_long(ll,k)-gradcorr6kl
8780       enddo
8781 cd      goto 1112
8782 cgrad      do m=i+1,j-1
8783 cgrad        do ll=1,3
8784 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*ekl*gacont_hbr(ll,jj,i)
8785 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg1(ll)
8786 cgrad        enddo
8787 cgrad      enddo
8788 cgrad      do m=k+1,l-1
8789 cgrad        do ll=1,3
8790 cold          gradcorr6(ll,m)=gradcorr6(ll,m)+eel6*eij*gacont_hbr(ll,kk,k)
8791 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ggg2(ll)
8792 cgrad        enddo
8793 cgrad      enddo
8794 cgrad1112  continue
8795 cgrad      do m=i+2,j2
8796 cgrad        do ll=1,3
8797 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,1)
8798 cgrad        enddo
8799 cgrad      enddo
8800 cgrad      do m=k+2,l2
8801 cgrad        do ll=1,3
8802 cgrad          gradcorr6(ll,m)=gradcorr6(ll,m)+ekont*derx(ll,1,2)
8803 cgrad        enddo
8804 cgrad      enddo 
8805 cd      do iii=1,nres-3
8806 cd        write (2,*) iii,g_corr6_loc(iii)
8807 cd      enddo
8808       eello6=ekont*eel6
8809 cd      write (2,*) 'ekont',ekont
8810 cd      write (iout,*) 'eello6',ekont*eel6
8811       return
8812       end
8813 c--------------------------------------------------------------------------
8814       double precision function eello6_graph1(i,j,k,l,imat,swap)
8815       implicit real*8 (a-h,o-z)
8816       include 'DIMENSIONS'
8817       include 'COMMON.IOUNITS'
8818       include 'COMMON.CHAIN'
8819       include 'COMMON.DERIV'
8820       include 'COMMON.INTERACT'
8821       include 'COMMON.CONTACTS'
8822       include 'COMMON.TORSION'
8823       include 'COMMON.VAR'
8824       include 'COMMON.GEO'
8825       double precision vv(2),vv1(2),pizda(2,2),auxmat(2,2),pizda1(2,2)
8826       logical swap
8827       logical lprn
8828       common /kutas/ lprn
8829 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8830 C                                              
8831 C      Parallel       Antiparallel
8832 C                                             
8833 C          o             o         
8834 C         /l\           /j\
8835 C        /   \         /   \
8836 C       /| o |         | o |\
8837 C     \ j|/k\|  /   \  |/k\|l /   
8838 C      \ /   \ /     \ /   \ /    
8839 C       o     o       o     o                
8840 C       i             i                     
8841 C
8842 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8843       itk=itortyp(itype(k))
8844       s1= scalar2(AEAb1(1,2,imat),CUgb2(1,i))
8845       s2=-scalar2(AEAb2(1,1,imat),Ug2Db1t(1,k))
8846       s3= scalar2(AEAb2(1,1,imat),CUgb2(1,k))
8847       call transpose2(EUgC(1,1,k),auxmat(1,1))
8848       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8849       vv1(1)=pizda1(1,1)-pizda1(2,2)
8850       vv1(2)=pizda1(1,2)+pizda1(2,1)
8851       s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8852       vv(1)=AEAb1(1,2,imat)*b1(1,itk)-AEAb1(2,2,imat)*b1(2,itk)
8853       vv(2)=AEAb1(1,2,imat)*b1(2,itk)+AEAb1(2,2,imat)*b1(1,itk)
8854       s5=scalar2(vv(1),Dtobr2(1,i))
8855 cd      write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4', s4,' s5',s5
8856       eello6_graph1=-0.5d0*(s1+s2+s3+s4+s5)
8857       if (i.gt.1) g_corr6_loc(i-1)=g_corr6_loc(i-1)
8858      & -0.5d0*ekont*(scalar2(AEAb1(1,2,imat),CUgb2der(1,i))
8859      & -scalar2(AEAb2derg(1,2,1,imat),Ug2Db1t(1,k))
8860      & +scalar2(AEAb2derg(1,2,1,imat),CUgb2(1,k))
8861      & +0.5d0*scalar2(vv1(1),Dtobr2der(1,i))
8862      & +scalar2(vv(1),Dtobr2der(1,i)))
8863       call matmat2(AEAderg(1,1,imat),auxmat(1,1),pizda1(1,1))
8864       vv1(1)=pizda1(1,1)-pizda1(2,2)
8865       vv1(2)=pizda1(1,2)+pizda1(2,1)
8866       vv(1)=AEAb1derg(1,2,imat)*b1(1,itk)-AEAb1derg(2,2,imat)*b1(2,itk)
8867       vv(2)=AEAb1derg(1,2,imat)*b1(2,itk)+AEAb1derg(2,2,imat)*b1(1,itk)
8868       if (l.eq.j+1) then
8869         g_corr6_loc(l-1)=g_corr6_loc(l-1)
8870      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8871      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8872      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8873      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8874       else
8875         g_corr6_loc(j-1)=g_corr6_loc(j-1)
8876      & +ekont*(-0.5d0*(scalar2(AEAb1derg(1,2,imat),CUgb2(1,i))
8877      & -scalar2(AEAb2derg(1,1,1,imat),Ug2Db1t(1,k))
8878      & +scalar2(AEAb2derg(1,1,1,imat),CUgb2(1,k))
8879      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))+scalar2(vv(1),Dtobr2(1,i))))
8880       endif
8881       call transpose2(EUgCder(1,1,k),auxmat(1,1))
8882       call matmat2(AEA(1,1,imat),auxmat(1,1),pizda1(1,1))
8883       vv1(1)=pizda1(1,1)-pizda1(2,2)
8884       vv1(2)=pizda1(1,2)+pizda1(2,1)
8885       if (k.gt.1) g_corr6_loc(k-1)=g_corr6_loc(k-1)
8886      & +ekont*(-0.5d0*(-scalar2(AEAb2(1,1,imat),Ug2Db1tder(1,k))
8887      & +scalar2(AEAb2(1,1,imat),CUgb2der(1,k))
8888      & +0.5d0*scalar2(vv1(1),Dtobr2(1,i))))
8889       do iii=1,2
8890         if (swap) then
8891           ind=3-iii
8892         else
8893           ind=iii
8894         endif
8895         do kkk=1,5
8896           do lll=1,3
8897             s1= scalar2(AEAb1derx(1,lll,kkk,iii,2,imat),CUgb2(1,i))
8898             s2=-scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),Ug2Db1t(1,k))
8899             s3= scalar2(AEAb2derx(1,lll,kkk,iii,1,imat),CUgb2(1,k))
8900             call transpose2(EUgC(1,1,k),auxmat(1,1))
8901             call matmat2(AEAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
8902      &        pizda1(1,1))
8903             vv1(1)=pizda1(1,1)-pizda1(2,2)
8904             vv1(2)=pizda1(1,2)+pizda1(2,1)
8905             s4=0.5d0*scalar2(vv1(1),Dtobr2(1,i))
8906             vv(1)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(1,itk)
8907      &       -AEAb1derx(2,lll,kkk,iii,2,imat)*b1(2,itk)
8908             vv(2)=AEAb1derx(1,lll,kkk,iii,2,imat)*b1(2,itk)
8909      &       +AEAb1derx(2,lll,kkk,iii,2,imat)*b1(1,itk)
8910             s5=scalar2(vv(1),Dtobr2(1,i))
8911             derx(lll,kkk,ind)=derx(lll,kkk,ind)-0.5d0*(s1+s2+s3+s4+s5)
8912           enddo
8913         enddo
8914       enddo
8915       return
8916       end
8917 c----------------------------------------------------------------------------
8918       double precision function eello6_graph2(i,j,k,l,jj,kk,swap)
8919       implicit real*8 (a-h,o-z)
8920       include 'DIMENSIONS'
8921       include 'COMMON.IOUNITS'
8922       include 'COMMON.CHAIN'
8923       include 'COMMON.DERIV'
8924       include 'COMMON.INTERACT'
8925       include 'COMMON.CONTACTS'
8926       include 'COMMON.TORSION'
8927       include 'COMMON.VAR'
8928       include 'COMMON.GEO'
8929       logical swap
8930       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
8931      & auxvec1(2),auxvec2(2),auxmat1(2,2)
8932       logical lprn
8933       common /kutas/ lprn
8934 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8935 C                                                                              C
8936 C      Parallel       Antiparallel                                             C
8937 C                                                                              C
8938 C          o             o                                                     C
8939 C     \   /l\           /j\   /                                                C
8940 C      \ /   \         /   \ /                                                 C
8941 C       o| o |         | o |o                                                  C                
8942 C     \ j|/k\|      \  |/k\|l                                                  C
8943 C      \ /   \       \ /   \                                                   C
8944 C       o             o                                                        C
8945 C       i             i                                                        C 
8946 C                                                                              C           
8947 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8948 cd      write (2,*) 'eello6_graph2: i,',i,' j',j,' k',k,' l',l
8949 C AL 7/4/01 s1 would occur in the sixth-order moment, 
8950 C           but not in a cluster cumulant
8951 #ifdef MOMENT
8952       s1=dip(1,jj,i)*dip(1,kk,k)
8953 #endif
8954       call matvec2(ADtEA1(1,1,1),Ub2(1,k),auxvec(1))
8955       s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
8956       call matvec2(ADtEA(1,1,2),Ub2(1,l),auxvec1(1))
8957       s3=-0.5d0*scalar2(Ub2(1,j),auxvec1(1))
8958       call transpose2(EUg(1,1,k),auxmat(1,1))
8959       call matmat2(ADtEA1(1,1,1),auxmat(1,1),pizda(1,1))
8960       vv(1)=pizda(1,1)-pizda(2,2)
8961       vv(2)=pizda(1,2)+pizda(2,1)
8962       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8963 cd      write (2,*) 'eello6_graph2:','s1',s1,' s2',s2,' s3',s3,' s4',s4
8964 #ifdef MOMENT
8965       eello6_graph2=-(s1+s2+s3+s4)
8966 #else
8967       eello6_graph2=-(s2+s3+s4)
8968 #endif
8969 c      eello6_graph2=-s3
8970 C Derivatives in gamma(i-1)
8971       if (i.gt.1) then
8972 #ifdef MOMENT
8973         s1=dipderg(1,jj,i)*dip(1,kk,k)
8974 #endif
8975         s2=-0.5d0*scalar2(Ub2der(1,i),auxvec(1))
8976         call matvec2(ADtEAderg(1,1,1,2),Ub2(1,l),auxvec2(1))
8977         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8978         s4=-0.25d0*scalar2(vv(1),Dtobr2der(1,i))
8979 #ifdef MOMENT
8980         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
8981 #else
8982         g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
8983 #endif
8984 c        g_corr6_loc(i-1)=g_corr6_loc(i-1)-s3
8985       endif
8986 C Derivatives in gamma(k-1)
8987 #ifdef MOMENT
8988       s1=dip(1,jj,i)*dipderg(1,kk,k)
8989 #endif
8990       call matvec2(ADtEA1(1,1,1),Ub2der(1,k),auxvec2(1))
8991       s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
8992       call matvec2(ADtEAderg(1,1,2,2),Ub2(1,l),auxvec2(1))
8993       s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
8994       call transpose2(EUgder(1,1,k),auxmat1(1,1))
8995       call matmat2(ADtEA1(1,1,1),auxmat1(1,1),pizda(1,1))
8996       vv(1)=pizda(1,1)-pizda(2,2)
8997       vv(2)=pizda(1,2)+pizda(2,1)
8998       s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
8999 #ifdef MOMENT
9000       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
9001 #else
9002       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
9003 #endif
9004 c      g_corr6_loc(k-1)=g_corr6_loc(k-1)-s3
9005 C Derivatives in gamma(j-1) or gamma(l-1)
9006       if (j.gt.1) then
9007 #ifdef MOMENT
9008         s1=dipderg(3,jj,i)*dip(1,kk,k) 
9009 #endif
9010         call matvec2(ADtEA1derg(1,1,1,1),Ub2(1,k),auxvec2(1))
9011         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
9012         s3=-0.5d0*scalar2(Ub2der(1,j),auxvec1(1))
9013         call matmat2(ADtEA1derg(1,1,1,1),auxmat(1,1),pizda(1,1))
9014         vv(1)=pizda(1,1)-pizda(2,2)
9015         vv(2)=pizda(1,2)+pizda(2,1)
9016         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
9017 #ifdef MOMENT
9018         if (swap) then
9019           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
9020         else
9021           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
9022         endif
9023 #endif
9024         g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s3+s4)
9025 c        g_corr6_loc(j-1)=g_corr6_loc(j-1)-s3
9026       endif
9027 C Derivatives in gamma(l-1) or gamma(j-1)
9028       if (l.gt.1) then 
9029 #ifdef MOMENT
9030         s1=dip(1,jj,i)*dipderg(3,kk,k)
9031 #endif
9032         call matvec2(ADtEA1derg(1,1,2,1),Ub2(1,k),auxvec2(1))
9033         s2=-0.5d0*scalar2(Ub2(1,i),auxvec2(1))
9034         call matvec2(ADtEA(1,1,2),Ub2der(1,l),auxvec2(1))
9035         s3=-0.5d0*scalar2(Ub2(1,j),auxvec2(1))
9036         call matmat2(ADtEA1derg(1,1,2,1),auxmat(1,1),pizda(1,1))
9037         vv(1)=pizda(1,1)-pizda(2,2)
9038         vv(2)=pizda(1,2)+pizda(2,1)
9039         s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
9040 #ifdef MOMENT
9041         if (swap) then
9042           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*s1
9043         else
9044           g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*s1
9045         endif
9046 #endif
9047         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s3+s4)
9048 c        g_corr6_loc(l-1)=g_corr6_loc(l-1)-s3
9049       endif
9050 C Cartesian derivatives.
9051       if (lprn) then
9052         write (2,*) 'In eello6_graph2'
9053         do iii=1,2
9054           write (2,*) 'iii=',iii
9055           do kkk=1,5
9056             write (2,*) 'kkk=',kkk
9057             do jjj=1,2
9058               write (2,'(3(2f10.5),5x)') 
9059      &        ((ADtEA1derx(jjj,mmm,lll,kkk,iii,1),mmm=1,2),lll=1,3)
9060             enddo
9061           enddo
9062         enddo
9063       endif
9064       do iii=1,2
9065         do kkk=1,5
9066           do lll=1,3
9067 #ifdef MOMENT
9068             if (iii.eq.1) then
9069               s1=dipderx(lll,kkk,1,jj,i)*dip(1,kk,k)
9070             else
9071               s1=dip(1,jj,i)*dipderx(lll,kkk,1,kk,k)
9072             endif
9073 #endif
9074             call matvec2(ADtEA1derx(1,1,lll,kkk,iii,1),Ub2(1,k),
9075      &        auxvec(1))
9076             s2=-0.5d0*scalar2(Ub2(1,i),auxvec(1))
9077             call matvec2(ADtEAderx(1,1,lll,kkk,iii,2),Ub2(1,l),
9078      &        auxvec(1))
9079             s3=-0.5d0*scalar2(Ub2(1,j),auxvec(1))
9080             call transpose2(EUg(1,1,k),auxmat(1,1))
9081             call matmat2(ADtEA1derx(1,1,lll,kkk,iii,1),auxmat(1,1),
9082      &        pizda(1,1))
9083             vv(1)=pizda(1,1)-pizda(2,2)
9084             vv(2)=pizda(1,2)+pizda(2,1)
9085             s4=-0.25d0*scalar2(vv(1),Dtobr2(1,i))
9086 cd            write (2,*) 's1',s1,' s2',s2,' s3',s3,' s4',s4
9087 #ifdef MOMENT
9088             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9089 #else
9090             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9091 #endif
9092             if (swap) then
9093               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9094             else
9095               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9096             endif
9097           enddo
9098         enddo
9099       enddo
9100       return
9101       end
9102 c----------------------------------------------------------------------------
9103       double precision function eello6_graph3(i,j,k,l,jj,kk,swap)
9104       implicit real*8 (a-h,o-z)
9105       include 'DIMENSIONS'
9106       include 'COMMON.IOUNITS'
9107       include 'COMMON.CHAIN'
9108       include 'COMMON.DERIV'
9109       include 'COMMON.INTERACT'
9110       include 'COMMON.CONTACTS'
9111       include 'COMMON.TORSION'
9112       include 'COMMON.VAR'
9113       include 'COMMON.GEO'
9114       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2)
9115       logical swap
9116 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9117 C                                                                              C 
9118 C      Parallel       Antiparallel                                             C
9119 C                                                                              C
9120 C          o             o                                                     C 
9121 C         /l\   /   \   /j\                                                    C 
9122 C        /   \ /     \ /   \                                                   C
9123 C       /| o |o       o| o |\                                                  C
9124 C       j|/k\|  /      |/k\|l /                                                C
9125 C        /   \ /       /   \ /                                                 C
9126 C       /     o       /     o                                                  C
9127 C       i             i                                                        C
9128 C                                                                              C
9129 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9130 C
9131 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9132 C           energy moment and not to the cluster cumulant.
9133       iti=itortyp(itype(i))
9134       if (j.lt.nres-1) then
9135         itj1=itortyp(itype(j+1))
9136       else
9137         itj1=ntortyp+1
9138       endif
9139       itk=itortyp(itype(k))
9140       itk1=itortyp(itype(k+1))
9141       if (l.lt.nres-1) then
9142         itl1=itortyp(itype(l+1))
9143       else
9144         itl1=ntortyp+1
9145       endif
9146 #ifdef MOMENT
9147       s1=dip(4,jj,i)*dip(4,kk,k)
9148 #endif
9149       call matvec2(AECA(1,1,1),b1(1,itk1),auxvec(1))
9150       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9151       call matvec2(AECA(1,1,2),b1(1,itl1),auxvec(1))
9152       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9153       call transpose2(EE(1,1,itk),auxmat(1,1))
9154       call matmat2(auxmat(1,1),AECA(1,1,1),pizda(1,1))
9155       vv(1)=pizda(1,1)+pizda(2,2)
9156       vv(2)=pizda(2,1)-pizda(1,2)
9157       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9158 cd      write (2,*) 'eello6_graph3:','s1',s1,' s2',s2,' s3',s3,' s4',s4,
9159 cd     & "sum",-(s2+s3+s4)
9160 #ifdef MOMENT
9161       eello6_graph3=-(s1+s2+s3+s4)
9162 #else
9163       eello6_graph3=-(s2+s3+s4)
9164 #endif
9165 c      eello6_graph3=-s4
9166 C Derivatives in gamma(k-1)
9167       call matvec2(AECAderg(1,1,2),b1(1,itl1),auxvec(1))
9168       s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9169       s4=-0.25d0*scalar2(vv(1),Ctobrder(1,k))
9170       g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s3+s4)
9171 C Derivatives in gamma(l-1)
9172       call matvec2(AECAderg(1,1,1),b1(1,itk1),auxvec(1))
9173       s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9174       call matmat2(auxmat(1,1),AECAderg(1,1,1),pizda(1,1))
9175       vv(1)=pizda(1,1)+pizda(2,2)
9176       vv(2)=pizda(2,1)-pizda(1,2)
9177       s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9178       g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4) 
9179 C Cartesian derivatives.
9180       do iii=1,2
9181         do kkk=1,5
9182           do lll=1,3
9183 #ifdef MOMENT
9184             if (iii.eq.1) then
9185               s1=dipderx(lll,kkk,4,jj,i)*dip(4,kk,k)
9186             else
9187               s1=dip(4,jj,i)*dipderx(lll,kkk,4,kk,k)
9188             endif
9189 #endif
9190             call matvec2(AECAderx(1,1,lll,kkk,iii,1),b1(1,itk1),
9191      &        auxvec(1))
9192             s2=0.5d0*scalar2(b1(1,itk),auxvec(1))
9193             call matvec2(AECAderx(1,1,lll,kkk,iii,2),b1(1,itl1),
9194      &        auxvec(1))
9195             s3=0.5d0*scalar2(b1(1,itj1),auxvec(1))
9196             call matmat2(auxmat(1,1),AECAderx(1,1,lll,kkk,iii,1),
9197      &        pizda(1,1))
9198             vv(1)=pizda(1,1)+pizda(2,2)
9199             vv(2)=pizda(2,1)-pizda(1,2)
9200             s4=-0.25d0*scalar2(vv(1),Ctobr(1,k))
9201 #ifdef MOMENT
9202             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9203 #else
9204             derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9205 #endif
9206             if (swap) then
9207               derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9208             else
9209               derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9210             endif
9211 c            derx(lll,kkk,iii)=derx(lll,kkk,iii)-s4
9212           enddo
9213         enddo
9214       enddo
9215       return
9216       end
9217 c----------------------------------------------------------------------------
9218       double precision function eello6_graph4(i,j,k,l,jj,kk,imat,swap)
9219       implicit real*8 (a-h,o-z)
9220       include 'DIMENSIONS'
9221       include 'COMMON.IOUNITS'
9222       include 'COMMON.CHAIN'
9223       include 'COMMON.DERIV'
9224       include 'COMMON.INTERACT'
9225       include 'COMMON.CONTACTS'
9226       include 'COMMON.TORSION'
9227       include 'COMMON.VAR'
9228       include 'COMMON.GEO'
9229       include 'COMMON.FFIELD'
9230       double precision vv(2),pizda(2,2),auxmat(2,2),auxvec(2),
9231      & auxvec1(2),auxmat1(2,2)
9232       logical swap
9233 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9234 C                                                                              C                       
9235 C      Parallel       Antiparallel                                             C
9236 C                                                                              C
9237 C          o             o                                                     C
9238 C         /l\   /   \   /j\                                                    C
9239 C        /   \ /     \ /   \                                                   C
9240 C       /| o |o       o| o |\                                                  C
9241 C     \ j|/k\|      \  |/k\|l                                                  C
9242 C      \ /   \       \ /   \                                                   C 
9243 C       o     \       o     \                                                  C
9244 C       i             i                                                        C
9245 C                                                                              C 
9246 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9247 C
9248 C 4/7/01 AL Component s1 was removed, because it pertains to the respective 
9249 C           energy moment and not to the cluster cumulant.
9250 cd      write (2,*) 'eello_graph4: wturn6',wturn6
9251       iti=itortyp(itype(i))
9252       itj=itortyp(itype(j))
9253       if (j.lt.nres-1) then
9254         itj1=itortyp(itype(j+1))
9255       else
9256         itj1=ntortyp+1
9257       endif
9258       itk=itortyp(itype(k))
9259       if (k.lt.nres-1) then
9260         itk1=itortyp(itype(k+1))
9261       else
9262         itk1=ntortyp+1
9263       endif
9264       itl=itortyp(itype(l))
9265       if (l.lt.nres-1) then
9266         itl1=itortyp(itype(l+1))
9267       else
9268         itl1=ntortyp+1
9269       endif
9270 cd      write (2,*) 'eello6_graph4:','i',i,' j',j,' k',k,' l',l
9271 cd      write (2,*) 'iti',iti,' itj',itj,' itj1',itj1,' itk',itk,
9272 cd     & ' itl',itl,' itl1',itl1
9273 #ifdef MOMENT
9274       if (imat.eq.1) then
9275         s1=dip(3,jj,i)*dip(3,kk,k)
9276       else
9277         s1=dip(2,jj,j)*dip(2,kk,l)
9278       endif
9279 #endif
9280       call matvec2(AECA(1,1,imat),Ub2(1,k),auxvec(1))
9281       s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9282       if (j.eq.l+1) then
9283         call matvec2(ADtEA1(1,1,3-imat),b1(1,itj1),auxvec1(1))
9284         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9285       else
9286         call matvec2(ADtEA1(1,1,3-imat),b1(1,itl1),auxvec1(1))
9287         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9288       endif
9289       call transpose2(EUg(1,1,k),auxmat(1,1))
9290       call matmat2(AECA(1,1,imat),auxmat(1,1),pizda(1,1))
9291       vv(1)=pizda(1,1)-pizda(2,2)
9292       vv(2)=pizda(2,1)+pizda(1,2)
9293       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9294 cd      write (2,*) 'eello6_graph4:','s1',s1,' s2',s2,' s3',s3,' s4',s4
9295 #ifdef MOMENT
9296       eello6_graph4=-(s1+s2+s3+s4)
9297 #else
9298       eello6_graph4=-(s2+s3+s4)
9299 #endif
9300 C Derivatives in gamma(i-1)
9301       if (i.gt.1) then
9302 #ifdef MOMENT
9303         if (imat.eq.1) then
9304           s1=dipderg(2,jj,i)*dip(3,kk,k)
9305         else
9306           s1=dipderg(4,jj,j)*dip(2,kk,l)
9307         endif
9308 #endif
9309         s2=0.5d0*scalar2(Ub2der(1,i),auxvec(1))
9310         if (j.eq.l+1) then
9311           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itj1),auxvec1(1))
9312           s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9313         else
9314           call matvec2(ADtEA1derg(1,1,1,3-imat),b1(1,itl1),auxvec1(1))
9315           s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9316         endif
9317         s4=0.25d0*scalar2(vv(1),Dtobr2der(1,i))
9318         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9319 cd          write (2,*) 'turn6 derivatives'
9320 #ifdef MOMENT
9321           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s1+s2+s3+s4)
9322 #else
9323           gel_loc_turn6(i-1)=gel_loc_turn6(i-1)-ekont*(s2+s3+s4)
9324 #endif
9325         else
9326 #ifdef MOMENT
9327           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s1+s2+s3+s4)
9328 #else
9329           g_corr6_loc(i-1)=g_corr6_loc(i-1)-ekont*(s2+s3+s4)
9330 #endif
9331         endif
9332       endif
9333 C Derivatives in gamma(k-1)
9334 #ifdef MOMENT
9335       if (imat.eq.1) then
9336         s1=dip(3,jj,i)*dipderg(2,kk,k)
9337       else
9338         s1=dip(2,jj,j)*dipderg(4,kk,l)
9339       endif
9340 #endif
9341       call matvec2(AECA(1,1,imat),Ub2der(1,k),auxvec1(1))
9342       s2=0.5d0*scalar2(Ub2(1,i),auxvec1(1))
9343       if (j.eq.l+1) then
9344         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itj1),auxvec1(1))
9345         s3=-0.5d0*scalar2(b1(1,itj),auxvec1(1))
9346       else
9347         call matvec2(ADtEA1derg(1,1,2,3-imat),b1(1,itl1),auxvec1(1))
9348         s3=-0.5d0*scalar2(b1(1,itl),auxvec1(1))
9349       endif
9350       call transpose2(EUgder(1,1,k),auxmat1(1,1))
9351       call matmat2(AECA(1,1,imat),auxmat1(1,1),pizda(1,1))
9352       vv(1)=pizda(1,1)-pizda(2,2)
9353       vv(2)=pizda(2,1)+pizda(1,2)
9354       s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9355       if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9356 #ifdef MOMENT
9357         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s1+s2+s3+s4)
9358 #else
9359         gel_loc_turn6(k-1)=gel_loc_turn6(k-1)-ekont*(s2+s3+s4)
9360 #endif
9361       else
9362 #ifdef MOMENT
9363         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s1+s2+s3+s4)
9364 #else
9365         g_corr6_loc(k-1)=g_corr6_loc(k-1)-ekont*(s2+s3+s4)
9366 #endif
9367       endif
9368 C Derivatives in gamma(j-1) or gamma(l-1)
9369       if (l.eq.j+1 .and. l.gt.1) then
9370         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9371         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9372         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9373         vv(1)=pizda(1,1)-pizda(2,2)
9374         vv(2)=pizda(2,1)+pizda(1,2)
9375         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9376         g_corr6_loc(l-1)=g_corr6_loc(l-1)-ekont*(s2+s4)
9377       else if (j.gt.1) then
9378         call matvec2(AECAderg(1,1,imat),Ub2(1,k),auxvec(1))
9379         s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9380         call matmat2(AECAderg(1,1,imat),auxmat(1,1),pizda(1,1))
9381         vv(1)=pizda(1,1)-pizda(2,2)
9382         vv(2)=pizda(2,1)+pizda(1,2)
9383         s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9384         if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9385           gel_loc_turn6(j-1)=gel_loc_turn6(j-1)-ekont*(s2+s4)
9386         else
9387           g_corr6_loc(j-1)=g_corr6_loc(j-1)-ekont*(s2+s4)
9388         endif
9389       endif
9390 C Cartesian derivatives.
9391       do iii=1,2
9392         do kkk=1,5
9393           do lll=1,3
9394 #ifdef MOMENT
9395             if (iii.eq.1) then
9396               if (imat.eq.1) then
9397                 s1=dipderx(lll,kkk,3,jj,i)*dip(3,kk,k)
9398               else
9399                 s1=dipderx(lll,kkk,2,jj,j)*dip(2,kk,l)
9400               endif
9401             else
9402               if (imat.eq.1) then
9403                 s1=dip(3,jj,i)*dipderx(lll,kkk,3,kk,k)
9404               else
9405                 s1=dip(2,jj,j)*dipderx(lll,kkk,2,kk,l)
9406               endif
9407             endif
9408 #endif
9409             call matvec2(AECAderx(1,1,lll,kkk,iii,imat),Ub2(1,k),
9410      &        auxvec(1))
9411             s2=0.5d0*scalar2(Ub2(1,i),auxvec(1))
9412             if (j.eq.l+1) then
9413               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9414      &          b1(1,itj1),auxvec(1))
9415               s3=-0.5d0*scalar2(b1(1,itj),auxvec(1))
9416             else
9417               call matvec2(ADtEA1derx(1,1,lll,kkk,iii,3-imat),
9418      &          b1(1,itl1),auxvec(1))
9419               s3=-0.5d0*scalar2(b1(1,itl),auxvec(1))
9420             endif
9421             call matmat2(AECAderx(1,1,lll,kkk,iii,imat),auxmat(1,1),
9422      &        pizda(1,1))
9423             vv(1)=pizda(1,1)-pizda(2,2)
9424             vv(2)=pizda(2,1)+pizda(1,2)
9425             s4=0.25d0*scalar2(vv(1),Dtobr2(1,i))
9426             if (swap) then
9427               if (wturn6.gt.0.0d0 .and. k.eq.l+4 .and. i.eq.j+2) then
9428 #ifdef MOMENT
9429                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9430      &             -(s1+s2+s4)
9431 #else
9432                 derx_turn(lll,kkk,3-iii)=derx_turn(lll,kkk,3-iii)
9433      &             -(s2+s4)
9434 #endif
9435                 derx_turn(lll,kkk,iii)=derx_turn(lll,kkk,iii)-s3
9436               else
9437 #ifdef MOMENT
9438                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s1+s2+s4)
9439 #else
9440                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-(s2+s4)
9441 #endif
9442                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9443               endif
9444             else
9445 #ifdef MOMENT
9446               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s1+s2+s4)
9447 #else
9448               derx(lll,kkk,iii)=derx(lll,kkk,iii)-(s2+s4)
9449 #endif
9450               if (l.eq.j+1) then
9451                 derx(lll,kkk,iii)=derx(lll,kkk,iii)-s3
9452               else 
9453                 derx(lll,kkk,3-iii)=derx(lll,kkk,3-iii)-s3
9454               endif
9455             endif 
9456           enddo
9457         enddo
9458       enddo
9459       return
9460       end
9461 c----------------------------------------------------------------------------
9462       double precision function eello_turn6(i,jj,kk)
9463       implicit real*8 (a-h,o-z)
9464       include 'DIMENSIONS'
9465       include 'COMMON.IOUNITS'
9466       include 'COMMON.CHAIN'
9467       include 'COMMON.DERIV'
9468       include 'COMMON.INTERACT'
9469       include 'COMMON.CONTACTS'
9470       include 'COMMON.TORSION'
9471       include 'COMMON.VAR'
9472       include 'COMMON.GEO'
9473       double precision vtemp1(2),vtemp2(2),vtemp3(2),vtemp4(2),
9474      &  atemp(2,2),auxmat(2,2),achuj_temp(2,2),gtemp(2,2),gvec(2),
9475      &  ggg1(3),ggg2(3)
9476       double precision vtemp1d(2),vtemp2d(2),vtemp3d(2),vtemp4d(2),
9477      &  atempd(2,2),auxmatd(2,2),achuj_tempd(2,2),gtempd(2,2),gvecd(2)
9478 C 4/7/01 AL Components s1, s8, and s13 were removed, because they pertain to
9479 C           the respective energy moment and not to the cluster cumulant.
9480       s1=0.0d0
9481       s8=0.0d0
9482       s13=0.0d0
9483 c
9484       eello_turn6=0.0d0
9485       j=i+4
9486       k=i+1
9487       l=i+3
9488       iti=itortyp(itype(i))
9489       itk=itortyp(itype(k))
9490       itk1=itortyp(itype(k+1))
9491       itl=itortyp(itype(l))
9492       itj=itortyp(itype(j))
9493 cd      write (2,*) 'itk',itk,' itk1',itk1,' itl',itl,' itj',itj
9494 cd      write (2,*) 'i',i,' k',k,' j',j,' l',l
9495 cd      if (i.ne.1 .or. j.ne.3 .or. k.ne.2 .or. l.ne.4) then
9496 cd        eello6=0.0d0
9497 cd        return
9498 cd      endif
9499 cd      write (iout,*)
9500 cd     &   'EELLO6: Contacts have occurred for peptide groups',i,j,
9501 cd     &   ' and',k,l
9502 cd      call checkint_turn6(i,jj,kk,eel_turn6_num)
9503       do iii=1,2
9504         do kkk=1,5
9505           do lll=1,3
9506             derx_turn(lll,kkk,iii)=0.0d0
9507           enddo
9508         enddo
9509       enddo
9510 cd      eij=1.0d0
9511 cd      ekl=1.0d0
9512 cd      ekont=1.0d0
9513       eello6_5=eello6_graph4(l,k,j,i,kk,jj,2,.true.)
9514 cd      eello6_5=0.0d0
9515 cd      write (2,*) 'eello6_5',eello6_5
9516 #ifdef MOMENT
9517       call transpose2(AEA(1,1,1),auxmat(1,1))
9518       call matmat2(EUg(1,1,i+1),auxmat(1,1),auxmat(1,1))
9519       ss1=scalar2(Ub2(1,i+2),b1(1,itl))
9520       s1 = (auxmat(1,1)+auxmat(2,2))*ss1
9521 #endif
9522       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9523       call matvec2(AEA(1,1,1),vtemp1(1),vtemp1(1))
9524       s2 = scalar2(b1(1,itk),vtemp1(1))
9525 #ifdef MOMENT
9526       call transpose2(AEA(1,1,2),atemp(1,1))
9527       call matmat2(atemp(1,1),EUg(1,1,i+4),atemp(1,1))
9528       call matvec2(Ug2(1,1,i+2),dd(1,1,itk1),vtemp2(1))
9529       s8 = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9530 #endif
9531       call matmat2(EUg(1,1,i+3),AEA(1,1,2),auxmat(1,1))
9532       call matvec2(auxmat(1,1),Ub2(1,i+4),vtemp3(1))
9533       s12 = scalar2(Ub2(1,i+2),vtemp3(1))
9534 #ifdef MOMENT
9535       call transpose2(a_chuj(1,1,kk,i+1),achuj_temp(1,1))
9536       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtemp(1,1))
9537       call matmat2(gtemp(1,1),EUg(1,1,i+3),gtemp(1,1)) 
9538       call matvec2(a_chuj(1,1,jj,i),Ub2(1,i+4),vtemp4(1)) 
9539       ss13 = scalar2(b1(1,itk),vtemp4(1))
9540       s13 = (gtemp(1,1)+gtemp(2,2))*ss13
9541 #endif
9542 c      write (2,*) 's1,s2,s8,s12,s13',s1,s2,s8,s12,s13
9543 c      s1=0.0d0
9544 c      s2=0.0d0
9545 c      s8=0.0d0
9546 c      s12=0.0d0
9547 c      s13=0.0d0
9548       eel_turn6 = eello6_5 - 0.5d0*(s1+s2+s12+s8+s13)
9549 C Derivatives in gamma(i+2)
9550       s1d =0.0d0
9551       s8d =0.0d0
9552 #ifdef MOMENT
9553       call transpose2(AEA(1,1,1),auxmatd(1,1))
9554       call matmat2(EUgder(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9555       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9556       call transpose2(AEAderg(1,1,2),atempd(1,1))
9557       call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9558       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9559 #endif
9560       call matmat2(EUg(1,1,i+3),AEAderg(1,1,2),auxmatd(1,1))
9561       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9562       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9563 c      s1d=0.0d0
9564 c      s2d=0.0d0
9565 c      s8d=0.0d0
9566 c      s12d=0.0d0
9567 c      s13d=0.0d0
9568       gel_loc_turn6(i)=gel_loc_turn6(i)-0.5d0*ekont*(s1d+s8d+s12d)
9569 C Derivatives in gamma(i+3)
9570 #ifdef MOMENT
9571       call transpose2(AEA(1,1,1),auxmatd(1,1))
9572       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9573       ss1d=scalar2(Ub2der(1,i+2),b1(1,itl))
9574       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1d
9575 #endif
9576       call matvec2(EUgder(1,1,i+2),b1(1,itl),vtemp1d(1))
9577       call matvec2(AEA(1,1,1),vtemp1d(1),vtemp1d(1))
9578       s2d = scalar2(b1(1,itk),vtemp1d(1))
9579 #ifdef MOMENT
9580       call matvec2(Ug2der(1,1,i+2),dd(1,1,itk1),vtemp2d(1))
9581       s8d = -(atemp(1,1)+atemp(2,2))*scalar2(cc(1,1,itl),vtemp2d(1))
9582 #endif
9583       s12d = scalar2(Ub2der(1,i+2),vtemp3(1))
9584 #ifdef MOMENT
9585       call matmat2(achuj_temp(1,1),EUgder(1,1,i+2),gtempd(1,1))
9586       call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9587       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9588 #endif
9589 c      s1d=0.0d0
9590 c      s2d=0.0d0
9591 c      s8d=0.0d0
9592 c      s12d=0.0d0
9593 c      s13d=0.0d0
9594 #ifdef MOMENT
9595       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9596      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9597 #else
9598       gel_loc_turn6(i+1)=gel_loc_turn6(i+1)
9599      &               -0.5d0*ekont*(s2d+s12d)
9600 #endif
9601 C Derivatives in gamma(i+4)
9602       call matmat2(EUgder(1,1,i+3),AEA(1,1,2),auxmatd(1,1))
9603       call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9604       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9605 #ifdef MOMENT
9606       call matmat2(achuj_temp(1,1),EUg(1,1,i+2),gtempd(1,1))
9607       call matmat2(gtempd(1,1),EUgder(1,1,i+3),gtempd(1,1)) 
9608       s13d = (gtempd(1,1)+gtempd(2,2))*ss13
9609 #endif
9610 c      s1d=0.0d0
9611 c      s2d=0.0d0
9612 c      s8d=0.0d0
9613 C      s12d=0.0d0
9614 c      s13d=0.0d0
9615 #ifdef MOMENT
9616       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d+s13d)
9617 #else
9618       gel_loc_turn6(i+2)=gel_loc_turn6(i+2)-0.5d0*ekont*(s12d)
9619 #endif
9620 C Derivatives in gamma(i+5)
9621 #ifdef MOMENT
9622       call transpose2(AEAderg(1,1,1),auxmatd(1,1))
9623       call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9624       s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9625 #endif
9626       call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1d(1))
9627       call matvec2(AEAderg(1,1,1),vtemp1d(1),vtemp1d(1))
9628       s2d = scalar2(b1(1,itk),vtemp1d(1))
9629 #ifdef MOMENT
9630       call transpose2(AEA(1,1,2),atempd(1,1))
9631       call matmat2(atempd(1,1),EUgder(1,1,i+4),atempd(1,1))
9632       s8d = -(atempd(1,1)+atempd(2,2))*scalar2(cc(1,1,itl),vtemp2(1))
9633 #endif
9634       call matvec2(auxmat(1,1),Ub2der(1,i+4),vtemp3d(1))
9635       s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9636 #ifdef MOMENT
9637       call matvec2(a_chuj(1,1,jj,i),Ub2der(1,i+4),vtemp4d(1)) 
9638       ss13d = scalar2(b1(1,itk),vtemp4d(1))
9639       s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9640 #endif
9641 c      s1d=0.0d0
9642 c      s2d=0.0d0
9643 c      s8d=0.0d0
9644 c      s12d=0.0d0
9645 c      s13d=0.0d0
9646 #ifdef MOMENT
9647       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9648      &               -0.5d0*ekont*(s1d+s2d+s8d+s12d+s13d)
9649 #else
9650       gel_loc_turn6(i+3)=gel_loc_turn6(i+3)
9651      &               -0.5d0*ekont*(s2d+s12d)
9652 #endif
9653 C Cartesian derivatives
9654       do iii=1,2
9655         do kkk=1,5
9656           do lll=1,3
9657 #ifdef MOMENT
9658             call transpose2(AEAderx(1,1,lll,kkk,iii,1),auxmatd(1,1))
9659             call matmat2(EUg(1,1,i+1),auxmatd(1,1),auxmatd(1,1))
9660             s1d = (auxmatd(1,1)+auxmatd(2,2))*ss1
9661 #endif
9662             call matvec2(EUg(1,1,i+2),b1(1,itl),vtemp1(1))
9663             call matvec2(AEAderx(1,1,lll,kkk,iii,1),vtemp1(1),
9664      &          vtemp1d(1))
9665             s2d = scalar2(b1(1,itk),vtemp1d(1))
9666 #ifdef MOMENT
9667             call transpose2(AEAderx(1,1,lll,kkk,iii,2),atempd(1,1))
9668             call matmat2(atempd(1,1),EUg(1,1,i+4),atempd(1,1))
9669             s8d = -(atempd(1,1)+atempd(2,2))*
9670      &           scalar2(cc(1,1,itl),vtemp2(1))
9671 #endif
9672             call matmat2(EUg(1,1,i+3),AEAderx(1,1,lll,kkk,iii,2),
9673      &           auxmatd(1,1))
9674             call matvec2(auxmatd(1,1),Ub2(1,i+4),vtemp3d(1))
9675             s12d = scalar2(Ub2(1,i+2),vtemp3d(1))
9676 c      s1d=0.0d0
9677 c      s2d=0.0d0
9678 c      s8d=0.0d0
9679 c      s12d=0.0d0
9680 c      s13d=0.0d0
9681 #ifdef MOMENT
9682             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9683      &        - 0.5d0*(s1d+s2d)
9684 #else
9685             derx_turn(lll,kkk,iii) = derx_turn(lll,kkk,iii) 
9686      &        - 0.5d0*s2d
9687 #endif
9688 #ifdef MOMENT
9689             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9690      &        - 0.5d0*(s8d+s12d)
9691 #else
9692             derx_turn(lll,kkk,3-iii) = derx_turn(lll,kkk,3-iii) 
9693      &        - 0.5d0*s12d
9694 #endif
9695           enddo
9696         enddo
9697       enddo
9698 #ifdef MOMENT
9699       do kkk=1,5
9700         do lll=1,3
9701           call transpose2(a_chuj_der(1,1,lll,kkk,kk,i+1),
9702      &      achuj_tempd(1,1))
9703           call matmat2(achuj_tempd(1,1),EUg(1,1,i+2),gtempd(1,1))
9704           call matmat2(gtempd(1,1),EUg(1,1,i+3),gtempd(1,1)) 
9705           s13d=(gtempd(1,1)+gtempd(2,2))*ss13
9706           derx_turn(lll,kkk,2) = derx_turn(lll,kkk,2)-0.5d0*s13d
9707           call matvec2(a_chuj_der(1,1,lll,kkk,jj,i),Ub2(1,i+4),
9708      &      vtemp4d(1)) 
9709           ss13d = scalar2(b1(1,itk),vtemp4d(1))
9710           s13d = (gtemp(1,1)+gtemp(2,2))*ss13d
9711           derx_turn(lll,kkk,1) = derx_turn(lll,kkk,1)-0.5d0*s13d
9712         enddo
9713       enddo
9714 #endif
9715 cd      write(iout,*) 'eel6_turn6',eel_turn6,' eel_turn6_num',
9716 cd     &  16*eel_turn6_num
9717 cd      goto 1112
9718       if (j.lt.nres-1) then
9719         j1=j+1
9720         j2=j-1
9721       else
9722         j1=j-1
9723         j2=j-2
9724       endif
9725       if (l.lt.nres-1) then
9726         l1=l+1
9727         l2=l-1
9728       else
9729         l1=l-1
9730         l2=l-2
9731       endif
9732       do ll=1,3
9733 cgrad        ggg1(ll)=eel_turn6*g_contij(ll,1)
9734 cgrad        ggg2(ll)=eel_turn6*g_contij(ll,2)
9735 cgrad        ghalf=0.5d0*ggg1(ll)
9736 cd        ghalf=0.0d0
9737         gturn6ij=eel_turn6*g_contij(ll,1)+ekont*derx_turn(ll,1,1)
9738         gturn6kl=eel_turn6*g_contij(ll,2)+ekont*derx_turn(ll,1,2)
9739         gcorr6_turn(ll,i)=gcorr6_turn(ll,i)!+ghalf
9740      &    +ekont*derx_turn(ll,2,1)
9741         gcorr6_turn(ll,i+1)=gcorr6_turn(ll,i+1)+ekont*derx_turn(ll,3,1)
9742         gcorr6_turn(ll,j)=gcorr6_turn(ll,j)!+ghalf
9743      &    +ekont*derx_turn(ll,4,1)
9744         gcorr6_turn(ll,j1)=gcorr6_turn(ll,j1)+ekont*derx_turn(ll,5,1)
9745         gcorr6_turn_long(ll,j)=gcorr6_turn_long(ll,j)+gturn6ij
9746         gcorr6_turn_long(ll,i)=gcorr6_turn_long(ll,i)-gturn6ij
9747 cgrad        ghalf=0.5d0*ggg2(ll)
9748 cd        ghalf=0.0d0
9749         gcorr6_turn(ll,k)=gcorr6_turn(ll,k)!+ghalf
9750      &    +ekont*derx_turn(ll,2,2)
9751         gcorr6_turn(ll,k+1)=gcorr6_turn(ll,k+1)+ekont*derx_turn(ll,3,2)
9752         gcorr6_turn(ll,l)=gcorr6_turn(ll,l)!+ghalf
9753      &    +ekont*derx_turn(ll,4,2)
9754         gcorr6_turn(ll,l1)=gcorr6_turn(ll,l1)+ekont*derx_turn(ll,5,2)
9755         gcorr6_turn_long(ll,l)=gcorr6_turn_long(ll,l)+gturn6kl
9756         gcorr6_turn_long(ll,k)=gcorr6_turn_long(ll,k)-gturn6kl
9757       enddo
9758 cd      goto 1112
9759 cgrad      do m=i+1,j-1
9760 cgrad        do ll=1,3
9761 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg1(ll)
9762 cgrad        enddo
9763 cgrad      enddo
9764 cgrad      do m=k+1,l-1
9765 cgrad        do ll=1,3
9766 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ggg2(ll)
9767 cgrad        enddo
9768 cgrad      enddo
9769 cgrad1112  continue
9770 cgrad      do m=i+2,j2
9771 cgrad        do ll=1,3
9772 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,1)
9773 cgrad        enddo
9774 cgrad      enddo
9775 cgrad      do m=k+2,l2
9776 cgrad        do ll=1,3
9777 cgrad          gcorr6_turn(ll,m)=gcorr6_turn(ll,m)+ekont*derx_turn(ll,1,2)
9778 cgrad        enddo
9779 cgrad      enddo 
9780 cd      do iii=1,nres-3
9781 cd        write (2,*) iii,g_corr6_loc(iii)
9782 cd      enddo
9783       eello_turn6=ekont*eel_turn6
9784 cd      write (2,*) 'ekont',ekont
9785 cd      write (2,*) 'eel_turn6',ekont*eel_turn6
9786       return
9787       end
9788
9789 C-----------------------------------------------------------------------------
9790       double precision function scalar(u,v)
9791 !DIR$ INLINEALWAYS scalar
9792 #ifndef OSF
9793 cDEC$ ATTRIBUTES FORCEINLINE::scalar
9794 #endif
9795       implicit none
9796       double precision u(3),v(3)
9797 cd      double precision sc
9798 cd      integer i
9799 cd      sc=0.0d0
9800 cd      do i=1,3
9801 cd        sc=sc+u(i)*v(i)
9802 cd      enddo
9803 cd      scalar=sc
9804
9805       scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
9806       return
9807       end
9808 crc-------------------------------------------------
9809       SUBROUTINE MATVEC2(A1,V1,V2)
9810 !DIR$ INLINEALWAYS MATVEC2
9811 #ifndef OSF
9812 cDEC$ ATTRIBUTES FORCEINLINE::MATVEC2
9813 #endif
9814       implicit real*8 (a-h,o-z)
9815       include 'DIMENSIONS'
9816       DIMENSION A1(2,2),V1(2),V2(2)
9817 c      DO 1 I=1,2
9818 c        VI=0.0
9819 c        DO 3 K=1,2
9820 c    3     VI=VI+A1(I,K)*V1(K)
9821 c        Vaux(I)=VI
9822 c    1 CONTINUE
9823
9824       vaux1=a1(1,1)*v1(1)+a1(1,2)*v1(2)
9825       vaux2=a1(2,1)*v1(1)+a1(2,2)*v1(2)
9826
9827       v2(1)=vaux1
9828       v2(2)=vaux2
9829       END
9830 C---------------------------------------
9831       SUBROUTINE MATMAT2(A1,A2,A3)
9832 #ifndef OSF
9833 cDEC$ ATTRIBUTES FORCEINLINE::MATMAT2  
9834 #endif
9835       implicit real*8 (a-h,o-z)
9836       include 'DIMENSIONS'
9837       DIMENSION A1(2,2),A2(2,2),A3(2,2)
9838 c      DIMENSION AI3(2,2)
9839 c        DO  J=1,2
9840 c          A3IJ=0.0
9841 c          DO K=1,2
9842 c           A3IJ=A3IJ+A1(I,K)*A2(K,J)
9843 c          enddo
9844 c          A3(I,J)=A3IJ
9845 c       enddo
9846 c      enddo
9847
9848       ai3_11=a1(1,1)*a2(1,1)+a1(1,2)*a2(2,1)
9849       ai3_12=a1(1,1)*a2(1,2)+a1(1,2)*a2(2,2)
9850       ai3_21=a1(2,1)*a2(1,1)+a1(2,2)*a2(2,1)
9851       ai3_22=a1(2,1)*a2(1,2)+a1(2,2)*a2(2,2)
9852
9853       A3(1,1)=AI3_11
9854       A3(2,1)=AI3_21
9855       A3(1,2)=AI3_12
9856       A3(2,2)=AI3_22
9857       END
9858
9859 c-------------------------------------------------------------------------
9860       double precision function scalar2(u,v)
9861 !DIR$ INLINEALWAYS scalar2
9862       implicit none
9863       double precision u(2),v(2)
9864       double precision sc
9865       integer i
9866       scalar2=u(1)*v(1)+u(2)*v(2)
9867       return
9868       end
9869
9870 C-----------------------------------------------------------------------------
9871
9872       subroutine transpose2(a,at)
9873 !DIR$ INLINEALWAYS transpose2
9874 #ifndef OSF
9875 cDEC$ ATTRIBUTES FORCEINLINE::transpose2
9876 #endif
9877       implicit none
9878       double precision a(2,2),at(2,2)
9879       at(1,1)=a(1,1)
9880       at(1,2)=a(2,1)
9881       at(2,1)=a(1,2)
9882       at(2,2)=a(2,2)
9883       return
9884       end
9885 c--------------------------------------------------------------------------
9886       subroutine transpose(n,a,at)
9887       implicit none
9888       integer n,i,j
9889       double precision a(n,n),at(n,n)
9890       do i=1,n
9891         do j=1,n
9892           at(j,i)=a(i,j)
9893         enddo
9894       enddo
9895       return
9896       end
9897 C---------------------------------------------------------------------------
9898       subroutine prodmat3(a1,a2,kk,transp,prod)
9899 !DIR$ INLINEALWAYS prodmat3
9900 #ifndef OSF
9901 cDEC$ ATTRIBUTES FORCEINLINE::prodmat3
9902 #endif
9903       implicit none
9904       integer i,j
9905       double precision a1(2,2),a2(2,2),a2t(2,2),kk(2,2),prod(2,2)
9906       logical transp
9907 crc      double precision auxmat(2,2),prod_(2,2)
9908
9909       if (transp) then
9910 crc        call transpose2(kk(1,1),auxmat(1,1))
9911 crc        call matmat2(a1(1,1),auxmat(1,1),auxmat(1,1))
9912 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1)) 
9913         
9914            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,1)
9915      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,1)
9916            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(1,2))*a2(1,2)
9917      & +(a1(1,1)*kk(2,1)+a1(1,2)*kk(2,2))*a2(2,2)
9918            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,1)
9919      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,1)
9920            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(1,2))*a2(1,2)
9921      & +(a1(2,1)*kk(2,1)+a1(2,2)*kk(2,2))*a2(2,2)
9922
9923       else
9924 crc        call matmat2(a1(1,1),kk(1,1),auxmat(1,1))
9925 crc        call matmat2(auxmat(1,1),a2(1,1),prod_(1,1))
9926
9927            prod(1,1)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,1)
9928      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,1)
9929            prod(1,2)=(a1(1,1)*kk(1,1)+a1(1,2)*kk(2,1))*a2(1,2)
9930      &  +(a1(1,1)*kk(1,2)+a1(1,2)*kk(2,2))*a2(2,2)
9931            prod(2,1)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,1)
9932      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,1)
9933            prod(2,2)=(a1(2,1)*kk(1,1)+a1(2,2)*kk(2,1))*a2(1,2)
9934      &  +(a1(2,1)*kk(1,2)+a1(2,2)*kk(2,2))*a2(2,2)
9935
9936       endif
9937 c      call transpose2(a2(1,1),a2t(1,1))
9938
9939 crc      print *,transp
9940 crc      print *,((prod_(i,j),i=1,2),j=1,2)
9941 crc      print *,((prod(i,j),i=1,2),j=1,2)
9942
9943       return
9944       end
9945